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1 Introduction

The field of deep learning has been growing rapidly in the last decade. However, developing

new methods and training the neural networks used in deep learning requires a lot of data.

This poses a large problem as healthcare information such as medical records and imaging

results are highly sensitive, and cannot be freely shared as such. Large healthcare facilities

and research centers have access to their own data, but smaller companies and independent

researchers might have obstacles accessing such data. Combined datasets could also help the

models generalize more.

Medical data is protected with the restrictions of Health Insurance Portability Accountabil-

ity Act HIPAA (Health and Services 2000) and General Data Protection Regulation GDPR

(European Parliament 2016). While these require only de-identification (i.e. removal of

identifiable information and anonymization), it has proven to be a weak measure to protect

the identity of the people present in the dataset (Narayanan and Felten 2014). One solution

to this is to synthesize new data, and then share the newly created data for further analysis,

without endangering the privacy of the individuals in the original database.

Testing this newly created synthetic data and validating it is important. The synthetic data

should represent the original data as well as possible while simultaneously being different

enough to achieve privacy. Validation can be done using expert knowledge, for example by

having them evaluate the "realness" of synthetic X-ray images. This is very time-consuming,

and therefore a need for automatic validation methods exists.

The goal of this Master’s thesis is to explore a method for validating synthetic X-ray images.

In the following chapter 2 the problem domain, knee osteoarthritis, is introduced. Then in

chapter 3 the basics of convolutional neural networks and transfer learning are gone over,

leading to generative adversarial networks and cluster analysis in chapters 4 and 5, which

concludes the theoretical part. Then the datasets used, the methods, and the execution of the

experiment are detailed in chapter 6. In chapter 7 the results of the experiment are shown,

and chapter 8 concludes this thesis with discussion the results, their impact, and how the

research could be built upon in the future.
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2 Knee osteoarthritis

Osteoarthritis is the most common joint disease in the world (Käypä hoito 2016). It is a de-

generative disease which cannot be cured, and causes pain, stiffness inactivity, and eventually

loss of ability to function (Wieland et al. 2005). In addition to the decrease in quality of life

for the individual, it causes major socioeconomic burdens with care costs and productivity

loss (Hunter, Schofield, and Callander 2014).

Osteoarthritis is the most prevalent in the knee joint: In the Health 2000 -survey in Finland

the prevalence of clinically diagnosed knee osteoarthritis was found to be 6.1% in men and

8.0% in women (age-adjusted) (Kaila-Kangas 2007). The prevalence rises steeply with age,

and in the age group of over 85 44.2% of men and 35.6% of women were diagnosed with

knee osteoarthritis. The strongest predictors other than age for osteoarthritis are obesity and

strenuous physical activity, such as working in a physically demanding occupation (Lespasio

et al. 2017).

The treatment of knee osteoarthritis aims for pain mitigation and reduction, upholding and

increasing functional ability, and halting the progression of the disease (Käypä hoito 2016).

The treatment options include weight loss, exercise therapy, pain medication, assistive de-

vices such as shock-absorbing shoes, and surgical procedures (Lespasio et al. 2017). Be-

cause preventative measures (e.g. weight monitoring, exercise) are preferred, early detection

is paramount (Roos and Arden 2016).

2.1 Kellgren-Lawrence -grading

Osteoarthritis is commonly diagnosed with clinical assessment and confirmed using radio-

graphic imaging. Normal X-ray imaging is usually enough, and MRI or tomographic imag-

ing is rarely needed (Sinusas 2012). Knee osteoarthritis manifests in X-rays mainly with

formation of osteophytes (small bone formations in the joint area), and joint-space narrow-

ing (Sinusas 2012)

Kellgren-Lawrence -grading (Kellgren and Lawrence 1957) is one of the most used grading
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systems to assess the severity of osteoarthritis from radiographs. It has five different levels:

None (0), Doubtful (1), Minimal (2), Moderate (3), and Severe (4). An example image from

each of these levels of osteoarthritis are shown in figure 1. While discerning between grades

0, 1 and 2 is greatly beneficial in terms of early intervention, the differences can be very

subtle.

Figure 1. Examples of Kellgren-Lawrence (KL) grading system by presence/severity of

osteoarthritis (OA)

2.2 Previous research

Kellgren-Lawrence -grades have been widely used in machine learning applications (Lee

et al. 2022). However, as was noted in the original paper by Kellgren and Lawrence, there

is a notable variance in medical experts’ grades, with both intraobserver and interobserver

correlation being 0.83 in grading knee osteoarthritis severity (Kellgren and Lawrence 1957).

This makes training a grade predicting model especially difficult: As an example, a model by

Tiulpin et. al. achieved a multiclass accuracy of 66.71%, while the agreement with experts

on the dataset was 83% (Tiulpin et al. 2018).

In the last few years multiple data synthetization methods have been researched using health-

care data (Murtaza et al. 2023). One notable method and research in this field was medGAN

(Choi et al. 2017), which generated discrete patient records using Generative Adversarial

Networks (see chapter 4). Data synthetization methods have also been utilized for medical

image generation. For example, in 2021 Karbhari et al. generated chest X-rays of COVID-19

-patients, and showed that the accuracy of classification models either improved or remained

the same when augmenting the training data with synthetic data (Karbhari et al. May 2021).
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3 Convolutional neural networks

Convolutional neural networks (CNN) are based on the convolution operation and have be-

come the most widely deep learning structure for computer vision. As well as other neural

networks, CNNs have a long history from the first perceptron (Rosenblatt 1958) to the neu-

rocogitron (Fukushima 1980), before arriving to modern CNNs (e.g. AlexNet (Krizhevsky,

Sutskever, and Hinton 2017)).

In the following sections the driving force behind CNNs, the convolution operation, is de-

scribed, before moving on to the basic structure of CNNs. Then the concept of using images

from another domain to learn general features of images together with tools to assist in that

endeavor are explored. Finally a method of visualizing essential parts of an image is pre-

sented with class-activation mapping.

3.1 Convolution

Convolution is a mathematical operation between two functions, defined by the following

integral:

( f ∗g)(t) =
∫

∞

−∞

f (τ)g(t− τ)dτ (3.1)

Convolution appears in this form for example in probability theory, as the convolution of

two (independent) probability density functions PX and PY is the sum of those two functions,

PX+Y . But as images often consist of discrete pixels, a discretized convolution can be used:

( f ∗g)(n) =
∞

∑
m=−∞

f (m)g(n−m) (3.2)

When applied to images the first function f can be thought of as a representation of an image,

and g as a kernel. The convolution then applies some kernel-dependent transformation to

each pixel of the image, and the image is transformed when the kernel is moved through

every pixel of the image. An example of a edge detecting kernel applied to an image can be

seen in figure 2. As the kernel is often not mirrored in x and y directions, the convolution in

4



computer vision is most of the time actually cross-correlation. It is still traditionally called

convolution, as the mirroring has no practical effect on CNNs. In the simple case of black

and white images this 2-d convolution operation takes the form

( f ∗g)(i, j) = ∑
m

∑
n

f (i+m, j+n)g(m,n), (3.3)

where f and g are the image and kernel respectively, i and j are the coordinates of the pixel,

and m and n are the dimensions of the kernel.

