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ABSTRACT
The complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based
schemes to study reaction thermodynamics and kinetics as a function of electrode potential. While fixed electrode potential conditions can
be simulated with grand canonical ensemble DFT (GCE-DFT), various electrostatic corrections on canonical, constant charge DFT are often
applied instead. In this work, we present a systematic derivation and analysis of the different electrostatic corrections on canonical DFT
to understand their physical validity, implicit assumptions, and scope of applicability. Our work highlights the need to carefully address
the suitability of a given model for the problem under study, especially if physical or chemical insight in addition to reaction energetics is
sought. In particular, we analytically show that the different corrections cannot differentiate between electrostatic interactions and covalent
or charge-transfer interactions. By numerically testing different models for CO2 adsorption on a single-atom catalyst as a function of the
electrode potential, we further show that computed capacitances, dipole moments, and the obtained physical insight depend sensitively on
the chosen approximation. These features limit the scope, generality, and physical insight of these corrective schemes despite their proven
practicality for specific systems and energetics. Finally, we suggest guidelines for choosing different electrostatic corrections and propose the
use of conceptual DFT to develop more general approximations for electrochemical interfaces and reactions using canonical DFT.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138197

I. INTRODUCTION

Evaluation of electrocatalytic thermodynamics and kinetics
with density functional theoretical methods has received signifi-
cant interest during the past 20 years.1 Early on, Lozovoi et al.
noted that electrochemical interfaces cannot be properly treated
with constant charge (canonical) density functional theory (DFT)
calculations because the experimentally relevant constant poten-
tial measurements correspond to the grand canonical ensemble
(GCE).2 Lozovoi et al. also showed that canonical DFT calculations
correspond to a capacitor or an STM device rather than an elec-
trochemical interface.2 Furthermore, during the last 5 years, it has
been theoretically shown that the GCE-DFT3 provides, in principle,
an exact description of electrochemical and electrocatalytic thermo-
dynamics and kinetics.4–6 GCE-DFT naturally captures the charge
fluctuations7 needed to maintain a constant electrode potential and
can at least, in principle, account for the rapid charge injection
during an electrochemical reaction.8 The development of practical

GCE-DFT methods has led to the situation where it is now techni-
cally possible to simulate both kinetics and thermodynamics directly
with GCE-DFT.9,10

In addition to direct GCE-DFT simulations, several electro-
static schemes have been developed to enable the application of
canonical, constant charge DFT to approximate GCE-DFT.11–25 In
practice, the developed electrostatic approximations work rather
well for predicting reaction energetics. However, different schemes
have been applied to different systems and it is not a priori clear
which scheme would be most appropriate for a given system. At a
more fundamental level, it remains unclear how well these different
models actually capture the chemistry and physics of electrochem-
ical interfaces or electrocatalysis. For instance, all electrostatic cor-
rections are based on the separation of chemical and electrostatic
interactions such that potential-dependent or “electrochemical”
contributions are computed with electrostatic schemes akin to the
classical Frumkin correction.26 The Frumkin correction should,
however, be applied to outer-sphere electron transfer reactions
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only,26 but the electrostatic DFT schemes are primarily used for
studying electrocatalytic inner-sphere reactions without formal jus-
tification. Furthermore, all electrostatic approximations can be sys-
tematically developed by treating the electrochemical interface as a
capacitor (vide infra). Hence, the electrostatic corrections seem to
contradict Lozovoi’s conclusions, raising the question if and when
electrochemical interfaces can be treated as capacitors.

To understand how well different electrostatic corrections on
canonical DFT capture the physics and chemistry of electrochemical
interfaces, we systematically derive and analyze various previously
developed and widely used approaches such as capacitor, multi-
capacitor, and dipole field models. We use different approaches
and methods from conceptual DFT, classical electrostatics, GCE-
DFT, canonical DFT, and thermodynamics to analyze which implicit
assumptions are included in different electrostatic corrections and
how these might impact their robustness, convergence, and phys-
ical insight. In agreement with previous studies, we arrive to the
conclusion that various electrostatic corrections on top of canoni-
cal DFT calculations can reliably reproduce or fit reaction energies
at different electrode potentials. However, our analysis highlights
the implicit assumptions behind these different approximations
and that physical insight from such fits is limited and depends
heavily on the chosen scheme. After analyzing the limitations of
different approximations, we provide guidelines for choosing an
appropriate electrostatic method for a given system. We also propose
beyond-electrostatic corrections to include charge transfer concepts
and covalent bonding effects in an effective manner using con-
ceptual DFT. Overall, we show that while electrostatic corrections
to canonical DFT can be used to fit electrochemical thermody-
namics, the electrostatic scheme needs to be chosen with care
and validated case by case if some physical or chemical insight
is sought.

