
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of
Euclidean type

© 2022 European Mathematical Society

Published version

Martini, Alessio; Müller, Detlef; Nicolussi Golo, Sebastiano

Martini, A., Müller, D., & Nicolussi Golo, S. (2023). Spectral multipliers and wave equation for
sub-Laplacians : lower regularity bounds of Euclidean type. Journal of the European
Mathematical Society, 25(3), 785-843. https://doi.org/10.4171/JEMS/1191

2023



© 2022 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 25, 785–843 (2023) DOI 10.4171/JEMS/1191

Alessio Martini · Detlef Müller · Sebastiano Nicolussi Golo

Spectral multipliers and wave equation for
sub-Laplacians: lower regularity bounds
of Euclidean type

In memory of Eli Stein

Received October 22, 2019

Abstract. Let L be a smooth second-order real differential operator in divergence form on a
manifold of dimension n. Under a bracket-generating condition, we show that the ranges of valid-
ity of spectral multiplier estimates of Mikhlin–Hörmander type and wave propagator estimates of
Miyachi–Peral type for L cannot be wider than the corresponding ranges for the Laplace operator
on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian
manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation
for the wave propagator associated with L and nondegeneracy properties of the sub-Riemannian
geodesic flow.

Keywords. Spectral multiplier, sub-Laplacian, wave equation, sub-Riemannian manifold, eikonal
equation, Fourier integral operator

1. Introduction

Let M be a smooth manifold, H W T �M ! Œ0;1/ a smooth function on the cotangent
bundle that is a positive-semidefinite quadratic form on each fibre, and � a smooth pos-
itive measure on M . The sub-Laplacian L defined by .M; H; �/ is the second-order
differential operator given by

L f D � div�.BH .df // 8f 2 C1c .M/;
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whereBH W T �M ! TM is the linear map determined by the quadratic formH , and div�
is the divergence operator defined by � (see Definition 4.2 below). The sub-Laplacian L

is a non-negative symmetric unbounded operator on L2.M/ WD L2.M; �/, and it has
principal symbol H .

The above definition encompasses a number of second-order differential operators
considered in the literature. In particular, if H is a positive-definite quadratic form, then
it is the cometric of a Riemannian tensor on M , and L is elliptic; moreover, if � is
the Riemannian volume, then L is the Laplace–Beltrami operator. More generally, if
there is a bracket-generating family of vector fields v1; : : : ; vr 2 �.TM/ such that H DP
j vj ˇ vj (here vˇ v denotes the quadratic form � 7! .�.v//2), thenH is the cometric

of a sub-Riemannian structure and L is a sub-Laplacian as defined, e.g., in [51].
Assume that a self-adjoint extension of L has been chosen. Then a functional cal-

culus for L is defined via the spectral theorem and, for all bounded Borel functions
m W Œ0;1/! C, the operator

m.L / D

Z
Œ0;1/

m.s/ dEL .s/

is bounded on L2.M/. An extensively studied problem in the literature is the determina-
tion of necessary conditions and sufficient conditions on the function m, also known as a
spectral multiplier, form.L / to extend to a bounded operator onLp.M/ for some p ¤ 2.

In the case where L is the Laplace operator on Rn, the Lp boundedness of m.L /

can be ensured by suitable size and smoothness conditions on m. More specifically, for
m W Œ0;1/! C, q 2 Œ1;1� and ˛ � 0, let us define the local scale-invariant Lq Sobolev
norm of order ˛ of m by

kmkLq˛;sloc
D sup

t�0

k�m.t �/kLq˛.R/;

where Lq˛.R/ is the Lq Sobolev space of order ˛, and � 2 C1c ..0;1// is a nontrivial
cutoff (different choices of � give rise to equivalent norms). The classical Mikhlin–Hör-
mander multiplier theorem [27, 48] implies that

km.L /kp!p .p;˛ kmkL2˛;sloc
(1.1)

for all p 2 .1;1/ and ˛ > n=2 (at the endpoint p D 1, weak type .1; 1/ and H 1 ! L1

boundedness hold). Clearly one can replace the L2˛;sloc norm with the stronger L1˛;sloc
norm on the right-hand side, and actually interpolation yields

km.L /kp!p .p;˛ kmkL1˛;sloc
(1.2)

for all p 2 .1;1/ and ˛ > nj1=2 � 1=pj.
Related to the above are Lp estimates for oscillatory multipliers, and especially the

Miyachi–Peral estimates for the wave propagator [50, 59]:

k.1C t2L /�˛=2 cos.t
p

L /kp!p .p;˛ 1; (1.3)
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uniformly in t > 0, for p 2 Œ1;1� and ˛ � .n � 1/j1=p � 1=2j (except for p D 1;1

and ˛ D .n � 1/=2, in which case a Hardy space respectively BMO boundedness result
holds). A spectrally localised version of the above estimate reads as follows:

k�.t
p

L =�/ cos.t
p

L /kp!p .p;˛ .1C �/˛

uniformly in t; � > 0, where � 2 C1c ..0;1// is a nontrivial cutoff.
It is natural to investigate whether these results for the Euclidean Laplacian extend to

more general manifolds M and operators L . As a matter of fact, in the case of elliptic
operators L on compact manifolds M , both Mikhlin–Hörmander and Miyachi–Peral
estimates are available [62,63], for the same range of indices, where n is the dimension of
the manifold M ; a key ingredient in the proof of these results is the representation of the
wave propagator cos.t

p
L / as a sum of Fourier integral operators. The case of noncom-

pact manifolds is much more delicate, in that the ranges of validity (if any) of the above
estimates depend on the global geometry of .M;H;�/ and not only on the (local) dimen-
sion n (see, e.g., [14,15,23,32,56] and references therein); in addition, the available results
are not as robust as in the compact case, especially if one is interested in sharp results. In
any case, via transplantation [33] one immediately sees that, for an elliptic operator L

on an n-dimensional manifold M the ranges of validity of the above estimates cannot be
larger than those for the Laplace operator on Rn. We note that the aforementioned results
for the Euclidean Laplace operator are sharp up to the endpoints; in particular, if we define
the sharp Mikhlin–Hörmander threshold &.L / for a sub-Laplacian L as the infimum of
the ˛ � 0 such that

8p 2 .1;1/; 9C 2 .0;1/; 8m 2 B W km.L /kLp!Lp � CkmkL2˛;sloc
;

where B is the set of bounded continuous functions m W Œ0;1/! C, then &.L / D n=2

for the Laplace operator L on Rn (see, e.g., [67]).
Determining the optimal ranges of validity becomes even more difficult when one

weakens the ellipticity assumption on L . For instance, if L is a homogeneous sub-
Laplacian on a Carnot (stratified) group, then a multiplier theorem of Mikhlin–Hörmander
type for L is known [13, 44], implying that &.L / � Q=2, where Q is the homogeneous
dimension of the group; note that Q is strictly larger than the topological dimension n
when the group has step 2 or higher, i.e., when L is not elliptic. Similar results are actu-
ally known in greater generality (e.g., in the presence of suitable volume growth and heat
kernel estimates, see [5, 25, 71]), involving a dimensional parameter Q that is strictly
larger than the topological dimension n in case L is not elliptic (cf. [21]). Despite the
naturality of the dimensional parameter Q in this context, these results turn out not to be
sharp in many cases.

This discovery was first made in the case of homogeneous sub-Laplacians on Heisen-
berg groups [24, 54], for which it was proved that &.L / D n=2. A number of results in
this direction have been obtained since then, and we now know that n=2 � &.L / < Q=2

for homogeneous sub-Laplacians on all 2-step Carnot groups [42], and that actually the
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equality &.L / D n=2 holds in a number of cases [37,39,41], also for more general man-
ifolds and sub-Laplacians [4, 9, 10, 16, 17, 19, 40, 43]. Moreover, in the case of groups of
Heisenberg type, sharp estimates of Miyachi–Peral type are also available [53, 55], prov-
ing the validity of (1.3) for the same range of indices mentioned above for Rn (where n
is the topological dimension of the group); note that these results imply, by subordination
(cf. [52]), the sharp multiplier theorem of Mikhlin–Hörmander type in this context. Nev-
ertheless, the determination of the optimal ranges of validity of (1.2) and (1.3) in general
remains a widely open problem. In particular, the proofs of the lower bound &.L / � n=2

given in [42, 54] crucially exploit the structure of 2-step groups (more specifically, the
existence of an explicit formula of Mehler type for the Schrödinger propagator) and do
not seem to be easily extendable to the higher step case.

At this stage it is relevant to remark that, when L is not elliptic, the lower bound
&.L / � n=2 cannot be just obtained by comparison to the Euclidean situation via trans-
plantation, as in the elliptic case. Indeed, the methods of [33] allow one to compare the
operator L on M with the “local model operator” Lo at any point o 2M , defined as the
principal part of the constant-coefficient operator on the tangent space ToM obtained by
“freezing the coefficients” of L at o. IfH is not positive-definite at the point o 2M , then
the local model Lo is a “partial Laplacian” corresponding to a proper subspace of ToM ,
namely, the space

Ho D .¹H D 0º \ T
�
oM/?

of “horizontal vectors” for H at o, and therefore the lower bounds to &.L / obtained in
this way would involve dim Ho in place of n.

It is clear from the above discussion that, in order to obtain lower bounds to &.L / in
terms of the topological dimension n, additional assumptions on H are necessary, ruling
out the case where L actually “lives” on submanifolds of lower dimension that foliateM .
In view of the Frobenius theorem, a natural condition in this context is the “bracket-
generating condition” on H , which can be stated as follows. Let H denote the set of
(smooth) horizontal vector fields for H , and define recursively H .k/ for k 2 N n ¹0º by

H .1/
DH ; H .kC1/

DH .k/
C ŒH ;H .k/�:

Finally, for all x 2M , we define H .k/
x as the set of values vjx of vector fields v 2H .k/.

ThenH is said to be bracket-generating at the point x 2M (of step k) if H .k/
x D TxM for

some k � 1. Note that, when H D
P
j vj ˇ vj , the usual bracket-generating condition

on the family of vector fields ¹vj ºj implies that H is bracket-generating at each point
ofM ; in particular, homogeneous sub-Laplacians on Carnot groups and more general sub-
Laplacians on sub-Riemannian manifolds satisfy the condition. Recall that a celebrated
result of Hörmander [28] relates the bracket-generating condition to the hypoellipticity
of L , while Chow’s theorem [12] relates it to connectivity via horizontal curves.

Our main result shows that, under the bracket-generating condition, the ranges of
validity of (1.2) and (1.3) for a sub-Laplacian L on an n-dimensional manifold are indeed
not wider than those for the Euclidean Laplacian on Rn.
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Theorem 1.1. LetM be a smooth manifold of dimension n,H W T �M ! Œ0;1/ a smooth
function that is a positive-semidefinite quadratic form on each fibre, and � a smooth
positive measure on M . Let L be the sub-Laplacian defined by .M;H;�/ and fix a self-
adjoint extension of L . IfH is bracket-generating at some point ofM , then the following
hold true.

(i) If p 2 Œ1;1� and ˛ � 0 are such that the estimate

km.L /kLp.M/!Lp.M/ . kmkL1˛;sloc
(1.4)

holds for all Schwartz functions m W R! C, then

˛ � nj1=2 � 1=pj:

In particular,
&.L / � n=2:

(ii) If p 2 Œ1;1� and ˛ � 0 are such that, for some nontrivial � 2 C1c ..0;1// and some
�; R > 0, the estimate

k�.t
p

L =�/ cos.t
p

L /kLp.M/!Lp.M/ . �˛ (1.5)

holds for all �; t > 0 such that t � � and � � R, then

˛ � .n � 1/j1=2 � 1=pj:

Part (i) of Theorem 1.1 extends the results of [42], which apply only to 2-step struc-
tures, to the case of arbitrary step, while part (ii) appears to be new even in the 2-step
case. In addition, the method of proof is substantially different and more robust, in that it
does not rely on special properties of 2-step structures, and is based on a Fourier integral
representation of the wave propagator cos.t

p
L /.

In order to describe some ideas from the proof, let us first consider the case of the
Laplace operator L on Rn. Here via the Fourier transform one can write

cos.t
p

L /u.x/ D
1

2

X
"D˙1

1

.2�/n

Z Z
ei.��.x�y/C"t j�j/u.y/ dy d�;

and properties of the wave propagator can be obtained by applying the method of sta-
tionary phase to the integrals on the right-hand side. A crucial property in this analysis is
the fact that the Hessian @2

�
� of the phase function �.t; x; y; �/ D � � .x � y/C t j�j has

rank n � 1, which is strictly related to the optimal range of validity of the Miyachi–Peral
estimates.

In the case L is a more general elliptic operator on a manifold, one cannot directly
apply the Fourier transform as before. However, a more sophisticated and by now classical
analysis (see, e.g., [68]) shows that one can write, locally and for small times,

cos.t
p

L /u.x/ D Qtu.x/CQ�tu.x/
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up to smoothing terms, where Qt is an oscillatory integral operator of the form

Qtu.x/ D

Z Z
ei�.t;x;y;�/q.t; x; y; �/u.y/ dy d�; (1.6)

whose phase function � satisfies the eikonal equation

@t�.t; x; y; �/ D A.x; @x�.t; x; y; �// (1.7)

with AD
p
H . Hence properties of wave propagation can still be deduced by the method

of stationary phase applied to (1.6). As observed in [29], one can actually find solutions �
to the eikonal equation of the form

�.t; x; y; �/ D '.x; y; �/C tA.y; �/; (1.8)

where '.x; y; �/ D � � .x � y/C O.jx � yj2j�j/, so the Hessian @2
�
� is closely related

to @2
�
A for t ¤ 0 and x sufficiently close to y, and one can use the “full curvature” of the

nondegenerate quadratic form H to deduce that @2
�
� has rank n� 1 at critical points of �

(for t ¤ 0 sufficiently small).
When H is not positive-definite, there are a number of obstructions preventing one

from straightforwardly applying the above argument. One of these is the vanishing (and
consequent lack of smoothness) of A for � ¤ 0, which is an obstacle to the construction
of a smooth solution � to (1.7) defined for all � ¤ 0. Nevertheless, by restricting to the
region where A does not vanish, one can obtain a solution � to the eikonal equation that
is only defined for � in a specific cone � � Rn n ¹0º, where H behaves as an elliptic
symbol. This solution � can then be used to obtain a Fourier integral representation of the
form (1.6) for a “microlocalised” version of the wave propagator cos.t

p
L /, which turns

out to be enough for our purpose.
A second, perhaps more substantial difficulty is that it is not immediately clear why

@2
�
� should have rank n� 1 at critical points of �, whenH is not positive-definite: indeed,

in this caseH.y; �/ vanishes on a nontrivial subspace and therefore @2
�
A has smaller rank.

Note that, in general, the rank of @2
�
� can actually be lower: for example, if M D Rn D

Rn1 � Rn2 with the Lebesgue measure and H..x1; x2/; .�1; �2// D j�1j2, then L is the
partial Laplacian corresponding to the factor Rn1 and, via the Fourier transform, one
obtains a representation of the form (1.6) with phase function �.t; x; y; �/ D � � .x � y/
C t j�1j; so, in this case, the rank of @2

�
� is strictly less than n � 1, but, on the other

hand, here the bracket-generating condition fails. A crucial part of the proof of our result
consists then in showing how the bracket-generating condition prevents such a degeneracy
of the Hessian.

Namely, a careful analysis of the construction of solutions to the eikonal equation
(1.7) allows us to relate the rank of @2

�
� to the rank of the differential of the geodesic

exponential map ExpH , given by the projection to M of the Hamiltonian flow on T �M
associated with H . More precisely, instead of solutions of the form (1.8), here we con-
struct, following [72], solutions � of the form

�.t; x; y; �/ D w.t; x; �/ � y � �;
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whose relation to the Hamiltonian flow appears to be more transparent. Indeed, for these
solutions, we prove that, in suitable coordinates, at critical points of � with respect to �,

rank @2��.t; x; y; �/ D rank
�
DExpyH j�ty�

ˇ̌
Vy

�
;

where y� D �=.2
p
H.y; �//, DExpyH j�ty� W T

�
yM ! TxM is the differential at �ty� of the

exponential map at y, and Vy is a codimension 1 subspace of T �yM (the kernel of the
differential at �ty� of H jT �yM ); in particular, @2

�
� has rank n � 1 whenever DExpyH is

nondegenerate. Note that, differently from the elliptic case, the differential DExpyH j0 at
the origin is degenerate when H.y; �/ is. Nevertheless, the bracket-generating condition
ensures the existence of a generic set of points .y; �/ such that DExpyH jr� is nondegenerate
for sufficiently small r ¤ 0 [1–3]. This geometric information is the essential ingredient
that allows us to apply stationary phase to the integral in (1.6) and obtain the desired
results.

For technical reasons, the proof described above is carried out under additional reg-
ularity assumptions on .M;H; �/, which are satisfied, e.g., on Carnot groups. However,
under the bracket-generating condition, it is possible to locally approximate, at suitable
points of the manifold, any sub-Laplacian L with a homogeneous sub-Laplacian on a
Carnot group, so the result in full generality can be recovered by a suitable form of trans-
plantation [38].

We stress once more that the method used here is substantially different from the
ones used in [42, 54], which are based in an essential way on a Mehler-type formula that
is specific to 2-step structures. In contrast, the present method is much more robust and
applies to structures of arbitrary step; in addition, it clearly brings to light the strict relation
between properties of the functional calculus for L and properties of the underlying
geometry (specifically, the geodesic flow).

A natural question is whether the necessary conditions given in Theorem 1.1 are
also essentially sufficient for the validity of the Mikhlin–Hörmander and Miyachi–Peral
estimates. It is striking that relatively limited “positive” results of this kind (featuring the
topological dimension n) are available, and (with the exception of the recent result [19]
for Grushin operators of arbitrary step) only apply to 2-step structures and enjoy a low
degree of robustness.