Figure 2. A picture convolved with an edge detecting kernel

Manually chosen kernels, like the edge detection kernel, can be useful in tasks like finding

regions of interest in images, for example finding faces in images (Viola and Jones 2004)

or bone segmentation (Lindner et al. 2013). The major advantage of these simple manually

chosen kernels is their and that they can be used with other machine learning techniques such

as random forests. Their disadvantage is that manually crafting kernels is difficult. While

horizontal and vertical edge detectors are intuitive, images consist of more complex features.

By using deep convolutional networks and backpropagation these features can be learnt from

the data.

3.2 Deep convolutional neural networks

Convolutional neural networks follow the same structure as "normal", fully-connected mul-

tilayer perceptrons; They have an input layer, multiple hidden layers, and an output layer. In

a regular image classification task the input layer takes the image as a pixel intensity matrix

(with values often normalized to [0,1]), and the output is, for example, the probability of

the image containing a cat or probabilities of multiple classes. In theory one could use fully
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connected layers in hidden layers and have a functioning classifier, but in practice this has

several disadvantages.

The amount of parameters explodes rapidly with image size, as every connection adds one

parameter (and every node has a bias). The number of parameters is given by ∑
m
n=1 nl−1nl +

nl , where nl is the number of nodes in a layer l and m is the number of subsequent layers after

the input layer (layer 0). It can be easily seen that if every pixel value of an image is used as

the input the number of parameters quickly rises to billions even when using moderately deep

network architectures and fairly small images. The fully connectedness also means that, in

terms of network architecture, every pixel contributes equally to the output. This leads to, for

example, uniform white pixels in the background affecting the output as much as the subject

of the image. While the background of an object can be quite useful in identifying tasks,

giving every pixel equal importance makes the learning unnecessarily hard. Neighboring

pixels having no special connection also means that there is no locality.

CNNs address these problems using convolution and pooling layers. A convolution layer

consists of n kernels, and the parameters of these kernels are learned with backpropagation.

Because the kernels are usually smaller than the image, this means the number of parameters

is reduced, as the same operation is performed in all parts of the image. A non-linear acti-

vation function is used after the convolution, similarly to a fully-connected neural network,

and the outputs of the different kernels result in n image-like feature-maps which are propa-

gated forwards. The convolution layers have been described to focus on larger concepts on

each layer: First layer detecting lines, the second layer detecting corners and other constructs

formed in this line-feature-map, and so on until the final layer and objects can be detected.

The convolution and activation is usually followed by a pooling layer, such as a max-pooling

layer (Goodfellow, Bengio, and Courville 2016). Max-pooling takes the maximum value of a

n×m grid on every position of a feature-map, and generates a new feature-map of these max-

imum values. This has two effects: Firstly, it decreases the dimensions of the feature-map,

especially when the max-pooling grip is moved across the feature-map in strides larger than

1. This frees computation to be used, for example, for more convolution kernels. Secondly,

it add a slight invariance to the feature-map. It does not matter in which pixel in the n×m

grid the largest response is; the result stays the same even when the input is shifted slightly.
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Other pooling layers exist, e.g. average-pooling which works similarly to max-pooling but

takes the average of the grid instead of the maximum.

A simple CNN consists of convolution layers with varying kernel sizes alternating with pool-

ing layers with varying grid sizes and stride lengths, ending with a few fully connected lay-

ers and a output layer. Examples of these include one of the first CNNs, LeNet (LeCun

et al. 1998), and the CNN used in this research, VGG19 (Simonyan and Zisserman 2014),

VGG19, among others, have pre-trained implementations freely available to use and modify,

and this is discussed further in the following section.

3.3 Transfer learning, Tensorflow, and VGG19

Training a large CNN is computationally expensive and requires a large dataset. If the first

convolution layers seemingly focus on more abstract features such as lines, it would be logi-

cal to reuse these layers and not to train them from the beginning of every new task, especially

when there is only a small dataset available for the training. The usage of knowledge gained

on a domain and applying it to a different domain is called transfer learning (Goodfellow,

Bengio, and Courville 2016). In the case of computer vision this means training a CNN on a

set of images, and applying it to a different set, with re-training or fine-tuning the last layers.

The approach of using pre-trained networks and fine-tuning them for a different domain is

largely prevalent in medical image tasks, as medical images are highly sensitive and not

easily available (Litjens et al. December 2017). This can be useful not only in transferring

knowledge between similar tasks, such as from mammograms to digital breast tomography

(Samala et al. 2016), but also from seemingly unrelated, natural images (i.e. non-medical

images) to various fields in medicine (Shin et al. May 2016).

ImageNet (Deng et al. 2009) is an image dataset first introduced in 2009 and which currently

has over 1.4 million natural images. It is largely used for pre-training, and has been shown

advantageous when the training set in the application domain is small, but the advantages

diminish with larger training set (He, Girshick, and Dollár 2019). One of the other advan-

tages of CNNs pre-trained on ImageNet is their ease of availability. TensorFlow (Abadi

et al. 2015), the framework used for neural networks in this research, allows the use of the
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high level API Keras, which houses a selection of implementations of some of the more

well-known CNN models, including the model used in this research, VGG19 (Simonyan

and Zisserman 2014). Moreover, these models can be loaded with weights gained from

pre-training with ImageNet.

VGG19 (Simonyan and Zisserman 2014) is a CNN which was developed by Visual Geome-

try Group, University of Oxford, and has 19 layers (not counting max-pooling layers). The

architecture of VGG19 is fairly traditional; it consists of five convolution blocks each fol-

lowed by a pooling layer, ending with three fully connected layers. A detailed architecture

is seen in figure 3. According to the Keras API website1 it has accuracy of 71.3% and 90.0%

on ImageNet test set on the first prediction being correct and one of the top-5 predictions

being correct respectively. This is not the top performance of the models included in Keras,

but VGG19 has a straightforward, explainable architecture which is useful in in decoding

which parts of the image lead to a prediction.

Figure 3. The architecture of the VGG19 convolutional neural network

3.4 Class-activation mapping

Neural networks can be thought of as "black box systems": The input and the output are

easy to understand, but the hidden layers with millions of parameters are indecipherable by

humans. This poses a problem: How can a model be trusted if we can only observe the inputs

1. https://keras.io/api/applications/
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and outputs?

This is the research field of Explainable AI, which attempts to provide evidence or a reason

for an AI system’s outputs (Phillips et al. 2020). Class-activation mapping (CAM) (Zhou et

al. 2016) is a method used in attempt to achieve this in CNNs with visual explanation maps.

The idea is simple: The CNN is given an image as an input and is propagated through the

network, and the layers of the CNN are studied to map which parts of the image contributed

to the labeling of the image into a certain class.

There are many different methods based on CAM (Jung and Oh 2021). One of the earliest

is Grad-CAM (Selvaraju et al. 2017), which takes the gradients with regards to the class

activation
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4 Generative Adversarial Networks

Generative adversarial networks (GANs) are a framework (see figure 4) to train generative

models with an adversarial process (Goodfellow et al. 2014). The original idea for GANs

was to train simultaneously two competing models, a generator G and a discriminator D.

The generator G would attempt to model the training data distribution and synthesize new

samples from that distribution, while the discriminator D would try to determine if the sample

was from the real training data or a new synthesized sample.