II. RESULTS
In computational electrochemistry and electrocatalysis, DFT

is most often used for computing (free) energy differences related
to adsorption, reaction thermodynamics, or kinetics. We will focus

on how the electrochemical conditions, i.e., the electrolyte and the
electrode potential, influence these energetic differences. Different
electrostatic approximations attempt to model potential-dependent
reaction (free) energies (ΔE(U)) using corrections (dE(U)) on
reference state (ΔE(ref )) energetics using a generic expression,

ΔE(U) = ΔE(ref ) + dE(U), (1)

where U is the electrode potential. We study different approxi-
mations to the potential-dependent differential free energies dE(U)
both in the grand canonical (dΩ) and Helmholtz (dA) ensembles.

Below, we first present the general formulation of integral
and differential free energies in the grand canonical and canoni-
cal ensembles. We then assume that geometric changes are sup-
pressed and that chemical and electrostatic interactions can be
separated. These are common approximations to all electrostatic
approximations, which allow us to derive and focus on various previ-
ously developed corrections such as the capacitor, multi-/partitioned
capacitor, and dipole field approximations. This is followed by the
analysis of geometric changes as a function of the potential and the
general validity of separating electrostatic interactions from charge
transfer effects and covalent bonds (Table I). Different approxima-
tions are tested for the CO2 electrosorption step on a prototypical
single-atom iron–nitrogen graphene Fe–NC catalyst.

A. GCE-DFT
GCE-DFT describes the thermodynamic state of an electro-

chemical system under constant temperature (T), volume (V),
and (electro)chemical potential ({μ̃i}) conditions, as shown in
Fig. 1. The electrochemical potential of electrons within the elec-
trode ({μ̃n}) is equal to the absolute electrode potential.27 The
constant electrode potential condition is enforced by fixing the elec-
trochemical potential of electrons in the electrode (μ̃n), whereas
constant electrolyte activity is set by fixing the electrolyte chemi-
cal potential (μ̃±).5 The equilibrium GCE free energy, Ω, in turn,
is a functional of the nuclear/electronic GCE density operator
(ρ̂μ): Ω[ρ̂μ](T, V ,{μ̃i}),

TABLE I. Summary of the various approximations derived in this work.

A Eq. (6) Free energy in the Helmholtz ensemble
Ael Eq. (9) Linear electrochemical free energy correction
Ael,cap Eq. (13) Electrostatic free energy form from a capacitor
Acap Eq. (14) Free energy form from a capacitor
Acap, part Eq. (17) Free energy form of the multicapacitor approximation
Acap, series Eq. (18) Free energy form from a capacitive system in series
Acap, parallel Eq. (19) Free energy from a capacitive system in parallel
Acap, part, mixed Eq. (21) Free energy from mixing parallel and series partitions
Acap, part, average Eq. (22) Free energy form of the capacitor partition with an average number of electrons
Acharge, field Eq. (24) Free energy form of the electron potential in function of the surface charge
Aes Eq. (27) Free energy form of the multipole expansion
Adip−field Eq. (32) Free energy form of the field-dependent model
Aeff .dip−field Eq. (33) Free energy form of the effective dipole model
Adip−geom Eq. (34) Free energy form of the energetics of the electrode potential-driven changes in the geometry
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FIG. 1. Schematic representation of the different thermodynamic ensembles.

Ω[ρ̂μ](T, V ,{μ̃i}) = A(Ni;{μ̃i}) −∑
i
μ̃iNi, (2)

where N i is the expectation value for the number of species i
and A(Ni;{μ̃i}) is the canonical free energy at a constant elec-
trode potential. Ω includes all quantum effects for electrons and
nuclei at thermodynamic equilibrium, and is, in principle, exact by
construction.5 Ω[ρ̂μ](T, V ,{μ̃i}) also shows that the grand canon-
ical free energy depends explicitly on the chemical potentials of
all components in the system. This indicates that all chemical
potentials and, hence, concentrations can be controlled indepen-
dently: one can change the electrode potential without impacting
electrolyte activity.

For the computation of reaction thermodynamics and kinetics,
it is also useful to define grand free energy differentials. This can be
done in the framework of GCE conceptual DFT.28–30 We assume that
the temperature and volume are fixed, in which case the differential
grand canonical energy is30

dΩ = ∑
i∈n,±
(
∂Ω
∂μ̃i
)

v(r),μ̃i≠ j

dμ̃i + ∫ (
δΩ
δv(r)

)

{μ̃i}

δv(r)dr, (3)

where v(r) is the external potential due to the nuclei. The reaction
pathways under constant (electro)chemical potentials can then be
mapped by varying v(r) to present nuclear movement. Variations in
the electrode potential and the result of the electrostatics are encoded
in μ̃i since they depend on the average electrostatic potential ⟨ϕE

(r)⟩
as27,31

μ̃P
i = μ

0,M
i + zi⟨ϕP

(r)⟩, (4)

where z is the charge of species i in phase P and eV units are used.
Within the electrode, ϕE

