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SUMMARY
In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dy-
namic changes across multiple domains, ultimately leading to control of the output module (OPM) activ-
ity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore
region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans
(DrBphP), we show that the arm is crucial for signal transduction. Crystallographic, spectroscopic, and
biochemical data indicate that this variant maintains the properties of DrBphP in the resting state. Spec-
troscopic data also reveal that the armless systems maintain the ability to respond to light. However,
there is no subsequent regulation of OPM activity without the arms. Thermal denaturation reveals
that the arms stabilize the DrBphP structure. Our results underline the importance of the structurally
flexible interconnecting hairpin extensions and describe their central role in the allosteric coupling of
phytochromes.
INTRODUCTION

All living organisms use various sensory systems to adapt to their

ambient environment. Phytochromes are red-light sensory pro-

teins in plants, bacteria, and fungi. They photoswitch between

two distinguishable states: a red-light absorbing Pr state and a

far-red light-absorbing Pfr state (Figure 1A). Phytochromes are

known to accommodate a variety of output modules (OPM)

allowing them to participate in different developmental and reg-

ulatory events.1 The OPM in bacterial phytochromes is often a

histidine kinase (HK), rendering them as sensors in two-compo-

nent signaling systems. The photosensory module (PSM) of the

phytochrome superfamily is conserved, consisting of the chro-

mophore binding domain (CBD) complemented by a phyto-

chrome-specific (PHY) domain that structurally connects the

CBD and OPM. In bacterial phytochromes, absorption of red

light causes isomerization of a covalently bound biliverdin (BV)

chromophore.2–5 This perturbation in the chromophore-binding

pocket, the allosteric site, triggers structural and dynamic

changes in the proteinmoiety, which ultimately leads to allosteric

regulation of the OPM activity at the functional site.6,7

Bacterial phytochromes share a highly similar PSM organiza-

tion as most plant, fungal, and cyanobacterial phytochromes,

regardless of their variety in effector modules.8 Most of these

systems include a structurally flexible PHY hairpin extension,

often referred to as the "tongue", but in this study referred to

as an "arm" (in green in Figure 1A).9,10 It extends from the PHY

domain core to the vicinity of the chromophore, forming highly
Structure 31, 1–9, Se
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conserved interactions with the GAF (cGMP phosphodies-

terase-adenylate cyclase-FhlA) domain that together with PAS

(Period-ARNT-Single-minded) forms the CBD.11,12 These inter-

actions are found even in PAS-less phytochromes, like cyano-

bacterial Synechocystis Cph2,11 which speaks for their high

conservation within phytochrome superfamily. From its other

end, the arm is connected (via a short linker region and the

PHY domain core) to a long helix that in bacterial systems ex-

tends to the output HK module.11

The arm brings intrinsic disorder into the phytochrome system

as it fluctuates between multiple conformations. In the Pr state,

the arm is mainly folded as a b-sheet, and during photoconver-

sion to Pfr, it refolds into an a-helix (Figure 1A).7,11–15 However,

it has been demonstrated that the arm can fluctuate away from

its interaction site at the GAF domain even in the Pr state.15,16

Since the discovery of the arm’s light-induced refolding,12

much attention has been drawn to its structure and role in phyto-

chrome signal transduction.7,15–24 The arm connects the two

other structural tiers of phytochrome, the chromophore binding

pocket and the OPM.1 Although signal transduction routes via

the central helix have been suggested,22,25 no clear and

coherent view of the coupling between the three tiers has been

reached yet.

To elucidate the allosteric coupling in phytochromes and

the role of the arm in phytochrome signaling in a direct

manner, we removed the arm extension from the full-length

(FL) and PSM (CBD-PHY) fragments of Deinococcus radiodur-

ans bacteriophytochrome (DrBphP). With the deletion, we
ptember 7, 2023 ª 2023 The Authors. Published by Elsevier Ltd. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. The dark state crystal structure of the CBD-PHY armless

(A) Dark and illuminated crystal structures of CBD-PHY. The ‘‘arm’’ is colored in green, and the covalently bound biliverdin (BV) is shown as blue sticks buried

inside the chromophore binding domain (CBD).

(B) Dark state structure of CBD-PHY armless. The removal of the arms results in loss of the PHY domain symmetry in the dimer and change in the characteristic

dimerization angle of the helical spine, visible in the 90� rotated view.