Figure 4. Architecture of the GAN framework

Both of the models would be trained using backpropagation using the value function V (D,G)

shown in equation 4.1. As this is a two-player minimax game where when the other succeed

the other fails, the desired equilibrium is attained when the discriminator D estimates the

probability of the sample being from the training data to be P = 0.5 for every sample. In this

equilibrium the generator G has sufficiently captured the data distribution.

min
G

max
D

V (D,G) = Ex∼Pr [logD(x)]+Ez∼Pg[log(1−D(x))] (4.1)

While in theory this minimax-game seems like a valid strategy, in practice training a GAN is

a lot harder and the convergence to an optimum is not guaranteed (Goodfellow, Bengio, and

Courville 2016). Especially the generator gradient tends to vanish when the discriminator is

very confident (Arjovsky and Bottou 2017). This has resulted in many improvements on the

original framework, such as the Wasserstein GAN (Arjovsky, Chintala, and Bottou 2017).

10



Wasserstein GAN (WGAN) modifies the original value function 4.1 by making use of the

Earth-Mover or Wasserstein-1 distance

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥]

where Π(Pr,Pg) is the set of all joint distributions γ(x,y) whose marginals are respectively

Pr and Pg (Arjovsky, Chintala, and Bottou 2017). Using Kantorovich-Rubinstein duality the

problem is transformed into (Villani et al. 2009)

max
w∈W

Ex∼Pr [ fw(x)]−Ez∼pp(z)[ fw(gθ (z))]

which is similar to the original GAN-game with the notable difference of the discriminator

being replaced with critic fw with a linear output. fw also needs to be 1-Lipschitz continuous,

and this is achieved in WGAN by constraining the weights w to a range [−c,c] by clipping.

WGANs were further improved upon with WGAN-GP using gradient penalty (Gulrajani et

al. 2017). In WGAN-GP the 1-Lipschitz continuity is enforced by constraining the critic’s

gradient norm of the output with respect to the input:

L = Ex∼Pg[ fw(x)]−Ex∼Pr [ fw(x)]+λEx̂∼Px̂(∥∇x̂ fw(x̂)∥2−1)2], (4.2)

where Px̂ is defined as uniformly sampled between points sampled from Pr and Pg.

4.1 FakeKnee-model

The synthetic images studied in this research were generated using convolutional WGAN-

GP (Prezja et al. 2022). Two architecturally identical models were trained to generate X-rays

of healthy knees (Kellgren-Lawrence grade 0 or 1) and knees with osteoarthritis (KL-grade

2, 3 or 4). The input to the generator was a noise vector of length 50 sampled from a standard

normal distribution, which then used to generate 210× 210× 1 -images using upsampling

layers and convolution layers with activation layers using exponential linear units (ELU,

Clevert, Unterthiner, and Hochreiter 2015). The discriminator (or critic) was a convolutional

neural network with five convolution layers with ELU-activations, and dropout layers were

used as regularizers. Finally, one linear dense layer was used as an output to calculate the

gradients using 4.2 with gradient penalty λ = 10.
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The generated images were validated using 15 medical experts. They were asked to identify

whether a randomly sampled image from either the real set or the generated set was real or

not. In total 60 images were used, and 61.35%(±10.71%) total accuracy was achieved. The

generated images were declared to have sufficient realism to deceive medical experts (Prezja

et al. 2022). This result can be further tested using cluster analysis.
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5 Cluster analysis

Cluster analysis is a form of unsupervised learning, as the data consists of vectors with no

corresponding values and the aim is to discover samples which have features in common

(Bishop and Nasrabadi 2006). The idea of transfer learning (see chapter 3.3) posits that

images, for example, encoded as feature vectors could be clustered as the feature vectors of

images which look alike should be similar. This allows extracting information from large

unlabeled datasets, or when labels are difficult or even impossible to determine.

What is considered a cluster is not clearly defined. One abstract definition given classically

has three parts: The members of a cluster should be as similar among themselves, they should

be dissimilar to non-members of the cluster, and the measurement of similarity should be

practical and explainable (Jain and Dubes 1988).

This three-part definition of a cluster allows many different clustering methods, two of which

were used in this research. However when VGG19 is used to extract features from an image a

vector of 512 values is produced. This is a very high dimensionality especially while consid-

ering the size of the data set (a total of 12000 images), and dimension reduction techniques

should be considered prior to the actual clustering.

5.1 Dimension reduction

The curse of dimensionality refers to a set of problems which arise with larger dimensionality

(Bishop and Nasrabadi 2006). For example if the similarity metric used in clustering is

euclidean distance, it is easy to see that the data sparsity rises with the dimension count. This

leads to overfitting, which in the case of clustering means that the number of possible clusters

rises as the data points drift further apart. Also, in the case of image feature extraction,

some features might be irrelevant for the image dataset. Below, two dimension reduction

techniques used in this research are detailed.
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5.1.1 Principal component analysis

The intuition behind principal component analysis (PCA) is to order the components (i.e.

attributes or features) according to their variance. To reduce the dimensionality as much

as possible while preserving most of the variation in the dataset, the components which

contribute the least variance are discarded (Joliffe 2002).

Finding the principal components can be formulated as a problem of maximizing the vari-

ance of a data projected onto a lower dimensional plane. This problem simplifies to finding

the eigenvectors of the data (Bishop and Nasrabadi 2006), and the principal components can

be extracted with the following steps: Let X be a N×D matrix centered by subtracting the

mean of each attribute. The covariance matrix can then be written as C = XT X/(N− 1),

which is symmetric and can be diagonalized as C = VΛV−1, where the column vectors of

V are the eigenvectors of C and the diagonal values of Λ are the corresponding eigenval-

ues. The eigenvectors V are the principal axes and projecting the data X gives the principal

components as the columns of XV.

Singular value decomposition (SVD) is used in the method which was used used in this

research to find the principal components1. With SVD the decomposition X = UΣVT is

obtained, where U and VT are unitary matrices and Σ is a singular matrix. The earlier

equation for the covariance matrix C = XTX/(N−1) becomes

C = VSUT USVT/(N−1) = V
S2

N−1
VT (5.1)

as U was unitary. This shows that the vectors of V are the eigenvectors and the eigenvalues

are given with λi =
s2

i
N−1 . Thus the principal components are given by XV = UΣVT V = UΣ.

Because PCA is a linear operation, the projection onto a lower dimension can be represented

as a layer of a neural network with a linear activation function.

5.1.2 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a non-linear dimensionality

reduction technique (McInnes, Healy, and Melville 2020). It has been used for visualization

1. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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purposes (e.g. Diaz-Papkovich et al. 2019) and for general dimensionality reduction pur-

poses (e.g. Becht et al. 2019). It is similar to t-SNE (Van der Maaten and Hinton 2008) as

both are based on manifold learning.

The overall goal of the UMAP algorithm is to learn a lower dimensionality embedding for

the data where structures found in the original dimensionality are preserved. This means that

neighboring datapoints in the original data should be close to each other in the embedding

space, and non-neighboring points should remain distant.

First, a weighted k-neighbor graph is constructed. The k nearest neighbors for each datapoint

xi are searched using nearest neighbour descent (Dong, Moses, and Li 2011). The distance

to the nearest neighbor of xi is defined with distance metric d as

ρi = min{d(xi, xi j) | 1≤ j ≤ k, d(xi, xi j)> 0}

The weight function w((xi, xi j)) is normalized with factor σi which is set to so that

k

∑
j=1

exp
(−max(0, d(xi,xi j)−ρi

σi

)
= log2(k)

The weight function is then defined as

w((xi, xi j)) = exp
(−max(0, d(xi,xi j)−ρi

σi

)
The weighted directed graph G = (V,E,w) can then be defined with vertices V being the set

of datapoints, the edges E = {(xi,xi j)|1 ≤ j ≤ k,1 ≤ i ≤ N} with weights w. Because the

directed edges from xi to x j can differ from x j to xi, the edges B of the graph G are obtained

from

B = A+AT −A⊙AT

where A is the weighted adjacency matrix of G and ⊙ is the Hadamard product.