= ⟨ϕE
(r)⟩ is equal to the electrode inner

potential, which uniquely defines the electrode potential.27,31 The
first term in Eq. (3) can then be written as a function of the electrode
potential U,

(
∂Ω
∂μ̃n
)

v(r),μ̃±

= −(
∂Ω
∂ϕE )

v(r),μ̃±

= −(
∂Ω
∂U
)

v(r),μ̃±
, (5)

which shows that the electrostatic potential within the electrode,
i.e., the inner potential, defines the relationship between the grand
free energy and electrostatics. As the inner potential is determined
by the electrode charge density through the Coulomb potential
[Eq. (26)], the relationship between charge (density), electrostatics,

and free energy is established. In practical GCE-DFT calculations,
the Hartree potential is used as a proxy for the inner potential and
only its changes are meaningful and unique.32

B. Canonical DFT, computational hydrogen electrode,
and Frumkin and capacitor corrections

Constant charge or canonical DFT describes the thermody-
namics in the Helmholtz ensemble where the number of particles
(N i), T, and V are fixed. The relevant energy functional A is writ-
ten in terms of the thermal density operator ρ̂T : A[ρ̂T(T, V ,{Ni})].
This functional is, in principle, exact but does not correspond to con-
stant electrode potential or constant electrolyte activity conditions.
At constant volume and temperature, the canonical free energy
differential is28

dA = ∑
i∈n,±
(
∂A
∂Ni
)

v(r),Ni≠ j

dNi + ∫ (
δA
δv(r)

)

{Ni}

δv(r)dr. (6)

Unlike in GCE-DFT, the canonical free energy and the num-
ber of electrons do not explicitly depend on the electrode potential
(see Fig. 1). Furthermore, in practical canonical DFT calculations,
the number of electrons and electrolyte concentration cannot be
independently controlled since charge neutrality needs to be main-
tained. This shows the first flaw of canonical DFT calculations
for electrochemical systems: in simulations, the number of elec-
trons and electrolyte concentration (or number of ions) are not
truly independent variables as they are in experiments. In prin-
ciple, this can be easily fixed by performing the calculations in
a semi-grand canonical ensemble where the electrolyte chemi-
cal potential (μ̃±) rather than the number of ions is fixed, as
shown in Fig. 1.

To study the impact of the electrode potential, canonical DFT
simulations control the number of electrons or the surface charge,
which are connected to the electrode potential through the self-
consistently computed Fermi level, EF , which itself is a function of
both v(r) and {N i}. Changes in the Fermi level are in turn directly
proportional to both electrode potential and inner-potential differ-
ences:ΔU = −ΔEF = −Δμ̃e = ΔϕE. For the sake of clarity, we consider
electrode dependency within the semi-grand canonical ensemble
with fixed μ̃±. In this case, the electron electrochemical potential is

μ̃n = (
∂A
∂Nn
)

v(r),μ̃±
= (

∂A
∂U
)

v(r),μ̃±
(
∂U
∂Nn
)

v(r),μ̃±

= −
( ∂A
∂U )v(r),μ̃±

C(U)
≈ −
( ∂A
∂U )v(r),μ̃±

Ceff
, (7)

where the minus sign on the second row comes from the definition
of the capacitance with respect to the number of electrons or surface
charge (σ): C(U) = ∂σ

∂U = −
∂Nn
∂U . The potential-dependent (C(U))

and constant effective (Ceff ) differential capacitances were also
introduced,

(
∂2A
∂N2

n
)

v(r),μ̃±

= (
∂μ̃n(Nn)

∂Nn
)

v(r),μ̃±
= −(

∂Un(Nn)

∂Nn
)

v(r),μ̃±

=
1

C(U)
≈

1
Ceff

. (8)
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This equation shows that modeling the Helmholtz free energy as
a function of the electrode potential requires reliable estimates for
either the partial derivatives or the effective capacitance.

The simplest electrochemical approximation to A(U) is
obtained by assuming that all potential-dependency is captured
through the electrostatic potential. In this case, one obtains the lin-
ear electrochemical free energy correction Ael(Nn) ≈ A(Nn0) − (Nn
−Nn0)ϕE

= A(Nn0) − ΔNnϕE around a reference free energy with
Nn0 electrons for a reaction where ΔNn electrons are transferred.
Equation (7) then gives

(
∂Ael

∂Nn
) ≈ −

∂A(Nn0)−ΔNnϕE

∂U
Ceff

= −

∂A(Nn0)

∂U − ΔNn

Ceff

→
∂A(Nn0)

∂U
= −(Ceff

∂Ael

∂Nn
+ ΔNn), (9)

where it is implied that v(r), μ̃±, and ΔNn are kept fixed. This
equation provides a relation between the canonical free energy,
electrode potential, and number of electrons assuming effective con-
stant capacitance. Assuming that ∂A(Nn)

