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Abstract 

Lattice-gas and lattice-Boltzmann methods can provide promising alterna­
tive approaches to traditional computational fluid dynamics. The geomet­
ric versatility of these methods makes them very attractive for simulating 
many complex systems, such as fluid flow in irregular geometries. Also, 
the inherent spatial locality of their updating rules makes these methods 
ideal for parallel computing. In this work, the basic ideas of these meth­
ods are first introduced. Then, many practical problems, such as boundary 
conditions, discretization errors, simulation time, and parallelization, are 
discussed, and a new efficient relaxation method, the Iterative Momentum 
Relaxation (IMR) method, is introduced. It is also shown that, with the 
Orthogonal Recursive Bisection (ORB) method, the performance of a par­
allel lattice-Boltzmann code can be significantly improved. Finally, several 
results of lattice-gas and lattice-Boltzmann simulations of single-fluid flow 
in 2D and 3D porous media are discussed. Simulation results for the tor­
tuosity, effective porosity and permeability of a 2D random porous medium 
are reported. A modified Kozeny-Carman law is suggested, which includes 
the concept of effective porosity. This law is found to fit well the simulated 
2D permeabilities. The results for fluid flow through large,3D random fi­
bre webs are also presented. The simulated permeabilities of these webs are 
found to be in good agreement with experimental data. The simulations also 
confirm that, for this kind of materials, permeability depends exponentially 
on porosity over a large porosity range. 
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Chapter 1 

Introduction 

1.1 Computational fluid dynamics 

The two basic hydrodynamic equations that describe the motion of fluid are 
the continuity equation 

OtP + v' · (pu) = 0, 

which expresses the conservation of mass, and the Navier-Stokes equation 

8t(pu) + v' · (puu) = -v'p + v' · T + q, (1.2) 

which expresses the conservation of momentum [1]. Here p is the fluid den­
sity, u is the fluid velocity, p is the hydrostatic pressure, -r is the fluid stress 
tensor , and q is an extra interaction term that can include e.g. the effect of 
gravity on the fluid. If the fluid is incompressible and Newtonian (in New­
tonian fluid stresses are directly proportial to the velocity gradients OiUj), 
Eq. (1.2) can be expressed in the form [1] 

8t(pu) + v' · (puu) = -v'p + µv'2u + q, (1.3) 

whereµ is the dynamic viscosity of the fluid. This equation is often written 
in the form 

OtU + (u · v')u = --v'p + ziv'2u + q', 
p 

where v = µ/ p is the kinematic viscosity of the fluid. 

(1.4) 

Eqs. (1.1) and (1.3) consist in their most general form of four highly 
nonlinear coupled partial differential equations which allow complete ana­
lytical solution in only some special cases. Sometimes these equations can 
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be simplified. In the case of stationary creeping flow, e.g., the left-hand side 
of the N avier-Stokes equation vanishes and the Stokes equation, 

(1.5) 

is obtained. On the other hand, if viscous effects are small, the Euler equa­
tion, 

1 
8tu + (u · v')u = --v'p,

p 
(1.6) 

is obtained. (In both these cases the effect of external forces has been omit­
ted.) However, even after simplifications the equations still remain difficult 
to solve. 

For a long time, the only practical way of studying many fluid-dynamical 
problems was to actually build the systems or models of them, and then 
study their behaviour e.g. in wind tunnels [2]. With sophisticated diag­
nostics, gross properties of the flow, such as drag and lift, could then be 
measured. With considerably more effort, information about the spatial 
dependence of some thermodynamic properties like pressure could also be 
acquired. 

With the advent of computers it first seemed possible to gradually get 
rid of the cumbersome necessities of wind-tunnel experimentation by solving 
the equations of fluid flow numerically. Simulating fluid flow on computers, 
i.e. computational fluid dynamics (CFD), has indeed proved an invaluable
tool for studing many fluid-flow phenomena. However, the difficulties with
grid generation, probiems with numericai stability, and the computationai
requirements for memory capacity and computational speed, have often re­
stricted the use of this approach. Especially in the high Reynolds-number
regime, the direct full-scale simulation of turbulence seems to stay beyond
our computational capabilities in the foreseeable future. Many practical
problems with small Reynolds numbers, like fluid flow in porous media or
multiphase flows, have also proved to be suprisingly difficult to solve. Grid
generation, e.g., can be an extremerely difficult task in such systems, as they
often include very complex boundaries, which may even be time dependent.
Significant improvements in computational models and considerable increase
in computational power are thus necessary if computational fluid dynamics
is really to become a general-purpose alternative to experimental studies.
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1.2 The lattice-gas model 

Numerical solution of the Navier-Stokes equation has traditionally concen­
trated on directly finding a mathematical solution for the differential con­
tinuum equations governing the fluid flow. In principle, it would be pos­
sible to solve any fluid-flow problem on microscopic (atomic) level with di­
rect molecular-dynamical simulations. Such simulations are computationally 
very intensive, and at present something like 109 particles can be used. This 
is a very small amount when compared with the number of particles found 
in real fluid-dynamical systems. It is thus clear that practical fluid-flow 
problems cannot be solved with this approach. 

However, many dynamical systems can be modelled with radically simpli­
fied models. This fact has been utilized, e.g., in the famous Ising models for 
magnetic materials, and since 1950's in various cellular-automaton models 
for biological and physical systems. The success of these models encouraged 
people to develop discrete models for fluids, too. For a long time these mod­
els were qualitatively incorrect. However, in 1986 it was realised that fluid 
could be simulated with very simple discrete models if the simulation lattice 
was chosen in a correct way [3]. This discovery was the starting point for 
the lattice-gas [4, 5, 6] and later lattice-Boltzmann methods [6, 7]. 

Space, time and particle velocities are all discrete in the lattice-gas model. 
Fluid is modelled with identical particles which move in a discrete lattice in­
teracting with each other only at the lattice nodes. If the particle collisions 
satisfy mass and momentum conservation, and if the simulation lattice ful­
fils certain symmetry requirements, the lattice-gas automaton will develop 
macroscopic dynamics which is very close to incompressible Navier-Stokes 
behaviour. 

The boolean and local nature of the lattice-gas model gives several ad­
vantages. Since the updating rules are strictly local and very simple, the 
introduction of complex boundaries is a simple matter, and the model is 
thus quite insensitive to the geometry of the simulated system. Due to its 
microscopic nature, the model is also easily extended to deal with a number 
of phenomena that are more complicated than incompressible single-phase 
flow. Because particles can be represented by single bits in the computer 
memory, the memory requirements are relatively small, and because there 
are no rounding off errors involved in bit manipulations, unconditional nu­
merical stability is guaranteed. The computations are also inherently parallel 
being ideal for massively parallel computers. 

The early lattice gases had also some drawbacks [6, 7]: The model had 
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a lot of statistical noise due to boolean computation, and a large number 
of lattice points ( or a large number of iteration steps) were necessary in 
order to perform realistic fluid-dynamical simulations. Due to the large 
number of post-collision states, the collision operator had an exponential 
complexity with respect to the dimensions of the lattice. Furthermore, the 
dynamics of the fluid was not Galilean invariant, and fluid pressure was 
velocity dependent. The dependence of viscosity on the collision rules also 
restricted the model to rather limited range of Reynolds numbers. 

Later many sophistications have helped to get rid of most of the problems 
mentioned above (see e.g. Refs. [2, 6, 8, 9]), and the lattice-gas method is a 
viable alternative to computational fluid dynamics. 

1.3 The lattice-Boltzmann n1odel 

The early deficiencies of the lattice-gas models inspired the formulation of 
the lattice-Boltzmann models. The so-called non linear lattice-Boltzmann 
model was the first of them [10). The idea behind this model was to track 
a population of particles instead of a single particle, a reasonable modifi­
cation justified by the Boltzmann molecular-chaos assumption from kinetic 
theory. This mean-value representation of particles eliminated the problem 
of statistical noise. In order to break down the exponential complexity of the 
collision operator and to eliminate the need of using lattice-gas collisions in 
the lattice-Boltzmann models, a linearized version (the so-called enhanced­
collision method) was then developed [11). In the next step Maxwellian 
velocity distribution of the particles and inclusion of rest particles in the 
model led to Galilean invariant macroscopic behaviour [12]. The latest ma­
jor modification to date is the lattice-BGK (Bhatnagar-Gross-Krock) model, 
where the collision operator is based on single-time relaxation to the local 
equilibrium distribution [13]. This is the simplest model in the hierarchy 
of lattice-Boltzmann methods, and it is regularly used in practical lattice­
Boltzmann simulations. 

The main drawback of the lattice-Boltzmann model when compared to 
the lattice-gas model is its lack of unconditional numerical stability. Also, 
the statistical noise in lattice gases can sometimes be useful for including 
autocorrelations in the model. 

Both models have proved to be promising alternative approaches to tra­
ditional computational fluid dynamics. These methods have been particu­
larly succesfull in modelling such singularly complex fluid-flow phenomena 
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as multiphase flows [5, 14], suspension flows [15], and flows in complex ge­
ometries [14], which all have been very difficult to simulate with conventional 
methods. 

1.4 Fluid flow in porous media 

Fluid flow in porous media plays an important role in a wide variety of 
technical and environmental processes such as oil recovery, paper making, 
and spread of hazardous-wastes in soils. The most important law governing 
single-fluid flows is Darcy's law [16, 17] 

k 
q = -"vp, 

µ 
(1.7) 

where q is the volumetric fluid flow through the medium, µ is the dynamic 
viscosity of the fluid, p is the fluid pressure, and k is the permeability co­
efficient that is a measure of the fluid conductivity of the porous medium. 
Equation (1.7) has been found to work very well with a wide variety of 
natural porous media when the fluid velocity is small. 

In theoretical and experimental work on fluid flow in porous media it is 
typically attempted to find functional correlations between the permeability 
and some other macroscopic properties of the porous medium. Among the 
most important of such properties are the porosity </; and the specific surface 
area S, which give the ratios of the total void volume and the total interstitial 
surface area to the bulk volume, respectively. Another useful characteristics 
of porous media is the tortuosity T, which has been introduced to account for 
the complexity of the actual microscopic flow paths through the substance. 
The experimental methods that have been used to find these functional corre­
lations vary from rather straightforward measurements [18, 19, 20] to more 
sophisticated approaches, which utilize e.g. mercury porosimetry, electri­
cal conductivity, nuclear magnetic resonance, or acoustic properties of the 
medium [21]. Theoretical methods typically rely on analytical models based 
on simplified pore geometries, which allow solution of the microscopic flow 
patterns [22], or on more advanced methods that statistically take into ac­
count the structural complexity of the medium [22, 23]. 

The two basic equations that are usually used to describe the permeable 
behaviour of porous media, are Kozeny's law [17, 22, 24, 25] 

</;3 
k=-2 ,cS 
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and Kozeny-Carman law 

</>3 
k=�s2' 

CT 

(1.9) 

where c is so-called "Kozeny constant", which in most cases depends on 
the geometry of the porous sample. Equations. (1.8) and (1.9) can be 
derived analytically for many simplified models, and they give the qualitative 
permeable behaviour of many natural porous media rather well. However, 
the correctness of these two equations is generally not very good (i.e. the 
dependence of c on <f> is often very strong). 

The phenomena involved in fluid flow in porous media are very complex, 
and despite the numerous experimental and theoretical studies, permeable 
characteristics of porous media is still poorly understood. Various sophisti­
cations to Eqs. (1.8) and (1.9) have been suggested [22, 23, 26], but a general 
formula for permeability is still lacking. Experimental work i8 thu8 almost 
always obligatory in determination of permeability. 

Numerical simulations are increasingly used in the study of complicated 
physical phenomena. They are often very useful in connecting theory with 
experiment, and they can also be used to reduce the number of experiments. 
Although realistic simulations of fluid flow in complex geometries, like in 
porous medium, are exceptionally demanding in terms of computing power, 
the new techniques based on massively parallel computers, increased single 
processor capabilities, and the recent introduction of new simulation models 
(the lattice-gas and lattice-Boltzmann methods in particular) have finally 
made them possible [I, 6, 14, 27]. 

1. 5 Outline of the text 

The first objective of this thesis is to give a rather detailed description of 
the lattice-gas and lattice-Boltzmann methods from both a theoretical and 
a practical point of view. The second objective is to present results from our 
lattice-gas and lattice-Boltzmann simulations of fluid flow in porous medium. 

In Chapters 2 and 3 we introduce the lattice-gas and lattice-Boltzmann 
methods, and we show how the continuity equation Eq. (1.1) and Navier­
Stokes equation Eq. (1.3) are obtained from their microdynamics. Then, in 
Chapter 4, we discuss several practical problems related to these methods, 
such as discretization errors, finite-size effects, driving forces, and paral­
lelization. We also present several results from onr lattic.P.-gas and lattice­
Boltzmann benchmark studies. In Chapter 5 we first discuss the concept 
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of fluid flow in porous medium in general, and briefly review the previous 

lattice-gas and lattice-Boltzmann studies on this topic. Next we discuss the 

basic physics of fluid flow in porous medium. Here the concepts of tortu­

osity and effective porosity will get special attention. Then we present our 

simulation results for the tortuosity, effective porosity, and permeability of a 

2D random porous medium, and compare the simulated permeabilities with 

various theoretical predictions. Finally, we present results for fluid flow in 

large 3D random fibre webs , and show that these results compare very well 

with experimental data. 
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Chapter 2 

Lattice-gas hydrodynamics 

In this chapter we introduce the lattice-gas model and show how the macro­
scopic Navier-Stokes equation is obtained from its microdynamics. The ob­
jective of this chapter is to clarify the assumptions on which this model is 
based, and to discuss the physical features needed to construct lattice mod­
els that can yield the true fluid dynamics. We do not go very deeply into 
the technical details, as they can be found in the literature. 

For lattice-gas models the classical paper is Ref. [4]. Other useful works 
are Refs. [2, 5, 6, 28, 29]. Our derivation of the Navier-Stokes equation 
is based mainly on Ref. [29], in which for both the lattice-gas and lattice­
Boltzmann model an excellent derivation of the Navier-Stokes equation is 
given. 

2.1 The lattice-gas model 

The basic properties of most (single-speed) lattice-gas models are: 

• The fluid is described with discrete identical fluid particles.

• The particles move in a discrete lattice. They reside only at the lattice
nodes.

• Time is discrete.