The graph is first initialized using spectral embedding. It is then optimized by minimization
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of fuzzy set cross entropy:

C((A,µ),(A,ν)) = ∑
a∈A

(
µ(a)log

(
µ(a)
ν(a)

)
+(1−µ(a))log

(
1−µ(a)
1−ν(a)

))
= ∑

a∈A
(µ(a)log(µ(a))+(1−µ(a))log(1−µ(a)))

−∑
a∈A

(µ(a)log(ν(a))+(1−µ(a))log(1−ν(a)))

where µ and ν are membership functions. Function µ corresponds to the edge strengths

from B and ν is a similar membership function in the embedding dimension. As the first

sum of the cross entropy depends only on µ the cost function to minimize is

C =−∑
a∈A

(µ(a)log(ν(a))+(1−µ(a))log(1−ν(a)))

Because µ is known membership function defined by B, a differentiable approximation for

ν us needed to use stochastic descent on C:

Between two points x and y in lower dimensionality Rd the membership function is defined

as

Φ(x,y) =
(

1+a(||x,y||22)b
)−1

,

where parameters a and b are chosen by fitting a non-linear least squares against

Ψ(x,y) =

1 if ||x,y||2 ≤ min_dist

exp(−||x,y||2−min_dist) otherwise

Hyperparameter min_dist is chosen to be the minimum distance between two points that

are considered neighbors. Stochastic gradient descent is then performed for the number of

epochs n-epochs w.r.t the gradient of the loss multiplied by learning rate

α = 1− epoch/n-epochs

.

While PCA is easily understandable intuitively and the embedding dimensions have a clear

explanation as the orthogonal directions of maximal variance, a lot of topological informa-

tion can be lost with dimension reduction. This is in contrast with UMAP, which attempts to
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preserve the structures in the data, but the embedding dimensions do not have a clear mean-

ing. The non-linear transformation of data can also lead to artificial clusters in clustering, as

the datapoints moved according to possibly noisy data. For these reasons UMAP is used in

tandem with PCA in this research, as an attempt to mitigate their respective drawbacks.

5.2 Clustering algorithms

The ambiguity in what a cluster is leads to many different ways to determine which data-

points constitute a cluster. For example, a cluster can be defined using some distance metric

and and segmenting the data into groups. It can also be defined by searching concentrations

of data with some density thresholds, or even by finding sets which locally follow some sort

of hierarchical structure (Landau et al. 2011). Graphical examples of these scenarios can be

seen in figure 5.

Figure 5. Examples of the multiple different ways a cluster can be defined

Finding clusters varying in sizes and shapes has given rise to multiple different techniques;

one algorithm would struggle to find all the structures seen in figure 5. The two clustering

algorithms, k-means and OPTICS, used in this research were chosen for similar reasons as

to why PCA and UMAP were chosen as the dimensionality reduction, that is to have an

easily explainable and controlled results of k-means, and the density based, more explorative

qualities of OPTICS.

17



5.2.1 K-means

K-means, sometimes called the Lloyd’s algorithm (Lloyd 1982), is a centroid-based clus-

tering algorithm. It attempts to find an optimal clustering by assigning the datapoints into

k groups and re-assigning the memberships to minimize the distance between datapoints

and the mean of their respective groups. The clustering itself is not necessarily the global

optimum as the k-means problem is NP-hard (Drineas et al. 2004). The standard k-means

algorithm is shown in Algorithm 1.

Algorithm 1 K-means
k← number of clusters

X← data

c1, . . . ,ck← X ▷ Initialize random clusters

repeat

c′1, . . . ,c
′
k← c1, . . . ,ck

for i ∈ {1, . . . ,k} do

centroidi← 1
n ∑

n
j=1 x j, x ∈ ci ▷ Calculate the centroids

end for

min_dist = ∞ ▷ Initialize minimum distance to a large number

for x ∈ X do

for i ∈ {1, . . . ,k} do

if ||x− centroidi||22 ≤ min_dist then

ci← x ▷ Assign x to the closest cluster

min_dist← ||x− centroidi||22
end if

end for

end for

until c1, . . . ,ck = c′1, . . . ,c
′
k ▷ End when the clusters do not change

Variations to this algorithm are possible by, for example, using another distance metric such

as Manhattan distance, or by using actual datapoints as representatives instead of virtual

centroids (k-medoids). The k-means++ -algorithm (Arthur and Vassilvitskii 2007) used in

this research has the optimization steps as the Lloyd’s algorithm, but initializes the starting
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state by sampling the centroids randomly from datapoints with probability proportional to

the distance squared from the closest already sampled centroid, with the first centroid chosen

randomly.

The minimization of intra-cluster distances leads to the division of the datapoints into Voronoi

cells. This means the k-means clustering assumes the clusters to be roughly spherical and

equidistant. The number of clusters is also fixed. For these reasons k-means clustering alone

is not enough in explorative data-analysis.

5.2.2 OPTICS

OPTICS (Ankerst et al. 1999) as a density-based algorithm which attempts to find clusters

where some minimum amount of datapoints are inside a region of a certain size, i.e. clusters

with some density threshold. This allows the clusters to differ in shapes and sizes, and the

number of the clusters needs not to be defined in advance.

Clustering using the OPTICS algorithm consists of two key parts, calculating reachability

values for each of the datapoints (this is the OPTICS algorithm in the original paper), and

using the reachability values to construct the clustering structure. The reachability values

are a ordered and when graphed the dense areas in the data are represented as valleys in the

visualization, with cluster boundaries being the cluster boundaries or noise. The OPTICS

algorithm is described in 2

If a fixed threshold ε below which a point is considered a member of a cluster, results similar

to another clustering algorithm, DBSCAN, are reached (Ankerst et al. 1999). However,

in the original paper a more automatic technique of finding ξ -clusters is introduced: A ξ -

cluster is an area [a,b] in the ordered set of reachability values which is larger than the

minimum amount of datapoints given as a hyperparameter, with the edges defined by the

hyperparameter ξ which determines how large the change in reachability values needs to be

for a point to be considered either a or b.
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Algorithm 2 OPTICS
minPts←minimum number of neighboring points

ε ← "generating distance"

{x1, . . . ,xn}← data

reachability values←{} ▷ Initialize output as an empty set

priority−queue←{}

add random datapoint p to priority-queue as (p,∞)

while priority-queue not empty do

(p,reachability)← first element of the priority-queue

ε ′← minimum distance s.t. the neighborhood of p contains minPts-points

for each x with distance(p,x) ≤ ε do

reachabilityp← max(distance(p,ε ′),distance(p,x))

if x ∈ reachability values then

break

else if x ∈ priority-queue then

Update (x,reachabilityx)← (x,min(reachabilityx,reachabilityp))

else

add (x,reachabilityp) to priority-queue

end if

end for

add (p,reachability) to reachability values

Substitute first element of priority-queue with max reachability element

Re-order priority queue

end while

Return reachability values

5.3 Cluster evaluation

The final stage before the interpretation of results in cluster analysis is the evaluation of

results of the clustering (Halkidi, Batistakis, and Vazirgiannis 2001). The methods used in

this research can be divided into internal and external evaluation.