(C) Comparison of the chromophore binding pocket of CBD-PHY armless (red) andCBD-PHY (yellow) in the dark crystal structures reveals that the organization of

residues in the chromophore binding pocket is highly similar. Some of the amino acids crucial for the photocycle are shown in sticks. Only the BV of CBD-PHY

armless structure is shown in ball-stick presentation (blue) for clarity. PDB codes: 4O0P (CBD-PHY Pr12), 5C5K (CDB-PHY Pfr14), and 8BOR (CBD-PHY armless).
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created armless phytochrome variants with disrupted allosteric

tiers. By combining structural data with biochemical activity as-

says and spectroscopic results, we show that without the arm,

the dark state structure and properties are mostly unaffected

and the chromophore environment remains responsive to light,

yet the information from the chromophore and CBD cannot be

relayed to the OPM activity upon illumination.
RESULTS

The dark state structure of armless photosensory
module
The armless variants were created by clipping out the ‘‘arm’’

hairpin extension (segment between R446-G478) and by replac-

ing it with a sequence "GGGS". The CBD-PHY armless variant

crystallized as a parallel dimer, like the wild-type CBD-PHY

construct, and the structure could be resolved up to 2.3 Å reso-

lution (Figures 1 and S1, Table 1).12,14 The overall structural fea-

tures resemble those of its arm-containing counterpart, except

the dimer symmetry is lost without the arms as the PHY domains

appear tilted. Onemonomer of the PHY is docked against its cor-

responding CBD, while the other is pulled further from its CBD.

The observed PHY domain positioning can be driven by crystal

packing as it results in a smaller B-factor in the docked domain

(Figure S2 A). This underlines the importance of the arms in sta-

bilizing the orientation of the PHY domains. However, the

removal of the arm did not affect the overall fold of the remaining

PHY domain (Figure S2B).

Further differences between the wild-type and armless dark

state structures can be found from the dimerization angle of

the monomers, in the 90� rotated view in Figure 1. In the wild-
2 Structure 31, 1–9, September 7, 2023
type, the angle between the interconnecting helices of the two

monomers at the pivot point is about 80�, whereas in the armless

it is only about 50�. This results in a slightly larger interface area

between the two monomers in the CBD-PHY armless (Fig-

ure S2C). Despite the altered orientation, the CBD and PHY do-

mains in both monomers have the same fold as in the wild-type.

Comparison of the chromophore binding pockets of the dark

state structures reveals that the organization of the residues is

nearly the same (Figure 1C). Even the conserved residues

Y263 and D207, which are responsible for the interaction

network with the arm,12 have configurations in the structures

highly similar to wild-type.
The removal of arms results in CBD-like spectroscopic
behavior
The switchability of the armless variants was confirmed with

UV-vis spectroscopy (Figure 2A). The spectra reveal that both

CBD-PHY armless and FL armless can be switched back and

forth between the illuminated and dark states. The dark state

spectra of all constructs are nearly identical, in line with the

similar organization of the chromophore binding pockets (Fig-

ure 1C). The illuminated state spectra of the armless systems

resemble that of CBD. The BV conformations and isomerization

yields were further studied by the urea-denatured samples and

their UV-vis absorption.26 The urea-denatured Pr spectra of

both armless systems reveal the BV to be in ZZZ conformation,

identical to CBD-PHY and CBD (Figures S3A–S3C). The isomer-

ization takes place in the armless systems upon illumination, but

the ZZE yield is slightly lower in CBD and armless constructs

than in the wild-type CBD-PHY (Figures S3D–S3F). After illumi-

nation, canonical phytochromes thermally revert back to the Pr

https://proteopedia.org/wiki/fgij/fg.htm?mol=5C5K
https://proteopedia.org/wiki/fgij/fg.htm?mol=8BOR


Table 1. X-ray diffraction data collection and refinement

statistics for the dark state (Pr) structure of CBD-PHY armless

Data Collection

Space group P 1 21 1

Cell dimensions

a, b, c (Å) 119.63, 64.59, 131.04

a, b, g (�) 90.00, 91.55, 90.00

Resolution (Å) 50.00–2.30 (2.36–2.30)

Rmerge 0.152 (1.496)

CC1=2 0.989 (0.325)

I/s(I) 5.40 (0.94)

Completeness (%) 98.8 (99.2)

Redundancy 3.29 (3.26)

Wilson B factor 45.1

Refinement

Resolution (Å) 45.99–2.30 (2.36–2.30)

No. of reflections 83924 (6133)

Rwork /Rfree 0.235/0.268 (0.366/0.393)

No. of atoms

Protein 14041

Ligand 172

Water 426

Overall B-factor (Å2) 53.0

Geometry

RMSD

Bond lengths (Å) 0.004

Bond angles (�) 0.989

Ramachandran

Favored (%) 98.3

Allowed (%) 1.7

Outliers (%) 0

Clashscore 4.2

A B

C

Figure 2. UV-vis and FTIR difference spectra show aCBD-like illumi-

nated state for both armless constructs

(A) UV-vis spectra of the constructs show the difference in the biliverdin (BV)

absorbance between dark (black lines) and illuminated (red lines) states.

(B) The FTIR difference spectra (Pfr minus Pr) of CBD-PHY armless and FL

armless compared to the one of CBD. The spectral properties of both armless

samples are nearly identical to CBD.