• The speed of the particles is such that, during each time-step, they
move from a lattice node to one of its nearest neighbours.

• An exclusion principle is obeyed: at each lattice node particles are not
allowed to have identical velocities.
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• When the particles meet at lattice nodes they can interact subject to
mass and momentum conservation. This interaction, collision, may
lead to reshuffling of particle velocities.

The discrete nature of lattice gas is quite different from real fluid, where 
particles are free to move in any direction and have a continuous spectrum 
of speeds. One should see the lattice gas as a computational tool for doing 
macroscopic fluid dynamics in an fictitious discrete world, which has the 
same kind of macroscopic behaviour as real fluids. Instead, the lattice-gas 
model is not a discrete description of the behaviour of atoms, molecules or 
even small fluid particles in real fluids. 

Any lattice-gas model fulfilling the above mentioned basic properties does 
not necessarily give correct quantitative hydrodynamics. The discreteness 
of the model may lead to several unphysical artefacts such as 

• U nisotropic stress tensor.

• Lack of Galilean invariance in the momentum equation.

• Velocity-dependent pressure.

• Unphysical conserved quantities (spurious invariants).

The anisotropy of the stress tensor can be removed with an appropriate 
choice of the lattice. For this reason the triangular lattice must be used in 
2D single-speed models. In three dimensions, no lattice exists that would 
yield isotropy. For this reason a 3D projection of the 4D face-centered hyper­
cubic (fchc) lattice is regularly used. The next two artefacts cannot generally 
be removed without introducing conservation of energy to the model [2]. The 
spurious invariants are caused by the discrete nature of the lattice, and are 
always present in lattice-gas models [30, 31]. 

Despite all these artefacts, very simple lattice-gas models can be used 
for quantitative hydrodynamics if the restrictions of the model are kept in 
mind. 

2.2 FHP models 

The so-called HPP model [29, 32, 33] is the simplest way of doing two­
dimensional lattice-gas hydrodynamics. This model uses a square lattice, 
and it is too simple to yield quantitatively correct hydrodynamic behaviour . 
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Figure 2.1: The directions Ci of particle velocities. (Taken from Ref. [29].) 

The dynamics of the model is unisotropic, and it also contains several spu­
rious invariants. (In a periodic lattice e.g. the fluid momentum is conserved 
along each horizontal or vertical line.) 

In 1986, Frisch, Hasslacher, and Pomeau proved that the unphysical 
artefacts of the HPP model could be removed by using a triangular lattice 
[3]. (The six possible directions of particle motion Ci (i=l, . . .  ,6) in this 
lattice are shown in Fig. 2.1.) The simplest of these so-called FHP models, 
the FHP-I model, includes only two-particle and three-particle collisions (see 
Fig. 2.2). This model has no rest particles, and at most six particles can 
reside at each lattice node. 

2.3 From lattice-gas microdynamics to macroscopic 

hydrodynamics 

Let us denote the lattice time step by 'r/, and the lattice spacing by >.. The 
six possible particle velocities are then 

(2.1) 

We also define the particle occupation number ni(r, t), which tells if there is 
a particle at site r at time t going in the Ci-direction. (It is either O or 1.) 
The evolution equation for ni is 

(2.2) 

where ni(r, t) is a model-dependent collision term that acts as a sink or 
source for type i particles. The actual form of this term is not interesting at 
the moment as the detailed nature of the microscopic interactions does not 
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Figure 2.2: In the FHP-I model particles move in a triangular lattice, and 
there are only two-particle and three-particle collisions. A two-particle colli­
sion has two possible outcomes that both occur with probability 1/2. (Taken 
from Ref. [29].) 

affect the form of the momentum equation. Their effect is only seen in the 
values of physical coefficients (such as viscosity) appearing in this equation. 

In kinetic theory the physical quantities of interest such as density p,

velocity u, and momentum tensor II, are obtained from velocity moments 
of the velocity distribution function [15, 34]. In lattice-gas models they 
are obtained from the discrete velocity moments of the ensemble averages 
Ni(r, t) = (ni(r, t)) of the occupation numbers (Ni(r, t) gives the probability 
of finding at ( r, t) a particle going in the Ci direction): 

and 

6 

p(r, t) = L Ni(r, t), 
i=l 

6 

p(r, t)u(r, t) = L viNi(r, t), 
i=l 

6 

Ilo:,e(r, t) = L Vio:Vif3Ni(r, t). 
i=l 

(2.3) 

(2.4) 

(2.5) 

Here the greek letters a and /3 label the two spatial components of the 
velocity vectors. 
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The Boltzmann equation gives in kinetic theory the dynamics of the ve­
locity distribution function [34]. Taking an ensemble average over Eq. (2.2), 
we get a corresponding equation for Ni: 

(2.6) 

Equation (2.6) is quite difficult to solve, and several approximations and 
simplifications are needed. We will here use the Chapman-Enskog expansion, 
which is commonly used in statistical mechanics for deriving macroscopic 
laws for relevant physical quantities when the Boltzmann equation is known 
[29]. 

We assume that the lattice spacing >. and timestep r, are small compared 
to the characteristic system length Land time scale T. Then Ni are smooth 
functions of the time and space coordinates, and Eq. (2.6) can be Taylor­
expanded up to second order to give 

'r/OtNi + >.( Ci . v')Ni + 

>.r,(ci · v')8tNi (2.7) 

The first step in the Chapman-Enskog expansion is to write down a 
pertubation expansion of Ni: 

(2.8) 

where Eis a small parameter. In order to determine the NP) uniquely and 
consistently, we choose them in such a way that the macroscopic quantities 
p and pu are entirely given by the zeroth order term of the expansion [29]: 

p= LN?) (2.9) 
i=l 

6 

pu = I::viN?l. (2.10) 
i=l 

It follows therefore that 
6 

I::viNP) = 0, for l � l. (2.11) 
i=l i=l 

15 
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Now, we do not know how>. and rJ are related in the continuum limit. From 
a physical ground, we expect to observe phenomena of several time scales. 
For instance, the ratio >.!rJ is the velocity of particles and should not vanish 
in the continuum limit. In addition, dissipative forces (like viscosity) will 
be present too, and with a coefficient of order >.2 !rJ [4, 29]. So, there are 
phenomena of several time scales included, and no single limiting relation 
between >. and 'r/ exists. For this reason we consider two macroscopic time 
scales T1 and T2 satisfying 

(2.12) 

and one macroscopic length scale satisfying 

(2.13) 

Two time variables t1 and t2 are now defined such that 

(2.14) 

Similarly, a macroscopic space variable r1 is introduced, related to r through 
r = ri/ E. The differentials Ot and Oa become now 

(2.15) 

and 
(2.16) 

The next step is to identify the various orders of E in Eq. (2.7). We do 
not yet know the exact form of the collision operator (Oi), but we know that 
it must conserve mass and momentum. Collision operator (Oi) thus must 
have the following general properties, 

6 6 

IJni) = o, Lvi(ni) =O. (2.17) 
i=l i=l 

Now, using Eqs. (2.8), (2.15), (2.16) and (2.17) to order c1
, Eq. (2.7) can be 

expressed in the forms [29]: 

(2.18) 
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and 
(2.19) 

where II(o) is the zeroth order approximation of the momentum tensor II. 
In the second order, Eq. (2.7) gives [29] 

and 

where Sis a third order tensor defined as 

6 

So:{3"( = L Vio:Vif3Vi"(Ni. 
i=l 

(2.20) 

(2.21) 

(2.22) 

Let us now take a closer look at Eqs. (2.18) - (2.21). Equation (2.18) resem­
bles the continuity equation (1.1), while Eq. (2.20) shows that second order 
corrections to this equation are neglible. Combining ( with the appropriate 
power of E) both orders, we find that the lattice gas obeys the standard 
continuity equation, 

8tP + v' · (pu) = 0. (2.23) 

The first-order momentum equation Eq. (2.19) resembles the Euler equa­
tion. The viscous effects are introduced in the second-order correction (2.21) 
via the first-order term II(l) of the momentum tensor. The momentum equa­
tion for the lattice gas, which is obtained by summing these two equations, 
is 

(2.24) 

The first two terms in Eq. (2.24) are the standard result of continuum kinetic 
theory (see e.g. [15, 34]). The last two terms, however, are unphysical. They 
follow from the discreteness of the model. 

Notice that the momentum equation Eq. (2.24) is still very general, as 
we have not yet restricted ourselves to a given set of collision rules. (In fact, 
the actual structure of the lattice has not been used either.) The tensors II 
and S in Eq. (2.24) must be expressed in terms of hydrodynamic variables 
p and u, before we can see if the momentum equation of the lattice gas 
is really the standard Navier-Stokes equation. This derivation requires an 
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expression for Ni (the zeroth- and first-order terms Ni(o) and NP) are found 
to be enough) as a function of p and u. The explicit form of the collision 
operator is needed here. 

In the FHP-I model only 2- and 3-particle collisions are included, and 
the collision operator ni is 

(2.25) 

Here Dj denotes a two-particle collision which removes a type j and a j + 3 
particle and produces two other (j + 1 and j +4, or j -1 and j + 2) particles. 
(Here index j runs periodically. For j = 7 e.g., the value j = 1 is given.) 
Similarly, Tj denotes a three-particle collision between type j, j + 2 and 
j + 4 particles. Factor q is a boolean quantity which decides with equal 
probabilities, which of the two possible outcomes of the two-particle collision 
will be chosen (i.e. (q) = ½)- The operators Dj and Tj are functions of the 
particle occupation numbers ni. The two-body collision operator Dj , e.g., is 

Taking an ensemble average over ni, we get 

where, e.g.,

1 1 
-(Di)+ 

2
(Di-1) + 

2
(Di+1)

-(Ti)+ (Ti+3), 

(2.26) 

(2.27) 

(2.28) 

The ensemble averages (ninjnk ... ) are not easy to evaluate. To simplify the 
problem, the Boltzmann hypothesis of molecular chaos familiar from kinetic 
theory [34] is now used: we assume that collisions between the particles will 
destroy the particle-particle correlations so quickly that, in hydrodynamic 
phenomena, they are irrelevant. The Boltzmann hypothesis enables us to 
express the collision operators (Di) as products of (nj) = Nj. The three­
body collision operator (Tj), e.g., can be written in the form 

(2.29) 

The solution of Eq. (2. 7) becomes now much easier, although tedious 
analysis is still needed. We shall first Taylor-expand the collision operator 
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(0) (1)0.i(N) (remember that Ni= N
i 

+ ENi + ... ). We find

The collision operator must be of order E
1 at least [29], but the right hand 

side of Eq. (2.30) has a contribution of order Eo. We thus get in the zeroth 
order 

(2.31) 

This equation is used to determine N?). The solutions N?) make the colli­
sion term vanish, and for this reason they are known as the local equilibrium

solutions. Physically they correspond to a situation where the rate of each 
type of collisions equilibrates. The first-order equation is obtained from 
Eqs. (2. 7) and (2.30) [29]: 

(2.32) 

When the equilibrium solutions N?) have been found, the first-order terms 
NP) can be obtained from Eq. (2.32). 

The derivation of N?) from Eq. (2.31) is quite complicated and will be 
omitted here. The final result is [29] 

where 
3-p 

g(p) = 
-

6 
-. 

-p
(2.34) 

Here the following tensor properties of the triangular lattice have been used:

6 

L CiaCi{J = 380{3. 

i=l 
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Two additional tensor properties are needed below, i.e.

6 

6 

I: CiaCi(]Ci"'( 

i=l 

L CiaCi(]Ci,Cio = 

i=l 

0 (2.37) 

(2.38) 

Notice that all the tensors defined by Eqs. (2.35) - (2.38) are isotropic. For 
this reason the structure of the underlaying (triangular) lattice is not man­
ifested in the macrodynamics of the system. This is an important reason 
for using the triangular lattice; in a square lattice the fourth-order tensor 
of Eq. (2.38) would be anisotropic. (In three dimensions no regular lat­
tice exists that would make a single-speed model isotropic. Therefore a 
three-dimensional projection of the four dimensional face-centered hyper­
cubic ( fchc) lattice is usually used.) 

The zeroth order term II�0J = I.:;i VfoVif3N?) can now be calculated by 
substituting N?) into it. The result is [29] 

(2.39) 

= (2.40) 

The corresponding result in kinetic theory is II�0J = p6af3 + puaU(] [15, 34]. 
So, in the FHP-I model, pressure is given by 

v
2 p

p = 2P ··- 2·g(p)u2 . (2.41) 

The term v; p above corresponds to the ideal-gas equation of state at constant 
temperature. (In the FHP model temperature is not defined, and the equa­
tion for conservation of kinetic energy is identical to the mass-conservation 
equation.) The pressure of Eq. (2.41) also includes an unphysical velocity­
dependent term -�g(p)u2. However, this term is small in the incompressible 
limit, i.e. with small Mach numbers [5]. (The Mach number Ma is defined 
as Ma= u/cs, where c8 is the speed of sound.) 

Now, we can finally calculate the first-order momentum equation by sub­
stituting rr�0J into Eq. (2.19). We shall utilise here the standard approxi­
mation of hydrodynamics, that at low Mach numbers the fluid density is 
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non-constant only in the pressure term. We find [29] that 
(2.42) 

This expression differs from the standard Euler equation Eq. (1.6) in that the convection term includes a density dependent coefficient g(p). Equation (2.42) is not therefore Galilean invariant. The speed of sound Cs for the FHP-I model can be calculated from Eqs. (2.18) and (2.42) with the substitution p = Po+ 8p and u = 8u. Here 8p and 8u are small fluctuations that propagate with the speed of sound Cs. We find [29] that 
(2.43) 

We can thus write (2.44) 
The first-order non-equilibrium term NP) can now be solved from Eq. (2.32) by substituting Ni0) into it. The result is [29] 

NP) 
= 3p(l :'r/p/6)3 

(CiaCifJ - �8a(J)01(JPUa. (2.45) 
(The terms higher than O(u) have been omitted.) Finally, N?) and NP) can be substituted into Eq. (2.24) with the result [29] that

Ot(Pua) + O(J(g(p)puau{J) = 

-'vp- OfJ [
2p(l ::/6)3 

(8a(J'v · (pu) - (8aUfJ + OfJUa))l 
ryv2

2

-8
'v PUa , (2.46) 

where pressure p is given by Eq. (2.41). In the limit of low Mach numbers we shall once again assume that density is nonconstant only in the pressure term. Then, the continuity equation Eq. (2.23) gives 'v • (pu) = 0, and we find [29] 

where 
OtU + g(p)(u · 'v)u = --'vp + v'v2u, 

p 

2 ( 1 1)v = ryv 
2p(l - p/6)3 -

8 
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Figure 2.3: The density dependence of kinematic viscosity v of the FHP-I 
and FHP-III models. 

is the kinematic viscosity of the fluid. Here Vcoll = rJV2 /2p(l - p/6)3 is 
the collision viscosity, which is caused by the propagation and collisions 
of particles. The term 1/J.att = -½rJv2 is the lattice viscosity which has no 
counterpart in real world. It originates from an unphysical term � ( 8t1 

rr�0J + 
8

-y
Si�--) in Eq. (2.24), caused by the discreteness of the lattice. Fortunately, 

lattice viscosity appears in the macroscopic equation in such a way, that its 
only effect is a change in the total viscosity v of the fluid. 