In internal evaluation the clustering results are evaluated using the features of the clustered
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dataset itself. In this research only such method used was the calculation of silhouette scores

to compare the performances of k-means clustering when increasing the number of dimen-

sions. Silhouette scores are calculated for each datapoint i by taking the mean distance a(i)

to other points in its cluster and the mean distance to the points in the closest different cluster

b(i). Silhouette score can then be calculated as

s(i) =
b(i)−a(i)

max{a(i),b(i)}
.

This results in a silhouette score between [0,1], where larger values are desired and negative

values indicate errors in cluster assignments.

In external evaluation some additional info outside of the clustered data is used. This can

include known labels to test the validity of clustering. For example, in this research the labels

and datasets for the clustered image data were known, but only the raw pixel data were used

for the clustering. The method used to evaluate the success in this research was the adjusted

Rand index (Hubert and Arabie 1985). The original Rand index is calculated as

RI =
a+d

a+b+ c+d

where (in the case of a classification problem) a is the number of true positives, b is the

number of false positives, c is the number of false negatives, and d is the number of true

negatives, and the value is in the interval [0,1] The adjusted Rand index was developed

to counter the problems arising from randomness in the original, as random classification

does not produce a constant Rand index (Santos and Embrechts 2009). The adjusted Rand

index has also a maximum value of 1, but the expected value of a random classification is 0.

Adjusted Rand index can be calculated as

ARI =

(n
2

)
(a+d)− [(a+b)(a+ c)+(c+d)(b+d)](n

2

)2− [(a+b)(a+ c)+(c+d)(b+d)
.
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6 Data and methods

In this chapter the datasets used are described in detail, including the preprocessing of the

data. The tools and specific methods used are also presented, with an emphasis on practical

implementation in contrast to the previous chapters.

6.1 Datasets used

The FakeKnee -models were trained on radiograph images from the Osteoarthritis Iniative

(OAI) dataset. Synthetic images generated by the model were then compared with radio-

graph images from Multicenter Osteoarthritis Study (MOST). These three datasets are de-

tailed in the following subsections.

6.1.1 OAI and Synthetic images

The Osteoarthritis Initiative (OAI) was an observational study of knee osteoarthritis (Nevitt,

Felson, and Lester 2006). The data were collected from 4796 participants aged 45-79 and

included X-ray and MRI images, and biosamples. The X-ray images used in this research

and the training of the FakeKnee -models 4.1 were obtained from a previous study (Chen

et al. 2019) to automatically identify the knee joint area from leg radiographs in the OAI

dataset. The images were divided by Kellgren-Lawrence graded into two groups KL01 and

KL234 with grades 0-1 and 2-4 respectively.

To standardize the orientation the images of the left knee were mirrored horizontally and

negative channel images were inverted. All of the images were contrast-equalized using his-

togram equalization, and scaled down from 299×299×1 to 210×210×1. Blurry images

were then removed by filtering the image using a Laplacian kernel and calculating the vari-

ance of the resultant image and discarding images with variance < 350. Finally, 38 images

with artifacts such as surgical prosthestics or scratches in the X-ray were removed manually.

When training the FakeKnee-models the class KL01 has 3205 images and the class KL234

had 2351 images. This was further reduced two 2000 images in each class by random sam-

pling to have balanced datasets in this research. The trained FakeKnee-models were the used
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to generate 2000 images in each class. No further preprocessing was done to these images.

6.1.2 MOST

Multicenter Osteoarthritis Study was a longitudinal study conducted in the United States

of America beginning in 2003 with baseline assessments and continuing for seven years

with regular follow-up assessments. The assessments consisted of (but not limited to) joint

space narrowing, formation of osteophytes, and Kellgren-Lawrence grading from radiolog-

ical data (X-ray and MRI) of lateral, posterior-anterior, and full limb images. The baseline

assessments had 3026 observations with the amount decreasing slightly in the follow-up

assessments.

For the purposes of this thesis only the baseline KL-grading and posterior-anterior X-ray

images were considered. This was done to maximize the amount of participants without

including a participant’s X-ray and assessments twice. This limited the dataset to 3016 par-

ticipants’ X-ray images with individual KL-grading of both of their knees, a total of 6032

images.

The individual knees were extracted using BoneFinder, a tool for finding bone contours using

random forest regression voting (Lindner et al. 2013). These contours were used to crop the

extracted knees to match the synthetic and OAI images. If BoneFinder failed to recognize a

knee, the image was discarded. This happened on low quality images, or when the participant

had had a knee surgery. This did not have an adverse effect as these images would have been

removed at a later point.

Cropped images of the left knee were mirrored horizontally to match the FakeKnee models,

which generates images of right knees. Histogram equalization was done to the images

to equalize their contrast to match the OAI and generated images. The images were also

categorized by the presence of osteoarthritis using the KL-grades; knees graded 0-1 being

healthy and 2-4 being knees with osteoarthritis. These categories had 3531 and 2331 images

respectively after this.

Radiographs with anomalies were then manually removed from the dataset. This included

images with artifacts such as metal implants or from the scanning process of the original.
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Examples of such images can be seen in figure 6. It has to be noted that most of the failed

images were discarded when selecting the original 3016 subjects, as only knees with a valid

KL-grading were selected. This manual process removed 87 and 57 from the respective

classes.

The remaining images were evaluated for their blurriness by filtering the image using a

Laplacian kernel and calculating the variance of the resultant image. The images with the

highest variance were used to create the final dataset with 2000 images healthy knees and

2000 with various stages of osteoarthritis to ensure balanced categories.

Figure 6. A normal image, an image with an artifact, and an image with text overlap

6.2 Experiment details

In order to analyze the images and how they cluster the following experiment (figure 7)

was conducted. First, the features were extracted from both real (MOST) and synthetic

(FakeKnee) imagesets using a pretrained VGG19. These features which are 512-dimensional

vectors were then projected to a lower dimension by using principal component analysis

(PCA, 5.1.1) or uniform manifold approximation and projection (UMAP, 5.1.2). The projec-

tion to a lower dimension using PCA is a linear operation, and can be inserted into a fully

connected neural network layer as such, which was used later in Grad-CAM analysis. Mul-

tiple different levels of dimension reduction were tested to find if different cluster structures

emerge when varying the complexity of the features.

The features, which were embedded in fairly few (≤ 30) dimensions, were clustered using ei-

ther k-means clustering or OPTICS depending on the distribution of the embedded features.

The parameters of these algorithms (number of clusters/centroids in k-means, minimum clus-
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Figure 7. The experiment pipeline

ter members and ξ -value in OPTICS) were varied to find meaningful cluster structures. De-

tailed descriptions of k-means and OPTICS can be found in chapters 5.2.1 and 5.2.2. The

clusters were analyzed to answer the following questions:

• Is there a difference in the features between synthetic and real images?

• Are clearly failed synthetic images distinguishable from convincing ones using this

method?

A selection of embedded feature vectors with their corresponding images was chosen for the

Grad-CAM analysis. The vectors were selected based on the clustering results, and were in

practice either outliers or cluster representatives (i.e. centroids). The corresponding images

of these feature vectors were then fed to VGG19 with the same weights as before, but with the

coefficients obtained from principal component analysis as the final layer, which is usually

used for classification. This was done to acquire the gradients between the embedded feature

vector and the layers of VGG19, highlighting the parts of the image which contributed most

to the placement of the vector in the clustering.
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The experiment was replicated using OAI-images to verify the results. This part was identical

to the main one, with the exception of having OAI-images in the place of synthetic images.