In this connection, let us remark that, by applying the Lp estimates of [63] to our
Fourier integral representation (1.6), one could obtain estimates of Miyachi–Peral type
for the “microlocalised” version of the wave propagator corresponding to the aforemen-
tioned “elliptic cone” � . Hence, roughly speaking, in order to obtain estimates for the full
wave propagator, what remains to be understood is what happens in the complement of
such an elliptic cone. While this still appears to be a challenging problem in its gener-
ality, the argument presented here may be considered as a first step in the development
of a robust approach for the analysis of spectral multipliers and wave equations for sub-
Laplacians.
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Structure of the paper

In Section 2 we recall basic definitions and results about pseudodifferential and Four-
ier integral operators that will be used throughout, and we describe the construction of a
parametrix for the “half-wave equation” associated to a first-order positive pseudodiffer-
ential operator, assuming that a solution to the corresponding eikonal equation is given.
In Section 3 we present the construction of a solution � to the eikonal equation associated
with a general Hamiltonian on the cotangent space T �M of a smooth manifold M , and
deduce the relation between the Hessian @2

�
� and the differential of the exponential map

associated with the Hamiltonian flow. In Section 4 we recall a number of definitions and
results about sub-Riemannian manifolds and sub-Laplacians, and show how the results in
the previous sections can be applied to construct a Fourier integral representation for a
“microlocalised” version of the wave propagator associated to a sub-Laplacian. Finally,
in Section 5, we exploit such representation to prove Theorem 1.1.

Notation

We write RC for the positive half-line .0;1/.
For nonnegative quantities A and B , we write A . B to denote that there exists a

constant C 2RC such thatA�CB; expressions such asA.k B indicate that the implicit
constant C depends on a parameter k.

For subsets U;V of a topological space, we write U b V to denote that the closure U
of U is compact and contained in V . We also write int.U / for the interior of U .

2. Fourier integral and pseudodifferential operators

The aim of this section is to fix a few definitions and notation regarding Fourier integral
operators and pseudodifferential operators.

2.1. Distributions and linear operators

We set PRn WD Rn n ¹0º. A subset � � X � RN , where X � Rn, is said to be conic
if .x; �v/ 2 � for all .x; v/ 2 � and � > 0. We shall denote by S .Rn/ the space of
Schwartz functions on Rn. The Fourier transform yf of f 2 S .Rn/ is given by yf .�/ DR

Rn e
�ix��f .x/ dx.

If X � Rn is open, we denote by C1.X/ and C1c .X/ the spaces of all (complex-
valued) smooth functions on X and of smooth functions with compact support, with the
usual topologies. Their duals E 0.X/ and D 0.X/ are the space of distributions with com-
pact support and the space of distributions on X . The support and the singular support of
a distribution A 2 D 0.X/ are denoted by supp.A/ and sing supp.A/. The wave front set
of A 2 D 0.X/ is denoted by WF.A/.

Let X � RnX and Y � RnY be open sets. By identifying continuous linear operators
P W C1c .Y /! D 0.X/ with their integral kernels in D 0.X � Y / via the Schwartz kernel
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theorem, we can also speak of the support, the singular support and the wave front set of
such operators P .

If P W C1c .Y /! D 0.X/ and WF.P / D ;, then P has a smooth integral kernel and
extends to an operator P W E 0.Y / ! C1.X/; such operators P are called smoothing
operators and their class is denoted by R�1.Y IX/.

We say that a subset C � X � Y is proper if both projections from C to X and Y are
proper mappings. An operator P W C1c .Y /! D 0.X/ is properly supported if supp.P /
is proper. For instance, if P is compactly supported, i.e., supp.P / b X � Y , then it is
properly supported; moreover, if Y DX and supp.P /D diag.X �X/, then P is properly
supported.

We denote by R.Y IX/ the linear space of regular operators, that is, operators P W
C1c .Y /! D 0.X/ such that, for all .x; yI �; �/ 2 WF.P /, both � and � are nonzero. We
will be frequently using the following properties of regular operators.

(1) Any operator in R.Y IX/ extends continuously to an operator E 0.Y /! D 0.X/ that
maps C1c .Y / into C1.X/ [20, Corollary 1.3.8, p. 22].

(2) Any properly supported operator in R.Y IX/ extends continuously to an operator
D 0.Y /! D 0.X/ that maps C1.Y / into C1.X/ and preserves the compactness of
supports.

(3) IfQ 2R.ZIY / or P 2R.Y IX/ is properly supported, then P ıQ 2R.ZIX/ is a
well-defined regular operator [34, Theorem 8.2.14, p. 270].

(4) If Pj 2R.Yj IXj / for j 2 ¹1;2º, then P1˝P2 2R.Y1 � Y2IX1 �X2/ [34, Theorem
8.2.9, p. 267].

Most of the above notions can be extended to the case where X; Y; : : : are smooth
manifolds. For a smooth manifold M , we also use the notation PT �xM D T

�
xM n ¹0º and

PT �M D
F
x2M

PT �xM .

2.2. Symbol classes

LetX �Rn be an open set,N � 1 andm 2R. The symbol class Sm.X IRN / is the space
of smooth functions a W X �RN ! C such that, for all K b X , all ˛ 2 Nn and  2 NN

there is a constant CK˛ such that, for all .x; �/ 2 K �RN ,

j@˛x@


�
a.x; �/j � CK˛ h�i

m�j j;

where h�i WD
p
1C j�j2. We also define S�1.X IRN / WD

T
m2R S

m.X IRN /.
Let m 2 R. The classical symbol class Smcl .X IR

N / is the set of all a 2 Sm.X IRN /
such that there exist, for all j 2 N, functions aj 2 C1.X � PRN / homogeneous of order
m � j in � such that, for all k 2 N,

a � .1˝ .1 � �//
X
j<k

aj 2 S
m�k.X IRN /

for some � 2 C1c .R
N /. In this case, we call the formal series

P
j�0 aj the asymptotic

expansion of a and we write a �
P
j�0 aj .
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The essential support of a 2 Sm.X I RN /, denoted by ess supp.a/, is the smal-
lest closed conic subset � � X � PRN such that a is in S�1 on .X � PRN / n � , i.e.,
.X � PRN / n � is the union of all the open conic subsets U of X � PRN such that, for all
˛ 2 Nn and ˇ 2 NN , and all m 2 R, there is C such that, for all .x; �/ 2 U ,

j@˛x@
ˇ

�
a.x; �/j � C h�im:

If a is classical and a �
P
j aj , then ess supp.a/ D

S
j supp.aj /.

2.3. Pseudodifferential and Fourier integral operators

LetX � Rn be open. A (real) phase function is a smooth function � W X � PRN ! R such
that, for all .x; �/ 2 X � PRN and � > 0,

(1) �.x; ��/ D ��.x; �/;

(2) d�.x; �/ ¤ 0.

The stationary set †� � X � PRN and the wave front ƒ� � PT �X of a phase function �
are the conic sets defined by

†� WD ¹.x; �/ 2 X � PR
N
W @��.x; �/ D 0º; ƒ� WD ¹.x; @x�.x; �// W .x; �/ 2 †�º:

Let � be a phase function on X � PRN and a 2 Sm.X IRN /. The Fourier integral (or
oscillatory integral) with phase � and amplitude a is the distributionZ

RN
ei�.x;�/a.x; �/ d� (2.1)

in D 0.X/, whose wave front set is contained in

¹.x; @x�.x; �// W .x; �/ 2 ess supp.a/ \†�º � ƒ� (2.2)

(see [20, Theorem 2.2.2, p. 29]).
Let now X � RnX and Y � RnY be open sets. Let � W X � Y � PRN ! R be a

phase function, and let a 2 Sm.X � Y IRN /. The operator‚ W C1c .Y /! D 0.X/, whose
distributional integral kernel is the Fourier integral (2.1) with phase � and amplitude a, is
called a Fourier integral operator. We shall describe such operators with the formula

‚u.x/ D

Z
Y

Z
RN

ei�.x;y;�/a.x; y; �/u.y/ d� dy: (2.3)

The phase function � is an operator phase function if it satisfies the following condi-
tion: for all .x; y; �/ 2 X � Y � PRN , if @��.x; y; �/ D 0, then @x�.x; y; �/ ¤ 0 and
@y�.x; y; �/ ¤ 0. If � is an operator phase function, then from (2.2) one can deduce that
the Fourier integral operator‚ defined in (2.3) is a regular operator, that is,‚ 2R.Y IX/.
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IfX D Y and nX D nY D n, the simplest example of an operator phase function is the
standard phase .x; y; �/ 7! .x � y/ � �. The Fourier integral operators corresponding to
the standard phase are called pseudodifferential operators. More precisely, the pseudodif-
ferential operator ‚ on X with amplitude a 2 Sm.X �X IRn/ is the operator given by

‚u.x/ D .2�/�n
Z
X

Z
RN

ei.x�y/��a.x; y; �/u.y/ d� dy:

We denote by ‰m.X/ the collection of all pseudodifferential operators with amplitude
in Sm.X � X I Rn/, which are called pseudodifferential operators of order m on X .
Moreover, for m 2 R, we denote by ‰mcl .X/ the collection of all classical pseudodif-
ferential operators of order m, i.e., the pseudodifferential operators with amplitude in
Smcl .X � X IR

n/. One can check that the set ‰�1.X/ of pseudodifferential operators
on X with amplitude in S�1.X � X � Rn/ coincides with

T
m2R ‰

m.R/ and with the
set R�1.X IX/ of smoothing operators on X .

If the amplitude of a pseudodifferential operator on X does not depend on the vari-
able y, then it is called a (Kohn–Nirenberg/ symbol. While different amplitudes may
define the same pseudodifferential operator P , the symbol (if it exists) is uniquely deter-
mined by the operator, and moreover P is classical if and only if its symbol is classical.
Every properly supported pseudodifferential operator has a symbol, and every pseudodif-
ferential operator differs from a properly supported one by a smoothing operator. For
m 2 R, we define the principal symbol of P 2 ‰mcl .X/ as the term of degree m in the
asymptotic expansion of the symbol of any pseudodifferential operator that differs fromP

by a smoothing operator.
The basic example of pseudodifferential operator of order m is a differential operator

P D
P
j˛j�m p˛.x/.�i@x/

˛ with smooth coefficients p˛ . This is a classical, properly
supported pseudodifferential operator. Its symbol is

P
0�j˛j�m p˛.x/�

˛ and its principal
symbol is

P
j˛jDm p˛.x/�

˛ .
Pseudodifferential operators and classical pseudodifferential operators can be defined

on manifolds M , because of the invariance of the main objects under change of coordin-
ates (see [30, Definition 18.1.20, p. 85]). Although the symbol of a pseudodifferential
operator is not well defined on a manifold, the principal symbol of a classical pseudodif-
ferential operator P 2 ‰mcl .M/ is a well-defined smooth function on PT �M which is
homogeneous of degree m along the fibres.

A classical pseudodifferential operator P 2 ‰mcl .M/ is said to be elliptic of order m
if its principal symbol never vanishes on PT �M . For elliptic pseudodifferential operators,
one can easily construct approximate square roots via an iterative argument (see, e.g., the
first part of the proof of [68, Theorem 3.3.1] or [64]):

Lemma 2.1. If P 2 ‰mcl .M/ is elliptic of order m with nonnegative principal symbol p,
then there is a properly supported Q 2 ‰m=2cl .M/ elliptic of order m=2 with principal
symbol

p
p such that Q2 � P 2 ‰�1.M/.
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2.4. Fourier integral representation of the half-wave propagator

The result below is a variation of results available in the literature (see, in particular,
[29, Section 3], [65, Section 20.2] and [68, Section 4.1]), keeping track of supports and
ensuring that the construction produces classical symbols.

Theorem 2.2. Let a be a properly supported pseudodifferential operator of order 1 on
an open set X � Rn with classical real symbol. Let A W X � PRn ! R be the principal
symbol of a. Let � W .�T; T / �X �X � PRn ! R be a phase function such that

X �X � PRn 3 .x; y; �/ 7! �.0; x; y; �/ 2 R

is an operator phase function, and assume that � satisfies the following eikonal equation:
for all .t; x; y; �/ 2 .�T; T / �X �X � PRn,

@t�.t; x; y; �/ D A.x; @x�.t; x; y; �//: (2.4)

Then, for any open subsets X 0; X 00 of X with X 00 b X 0 b X , there is T 0 2 .0; T � such
that the following hold true: if � � PRn is a closed cone and P 2 R.X IX/ is a Fourier
integral operator with distributional integral kernel

P.x; y/ D

Z
Rn
ei�.0;x;y;�/p.x; y; �/ d�

and amplitude p 2 S0cl.X �X IR
n/ satisfying ess supp.p/ � X 00 �X 00 � � , then there is

a Fourier integral operatorQ 2R.X I .�T 0; T 0/�X/ with distributional integral kernel

Qt .x; y/ WD Q.t; x; y/ D

Z
Rn
ei�.t;x;y;�/q.t; x; y; �/ d� (2.5)

and amplitude q 2 S0cl..�T
0; T 0/ �X �X IRn/, such that:

(i) supp.q/ � .�T 0; T 0/ �X 0 �X 0 � �;

(ii) Qt 2 R.X IX/ for all t 2 .�T 0; T 0/, and Q0 � P 2 R�1.X IX/;

(iii) .i@t C a/Q 2 R�1.X I .�T 0; T 0/ �X/.

Proof. By our assumption on �, both @.x;�/� and @.y;�/� never vanish on ¹0º � X �
X � PRn. Hence, if we take X0 b X such that X 0 b X0, we can find T0 2 .0; T � such that
both @.x;�/� and @.y;�/� never vanish on .�T0; T0/ � X0 � X0 � PRn. In other words, up
to shrinking .�T; T / and X , we may assume that

X �X � PRn 3 .x; y; �/ 7! �.t; x; y; �/ 2 R

is an operator phase function for all t 2 .�T; T /. In particular, the Fourier integral oper-
ators Q and Qt defined by (2.5) for any given amplitude q are regular operators.

Notice that (2.4) forces .x; @x�.t; x; y; �// to be in the domain X � PRn of A, and in
particular @x� ¤ 0 on the domain of �. Since @x� is 1-homogeneous in �, up to taking
a smaller T , condition [29, (2.13)] is satisfied by � on .�T; T / � X � X � PRn. So, if
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q 2 S0cl..�T
0; T 0/�X �X IRn/ for some T 0 2 .0;T � to be chosen later, andQ is defined

by (2.5), then

.i@t C a/Q D

Z
Rn
ei�.t;x;y;�/r.t; x; y; �/ d�

where r 2 S1..�T 0; T 0/ � X � X IRn/ has the asymptotic expansion described in [29,
Theorem 2.12]. Namely, if a is the symbol of a and if we write q �

P
j�0 q�j and

a �
P
j�0 a1�j for the asymptotic expansions of a and q (here a1 D A), then

r.t; x; y; �/ D e�i�.t;x;y;�/.i@t C az/Œe
i�.t;z;y;�/q.t; z; y; �/�jzDx

� .A.x; @x�/ � @t�/q C
X
j�0

r�j ; (2.6)

where, for k � 0, the rk 2C1..�T 0;T 0/�X �X � PRn/ are homogeneous in � of degree
k and are given by

rk D i@tqk C a0.x; @x�/qk

� i
X
j˛jD1

.@˛�A/.x; @x�/@
˛
xqk � i

X
j˛jD2

1

˛Š
.@˛�A/.x; @x�/.@

˛
x�/qk �Rk I

here the remainder Rk D Rk.a; �; q0; q�1; : : : ; qkC1/ is homogeneous in � of degree k
and has the form

Rk D
X
j˛j�1�k
0�`>k

c`k˛.�; a/@
˛
xq`; (2.7)

where the c`
k˛
.�; a/ are certain polynomials in the derivatives of � and the aj (independ-

ent of the qj ). In particular, R0 D 0.
Note that A.x; @x�/ � @t� D 0, because of (2.4). Thus, in view of (2.6), in order for

(iii) to be satisfied, it is sufficient to choose q so that rk D 0 for all k � 0. Similarly, (ii)
corresponds to the condition qkjtD0 D pk for all k � 0, where p �

P
j�0 p�j .

Notice that �irk D 0 is a linear differential equation in qk where all derivatives of qk
have real coefficients. More precisely, consider the time-dependent real vector fieldW on
X with parameters .y; �/ 2 X � PRn, given by

W.t; x; y; �/ D �
X
j˛jD1

.@˛�A/.x; @x�/@
˛
x ;

and the function F.t; x; y; �/ D �ia0.x; @x�/ �
P
j˛jD2

1
˛Š
@˛
�
A.x; @x�/@

˛
x�. Then we

want qk to solve the equation´
@tqk CWqk C Fqk C iRk D 0;

qkjtD0 D pk :
(2.8)

This equation is called the transport equation and it is solved with the method of charac-
teristics. Namely, for .t; y; �/ 2 .�T; T / �X � PRn, let

C.t; y; �/ D

²
 W I ! X W

I � .�T; T / interval with 0; t 2 I;
8s 2 I W  0.s/ D W.s; .s/; y; �/

³
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be the set of the integral curves of W.�; �; y; �/ defined at times 0 and t , and let � �
.�T; T / �X �X � PRn be the open set

� D ¹.t; .t/; y; �/ W .t; y; �/ 2 .�T; T / �X � PRn;  2 C.t; y; �/º:

Notice that, since W is 0-homogeneous in �, the set � is conic.
For every .t; x; y; �/ 2 �, the initial-value problem (2.8) induces a Cauchy problem

for a linear ODE along a curve  2 C.t; y; �/ with .t/ D x. Since this Cauchy problem
is globally solvable, we find that, if Rk is defined and smooth on the whole �, then there
is a well-defined qk W �! C solving (2.8). Smoothness and uniqueness of qk on � are
also guaranteed by the theory of ODEs, and qk is k-homogeneous in � whenever Rk is.

Since R0 D 0 is defined, smooth, and 0-homogeneous on �, the solution q0 to (2.8)
exists on�. Inductively, by (2.7), it follows that the qk W�!C solving (2.8) are defined,
smooth and k-homogeneous on � for all k � 0.

Let now �0 be the open subset of � defined by

�0 D

²
.t; .t/; y; �/ W

.t; y; �/ 2 .�T; T / �X � PRn;  2 C.t; y; �/;

..0/; y; �/ … ess supp.p/

³
:

Arguing as above, the solution to (2.8) is unique on �0, but here the initial value for the
Cauchy problem along each integral curve is zero, whence qk D 0 on �0.