We show in Fig. 2.3 the density dependence of viscosity. It is evident 
from this figure that increasing density from zero decreases viscosity up to 
p = 1.5, where viscosity reaches its minimum v = 0.67. (Here, and also 
below, lattice units are always used if the units are not specified.) This 
decrease is caused by an increase in the collision rate, which slows down the 
momentum diffusion in the system. The probability of two- and three-body 
collisions is small when density is high. For this reason viscosity increases 
after p = 1.5. (Notice that the derivation of Eq. (2.48) includes several 
simplifications. This expression is therefore not exact, and in practice the 
fluid viscosity is usually determined from simulations.) 

The lattice viscosity is not the only unphysical artefact in Eq. (2.47). 
The g(p) dependence of the convection term g(p)(u· v')u leads to a model in 
which Galilean invariance is violated. One cannot get rid of this problem by 
tuning the density as g(p) is always smaller than one (cf. Fig. 2.4). However, 
because density is approximately constant, the g(p) factor can be absorbed 
in a renormalization of time by 8t1 

-+ g(p)a;, and the traditional Navier­
Stokes equation is then obtained [5, 29]. One should also notice that, if we 
set p = 3, the convection term in Eq. (2.47) vanishes, and we get a Galilean 
invariant time-dependent Stokes equation. 
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Figure 2.4: The density dependence of the g(p) term of the FHP-I and 
FHP-III models. 

2.4 The FHP-III model 

In real gases viscosity is proportional to the mean free path Amfp of the atoms 
or molecules. This is true also for the lattice gases. In the FHP-I model [29] 

(2.49) 

where Vcoll is the collisional viscosity of the fluid, and Amfp is the mean free 
path of the lattice-gas particles. The minimum value of this mean free path 
Amfp = 8.0, is quite large, and the minimum viscosity is thus high in this 
model [29]. 

The mean free path can be decreased by increasing the collision proba­
bility. This can be done by increasing the number of different types of col­
lisions and introducing rest particles into the model. In the FHP-III model 
one rest particle and all possible collisions are included [4]. (The collision 
table is shown in Fig. 2.5.) The dynamics of the system is once again given 
by Eq. (2.47), but with different expressions for g(p) and v(p) (see Figs. 2.3 
and 2.4) [4]: 

and 

7 1- 2p/7 
g(p) =

12 1 - p/7 

2 ( 1 1)
v(p) = rJV 

4p(l - p/7)(1 - 8p(l - p/7)/49) 
-

8 .

(2.50) 

(2.51) 

According to Eq. (2.51), the minimum viscosity of the FHP-III model is 
v = 0.075 (at p = 3.5). With this density g(p) is zero, and the Stokes 

equation is obtained. The sound velocity is c5 = /ft [4]. At p = 3.5 the 
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Figure 2.5: The collision table of the FHP-III model. 76 of the 128 different 
particle configurations lead to a collision. (Taken from Ref. [29].) 

mean free path of the FHP-III model is Amfp = 2.9. (Here one assumes that 
a particle of type i is involved in a collision if it disappears in the collision 
process. One gets Amfp = 1. 7 if the particles are regarded colliding although 
they would not disappear in the collision process.) 

We have used the FHP-III model in our lattice-gas simulations. 

2.5 Other lattice-gas models 

There are no three-dimensional lattices that would yield a fourth-order iso­
tropic tensor Eq. (2.38) in a one-speed model. For this reason 3D lattice-gas 
simulations are usually performed using a 3D projection of a one-speed model 
in the 4D face-centered hyper-cubic (fchc) lattice [2, 4, 5, 35]. This way one 
gets a 3D two-speed model with rest particles included. Although 3D lattice­
gas simulations require much more computing power than 2D simulations, 
one can perform realistic simulations even on workstations [36, 37, 38]. 

The lattice-gas method can be modified in many ways. The various 
applications include miscible and immiscible multiphase flows [5, 38, 39, 40, 
41], reactive systems [42, 43, 44], osmosis [45], suspension flows [46, 47], 
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thermodynamics [48, 49], and magnetohydrodynamics [50]. There are also 
multi particle models ( called integer lattice gases), where several particles 
can stay on each link [51, 52]. With these models most of the statistical 
noise is eliminated, Galilean invariance is obtained, and smaller viscosities 
can be reached. 
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Chapter 3 

Lattice-Boltzmann 

hydrodynamics 

In the previous chapter we derived the macroscopic equation for the dy­
namics of the lattice-gas model. In this chapter we introduce the lattice­
Boltzmann model, in particular the lattice-BGK model, and show how the 
macroscopic Navier-Stokes dynamics is obtained from its microdynamics. 
Once again, we try to clarify the assumptions and the required physical fea­
tures on which this model is based, without going too deep into the technical 
details. 

For lattice-Boltzmann models the classical review paper is Ref. [7]. Other 
useful references are Refs. [6, 29]. Our derivation of the Navier-Stokes 
equation is based on Ref. [29], where for both the lattice-gas and lattice­
Boltzmann models an excellent presentation of this derivation is given. 

3.1 The lattice-Boltzmann method 

The spontaneous statistical fluctuations inherent in lattice-gas models are 
important if long-time tails in the velocity autocorrelations are needed [29]. 
(They are important e.g. in reaction-diffusion models.) In many physical 
situations spontaneous fluctuations and many-particle correlations can be 
safely ignored, and one would like to eliminate the fluctuations before the sim­
ulation, not during it. This is exactly what is done in the lattice-Boltzmann 
method. Instead of simulating the dynamics of boolean-particle populations, 
the Boltzmann equation 

(3.1) 
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is directly simulated. Here fi(r, t) gives the probability of having a particle of 
type i (or alternatively, the density of type i particles) at (r, t), and ni(r, t)
is a collision operator. (With the symbol Ji instead of Ni for the particle 
populations, we want to emphasize that now we are directly dealing with real 
numbers instead of integers.) In contrast to Eq. (2.6), the collision operator 
can here be chosen quite freely, whereas in the lattice-gas model the collision 
operator was given purely by the possible particle-particle collisions. As we 
shall see, this freedom in choosing ni gives several advantages: viscosity 
can be tuned easily and small viscosities can be obtained, the model can be 
made Galilean invariant, the velocity dependence of pressure can be removed, 
and the model can easily be expanded to 3D. The main drawback of the 
model, when compared to the lattice-gas model, is the lack of unconditional 
numerical stability. 

We discussed in Chapter 1 the historical development of the lattice­
Boltzmann models. Here we shall restrict ourselves to the latest model, the 
lattice-BGK model, where the collision operator is based on a single-time 
relaxation to the local equilibrium distribution [13]. This is the simplest 
model in the hierarchy of lattice-Boltzmann models, and it is regularly used 
in practical lattice-Boltzmann simulations. (Notice that the abbreviation 
BGK stands for Bhatnager, Gross and Krook who, in 1954, first considered 
a collision term with a single relaxation time [53].) 

3.2 From lattice-Boltzmann microdynamics 

to macroscopic hydrodynamics 

In the lattice-BGK model a single-time relaxation collision operator ni = 
t U?) ( r, t) - Ji ( r, t)) is used, and the dynamics of the system is given by the 
equation 

Here, fi(r, t) is the particle density on the i-th link at (r, t), i0
) is the 

equilibrium distribution, and � is a relaxation parameter. The equilibrium 
distribution i0

) is chosen to produce the required behaviour for the lattice­
Boltzmann fluid. The first requirement for i0

) is of course mass and momen­
tum conservation, but, with a suitable choice of J?), many other properties 
can be obtained. 

28 



4 

vj 

Figure 3.1: Left: The D2Q8 model has eight different particles and two dif­
ferent particle speeds. Right: The masses associated with the fluid particles. 
(Taken from Ref. (29].) 

NoLice that the type of relaxation of Ji towards l0
) depends on ( (13]: 

if ( > 1, relaxation is called subrelaxation (here Ji relaxes monotoneously 
towards l0l), if ( = 1, the velocity distribution is immediately relaxed, and 
if 1/2 < ( < 1, relaxation is called over-relaxation (now ]i fluctuates around 
l0l). If e is equal or smaller than 1/2, the algorithm is unstable. 

In 2D lattice-Boltzmann models there are two basic choices for the sim­
ulation lattice. One could use once again the triangular lattice, but a square 
lattice is usually chosen due to its easier data structure. We shall study 
here the lattice-BGK D2Q8 model (here D denotes the dimensionality of 
the problem, and Q is the number of links per lattice point). In this model, 
the lattice points are connected to their nearest and next nearest neighbours 
(see Fig. 3.1). There are eight different particles, as rest particles are ex­
cluded, and two different particle speeds Vi: 1 • # and v'2 · #. (Here A and rJ 
are the lattice spacing and the lattice time step, respectively.) 

The solution to the equation Eq. (3.2) is once again obtained by using 
the Chapman-Enskog expansion 

(3.3) 

where the equilibrium distribution l0
) is now defined as 
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Here a, b, e, h are constants which are determined in such a way that the 
required fluid properties are obtained. (The general form of F?) can also be 
seen in Eq. (2.33).) An isotropic model is obtained with the choice mi = 4 
for odd i, and mi = 1 for even i (see Fig. 3.1). With this choice we get the 
following tensor properties [29]: 

8 

L miCia: 0 (3.5) 
i=l 

8 

L miCicJ.Cif3 = 12v20af3 (3.6) 
i=l 

8 

L miCia:Cif3Ci-y = 0 (3.7) 
i=l 

8 

L miCiaCif3Ci-yCio = 4v4(oa130,,0 + Oa-yOf3o + Oaoo13,,) (3.8) 
i=l 

(cf. Eqs. (2.35) - (2.38)). 
The hydrodynamic variables p, u and II can be expressed in the forms 

( cf. Eqs. (2.3) - (2.5)) 

and 

8 8 

p(r, t) = L fi(r, t) = L miFi(r, t),
i=l i=l 

8 8 

(3.9) 

p(r, t)u(r, t) = L vifi(r, t) = L miviFi(r, t), (3.10) 
i=l i=l 

8 8 

IIc,13(r, t) = L Via:Vi13fi(r, t) = L miVfo:Vif3Fi(r, t). (3.11) 
i=l i=l 

We can now derive the constants a, b, e, h for the equilibrium distribu­
tion Eq. (3.4). The collision operator Di = miwi must conserve mass and 
momentum, i. e

and we find [29] 

8 8 

Lmiwi = 0, 
i=l 

Lmiviwi = 0, 
i=l 

l 
b = 2_ 12h + 20e = 0. a= 20' 12' 
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For the zeroth-order momentum tensor rr�0J we find in a similar way [29]
IT�0J = L miVic,Vif3pp)

i=l 

= 12v2 (a+ (e + i) �:) p6af3 + 8hpuaUf3,
A Galilean invariant model is thus obtained if we choose

which implies that 3 
e=--. 40

The expression for rr�J now reads
IT�0J = P6af3 + PUaU/3,

where the hydrostatic pressure p is given by
p=l2v2 a+(e+-)- p=-v2 1--- p.( 

h u
2

) 
3 ( 2 u2

) 
3 v2 5 3 v2 

We can now write ( cf. Eq. (2.44))
IT�J = c;p5a/3 + O(u2

),

where the speed of sound Cs is
3 c; = -v

2 . 5

(3.14)
(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
(In Eq. (3.19), the pressure is velocity dependent. In the 9-link lattice-BGKmodel a rest particle is included, and this unphysical artefact is removed[54].) The derivation of the N avier-Stokes equation is similar to the correspond­ing derivation for the lattice-gas model. The Boltzmann equation Eq. (3.2)is first Taylor-expanded, and then Eqs. (2.12), (2.13) and (3.12) are used.After some algebra one finds [29] 

i::i i::i [ ,,, ( (o) a (o) )] UtPUa + Uf3 IIa/3 + 2 EOt1 rr
a
/3 + ,S a/3, = 0, 
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where si�, is defined as 

S(o) - "'m·v· v 
13

v· p(O) 0,/3, - L..., i io, i i, i . 

i=l 

(3.23) 

Equation (3.22) is identical with Eq. (2.24), because only the conservation 
properties of the collision operator, but not its actual form, have so far been 
used. 

Now, we need to derive si�,, and the first-order term in the momentum 
tensor Ilo,/3 = rr�0J + II�1J + ... (II�J is already known). To this end the first­
order correction to the velocity distribution Fi is needed. It can be derived 
from an equation similar to Eq. (2.32), namely [29] 

After some manipulations we find [29] that 

(1) b av2 

Fi = -ry� v2 
(vio,Vif3 - b8°'13)810,pu13.

(3.24) 

(3.25) 

(Here we have not yet substituted the coefficients a, b, e, and h in the equi­
librium distribution.) Now we can substitute FP) into the first order term 
II�1J of the momentum tensor [29]: 

rr(l) E o,/3 = EL miVio,Vit3FP) 
i=l 

ryv2�[(12a - 4b)80,13'v' · pu 
-4b(813puo, + 80,pu13)].