(C) In contrast, the spectral properties of wild-type CBD-PHY and FL are very

different from CBD. All spectra are scaled to the BV signal at 1712 cm� 1.
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state with a range of rates, depending on the construct.27 The

armless constructs revert back to the Pr state in tens of minutes,

much faster compared to their wild-type counterparts, which

have dark reversion rates of hours (Figure S4). The armless sys-

tems have a fast monophasic reversion. The inclusion of arms re-

sults in a second slow component, with a time constant of hours

(Figure S4B).

The light-induced changes in BV and protein moiety interac-

tionswere studied by recording FTIR difference spectra between

the illuminated and dark states (Figures 2B and 2C). Similar to

UV-vis spectroscopy, the FTIR difference signals of both CBD-

PHY armless and FL armless strongly resemble those of CBD.

The negative BV signals at 1736 cm�1 and 1712 cm�1, are due

to the disappearance of the A-ring and D-ring carbonyl interac-

tions, respectively, which is a result of BV isomerization, as

observed also in wild-type CBD-PHY and FL (Figure 2C).19,28

In all systems, the H-bond network strength of the D-ring

carbonyl increases from Pr to Pfr, observed as a frequency shift

to lower energy. The large symmetric band at 1685 cm�1

observed in CBD-PHY and FL reveals the H-bond network be-

tween the C=O group of the BV and H201 and S468 sites in
Pfr.28 In CBD, as well as in the armless constructs, the positive

contribution of the BV C=O vibration is wider. In isotope-labeled

CBD, where the shifted amide I signals do not disturb this region,

the band continues up to 1620 cm�1 (Figure S5A). This indicates

that the H-bonding strength varies on a wider scale than in arm-

containing samples.18 Comparison between isotope-labeled

and non-isotope-labeled CBD indicates further signals from

BV, located around 1250–1200 cm�1 (Figure S5A). While the

peaks in this region are remarkably similar between CBD and

the armless constructs, they differ from CBD-PHY and FL by

having notably larger positive contributions, again suggesting

differences in the illuminated state BV environment (Figure 2C).

The differences in the FTIR signals between the isotope-

labeled and non-isotope-labeled CBD indicate that, in addition

to the chromophore changes, illumination results in changes

within the protein moiety (Figure S5A). The amide I signals (C=O

stretching vibration in the peptide bond) shift typically

40–50 cm�1 and amide II signals (a mixed vibration of N-H

bending and C-N stretching) shift about 30 cm�1 due to the
13C15N-isotopes in the amino acids.29,30 A negative-negative-

positive peak pattern (1660 (�), 1645 (�), 1634 (+) cm�1)

was differentiated in CBD and isotope-labeled CBD with a

42–44 cm�1 shift (Figure S5A). This correlates with an increase

in turns and disordered structure in Pr, and increased b-sheet
Structure 31, 1–9, September 7, 2023 3
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Figure 3. The light control of the OPM enzymatic activity is lost upon

arm removal

(A) PhosTag gel shows the amount of phosphorylated response regulator

(p-RR), which is dependent on the OPM activity as well as the light conditions.

(B) Interpretation of the gel. FL construct has phosphatase activity under red

light illumination, which is detected as diminished p-RR band under red light. In

FL armless, the p-RR amount remains unaltered regardless of illumination.

Chimera shows net kinase activity in dark, which is visible as an increase of

p-RR content. Once the arm is removed in Chimera armless, its kinase activity

remains unaffected by red light.
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content in Pfr.29 A similar FTIR signal pattern can also be found in

the CBD-PHY and FL systems (Figure 2).18,24 Indeed, in the Pr

and Pfr state crystal structures, a slight light-induced increase

in b-sheet structure is observed in the CBD region (Fig-

ure S5B).12,14 However, direct correlation of the FTIR signals

with the structural changes observed in crystallography would

require site-selective isotope labeling. Naturally, the amide I re-

gion differs between CBD-PHY and FL in comparison to CBD

and armless systems, indicating further protein moiety changes

in the arm-containing systems. The refolding of the arm hairpin

under study affects this region in both CBD-PHY and FL.19,24

Therefore, pinpointing FTIR signals which originate from

the light-induced changes in the OPM7 is to be addressed in

future studies. To conclude, no distinguishable light-induced

structural changes outside the CBD are observed in the armless

constructs.

Arm removal locks biochemical activity
DrBphP is shown to act as a light-activated phosphatase that

dephosphorylates its cognate response regulator (DrRR) under

red light.31 Here, the phosphatase activity of the FL armless

was studied in the dark and under saturating red light. The

light-induced and uninduced reactions were run on a PhosTag

gels, which allows distinguishing phosphorylated proteins from

their unphosphorylated counterparts based on their lower

mobility in the gel matrix (Figure 3A). The amount of phosphory-

lated RR (p-RR) was not reduced when incubated with FL

armless under red light, which indicates that the phosphatase

activity is not switched on, unlike in the case of FL wild-type.