Let X 0; X 00 be open subsets of X with X 00 b X 0 b X , and let K be a compact neigh-
bourhood of X 00 in X 0. We claim that there is T 0 2 .0; T � such that, if � is a closed cone
in PRn and ess supp.p/ � X 00 �X 00 � � , then, for all k,

supp.qkj�0/ � .�T 0; T 0/ �K �K � � � �; (2.9)

where �0 D � \ .�T 0; T 0/ � X � X � PRn. Indeed, since � is a conic open neighbour-
hood of ¹0º � X � X � PRn in .�T; T / � X � X � PRn, there is � 2 .0; T � such that
.��; �/ � X 0 � X 0 � PRn � �. A further compactness argument yields a T 0 2 .0; �� such
that .t/ 2 K for all .t; y; �/ 2 .�T 0; T 0/ �X 00 � PRn and  2 C.t; y; �/ with .0/ 2 X 00.
By the previous discussion, if ess supp.p/ � X 00 �X 00 � � , then

¹.t; x; y; �/ 2 � W t 2 .�T 0; T 0/; qk.t; x; y; �/ ¤ 0º

� ¹.t; .t/; y; �/ W t 2 .�T 0; T 0/;  2 C.t; y; �/; ..0/; y; �/ 2 X 00 �X 00 � �º

� .�T 0; T 0/ �K �X 00 � �

and (2.9) follows.
We can now extend by zero the functions qkj�0 to smooth homogeneous functions qk

on the whole .�T 0; T 0/ � X � X � PRn, and these extensions still satisfy (2.8); this is
because .�T 0; T 0/ �K �K � � is closed in .�T 0; T 0/ � X � X � PRn, and �0 contains
¹0º � X � X � PRn. Hence any q 2 S0cl..�T

0; T 0/ � X � X IRn/ with the asymptotic
expansion

P
j�0 q�j satisfies (ii) and (iii). One of such symbols is given by q.t;x;y; �/DP

j�0 �j .�/q�j .t; x; y; �/ for suitable smooth cutoffs �j vanishing at � D 0, and this q
also satisfies supp.q/ � .�T 0; T 0/ �K �K � � , as desired.



Multipliers and wave equation for sub-Laplacians 799

3. Eikonal equation

Consider the initial value problem for the eikonal equation (2.4), namely´
@t�.t; x; y; �/ D A.x; @x�.t; x; y; �//;

�.0; x; y; �/ D .x � y/ � �;
(3.1)

on a simply connected coordinate domain Mo in a manifold M . Following Trèves, see
for instance [72, Example 2.1, p. 320], we seek a solution � in the form �.t; x; y; �/ D

w.t; x; �/ � y � �. The eikonal equation (3.1) is then equivalent to´
@tw.t; x; �/ D A.x; @xw.t; x; �//;

w.0; x; �/ D x � �:
(3.2)

If we define the 1-forms ˛� D � � dx and

�� D d.t;x/w D @tw dt C dxw D �
�
R dt C ��M ; (3.3)

on an open subset of R �Mo, then �� is closed, ��R D A.�
�
M / and ��M jtD0 D ˛� .

Moreover, by Poincaré’s Lemma, since Mo is simply connected, w.t; x; �/ in return is
determined by �� and (3.3) (up to an additive constant).

We may therefore study an equation in � in place of (3.2): Given a closed 1-form ˛

onMo, we will show that there is a unique 1-form �˛ D�˛R dt C�˛M on a neighbourhood
of ¹0º �Mo satisfying 8̂̂<̂

:̂
d�˛ D 0;

�˛R D A.�
˛
M /;

�˛M jtD0 D ˛:

(3.4)

Once we have �˛ , we define �.t; x; y; ˛/ asw˛.t; x/�w˛.0; y/ wherew˛ is determined
by �˛ D d.t;x/w˛ . Finally, we will characterise the points where @˛� D 0 and the rank
of the Hessian @2˛� at these points in terms of the Hamiltonian flow of A on T �M , where
derivatives in ˛ are in the sense of Gâteaux.

Up to this point, the construction is coordinate-free. A choice of coordinates determ-
ines the restriction to the subspace of forms ˛ D � � dx, with the corresponding phase

�.t; x; y; �/ D �.t; x; y; � � dx/:

We will show that neither the characterisation of critical points nor the rank of the Hessian
at those points depend on that restriction.

3.1. Preliminaries on symplectic geometry

Here we recall some fundamental definitions and results from symplectic geometry. We
refer to [35, 45] for additional details.
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A symplectic form on a smooth manifold N is a 2-form ! 2�2.N / such that d! D 0
and!jp is nondegenerate for every p 2N . The pair .N;!/ is called a symplectic manifold.

Every smooth function F WN !R on a symplectic manifold has an associated Hamil-
tonian vector field XF 2 �.TN / defined by

dF jp.v/ D !jp.XF jp; v/ 8v 2 TpN; 8p 2 N:

We denote by ˆF W .t; p/ 7! ˆtF .p/ the flow of XF on N . As usual, the domain of ˆF
is an open neighbourhood of ¹0º �N in R �N . We recall that

XF F D 0; (3.5)

that is, F is constant along the integral curves of XF , and

.ˆtF /
�! D !; (3.6)

that is, the flow ˆF preserves the symplectic form.

Proposition 3.1. Let .N; !/ be a symplectic manifold,  0 W U ! N a smooth map from
a manifold U and F W N ! R smooth. Let U � R � U be the preimage of the domain
of ˆF via the map R�U !R�N , .t;p/ 7! .t; 0.p//; clearly, U is a neighbourhood
of ¹0º � U . Define  W U ! N by

 .t; p/ D ˆtF . 0.p//:

If F ı  0 is constant, then also F ı  is constant; and if moreover  �0! D 0, then also
 �! D 0.

Proof. Recall that we have a canonical identification T.t;p/U ' TtR � TpU . If
.t; p/ 2 U , r 2 R and v 2 TpU , then

D j.t;p/Œr@t C v� D rXF j .t;p/ C DˆtF ı D 0jpŒv�: (3.7)

Since XF j .t;p/ D
d

dh

ˇ̌
hD0

ˆhF ıˆ
t
F . 0.p// D

d
dh

ˇ̌
hD0

ˆtF ıˆ
h
F . 0.p//, we have

XF j .t;p/ D DˆtF j 0.p/ŒXF j 0.p/�: (3.8)

Suppose that F ı  0 is constant. Then F ı  is constant by (3.5). Suppose in addition
that  �0! D 0. Notice that, by the definition of pull-back and (3.7),

 �!j.t;p/.r@t C v; r
0@t C v

0/ D r!
�
XF . .t; p//;DˆtF ı D 0jpŒv0�

�
� r 0!

�
XF . .t; p//;DˆtF ı D 0jpŒv�

�
C !

�
DˆtF ı D 0jpŒv�;DˆtF ı D 0jpŒv0�

�
for all .t; p/ 2 U , r; r 0 2 R and v; v0 2 TpU . By (3.6) and (3.8), we have

!
�
XF . .t; p//;DˆtF ıD 0jpŒv�

�
D !

�
XF . 0.p//;D 0jpŒv�

�
D dF.D 0jpŒv�/ D 0;

where we have used the hypothesis that F ı 0 is constant. Again, by (3.6) we also obtain

!
�
DˆtF ı D 0jpŒv�;DˆtF ı D 0jpŒv0�

�
D !.D 0jpŒv�;D 0jpŒv0�/ D 0;

where we have used the hypothesis  �0! D 0. We conclude that  �! D 0.
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Corollary 3.2. Let .N; !/ be a symplectic manifold,  0 W U ! N a smooth map from a
manifold U and F W N ! R smooth. Assume that F ı  0 is constant and  �0! D 0. For
all p 2 U , if 2 dim Im.D 0jp/ � dimN , then XF jp 2 Im.D 0jp/.

Proof. Let  W U ! N be constructed as in Proposition 3.1. Then clearly

XF jp 2 Im.D j.0;p// � Im.D 0jp/:

On the other hand,  �! D 0, so the symplectic bilinear form !j 0.p/ vanishes on
Im.D j.0;p// � Im.D j.0;p// and therefore 2 dim Im.D j.0;p// � dimN . Dimensional
considerations then imply that Im.D j.0;p// D Im.D 0jp/ and XF jp 2 Im.D 0jp/.

The cotangent space T �M of a smooth manifold M has a canonical symplectic
structure, described as follows. Let �M W T �M ! M be the bundle projection and
t 2 �1.T �M/ the tautological form defined by

tj˛.v/ D ˛.D�M Œv�/

for ˛ 2 T �M and v 2 T˛.T �M/. The symplectic form on T �M is

! D �dt:

The tautological 1-form is characterised by the fact that, if � 2�1.M/ is a 1-form (which
in particular is a smooth embedding � WM ! T �M ), then ��t D �.

Recall that a submanifold S � T �M is called Lagrangian if dim.S/ D dimM and
!jTS D 0. We shall need the following lemma (for a proof, see for instance [35, Proposi-
tion 9.20]).

Lemma 3.3. � 2 �1.M/ is closed if and only if �.M/ is a Lagrangian submanifold
of T �M , i.e., ��! D 0.

If F W DF ! R is a smooth function on some open set DF � T
�M , we define the

.Hamiltonian/ exponential map by

Expx;tF .�/ D �M .ˆ
t
F .�// (3.9)

for all x 2M , � 2 T �xM , t 2 R such that .t; �/ is in the domain of ˆF .
A system of coordinates .U; x/ on an open set U � M induces so-called canonical

coordinates .T �U;.x;�// on T �U D��1M .U /� T �M , whereby ˛ 2 T �U corresponds to
the pair .x.˛/;

P
j �j .˛/dxj / in the trivialisation of T �U induced by .U;x/. In canonical

coordinates we have

t D
X
j

�j dxj and ! D
X
j

dxj ^ d�j :

Moreover, if DF � T
�M is open and F W DF ! R is smooth, then

XF D

X
j

@F

@�j
@xj �

X
j

@F

@xj
@�j : (3.10)
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Hence, a curve .t/ D .x.t/; �.t// in DF � T
�M is an integral curve of XF if and only

if it satisfies the Hamilton–Jacobi equations8̂̂<̂
:̂
Pxj D

@F

@�j
;

P�j D �
@F

@xj
;

(3.11)

for all j .

3.2. Solution to the eikonal equation

For further reference on the content of this section, see [73, p. 167] and [72, Chapter VI].
For a manifoldM , we denote the space of closed 1-forms by C`.M/D ¹˛ 2�1.M/ W

d˛ D 0º, and the bundle projection T �M !M by �M .
Let M be a manifold and A W DA ! R a smooth function defined on an open set

DA � T
�M . Note that DA inherits the symplectic structure of T �M . As in the previous

Section 3.1, we denote by XA and ˆA the Hamiltonian vector field of A and its flow,
respectively.

If ˛ 2 �1.U / for some U �M open, let �˛ be the smooth map

U ˛
3 .t; x/ 7! �˛t .x/ WD �Mˆ

�t
A .˛jx/ 2M; (3.12)

where
U ˛
D ¹.t; x/ 2 R � U W .�t; ˛jx/ is in the domain of ˆAº (3.13)

is an open neighbourhood of ¹0º � U in R � U . Note that �˛0 D IdU .
Set zM WD R �M . We shall write an element ˛ 2 T � zM as

˛ D ˛R dt jt C ˛M ;

with t; ˛R 2 R and ˛M 2 T �M . Note that T � zM is naturally isomorphic to the product
T �R � T �M . The composition of the projection T � zM ! T �M with the bundle pro-
jection �M W T �M ! M gives a submersion z�M W T � zM ! M . Then the canonical
symplectic form ! zM on T � zM is the “sum” of the symplectic forms on the factors; more
precisely,

! zM D dt ^ d� C z!M ; (3.14)

where .t; �/ are the canonical coordinates on T �R and z!M is the pull-back via z�M of the
canonical symplectic form !M on T �M .

Let DF D T
�R �DA � T

� zM , and define F W DF ! R by

F.�dt jt C �/ D A.�/ � �; (3.15)

for every .t; p/ 2 zM , �dt jt 2 T �t R and � 2 T �pM . A moment’s thought shows that the
vector field XF associated with F splits as follows:

XF D �@t C zXA;
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where zXA is the lifting of XA to DF . Consequently, the flow of XF is given by

ˆsF .� dt jt C �/ D �dt jt�s CˆsA.�/ (3.16)

for all s; t; � 2 R and all � in the domain of ˆsA.
The main result of this section is the following proposition, where the map �˛ and the

set U ˛ are defined as in (3.12) and (3.13).

Proposition 3.4. Let U �M be open, ˛ 2 C`.U / and � > 0 such that

(i) .��; �/ � U � U ˛;

(ii) �˛s jU W U !M is an embedding for all s 2 .��; �/.

Then the set
zU D ¹.s; �˛s .x// W jsj < �; x 2 U º

is open in zM and there exists a unique � 2 C`. zU/ such that´
F.�.zx// D 0 8zx 2 zU ;

�.0; x/ D A.˛jx/ dt j0 C ˛jx 8x 2 U:
(3.17)

Moreover, for all s 2 .��; �/ and x 2 U ,

�.s; �˛s .x// D A.˛jx/ dt js Cˆ�sA .˛jx/: (3.18)

Proof. Let us first discuss the existence of a solution to (3.17). Let U D .��; �/ � U .
Under our assumptions, the map U 3 .s; x/ 7! .s; �˛s .x// 2

zU is a diffeomorphism, so
(3.18) actually defines a 1-form � 2 �1. zU/.

Define  0 W U ! T � zM as

 0.x/ D A.˛jx/ dt j0 C ˛jx 2 T �.0;x/ zM;

so that F ı 0 � 0 by (3.15). Using (3.14), Lemma 3.3 and the fact t ı 0 � 0, we obtain

 �0! zM D  
�
0 .dt ^ d�/C  �0 .z!M / D d.t ı  0/ ^ d.� ı  0/C ˛�!M D 0:

By Proposition 3.1, the map  W U ! T � zM ,  .s; x/ D ˆsF . 0.x// satisfies F ı  
� 0 and  �! zM D 0. Moreover, by (3.16),

 .s; x/ D A.˛jx/dt j�s CˆsA.˛jx/ D �.�s; �
˛
�s.x//:

In other words,  D � ı„ for some diffeomorphism„ WU ! zU . From  �! zM D 0 and
F ı  � 0 we then deduce ��! zM D 0 and F ı � � 0, i.e., � 2 C`. zU/ by Lemma 3.3,
and � solves (3.17).

As for the uniqueness, assume conversely that � 2 C`. zU/ solves (3.17). Then F ı �
D 0 and��!D 0, i.e.,�. zU/ is a Lagrangian submanifold of T � zM . By Corollary 3.2, XF

is tangent to �. zU/ at every point. Fix now x 2 U and let I be the set of those s 2 .��; �/
such that (3.18) holds. Clearly I is closed in .��; �/, and 0 2 I because of (3.17). On the
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other hand, for all s0 2 I , the flow curve of XF starting from �.s0; �
˛
s0
.x// stays in �. zU/

for some time and, by (3.16),

ˆtF .�.s0; �
˛
s0
.x/// D A.˛jx/ dt js0�t Cˆ

t�s0
A .˛jx/;

which shows that (3.18) also holds for s in a neighbourhood of s0. This proves that I
is open, so by connectedness I D .��; �/, and (3.18) holds for all s 2 .��; �/ and all
x 2 U .

3.3. Existence domains and smooth dependence on the initial datum

Proposition 3.4 yields, under certain assumptions, the existence of a (local) solution
� D �˛ to the eikonal equation for a given initial datum ˛ 2 C`.M/. We will now show
how those assumptions can be satisfied and, at the same time, we will obtain suitable
smoothness properties of the map ˛ 7! �˛ . In what follows, we consider C`.M/ as a
Fréchet space with the C1 topology (i.e., the topology of uniform convergence on com-
pact sets of derivatives of all orders).

We define an existence domain .ED/ to be a triple .�;U; �/ such that

(a) U �M is open and simply connected, and � > 0,

(b) � � C`.M/ is open in the C1 topology,

(c) conditions (i) and (ii) of Proposition 3.4 are satisfied for all ˛ 2 �.

If .�;U; �/ is an ED, then for all ˛ 2� and t 2 .��; �/ the inverse �˛t of �˛t jU is defined.
In addition, the set zU ˛ D ¹.t; �˛t .x// W t 2 .��; �/; x 2 U º is open in R �M and there is
a unique solution � D �˛ 2 C`. zU ˛/ to the eikonal equation (3.17), given by (3.18). We
can split �˛ D �˛R dt C�˛M , with �˛R W zU

˛ ! R and �˛M W zU
˛ ! T �M smooth. In view

of (3.15), the eikonal equation (3.17) becomes´
�˛R D A ı �

˛
M ;

�˛M j.0;x/ D ˛jx for all x 2 U .
(3.19)

Moreover, by (3.18), for all .t; x/ 2 zU ˛ ,

�˛t .x/ D �Mˆ
t
A.�

˛
M .t; x//:

The existence of ED and the smoothness properties of ˛ 7! �˛ are given by the fol-
lowing result. Recall here the definition of the set U ˛ from (3.13).

Proposition 3.5. The following hold true.

(i) The set U D ¹.˛; t; x/ W ˛ 2 C`.M/; .t; x/ 2U ˛º is open in C`.M/�R�M , and
the map

U 3 .˛; t; x/ 7! �˛t .x/ 2M

is of class C1 in the sense of Gâteaux.
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(ii) For all y̨ 2 C`.M/ and yx 2 M such that y̨jyx 2 DA, there exists an ED .�; U; �/

with y̨ 2 � and yx 2 U .

(iii) If .�;U; �/ is an ED, then the set

W D ¹.˛; t; �˛t .x// W ˛ 2 �; t 2 .��; �/; x 2 U º

is open in C`.M/ �R �M and the maps

W 3 .˛; t; x/ 7! �˛t .x/ 2M; W 3 .˛; t; x/ 7! �˛.t; x/ 2 T � zM

are of class C1 in the sense of Gâteaux.

This result is obtained via an application of the inverse function theorem. Since
C`.M/ is not a Banach space, however, it is convenient to introduce spaces of forms
of finite order of differentiability, which are Banach spaces and to which we can apply the
inverse function theorem directly.

For U � M open and k 2 N, let C k�1.U / be the space of 1-forms of class C k

on U , i.e., sections of class C k of the bundle T �U . In the case U b M , we also denote
by C k�1.U / the space of ˛ 2 C k�1.U / that extend continuously to U together with all
their derivatives up to order k. Note that C k�1.U / is a Banach space with the uniform
C k topology (the topology of uniform convergence of all derivatives up to order k). Note
that (3.12) defines �˛ also for ˛ 2 C 0�1.U /.

Proposition 3.5 is then an immediate consequence of the following result.

Lemma 3.6. Let U b M be open in M and define

Uk D ¹.˛; t; x/ W ˛ 2 C
k�1.U /; .t; x/ 2 U ˛

º

for all k 2 N. Then:

(i) Uk is an open neighbourhood of C k�1.U / � ¹0º � U in C k�1.U / �R � U ;

(ii) the map
Uk 3 .˛; t; x/ 7! �˛t .x/ 2M

is of class C k .