∂Nn
= 0 reduces Eq. (10) to dAel

≈ −
∂ϕ
∂Nn

dNn =
dNn
Ceff

, which is a simple capacitive correction devel-
oped, e.g., in Ref. 21. Alternatively, one can assume that the canon-
ical energy of Ael does not explicitly depend on the number of
electrons in the system (∂A(Nn0)

∂U = 0) in which case Eq. (10) pro-
vides a purely electrostatic correction, and Eq. (9) leads to a linear,
Nernstian relation between the electrode potential and free energy.
If the same assumption is made for proton-coupled electron transfer
(PCET) thermodynamics, Eq. (9) would be equivalent to the com-
putational hydrogen electrode (CHE) method,33 which also predicts
that PCET reactions exhibit Nernstian behavior against the electrode
potential.

To go beyond linear Nernstian or CHE behavior, a general
capacitance relation for ∂Ael/∂Nn or ∂A/∂U is needed. Various
approximations have been developed to the differential ∂A/∂U,
but to mention one, the significant work25 of Hörmann et al.
shows how this term can be efficiently computed as a first-order
correction to the CHE or Nernstian models. In the crudest approxi-
mation, the Helmholtz free energy depends linearly on the electrode
potential and dAel = (∂Ael/∂Nn)dNn, which is valid when dT = dV
= 0. Including the differential capacitance as C = −∂Nn/∂U, one
obtains

dAel ≈ −

∂Ael(Nn)

∂U
∂Nn
∂U

× dNn = −
∂Ael(Nn)

∂Nn
× dNn = −μ̃n(Nn)dNn, (10)

which shows that the free energy dAel contains both an electrostatic
and chemical term, and depends linearly on the number of elec-
trons around some electrochemical potential μ̃n. This form closely
resembles the Frumkin correction as can be seen by noticing that
the electrochemical potential in different phases is equal in equilib-
rium. This allows one to replace the electrode potential (μ̃n) with
the corresponding electron electrochemical potential of the solvent
phase (S, μ̃S

n). Combining Eq. (10) and Eq. (4) for μ̃S
n yields an

expression practically equal to the Frumkin correction: dAFrumkin(r)
∝ ϕS

(r)dNn with the electrostatic potential ϕS
(r) in the reaction

plane corresponding to μ̃n.

To describe non-linear effects in the free energy, Eq. (9) can
also be written in terms of the electrode potential and number of
electrons without the effective capacitance,

(
∂Ael

∂Nn0
)

v(r),μ̃±
≈

∂Ael(Nn0)−ΔNnϕE

∂U
∂Nn0/∂U

= (
∂Ael(Nn0)

∂Nn0
− ΔNn

∂U
∂Nn0

)

→ dAel ≈ (
∂Ael(Nn0)

∂Nn0
− ΔNn

∂U
∂Nn0

)dNn0, (11)

where ΔNn is fixed. A physically appealing approximation to
∂Ael/∂Nn0 can be developed by considering a situation where the
electrode and electrolyte are successively charged (a capacitor). Con-
sider that the charge (density) of the electrode is changed from
Nn0 = ∫Velectrode

drρn0(r) to Nn1 = ∫Velectrode
drρn1(r). To maintain charge

neutrality, the electrolyte charge density also changes from −Nn0
= ∫Velectrolyte

ρ±,0(r) to −Nn1. As the electrode and electrolyte are phys-
ically distinct phases, their volumes do not overlap. Such a division
can be achieved on a macroscopic scale using, e.g., the Gibbs divid-
ing surface but is very difficult to achieve at the molecular level
where the division between the electrode and electrolyte or solvent
regions is not well-defined. If we assume that such a separation
can be achieved and that the electrolyte volume and all interactions
apart from electrostatics remain unchanged, the electrostatic work
to assemble a charge state for phase i is

W i
el =

1
2∬

drdr′
ρn,i(r)ρ±,i(r)
∣r − r′∣

=
1
2 ∫

drρ±,1(r)ϕe(r), (12)

which provides the electrostatic interaction energy between the elec-
trolyte charge density and the electrostatic potential ϕe generated
by the electrode [see Eq. (26)]. For two conductors, here the elec-
trode and electrolyte, the electrostatic work is equal to that of a single
capacitor: W i

cap =
Nn,iN±,i

2Ceff
=

N2
n

2Ceff
. When temperature and volume are

kept constant, the differential free energy is the electric work done
on the system, and Eq. (11) becomes

dAel,cap ≈ (
∂Wcap

∂Nn0
−

∂U
∂Nn0

) dNn0 = (
Nn0

Ceff
+

1
Ceff
)dNn0

→ Ael,cap =Wcap +Nn0/Ceff . (13)

This equation is essentially the capacitative correction developed in
Ref. 21, and the only difference is the constant Nn0 term, which arises
from our choice of using electrochemical [see Eq. (9)] rather than
chemical potentials to carry out the analysis. The above-mentioned
developments exemplify the physical basis and main approxima-
tions in the capacitor models that are treated more systematically
in subsequent sections.