The (in)activity remained very similar despite the light state,

and therefore the FL armless activity has a close to 1-fold dy-

namic range describing the magnitude of change in activity be-
4 Structure 31, 1–9, September 7, 2023
tween the two states.24 Comparison to the p-RR lane alone

shows that, whereas FL has a little bit of activity even in the

dark state, in FL armless it is constantly inactive. Like FL armless,

the apoprotein of DrBphP remains inactive regardless of illumi-

nation condition (Figure S6D).

To test the possibility that the lack of light-induced activity is

due to the disruption of the OPM functionality in the armless sys-

tem, we analyzed a phytochrome ‘‘Chimera’’ variant, first intro-

duced in Multam€aki et al.31 The Chimera consists of a PSM

from DrBphP, and an output HK module from Agrobacterium tu-

mefaciens phytochrome Agp1. Unlike DrBphP, the chimera acts

as an HK that phosphorylates its cognate RR in the dark but

lacks net kinase activity under red light (Figure 3B).31,32 In the

Chimera, the phosphorylation activity is observed through the

appearance of a p-RR band in dark, while under red light, only

a non-phosphorylated RR band is detected, indicating that the

net kinase activity is turned off (Figure 3). In the Chimera armless,

a p-RR band is observed in the dark as well as under red light,

indicating that the protein has kinase activity in both states and

therefore has lost the ability to respond to red light. Hence, the

phytochrome OPM remains functional but not controllable

without the arm. The full gel of the assay and repeats are shown

in Figures S6A–S6C.

Interplay between the arm and OPM affects thermal
stability
Circular dichroism (CD) spectroscopy was applied to study the

thermal stability of our phytochrome systems. Temperature-

induceddenaturationwas detected at twodifferent wavelengths,

at far-UV region (222 nm) and at near-UV region (281 nm),

revealing changes in secondary and tertiary structures, respec-

tively.33 Denaturation experiments with dimeric, multidomain

proteins are often complex due to protein concentration depen-

dence of dissociation, multiple transition temperatures and

increased misfolding and aggregation propensity relative to sin-

gle domain proteins.34–36 In our systems, unfolding is concomi-

tant with irreversible aggregation and/or conformational lock,

hampering a thermodynamic equilibrium analysis; the change

in free energy, enthalpy, or entropy upon unfolding cannot, there-

fore, be determined. Instead, we used the fitted melting temper-

atures (Tm, Equations 1–3) as an approximation of the stability of

our protein complexes in dark and illuminated states. In all stud-

ied constructs, two separate Tmswere observed: one at 41–65�C
and another at 72–77�C (Figure 4). In the case of 222 nm detec-

tion, a single transition is observed in all cases. With 281 nm

detection, two transitions, with decreasing and increasing sig-

nals, are observed in CBD-PHY and FL, while only one is

observed in the armless systems.

To investigate the origin of the two Tms, we also tracked the

UV-vis absorbance of BV at 700 nm as a function of temperature

in the dark state (Figure S7). The 700 nm signal decreased as a

function of temperature due to the denaturation of the BV envi-

ronment. A Tm of about 72�C was observed for both CBD and

CBD-PHY (Figure S7). Further, for the CBD fragment, a Tm of

over 74�C was detected at both CD detection wavelengths

(Figures S8A and S8C). These observations indicate that the

CBD has the highest Tm of the three subunits. Its structure is

strongly stabilized by the chromophore binding, as lack of BV

decreases the Tm by nearly 30�C (Figure S8). The capability to
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Figure 4. Thermograms of CBD-PHY, CBD-PHY armless, FL, and FL armless at 222 nm and 281 nm in dark and illuminated states

(A–D) Denaturation monitored as ellipticity at 222 nm (dots) in dark (black) and illuminated (red) states. The fits according to Equation 3 are shown as solid lines.

(E–H) Denaturation monitored as ellipticity at 281 nm in dark and illuminated states. The illuminated states of CBD-PHY and FL have two transitions, and both fits

are shown. The Tm values obtained from the fits are marked next to the corresponding plots.
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detect this transition with a near-UV CD signal can be rational-

ized from a structural point of view. The temperature-dependent

signal at 281 nm mainly relates to the exposure of the aromatic

amino acids in the hydrophobic pockets. In phytochromes, the

most globular structure containing hydrophobic pockets is the

CBD with its chromophore-binding cleft.

The lower Tms in CBD-PHY and FL at around 64–65 and 51�C
are observed at 222 nm, and are associated with denaturation of

the PHY and PHY-HK modules, respectively. Confirmed by

measuring the CBD-PHY melting profiles at 222 nm in three

different concentrations, these transitions are not related to

monomerization as a higher concentration resulted in lower Tm
with a smaller change in the signal intensity (Figure S9C).36

Rather, the observation indicates that the PHY and PHY-HK

modules denature in an irreversible manner and therefore earlier

at higher concentrations. The denaturation profile is also

affected by the heating rate. Slower heating rate resulted in a

lower Tm, due to increased time for aggregation at lower temper-

atures (Figure S9D).34

In CBD-PHY armless, the fitted Tms tracked from secondary

(64�C) and tertiary structures (78�C) are nearly identical to

CBD-PHY (Figures 4B and 4F). In the dark state, the arm does

not seem to affect the structural stability of the CBD-PHY

construct. However, in the illuminated state, differences be-

tween the wild-type and armless constructs become apparent.