Moreover, for all .y̨; yt ; yx/ 2 U1 such that D� y̨
yt
jyx is invertible, there exist an open neigh-

bourhood � of y̨ in C 1�1.U /, an open interval I � R containing yt , and an open
neighbourhood W of yx in U such that:

(iii) I �W � U ˛ for all ˛ 2 �;

(iv) �˛t jW W W !M is a C 1 embedding for all ˛ 2 � and t 2 I ;

(v) W WD ¹.˛; t; �˛t .x// W ˛ 2 �; t 2 I; x 2 W º is open in C 1�1.U / and moreover, if
�˛t denotes the inverse of �˛t jW , then the map

W 3 .˛; t; x/ 7! �˛t .x/ 2M

is of class C 1, and its restriction to W \ .C k�1.U / �R �M/ is of class C k .with
respect to the uniform C k topology/ for all k > 1;
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(vi) if W ˛ D ¹.t; x/ W .˛; t; x/ 2 W º and �˛ 2 C 1�1.W ˛/ is defined by

�˛.s; �˛s .x// D A.˛jx/ dt js Cˆ�sA .˛jx/

for all s 2 I and x 2 W , then the map

W 3 .˛; t; x/ 7! �˛.t; x/ 2 T � zM

is of class C 1, and its restriction to W \ .C k�1.U / �R �M/ is of class C k .with
respect to the uniform C k topology/ for all k > 1.

Proof. Parts (i) and (ii) are immediate consequences of the observation that

�˛t .x/ D �Mˆ
�t
A .Ev.˛; x//;

where Ev.˛; x/ D ˛jx is the evaluation map, and the fact that

Ev W C k�1.U / � U ! T �M

is of class C k for all k 2 N. As a consequence, the map

‰k W Uk 3 .˛; t; x/ 7! .˛; t; �˛t .x// 2 C
k�1.U / �R �M

is also of class C k , and, if k � 1 it is easily checked that D‰kj.˛;t;x/ is continuously
invertible for all .˛; t; x/ 2Uk such that D�˛t jx is invertible. Hence parts (iii), (iv) and (v)
follow by applying the inverse function theorem to ‰1, and observing that restrictions of
a local inverse for ‰1 provide local inverses for all the ‰k for k > 1. Finally, part (vi)
follows by observing that .˛; t; x/ 7! �˛.t; x/ is the composition of the maps .˛; t; x/ 7!
.˛; t; � t˛.x// and

.˛; s; x/ 7! A.Ev.˛; x// dt js Cˆ�sA .Ev.˛; x//;

which have the required smoothness properties.

We say that A W DA ! R is 1-homogeneous if �� 2 DA and A.��/ D �A.�/ for all
� 2DA and � > 0. When A is 1-homogeneous, we can find an ED .�;U; �/ such that the
set � � C`.M/ is conic; such ED will be called conic existence domains (CED).

Proposition 3.7. Assume that A is 1-homogeneous.

(i) For all t 2 R, the domain of ˆtA is conic and

ˆtA.��/ D �ˆ
t
A.�/

for all � > 0 and � in the domain of ˆtA.

(ii) For all .˛; t; x/ 2 U and � > 0, we have .�˛; t; x/ 2 U and

��˛t .x/ D �
˛
t .x/:

(iii) If .�;U; �/ is an ED and RC�D ¹�˛ W ˛ 2�; � > 0º, then .RC�;U; �/ is a CED.
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(iv) If .�;U; �/ is a CED, then zU �˛ D zU ˛ and

��˛.t; x/ D ��˛.t; x/

for all � > 0, ˛ 2 � and .t; x/ 2 zU ˛ .

Proof. Since A is 1-homogeneous, in local canonical coordinates .x; �/ we have

@A

@xj
.x; r�/ D r

@A

@xj
.x; �/ and

@A

@�j
.x; r�/ D

@A

@�j
.x; �/;

and part (i) easily follows from (3.11). The remaining statements are immediate con-
sequences of part (i), the definition of CED and the expression (3.18) for �˛ .

Once we have an ED .�;U; �/, we can take the Gâteaux derivative of ˛ 7! �˛ at any
˛ 2 �. If � 2 C`.M/, then @˛�˛Œ�� 2 C`. zU ˛/ is the 1-form defined by

@˛�
˛Œ��.t; x/ D

d
dh

ˇ̌̌̌
hD0

�˛Ch�.t; x/ 2 T �.t;x/
zM:

Notice that
@˛�

˛Œ�� D @˛�
˛
RŒ�� dt C @˛�

˛
M Œ��;

where @˛�˛R and @˛�˛M are defined as Gâteaux derivatives of �˛R and �˛M .
We now obtain a useful identity for @˛�˛Œ�� that follows from the eikonal equation.

Define, for all x 2M and ˛; ˇ 2 T �xM with ˛ 2 DA,

D2Aj˛Œˇ� WD
d

dh

ˇ̌̌̌
hD0

A.˛ C hˇ/: (3.20)

Essentially, D2Aj˛ is the restriction of dA to the “vertical” directions in the cotangent
bundle T �M . Using canonical coordinates and (3.10), it is immediately seen that

D2Aj˛Œˇ� D ˇ
�
D�M ŒXAj˛�

�
: (3.21)

Lemma 3.8. For every ˛ 2 �, � 2 C`.M/ and .t; x/ 2 zU ˛ ,

@˛�
˛
RŒ��.t; x/ D @˛�

˛
M Œ��.t; x/

�
D�M ŒXAj�˛

M
.t;x/�

�
:

Proof. Using the “generalised eikonal equation” (3.19),

@˛�
˛
RŒ��.t; x/ D

d
dh

ˇ̌̌̌
hD0

A.�˛Ch�M .t; x// D D2Aj�˛
M
.t;x/

�
@˛�

˛
M Œ��.t; x/

�
;

by the chain rule, and the conclusion follows by (3.21).

3.4. Definition of the phase function

Let .�; U; �/ be an ED. For all ˛ 2 �, ˇ 2 C`. zU ˛/ and zx; zy 2 zU ˛ , we denote by
R zx
zy
ˇ

the integral of ˇ along any path in zU ˛ joining zy to zx; since U is simply connected, zU ˛ is
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too and the value of the integral does not depend on the chosen path. Similarly we defineR x
y
� for all � 2 C`.M/ and x; y 2 U .

We define the open set D� D ¹.t; x;y;˛/ W ˛ 2�; .t;x/ 2 zU
˛; y 2U º and the “phase

function” � W D� ! R associated with .�;U; �/ by

�.t; x; y; ˛/ D

Z .t;x/

.0;y/

�˛: (3.22)

Note that, since d.t;x/� D �˛ , for all .t; x; y; ˛/ 2 D� we have

�˛R.t; x/ D @t�.t; x; y; ˛/; �˛M .t; x/ D @x�.t; x; y; ˛/; (3.23)

hence, by (3.19), � is a solution to´
@t�.t; x; y; ˛/ D A.@x�.t; x; y; ˛//; .t; x; y; ˛/ 2 D�;

�.0; x; y; ˛/ D
R x
y
˛; .x; y; ˛/ 2 U � U ��:

(3.24)

In particular,

@x�.t; x; y; ˛/ 2 DA; (3.25)

@y�.t; x; y; ˛/ D �˛jy 2 �DA; (3.26)

@t�.t; x; y; ˛/ D A.˛j�˛t .x// (3.27)

for all .t; x; y; ˛/ 2D�; the last identity follows from (3.18) (applied with �˛t .x/ in place
of x) and (3.23).

3.5. Critical points of the phase function

We want to differentiate in ˛ the phase function � associated to an ED .�; U; �/ and
characterise the points .t; x; y; ˛/ such that @˛�.t; x; y; ˛/ D 0.

The Gâteaux derivative of � is, for .t; x; y; ˛/ 2 D� and � 2 C`.M/,

@˛�.t; x; y; ˛/Œ�� D

Z .t;x/

.0;y/

@˛�
˛Œ��: (3.28)

From the fact that �˛ solves the eikonal equation, we can deduce a simpler expression for
the Gâteaux derivative of �.

Proposition 3.9 (Trèves). For all .t; x; y; ˛/ 2 D� and � 2 C`.M/,

@˛�.t; x; y; ˛/Œ�� D

Z �˛t .x/

y

�: (3.29)

Proof. By (3.12) and (3.18),

d
dt
�˛t .x/ D

d
dt
�M .ˆ

�t
A .˛jx// D D�M

�
d
dt
ˆ�tA .˛jx/

�
D �D�M ŒXAjˆ�t

A
.˛jx/

� D �D�M ŒXAj�˛
M
.t;�˛t .x//

�:
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Hence, for all ˛ 2 �, t 2 .��; �/, x; y 2 U , and � 2 C`.M/,

d
dt

�
.@˛�/.t; �

˛
t .x/; y; ˛/Œ��

�
D .@˛@t�/.t; �

˛
t .x/; y; ˛/Œ��C .@˛@x�/.t; �

˛
t .x/; y; ˛/Œ��

�
d
dt
�˛t .x/

�
D .@˛�

˛
R/Œ��.t; �

˛
t .x// � .@˛�

˛
M /Œ��.t; �

˛
t .x//

�
D�M ŒXAj�˛

M
.t;�˛t .x//

�
�

D 0:

by (3.23) and Lemma 3.8 (compare [72, (2.31)]). Consequently,

.@˛�/.t; �
˛
t .x/; y; ˛/Œ�� D .@˛�/.0; x; y; ˛/Œ�� D

Z x

y

@˛˛Œ�� D

Z x

y

�

by (3.24), and (3.29) follows by replacing x with �˛t .x/.

We say that V � C`.M/ is separating for U if, for all x; y 2 U with x ¤ y, there
exist � 2 V and f 2 C1.U / such that

f .x/ ¤ f .y/ and df D �jU :

The following result, which relates the critical points of the phase � to the geodesic
flow, is an immediate consequence of Proposition 3.9 and Stokes’ theorem.

Corollary 3.10. Let .�;U; �/ be an ED and let V � C`.M/ be separating for U . Then,
for all .t; x; y; ˛/ 2 D�,

@˛�.t; x; y; ˛/jV D 0 ” x D �˛t .y/:

In case A is 1-homogeneous the above expression for @˛� actually yields a corres-
ponding expression for �.

Proposition 3.11. If A is 1-homogeneous and .�; U; �/ is a CED, then the associated
phase function � is 1-homogeneous in ˛, i.e., .t; x; y; �˛/ 2 D� and

�.t; x; y; �˛/ D ��.t; x; y; ˛/

for all � > 0 and .t; x; y; ˛/ 2 D�. In addition, for all .t; x; y; ˛/ 2 D�,

�.t; x; y; ˛/ D

Z �˛t .x/

y

˛:

Proof. Homogeneity of � in ˛ immediately follows from Proposition 3.7 and (3.22).
From this we deduce that

�.t; x; y; ˛/ D
d

d�

ˇ̌̌̌
�D1

�.t; x; y; �˛/ D @˛�.t; x; y; ˛/Œ˛�;

which, together with Proposition 3.9, gives the desired expression for �.
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3.6. The Hessian of the phase function

Let .�;U; �/ be an ED and � W D� ! R be the associated phase function. The Gâteaux-
Hessian in ˛ of � at .t; x; y; ˛/ 2 D� is the symmetric bilinear map

@2˛�.t; x; y; ˛/ W C`.M/ � C`.M/! R;

.�1; �2/ 7!
d

dh

ˇ̌̌̌
hD0

@˛�.t; x; y; ˛ C h�2/Œ�1�:

We now obtain an expression for the Hessian @2˛� in terms of the Hamilton flow
on T �M associated to A (or rather its projection to the manifold M ).

Note that Expx;tA , defined in (3.9), is a smooth map defined on a (possibly empty) open
subset of T �xM for all x 2M and t 2 R. Since T �xM is a vector space, the tangent space
T�T

�
xM is canonically identified with T �xM at each point � 2 T �xM , so we can think of

DExpx;tA j� as a linear map T �xM ! TExpx;t
A
.�/M . Note also that

Expx;�tA .˛jx/ D �
˛
t .x/ (3.30)

for all ˛ 2 �1.W /, x 2 W , t 2 R such that .�t; ˛jx/ is in the domain of ˆA.

Proposition 3.12. For all .t; x; y; ˛/ 2 D� and �1; �2 2 C`.M/,

@2˛�.t; x; y; ˛/Œ�1; �2� D ��1j�˛t .x/
�
D�˛t jx ŒDExp�

˛
t .x/;�t

A j˛j�˛t .x/
Œ�2j�˛t .x/��

�
:

Proof. Note that, by (3.29),

@2˛�.t; x; y; ˛/Œ�1; �2� D
d

dh

ˇ̌̌̌
hD0

Z �
˛Ch�2
t .x/

y

�1 D �1j�˛t .x/

�
d

dh

ˇ̌̌̌
hD0

�
˛Ch�2
t .x/

�
:

On the other hand, for all � 2 C`.M/, since �˛Ch�t .�˛Ch�t .x// D x for all small
enough h 2 R, by (3.30),

0 D
d

dh

ˇ̌̌̌
hD0

�˛Ch�t .�˛Ch�t .x// D
d

dh

ˇ̌̌̌
hD0

�˛Ch�t .�˛t .x//C
d

dh

ˇ̌̌̌
hD0

�˛t .�
˛Ch�
t .x//

D DExp�
˛
t .x/;�t

A j˛j�˛t .x/
Œ�j�˛t .x/�C D�˛t j�˛t .x/

�
d

dh

ˇ̌̌̌
hD0

�˛Ch�t .x/

�
;

so
d

dh

ˇ̌̌̌
hD0

�˛Ch�t .x/ D �D�˛t jx
�
DExp�

˛
t .x/;�t

A j˛j�˛t .x/
Œ�j�˛t .x/�

�
;

and we are done.

An interesting consequence of the above formula is that @2˛�.t; x; y; ˛/Œ�1; �2� only
depends on the values of �1 and �2 at the point �˛t .x/, and therefore @2˛�.t; x; y; ˛/ is
effectively a bilinear form on the finite-dimensional space T �

�˛t .x/
M .

We say that a linear subspace V of C`.M/ is spanning for U if ¹�jx W � 2 V º D T �xM

for all x 2 U . The following result is an immediate consequence of Proposition 3.12 and
Corollary 3.10.
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Corollary 3.13. Let V � C`.M/ be a linear subspace that is spanning for U . Then, for
all .t; x; y; ˛/ 2 D�,

rank.@2˛�.t; x; y; ˛/jV �V / D rank.DExp�
˛
t .x/;�t

A j˛j�˛t .x/
/: (3.31)

In particular, if V is separating for U and @˛�.t; x; y; ˛/jV D 0, then

rank.@2˛�.t; x; y; ˛/jV �V / D rank.DExpy;�tA j˛jy /: (3.32)

3.7. Construction of an operator phase function

Recall that, for all ED .�;U; �/, the set ¹.˛; t; �˛.x// W ˛ 2 �; t 2 .��; �/; x 2 U º is an
open neighbourhood of � � ¹0º � U in C`.M/ � R �M . A simple compactness argu-
ment yields the following strengthening of the existence result for ED in Proposition 3.5.

Lemma 3.14. Let K and ‚ be compact subsets of M and C`.M/ such that ˛jx 2 DA

for all ˛ 2 ‚ and x 2 K. Then there exists an ED .�; U; �/ such that ‚ � � and K �
int.

T
˛2�; jt j<� �

˛
t .U //.

We can now prove our main result.

Proposition 3.15. Assume that A is 1-homogeneous and DA D PT
�M . Let o 2 M and

.W; x/ be any system of local coordinates for M at o. Then there exists an open neigh-
bourhood V �W of o, an � > 0 and a smooth functionw W .��; �/� V � PRn!R, where
n D dimM , with the following properties.

(i) w is 1-homogeneous in � and, for all .t; x; �/ 2 .��; �/ � V � PRn,

w.0; x; �/ D x � �; @xw.t; x; �/ ¤ 0:

(ii) The function � W .��; �/ � V � V � PRn ! R,

�.t; x; y; �/ D w.t; x; �/ � w.0; y; �/;

is a phase function that solves the eikonal equation (3.1). Moreover, .x; y; �/ 7!
�.t; x; y; �/ is an operator phase function for all t 2 .��; �/.

(iii) For all .t; x; y; �/ 2 .��; �/ � V � V � PRn,

@�w.t; x; �/ D y ” Expy;�tA .� � dxjy/ D x

and in that case
@tw.t; x; �/ D A.� � dxjy/:

(iv) For all .t; x; y; �/ 2 .��; �/ � V � V � PRn such that @�w.t; x; �/ D y,

rank.@2�w.t; x; �// D rank.DExpy;�tA j��dxjy /:

Here � � dx 2 �1.W / is the form
P
j �j dxj in the coordinates .W; x/ for all � 2 Rn.
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Proof. Without loss of generality we may assume that M is an open subset of Rn.
Let V � C`.M/ be the R-linear span of dx1; : : : ; dxn, so clearly V is both separat-
ing and spanning for M . Let S be the unit sphere in V (corresponding to the choice
of dx1; : : : ; dxn as an orthonormal basis). Then S is a compact subset of C`.M/. Since
˛jo 2 PT

�M for all ˛ 2S , by Lemma 3.14 and Proposition 3.7 we can find a CED .�;U;�/
such that S � � and o 2 V WD int.

T
˛2�; jt j<� �

˛
t .U //. We can now define a smooth

function � W R � V � V � PRn ! R by

�.t; x; y; �/ D �.t; x; y; � � dx/;

where � is the “phase function” associated to .�; U; �/ defined in (3.22), while � � dx DP
j �j dxj .

Then, by (3.24), � solves the eikonal equation, and @x� and @y� vanish nowhere by
(3.25) and (3.26). From Proposition 3.11 we deduce that � is 1-homogeneous in �, and

�.t; x; y; �/ D � � .�
��dx
t .x/ � y/ D w.t; x; �/ � w.0; y; �/;

where w.t; x; �/ D � � �
��dx
t .x/. This shows (i) and (ii). Moreover, Corollary 3.10 and

(3.30) show that

@��.t; x; y; �/ D 0 ” x D �
��dx
t .y/ ” x D Expy;�tA .� � dxjy/;

and in that case @t�.t; x; y; �/ D A.� � dxjy/ by (3.27). This shows (iii), because
@��.t; x; y; �/ D @�w.t; x; �/ � y and @t� D @tw. Moreover, Corollary 3.13 implies
that

@��.t; x; y; �/ D 0 H) rank.@2��.t; x; y; �// D rank.DExpy;�tA j��dxjy /;

and we are done, because @2
�
�.t; x; y; �/ D @2

�
w.t; x; �/.