C. The capacitor approximation
The systematic development of capacitor-based schemes is

achieved through the Taylor expansion of the Helmholtz energy
with respect to the number of electrons rather than assuming effec-
tive forms for the electrostatic interactions—the physical basis,
however, is the same. The Taylor expansion perspective is very
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general but will always rely on the tacit assumption that an
electrochemical interface can be treated as a mere double-layer
capacitor and that all electrochemical reactions are just pseudo-
capacitive processes.22 The supplementary material, Secs S1–S2,
shows that the Taylor expansion of canonical and grand canonical
free energies is equally valid and share the same approximations.
However, other derived thermodynamic quantities such as pres-
sure and surface tension are thermodynamically consistent only
in the GCE.34

The capacitor approximations result from a second-order Tay-
lor expansion of the canonical free energy with respect to the
number of electrons in the system. This is not only mathematically
convenient but also physically motivated as it captures potential-
dependency through (surface) charge and constant effective capaci-
tance from Eq. (8). As shown in detail in the supplementary material,
the second-order approximation is

A(Nn)cap ≈ A(Nn0) + μ̃n(Nn0)dNn +
(dNn)

2

2Ceff (Nn0)
+ 𝒪(dN3

) (14)

around the reference system with Nn0 electrons.
In the previous equation, the electrolyte properties cannot be

controlled independently of surface charges since charge neutral-
ity needs to be maintained. This problem can, however, be fixed by
switching to a semi-grand canonical ensemble (see Fig. 1) where
the electrolyte chemical potentials are constant, and the previous
equation can be generalized to

A(Nn, μ̃±)cap ≈ A(Nn0) + (
∂A
∂Nn
)

v(r),μ̃±
dNn

+
(dNn)

2

2
(
∂2A
∂N2

n
)

v(r),μ̃±

, (15)

where the constant electrolyte chemical potential and external
potential are implied. In practice, the constant μ̃± condition can
be fulfilled by using any Poisson–Boltzmann model variant com-
bined with the Lagrange multiplier technique to enforce charge
neutrality.5,35 Choosing the reference state Nn0 to correspond to the
potential of zero free charge (PZC), a convenient form for the dif-
ferential Helmholtz energy within the capacitor approximation is
obtained,

dA(Nn)cap =
∂Acap

∂Nn
dNn ≈ (μ̃n(Nn0) +

dNn

Ceff (Nn0)
)dNn, (16)

where the constant electrolyte chemical and external potentials are
again implied. The linear term captures the Nernstian CHE-like
behavior, while the quadratic term is the capacitive correction. Note
that an equivalent expression is obtained by performing the Tay-
lor expansion and subsequent steps in terms of the number of
electrolyte ions rather than electrons: this implies that the capac-
itor model cannot reliably distinguish electrode potential from
electrolyte-induced changes in the Helmholtz energy. This was also
noted in Ref. 17 where it was shown that the same electrode poten-
tial can be obtained at different (surface) charges depending on the
description of the solvent or electrolyte.

Both the fully canonical and semi-grand canonical variants of
the capacitor model can be expressed in terms of the electron electro-
chemical potential and constant Ceff . While the constant capacitance

approximation is common to all capacitor approximations, Eq. (8)
shows that the effective capacitance depends not only on the elec-
trode potential through the electron chemical potential but also on
the electrolyte and the nuclear positions through v(r). It is also
well-known that capacitance does substantially depend on the adsor-
bates36 and Ceff can even become negative due to chemisorption-
induced changes in the surface dipole.37 Some consequences of the
constant capacitance approximation are addressed and discussed in
more detail in Sec. II H.

The quality of the constant capacitance approximation nat-
urally depends on the capacitance used to convert charge-
dependent adsorption energies to potential-dependent energies as
discussed in detail in the supplementary material, Sec. S2. The
results therein show that potential-dependent differential adsorp-
tion energy relationships depend very sensitively on the capac-
itance used for converting charge variations to changes in the
electrode potential. These results highlight that the effective capac-
itance must be self-consistently computed and not taken as a
parameter from experiments or treated as a free parameter. Even
if reasonable capacitance values are used, the differential adsorp-
tion energy from the capacitance is also symmetric with respect
to the PZC. Such behavior is not observed in direct simula-
tions of electrosorption energies. This will be discussed in more
detail in Sec. II H.