(3.26) 

(3.27) 

(We have used E01, = 8,.) On the other hand, we can substitute F?) into 
si�,, and find [29] that 

si�, = L miVio,Vif3Vi,F?) 
i=l 

v2 

= 

3
p(u,8o,f3 + u1380,, + uo,8t3,). 
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Equations (3.18), (3.27) and (3.29) can finally be substituted into Eq. 
(3.22) and, after some algebra, we find [29] 

(3.30) 

In the case of an incompressible fluid, 'v • pu = 0, and we get the usual 
N avier-Stokes equation 

where 

1 
OtU + (u · 'v)u = --'vp + v'v2u, 

p 

22� - 1 
11=7]V --

6 

(3.31) 

(3.32) 

is the kinematic viscosity of the lattice-Boltzmann fluid. (Here the term 
111att = -77v2 / 6 is caused by the lattice dicreteness.) It is evident from 
Eq. (3.32) that the kinematic viscosity II is independent of fluid density. 
Also, one can get an arbitrarily small viscosity for � -+ ½. However, viscosity 
must not be too small as the dissipation length scale should always be much 
bigger than the lattice spacing A [29]. The lattice-Boltzmann algorithm may 
furthermore become unstable for very small values of �. 

3.3 Other lattice-Boltzmann models 

In the literature different formulations of the lattice-BGK model can be 
found. The differences lie e.g. in the use of rest particles, and in the con­
nectivity of the lattice being used. 

In two dimensions the most common model is the D2Q9 model, which 
is the D2Q8 model with a rest particle included. (We have used this model 
in our 2D lattice-Boltzmann simulations.) As the lattice-Boltzmann method 
was originally developed from the lattice-gas model, the first lattice used in 
3D simulations was the D3Q19 lattice [7], which is a 3D projection of the 4D 
face-centered hyper-cubic (fchc) lattice used in 3D lattice-gas simulations. 
In this model each lattice point is connected with its six nearest and twelve 
next-nearest neighbours (see Fig. 4.4). Later it was realized that the relative 
freedom in choosing the lattice-Boltzmann equilibrium distribution also gave 
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Model 0 I II III 
D2Q9 4/9 1/9 1/36 0 
D3Q15 2/9 1/9 0 1/72 
D3Q19 1/3 1/18 1/36 0 

Table 3.1: The coefficients mi in the equilibrium distribution J?) for the 
different lattice-BGK models [13, 55]. 0 indicates a rest particle, I is for 
links pointing to the nearest neighbours, II is for the links pointing to the 
next-nearest neighbours, and III is for the next-next-nearest neighbours. 

some freedom in choosing the structure of the simulation lattice. As a result, 
the D3Q15 model was developed [13]. In this model each lattice point is 
connected with its six nearest and eight next next-nearest neighbours (see 
Fig. 4.4). In both these 3D models rest particles are included. 

The D3Q14 and D3Q18 models are obtained from the D3Q15 and D3Q19 
models, respectively, by excluding the rest particles. However, the presence 
of rest particles is often desirable for improving the accuracy of the model 
(rest particles remove the unphysical velocity dependence of pressure) [57]. 
Also, for a small relaxation time (, the rest particles may be needed to 
stabilize the system [56]. Therefore, the D3Q15 and D3Q19 models are 
most often used in practical simulations. 

The computational intensity and memory requirements of the lattice­
Boltzmann model scale linearly with the number of fluid particles. The 
D3Q14 and D3Q15 models are thus somewhat more efficient than the D3Q18 
and D3Q19 models. However, in the D3Q14 and D3Q15 models there can 
appear checkerboard behaviour in the fluid momentum, i.e.,the momentum 
may form unphysical regular patterns. This will be demonstrated in Chapter 
4. 

There are several possible realizations for the equilibrium distributions 
of these models (see Refs. [13, 55, 58, 59]). One choice is [13] 

(3.33) 

where Cs = 1/ v'3 is the speed of sound. The weight factors mi for the D2Q9, 
D3Q15 and D3Q19 models are shown in Table 3.1 [13, 55]. In these models, 
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the kinematic viscosity is z; = (2t - 1)/6 [13], and the fluid pressure is 

p(r, t) = c;(p(r, t) - p) = c;.6.p. (3.34) 

Here p is the mean density of the fluid. 
The lattice-Boltzmann method is very flexible. It can be modified to 

many different problems, such as multiphase flows [14, 27, 60, 61, 62, 63], 
suspension flows [15, 58, 64, 65, 66, 67], thermodynamics [68, 69, 70], growth 
processes [71], turbulence [72, 73], magnetohydrodynamics [74], reactive sys­
tems [75], non-Newtonian flows [76], and flows in complex geometries. There 
are also models for non-uniform lattices [77, 78, 79]. 
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Chapter 4 

Some practical problems in 

the lattice-gas and 

lattice-Boltzmann models 

In this chapter we discuss several more or less practical problems related 
to the lattice-gas and lattice-Boltzmann models. In the first section general 
problems related to these models are discussed. In the following two sections 
these models are discussed separately. In the last section the parallelization 
of the lattice-Boltzmann model is discussed. 

4.1 General remarks 

The numerical quality of lattice-gas and lattice-Boltzmann simulations are 
determined mainly by the following error sources [V, 6, 59, 80, 81, 82]: 

1. Finite-size effects. They are caused by insufficient number of lattice
points in the smallest pores and obstacles of the flow system compared
to the mean free path of the fluid particles.

2. Compressibility errors. They are caused by variations in density that
violate the assumption of incompressible flow. These variations are
caused by the fact that, in these methods, small fluctuations in the
density are associated with variations in pressure.
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3. Boundary effects. In principle, these methods are second-order conver­
gent in space. However, close to the boundaries this convergence may
be violated.

Moreover, in lattice gases the statistical fluctuations are an important source 
of error. In practice one cannot easily separate the errors caused by these 
various effects, but the total error can often be estimated by simulating the 
problem for several system sizes. 

4.1.1 Implementation of solid boundaries 

In lattice-gas and lattice-Boltzmann simulations the no-slip boundary con­
dition is usually realized using the bounce-back condition [83, 84, 85]. In 
this approach the momenta of particles meeting the wall points are simply 
reversed. Bounce back can be applied either at wall points or in the mid­
dle of the streaming phase halfway between the fluid and solid points. For 
stationary flows these approaches are equivalent. 

The bounce-back boundary generates errors which may violate the second­
order spatial convergence of these methods. In lattice gases, e.g., it creates 
a Knudsen boundary layer close to the walls [31, 83, 84]. 

The validity of the bounce-back condition has been widely discussed in 
particular in the case of the lattice-Boltzmann method [V, 80, 82, 85]. In 
simple shear flows, this condition determines the location of the wall to 
be exactly halfway between the last fluid point and first wall point. In

more complicated cases the no-slip boundary usually is somewhere between 
the last fluid point and the first waH point, the exact place depending on 
the relaxation parameter and the geometry of the system [V, 86]. More 
sophisticated boundaries, which model a no-slip boundary exactly at the 
wall node ( the so-called second-order boundaries), have been proposed by 
several authors, but unfortunately most of them are restricted to regular 
geometries (like flat walls and octagonal objects) [59, 80, 82]. For practical 
simulations the bounce-back boundary is very attractive, because it is a 
simple and computationally efficient method for imposing no-slip walls in 
irregular geometries. 

Finally notice that, in Ref. [87], a model for arbitrary boundaries (i.e. 
cutting through the lattice links) is presented. 
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4.1.2 Pressure boundaries, velocity boundaries, and body 

force 

Successful numerical simulation of practical fluid-flow problems requires that 
the velocity and pressure boundary conditions of the system have been im­
posed in a consistent way. However, general velocity and pressure bound­
aries are still under development for both the lattice-gas and the lattice­
Boltzmann method. So far most of the practical simulations have used a 
body force [14, 31, 88] instead of pressure or velocity boundaries. 

When a body force is used, a pressure gradient acting on the fluid is 
replaced by a uniform external force. (Usually periodic boundaries are im­
posed at least in the direction of the flow.) The use of a body force is based 
on the assumption that the effect of an external pressure gradient is ap­
proximately constant all over the system, and that it can be replaced by a 
constant force that adds at every time step a fixed amount of momentum to 
fluid particles. 

In the lattice-gas model a uniform body force is obtained by changing at 
each time step at randomly chosen lattice points the momenta of particles 
in a preferred direction. In the lattice-Boltzmann method body force is 
simulated by adding at each time step a fixed amount of momentum to all 
fluid particles within the void volume. This addition can be done in several 
ways. We have added the momentum to links with a nonzero projection in 
the direction of the force, taking into account the weights mi of the links. 

In a simple tube flow the body-force approach is exact. In more compli­
cated geometries this approach is supposed to work best with small Reynolds 
numbers, because then nonlinear effects on the flow are small. 

4.1.3 Some effects of lattice discreteness 

In Fig. 4.6 we show the surface of a sphere in one plane of a cubic lattice. 
It is evident that the surface is quite rough. In traditional CFD the com­
putation grid can be made denser close to the surfaces, and the location of 
the grid points can be chosen freely. In the simplest lattice-gas and lattice­
Boltzmann models this is not possible. Fluid, however, tends to "smooth" 
rough surfaces [V, 89]. In Ref. [2], e.g., 2D fluid flow around a smooth cylin­
der and a pathologically rough cylinder was simulated with the lattice-gas 
method. The difference between the simulated drag forces was only 4%, 
although the variation in the radius of the rough obstacle was as much as 
10%. Smoothing is also seen in the values of hydrodynamic radii a of vari-
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ao 1.5 2.5 4.5 8.5 16.5 
a 1.36 2.43 4.49 8.53 16.54 

Table 4.1: The actual radii ao and the averaged hydrodynamic radii a for 
randomly placed 2D cylinders. 

ao 1.5 2.5 4.5 8.5 
a 1.54 2.61 4.53 8.47 

Table 4.2: The actual radii ao and the averaged hydrodynamic radii a for 
randomly placed 3D spheres. 

ous obstacles in lattice-Boltzmann simulations. (The hydrodynamic radius 
can often be derived by simulating fluid flow in an infinite array of obstacles 
[15].) For�= 1.0, e.g., one finds a= 5.56, 11.56 for 2D cylinders with actual 
radii of a0 = 5.5, 11.5, respectively. (The centre of the cylinder has been 
placed on a lattice point.) So, the apparent roughness of the surface does 
not necessarily have a big effect on the accuracy of the simulations. (The 
things are, however, made a little more complicated by the fact that a may 
depend quite strongly on� as we will see below.) 

If the obstacles move, as is the case in suspension simulations, their 
shapes vary in time due to the lattice discreteness. In such cases the dis­
creteness of the system can be taken into account by averaging the hydro­
dynamic radius over a large sample of randomly placed obstacles. We show 
in Table 4.1 the averaged hydrodynamic radii for 2D cylinders in the case 

� = 1.0 [90]. The corresponding values for 3D spheres are shown in Table 
4.2 [15]. 

4.1.4 Finite-size effects 

The accuracy of lattice-gas and lattice-Boltzmann simulations depend on 
the ratios of the mean free path Amfp of the fluid particles to the sizes of 
the obstacles and pores [6, 14, 88, 91, 92, 93]. The simulated flow field 
does not display true hydrodynamic behaviour unless these ratios are small. 
This kind of Knudsen-flow behaviour is found also in real fluids [17]. These 

40 



effects must always be considered when lattice-gas and lattice-Boltzmann 
simulations are performed. They determine the minimum size of the pores 
and the obstacles, and thus also the minimum size of the simulation lattice. 

Finite-size effects restrict to some extent the use of the lattice-gas and 
lattice-Boltzmann methods. In porous media close to the percolation thresh­
old, e.g., many pores are very small, and very big lattices may be needed to 
perform realistic simulations. It is not clear, however, whether the finite-size 
effects are always dominated by the minimum pore size, or could sometimes 
the average pore size be more important. One has to also remember that in 
some applications, the qualitative structure of the flow field may be enough 
[II, III]. So, with each application, the importance of finite-size effects must 
be estimated separately. 

4. 1.5 Staggered invariants 

In the lattice-gas and lattice-Boltzmann models, the basic ingredients of the 
dynamics are the local conservation of mass and momentum. Of course, it 
is not desirable to have any other unphysical conserved quantities, spurious 
invariants, in the dynamics. As we have discussed before, one problem of the 
HPP model was that the momentum along each vertical and horizontal line 
was also conserved. One could get rid of these quantities in the FHP model. 
However, in all lattice-gas and lattice-Boltzmann models the discrete nature 
of the system creates another class of spurious invariants, called staggered 

invariants [15, 29, 30]. They have obtained this name because they depend 
on the parity of space and time. Staggered invariants may play an important 
role in the behaviour of the lattice-gas and lattice-Boltzmann models [29, 
30]. The influence of staggered invariants, however, can be minimized by 
properly choosing the initial condition of the fluid particles [29, 30]. Spatial 
or temporal averaging can also be used to eliminate them [15]. 

4.1.6 Saturation time in steady-state simulations 

In permeability simulations, e.g., a simple dimensional analysis shows that, 
for a constant body force, the saturation time tsat needed to reach the steady
state is of the form 

tsat CX R;ore / V, (4.1) 

where Rpore is the characteristic length of the void pores in the system and v
is the kinematic viscosity of the fluid. For systems with high porosity <p, the 
saturation times can therefore be very long. In some cases, tens of thousands 
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of time steps may be needed. It is thus evident that a constant body force 
can be computationally inefficient, especially when one is only interested in 
the steady-state solution. (In standard computational fluid dynamics, this 
problem can be overcome by solving the time-independent flow rather than 
the complete Navier-Stokes equation.) 

In time-dependent flows, accurate initial conditions are obligatory [59], 
whereas in time-independent flows, properly chosen initial conditions may be 
used to speed-up saturation. Such conditions cannot be easily found directly. 
However, if the essential dimensionless numbers, like the Reynolds number, 
are kept constant, the simulations may first be carried out either on a smaller 
lattice or for a clearly higher viscosity. In both cases the simulation time will 
be smaller than in the original system. Due to discretization errors and finite­
size effects, the obtained velocity and pressure fields may be quite inaccurate, 
but they can be used as good initial guesses for the final simulation. 

The saturation time can also be reduced by using the Iterative Momen­
tum Relaxation (IMR) method, where the applied body force is adjusted 
during the iteration in a definite relation to the change in the fluid momen­
tum during iteration steps. This method is described in detail in Ref. [V]. 