4. Sub-Laplacians on sub-Riemannian manifolds

In this section we recall the main definitions and results about sub-Riemannian manifolds
and sub-Laplacians that will be of use later, and show how the results from the previous
sections yield a Fourier integral representation for the sub-Riemannian wave propagator.
For a more extensive introduction to sub-Riemannian geometry, we refer to [2, 51].

4.1. The sub-Riemannian Hamiltonian

If H � �.TM/ is a linear subspace of vector fields on a manifold M and if x 2 M ,
then we denote by Hx � TxM the space ¹vjx W v 2 H º. If U � M , we write HU DS
x2U Hx . We define inductively on k 2 N the spaces H .k/ � �.TM/ as H .1/ DH

and H .kC1/DH .k/C ŒH ;H .k/�. Then H is said to be bracket-generating at x 2M if
there is an s 2N such that H .s/

x D TxM . We say that H ��.TM/ is bracket-generating
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onM if it is bracket-generating at each x 2M . More generally, a subset of �.TM/ is said
to be bracket-generating at x (respectively on M ) if its linear span is bracket-generating
at x (respectively on M ).

Definition 4.1. We call .M;H/ a quadratic Hamiltonian pair ifM is a smooth manifold
and H W T �M ! Œ0;1/ is a smooth map, called a Hamiltonian, such that the restric-
tion of H to T �xM is a homogeneous quadratic form for all x 2 M . If the space H of
horizontal vector fields for H , defined by

H WD ¹v 2 �.TM/ W 8˛ 2 T �M W .H.˛/ D 0) ˛.v/ D 0/º;

is bracket-generating, then we call .M;H/ a bracket-generating quadratic Hamiltonian
pair or a sub-Riemannian manifold.

Equivalently, a quadratic Hamiltonian pair .M; H/ is defined by a smooth positive
semidefinite section bH of the vector bundle of symmetric bilinear forms on T �M , given
by

bH .˛; ˇ/ D
1
2
.H.˛ C ˇ/ �H.˛/ �H.ˇ//

for all x 2M and ˛;ˇ 2 T �xM . The HamiltonianH also induces a bundle homomorphism
BH W T

�M ! TM defined by the property

˛ŒBHˇ� D bH .˛; ˇ/

for all x 2M and ˛; ˇ 2 T �xM . Notice that BH .T �M/ DHM .
The push-forward of bH through BH is a scalar product on Hx , for each x 2 M ,

which is given by

hBH˛;BHˇiH D bH .˛; ˇ/; 8˛; ˇ 2 T
�
xM: (4.1)

The horizontal gradient of a smooth real-valued function f on M is the real vector
field rHf D BH .df / 2H . Notice that, for all ˛ 2 T �M ,

˛ŒrHf � D bH .˛; df / D hBH˛;rHf iH :

We shall mainly work with complex-valued functions onM and, correspondingly, we
often make use of the complexified tangent and cotangent bundles CTM and CT �M .
The mapBH extends to a complex-linear bundle homomorphismBH WCT �M !CTM ,
while bH and h�; �iH extend to sesquilinear forms on the fibres of CT �M and CH

respectively. The horizontal gradient rH extends to a complex-linear first-order differ-
ential operator rH W C1.M/! �.CTM/.

In a coordinate chart .U; x/ of M and in the corresponding local trivialisation
.T �U; .x; �// of T �M , we have H.

P
j j̨ dxj / D

P
jk H

jk
j̨˛k and BH .˛/ DP

k.
P
j H

jk
j̨ /@k , where H jk W U ! R are smooth functions and H jk D H kj .

Moreover, the horizontal gradient of a smooth function f is

rHf D
X
k

�X
j

H jk@jf
�
@k :
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4.2. The sub-Laplacian and its functional calculus

A measure � on a manifold M is a smooth positive measure if for every coordinate chart
.U; x/ the restricted measure is absolutely continuous with respect to the Lebesgue meas-
ure and has a strictly positive smooth density. If .M;H/ is a quadratic Hamiltonian pair
and � is a smooth positive measure on M , we call .M; H; �/ a measured quadratic
Hamiltonian pair.

Definition 4.2. Let � be a smooth positive measure on a manifold M . The �-divergence
of a smooth vector field v 2 �.CTM/ is the unique smooth function div� v 2 C1.M/

such that Z
M

d�Œv� d� D �
Z
M

� div� v d�; 8� 2 C1c .M/:

In other words, minus the �-divergence

� div� W �.CTM/! C1.M/

is the formal adjoint of the exterior derivative

d W C1.M/! C�1.M/

with respect to �.
If .U; x/ is a coordinate chart and d�.x/ D �.x/ dx on U , then

div� v D
nX

jD1

�
@j v

j
C vj

@j�

�

�
:

Definition 4.3. Let .M;H;�/ be a measured quadratic Hamiltonian pair. The sub-Lapla-
cian of a function f 2 C1.M/ is the smooth function

L f D � div�.rHf / D � div�.BH .df //:

If .U; x/ is a coordinate chart and d�.x/ D �.x/ dx on U , then

L f D �
X
jk

�
H kj @k@jf C

�
@kH

kj
CH kj @k�

�

�
@jf

�
: (4.2)

This shows that L W C1.M/ ! C1.M/ is a second-order differential operator with
principal symbol H .

Notice that, for all f; g 2 C1.M/,Z
M

L f g d� D
Z
M

bH .df; dg/ d� D
Z
M

hrHf;rHgiH d�:

This implies that L is a nonnegative symmetric operator. Therefore, there exists a non-
negative self-adjoint extension of L on L2.�/, such as the Friedrichs extension (see for
instance [75, Section XI.7]).

Once such a self-adjoint extension of L is chosen, a Borel functional calculus for L

is defined via the spectral theorem and, for all bounded Borel functions F W R! C, the
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operator F.L / is bounded on L2.M/. Since L is self-adjoint,

F.L /� D F .L /;

and moreover, since additionally L preserves real-valued functions,

F.L /f D F .L /f

for all f 2 L2.M/. In particular, for all p 2 Œ1;1�,

kF.L /kp!p D kF .L /kp!p D kF.L /kp0!p0 : (4.3)

The functional calculus allows us to define the wave propagator t 7! cos.t
p

L / asso-
ciated with L . We will need a couple of assumptions on the wave propagator. The first is
finite propagation speed:

for all U �M open and K � U compact there is an � > 0
such that supp.cos.t

p
L /u/ � U

for all t 2 .��; �/ and u 2 C1c .M/ with supp.u/ � K. (FPS)

This assumption is satisfied in fairly general contexts: see for instance [18, 46, 47, 66, 70]
and references therein. The second is smoothness preservation:

for all K �M compact there exists � > 0 such that,
for all u 2 C1c .M/ with supp.u/ � K,
the function .t; x/ 7! cos.t

p
L /u.x/ is smooth on .��; �/ �M . (SP)

Since cos.t
p

L / is a contraction on L2.M/, it is easily seen that this assumption is
satisfied under subellipticity assumptions on L (e.g., when .M;H/ is bracket-generating,
by Hörmander’s theorem [28]), or more generally when L commutes with an operatorD
such that

C1c .M/ � ¹f 2 L2.M/ W Dkf 2 L2.M/; 8k 2 Nº � C1.M/:

We remark that hypoellipticity of L is not a necessary condition for (FPS) and (SP) to
hold: for instance, if M is a Lie group and L D �v2 for some left-invariant vector field
v, then (FPS) and (SP) are satisfied.

Some results will require a further assumption on the functional calculus for L :

for all F 2 S .R/, the operator F.L / is bounded on L1.M/. (SFC)

This assumption is satisfied, e.g., whenever there is a doubling distance on .M; �/ such
that L satisfies gaussian-type heat kernel bounds (see [5, 25, 31, 71] and [38, Theorem
6.1 (iii)]). We remark that, under (SFC), if F 2S .R/, then F.L / is bounded on Lp.M/

for all p 2 Œ1;1� (by duality and interpolation) and moreover, by the closed graph the-
orem, the correspondence F 7! F.L / is continuous from S .R/ to the space of Lp-
bounded operators (with the operator norm topology).
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4.3. Sub-Riemannian structures defined by systems of vector fields

A common way to define a quadratic Hamiltonian pair or a sub-Riemannian manifold is
by choosing a family of vector fields v1; : : : ; vr 2 �.TM/ and defining

H D

rX
jD1

vj ˇ vj : (4.4)

We have the following expressions: if ˛; ˇ 2 T �xM , then

bH .˛; ˇ/ D

rX
jD1

˛.vj jx/ˇ.vj jx/; H.˛/ D

rX
jD1

˛.vj jx/
2; BH .˛/ D

rX
jD1

˛.vj jx/vj jx ;

Hx D span ¹vj jxºjD1;:::;r ; rHf D
rX

jD1

.vjf / vj :

In particular, H is bracket-generating if and only if the family of vector fields v1; : : : ; vr
is bracket-generating. Moreover, if � is a smooth positive measure on M , for all a DPr
jD1 a

j vj 2H and f 2 C1.M/,

div�.a/ D �
rX

jD1

v
�
j a

j ; L f D

rX
jD1

v
�
j vjf; (4.5)

where v� is the formal adjoint of v, that is, the differential operator v� W C1.M/ !

C1.M/ such that
R
M
f vg d� D

R
M
v�f Ng d� for all f; g 2 C1c .M/.

Remark 4.4. If .M;H/ is a quadratic Hamiltonian pair such that x 7! dim Hx is con-
stant, thenH can be written as in (4.4), at least locally: indeed, HM is a smooth subbundle
of TM and one can take as vj a local orthonormal frame of HM . However, not all
quadratic Hamiltonian pairs .M;H/ admit the decomposition (4.4) with smooth vectors
fields vj , not even locally (see [58, p. 8]). Indeed, by [26], there is a homogeneous non-
negative real polynomial p.x; y; z/ of degree 6 in three variables that is not a finite sum
of squares of polynomials (see also [8, 11, 61]). One can thus see, arguing with Taylor
series, that p is not a finite sum of squares of smooth functions in any neighbourhood of
the origin. Now, fix a frame X; Y;Z of TR3 and the dual coframe ˛X ; ˛Y ; ˛Z of T �R3.
Define

H D X ˇX C Y ˇ Y C p �Z ˇZ:

Note thatH.˛Z/Dp. IfH were of the form
P
j vj ˇ vj , then pDH.˛Z/D

P
j vj .˛Z/

2

would be a sum of squares of smooth functions. Therefore,H cannot be written as in (4.4).
Note that, by choosing X , Y and Z so that ŒX; Y �D Z, we also obtain a sub-Riemannian
structure that is not written as in (4.4) with smooth vectors fields vj . However, H can
always be written as in (4.4) with Lipschitz vector fields vj (see [22]).

A particular class of quadratic Hamiltonian pairs where the above-described patholo-
gies do not occur is defined below.
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Definition 4.5. A quadratic Hamiltonian pair .M;H/ is called equiregular if H .k/
M is a

subbundle of TM for all k.

In other words, we are requiring x 7! dim H .k/
x to be constant, for all k.

Not all quadratic Hamiltonian pairs are equiregular, as shown by the example in
Remark 4.4. A simpler, classical example arises when L D �.X2 C Y 2/ with X D @x
and Y D x@y is the Grushin operator on R2; in this case, despite the non-equiregularity,
the Hamiltonian can be globally written in the form (4.4).

In any case, for an arbitrary quadratic Hamiltonian pair, from the lower semicontinuity
of the functions x 7! dim H .k/

x for k 2 N, we immediately deduce the following result.

Lemma 4.6. Let .M;H/ be a quadratic Hamiltonian pair.

(i) Every nonempty open set of M contains a nonempty open set M1 such that .M1;H/

is an equiregular quadratic Hamiltonian pair.

(ii) If x 2M satisfies maxk2N dim H .k/
x D dimM then every neighbourhood of x con-

tains a nonempty open set M1 such that .M1; H/ is an equiregular sub-Riemannian
manifold.

4.4. The sub-Riemannian exponential map

Let .M; H/ be a quadratic Hamiltonian pair. As in Section 3.1, we denote by ˆH the
flow on T �M of the Hamiltonian vector field XH 2 �.T .T

�M// defined by means of
the standard symplectic form on T �M , and write Expo;tH .�/ D �Mˆ

t
H .�/ for all o 2M ,

t 2 R and � 2 T �oM for which .t; �/ is in the domain of ˆH .
Since H is 2-homogeneous, i.e., H.��/ D �2H.�/ for all � 2 R and � 2 T �M , we

deduce the following properties of the flow:

ˆtH .��/ D �ˆ
�t
H .�/ and Expo;tH .��/ D Expo;�tH .�/: (4.6)

Because of this scaling property, the exponential map ExpoH WD Expo;1H at time t D 1

already contains all the relevant information.
From the fact that H is a quadratic form, we deduce the following information on the

curves defined via the exponential map.

Lemma 4.7. Let � 2 T �oM . Let �.t/ D ˆtH .�/ and x.t/ D ExpoH .t�/ .these are both
defined for t in an open interval containing 0/. Then

Px.t/ D 2BH .�.t//:

In particular, x.t/ is a horizontal curve, i.e., Px.t/ 2 HM for all t , and h Px.t/; Px.t/iH D
4H.�/ is constant. Moreover, if H.�/ D 0, then ExpoH .t�/ D o for all t 2 R.

Proof. In canonical coordinates, by (3.11),

Pxj D
@H

@�j
.x; �/ D

@

@�j

�X
a;b

H ab.x/�a�b

�
D 2

X
a

H aj .x/�a D 2BH .�/;

and the conclusion follows by (4.1).
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We will need a regularity property of the exponential map:

there are o 2M and � 2 T �oM such that
s� is a regular point of ExpoH for all s 2 Œ�1; 1� n ¹0º. (RE)

We say that a quadratic Hamiltonian pair .M;H/ is analytic if M is an analytic man-
ifold and H is an analytic function.

Lemma 4.8. Analytic sub-Riemannian manifolds .M;H/ satisfy (RE).

Proof. Let .M; H/ be an analytic sub-Riemannian manifold. By Lemma 4.6, up to
restricting to an open subset, we may assume that .M;H/ is equiregular. Let o 2M and
U � T �oM be a neighbourhood of 0 on which ExpoH is defined. From [1, Theorem 1], we
deduce that, after choosing analytic coordinates,U 3 � 7! det.DExpoH j�/ 2R is a nonzero
analytic map. Therefore, there is � 2 U such that t 7! det.DExpoH jt�/ is a nonzero ana-
lytic map on an open interval I containing 0. Since zeros of this map do not have cluster
points in I , there is � > 0 such that det.DExpoH jt�/ ¤ 0 for all t 2 .��; �/ n ¹0º.

Remark 4.9. In fact, property (RE) holds for all sub-Riemannian manifolds of constant
rank, at all points. We sketch how one deduces (RE) from partial statements that appear
in the literature.

In [3, Definition 3.2] the notion of ample geodesic is introduced. We need two facts
about ample geodesics. First, one deduces from [3, Proposition 5.23] that, for every
o 2 M , there is � 2 T �oM such that  W Œ�1; 1� ! M , .t/ D ExpoH .t�/, is an ample
geodesic at o. Second, if  W Œ�1; 1�!M is an ample geodesic at .0/, then it is strongly
normal, that is, it is not abnormal on each subinterval of the form Œ0; t � or Œt; 0� (see
[3, Definition 2.14 and Proposition 3.6 (iii)]).

If  W s 7! ExpoH .s�/, then a point .t/ is said to be conjugate to .0/ along  if
Im.DExpoH jt�/¤ T.t/M [3, Definition A.1]. By [3, Proposition A.2], if  W Œ�1; 1�!M

is strongly normal, then there is � > 0 such that for all t 2 Œ��; �� n ¹0º, .t/ is not
conjugate to .0/ along  . See also [1, §3 (iii)] and [2, Corollary 8.51].

Finally, we conclude that for every o 2 M there are � 2 T �oM and � > 0 such that
Im.DExpoH jt�/ D TExpo

H
.t�/M for all t 2 Œ��; �� n ¹0º, i.e., (RE) holds.

4.5. Carnot groups

A Carnot group is a connected simply connected Lie group G whose Lie algebra g is
stratified, i.e., gD

Ls
jD1Vj for some linear subspaces V1; : : : ;Vs with ŒV1;Vj �D VjC1 for

all j D 1; : : : ; s (here VsC1 D 0), and whose first layer V1 is endowed with a fixed scalar
product. We shall always assume that Carnot groups are endowed with a (bi-invariant)
Haar measure.

We can describe Carnot groups as quadratic Hamiltonian pairs as follows. Let
.v1; : : : ; vr / be an orthonormal basis of V1 (in particular the vk 2 �.TG/ are left-invariant
vector fields) and setH D

Pr
jD1 vj ˇ vj (note thatH is independent of the choice of the

orthonormal basis).
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Correspondingly, the sub-Laplacian on a Carnot group is L D �
Pr
jD1 v

2
j . As a left-

invariant sub-Laplacian on a Lie group, L is essentially self-adjoint (see [57]), hence it
admits a unique self-adjoint extension.

Carnot groups are a special case of equiregular sub-Riemannian manifolds and they
appear as infinitesimal models of all sub-Riemannian manifolds (possibly after applying
some “lifting” procedure; see [7, 49, 60] and references therein). We will use this fact to
extend our main result to all quadratic Hamiltonian pairs.

Carnot groups satisfy all our key assumptions.

Lemma 4.10. Carnot groups satisfy (RE), (FPS), (SP) and (SFC).

Proof. Since Carnot groups are analytic, (RE) follows from Lemma 4.8. Since the corres-
ponding sub-Laplacians are essentially self-adjoint, (FPS) is well known (see for instance
[18, 47]), and subellipticity of L also gives (SP). Finally, (SFC) is proved in [31].

4.6. Eikonal equation on sub-Riemannian manifolds

Let .M;H/ be a quadratic Hamiltonian pair. Define DA D ¹� 2 T
�M W H.�/ ¤ 0º and

let A W DA ! R be defined by A.�/ D
p
H.�/. Note that, since H is 2-homogeneous,

DA is a conic open subset of T �M and A is a 1-homogeneous smooth function on DA.