D. The multicapacitor and partitioned
capacitor approximations

In multicapacitor schemes, the total capacitance is broken
down either into spatial contributions corresponding to electrode
and electrolyte charging processes or to charge-transfer events
due to adsorption, while reactions are treated as pseudo-capacitive
events. Compared to the aforementioned original capacitor mod-
els, the multicapacitor models implicitly assume that the total
charge or number of electrons in the system can be partitioned
to non-interacting subsystems such as the electrode and reac-
tants/adsorbate, explicit and implicit solvent volumes, or different
regions of the electrode.17,38 The general form of the multicapacitor
energy expression is obtained by writing Eq. (15) as

A(Nn)cap,part ≈ A(Nn) + d(Nn,r +Nn,e)(
∂A
∂Nn
)

v(r)

+
d(Nn,r +Nn,e)

2

2
(
∂2A
∂N2

n
)

v(r)
, (17)

where Nn is the total number of electrons, Nn,r is the number
of electrons on the reactant, and Ne is the electrode charge. It
must be noted that this Taylor expansion is well-defined only
when both Nn,r and Nn,e are included in Eq. (17), but the result-
ing equation would be equal to the general capacitor model in
Eq. (15). This indicates that the capacitance cannot be exactly sep-
arated to different contributions and that some approximations are
always needed.

Different multicapacitor models are obtained by express-

ing the ( ∂2A
∂N2

n
)

v(r)
term in various ways. A physically motivated

decomposition divides the total effective capacitance into multiple
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FIG. 2. Different equivalent circuits discussed in the text. (a) The serial
Gouy–Chapman model consisting of double-layer (DL) and Helmholtz (H) capaci-
tances. (b) Frumkin–Melik–Gaikazyan model shows a circuit including adsorption
(ads) capacitance in parallel with the Gouy–Chapman and Helmholtz capac-
itances. (c) The Grahame model with adsorption and DL capacitances. The
resistances are neglected in the thermodynamic treatment.

capacitors either in series or parallel. The serial situation cor-
responds to non-interacting capacitors where each capacitor has
its own energy and the total capacitor energy is the sum of the
individual i capacitors with potential V : Ecap,series = ∑iWi,cap =

N2

2Ceff

= ∑i
N2

i
2Ci,eff

. For the series case, there is only one effective capac-

itance, which cannot be easily separated: Ecap,series =
N2

2Ceff
= N2

2∑iCi
.

Figure 2 shows that the serial and parallel connections correspond to
distinct physical and chemical processes at the electrochemical inter-
face. This fact is widely used in electrochemical impedance spec-
troscopy where different equivalent circuits are applied to interpret
the total capacitance in terms of adsorption, double-layer, and other
charge-transfer processes.39,40 The equivalent circuit in Fig. 2(a)
shows how the total effective capacitance can be separated as dif-
fuse, Gouy–Chapman and compact, Helmholtz contributions using
capacitors in series (1/CDL = 1/CGC + 1/CH). Figure 2(c) shows the
Grahame model that treats capacitors in parallel to model the
double-layer capacitance and charge transfer or specific adsorption
as pseudo-capacitive (Ceff = Cads + CDL). The extended Grahame
or Frumkin–Melik–Gaikazyan41 circuit shown in Fig. 2(b) further
decomposes the double-layer capacitance to Gouy–Chapman and
Helmholtz contributions.

The choice of an appropriate equivalent circuit model is cru-
cial for rationalizing and understanding electrochemical reactions
within the multicapacitor approximations. As most DFT studies
address electrochemical adsorption processes and surface reac-
tion steps, the (extended) Grahame or Frumkin–Melik–Gaikazyan
model of parallel capacitors would be the most relevant equiva-
lent circuit. This is, however, not the model adopted in partitioned
or multicapacitor approaches because the total capacitance can-
not be partitioned without further approximations. Rather than
using the Grahame model, current multicapacitor approaches use
either serial or parallel capacitors, and estimate the Helmholtz free
energy as

A(Nn)cap,series = A(Nn) + d(Nn,r +Nn,e)(
∂A
∂Nn
)

v(r)

+
d(Nn,r +Nn,e)

2

2
(

1
Cr
+

1
Ce
)

v(r)

≈ A(Nn) + d(Nn,r +Nn,e)(
∂A
∂Nn
)

v(r)

+ (
dN2

n,r

2Cr
+

dN2
n,e

2Ce
)

v(r)
= A(Nn)cap,parallel, (18)

where the mixed 2NeNr term has been neglected and the charges
have been assigned to individual capacitors. The parallel capac-
itor schemes were developed and used in Refs. 38 and 17, but
the aforementioned systematic expansion shows that various terms
are neglected in the multicapacitor schemes for mathematical
convenience without physical reasoning.

The previous equation also highlights the emergence of two dif-
ferent effective capacitances if the mixed terms are neglected and if
charges are assigned to individual capacitors. These extrathermody-
namic assumptions are due to system partitioning and have been
shown to lead to unphysical behavior of reaction energies when a
multicapacitor scheme is combined explicit/implicit solvent mod-
els.17 The previous equation also shows that current multicapacitor
models cannot reliably distinguish between serial and parallel capac-
itors because both versions of Eq. (18) are equally suitable for
fitting the Helmholtz energy even though the physical/chemical
processes behind these equivalent circuits (or fits) are clearly
distinct.