4.1. 7 The numerical efficiency of the lattice-gas and lattice-
Boltzmann models 

In the standard lattice-gas model 24 bits are needed to describe a particle 
configuration in 3D, whereas in the lattice-Boltzmann model 15 - 19 real 
numbers must be used. Also, the lattice-Boltzmann collision operator re­
quires several floating point operations whereas the lattice-gas collisions can 
be realized with simple look-up tables. Thus, one could expect that the 
lattice-Boltzmann method is computationally much more intensive and has 
significantly higher memory requirements than the lattice-gas method. How­
ever, in the lattice-gas simulations the spatial and temporal averaging that 
are needed for extracting smooth hydrodynamic fields severely decreases the 
performance of the method. Also, due to the relatively high fluid viscosity, 
big lattices are needed for high Reynolds-number simulations. So, for low 
Reynolds numbers and for such applications where only the average fluid 
velocity is needed (this is e.g. the case when the permeability of a porous 
medium is being determined), the lattice-gas method may be more efficient 
[14]. However, for high Reynolds-number flows, and when a detailed knowl­
edge of the hydrodynamic nelds is required, the lattice-Boltzmann method 
is likely to perform better [94]. 
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The performance of lattice-gas and lattice-Boltzmann methods against 
more conventional methods strongly depends on the application. Without a 
local grid refinement, these methods are computationally rather inefficient 
in many practical engineering problems if the geometry of the system is 
relatively simple. However, this inefficiency may often be more than com­
pensated by the total time spent on solving a problem, as grid generation 
is often the most time-consuming part with traditional methods. Parallel 
computing can also be used to surpass this problem. 

Generally speaking, the more complicated the fluid-flow problem is, the 
more efficient the lattice-gas and lattice-Boltzmann methods are expected to 
be. The performance of these models should thus be relatively high for such 
applications as multiphase flows, suspension flows, and flows in complex ge­
ometries. However, specific head-to-head comparisons that would verify this 
view are very rare. In this respect Ref. [95] is perhaps the most thorough 
study to date. In this reference a detailed comparison between the finite­
element and the lattice-Boltzmann methods was presented for a 3D fluid flow 
in a static mixer used in industrial processes. The geometry of this mixer, al­
though not yet very complicated, is already quite a challenge for traditional 
simulational methods. The lattice-Boltzmann method was found to be less 
memory consuming for this particular application. The computational times 
were similar in both cases, but the !MR-method ( described in the previ­
ous section) would have improved the performance of the lattice-Boltzmann 
method. It was also found that the lattice-Boltzmann method gave reason­
able pressure and velocity fields with both the lattice resolutions used, while 
the pressure fields given by the finite-element method were quite sensitive to 
the computational grid used. We can thus conclude that, for systems with 
very complicated boundaries, the lattice-gas and lattice-Boltzmann models 
are likely to perform better than most traditional methods. 

4.2 The lattice-gas model 

4.2.1 Reynolds number 

The dimensionless form of the Navier-Stokes equation Eq. (1.3) is [1] 

(4.2) 

43 



(The external force has been omitted.) Here Re is the Reynolds number 
which is defined as 

UL 
Re=-, 

I/ 
(4.3) 

where U and L are the typical velocity and length scales of the system, 
respectively, and v is the kinematic viscosity of the fluid. Two systems are 
dynamically similar if their Reynolds numbers ( and system geometries) are 
essentially identical. The similarity of Reynolds numbers is very important 
when simulation results or model experiments are applied to real systems. 

In the FHP-models the Reynolds number is [4, 29] 

R _ LUg(p) 
e - v(p) . 

(4.4) 

The g(p)-term appears here due to rescaling of time, which leads to rescaling 
of viscosity v(p) ➔ v(p)/g(p). 

4.2.2 Finite-size effects 

Several authors have studied the problem of finding a reasonable size for 
pores and obstacles [6, 88, 91, 92, 93] in lattice-gas simulations. It is sug­
gested in Ref. [91] that, in lattice-gas simulations, permeability obeys the 
scaling law 

k = k00 (l + a/ R), (4.5) 

where R is the characteristic size of the system in lattice units, a is a constant 
that depends on the details of the simulation model used, and k00 is the 
asymptotic permeability of the system (i.e. the permeability that would be 
obtained for an infinite lattice). 

We studied for p = 3.5 the size dependence of permeability in a system 
of randomly placed rectangles with a side length of L/10, L being the linear 
lattice size. (see Fig. 5.5). The asymptotic values k00 were derived by fitting 
Eq. (4.5) to the simulated points. 

It is evident from Fig. 4.1 that the predictions given by Eq. (4.5) agree 
well with the simulated results. Also, the 40 x 40 rectangles that were used in 
the permeability simulations give an accuracy better than 5% when porosity 
cp is larger than 0.5. (Notice that for high porosities the obstacle size, and for 
low porosities the pore size, dominate the finite-size effects. For this reason 
the error increases with decreasing porosity.) 
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Figure 4.1: The relative error in permeability as a function of system size L. 
The linear size of the rectangle is L/10. Left: Open circles and the solid line 
show the result for a system with cp = 0. 76. Solid triangles and the dashed 
line show the result for a system with q> = 0.59. Right: The results for a 
system with q> = 0.49. 

4.2.3 Statistical noise 

The boolean nature of the lattice gas makes its dynamics noisy. Noise can be 
damped with a spatial or temporal averaging of particle velocities, but the 
smaller is the fluid velocity, the longer one has to average to get the given 
accuracy. The number of averaging time steps may thus give a practical 
lower limit for the local fluid velocity. 

We derive an equation for the absolute error ..6.uave(T) due to the noise 
in fluid velocity averaged over T times at one lattice point. We take pure 
fluid with density p = 3.5 and velocity u = 0.0. In such a system all the 
128 possible particle configurations are equally probable, and the standard 
deviation of either component of the fluid-momentum vector is 8p = 0.866 at 
each lattice point. Therefore, the absolute error in both velocity components 
is given by 

8p 
..6.Uave(T) � 1m· 

pvT 
(4.6) 

For nonzero fluid velocities all particle configurations are not equally prob­
able. However, the differences in these probabilities are small, and Eq. (4.6) 
can also then be used to determine the statistical error in velocity. 

We checked the validity of Eq. (4.6) in the case of u = 0.07. The results 
are shown in Fig. 4.2. The thick line shows the prediction given by Eq. (4.6), 
and the thin line shows the simulated error. Clearly Eq. ( 4.6) compares 
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Figure 4.2: The absolute error .6.uave in fluid velocity as a function of aver­
aging time T. The thick line is the prediction given by expression Eq. (4.6). 
The thin line shows the simulation results. (The inset figure shows the error 
during the first 100000 time steps.) 

reasonably well with the simulated results. 

Notice that in many cases ( e.g., when the permeability of a porous sample 
is determined) only the total fluid momentum is needed. In such cases the 
averaging time can be quite small. Good accuracy is usually obtained within 
a few hundred or thousand time steps. 

4.2.4 Viscosity 

The analytic derivation of the lattice-gas viscosity requires several simplifi­
cations, and Eqs. (2.48) and (2.51) are thus only approximations. For this 
reason the viscosity is usually determined by direct simulations. There are 
several ways to do this: a simple tube flow [88], relaxation of a periodic 
perturbation [96], and a channel flow in which there are two components 
flowing in opposite directions [31, 97]. The problem with tube flow is that 
the boundary layer generated close to the walls will decrease the accuracy 
of the simulation [31]. For this reason the two latter methods are recom­
mended. The simulations presented in Refs. [31, 96] show that the expression 
Eq. (2.51) gives the viscosity with quite good acccuracy. Deviations from 
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Table 4.3: Dependence of the hydraulic radius a on the kinematic viscosity 
v. The actual radius is ao = 4.5.

the theoretical values are 5 - 15% in a density range of 1.4 � p � 3.5 for 
moderate lattice sizes. 

Notice also that the viscosity of 2D lattice gases diverges logarithmically 
with increasing system size [31]. (In the lattice-Boltzmann models this be­
haviour is not found.) In the FHP-III model this effect vanishes for p = 3.5. 

4.3 The lattice-Boltzmann model 

4.3.1 Shift of the boundary. Finite-size effects 

As discussed above, the exact location of the solid-fluid boundary is depen­
dent on the value of the relaxation parameter ( and the geometry of the 
system. Factor ( also gives the mean free path of the lattice-Boltzmann 
fluid, thereby determining the minimum length scale (in lattice units) for 
true hydrodynamic behaviour of the fluid. It is not easy to separate the 
errors caused by these effects, so we will give some examples of how they are 
manifested in practice. 

In Ref. [V] we studied the location of the boundary in the case of simple 
Poiseulle flow in a tilted tube. We found that the lattice-Boltzmann method 
is second-order convergent for both flat and regular saw-tooth boundaries, 
provided that the no-silp wall is taken to be exactly halfway between the 
solid walls and the adjacent boundary node. The exact location of this wall 
depends on the relaxation parameter (. 

In Table 4.2 the dependence of the hydrodynamic radius a on the actual 
radius ao was shown for ( = 1.0. Surprisingly small spheres, even those of 
ao = 1.5, were found to have a reasonable hydrodynamic radius. This radius 
depends, however, quite strongly on the value of the relaxation parameter. 
For an actual radius of ao = 4.5, e.g., the hydrodynamic radii corresponding 
to different values of v = (2( -1)/6 are [15] given in Table 4.3. It is evident, 
that for the highest and lowest viscosities deviation of the hydrodynamic 
radius from the actual radius is quite large. (For the highest viscosity the 
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Figure 4.3: Simulated dimensionless permeability k/a2 of a 3D random fibre
web as a function of viscosity v for two different porosities. Here a= wp/2, 
and (in lattice units) the fibre widths wp were wp=5 (squares), 10 (circles) 
and 20 (star). 

mean free path is too long in comparison with to the actual radius of the 
obstacle, and for the smallest viscosity the dissipation length is too short in 
comparison with the lattice spacing.) 

In Ref. [14] the finite-size effects related to permeability simulations of 
fluid flow in a tomographic model of sandstone were studied. The permeabil­
ity of the porous sample was there shown to depend approximately linearly 
on the fluid viscosity. We have performed corresponding simulations for 
fluid flow through 3D random fibre webs. (For details of these simulations 
see the next Chapter 5.) In Fig. 4.3 we show the simulated permeability 
as a function of fluid viscosity v for two webs with different porosities. For 
<P = 0.67, the result is seen to be almost independent of the grid resolution 
for the smallest value of viscosity. For <P = 0.39 finite-size effects become 
more pronounced. For the smallest viscosity, a fibre thickness of wp = 10 
seems to give the accuracy of about 15%. (The error estimate was done by 
extrapolating the permeability curves to v = 0.) 

We have also studied in the 2D case the hydrodynamic forces acting 
on a cylinder close to a moving wall. (The wall velocity Vw was 0.05, and 
the relaxation parameter was � = 1.0.) The gap between the wall and the 
cylinder (with an actual radius of ao = 11.5) was in these simulations even 
as small as one lattice spacing. The results were compared with those given 
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by a traditional finite-difference code. 
The results were surprisingly good. The difference in the drag forces as 

determined by the two methods remained below 1 %, even when the gap be­
tween the cylinder and the wall was only one lattice spacing. The maximum 
difference in the lift forces, namely 6%, was obtained for a gap of 4 lattice 
spacings. (For details of this comparison see Ref. [98].) Corresponding sim­
ulations were also performed for a0 = 5.5. In this case the differences in the 
drag and lift forces for a gap of 4 lattice spacings were about 4% and 14%, 
respectively. 

4.3.2 Body force 

In order to check the validity of the body-force approach, we simulated 2D 
fluid flow through a vertically infinite array of cylinders with both the body 
force and pressure boundaries [V]. Pressure boundaries were implemented 
by the method presented in Ref. [81]. The particle Reynolds number was 
Re= 0.4 in these simulations. The differences between the results were small: 
close to the cylinder, the average errors in the velocity and pressure fields 
remained well below 0.5%, whereas the maximum errors were smaller than 
1.0%. 

Thus, for small Reynolds numbers and simple boundary conditions, the 
body-force approach seems quite an accurate substitute to pressure bound­
aries. However, for high Reynolds-number flows, where nonlinear effects are 
dominant, and for more complicated boundary conditions, explicit velocity 
and pressure boundaries may be needed. 

4.3.3 Checkerboard effect in the D3Q14 and D3Q15 models 

In the D3Q14 and D3Q15 models there can be checkerboarding in fluid 
momentum, i.e., fluid momentum may form unphysical regular patterns as 
we have demonstrated in Ref. [V]. 

Let us mark the lattice points ( i, j, k) by black colour if i + j + k is odd, and 
by white colour otherwise. A checkerboard pattern shown in Fig. 4.4 for the 
D3Q19 and D3Q15 models is thus formed. To each lattice-Boltzmann fluid 
particle, we also assign the colour of the lattice point at which they are in the 
beginning of the simulation. If there are no obstacles in the system, it is easy 
to see that, in the D3Q14 model, the black and white particle populations are 
completely independent of each other: the colour of the lattice point at which 
a given fluid particle resides changes at every time step (see Fig. 4.4). As a 
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(a) The D3Q19 (b) The D3Q15 
model. model. 

Figure 4.4: Lattice structures of the D3Q19 and D3Q15 lattice-BGK models. 
The checkerboard colouring is also shown in the figures. 

consequence of this checker board effect, the total mass and momentum of the 
black- and white-particle populations are spurious invariants, i. e. unphysical 
conserved quantities in the D3Q14 model. Similar spurious invariants are 
also found in the HPP lattice-gas model [3]. These invariants can create 
unphysical hydrodynamic modes in the simulated system, and for this reason 
they should usually be eliminated from the model [6]. Notice that, in the 
D3Q18 model, the black and white populations mix immediately with each 
other. Consequently, there is no checkerboard effect in this model. 

In the D3Q15 model the black and white populations are not entirely in­
dependent as they are coupled through the rest particles. However, checker­
board effect may also here lead to unphysical behaviour. If the lattice is 
initialized with equilibrium distributions, such that , e.g., the velocity is set 
to ub at the black lattice points and to Uw at the white lattice points, while 
lubl is equal to luwl, it is easy to see that the total momenta of the black 
and white populations will be conserved quantities. 

We studied the checkerboard effect in the D3Q15 model by following 
the relaxation of a perturbed velocity field for a constant initial density and 
with periodic boundaries imposed in all directions. We found that, on a 
10 x 10 x 10 lattice, fluid remained partialy unmixed in the steady state. 
This behaviour was not found in the D3Q19 model. 