Lemma 4.11. For all � 2 DA,

XAj� D
1

2A.�/
XH j�:

In particular, for all x 2M , � 2 DA \ T
�
xM and t 2 R,

ˆtA.�/ D ˆ
t

2A.�/

H .�/; Expx;tA .�/ D ExpxH

�
t�

2A.�/

�
; (4.7)

whenever one of the two sides is well defined.

Proof. The relation between XA and XH is immediately given by (3.10) and the fact
that H D A2. Since H and A are constant along the integral curves of XH and XA (see
(3.5)), it is immediately seen that DA is invariant under the flow of H , and moreover an
integral curve of XH in DA is obtained by time-rescaling of an integral curve of XA, and
conversely, which leads to (4.7).

Recall the definition of the vertical differential D2H from (3.20). Since H is nonneg-
ative and 2-homogeneous, D2H j� D 0 if and only if H.�/ D 0. So, for all x 2 M and
� 2 DA \ T

�
xM , ker D2H j� is a 1-codimensional subspace of T �xM .

Corollary 4.12. For all x 2M , t 2 R n ¹0º and � 2 T �xM in the domain of Expx;tA ,

rank.DExpx;tA j�/ D rank
�
DExpxH j��

ˇ̌
ker D2H j��

�
;

where � D t=.2
p
H.�//. In particular, if �� is a regular point of ExpxH , then DExpx;tA j�

has maximal possible rank n � 1.
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Proof. Since �2DA, the vertical differential D2H j� does not vanish, so the level set ofH
in T �xM through � is locally a 1-codimensional submanifold S of T �xM whose tangent
space at � is ker D2H j� . Note also that, since H is 2-homogeneous, � … ker D2H j� ,
whence

T �xM D ker D2H j� ˚R�:

By Proposition 3.7 (i), Expx;tA is 0-homogeneous, so DExpx;tA j�Œ�� D 0 and therefore

rank.DExpx;tA j�/ D rank
�
DExpx;tA j�

ˇ̌
ker D2H j�

�
:

On the other hand, DExpx;tA j�
ˇ̌
ker D2H j�

is the differential at � of the restriction of Expx;tA
to S . Moreover, for all � 2 S , since H.�/ D H.�/, by Lemma 4.11 we deduce

Expx;tA .�/ D ExpxH .��/

and, by homogeneity, ker D2H j�� is the tangent space of �S at ��. Hence

DExpx;tA j�
ˇ̌
ker D2H j�

D �DExpxH j��
ˇ̌
ker D2H j��

and we are done.

4.7. Fourier integral representation of the wave propagator

By combining the results obtained so far, in this section we obtain a Fourier integral rep-
resentation of a frequency localised portion of the wave propagator cos.t

p
L / associated

to a sub-Laplacian L .

Theorem 4.13. Let .M; H; �/ be a measured quadratic Hamiltonian pair with sub-
Laplacian L . Let a self-adjoint extension of L be chosen and assume that (FPS) and
(SP) are satisfied. Let o 2M and .Mo; x/ be a coordinate chart at o. We identifyMo with
an open neighbourhood of 0 in Rn. Let � � PRn be a closed cone such that

� � ¹� 2 PRn W H.o; �/ ¤ 0º: (4.8)

Then there are an open neighbourhood X � Mo of o, a T > 0 and a smooth function
w W .�T; T / �X � PRn ! R with the following properties.

(i) w is 1-homogeneous in � and, for all .t; x; �/ 2 .�T; T / �X � PRn,

w.0; x; �/ D x � �; @xw.t; x; �/ ¤ 0:

(ii) The function � W .�T; T / �X �X � PRn ! R,

�.t; x; y; �/ D w.t; x; �/ � w.0; y; �/; (4.9)

is a phase function. Moreover, .x; y; �/ 7! �.t; x; y; �/ is an operator phase function
for all t 2 .�T; T /.
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(iii) For all t 2 .�T; T /, x; y 2 X and � 2 � ,

@�w.t; x; �/ D y ” x D ExpyH .�t�=.2
p
H.y; �///;

and in that case
@tw.t; x; �/ D

p
H.y; �/:

(iv) For all t 2 .�T; T / n ¹0º, x; y 2 X and � 2 � such that @�w.t; x; �/ D y,

rank.@2�w.t; x; �// D rank
�
DExpyH j��

ˇ̌
ker D2H j.y;��/

�
;

where � D �t=.2
p
H.y; �//.

Moreover, for all open subsets X 0; X 00 of X with X 00 b X 0 b X , there is a T 0 2 .0; T �
such that the following holds true: if P 2 ‰0cl.M/ is a compactly supported operator with
supp.P / � X 00 �X 00 .cf. Section 2.1/, whose restriction toMo �Mo has a distributional
integral kernel given by the oscillatory integral

P.x; y/ D

Z
Rn
ei.x�y/��p.x; y; �/ d� (4.10)

for some amplitude p 2 S0cl.Mo �MoIRn/ with ess supp.p/ � X 00 �X 00 � � , then there
is a Q 2 R.M I .�T 0; T 0/ �M/ with support supp.Q/ � .�T 0; T 0/ �Mo �Mo, whose
restriction to .�T 0; T 0/ �Mo �Mo has the distributional integral kernel

Qt .x; y/ D Q.t; x; y/ D

Z
Rn
ei�.t;x;y;�/q.t; x; y; �/ d� (4.11)

for some amplitude q 2 S0cl..�T
0; T 0/ �M �M IRn/, such that:

(v) supp.q/ � .�T 0; T 0/ �X 0 �X 0 � �;

(vi) there exists R 2 R�1.M I .�T 0; T 0/ �M/ with supp.R/ � .�T 0; T 0/ � X 0 � X 0

such that, for all t 2 .�T 0; T 0/,

cos.t
p

L /P D 1
2
.Qt CQ�t /CRt :

In the above statement the expressions in (4.10) and (4.11) are intended as the integral
kernels of the operators P andQ with respect to the Lebesgue measure on the coordinate
chart .Mo;x/. However, an analogous statement holds for the integral kernels with respect
to the measure� on the manifoldM : indeed, changing the reference measure corresponds
to multiplying the amplitudes p and q in (4.10) and (4.11) by a smooth function in the
variable y (the density of one measure with respect to the other), which does not change
the symbol class or the support.

Proof of Theorem 4.13. By (4.8), there are open subsets W;W 0; W 00 � Sn�1 such that

� \ Sn�1 � W b W 0 b W 00 b ¹� W H.o; �/ ¤ 0º:

Up to shrinking Mo, we can assume that, for all x 2Mo,

W 00 b ¹� W H.x; �/ ¤ 0º: (4.12)
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Therefore, if  2 C1.Sn�1/ is such that  jW 0 D 1 and supp. / � W 00, then

zH.x; �/ D  .�=j�j/H.x; �/C .1 �  .�=j�j// j�j2

defines a smooth 2-homogeneous function zH W PT �Mo ! .0;1/ such that H D zH on
Mo �RCW 0.

Let zAD
p
zH . Note that bothA and zA are 1-homogeneous and zADA onMo �RCW 0

� PT �Mo. By Proposition 3.7 (i), since � \ Sn�1 is a compact subset of W 0, there exist
� > 0 and an open neighbourhood U �Mo of o such that, for all t 2 .��; �/, x 2 U and
� 2 � , the point .t; .x; �// is in the domain of both ˆA and ˆ zA and

ˆtA.x; �/ D ˆ
t
zA
.x; �/ 2Mo �RCW 0: (4.13)

Indeed, as long as the flow associated with A stays in Mo �RCW 0, it must coincide with
the flow of zA, and conversely.

Let now w W .�T; T / � X � PRn ! R and � W .�T; T / � X � X � PRn ! R (where
X � U is an open neighbourhood of o and T 2 .0; ��) be the smooth functions given by
Proposition 3.15 applied to zA in place of A. In particular, � satisfies the eikonal equation

@t�.t; x; y; �/ D zA.@x�.t; x; y; �//

for all .t; x;y; �/ 2 .�T;T /�X �X � PRn, and moreover parts (i) and (ii) are satisfied. In
addition, from Proposition 3.15 (iii, iv), combined with (4.13), Lemma 4.11 and Corollary
4.12, we deduce parts (iii) and (iv).

Note that @xw.0; x; �/ D �. Hence we can find T0 2 .0; T � such that

@xw.t; x; �/ 2 RCW (4.14)

for all t 2 .�T0; T0/, x 2 X 0 and � 2 � .
By (FPS), up to choosing a smaller T0, we may assume that supp.cos.t

p
L /f /� X 0

for all t 2 .�T0; T0/ and f 2 C1c .M/ with supp.f / � X 00. Similarly, by (SP), up
to choosing a smaller T0, we may assume that .t; x/ 7! cos.t

p
L /u.x/ is smooth on

.�T0; T0/ �M for all u 2 C1c .M/ with supp.u/ � X 0.
Recall that, by (4.2), the principal symbol of the sub-Laplacian L is H . Let
zL 2 ‰2cl.Mo/ be a properly supported operator such that the asymptotic expansion of

its symbol is the same as that of L onMo, except that the principal symbolH is replaced
by zH .

Let b 2 C1.Sn�1/ be such that bjSn�1nW 0 D 1 and supp.b/ � Sn�1 n W . Let
B 2 ‰0cl.Mo/ be a properly supported operator such that all the terms in the asymptotic
expansion of its symbol vanish, except for the principal symbol .x; �/ 7! b.�=j�j/. Then,
by (2.2),

WF.B/ � ¹.x; xI �;��/ W x 2Mo; � 2 PR
n
nRCW º: (4.15)

Moreover, since all the terms in the asymptotic expansion of the symbols of L and zL

coincide on Mo �RCW 0, from the composition formula for pseudodifferential operators
(see, e.g., [30, Theorem 18.1.8]) we immediately deduce that

.L � zL /.Id � B/ 2 ‰�1.Mo/: (4.16)
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Since zH is everywhere positive, by Lemma 2.1 there is a properly supported
a 2 ‰1cl.Mo/ with principal symbol zA such that

a2 � zL 2 ‰�1.Mo/: (4.17)

We now apply Theorem 2.2 to the phase function � and the pseudodifferential operators
a and P on Mo, thus obtaining a T 0 2 .0; T0� and a Fourier integral operator Q of the
form (4.11) with

supp.q/ � .�T 0; T 0/ �X 0 �X 0 � �

(this proves part (v)) and such that Q0 � P and .i@t C a/Q are smoothing.
We now prove that .@2t CL /Q is smoothing. Indeed, let us write

.@2t CL /Q D .@2t C
zL /QC .L � zL /BQC .L � zL /.Id � B/Q

D .�i@t C a/.i@t C a/QC .L � zL /BQC CQ;

where C D . zL � a2/C .L � zL /.Id � B/ 2 ‰�1.Mo/ by (4.16) and (4.17). Since a

and L � zL are pseudodifferential operators and preserve smooth functions, it is enough
to show that .i@t C a/Q, BQ and CQ are smoothing. On the other hand, .i@t C a/Q is
smoothing by construction. As for the other operators, let us write BQ D .Id˝B/Q and
CQ D .Id˝ C/Q, where Id˝ B; Id˝ C W R..�T 0; T 0/ �MoI .�T

0; T 0/ �Mo/, and
where Id denotes the identity operator with respect to the variable t . Then, by (4.15) and
[34, Theorem 8.2.9], we deduce that

WF.Id˝ B/

� ¹.t; x; t; xI �; �;��;��/ W t 2 .�T 0; T 0/; x 2Mo; .�; �/ 2 PR
1Cn; � … RCW º:

Moreover, WF.C / D ;, so, again by [34, Theorem 8.2.9],

WF.Id˝ C/ � ¹.t; x; t; yI �; 0;��; 0/ W t 2 .�T 0; T 0/; x; y 2Mo; � 2 PRº:

Finally, by (2.2) and (4.14),

WF.Q/ � ¹.t; x; yI @tw.t; x; �/; @xw.t; x; �/;��/ W t 2 .�T 0; T 0/; x; y 2 X 0; � 2 �º

� .�T 0; T 0/ �X 0 �X 0 � PR �RCW � .��/:

By [34, Theorem 8.2.14, p. 270], we can combine the above information to conclude that

WF..Id˝ B/Q/ D ; D WF..Id˝ C/Q/;

i.e., BQ and CQ are smoothing. So .@2t CL /Q is smoothing as well.
Note now that @2t CL is a differential operator on .�T 0; T 0/ �M and

supp..@2t CL /Q/ � supp.Q/ � .�T 0; T 0/ �X 0 �X 0I

hence Q naturally extends by zero to an operator in R.M I .�T 0; T 0/ � M/ and
.@2t CL /Q remains smoothing after the extension.
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Define now zQ by zQt D .Qt CQ�t /=2 for all t 2 .�T 0; T 0/. Then S WD .@2t CL / zQ

is also smoothing and supp.S/ � supp. zQ/ � .�T 0; T 0/�X 0 �X 0. In addition zQ0 DQ0
and @t zQjtD0 D 0.

We claim that, for every u 2 C1c .M/ and t 2 .�T 0; T 0/, the following Duhamel-type
formula holds:

cos.t
p

L /Q0u D zQtu �

Z t

0

sin..t � �/
p

L /
p

L
S�u d�: (4.18)

To prove the claim, let B.t/ denote the right-hand side of (4.18). By direct computation,
one shows that

B.0/ D Q0u; @tB.0/ D .@t zQjtD0/u D 0; and @2tB.t/ D �LB.t/:

Since there is only one solution U 2 C 2..�T 0; T 0/IL2.M// to8̂̂<̂
:̂
.@2t CL /U.t/ D 0;

@tU.0/ D 0;

U.0/ D Q0u;

we conclude that B.t/ D cos.t
p

L /Q0u, i.e., (4.18) holds.
Define R W C1c .M/! C..�T 0; T 0/IL2.M// by

Rtu D cos.t
p

L /.P �Q0/u �

Z t

0

sin..t � �/
p

L /
p

L
S�u d�

D cos.t
p

L /.P �Q0/u �

Z t

0

Z t��

0

cos.s
p

L /S�u ds d�

for all t 2 .�T 0; T 0/. Since S and P �Q0 are smoothing and supp.P �Q0/[ supp.S� /
� X 0 �X 0, by the smoothness preservation property of the wave propagator we conclude
that R is smoothing. In addition, by (4.18), for all t 2 .�T 0; T 0/,

cos.t
p

L /P D zQt CRt ;

and supp.cos.t
p

L /P / � X 0 � X 00 (here we use finite propagation speed and the fact
that supp.P / � X 00 � X 00), while supp. zQt / � X

0 � X 0, so supp.Rt / � X 0 � X 0. This
completes the proof of part (vi).

5. Proof of the main result

In this section we combine the results of the previous sections and prove Theorem 1.1.
As mentioned in the introduction, in order to apply the Fourier integral operator repres-
entation for the wave propagator, the additional assumptions introduced in Section 4 are
needed. Therefore we will first present the proof under these additional assumptions, and
at the end we will show how to remove them by transplantation.
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5.1. Preliminaries

The following result, similar to [34, Theorem 7.7.7], will be useful to compute the action
of Fourier integral operators with phase function of the form (4.9).

Lemma 5.1. Let � � Rm be open, w W � � PRn ! R and q W � � Rn � Rn ! C be
smooth functions such that

supp.q/ � C �Rn �Rn

for some closed subset C of �, and moreover, for all ˇ 2 Nn and all N 2 N,

j@ˇy q.x; y; �/j .ˇ;N .1C jyj/�N (5.1)

for all x 2 � and y; � 2 Rn. For all u 2 S .Rn/ and � � 1, if u� is defined by u�.�/ WD
�nu.��/, then, for all k 2 N,Z

Rn

Z
Rn
ei.w.x;�/�y��/q.x; y; �/u�.y/ dy d�

D

X
j˛j�k

�n�j˛j

i�j˛j˛Š

Z
Rn
eiw.x;��/@˛yq.x; 0; ��/@

˛
� yu.�/ d� C �n�.kC1/Ru;q

k;�
.x/; (5.2)

where, for all � � 1 and k 2 N,

supp.Ru;q
k;�
/ � C and sup

x2�

jR
u;q

k;�
.x/j .q;u;k 1: (5.3)

Proof. Let yq denote the partial Fourier transform of q in the variable y, i.e.,

yq.x; �; �/ D

Z
Rn
e�i��yq.x; y; �/ dy:

Since the Fourier transform preserves the Schwartz class, from (5.1) we deduce that, for
all ˇ 2 Nn and N 2 N,

j@ˇ� yq.x; �; �/j .ˇ;N .1C j�j/�N (5.4)

for all x 2 � and �; � 2 Rn. Moreover, since the Fourier transform maps pointwise
products into convolutions,Z

Rn
eiw.x;�/

Z
Rn
e�i��yq.x; y; �/u�.y/ dy d�

D .2�/�n
Z

Rn
eiw.x;�/

Z
Rn
yq.x; � � �; �/yu.�=�/ d� d�

D .2�/�n�2n
Z

Rn
eiw.x;��/

Z
Rn
yq.x; �.� � �/; ��/yu.�/ d� d�

D .2�/�n�2n
Z

Rn
eiw.x;��/

�X
j˛j�k

@˛yu.�/

˛Š

Z
Rn
yq.x; �.� � �/; ��/.� � �/˛ d�

�
d�

C .2�/�n�2n
Z

Rn
eiw.x;��/

Z
Rn
yq.x; �.� � �/; ��/R.�; �/ d� d�;
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where

R.�; �/ WD yu.�/ �
X
j˛j�k

@˛yu.�/.� � �/˛

˛Š
: (5.5)

Since

.2�/�n
Z

Rn
yq.x; �.� � �/; ��/.� � �/˛d�

D .2�/�ni j˛j��n�j˛j
Z

Rn
yq.x; �; ��/.i�/˛d� D i j˛j��n�j˛j@˛yq.x; 0; ��/;

the above computations yield (5.2) if we define

R
u;q

k;�
.x/ WD .2�/�n�nCkC1

Z
Rn

Z
Rn
eiw.x;��/yq.x; �.� � �/; ��/R.�; �/ d� d�:

Next, we need to show (5.3). Clearly supp.Ru;q
k;�
/ � C . To estimate Ru;q

k;�
, notice that,

since u 2 S .Rn/, from (5.5) it follows immediately that, for all N 2 N and �; � 2 Rn,

jR.�; �/j .u;N

´
.1C j�j/k if j�j � j�j=2,

.1C j�j/�N if j�j > j�j=2.
(5.6)

Moreover, by Taylor’s theorem,

R.�; �/ D
X

jˇ jDkC1

k C 1

ˇŠ
.� � �/ˇ

Z 1

0

.1 � t /k@ˇ yu.�C t .� � �// dt I

therefore, since u 2 S .Rn/, for all �; � 2 Rn and N 2 N,

jR.�; �/j .u;N j� � �jkC1.1C dist.0; Œ�; ��//�N ; (5.7)

where dist.0; Œ�; ��/ is the distance to the origin of the line segment with endpoints � and �.
From the definition of Ru;q

k;�
we see immediately that

jR
u;q

k;�
.x/j

�nCkC1
.
Z

Rn

Z
Rn
jyq.x; �.� � �/; ��/j jR.�; �/j d� d�: (5.8)

Notice next that, if we define

X D ¹.�; �/ 2 Rn �Rn W min ¹j�j; j�jº � 2 and j� � �j � 1º;

then, for .�; �/ … X , we may compare

1C dist.0; Œ�; ��/ � 1Cmin ¹j�j; j�jº: (5.9)

We therefore split the integral in (5.8) by decomposing the domain into X and its com-
plement.