The results were then compared to show the similarities between the clusterings, and the

differences between the datasets.
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7 Results

The synthetic images were found to be easily distinguishable from images from the MOST-

dataset using cluster analysis. However the OAI images used to train the FakeKnee model

clustered very similarly. Grad-CAM revealed mainly that in sharper images the "attention"

of the convolutional neural network is focused on smaller details.

7.1 Cluster analysis

Reducing the dimension to two using PCA and plotting the resulting embedded feature vec-

tors produces figure 8. In it the MOST -images can be seen to form roughly two dense

clusters and a sparse cluster. The synthetic images from the FakeKnee-model forms a one

large cluster which mixes a with one of the MOST-clusters. The cumulative explained vari-

ance ratio of this projection was 0.495.

Figure 8. MOST and synthetic images projected to 2D using PCA

The suggested number of clusters for k-means (using inertia values and the elbowing method)

was four. This clustering can be seen in figure 9. The 4-cluster k-means separated the

synthetic from MOST-images with some success, cluster 4 being 83.0% synthetic images,
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and clusters 1 and 2 being 96.6% and 100.0% real images respectively.

Figure 9. K-means clustering of MOST and synthetic with four clusters in 2D

A plot of the explained variances can be seen in figure 10. Cumulative explained variance

ratio of 0.90 was achieved with 30 principal components. Principal component analysis with

more components and using k-means clustering changes the cluster structure only a little

after 4 components: The adjusted Rand indices between embeddings with more components

are close to 1. The adjusted Rand indices are shown in table 1. The optimal number of
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clusters seemed to approach 4, but the delta between concurrent inertia values gets generally

smaller when increasing the components used. The silhouette value averages also tended to

lower values which could indicate worse clusterings when the number of components gets

larger. This knowledge guided the selection of the latent dimensions used in further analysis,

these dimensions being 2, 3, 4, 5, 10, 20 and 30.

Figure 10. Explained variance ratios of principal component analysis

7.1.1 UMAP embeddings clustering using OPTICS

The UMAP assisted clustering using OPTICS performed better than the PCA and k-means

-method on separating the synthetic from the real images. This can be seen in figure 11

which shows that a 2D projection using UMAP forms distinct partitions in the data. This,

in contrast to the 2D projection using PCA (figure 8), can be more easily clustered into

synthetic and real images.

Clustering these 2D embeddings using OPTICS (minPts = 50,ξ = 0.1) produced four clus-

ters, with a region between clusters 2 and 3 labeled as noise (figure 12). The distributions of

original labels in these clusters are in table 2. The synthetic images (with some exceptions)

were clustered into one cluster, and the images from MOST were clustered into three clusters
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Table 1. Adjusted Rand indices between k-means clusterings (k = 4) of the selected PCA

components (dimensions)

components 2 3 4 5 10 20 30

2 1.0 0.750 0.723 0.720 0.712 0.714 0.713

3 1.0 0.923 0.919 0.909 0.912 0.909

4 1.0 0.988 0.969 0.972 0.970

5 1.0 0.977 0.977 0.976

10 1.0 0.994 0.995

20 1.0 0.997

30 1.0

Table 2. Distributions of images in clusters (UMAP 2D/OPTICS)

MOST Synthetic

cluster KL01 KL234 KL01 KL234

1 0 2 1995 1996

2 1367 940 4 1

3 172 103 0 0

4 344 849 1 3

of varying sizes. There was seemingly no clear clustering by KL-grades.

The clustering method had little effect on the labels of the 2D features. The adjusted Rand

index between the k-means and OPTICS labels was 0.995 on on k = 4 and OPTICS with

minPts = 50 and ξ = 0.1. However on higher dimensionalities OPTICS with the same hy-

perparameters finds multiple smaller clusters: Twenty-three subclusters were discovered in

UMAP embeddings with 30 features. These are shown in figure 13 as a 2D projection, and

were used as the basis for Grad-CAM visualizations in chapter 7.2.

7.1.2 Validation using OAI

The success in generating synthetic versions of OAI images was evaluated by replicating

the previous clusterings using OAI images in place of the synthetic FakeKnee images, and
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Figure 11. MOST and synthetic images projected to 2D using UMAP

comparing the clusterings. The same MOST images were used, and the new clusterings were

done independent of the original clusterings. The PCA projection of MOST and OAI can be

seen in figure 14.

While there is a lot of similarity between the distributions of the OAI and synthetics images

as seen in figures 8 and 14, clustering them into four clusters using k-means gives an adjusted

Rand index of 0.465. However, as there is no clear cluster structures visible and the assump-

tions of k-means clustering are not fulfilled, the features are divided into four similarly sized

segments and there could be a lot of difference in labels near the edges of the segments.

Embedding the MOST and OAI images using UMAP to two dimensions forms a similar

structure to figure 11, and these features can be successfully clustered using OPTICS (minPts

= 50, ξ = 0.1), as was done with MOST and synthetic images. The resulting clustering can

be seen in figure 15, and the distribution of features are in table 3.

Using the embeddings (in dimensions 2, 3, 4, 5, 10, 20, and 30) produced similar clusters

to ones obtained when comparing synthetic and MOST images. The adjusted Rand indices

between the original clusters and validations clusters were over 0.95 on all embedding di-
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Figure 12. MOST and synthetic UMAP 2D embeddings clustered using OPTICS

Table 3. Clustering results of MOST and OAI images in 2D

MOST OAI

cluster KL01 KL234 KL01 KL234

0 15 13 1944 19805

1 1354 935 50 6

2 287 206 0 1

3 343 846 5 13

mensions from 2 onward, with 4D being the highest of these with ARI of 0.952 With few

exceptions the OAI images and synthetic images were indistinguishable from each other

using this method.

7.2 Grad-CAM visualizations

The subcluster representatives from clusters shown in figure 13 were calculated as the data-

point closest (w.r.t. their l2 distance) to the mean of all datapoints in a cluster. While UMAP

is not a linear transformation and thus the datapoint closest to the mean is not necessarily in
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Figure 13. Subclusters discovered in 30d

the middle of a cluster, the cluster sizes were small and their distances relative to one another

were big enough for this to have little effect.

The Grad-CAM results show no clear differences between the clusters. The clusters 0-11

were mostly synthetic images and the Grad-CAM visualizations show that the VGG19 -

network focused on sharp edges, and put emphasis on the joint space an tibial spike, while

also focusing on the femur and patella. The clusters 12-14 were real images and while clearly

distinct from the synthetic images in the UMAP projection, they were the closest when using

PCA. The Grad-CAM heatmaps could also indicate this, although the difference is not clear.

Subclusters 15-18 were part of the smallest of the clusters. A noticeable "striping" could

be seen in all of the images in the clusters. The heatmaps show that the network was not

totally distracted by this features, but as they were distinctly clustered together, this might

have been the most prominent feature.

Subclusters 19-21 were a part of the final larger cluster. This cluster consisted of the blurrier

image from MOST. The heatmaps seem to light smaller areas, and this could possibly be due

to the network struggling to find distinct features.
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Figure 14. MOST and OAI images projected to 2D using PCA

Figure 15. MOST and OAI images projected to 2D using UMAP and clustering using OP-

TICS
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Figure 16. Grad-CAM visualizations of the 22 cluster representatives. Two copies of the

same X-ray are shown for each sample, with the original and one with Grad-CAM heatmap

superimposed on it. The red sections of the image contributed more to the latent embedding

of the image.
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8 Conclusion

In this Master’s thesis synthetic images created by Prezja et al. 2022 were studied by feature

extraction and cluster analysis methods and comparing the results to real X-ray images.