In CBD-PHY, the Tms of both PHY and CBD domains increased

by 1�C (Figures 4A and 4E), whereas in CBD-PHY armless, both

Tms decreased in comparison to the dark state values

(Figures 4B and 4F), which reflects decreased structural stability.

In the illuminated state of CBD-PHY, two separate transitions,

decreasing and increasing signals, respectively, in the 281 nm

thermogram are observed. The Tm of 67�C is observed as a

decreasing CD signal, and Figure S9B reveals that the blue

end of the BV Soret absorption (300–470 nm) affects this signal

at the same temperature range. Especially in the illuminated

state, the arm shifts the Soret band (Figure S9B), and melting
of the PHY domain (including the arm) changes the BV absorp-

tion, which reflects to the 281 nm signal. This effect is also

observed in FL as a Tm of 63�C (Figure 4G). This suggests that

the "dip" in the signal originates from the melting of the arm

with subsequent changes in the BV environment. Therefore,

the decreasing signals are naturally absent in the armless vari-

ants (Figures 4F and 4H).

When comparing the denaturation of the PHY-HK units, the

Tm of FL armless is notably lower than that of wild-type FL,

even in the dark state (Figures 4C, 4D, 4G, and 4H). Again

in the armless, the Tms decrease in the illuminated state in

comparison to the dark. In FL wild-type, the fitted Tms in

dark and illuminated states were the same, 51�C. However,

in the illuminated state the shape of the denaturation curve

is more shallow than others, suggesting multiple overlapping

transitions. In both FL systems, the Tm of the CBD part in

the dark (78�C) is nearly identical to other constructs

(Figures 4G and 4H). In FL, the Tm of the CBD part decreases

to 76�C in the illuminated state.

DISCUSSION

The stability and activity of multidomain protein complexes can

be regulated in different ways. Subtle changes in the protein

fold can lead to dramatic effects on the characteristics of large

protein complexes.7,36,37 Typically in the allostery ofmultidomain

signaling proteins, a connecting domain transmits a signal from

the regulatory site to the functional site.37,38 In phytochromes,

the PHY domain structurally and functionally links the photoacti-

vating CBD and the biochemically active OPM. Here, we demon-

strated that the arm, a dynamic hairpin structure in the PHY

domain, plays a crucial role in the (de)activation of the OPM. In

Pr, with the methods used here, the lack of arm did not seem

to affect the chromophore binding pocket. However, two

different H-bonding environments of the D-ring have been

observed previously,39,40 which in principle can result from the
Structure 31, 1–9, September 7, 2023 5



A B Figure 5. Phytochrome allostery

(A) Wild-typeDrBphP acts as a phosphatase, and its

activity is switched on under red light. In the armless

system, the chromophore and surrounding protein

moiety remain responsive to light, as observed by

FTIR and UV-vis spectroscopy, yet the activity of the

OPM cannot be controlled by light.

(B) The thermal stability of CBD-PHY, FL, CBD-PHY

armless, and FL armless systems represented by

the Tm values of their PHY or PHY-HK unit in dark

and illuminated states from Figures 4A–4D. The

wild-type systems have an additional melting tem-

perature (Tm2) that originates most probably from

themelting of the arm and is detected as a decrease

of the 281 nm signal (Figures 4E and 4G).
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arm fluctuations. We showed that the arms are needed to stabi-

lize the light-activated Pfr state of the chromophore. One sug-

gestion is that this happens through dipole coupling between

the a-helical arm and BV.41 Further, the arm stabilizes the overall

structure of the system and couples together, not only BV in the

chromophore binding pocket and biochemically active OPM but

also the three subunits in terms of thermal stability, making it a

key element in phytochrome allostery (Figure 5).

The dynamic range of a system describes how efficiently the

enzymatic activity is altered in response to a signal.42 It depends

on the magnitude of the equilibrium shift between the active and

inactive conformations and therefore high dynamic range re-

quires strong coupling of the perturbation and functional sites.38

We have previously described 33-fold dynamic range for

DrBphP activity.24 Here, we showed that the armless systems

had no significant difference in activity between dark and illumi-

nated states (close to 1-fold dynamic range), and the coupling

between the light-sensing (BV) and the functional site (OPM) is

completely disrupted upon arm removal. Gourinchas et al. had

similar results with an armless variant of IsPadC (IsPadC

D442� 477SG), a bacterial phytochrome with diguanylyl cyclase

activity.22 The wild-type IsPadC is activated under red light illu-

mination and has a 43-fold dynamic range. The armless variant

became continuously active and had larger maximal activity

than its wild-type counterpart, with 1.6-fold repression of activity

upon illumination.22 Gourinchas et al. as well as Isaksson et al.

have previously concluded that the helical spine acts as a signal

transduction route between BV and the OPM.22,25 The armless

variants, however, demonstrate that the helical spine on its

own cannot transduce the signal and that the arms are required

for allosteric control of the OPM activity (Figure 5A).