As for X , note first that j� � �j � 1 and j�j � 2 on X . Moreover, in view of (5.6), we
further decomposeX DX1[X2, whereX1D¹.�;�/2X W j�j � j�j=2º, andX2DX nX1.
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Then, by (5.6), on X1 we have jR.�; �/j .u;N j�jk ; and on X2 we have

jR.�; �/j .u;N j�j�N ;

where we may assume N to be sufficiently large. Therefore, in combination with (5.4),
we see that“
X

jyq.x; �.� � �/; ��/j jR.�; �/j d� d�

.
“
X1

.�j� � �j/�N j�jk d� d� C
“
X2

.�j� � �j/�N j�j�N d� d�

.
“
j�j�2; j�j�j�j=2

.�j�j/�N j�jk d� d� C
“
j�j�2; j���j�1

.�j� � �j/�N j�j�N d� d�

� ��N :

As for the complement of X , using (5.9), (5.7), and (5.4) with N sufficiently large,
we find that“

R2nnX

jyq.x; �.� � �/; ��/j jR.�; �/j d� d�

.
“

R2n
.1C �j� � �j/�N j� � �jkC1.1Cmin ¹j�j; j�jº/�N d� d�

�

“
R2n

.1C �jbj/�N jbjkC1.1C jaj/�N da db � ��.nCkC1/;

and we are done.

Combining the previous result with the Fourier integral representation for the wave
propagator of Theorem 4.13, we are now in a position to understand in a very precise way
how the wave propagator acts on suitably defined bump functions zg� at scale 1=�, whose
Fourier supports are essentially living in a frequency domain on which j�j � �, �� 1,
and which are supported microlocally in narrow “elliptic” conic neighbourhoods of points
at which the exponential mapping is nondegenerate.

These expressions will become particularly convenient for the subsequent applications
of the method of stationary phase.

Proposition 5.2. Let .M;H;�/ be a measured quadratic Hamiltonian pair and L be the
corresponding sub-Laplacian. Assume that a self-adjoint extension of L has been chosen
so that (RE), (FPS) and (SP) are satisfied. Then there exist �� 2 PRn, T 2 RC, a nonempty
open X �M , a smooth function w W .�T; T / �X � PRn! R 1-homogeneous in the last
variable, and functions qj;˛ 2 C1..�T; T / �X � PRn/ for all j 2 N and ˛ 2 Nn, such
that the following hold true.

(i) For all t 2 .�T; T /, x 2 X , �0 2 RC��,

q0;0.t; x; �0/ ¤ 0:
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(ii) For all t0 2 .0; T / and �0 2 .0;1/, there exist x0 2 X and �0 2 RC�� such that

@tw.t0; x0; �0/ D �0; @xw.t0; x0; �0/ ¤ 0;

@�w.t0; x0; �0/ D 0; rank @2�w.t0; x0; �0/ D n � 1:

(iii) If t0; �0; x0; �0 are as above, then there exist open neighbourhoods U0 � PRn of �0,
J0 � .0; T / of t0 and B0 � X of x0 such that, for all functions g 2 C1c .R

n/ with
supp.g/ � U0, there exist zg� 2 C1c .M/ for all � � 1 such that

kzg�kLp.M/ .g;p �n=p
0

for all � � 1 and p 2 Œ1;1�, and moreover, for all N 2 N,

cos.t
p

L /zg�.x/

D

X
j˛j�N; j�N

�n�j˛j�j
Z
PRn
ei�w.t;x;�/qj;˛.t; x; �/ @

˛g.�/ d� CO.�n�N�1/

as �!1, uniformly in t 2 J0 and x 2 B0.

Proof. By the assumption (RE), we can find o 2M and �� 2 T �oM n ¹0º such that r�� is
a regular point for ExpoH for all r 2 Œ�1; 1� n ¹0º. Notice that H.��/ ¤ 0 by Lemma 4.7.

Let .Mo; x/ be a coordinate chart centred at o. Let us identifyMo with an open neigh-
bourhood of the origin in Rn. Let � � ¹� 2 PRn W H.0; �/ ¤ 0º be any closed cone in PRn

whose interior contains ��. Let w W .�T; T / � X � PRn ! R be the function given by
Theorem 4.13, where T > 0 and X �Mo is an open neighbourhood of the origin.

LetX 000;X 00;X 0 be open neighbourhoods of 0 inX such thatX 000 bX 00 bX 0 bX . Let
psp 2C

1
c .Mo/ be such that pspjX 000 � 1 and supp.psp/�X

00. Let pfr 2C
1.Sn�1/ be such

that pfr.��=j��j/D 1 and supp.pfr/� � \Sn�1. Then we can find p 2 S0cl.Mo �MoIRn/
such that supp.p/ � X 00 �X 00 � � , and all terms in the asymptotic expansion of p vanish
except for the 0-homogeneous term

p0 W .x; y; �/ 7! psp.x/ psp.y/ pfr.�=j�j/:

Let P 2 ‰0cl.M/ be the pseudodifferential operator supported in X 00 � X 00 and defined
by (4.10). Theorem 4.13 then gives us an operator Q 2 R.M I .�T 0; T 0/ �M/ suppor-
ted in .�T 0; T 0/ � X 0 � X 0 for some T 0 2 .0; T � and given by (4.11), with amplitude
q 2 S0cl..�T

0; T 0/ �Mo �MoIRn/ supported in .�T 0; T 0/ �X 0 �X 0 � � , such that, for
all t 2 .�T 0; T 0/,

cos.t
p

L /P D .Qt CQ�t /=2CRt (5.10)

for some smoothing operator R W R�1.M I .�T 0; T 0/ �M/ supported in .�T 0; T 0/ �
X 0 �X 0.

Let q �
P
j�0 qj be the asymptotic expansion of q. Note that, by construction, the 0-

homogeneous term q0 equals the corresponding term p0 in the expansion of p for t D 0,
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and in particular q0.0; x; y; ��/ D 1 for all x; y 2 X 000. By continuity and homogeneity,
up to taking a smaller T 0, we may assume that

q0.t; x; y; r��/ ¤ 0 (5.11)

for all x; y 2 X 000, r > 0 and t 2 .�T 0; T 0/.
Up to taking a smaller T 0, we may also assume that T 0 � 2

p
H.0; ��/, and the curve

.�T 0; T 0/ 3 t 7! ExpoH .�t��=.2
p
H.0; ��/// 2M

takes values in X 000 and is injective; note that, by Lemma 4.7, this curve has nonvanishing
tangent vector. Hence, for all t0 2 .0; T 0/, the point �t0��=.2

p
H.0; ��// is a regular

point of ExpoH and, if we set x0 D ExpoH .0; �t0��=.2
p
H.0; ��///, then X 000 3 x0 ¤

ExpoH .0; t0��=.2
p
H.0; ��///. So, from Theorem 4.13(ii, iii, iv) we deduce that, for all

�0 2 R���,

@�w.t0; x0; �0/ D 0; rank.@2�w.t0; x0; �0// D n � 1; (5.12)

@tw.t0; x0; �0/ > 0; @xw.t0; x0; �0/ ¤ 0; (5.13)

@�w.�t0; x0; �0/ ¤ 0: (5.14)

By homogeneity of w, for all �0 2 .0;1/, we can then choose �0 2 RC�� such that

@tw.t0; x0; �0/ D �0:

Let now t0; 0; x0; �0 be as above. If  2 C1c .Mo/ is such that  jX 0 � 1, we can
define a linear map … W C1.Rn/ ! C1c .M/ by …f D  f . Let g 2 C1c .R

n/ with
supp.g/ � PRn. For all � > 0, let Lg� 2 S .Rn/ denote the inverse Fourier transform of
g.�=�/, and define zg� D P… Lg�. Note that

zg�.x/ D psp.x/

Z
PRn

Z
Rn
ei��.x�y/pfr.�=j�j/psp.y/ Lg�.y/ dy d� C P1… Lg�.x/;

where P1 2 ‰�1.M/ is supported in X 00 �X 00, and, by Lemma 5.1, for all N 2 N,Z
PRn

Z
Rn
ei��.x�y/pfr.�=j�j/psp.y/ Lg�.y/ dy d� D �nvg.�x/CO.��N /

as �!1, where vg 2 S .Rn/ is given by yvg.�/ D .2�/npfr.�=j�j/g.�/. Since

k�nvg.��/kLp.Rn/ .g;p �n=p
0

for all p 2 Œ1;1�, we conclude that, for � sufficiently large,

kzg�kLp.M/ .g;p �n=p
0

: (5.15)

By (5.10), for all t 2 .�T 0; T 0/, we can write

cos.t
p

L /zg� D .c
0
t;� C c

0
�t;�/=2C c

1
t;�; (5.16)
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where
c0t;� D Qt… Lg�; c1t;� D Rt… Lg�:

Note now that
c1t;�.x/ D

Z
Rn
R.t; x; y/ Lg�.y/ dy

for a smooth function R 2 C1..�T 0; T 0/�M �Rn/ supported in .�T 0; T 0/�X 0 �X 0.
By taking Fourier transforms in y, we can rewrite this as

c1t;�.x/ D
�n

.2�/n

Z
Rn
yR.t; x;���/g.�/ d�;

where yR denotes the partial Fourier transform of R in the last variable. Since X 0 b Rn,
the function yR.t; x; �/ has fast decay in � uniformly in x 2 Rn and t 2 Œ�T 00; T 00� for any
T 00 < T 0, while j�j � 1 on supp.g/. So, for all T 00 2 .0; T 0/ and N 2 N,

sup
t2Œ�T 00;T 00�

kc1t;�kL1.M/ .T 00;N .1C �/�N : (5.17)

As for the other terms in (5.16), by (4.11) we can write

c0t;�.x/ D

Z
PRn

Z
Rn
ei.w.t;x;�/�y��/q.t; x; y; �/ Lg�.y/ dy d�:

For every ` 2 N, we have q D
P`
jD0 qj C q

`, where qj is homogeneous in � of
degree �j and q` is an amplitude of order �` � 1. Correspondingly

c0t;�.x/ D
X̀
jD0

Z
PRn

Z
Rn
ei.w.t;x;�/�y��/qj .t; x; y; �/ Lg�.y/ dy d�

C

Z
PRn

Z
Rn
ei.w.t;x;�/�y��/q`.t; x; y; �/ Lg�.y/ dy d�:

We apply Lemma 5.1 to each term of the above sum and obtain

c0t;�.x/ D c
1
t;�.x/C c

2
t;�.x/C c

3
t;�.x/; (5.18)

where

c1t;�.x/ D
X
j˛j�k
j�`

�n�j˛j�j

i�j˛j˛Š

Z
PRn
ei�w.t;x;�/@˛yqj .t; x; 0; �/@

˛g.�/ d�;

c2t;�.x/ D
X
j˛j�k

�n�j˛j

i�j˛j˛Š

Z
PRn
ei�w.t;x;�/@˛yq

`.t; x; 0; ��/@˛g.�/ d�;

c3t;�.x/ D �
n�.kC1/

X
j�`C1

R�;j;k.t; x/;
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for some functions R�;j;k with supx2Rn;t2Œ�T 00;T 00� jR�;j;k.t; x/j .u;T 00 1 for all T 00 2
.0; T 0/. In particular, for all T 00 2 .0; T 0/ and � � 1,

sup
t2Œ�T 00;T 00�

kc3t;�kL1.M/ .g;T 00 �n�.kC1/: (5.19)

Moreover, since @˛yq
` is an amplitude of order�`� 1 and j�j � 1 on supp.@˛g/, we easily

find that, for all � � 1 and T 00 2 .0; T 0/,

sup
t2Œ�T 00;T 00�

kc2t;�kL1.M/ .g;T 00 �n�.`C1/: (5.20)

By (5.14), there exist open neighbourhoods J0 b .0; T 0/ of t0, U0 b PRn of �0 and
B0 b X 000 of x0 such that

j@�w.�t; x; �/j � j@�w.�t0; x0; �0/j=2 > 0

for all t 2 J0, x 2 B0 and � 2 U0. Hence, if we choose g so that supp.g/ � U0, then
integration by parts in � (see, e.g., [34, Theorem 7.7.1]) immediately gives that, for all
� > 0 and N 2 N,

sup
x2B0; t2J0

jc1
�t;�.x/j .g;N .1C �/�N : (5.21)

By combining the above estimates, we obtain

cos.t
p

L /zg�.x/

D

X
j˛j�k
j�`

�n�j˛j�j

2i�j˛j˛Š

Z
PRn
ei�w.t;x;�/@˛yqj .t; x; 0; �/@

˛g.�/ d� CO.�n�min ¹k;`º�1/

as �!1, uniformly in x 2B0 and t 2 J0. The conclusion follows by setting qj;˛.t; x; �/
D .2i�j˛j˛Š/�1@˛yqj .t; x; 0; �/, taking k D `D N , and relabelling T 0 as T and X 000 as X .

Finally, we state a simple application of the method of stationary phase that will be of
use in what follows.

Lemma 5.3. Let I � R and X � Rn be open, and let w W I � X � PRn ! R be smooth
and 1-homogeneous in the last variable. Assume that there exist t0 2 I n ¹0º, x0 2 X and
�0 2 PRn such that

@tw.t0; x0; �0/ D t0; @�w.t0; x0; �0/ D 0; rank @2�w.t0; x0; �0/ D n � 1: (5.22)

Then there exist � 2Z, open neighbourhoodsB bX of x0,U b PRn of �0 and J b I n ¹0º

of t0, and smooth functions tc W B ! J , �c W B ! U and d W B ! RC such that

tc.x0/ D t0; �c.x0/ D �0
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and, for all smooth functions b W R �Rn �Rn ! C with supp.b/ � J � B � U ,Z
R

Z
PRn
ei�Œw.t;x;�/�t

2=2�b.t; x; �/ d� dt

D ��.nC1/=2 d.x/ ei.��=4��.t
c.x//2=2/b.tc.x/; x; �c.x//CO.��.nC1/=2�1/

as �!1, uniformly in x 2 B .

Proof. We want to apply the method of stationary phase to the above integral, with phase
f .x; t; �/ D w.t; x; �/ � t2=2, where x plays the role of a parameter. Observe that

@.t;�/f D

�
@tw � t

@�w

�
; @2.t;�/f D

 
@2tw � 1 @t@�w

T

@t@�w @2
�
w

!
;

so, by (5.22), @.t;�/f .x0; t0; �0/D 0. In addition, from the 1-homogeneity ofw we deduce
that � � @�w.t; x; �/ D w.t; x; �/, so

� � @t@�w.t; x; �/ D @tw.t; x; �/ (5.23)

and
� 2 ker @2�w.t; x; �/: (5.24)

Therefore, if we write the matrix of @2
�
w.t; x; �/ with respect to the decomposition

Rn D R.�=j�j/˚ �?, then, by (5.24),

@2�w.t; x; �/ D

 
0 0

0 @2
�
w.t; x; �/j�?��?

!
;

which, together with (5.23), implies that

@2.t;�/f .x; t; �/ D

0B@@2tw.t; x; �/ � 1 @tw.t; x; �/=j�j �

@tw.t; x; �/=j�j 0 0

� 0 @2
�
w.t; x; �/j�?��?

1CA :
In particular, from (5.22) we deduce that

det @2�w.t0; x0; �0/j�?
0
��?
0
¤ 0;

det @2.t;�/f .x0; t0; �0/ D �.t0=j�0j/
2 det @2�w.t0; x0; �0/j�?

0
��?
0
¤ 0

(recall that t0 ¤ 0). Consequently, by the implicit function theorem, there are open neigh-
bourhoods B b X of x0, J b I n ¹0º of t0 and U b � of �0, and smooth functions
tc W B ! J , �c W B ! U such that det @2

.t;�/
f .x; t; �/ ¤ 0 for .x; t; �/ 2 B � J � U and

¹.x; t; �/ 2 B � J � U W @.t;�/f .x; t; �/ D 0º D ¹.x; t
c.x/; �c.x// W x 2 Bº:

If � 2 Z is the signature of @2
.t;�/

f .x0; t0; �0/ and we define d W B ! RC by

d.x/ D .2�/.nC1/=2jdet @2.t;�/f .x; t
c.x/; �c.x//j�1=2;

then, up to shrinking the neighbourhoods B; J; U , the conclusion follows by [34, The-
orem 7.7.6].



Multipliers and wave equation for sub-Laplacians 833

5.2. Mikhlin–Hörmander estimates

Let C be the set of real-valued functions � 2 C1c .R/ with supp.�/ � .0;1/.
Let � 2 C . For � 2 PR, define

m
�

�
.s/ D j�j1=2

Z
R
�.jt j/ei.st��t

2=2/ dt D 2j�j1=2
Z

R
�.t/e�i�t

2=2 cos.st/ dt: (5.25)

Note that m�
�
2 S .R/ is even. Moreover, by the method of stationary phase, m�

�
.s/

is essentially of the form z�.js=�j/eis
2=.2�/ with z� 2 C , i.e., m�

�
.s/ is essentially a

“Schrödinger multiplier” at time � 1=�, spectrally localised where jsj � j�j.
A simple stationary phase argument (exploiting, e.g., [69, Section VIII.1.2]) yields,

for all k 2 N and � 2 PR,

sup
s2R
jsk@ksm

�

�
.s/j .�;k .1C j�j/k ;

whence, by interpolation, we also deduce that, for all ˛ 2 Œ0;1/ and � 2 PR,

km
�

�
kL1˛;sloc

.�;˛ .1C j�j/˛: (5.26)

In view of this estimate, it is clear that the next result proves Theorem 1.1 under certain
regularity assumptions, introduced in Section 4.