Similar simulations were also performed on a 9 x 9 x 9 lattice. In this 
case the two populations had additional mixing at the boundaries of the 
lattice, as the colouring rule was there uncontinuous due to the length of 
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Figure 4.5: Relaxation of the x component of the momentum at two next­
nearest neighbour sites in the xy plane of a lattice of dimension 9 x 9 x 9. 
The initial perturbed velocity field is the same in both models. 

the lattice being an odd number. As a result, the steady-state momentum 
field was uniform for both models. However, the weak coupling between the 
black and white populations in the D3Q15 model was still apparent in the 
time evolution of the relaxation process. This can be seen in Fig. 4.5, where 
relaxation of the momenta at two next-nearest neighbour sites is shown in 
one direction. In the D3Q15 model the relaxation process is seen to be 

significantly slower, and there are in this case long-lasting oscillations in the 
local values of the momentum. 

We studied the checkerboard effect also in the presence of solid walls. The 
first test case was fluid flow in a rectangular duct. In this case no checker­
boarding was seen. The second test case was fluid flow in a regular array 

of spheres. In this case, the checkerboard effect did not lead to momentum 
oscillations, but the velocity and pressure fields included unphysical regular 

patterns. In Fig. 4.6a we show the relative difference Ev between the velocity 
fields obtained by the D3Q19 and D3Q15 models. Fluid is flowing from left 
to right and periodic boundaries are used in both directions. The gray-scale 
colours change from white to black in the scale -3.0% :S Ev :S 3.0%. In 
Fig. 4.6b we show the velocity profile at the inlet of the system for both 
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Figure 4.6: Comparison of the D3Q15 and D3Q19 simulations of fluid flow 
in a regular array of spheres. 

models. The solid line and open squares show the results for the D3Q19 
and D3Q15 models, respectively. Patterns are clearly seen in both these 
figures. Despite these unphysical effects, the averaged values in the D3Q15 
model, such as the average momentum of the fluid, were very close to the 
corresponding values of the D3Q19 model. 

We can conclude that, in the D3Q15 model, there is a checkerboard 
effect which may appear in the hydrodynamic fields. In some cases boundary 
effects can suppress this unphysical feature. Furthermore, it does not have 
a significant effect on global values such as the average fluid momentum. 
Therefore, in spite of its shortcomings, the D3Q15 model appears a viable 
alternative for steady-state hydrodynamics. 

As Fig. 4.5 demonstrates, in dynamical systems ( e.g. in fluid-particle 
suspensions or in turbulence simulations) the checkerboard effect may slow 
down the relaxation of momentum and can, in principle, induce unphysical 
effects on the dynamics of the system. Notice, however, that solid boundaries 
increase mixing also in the D3Q15 model when bounce back on the links is 
used at the boundaries. 
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4.4 Parallelization of the lattice-Boltzmann model 

Realistic lattice-gas and lattice-Boltzmann simulations often require large 
computational resources and, therefore, are executed on parallel systems. 
Fortunately, the inherent spatial locality of the updating rules of these meth­
ods makes them ideal for parallel processing. 

In this section we briefly discuss the parallelization of the lattice-Boltz­
mann method and present the results of a few performance studies of our 
3D lattice-Boltzmann code. This code has been quite heavily optimized by 
reducing as far as possible the computations related to the application of the 
collision and propagation rules. Also, the order of loops have been designed 
such as to minimize the number of cache misses. With the optimized code, 
an increase in speed by a factor 5 has been achieved as compared to a 
naive implementation of the lattice-BGK evolution rule. The code has been 
implemented in C using the MPI message-passing library [99]. 

4.4.1 Data decompositions 

Basically parallelization of the grid-based algorithms like those of the finite­
difference, finite-element and lattice-Boltzmann models, is done by means 
of the data decomposition strategy in which the computational grid is de­
composed into sub-domains [100]. Each processor performs computations 
in a certain sub-domain, and exchanges information with other nodes in or­
der to resolve dependencies. The two factors controlling the efficiency of 
parallelization are the ratio between the communication and computation 
times, and the balance of workload among the processors. All previously 
reported parallelizations of the lattice-Boltzmann method are based on one­
' two- or three-dimensional decompositions of the computational grid in 
equal sub-volumes, and load balancing is completely ignored for simplicity 
[82, 101, 102]. These decompositions give high efficiencies when workload 
is distributed homogeneously. (By a homogeneous workload distribution 
we mean that obstacles in the fluid are uniformly distributed over the lat­
tice, while in a heterogeneous workload distribution this is not the case.) 
However, in many fluid-dynamical problems, workload may be highly non­
homogeneous and sometimes can even vary dynamically during the simu­
lation. We have introduced a new parallelization approach for the lattice­
Boltzmann method based on the Orthogonal Recursive Bisection method 
[IV]. With this approach high parallel efficiencies can be obtained also for 
heterogeneously distributed workloads, thus supporting efficient simulations 
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Figure 4. 7: The relative efficiencies of the slice and box decompositions as a 
function of the number of processors. Solid lines (- + -) show the results 
for slice decomposition and dotted lines ( · · x · ·) show the results for box 
decomposition. A least squares fit by the theoreLical model [IV] is shown for 
both decomposition strategies. 

of a variety of realistic systems. 

4.4.2 Load balancing for homogeneous workload 
distributions 

For problems with a homogeneous workload, parallelization can be done 
by means of a straightforward decomposition in equal sub-volumes of the 
computational grid. Decomposition may be done, e.g., in one dimension 
('slice decomposition') or in two dimensions ('box decomposition'). These 
methods depend only on the dimensions of the lattice and on the number 
of processors, while the geometry of the application itself is neglected. An 
important feature of the lattice-Boltzmann scheme in this context is the 
inherent spatial locality of the collision operator. Furthermore, interactions 
between processors are only required at the propagation step. The advantage 
of the slice and box decompositions is that the dependencies between the 
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processors are simple due to the regular connectivity of the lattice, and the 
fact that the partitions are of equal size. 

We have studied the performance of our code in the case of fluid flow in 
3D random fibre webs (see the next Chapter 5). The fibres have been placed 
randomly in the system, and the workload is thus approximately balanced 
allover the lattice. In Fig. 4. 7 we show the measured relative efficiencies 
together with a fit by the corresponding analytic performance model to the 
simulated points (see Ref. [IV]). The computations were performed for two 
fibre webs of dimension 100 x 100 x 60 and 200 x 200 x 110 lattice points on 
a 64-node Cray T3E system. 

The fluctuations of the data are caused by the effect of caching and load 
imbalance (when the number of lattice points is not evenly divisible by the 
number of processors). It is evident from these experiments that slice and 
box decompositions are both efficient and useful strategies for problems in 
which the workload is approximately homogeneous. Slice decomposition is 
relatively easy to implement, but its efficiency is seen to be satisfactory only 
when the number of processors is relatively small. For the box decompo­
sition, the efficiency for a lattice of 100 x 100 x 60 is still around 0.9 on 
64 processors. Even for larger lattices efficiences close to one can thus be 
obtained with this decomposition strategy. 

4.4.3 Load balancing for heterogeneous workload 
distributions 

One of the main advantages of the lattice-Boltzmann method is its suitability 
for a large class of different geometries. However, for a heterogeneously 
distributed workload (i.e. for heterogeneous distribution of fluid points), 
slice and box decompositions can result in a considerable load imbalance. 
Consequently, the efficiency of the parallel program will decrease due to idle 
synchronization times. It is therefore important to study decompositions 
that can deal with heterogeneously distributed workloads. The need for 
such load-balancing approaches was already noticed in Ref. [59]. 

The first step in load balancing is to find a partitioning of the grid such 
that differences in the workload of the processors are minimized. There are 
several ways to accomplish this goal. We have chosen the ORB method 
[IV] for two reasons. First of all, from a practical point of view minimiza­
tion of the computation time is more important than minimization of the
communication time, and, in the lattice-Boltzmann method, the communi­
cation overhead is small for moderate lattice sizes [IV]. Secondly, the other
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Figure 4.8: Execution profiles for the different decomposition strategies. The 
test problem is fluid flow in a tube of varying cross section. 

strategies are usually quite expensive and should be used only when the 
communication time becomes significant. 

We implemented the ORB strategy and performed timing measurements 
for a test problem of fluid flow in a tube of varying cross section [IV]. In 
Fig. 4.8 the load distributions for this test case are shown for different de­
composition strategies. The workload is seen to be approximately balanced 
among the processors when the ORB method is used, while in the slice and 
box decompositions, big differences are seen in the computing times of the 
processors. It is thus evident that slice and box decompositions are inefficient 
for this application. 

With 2 - 16 processors the ORB method was found to be 20 - 60% 
more efficient than the slice and box decompositions. Thus, for large-scale 
simulations (execution times of many hours), the benefit gained by load 
balancing will be significant. We would like to emphasize that the extra 
communication overhead due to the irregular communication pattern is here 
small. Extension of these ideas to dynamically varying workloads looks 
promising, especially because of this relatively small overhead. 
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Chapter 5 

Simulations of single-fluid 

flow in porous media with 

lattice-gas and 

lattice-Boltzmann methods 

In this chapter, we first discuss the problem of single-fluid flow in a porous 
medium in general, and briefly review the previous lattice-gas and lattice­
Boltzmann studies on this topic. Then we discuss the basic physics of this 
problem. Here the concepts of tortuosity and effective porosity will receive 
special attention. We present our simulated results for tortuosity, effective 
porosity and permeability of a 2D random porous medium, and compare 
the simulated permeabilities with various theoretical predictions. Finally, 
we present our results for fluid flow in massive 3D random fibre webs, and 
show that these results compare very well with experimental data. 

5.1 Fluid flow in porous medium 

Transport and flow phenomena in porous media arise in many diverse fields 
of science and engineering, ranging from agricultural, biomedical, construc­
tion, ceramic, chemical and petroleum engineering to food and soil sciences 
and powder technology [23]. A classic example of the importance of improv­
ing our understanding of such processes is the high amount of unrecovered 
oil (50% or more) left in oil reservoirs by traditional recovery techniques [23]. 
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Important problems are also the spread of hazardous wastes in soil, water 
removal in papermaking processes, and transport of water in biological ma­
terials (such as wood or hair) to name only few. In all these cases the porous 
structure of the medium is very complex and the relevant flow phenomena 
are difficult to study even in the case of single-phase flow in a static porous 
structure. 

Studies of flow through porous medium have mainly been concerned with 
the derivation of macroscopic laws for the fluid flow. The basic question has 
been whether there is a general equation for the volumetric flow as a function 
of a pressure gradient acting on the fluid. Experiments have shown that, in 
the case of creeping flow of a single viscous fluid, the phenomenological law 
first discovered by Darcy [16, 17], 

k 
q = --"vp, 

µ 
(5.1) 

holds very well for a wide variety of natural porous media ranging from 
loose sand to tight granite rocks [17, 22, 23). Here q is the flux of the fluid 
through the porous medium, µ is the dynamic viscosity of the fluid, and p 
is the fluid pressure. The coefficient k, permeability, is a measure of the 
fluid conductivity through the substance. (When fluid velocity is high, the 
functional relation between q and "vp becomes nonlinear and Eq. (5.1) is not 
valid any more [23]. However, in most practical problems the fluid velocity 
is in the creeping flow regime.) Despite the great effort put on the studies 
of fluid flow in porous medium, many basic questions concerning permeabil­
ity remain unanswered. Various correlations between the permeability and 
parameters describing the geometrical properties of the medium have been 
suggested, but a general equation for the permeability is still lacking. 

Experimental methods have extensively been used to measure perme­
ability and its dependence on material parameters. The methods used vary 
from rather straightforward measurements [18, 19, 20] to more sophisticated 
approaches, which utilize, e.g., mercury porosimetry, electrical conductivity, 
nuclear magnetic resonance or acoustic properties of the medium [21]. A 
problem with experiments is that it is often difficult to accurately determine 
the relevant material characteristics affecting the permeability. 

Theoretical methods typically rely on analytical models based on simpli­
fied pore geometries, allowing the solution of the microscopic flow patterns 
[22], or on more advanced methods that statistically take into account the 
structural complexity of the medium [22, 23). A problem with theoretical 
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work is that usually major simplifications in the pore structure or flow dy­
namics are necessary to make the model mathematically reasonable. This 
often decreases the ability of the model to describe the real system. 

Experimental and analytic work supplement each other. Due to the sim­
plifications made, theoretical expressions usually include some parameters 
that can then be determined by experiments. Analytic work helps us to find 
general features of the given phenomenon and systematize the problem. 

A third approach is numerical simulation. It interpolates between theory 
and experiments. Realistic 3D flow simulations in complex geometries are 
very demanding in terms of computing power. Until recently this approach 
has thus been also hampered by the necessity to make major simplifications 
in the simulated system. However, new techniques based on massively paral­
lel computers and increased single-processor capabilities have now made 3D 
simulations of realistic flow problems feasible. This development is further 
augmented by the recent introduction of new flow-simulation algorithms (in 
particular the lattice-gas and lattice-Boltzmann methods) that are very well 
suited for parallel computing. There is hope, that in the future numerical 
simulations can be used to radically improve our understanding of compli­
cated flow phenomena. 

5.2 Previous studies with lattice-gas and lattice­

Boltzmann methods 

When the lattice-gas method was introduced, it was soon realized that it 
would be very useful for simulating fluid flow in porous media. In Ref. [103] 
(of 1987), which is one of the earliest studies, the validity of Darcy's law 
Eq. (5.1) was verified in a 2D system constructed of randomly placed solid 
points. In the classical paper Ref. [88] (of 1988), simulations in a complex 
2D medium were performed. Reference [104] (of 1989) is among the first 
3D studies. The aim of this paper was to demonstrate the validity of the 
lattice-Boltzmann model in simulating fluid flow in complex 3D geometries. 

Several authors have used lattice-gas and lattice-Boltzmann methods to 
study fluid flow in various 2D porous media. In these studies the medium has 
been composed of overlapping rectangles, overlapping and non-overlapping 
spheres, crusiformed obstacles, or has been a 2D digitized image of an etched 
glass micromodel [91, 92, 105, 106, 107]. 