The OPM of DrBphP appears very dynamic,7 which is in

accord with the thermal stability of the PHY-OPM region. The

Tm of the PHY-OPM subunits in FL is over 10�C lower than the

Tm of the PHY domain alone in both CBD-PHY and CBD-PHY

armless (Figure 5B). In this regard, the role of the arm becomes

clear in the FL systems where dimeric interactions among the

OPMs take place.7,43 Without the arm, the thermal stability of

the PHY and the OPM decreases significantly (Figure 5B).

Further, the FL has a multi-phasic denaturation curve of the illu-

minated state, not observed in other systems (Figures 4A–4D),

which reflects increased dynamics in the OPM7 that take place

hand-in-hand with the refolded arm. In the wild-type systems,

the melting of the arm can be observed as a separate melting

temperature (Tm2 in Figure 5B). The arm and the OPM are struc-
6 Structure 31, 1–9, September 7, 2023
turally and functionally coupled, but as the OPM and PHY

domain denature hand-in-hand, also the core region of the

PHY domain is closely coupled to the OPM.

Hairpin extensions and loops are known to be important allo-

steric mediators in multiple signaling systems.44,45 Here, we re-

vealed information regarding phytochrome allostery at multiple

levels including atomic coordinates in the crystal structure,

changes in intramolecular interactions probed by FTIR, changes

in control of biochemical activity, and in thermal stability using

temperature and illumination dependent CD spectroscopy. Our

study indicates the role of the arm in phytochromes is particularly

important for the light-activated state formation, stabilization,

and regulation of phosphatase and kinase activity. In the resting

state, the arm does not seem to affect the chromophore pocket

organization. Despite its dynamic nature, the arm plays a role in

maintaining overall structural stability and domain arrange-

ment.46 Upon illumination, the chromophore and CBD can

switch to the light-activated state without the arm, but only the

arm allows the signal transduction all the way to the OPM. The

arm is therefore crucial for the allosteric coupling of the sensory

and effector modules.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

DrBphP CBD Takala et al. (2018)18 N/A

DrBphP CBD-PHY Takala et al. (2018)18 N/A

DrBphP full-length Kurttila et al. (2022)24 N/A

DrBphP AtHK Chimera Multam€aki et al. (2021)31 N/A

Response regulator of DrBphP (DrRR) Multam€aki et al. (2021)31 N/A

D-glucose (u13 C6, 99%) Cambridge Isotope Laboratories Cat# CLM-1396-PK

Ammonium Chloride (15N, 99%) Cambridge Isotope Laboratories Cat# NLM-467-PK

Polyethylene glycol 3350 Sigma Cat# 88776-250G-F

D-(+)-glucose anhydrous MP Biomedicals LLC Cat# 194672

D-(�)-fructose Sigma Cat# F3510-1006

Ammonium acetate Merck Cat# 1.01116

Sodium citrate Sigma-Alrdich Cat# 51804-500G

Ethylene glycol Sigma-Alrdich Cat# 324558-100ML

Critical commercial assays

QuickChange Lightning Multi Site-Directed

Mutagenesis Kit

Agilent Technologies Cat# 210513

Zn2+-Phos-tag� SDS-PAGE assay Fujifilm Wako Chemicals

Europe GmbH

Ref# AAL-107S1

Deposited data

Crystal structure of armless DrBphP in Pr state This paper PDB code: 8BOR

Crystal structure of DrBphP in Pr state Takala et al. (2014)12 PDB code: 4O0P

Crystal structure of DrBphP in Pfr state Burgie et al. (2016)14 PBD code 5C5K

Experimental models: Organisms/strains

E. coli BL21(DE3) Thermo Scientific Cat# EC0114

E. coli DH5a Invitroge Cat# 18265017

Oligonucleotides

Armless mutants: 50- TGG CTG CGG CCC

GAA CTG CGG GGA GGA GGA TCC GGC

TAC GCC GAG CCC TG -30

This paper N/A

Recombinant DNA

pET21b(+) with DrBphP CBD Wagner et al. (2005)47 N/A

pET21b(+) with DrBphP CBD-PHY Wagner et al. (2007)48 N/A

pET21b(+) with DrBphP Wagner et al. (2007, 2008)48,49 N/A

pET21b(+) with DrBphP AtHK Chimera Multam€aki et al. (2021)31 N/A

Software and algorithms

MATLAB (R2022b) MathWorks https://se.mathworks.com/products/MATLAB.html

PyMOL Molecular Graphics System (version 2.0) Schrödinger, LLC https://pymol.org/2/