A slightly more robust partitioned capacitor approximation can
be derived by inserting a parallel capacitance relation directly in
Eq. (17),

A(Nn)cap,parallel ≈ A(Nn) + d(Nn,r +Nn,e)(
∂A
∂Nn
)

v(r)

+
d(Nn,r +Nn,e)

2

2
(

1
Cr + Ce

)
v(r)

, (19)

which requires further assumptions to be useful. To move forward,
one can assume that Nn,r is significantly larger than Nn,e leading to

A(Nn)cap,parallel ≈ A(Nn,r0) +Nn,r(
∂A
∂Nn
)

v(r)

+
1
2
(

N2
n,r

Ce + Cr
)

v(r)
, (20)

which is unsatisfactory because it presents an unsystematic Tay-
lor expansion. A slightly better approximation is achieved if one
assumes that N2

n,r ≫ N2
n,e in which case N2

n,e is neglected but the
Nn,rNn,e > N2

n,e term is retained. This gives

A(Nn)cap,part,mixed ≈ A(Nn,r0) + dNn,rμ̃Nn0

+
dN2

n,r + dNn,rdNn,e

Ceff
, (21)

where Ceff corresponds to the effective capacitance accounting for
both the e and r subsystems. The last formula is equal to the
equation developed originally in Ref. 11 for the partitioned capac-
itance scheme, containing the mixed Nn,rNn,e term. However, the
origin of the mixed term was not discussed in the original ref-
erence and its appearance with the N2

e is difficult to justify from
the Taylor expansion perspective alone. Inclusion of Nn,rNn,e with-
out N2

e is mathematically valid only for Ne → 0, i.e., when charge
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transfer is negligible or when electrostatic interactions through
dipole/polarization effects dominate.

Another partitioned capacitance approximation is obtained by
considering the differential form of Eq. (17). This will lead to the
“average number of electrons” approach introduced in Ref. 17,

dA(Nr)cap,part,average ≈ (μ̃Nn0 +
d(Nn,r +Nn,e)/2

Ceff
)d(Nr +Ne), (22)

which is closely related to Eq. (17), but the origin of denominator 2
is difficult to see as it does not appear in the differential form of the
capacitance approximation [see Eq. (16)].

E. Dipole field approximations
Further approximations to the partitioned and multi-

capacitor schemes are obtained through various electrostatic
expansions.11,18,42 The most systematic development in an electro-
catalytic setup11 starts from Eq. (21), the differential form of the
mixed capacitor scheme,

dA(Nn)cap,part,mixed ≈ (μ̃Nn0 +
2dNn,r + dNn,e

Ceff
)dNn,r

= dAcharge,field. (23)

If the reactant charge variations are small compared to these of
the electrode, dNn,r ≪ dNn,e, and dNn,e/Ceff measures the electrode
potential variation as a function of surface charge Nn,e. Then, one
can write

dA(Nn)charge,field ≈ [μ̃Nn0 + dNn,e/Ceff ]dNn,r

= μ̃(Nn0 + dNn,e)dNn,r. (24)

The electrochemical potential can be further separated to the
standard state and electric potential contributions using Eq. (4).
Neglecting the irrelevant standard state chemical potential leads to

dA(Nn)charge,field ≈ −ϕ
E
(r, Nn0 +Nn,e)dNn,r , (25)

where it is indicated that the electric field depends on the surface
charge Nn,e. It should be noted that the above-mentioned interac-
tion is strictly electrostatic and the spatial extent of ϕe(r) should
depend on the electrolyte and the approach used to divide the total
charge density to the electrode and reactant subsystems. The elec-
trostatic potential created by the electrode can be computed from
the Coulomb equation

ϕE
(r) = ∫ dr′

ρE
(r′)
∣r − r′∣

, (26)

where ρE
(r′) is the electrode charge density. In the above-mentioned

equation and throughout the work, we use atomic units where the
vacuum permittivity term, 4ε0 = 1, is absent from the denominator
of Eq. (26). For this reason, the permittivity does not appear in the
following equations. If Eq. (26) is applied to continuum solutions,
the solvent permittivity should be included in it and all equations
derived from it. Furthermore, it should also be noted that ρE

(r′)
cannot be uniquely defined since charge partitioning cannot be
achieved without approximations, and ϕE

(r) should be considered

as an effective quantity. Nevertheless, the electrostatic interaction
(free) energy between e and r is defined as43

Aes = ∫ dr′
ϕE
(r)ρr

(r)
∣r − r′∣

, (27)

where ρr
(r) is the charge density of the reactant. The full electro-

static interaction is expressed through a multipole expansion,43

Aes ≈ qEqr
+

1
2

Ð→
E

E
(r)Mr

+
1
3
∂
Ð→
E E
(r)