In Refs. [14, 108, 109] various 3D simulations have been reported. In 
Ref. [108] fluid flow through an array of randomly placed spheres was stud-
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ied, and the validity of the Kozeny law, Eq. (5.2) below, for this particular 
medium was clearly demostrated. In Ref. [109] fluid-flow simulations in a 
3D medium generated by a fractal generator were reported. In Ref. [110] 
fluid flow through a digital image of clay soil was studied. The simulated 
permeability was found to be consistent with experimental values. It was 
also found that the Kozeny-Carman equation did not provide a very suc­
cesful estimate for the permeability of this particular medium. In Ref. [14] 
fluid flow through a digital image of Fointainebleau sandstone was studied. 
The simulated permeabilities were found to compare well with experimental 
data. In the last reference statistical fluctuations of permeability were also 
discussed. 

5.3 Permeability of a porous substance 

In theoretical and experimental work on fluid flow in porous media it is typi­
cally attempted to find functional correlations between the permeability and 
some other macroscopic properties of the porous medium [22]. Among the 
most important of such properties are the porosity </> and the specific surface 
area S, which give the ratios of the total void volume and the total interstitial 
surface area to the bulk volume, respectively. Another useful characteristics 
of porous media is the tortuosity T, which has been introduced to account for 
the complexity of the actual microscopic flow paths through the substance 
[II, 17, 22]. Tortuosity can be defined as the ratio of a (properly weighted) 
average length of microscopic flow paths to the length of the system in the 
direction of the macroscopic flux [II]. 

Simple dimensional analysis suggests that the permeability of a porous 
medium is of the form k = f ( </>, T) / S2 , where f ( </>, T) is a dimensionless 
function of</> and T. Various simplified models can be used to find suitable 
candidates for f. The Darcy's law, Eq. (5.1), can easily be derived within the 
simple capillary theory by Kozeny, in which the porous medium is envisaged 
as a layer of solid material with straight parallel tubes of a fixed cross­
sectional shape intersecting the sample. Within this model, the permeability 
is explicitely given as [17, 22, 24, 25] 

(5.2) 

where c is the Kozeny coefficient that depends on the cross-section of the 
capillaries. For cylindrical capillaries, c = 2. The simplest way to introduce 

60 



tortuosity in the capillary model is to allow the tubes to be inclined in such 
a way that the axes of the capillaries form a fixed angle 0 with the normal 
of the surface of the material (while the azimuthal angle of the tubes is 
randomly distributed). In this case permeability becomes 

<P3 
k = -;;:-32' 

CT 

(5.3) 

where T = 1/ cos 0 is the tortuosity of the medium which can be given in 
terms of the tube length Le and the thickness of the medium L as 

T=Le/L. (5.4) 

(Some authors prefer to define tortuosity as T = (Le/L)2 or as the inverses 
of these two definitions [22, 111]. Here, we shall use definitions analogous to 
Eq. (5.4). Thus, for the tortuosity defined here, T 2:: 1.) In next section we 
shall discuss the concept of tortuosity in more detail. 

Equations (5.2) and (5.3) are perhaps the most widely used expressions 
for the permeability of a porous medium. Many porous media conform to 
them quite well, although quantitative agreement should not generally be 
expected. For systems composed of randomly placed obstacles, e.g., perme­
ability behaves for high porosities (</> ➔ 1) as 1/(1 - </>), and the Kozeny 
model is not valid. 

While considering flow through porous medium, only the interconnected 
pores are of interest, as the occluded pores (pores not connected to the main 
void space) do not contribute to the flow. (The term porosity is sometimes 
used to include the interconnected pore space only.) The dead-end pores are 
another type of pores that contribute very little to the flow. These pores 
belong to the interconnected pores, but, owing to their geometry, no global 
pathlines intersect them. The occluded pores and the dead-end pores form 
the non-conducting pore space of the medium. The effective porosity <Peff of 
a porous medium can be defined as the ratio of the volume of the conducting 
pores to the total volume of the medium. 

A common method of constructing models of porous media is to place 
solid obstacles in a two- or three-dimensional test volume [23]. The prop­
erties of the medium are determined by the shape, size and number of the 
obstacles, and by the distribution of the obstacles within the volume. In 
such "materials" with high porosity, all of the void space usually contributes 
to flow through it. The effective porosity of the medium is then equal to 
porosity. In contrast with this, for low-porosity materials, a large part of 
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the total void space may be non-conducting. For such media the effective 
porosity may therefore be significantly smaller than the geometrical porosity. 
At the percolation threshold, defined as the point </> = </>c where the medium 
becomes completely blocked, permeability and effective porosity both van­
ish. It is therefore clear that for porous media for which the percolation 
threshold appears at a finite porosity </>c, the Kozeny equation, as given by 
Eqs. (5.2) or (5.3), is not valid for</>--+ </>c -

The simplest way to modify Eqs. (5.2) and (5.3) to include the effect of 
non-conducting pores is to replace the porosity </> with the effective porosity 

</>eff ( notice that in simple capillary models </>eff = </>). We thus get [III] 

k
= 

<l>!tr 
cS2 ' 

(5.5) 

or 
k - <l>!tr 

- 7:sz· CT 

(5.6) 

Notice that all three quantities <l>eff, T and S are functions of porosity. 
At this point, we shall not try to further substantiate Eqs. (5.5) and 

(5.6). Instead, we shall below compare the results of lattice-gas simulations 
with permeabilities given by Eqs. (5.2), (5.3), (5.5) and (5.6). 

5.4 Tortuosity of flow in porous medium 

A common characteristics of any material transport in porous media, such 
as fluid flow or electric current, is that the actual path followed by the 
transported entity is microscopically very complicated, or "tortuous" [17, 
22, 25, 111] (examples of such paths are shown in Fig. 5.1). The concept of 
tortuosity is often introduced in the context of solving the closure problem 
for transport in porous media, i.e., in deriving the macroscopic transport 
equations in terms of averaged quantities alone. 

As a physical quantity, tortuosity can be defined in various ways. Perhaps 
the most intuitive and straightforward definition is that of the ratio of the 
average length of true flow paths to the length of the system in the direction 
of macroscopic flux (see Fig. 5.2a). Notice that by this definition, tortuosity 
depends not only on the microscopic geometry of the pores, but also on the 
transport mechanism under consideration. 

Tortuosity could also be defined without reference to a specific transport 
mechanism. This could be done for example by considering the shortest 
continuous paths between any two points within the pore space [112] (see 
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Figure 5.1: Flow lines through a two-dimensional random porous medium. 

Fig. 5.3b). The advantage of this definition is that the tortuosity parameter 
thus defined will exclusively characterize the porous substance itself. When 
considering tortuosity in the context of transport phenomena, it seems quite 
more natural, however, to utilize the flux associated with the actual transport 
mechanism in the definition of tortuosity. 

Moreover, it is possible to define tortuosity even without a direct refer­
ence to the lengths of the transport paths by considering the local deviations 
in the direction of the microscopic flux from the direction of the mean flux 
(see Fig. 5.3a). (This approach will be discussed in some detail below.) 

We saw above, how the concept of tortuosity is introduced into perme­
ability by using a simple inclined tube capillary model (see Eqs. (5.3) and 
(5.4)). For flow in random porous media, one can replace the "tube length" 
Le by the average length of the flow paths of a fluid particle through the 
sample. At least two possible alternatives for taking this average can be 
considered [22]. One may average over the actual lengths of the flow lines 

themselves, disregarding thereby the fact that fluid particles move along 
these flow lines at different velocities (see Fig. 5.2a). Another way of averag­
ing is over the lengths of the flow lines of all fluid particles passing through 
a given cross-section during a given period of time (see Fig. 5.2b). This 
leads to flux weighted averaging. The first alternative is suitable at least for 
piston-like flows, such as molecular diffusion and electric currect [22]. The 
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Figure 5.2: Different ways of defining the tortuosity. Figure a): Tortuosity 
calculated as an average over the lengths of all pathlines. Figure b): Tortu­
osity calculated as an average over the lengths of all pathlines weighted with 
the related flux. 

latter alternative appears more natural when fluid flow in porous media is 
considered. 

In order to gain more insight into the definition ( or definitions) of tor­
tuosity of flow in porous media, we consider a solid material of thickness L,
intersected by N cylindrical capillaries per unit transverse area. We assume 
that the capillaries are straight and of equal radius R, but allow for a ran­
domly varying angle between them and the x axis, which is perpendicular 
to the surfaces of the material. For the i:th capillary of length Li we define, 
in acordance with Eq. (5.4), fi 

= 
Li/ L. Next, flow through the capillaries is 

induced by applying a pressure difference b,.p across the sample. Solving the 
Navier-Stokes equation for each capillary separately, we obtain after some 
algebra the following suggestion for the tortuosity of porous medium [II]: 

where 

fv fvdV 
T1 

= fv vdV 

fv ¼vdV 
l/L1 = 

fv vdV 
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Figure 5.3: Different ways of defining the tortuosity. Figure a): Tortuosity 
calculated from the fluctuations of the local velocity field around the direc­
tion of the average flux. Figure b) Tortuosity calculated from the shortest 
continuous paths between points in the void space. 

Above V is the volume of the porous sample, v = lv(r)I is the velocity of 
the fluid at point r, and f = f(r) is the ratio of the length of the flow line 
passing through the point r to the thickness of the sample. ( f and v are 
defined to be zero inside the solid phase.) 

T he tortuosity factor as determined by Eq. (5.8) can be interpreted as 
the average of the relative lengths of the flow lines of all fluid elements (with 
a fixed volume) passing through a given cross-section during a given period 
of time. The latter definition Eq. (5.9) corresponds to the average of inverse 
lengths of the same flow lines. 

Equations (5.7) through (5.9) do not, however, provide the only way of 
generalising the results of capillary model to random media. For example, 
in the case of capillary systems, the tortuosity factor L1 of Eq. (5.9) is in 
fact equal to the ratio 

(5.10) 

where Iv! is the absolute value of the local flow velocity, Vx is the x component 
of that velocity, and ( ) denotes spatial average over the pore space. Notice 
that Eq. (5.10) is reminiscent of the hypothesis made by Carman in Ref. [25] 
that (Le/ L) = V / Ue, where V is the average tangential velocity in a tortuous 
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capillary, Le is the length of that capillary, Ue is the mean value of the 
projection of flow velocity on the straight line connecting the two ends of 
the capillary, and Lis the length of that line. According to Eq. (5.10), Tv is 
solely determined by fluctuations of the local flow field around the direction 
of the average flux, and has no direct connection with the length of the actual 
flow paths. 

In deriving the above results, we assumed that the radius of the capillaries 
is fixed while their lengths may vary. The results are, however, valid also 
in the case of varying capillary radii, provided that these and the lengths of 
the capillaries are uncorrelated. 

Yet another possibility, which may be encountered in other kinds of mod­
els, is to define the tortuosity as an average of the lengths of flow lines squared 
[22, 111]. Analogously to Eqs. (5.8) and (5.9), we may then define 

(72)
2 

= 

1 

(L2) 2 
= 

fv vf2dV 
fvvdV 

fv VfrdV 
fvvdV 

(5.11) 

(5.12) 

Thus, tortuosity is not uniquely defined, and the preferred definition must 
depend on the context and on the model being used. Our simulations in 2D 
random porous medium suggest, however, that the model dependence can be 
quite small, at least for a two-dimensional flow at relatively high porosities 
[II]. The smallness of the differences between the numerical values of this 
quantity, arising from its various plausible definitions, seems to indicate that 
tortuosity indeed is a useful concept. 

5.5 Specific surface area, tortuosity, and effective 

porosity of a 2D porous medium 

In order to effectively compare the different models of permeability with 
results of lattice-gas simulations, it is beneficial to first cast the Eqs. (5.2), 
(5.3), (5.5) and (5.6) into explicit functions of porosity q> alone [III]. To 
do this, we have to find the dependence on the porosity q> of the specific 
surface area S, the tortuosity T and the effective porosity <Peff· We choose as 
our model medium a simple 2D model in which rectangles of equal size are 
placed randomly with unrestricted overlap in a two-dimensional volume (see 
Fig. 5.5). Although such a model may be considered somewhat artificial, it 
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Figure 5.4: The simulated tortuosity T as a function of porosity </J [III]. The 
error bars include the statistical errors in tortuosity only. The solid line is a 
fit to the simulated points by Eq. (5.14). 

nevertheless captures much of the geometrical complexity of natural porous 
media. 

For the specific surface area S, the following simple and appealing ana­
lytic relation holds in our model medium: 

(5.13) 

Here Ro = Ao/ L
p 

( Ao is obstacle-surface area and L
p 

is its perimeter) is the 
hydrodynamic radius of the obstacles. 

The porosity dependence of tortuosity T and effective porosity <Peff are 
analytically very difficult to find. For this reason we have derived them 
from direct lattice-gas simulations. The simulated values of tortuosity T are 
shown in Fig. 5.4 as a function of porosity </J. Also shown in this figure is a 
fit to the simulated values using a function of the form 

(1 - </J) T=l+a
(</J

-
</Jc)

m' (5.14) 

with the values of the fitting parameters being a = 0.65 and m = 0.19. The 
expression Eq. (5.14) has been chosen such that tortuosity is a monotonously 
decreasing function of porosity ( at </J > <Pc) and diverges at the percolation 
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Figure 5.5: A porous sample composed of 300 rectangles and having a poros­
ity of </J = 0.47, and a dimensionless specific surface area of S = 0.69. 

threshold <Pc [23]. For the present system the percolation threshold is <Pc =

0.33 [113]. 
The conducting pore space (white regions) of the porous sample shown 

in Fig. 5.5 is shown in Fig. 5.6. The (geometrical) porosity of the sample is 
</J = 0.47 while the effective porosity in this particular case is <Peff = 0.40. 

In Fig. 5. 7 we show the simulated values of the effective porosity as a 
function of porosity. The solid line shown in Fig. 5. 7 is a fit to the simulated 
points by 

<Peff = ax3
-

(2a + <Pc)x
2 +(a+ 1 + <Pc)x, (5.15) 

where x = (</;- <Pc)/(1- <Pc)- The fitted value of the parameter a is a= 0.3. 
The expression Eq. (5.15) is simply the most general third order polynomial 
in which the natural constraints, <Peff = d1t = 1 at </J = 1, and <Peff = 0
at </J = <Pc = 0.33, have been implemented .  With the given values of <Pc

and a, this expression also fulfills the condition that <Peff :S </J for all </J :S 1.
We emphasize that the true functional form of <Peff as a function of </J is not 
known. Expressions other than Eq. (5.15) can also be found which would 
give a good quantitative fit to the results of the present simulations. As an 
example we give the expression 

ln </J 
</>eff = 1 -

ln <Pc , 
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Figure 5.6: The conducting pore space of the porous sample shown in Fig. 5.5 
corresponding to an effective porosity <l>eff = 0.40. 

which gives a good quantitative fit to the simulated results, but, with porosi­
ties higher than 0.8, the expression produces </>eff larger, if only very slightly, 
than </>. It thus fails to give a qualitatively correct behaviour in this porosity 
region. 