Theorem 5.4. Let .M;H;�/ be a measured quadratic Hamiltonian pair of dimension n,
and L the corresponding sub-Laplacian. Assume that a self-adjoint extension of L has
been chosen so that (RE), (FPS) and (SP) are satisfied. Then there exist � 2 C and �0 > 0
such that, for all p 2 Œ1;1� and � 2 PR with j�j � �0,

km
�

�
.
p

L /kp!p &p j�jnj1=p�1=2j:

Proof. By (4.3), since m�
�
D m

�

��
, it is enough to prove the theorem for p 2 Œ1; 2� and

� > 0, which we from now on assume.
Let �� 2 PRn, w W .�T; T / �X � PRn ! R, qj;˛ 2 C1..�T; T / �X 0 � PRn/ be given

by Proposition 5.2. Let us take any t0 2 .0; T / and let x0 2 X and �0 2 RC�� be given by
Proposition 5.2 so that

@tw.t0; x0; �0/ D t0; @xw.t0; x0; �0/ ¤ 0;

@�w.t0; x0; �0/ D 0; rank @2�w.t0; x0; �0/ D n � 1:

Let then B0 � X , U0 � PRn and J0 � .0; T / be given by Proposition 5.2. For all
g 2 C1c .R

n/ with supp.g/ � U0, and all N 2 N, we then have

cos.t
p

L /zg�.x/

D

X
j˛j�N;j�N

�n�j˛j�j
Z
PRn
ei�w.t;x;�/qj;˛.t; x; �/@

˛g.�/ d� CO.�n�N�1/ (5.27)
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as �!1, uniformly in t 2 J0 and x 2 B0, where ¹zg�º��1 � C1c .M/ satisfies

kzg�kLp.M/ .g;p �n=p
0

: (5.28)

Assume that � 2 C and supp.�/ � J0. By (5.25) and (5.27),

m
�

�
.
p

L /zg�.x/ D 2
X

j˛j�N; j�N

�nC1=2�j˛j�jm�;˛;j .x/CO.�
n�N�1=2/ (5.29)

as �!1, uniformly in x 2 B0, where

m�;˛;j .x/ D

Z
R

Z
PRn
ei�.w.t;x;�/�t

2=2/�.t/qj;˛.t; x; �/@
˛g.�/ d� dt:

Let J b J0, B b B0, U b U0 be the open neighbourhoods of t0, x0, �0 given by
Lemma 5.3 applied to the function w. If � and g are chosen so that supp.�/ � J and
supp.g/ � U , then Lemma 5.3 implies that, for all � � 1,

sup
x2B

jm�;˛;j .x/j .�;g �
�.nC1/=2; (5.30)

and moreover

�.nC1/=2jm�;0;0.x/j D d.x/j�.t
c.x//j jq0;0.t

c.x/; x; �c.x//j jg.�c.x//j CO.��1/

as �!1, uniformly in x 2 B , where tc W B! J , �c W B! U , d W B!RC are smooth
functions with tc.x0/ D t0, �c.x0/ D �0. If we choose � and g so that �.t0/ ¤ 0 and
g.�0/ ¤ 0, then, by Proposition 5.2 (i),

j�.tc.x0//j jq0;0.t
c.x0/; x0; �

c.x0//j jg.�
c.x0//j ¤ 0:

Hence, if we choose a sufficiently small neighbourhood B 0 � B of x0, then there exists
�0 � 1 such that, for all � � �0,

inf
x2B0
jm�;0;0.x/j &�;g �

�.nC1/=2: (5.31)

By combining the above estimates (5.29)–(5.31) and choosing N large enough, we find
that, up to taking a larger �0, for all � � �0 and p 2 Œ1;1�,

km
�

�
.
p

L /zg�kLp.M/ &p;B0 inf
x2B0
jm
�

�
.
p

L /zg�.x/j &�;g �n=2:

Combining this with (5.28), we conclude that

km
�

�
.
p

L /kLp.M/!Lp.M/ &�;g;p �n.1=2�1=p
0/
D �n.1=p�1=2/;

as desired.
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5.3. Miyachi–Peral estimates

Let Se be the set of all even, real-valued Schwartz functions on R that are not identically
zero. For � 2 Se and �; t > 0, define

m
�

�;t
.s/ WD �.s=�/ cos.ts/ D

1

2�

Z
R
y�.�/ cos..t C �=�/s/ d�; (5.32)

where the second equality follows from the Fourier inversion and prosthaphaeresis for-
mulas. The following result proves Theorem 1.1 (ii) under the assumptions introduced in
Section 4.

Theorem 5.5. Let .M;H;�/ be a measured quadratic Hamiltonian pair of dimension n
and L the corresponding sub-Laplacian. Assume that a self-adjoint extension of L has
been chosen so that (RE), (FPS), (SP) and (SFC) are satisfied. Then there exists t� > 0
such that, for all t0 2 .0; t�� and all �2Se , there exists �0 >0 such that, for all p 2 Œ1;1�
and � � �0,

km
�

�;t0
.
p

L /kp!p &�;t0;p �
.n�1/j1=p�1=2j: (5.33)

Proof. By (4.3), sincem�
�;t

is real-valued, it is enough to prove the theorem for p 2 Œ1; 2�.
Fix � 2 .0; 1=2/ and a smooth even function � W R! R such that supp.�/ � .�1; 1/

and �.0/ D 1. For � 2 Se and t > 0, define

m
�;0

�;t
.s/ WD

1

2�

Z
R
�.����/y�.�/ cos..t C �=�/s/ d�; (5.34)

m
�;1

�;t
.s/ WD m

�
s;t .s/ �m

�;0

�;t
.s/ D

1

2�

Z
R
.1 � �.����//y�.�/ cos..t C �=�/s/ d�:

Since 1 � �.����/ D 0 for � 2 Œ���; ���; and since y� 2 S .R/ is rapidly decreasing, by
means of integrations by parts one can easily show that, for all ˛; ˇ;N 2 N,

sup
s2R
jsˇ@˛sm

�;1

�;t
.s/j .˛;ˇ;N;t .1C �/�N I

consequently, since m�;1
�;t

is even, m�;1
�;t

.
p
�/ extends [74] to a Schwartz function zm�;1

�;t

on R satisfying
sup
s2R
jsˇ@˛s zm

�;1

�;t
.s/j .˛;ˇ;N;t .1C �/�N :

Therefore, by (SFC), for all p 2 Œ1;1� and N 2 N,

km
�;1

�;t
.
p

L /kp!p .N;t .1C �/�N ; (5.35)

so it will be enough to prove the desired lower bound for m�;0
�;t
.
p

L / instead of

m
�

�;t
.
p

L /.
Let �� 2 PRn, w W .�T; T / �X � PRn ! R, qj;˛ 2 C1..�T; T / �X 0 � PRn/ be given

by Proposition 5.2. Set t� D T=2.
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Let t0 2 .0; t�� and � 2 Se . Then there exists �0 > 0 such that

�.�0/ ¤ 0: (5.36)

Let x0 2 X and �0 2 RC�� be given by Proposition 5.2 so that

@tw.t0; x0; �0/ D �0; @xw.t0; x0; �0/ ¤ 0; (5.37)

@�w.t0; x0; �0/ D 0; rank @2�w.t0; x0; �0/ D n � 1: (5.38)

Let then B0 � X , U0 � PRn and J0 � .0; T / be given by Proposition 5.2. For all
g 2 C1c .R

n/ with supp.g/ � U0, and all N 2 N, we then have

cos.t
p

L /zg�.x/

D

X
j˛j�N;j�N

�n�j˛j�j
Z
PRn
ei�w.t;x;�/qj;˛.t; x; �/@

˛g.�/ d� CO.�n�N�1/ (5.39)

as �!1, uniformly in t 2 J0 and x 2 B0, where ¹zg�º��1 � C1c .M/ satisfies

kzg�kLp.M/ .g;p �n=p
0

: (5.40)

Let �0 > 0 be sufficiently large so that Œt0 � 2�
��1
0 ; t0 C 2�

��1
0 � � J0. In view of

(5.34) and (5.39), since j� j=� � ���1 where �.����/ ¤ 0, for all � � �0 we can write

m
�;0

�;t0
.
p

L /zg�.x/ D
1

2�

X
j˛j�N; j�N

�n�j˛j�jm�;˛;j .x/CO.�
n�N�1/ (5.41)

as �!1, uniformly in x 2 B0, where

m�;˛;j .x/ D

Z
R
�.����/y�.�/F�;˛;j .�=�; x/ d� (5.42)

and
F�;˛;j .t; x/ D

Z
Rn
ei�w.t0Ct;x;�/qj;˛.t0 C t; x; �/@

˛g.�/ d�:

Let us write � D r.�0 C �/, where � 2 �?0 and r 2 R; then

F�;˛;j .t; x/ D j�0j

Z
R

Z
�?
0

ei�w0.r;t;x;�/b˛;j .r; t; x; �/ d� jr jn�1 dr;

where

w0.r; t; x; �/ D rw.t0 C t; x; �0 C �/;

b˛;j .r; t; x; �/ D qj;˛.t0 C t; x; r.�0 C �//@
˛g.r.�0 C �//:

Note that r and � can be made arbitrarily close to 1 and 0 respectively in the domain of
integration, by taking the support of g sufficiently close to �0. Moreover,

@�w0.r; t; x; 0/D r@�w.t0C t; x; �0/j�?
0
; @2�w0.r; t; x; 0/D r@

2
�w.t0C t; x; �0/j�?

0
��?
0
:
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Thanks to the assumptions (5.38) we can apply the method of stationary phase [34,
Theorem 7.7.6] to the integral in �. Indeed, since �0 2 ker@2

�
w.t0; x0; �0/ by homogeneity

(see (5.24)), from (5.38) it follows that @�w.t0; x0; �0/ D 0 and @2
�
w.t0; x0; �0/j�?

0
��?
0

is nondegenerate. So the implicit function theorem yields open neighbourhoods B b B0
of x0 and I b J0 � t0 of 0, and a smooth function �c W I �B! �?0 such that �c.0;x0/D 0
and @�w.t0 C t; x; �0 C �c.t; x//j�?

0
D 0, and moreover (up to shrinking I and B and

choosing supp.g/ sufficiently close to �0),

�.n�1/=2F�;˛;j .t;x/D d.t;x/

Z
R
ei�rw

c.t;x/bc˛;j .r; t;x/jr j
.n�1/=2 dr CO.��1/ (5.43)

as �!1, uniformly in x 2 B and t 2 I , where

wc.t; x/ D w.t0 C t; x; �0 C �
c.t; x//; bc˛;j .r; t; x/ D b˛;j .r; t; x; �

c.t; x//;

d.t; x/ D .2�/.n�1/=2ei��=4j�0j jdet.@2�w.t0 C t; x; �0 C �
c.t; x//j�?

0
��?
0
/j�1=2

and � is the signature of @2
�
w.t0; x; �0 C �

c.x//j�?
0
��?
0

. Note that

@tw
c.0; x0/ D @tw.t0; x0; �0/; @xw

c.0; x0/ D @xw.t0; x0; �0/ (5.44)

(since @�w.t0; x; �0 C �c.t0; x//j�?
0
D 0 by construction).

By plugging the above estimate into (5.42) and using the fact that y� 2 S .R/, � < 1
and j� j=� � ���1 in the domain of integration, it is immediately deduced that, for x 2 B
and � sufficiently large,

jm�;˛;j .x/j . ��.n�1/=2: (5.45)

We want now to obtain the reverse inequality in the case ˛ D 0 and j D 0. Note that
a Taylor expansion of wc around t D 0 yields

wc.t; x/ D wc.0; x/C t@tw
c.0; x/C t2W.t; x/

for some smooth function W W I � B ! R, and similarly

eax D 1C aE.a; x/

for some smooth function E W R2 ! R, so

eir�w
c.�=�;x/

D eir.�w
c.0;x/C�@tw

c.0;x//.1C .�2=�/ zW .�2=�; �=�; x//; (5.46)

where zW .a; t; x/ D E.a; W.t; x//. Since j� j=� � ���1 and �2=� � �2��1 whenever
�.����/ ¤ 0, and � < 1=2, from (5.42), (5.43) and (5.46) we deduce that, as �!1,

�.n�1/=2m�;0;0.x/

D d.0; x/

Z
R
eir�w

c.0;x/A.���; r; x/g.r.�0 C �
c.0; x/// dr CO.���1/; (5.47)
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where

A.�; r; x/ D G.�; r@tw
c.0; x//q0;0.t0; x; r.�0 C �

c.0; x///jr j.n�1/=2

and
G.�; t/ D

Z
R
�.��/y�.�/ei� t d�:

In order to obtain the desired lower bound for m�;0;0.x/, we need to ensure that there
is no cancellation in the integral in (5.47). Note that G W R2 ! C is continuous and
G.0; t/ D 2��.t/, because �.0/ D 1. Consequently, by Proposition 5.2 (i), (5.36), (5.37)
and (5.44),

A.0; 1; x0/ D 2��.@tw.t0; x0; �0//q0;0.t0; x0; �0/ ¤ 0:

Hence, if we choose g supported sufficiently close to �0 and let B 0 � B be a sufficiently
small neighbourhood of x0, then, for all x 2 B 0 and � sufficiently large,

0 � r � 2; jA.���; r; x/ � A.0; 1; x0/j � 10
�10
jA.0; 1; x0/j; d.0; x/ � d.0; x0/=2

in the domain of integration. In addition, if we assume that g � 0 and g.�0/ > 0, then, up
to shrinking B 0,

inf
x2B0

Z
R
g.r.�0 C �

c.0; x/// dr > 0:

In conclusion, in order to avoid cancellation in the integral in (5.47), it is enough to
ensure that jwc.0; x/ � wc.0; x0/j � 10�10��1. On the other hand, by homogeneity of
w and (5.38), wc.0; x0/ D �0 � @�w.t0; x0; �0/ D 0, and moreover, by (5.37) and (5.44),
@xw

c.0; x0/ ¤ 0. This shows that wc.0; �/ vanishes on a smooth hypersurface S b B 0

passing through x0, and consequently, for all sufficiently small � > 0, jwc.0; x/j . � for
all x in an �-neighbourhood S� of S . Hence, if we take � D c��1 with c > 0 sufficiently
small, we can ensure that there is no cancellation in the integral in (5.47) when x 2 Sc��1 ,
and therefore

jm�;0;0.x/j & ��.n�1/=2

for x 2 Sc��1 and � sufficiently large. If we combine this with (5.41) and (5.45) (and
choose `; k;N sufficiently large), we obtain

jm
�;0

�;t0
.
p

L /zg�.x/j & �n�.n�1/=2

for x 2 Sc��1 and � sufficiently large. On the other hand, jSc��1 j � ��1, whence, for all
p 2 Œ1; 2�,

km
�;0

�;t0
.
p

L /zg�.x/kp &p �n�1=p�.n�1/=2;

and combining this with (5.40) we obtain

km
�;0

�;t0
.
p

L /kp!p &p �n�1=p�.n�1/=2�n.1�1=p/ D �.n�1/.1=p�1=2/;

and we are done.
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5.4. Transplantation

Finally we prove our main result in full generality.

Proof of Theorem 1.1. Let .M; H; �/ and L be as in Theorem 1.1. By the bracket-
generating condition assumed on H and Lemma 4.6, there is a nonempty open set
Mo � M where .Mo; H/ is an equiregular sub-Riemannian manifold. Up to shrink-
ing Mo, there are v1; : : : ; vr 2 �.TMo/ such that H D

P
j vj ˇ vj on Mo, as in (4.4),

and hvj ; vkiH D ıjk .
Fix o 2Mo. It is well known (see, e.g., [6,7,36,49] and references therein) that there

is a coordinate system .U; �/ centred at o and a system of dilations ı� W Rn! Rn, � > 0,
of the form

ı�.x1; : : : ; xn/ D .�
w1x1; �

w2x2; : : : ; �
wnxn/;

with 1 � w1 � w2 � � � � � wn integers, such that, if V WD �.U / � Rn, then the vector
fields

v
.�/
j jx D �Dı

�1
�

�
D�Œvj j��1.ı�x/�

�
defined on ı�1� V � Rn converge as � ! 0 to some bracket-generating vector fields v.0/j
on Rn. The convergence is uniform on compact sets in the C k norm, for all k. Moreover,
there is a Lie group structure on Rn which makes it into a Carnot group G, so that the
vector fields v.0/1 ; : : : ; v

.0/
r are left-invariant and form an orthogonal basis of the first layer.

From the above convergence result, it readily follows that the sub-Laplacian Lo D

�
Pr
jD1.v

.0/
j /2 on the Carnot group G is a local model of L at o, in the sense of [38,

Definition 5.1]. Moreover, by Lemma 4.10, the Carnot groupG and the sub-Laplacian Lo

satisfy the assumptions (RE), (FPS), (SP) and (SFC).
Suppose now that (1.4) holds for some p 2 Œ1;1� and ˛ � 0. Then, by [38, Theorem

5.2], for all Schwartz functions m W R! C,

km.Lo/kp!p � lim inf
r!0C

km.r2L /kp!p . lim inf
r!0C

km.r2�/kL1˛;sloc
D kmkL1˛;sloc

:

In other words, the estimate (1.4) also holds for the sub-Laplacian Lo. In view of (5.26)
and Theorem 5.4, we conclude that ˛ � nj1=2 � 1=pj, and part (i) is proved.

As for part (ii), suppose that p 2 Œ1;1�, ˛ � 0, � 2 C1c ..0;1//, and �; R > 0 are
such that the estimate (1.5) holds. In view of (4.3), we may assume that � is real-valued.
If we set �e D �.j � j/, then �e 2 Se and, in view of (5.32), the estimate (1.5) can be
restated as

km
�e
�;t
.
p

L /kp!p . .�t/˛

for all �; t > 0 with t � � and �t � R. Hence, by [38, Theorem 5.2], for all �; t > 0 with
�t � R,

km
�e
�;t
.
p

Lo/kp!p � lim inf
h!0C

km
�e
�;t
.h
p

L /kp!p

D lim inf
h!0C

km
�e
.�t/=.th/;th

.
p

L /kp!p . .�t/˛:

By Theorem 5.5 we deduce that ˛ � .n � 1/j1=p � 1=2j.
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