Using UMAP together with OPTICS successfully separated the synthetic images from the

real images of MOST dataset. However, using the same method with the original OAI train-

ing images (instead of synthetic) yielded similar results as the OAI and MOST images sepa-

rated as well. This indicates the success of the synthetic images capturing the distribution of

the training set.

The method used to extract features showed to be susceptible to "unimportant" features

(stripes, blurriness), as they dominated the clustering results. This might be alleviated by

fine-tuning the models to ignore these features. Denoising autoencoders could also be used

to find better embeddings while making them more robust.

The variations between datasets was clearly shown. While the preprocessing done to both

datasets was as similar as possible, the differences between them were shown in the cluster-

ing which almost perfectly separated them. This result shows the need for diverse training

sets for computer vision applications. Models tested on images from the same distribution

as they were trained on will give a too optimistic measure of their capabilities. For example,

a model trained on OAI images (or synthetic images) would not perform as well on MOST

images, and therefore would probably struggle in hospital scenarios.

There were some indications of KL-grades affecting the embedding. Most of the knees

graded 2, 3 and 4 tended to be on the opposite side of the cluster with regards to the knees

graded 0 or 1. The huge amount of overlap between these two classes does point to the

difficulty of the task of automatically grading the severity of osteoarthritis.

The results from Grad-CAM analysis were unclear. While the method indicated that the

feature extraction focused on the essential locations on the images, the methods for analyzing

the result would need to be more refined. Further development is needed for making these

unsupervised methods more explainable.

36



Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S Corrado, et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems. www.tensorflow.org..

Ankerst, Mihael, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. ”OPTICS:

Ordering points to identify the clustering structure”. ACM Sigmod record 28 (2): 49–60.

Arjovsky, Martin, and Léon Bottou. 2017. ”Towards principled methods for training gener-

ative adversarial networks”. arXiv preprint arXiv:1701.04862.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. 2017. ”Wasserstein generative adver-

sarial networks”. In International conference on machine learning, 214–223. PMLR.

Arthur, David, and Sergei Vassilvitskii. 2007. ”K-means++ the advantages of careful seed-

ing”. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-

rithms, 1027–1035.

Becht, Etienne, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel WH

Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. 2019. ”Dimensionality reduc-

tion for visualizing single-cell data using UMAP”. Nature biotechnology 37 (1): 38–44.

Bishop, Christopher M, and Nasser M Nasrabadi. 2006. Pattern recognition and machine

learning. Volume 4. 4. Springer.

Chen, Pingjun, Linlin Gao, Xiaoshuang Shi, Kyle Allen, and Lin Yang. 2019. ”Fully auto-

matic knee osteoarthritis severity grading using deep neural networks with a novel ordinal

loss”. Computerized Medical Imaging and Graphics 75:84–92.

Choi, Edward, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng

Sun. 2017. ”Generating multi-label discrete patient records using generative adversarial net-

works”. In Machine learning for healthcare conference, 286–305. PMLR.

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. 2015. ”Fast and accurate

deep network learning by exponential linear units (ELUs)”. arXiv preprint arXiv:1511.07289.

37

www.tensorflow.org.


Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ”Imagenet: A

large-scale hierarchical image database”. In 2009 IEEE conference on computer vision and

pattern recognition, 248–255. Ieee.

Diaz-Papkovich, Alex, Luke Anderson-Trocmé, Chief Ben-Eghan, and Simon Gravel. 2019.

”UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic

cohorts”. PLoS genetics 15 (11): e1008432.

Dong, Wei, Charikar Moses, and Kai Li. 2011. ”Efficient k-nearest neighbor graph construc-

tion for generic similarity measures”. In Proceedings of the 20th international conference on

World wide web, 577–586.

Drineas, Petros, Alan Frieze, Ravi Kannan, Santosh Vempala, and Vishwanathan Vinay.

2004. ”Clustering large graphs via the singular value decomposition”. Machine learning

56:9–33.

European Parliament, Council of the European Union. 2016. Regulation (EU) 2016/679 of

the European Parliament and of the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and on the free movement of such data,

and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal of

the European Union. https://eur-lex.europa.eu/eli/reg/2016/679/oj.

Fukushima, Kunihiko. 1980. Biological Cybernetics Neocognitron: A Self-organizing Neural

Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Http://www.

deeplearningbook.org. MIT Press.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. ”Generative Adversarial Nets”. In Ad-

vances in Neural Information Processing Systems, edited by Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K.Q. Weinberger, volume 27. Curran Associates, Inc. https :

//proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-

Paper.pdf.

38

https://eur-lex.europa.eu/eli/reg/2016/679/oj
Http://www.deeplearningbook.org
Http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.

2017. ”Improved training of Wasserstein GANs”. Advances in neural information processing

systems 30.

Halkidi, Maria, Yannis Batistakis, and Michalis Vazirgiannis. 2001. ”On clustering validation

techniques”. Journal of intelligent information systems 17:107–145.

He, Kaiming, Ross Girshick, and Piotr Dollár. 2019. ”Rethinking imagenet pre-training”. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, 4918–4927.

Health, U.S. Department of, and Human Services. 2000. HIPAA privacy rule. 45 CFR Parts

160 and 164. Standards for privacy of individually identifiable health information; final rule.

Hubert, Lawrence, and Phipps Arabie. 1985. ”Comparing partitions”. Journal of classifica-

tion 2:193–218.

Hunter, David J, Deborah Schofield, and Emily Callander. 2014. ”The individual and socioe-

conomic impact of osteoarthritis”. Nature Reviews Rheumatology 10 (7): 437–441.

Jain, Anil K, and Richard C Dubes. 1988. Algorithms for clustering data. Prentice-Hall, Inc.

Joliffe, Ian T. 2002. Principal Component Analysis. Springer New York, NY. https://doi.org/

10.1007/b98835.

Jung, Hyungsik, and Youngrock Oh. 2021. ”Towards better explanations of class activation

mapping”. In Proceedings of the IEEE/CVF International Conference on Computer Vision,

1336–1344.

Kaila-Kangas, Leena. 2007. ”Musculoskeletal disorders and diseases in Finland: results of

the health 2000 survey”.

Karbhari, Yash, Arpan Basu, Zong Woo Geem, Gi-Tae Han, and Ram Sarkar. May 2021.

”Generation of Synthetic Chest X-ray Images and Detection of COVID-19: A Deep Learning

Based Approach”. Diagnostics 11, number 5 (): 895. ISSN: 2075-4418, visited on April 19,

2023. https : / / doi . org / 10 . 3390 / diagnostics11050895. https : / / www . mdpi . com / 2075 -

4418/11/5/895.

39

https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.3390/diagnostics11050895
https://www.mdpi.com/2075-4418/11/5/895
https://www.mdpi.com/2075-4418/11/5/895


Käypä hoito. 2016. ”Knee and hip osteoarthritis. Current Care Guideline”. Visited on June 2,

2023. www.kaypahoito.fi.

Kellgren, Jonas H, and JS1006995 Lawrence. 1957. ”Radiological assessment of osteo-

arthrosis”. Annals of the rheumatic diseases 16 (4): 494.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2017. ”Imagenet classification

with deep convolutional neural networks”. Communications of the ACM 60 (6): 84–90.