XDS program package (version Feb 5, 2021) Kabsch (1993)50 https://www.esrf.fr/UsersAndScience/Experiments/

MX/Software/PXSOFT/XDS/XDS_html_doc

Phaser (version 2.8.3.) McCoy et al. (2007)51 https://www.phaser.cimr.cam.ac.uk/index.php/

Phaser_Crystallographic_Software

Coot (version 0.9.6) Emsley and Cowtan (2004)52 https://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

REFMAC5 (version 5.8.0352) Murshudov et al. (2011)53 https://www2.mrc-lmb.cam.ac.uk/groups/

murshudov/content/refmac/refmac.html

CCP4 interface (version 8.0.005) Winn et al. (2011)54 https://www.ccp4.ac.uk
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Janne

Ihalainen (janne.ihalainen@jyu.fi).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The crystal structure of CBD-PHY armless is available in Protein DataBank (PDB ID: 8BOR). Any additional information required

to reanalyze the data reported in this paper is available from the lead contact upon request

d This paper does not report original code.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The recombinant proteins used in this study were expressed in a pET21b(+) vector in E. coli BL21(DE3) cells as outlined in method

details.

METHOD DETAILS

Cloning and DNA material
The pET21b(+) expression plasmids coding for wild-type D. radiodurans phytochrome fragments (CBD, CBD-PHY, full-length) were

kindly provided by the laboratories of Prof. R. D. Vierstra and Prof. K. T. Forest.5,48,47 The Chimera construct has the photosensory

module of DrBphP and the effector domain of phytochrome 1 from Agrobacterium fabrum (Agp1) as described in Multam€aki et al.

together with DrRR.31 The ’arm’ hairpin extension was clipped out by replacing segment between R446–G478 by a sequence

‘‘GGGS’’ with QuickChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies) and confirmed by sequencing.

The following primer, nonmatching sequence in italics, was used to mutate out the arm: 5’ - TGG CTG CGG CCC GAA CTG CGG

GGA GGA GGA TCC GGC TAC GCC GAG CCC TG - 3’.

Protein expression and purification
The protein constructs described above, with a C-terminal (His)6-tag, were expressed in Escherichia coli BL21(DE3) at +28�C as

described previously.28 After lysis and ultracentrifugation, the purification was carried out with affinity chromatography followed

by overnight incubation with 10x excess of biliverdin, and size-exclusion chromatography, where the samples were eluted with buffer

(30 mM Tris pH 8.0), as described in Ihalainen et al.28

Crystallography
Crystals of the CBD-PHY armless were grown by hanging-drop vapor diffusion in dark at room temperature, after mixing 10 mg/mL

protein at 1:1 ratio with reservoir solution (12%polyethylene glycol 3350, 200mMammonium acetate, 5% fructose, 5%glucose, and

100 mM sodium citrate pH 5.6). Crystal handling was conducted under green safe light. Once the first small flake-like crystals ap-

peared within 3 weeks, they were used for seeding. There, the seed crystals were centrifuged, washed twice with a 1:1 mixture of

the reservoir solution and buffer (30 mM Tris pH 8), and set to grow in 3 mL droplets in a fresh 1:1 mixture of reservoir solution

and 10 mg/mL protein. After a month of crystal growth, the crystals were soaked with reservoir solution supplemented with 18%

ethylene glycol, and flash-frozen.

Protein phosphorylation by acetyl phosphate and PhosTag detection
The PhosTag activity assay was adapted from Multam€aki et al.31 and performed as previously described.24 The full-length (FL)

and FL armless variants of DrBphP were introduced with pre-phosphorylated response regulator from D. radiodurans (p-DrRR).

For this, DrRR was phosphorylated at +37�C for 2.8 mg/mL of RR in the presence of 200 mM acetyl phosphate. Chimera and

Chimera armless constructs were introduced with non-phosphorylated DrRR. In the reaction, concentration of all phytochromes

and DrRR was 0.3 mg/mL. During a 5-min incubation at +25�C, the samples were pre-illuminated with saturating red LED

(660 nm, 5 min, on average 13 mW/cm2) or far-red laser (780 nm, Thorlabs, 20 s, 80 mW/cm2) to reach the maximum Pr- or

Pfr-state population, respectively. Once the (de)phosphorylation reactions were initiated with 1 mM ATP, the samples were

incubated either under red light (as above) or in darkness at 25�C. After 10 min, the reactions were stopped with 5x SDS loading

buffer. The mobility shift of phosphorylated RR (p-RR) proteins was detected using Zn2+-PhosTag� SDS-PAGE assay (Wako

Chemicals).
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Spectroscopic measurements
All measurements were performed in darkness and in ambient conditions (room temperature) unless otherwise stated. The samples

were illuminated with 780 nm laser (ThorLabs) or 660 nm LED to drive them to either Pr or Pfr state, respectively.