5.6 Permeability of a 2D porous medium 

The permeabilities for the 2D random porous medium simulated with the 
lattice-gas method are shown in Fig. 5.8 [III]. Also shown are the predictions 
given by the permeability expressions, Eqs. (5.2), (5.3), (5.5) and (5.6). Here 
S, T and </>eff are given by Eqs. (5.13), (5.14) and (5.15), respectively, with 
the theoretical value </>c = 0.33. (The Kozeny coefficient c was used as the 
fitting parameter.) The permeabilities were made dimensionless by dividing 
with the hydraulic radius Ro squared. For expressions Eqs. (5.2) and (5.3) 
(curves 1 and 2 in Fig. 5.8), fits to all of the data points were clearly un­
satisfactory. Therefore, fits were made, instead, in a narrow porosity region 
at mid-porosities, where these formulae seem to give a qualitatively cor­
rect porosity dependence for the simulated permeabilities. For expressions 
Eqs. (5.5) and (5.6) (curves 3 and 4 in Fig. 5.8) fits were made to all data 
points. 

As can be seen from Fig. 5.8, the porosity region in which the Kozeny 
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Figure 5. 7: The simulated effective porosity </>etr as a function of porosity 
q>. The solid line is the fit by Eq. (5.15), and the dotted line is the curve 

<l>etr = q>. The error bars include only the statistical errors of the simulations. 

equation in its basic form, Eq. (5.2), is adequate for this particular system, 
is quite narrow. Taking into account the effect of tortuosity by Eq. (5.3) 
improves the fit only slightly. The result is significantly improved only by 
introducing the effective porosity, Eq. (5.5), and an even better result is 
obtained by Eq. (5.6) in which the tortuosity and effective porosity are both 
included. 

The fitted values of the Kozeny coefficient c were 8.2, 6.5, 10.4 and 5.8 for 
Eqs. (5.2), (5.3), (5.5) and (5.6), respectively. This is in good agreement with 
various models and measurements found in the literature, where typically 
values for the Kozeny coefficient c are reported in the range from 2 to 12 
[17, 19, 22).

It is evident that the permeability of two-dimensional random porous 
media is very much affected by restrictions on flow caused by narrow pas­
sages and dead-end pores. A 3D simulation of fluid flow through a bed of 
penetrable spheres was earlier made in Ref. [108) in which good quantita­
tive agreement with the Kozeny equation Eq. (5.2) was obtained down to 
</> � 0.1, below which there was still a good qualitative fit. The difference 
between these and the present results is caused by the weaker tendency to 
form occluded pores, and the much lower value of the percolation threshold 
<Pc of the three-dimensional system used in Ref. [108) in comparison with the 
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Figure 5.8: The simulated dimensionless permeability k/ R5 of the porous 
system as a function of porosity q>. The error bars show the statistical 
errors of simulations. The curves 1 - 4 show the predictions given by the 
permeability expressions Eqs. (5.2), (5.3), (5.5) and (5.6), respectively. 

two-dimensional system used here. Therefore, for such a three-dimensional 
system, effective porosity may be close to the geometrical porosity also for 
rather low values of the porosity. It may well be, however, that the actual 
structure of the pore space available for flow plays an important role also 
in three dimensions. It remains to be seen, e.g., if effective porosity be­
comes important for such three-dimensional porous structures in which the 
percolation threshold is relatively high. 

5. 7 Permeability of 3D random fibre webs

In many natural and man-made porous media the porous structure is fibrous. 
Despite of the numerous experimental and theoretical studies (see Ref. [20] 
for a comprehensive review), permeability characteristics of disordered fi­
brous porous media are still poorly understood. The existing numerical 
studies include those on fluid flow through random arrays of parallel cylin­
ders, suspension of prolate spheroids, and three-dimensional regular fibre 
networks [114, 115, 116], which all neglect the disorder typical of real 3D fi­
bre webs. Recently, 3D fluid-flow simulations have been performed through 
randomly placed cylinders with relatively high porosities [117]. 
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Figure 5.9: A fibre-web sample constructed with the growth algorithm. The 
web porosity is </> = 0.83. 

We have performed three-dimensional ab initio lattice-Boltzmann simu­
lations of creeping flow through large random fibre webs [I]. The model web 
structures were constructed using a recently introduced growth algorithm 
[118]. Within this algorithm, fibre webs are grown by sequential random 
deposition of flexible fibres of rectangular cross-section on top of a flat sub­
strate. Each fibre is randomly oriented either in the x or y direction, and 
is then let to fall in the negative z direction until it makes its first contact 
with the underlying structure. After this it is bent downwards without de­
structing the structure. Periodic boundary conditions are used in x and y 
directions. In Fig. 5.9 we show a sample created by this algorithm [I]. It 
is evident that the produced structures closely resemble those of e.g. paper 
and non-woven fabrics (restriction to the x and y directions can be relaxed 
and does not play an important role here). 

Simulations were performed using the 19-link lattice-BGK model. Fibre 
dimensions were wp x Wp x 20wp, while sample dimensions were 80wp x 
80wp x l0wp (here wp is the fibre thickness in lattice units). The web 
porosities </> ranged from 0.42 to 0.95. The fibre thickness wp varied from 
5 to 10 lattice points depending on the porosity of the sample. For these 
discretizations, the finite-size errors of the simulated permeabilities were 
estimated to be less than 15%. (We have discussed the finite-size effects 
related to these simulations in Chapter 4 above.) When 32-bit floating point 
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Figure 5.10: The velocity field of fluid flow through the fibre web shown in 
Fig. 5.9. White color indicates high fluid velocity. 

numbers were used, the larger web required 5.4 GByte of core memory. The 
simulations were therefore carried out using 64 nodes (300 MHz CPUs with 
128 MByte of memory) on a Cray T3E system. The saturation times were 
decreased by using the iterative momentum relaxation (!MR) method. The 
required CPU time was typically between 1 and 4 hours. 

In Fig. 5.10 we show the simulated stationary velocity field for a flow in 
the z direction through the highly inhomogeneous sample shown in Fig. 5.9. 
It is evident that there are large fluctuations in the velocity field reflecting 
the variations in the local porosity of the sample. The average velocity 
(vz ) shown in Fig. 5.10 is (vz ) = 0.00142, with a standard deviation of 
�Vz = 0.00128. These fluctuations, which are inherent in random porous 
structures, will affect the permeability, except at very high porosities, such 
that it is expected to become higher than that for regular arrays of pores 
[20]. This effect will be seen in the results given below. 

In Fig. 5.11 we show the simulated dimensionless permeability of the 
random fibre web as a function of its porosity. (The permeabilities have 
been made dimensionless by dividing them with a = w F /2 squared.) In this 
figure solid triangles denote the simulated values. It is evident that there 
are two distinct features in the simulated k(qy) curve. Firstly, it seems to 
diverge as expected when <p ➔ l, and, secondly, k seems to be an exponential 
function of <p for a rather wide range of </J: 0.42 � <p � 0.85. 
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Figure 5.11: The simulated dimensionless permeability k/a2 as a function of 
porosity (black triangles). Open squares and circles show the experimental 
results for fibrous filters [20] and compressed fibre mats [18, 20], respectively. 
Curve (1) is the analytical result for a cubic lattice given in Ref. [20], curve 
(2) is the numerical result for an fee lattice from Ref. [116], and curve (3)
shows the result of a fit by the Kozeny-Carman relation, Eq. (5.2).

A fit of the form k/a2 =constant· (1 - cp)-µ to the last five points with 
highest porosities gives µ = 1.92. This results shows that, even for these 
rather high porosities cp :::; 0.96, the system is not in the true asymptotic 
region for which µ = l. The reason for this is that the fibres of the web are 
still close enough to each others so that there are significant hydrodynamic 
interactions between them. On the other hand, the simple capillary-tube 
model by Kozeny and Carman [22] gives k/a2 ex: cp3(1 - cp)-2 in this limit 
so that, as expected, the simulated behaviour of k( cp) is in rather good 
agreement with this model with high porosities. 

A fit of the form ln(k/a2) =A+ Bcp to the rest of the simulated points
gives A = -8.53, B = 10.4, with a very high correlation between the simu­
lated points and the fitted curve. So far there have been no analytic results 
which would have produced this kind of exponential behaviour at interme­
diate porosities. It will not hold near the percolation threshold at which 
permeability vanishes. This critical region is however beyond the present 
computational capabilities. 

It is evident from Fig. 5.11 that experimental results [18, 20] (denoted 
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by open circles and squares) conform well with the simulated points. The 
model web used here thus captures the essential features of the fibrous filters 
and compressed fibre mats used in the experiments. 

Also shown in Fig. 5.11 are three curves which are results of previous 
analytical [20] (curve (1)), numerical [116] (curve (2)) and semi-empirical [18, 
19, 22] (curve (3)) considerations. Curve (1) is given by k/a2 

= 3[-ln(l -
</>) -0.931 + 0(1/ ln(l - </>))]/20(1 - </>), an expression obtained for a cubic 
lattice model [20], and curve (2) results from a numerical solution [116] for 
the Stokes flow in a face-centered-cubic (fee) array of fibres. Both these 
curves are below the simulated points, especially for decreasing porosity. 
Notice that the fee result also follows an exponential law at intermediate 
porosities. 

Curve (3) is given by the Kozeny-Carman expression Eq. (5.2) where 
the following empirical fit to measured permeabilities has been used [18, 19]: 
c = 3.5</>3 [1+57(1-</>)3]/(1-<f>)½. We have used this expression to get 
the curve (3) from Eq. (5.2). The specific surface area S was determined 
from the surface area of the (straight) fibres used to construct the web by 
subtracting the area of the interfibre contacts. Because of bending of the 
fibres this expression gives a lower bound for S, and curve (3) is expected to 
overestimate the permeability. This is indeed what happens (see Fig. 5.11). 

Encouraged by the exponential behaviour at intermediate porosities of 
k(</>), we have made an interpolation formula that connects this behaviour 
with the right asymptotics in the limit </> -+ l. We find that the expression 

(5.17) 

with A = 5.55, B = 10.1, fits all the simulated points very well. 
These results clearly demonstrate that the combination of lattice-Boltz­

mann method and parallel computing facilitates simulations of realistic fluid­
dynamical problems of great complexity. We believe that this approach will

be very fruitful for modelling and simulating many complex fluid-dynamical 
systems. 
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Chapter 6 

Summary 

In this work, we have used the lattice-gas and lattice-Boltzmann methods 

for solving several problems of creeping flow of a Newtonian fluid through 
2D and 3D random porous media. We have found numerical correlations 

between the specific surface, tortuosity, effective porosity, permeability and 
porosity of a 2D porous medium. We have demonstrated that although fluid 

tortuosity is not uniquely defined as a physical quantity, its model depen­

dence can be quite small, and the tortuosity can indeed be a useful parameter 

in describing fluid transport in complex structures of real porous materials. 
Also, we have suggested an improved Kozeny-Carman law that takes into 

account the effect of the nonconducting porosity of the medium. This ex­
pression has been found to fit very well the simulated 2D permeabilities, 
whereas the traditional permeability expressions have clearly been found to 
fail for low porosities of the considered 2D medium. These results suggest 
that the permeability of a porous medium can be appreciably affected by 
restrictions on flow caused by narrow passages and dead-end pores, at least 
for such porous structures for which the percolation threshold is relatively 

high. We have also solved the permeability of a large random 3D fibre web 

as a function of its porosity in a large porosity range. The simulation results 
have been found to be in excellent agreement with experimental data. Also, 
an exponential dependence on porosity of permeability has been found to be 

a generic feature of fibrous porous materials in a wide range of porosities, 
independent of whether they are random or not. 

We have also discussed many practical problems related to the lattice-gas 
and lattice-Boltzmann methods, and have e.g. demonstrated that even the 
simplest realizations of these methods (i.e. the bounce-back rule and body 
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force) can be used to get good quantitative hydrodynamics. We have intro­
duced an improved relaxation scheme, the Iterative Momentum Relaxation 
(IMR) method, and a new parallelization strategy based on the Orthogonal 
Recursive Bisection (ORB) method, which both can considerably speed up 
the lattice-gas and lattice-Boltzmann simulations. 

These results clearly demonstrate that the lattice-gas and lattice-Boltz­
mann methods can provide promising alternative approches to traditional 
computational fluid dynamics. Their most important property is the sim­

plicity with which models for many complex systems can be constructed. 
So far, successful implementations of these methods have included e.g. mul­
tiphase flows, suspension flows and flows in complex geometries. All these 
problems have been difficult to simulate with conventional methods. An­
other important property is the inherent spatial locality of their updating 
rules, which makes these methods ideal for parallel processing. Grid gen­
eration has often been the most difficult part in solving a fluid-dynamical 
problem. In the lattice-gas and lattice-Boltzmann methods a uniform lattice 
is used, and they can thus be easily and quickly applied to new geometries. 

Also, time-dependent simulations can relatively easily be carried out, as no 
time is lost for remeshing. Moreover, these methods spontaneously generate 
hydrodynamic instabilities. They could thus be useful for simulating fluid 
flow at moderately large Reynolds numbers. 

The lattice-gas and lattice-Boltzmann methods have also some draw­
backs. At large Reynolds numbers they meet the same problem as the more 
conventional methods: in a fully turbulent flow wave lengths of all scales 
are present, and the solution of the problem would require enormous simula­
tion lattices. In many practical applications the uniformity of the lattice is 

a problem, as a sufficiently high computational accuracy would necessitate 
very big lattices. However, new models including a local grid refinement 
may remove this problem in the near future. Also, some basic features of 
the methods, such as boundary conditions and models for finite-temperature 
systems, are still under development. 

In the near future, the traditional continuum methods will surely remain 
the most important way for doing computational fluid dynamics . However, 
in many fields the lattice-gas and lattice-Boltzmann methods will facilitate 

simulations of many realistic fluid-dynamical problems of great complexity. 
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