Landau, Sabine, Morven Leese, Daniel Stahl, and Brian S Everitt. 2011. Cluster analysis.

John Wiley & Sons.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. ”Gradient-based

learning applied to document recognition”. Proceedings of the IEEE 86 (11): 2278–2324.

Lee, Lok Sze, Ping Keung Chan, Chunyi Wen, Wing Chiu Fung, Amy Cheung, Vincent

Wai Kwan Chan, Man Hong Cheung, Henry Fu, Chun Hoi Yan, and Kwong Yuen Chiu.

2022. ”Artificial intelligence in diagnosis of knee osteoarthritis and prediction of arthroplasty

outcomes: a review”. Arthroplasty 4 (1): 16.

Lespasio, Michelle J, Nicolas S Piuzzi, M Elaine Husni, George F Muschler, AJ Guarino,

and Michael A Mont. 2017. ”Knee osteoarthritis: a primer”. The Permanente Journal 21.

Lindner, C., S. Thiagarajah, J. M. Wilkinson, The arcOGEN Consortium, G. A. Wallis, and

T. F. Cootes. 2013. ”Fully Automatic Segmentation of the Proximal Femur Using Random

Forest Regression Voting”. IEEE Transactions on Medical Imaging 32 (8): 1462–1472. https:

//doi.org/10.1109/TMI.2013.2258030.

Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco

Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, and Clara I.

Sánchez. December 2017. ”A survey on deep learning in medical image analysis”. Medical

Image Analysis 42 (): 60–88. ISSN: 13618415, visited on April 12, 2023. https://doi.org/10.

1016/j.media.2017.07.005.

Lloyd, Stuart. 1982. ”Least squares quantization in PCM”. IEEE transactions on information

theory 28 (2): 129–137.

40

www.kaypahoito.fi
https://doi.org/10.1109/TMI.2013.2258030
https://doi.org/10.1109/TMI.2013.2258030
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005


McInnes, Leland, John Healy, and James Melville. 2020. UMAP: Uniform Manifold Approx-

imation and Projection for Dimension Reduction. arXiv: 1802.03426 [stat.ML].

Murtaza, Hajra, Musharif Ahmed, Naurin Farooq Khan, Ghulam Murtaza, Saad Zafar, and

Ambreen Bano. 2023. ”Synthetic data generation: State of the art in health care domain”.

Computer Science Review 48:100546.

Narayanan, Arvind, and Edward W Felten. 2014. ”No silver bullet: De-identification still

doesn’t work”. White Paper 8.

Nevitt, M, D Felson, and Gayle Lester. 2006. ”The osteoarthritis initiative”. Protocol for the

cohort study 1.

Phillips, P Jonathon, Carina A Hahn, Peter C Fontana, David A Broniatowski, and Mark

A Przybocki. 2020. ”Four principles of explainable artificial intelligence”. Gaithersburg,

Maryland, 18.

Prezja, Fabi, Juha Paloneva, Ilkka Pölönen, Esko Niinimäki, and Sami Äyrämö. 2022. ”Deep-

Fake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical

experts and offer augmentation potential to automatic classification”. Scientific Reports 12

(1): 18573. ISSN: 2045-2322, visited on April 12, 2023. https://doi.org/10.1038/s41598-

022-23081-4. https://www.nature.com/articles/s41598-022-23081-4.

Roos, Ewa M, and Nigel K Arden. 2016. ”Strategies for the prevention of knee osteoarthri-

tis”. Nature Reviews Rheumatology 12 (2): 92–101.

Rosenblatt, Frank. 1958. ”The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological review 65 (6): 386.

Samala, Ravi K, Heang-Ping Chan, Lubomir Hadjiiski, Mark A Helvie, Jun Wei, and Kenny

Cha. 2016. ”Mass detection in digital breast tomosynthesis: Deep convolutional neural net-

work with transfer learning from mammography”. Medical physics 43 (12): 6654–6666.

Santos, Jorge M, and Mark Embrechts. 2009. ”On the use of the adjusted rand index as a

metric for evaluating supervised classification”. In Artificial Neural Networks–ICANN 2009:

19th International Conference, Limassol, Cyprus, September 14-17, 2009, Proceedings, Part

II 19, 175–184. Springer.

41

https://arxiv.org/abs/1802.03426
https://doi.org/10.1038/s41598-022-23081-4
https://doi.org/10.1038/s41598-022-23081-4
https://www.nature.com/articles/s41598-022-23081-4


Selvaraju, Ramprasaath R, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi

Parikh, and Dhruv Batra. 2017. ”Grad-cam: Visual explanations from deep networks via

gradient-based localization”. In Proceedings of the IEEE international conference on com-

puter vision, 618–626.

Shin, Hoo Chang, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jian-

hua Yao, Daniel Mollura, and Ronald M. Summers. May 2016. ”Deep Convolutional Neu-

ral Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics

and Transfer Learning”. IEEE Transactions on Medical Imaging 35 (5): 1285–1298. ISSN:

1558254X. https://doi.org/10.1109/TMI.2016.2528162.

Simonyan, Karen, and Andrew Zisserman. 2014. ”Very deep convolutional networks for

large-scale image recognition”. arXiv preprint arXiv:1409.1556.

Sinusas, Keith. 2012. ”Osteoarthritis: diagnosis and treatment”. American family physician

85 (1): 49–56.

Tiulpin, Aleksei, Jérôme Thevenot, Esa Rahtu, Petri Lehenkari, and Simo Saarakkala. 2018.

”Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based ap-

proach”. Scientific reports 8 (1): 1–10.

Van der Maaten, Laurens, and Geoffrey Hinton. 2008. ”Visualizing data using t-SNE.” Jour-

nal of machine learning research 9 (11).

Villani, Cédric, et al. 2009. Optimal transport: old and new. Volume 338. Springer.

Viola, Paul, and Michael J Jones. 2004. ”Robust real-time face detection”. International

journal of computer vision 57:137–154.

Wieland, Heike A, Martin Michaelis, Bernhard J Kirschbaum, and Karl A Rudolphi. 2005.

”Osteoarthritis—an untreatable disease?” Nature reviews Drug discovery 4 (4): 331–344.

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. 2016.

”Learning deep features for discriminative localization”. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2921–2929.

42

https://doi.org/10.1109/TMI.2016.2528162

	1 Introduction
	2 Knee osteoarthritis
	2.1 Kellgren-Lawrence -grading
	2.2 Previous research

	3 Convolutional neural networks
	3.1 Convolution
	3.2 Deep convolutional neural networks
	3.3 Transfer learning, Tensorflow, and VGG19
	3.4 Class-activation mapping

	4 Generative Adversarial Networks
	4.1 FakeKnee-model

	5 Cluster analysis
	5.1 Dimension reduction
	5.1.1 Principal component analysis
	5.1.2 UMAP

	5.2 Clustering algorithms
	5.2.1 K-means
	5.2.2 OPTICS

	5.3 Cluster evaluation

	6 Data and methods
	6.1 Datasets used
	6.1.1 OAI and Synthetic images
	6.1.2 MOST

	6.2 Experiment details

	7 Results
	7.1 Cluster analysis
	7.1.1 UMAP embeddings clustering using OPTICS
	7.1.2 Validation using OAI

	7.2 Grad-CAM visualizations

	8 Conclusion
	Bibliography