UV-vis absorption spectroscopy
The steady-state UV-vis spectra were measured with a Cary 8454 UV/vis spectrometer (Agilent Technologies) in 10 mm Quartz

cuvette right after saturating light conditions. After the background subtraction, the spectra were offset corrected at 850 nm and

normalized to the 700 nm absorption in Pr state.

FTIR spectroscopy
The steady-state FTIR spectroscopy was performed using a Nicolet Magna IR-760 FTIR spectrometer with XT-KBr beam

splitter, Ever-Glo IR source and MCT-detector. The measurements were conducted using 100 scans in the spectral range of 400–

4000 cm� 1 with a resolution of 2 cm� 1. Sample preparation and light-induced difference spectroscopywere performed as described

in Takala et al.18

CD spectroscopy
The CD spectra were measured with Jasco J-715 CD spectrophotometer. The dark and illuminated spectra of the constructs were

measured in 0.5 mm circular Quartz cuvette at 190–250 nm at 3–4 mM, and 250–800 nm at 0.27 mM sample concentration. For the

illuminated spectra of CBD and the armless constructs, the spectra were measured in 300 nm wide sections, due to fast dark rever-

sion of the systems (Figure S4). The samples were re-driven to the illuminated state betweenmeasurements, and four measurements

per region were averaged.

The thermogramsmeasured at 222 nmwere concentration and heating rate dependent due to aggregation (Figures S9C and S9D).

Therefore, the melting temperatures were determined in 10 mm cuvettes to allow lower concentration, but resulting in saturated

spectra at wavelengths below 210 nm due to prominent De of the Tris buffer. All measurements in far-UV region (210–250 nm)

were performed in about 0.4 mM and in the near-UV-vis region (250–800 nm) in 8 mM concentration, unless otherwise stated. The

10-mm cuvettes also allowed the usage of Jasco PTC-348WI temperature control system with magnetic stirrer in the bottom during

the temperature denaturation experiments. The De at singular wavelength was recorded with 2�C intervals and the temperature was

increased with 1�C/min heating rate. In the illuminated experiments, the sample was illuminated for 30 s between data points with a

red LED mounted on the lid to prevent dark reversion.

QUANTIFICATION AND STATISTICAL ANALYSIS

Crystallographic data analysis
Diffraction data were collected at beamline ID23-1 of the European Synchrotron Radiation Facility (ESRF), Grenoble in 100 K with an

X-ray wavelength of 1.07 Å,55 and processed using the XDS program package version Feb 5, 2021.50 The data were cut at 2.30 Å

resolution, which corresponds to a correlation coefficient (CC1=2) value of 0.325.
56 The CBD-PHY armless crystals belonged to space

group P 1 21 1 with four monomers in an asymmetric unit. The initial phases were solved with molecular replacement by using Phaser

version 2.8.3.51 The structure was further built and refined with Coot 0.9.652 and REFMAC5 version 5.8.0352,53 and 0.01 matrix

weight was applied for final refinement steps. The final structure had Rwork/Rfree values of 0.235/0.268. The electron density map

for the figures was calculated from the final structure factor files with FFT of the CCP4 interface (version 8.0.005),54 and the structure

figures were created with the PyMOLMolecular Graphics System version 2.0 (Schrödinger, LLC). The crystal data collection and pro-

cessing statistics are summarized in Table 1.

Spectroscopic data analysis
All spectroscopic data were analyzed and fitted, if need be, with Matlab version R2021b (The MathWorks, Inc).

The set of FTIR difference spectra (Pfr minus Pr and vice versa) were averaged together, offset corrected in the spectral range of

1981–1999 cm� 1 and normalized to the negative D-ring C=O stretch signal at 1712 cm� 1.28

The temperature dependent data was used to determine melting temperatures. Decreasing Tm due to higher concentration, and

vice versa, disclose that the Tms do not result from monomerization of our homodimeric systems, and therefore the melting curves

were fitted to unimolecular two-state model adapted from Greenfield33 to determine the melting temperature Tm for the constructs:

Keq = e

DHTm
$

T

Tm

� 1

RT ; (Equation 1)

where Keq is the equilibrium constant, R is the gas constant, and DHTm is essentially the slope at the Tm. The fraction of unfolded

protein can be also expressed as follows

Fu =
Keq

Keq+1
; (Equation 2)
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where Fu is the fraction of unfolded protein. Finally, Equation 2 is combined with linear corrections to subtract contributions

from linearly increasing or decreasing ellipticity.57 If needed, the slope was fixed to a most frequent value determined in

other cases.

fðTÞ = � FuðTðSf � SuÞ � Bu +Bf Þ+ ðSf$T +BfÞ: (Equation 3)
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