∂r
←→α r
+ ⋅ ⋅ ⋅ , (28)

where qE is the electrode (surface) charge, qr is the reactant charge,
Ð→
E E is the electric field generated by the electrode, Mr is the reac-

tant dipole moment, ∂
Ð→
E E
(r)

∂r is the electric field gradient, and ←→α r

is the quadrupole tensor of r. It should be noted that the multi-
pole expansion is known to diverge when the distance between the
electrostatic potential (ϕE

) and charge distribution (ρr
) is smaller

than the radius within which the expansion is carried out:43 when
the electrode and reactant regions overlap, the electrostatic inter-
action energy is ill-defined. It is, therefore, questionable whether
the expansion is valid when applied to potential/charge-dependent
adsorption energies, a typical application of the dipole field approx-
imation, where the molecule and electrode are spatially very close to
each other.11,18,42 We shall return to this issue in Sec. II H.

Nonetheless, the differential electrostatic interaction energy
can be defined as

dAes ≈ dqE
+ dqr

+
1
2
(
Ð→
E

E
(r)dMr

+Mrd
Ð→
E

E
(r))

+
1
3

⎛
⎜
⎝

∂
Ð→
E E
(r)

∂r
d←→α r

+
←→α d
⎡
⎢
⎢
⎢
⎢
⎣

∂
Ð→
E E
(r)

∂r

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
+ ⋅ ⋅ ⋅ , (29)

where dqE
+ dqr

= 0 due to charge conservation in the canonical
ensemble—for a real electrochemical interface or the GCE, there
is no need for such a condition. While the previous equation can
be used to write the electrostatic energy as a function of the field

[see Eq. (32)], in the dipole field approximation only Mrd
Ð→
E E
(r) is

typically included.11,18,42 This choice assumes that changes in the
reactant geometry do not impact the dipole moment and that the
quadrupole can be neglected even for linear molecules, such as CO2,
which do not even have a permanent dipole.

A more general dipole field model can be constructed by
accounting for non-linear field-dependencies, which are expected
to be important for non-polar molecules and at high-electric fields
present at electrochemical interfaces. These terms are included in
the induced dipole moment (Mr

ind), and the total dipole moment is

Mr
(
Ð→
E ) =Mr

0 +Mr
ind(
Ð→
E

E
) ≈Mr

0 + α
Ð→
E + βÐ→E 2

+ ⋅ ⋅ ⋅ , (30)

where Mr
0, α, and β are the intrinsic dipole moment, polarizabil-

ity, and hyperpolarizability, respectively. A similar expansion could
also be made to the quadrupole and higher moments. Including the
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induced dipole moment in the dipole field model of Eq. (28) results
in

Adip−field(
Ð→
E

E
) ≈ qEqr

+

Ð→
E E

2
(Mr

0 + α
Ð→
E

E
+ β
Ð→
E

E2
+ ⋅ ⋅ ⋅ ), (31)

which is the field-dependent model used in, e.g., Ref. 19, to fit free
energies as a function of the field. If the field is taken as an indepen-
dent variable, we can write the differential dipole field free energy
as

dAdip−field(
Ð→
E

E
) ≈

d
Ð→
E E

2
(Mr

0 + α
Ð→
E

E
+ ⋅ ⋅ ⋅ ), (32)

which assumes that the polarizability does not depend on the field
strength and that field gradients can be omitted. While these may be
reasonable assumptions at least for flat surfaces, their validity should
be demonstrated, e.g., for stepped surfaces or nanostructures such as
particles or dentrites.24

In practice, the effective dipole field differential free energy is
often estimated as11,18,24,42

dAeff .dip−field ≈Mr
eff × dEeff (ΔU(Neff

e ))

=Mr
eff Ceff dU(Neff

e )

=Mr
eff dNn, (33)

where “eff ” denotes effective. This effective dipole field model can
be interpreted as an effective dipole interacting with the effective
field obtained by assuming an effective interfacial capacitance of the
electrochemical interface at an effective surface charge. We consider
dEeff an effective electric field because it is not really evaluated or uti-
lized in actual applications of the dipole field models.14,24,42 Rather,
dEeff serves the purpose of justifying the use of the dipole field
interaction as the underlying mechanism for potential or charge-
dependent adsorption energetics. Overall, the large number of effec-
tive quantities prevents detailed understanding of which interactions
really contribute to the fitted dipole field model.

The dipole field model in its different forms has mostly been
applied to simulate adsorption energies of linear molecules that
do not have an intrinsic dipole moment, such as CO2. Hence, the
dominant contribution in the dipole field model would be the polar-
izability term, which is in the meV range and much smaller than the
field dependencies computed in the literature.11,18,24,42 To deal with
this issue, the dipole field models typically use an effective surface
dipole moment11,18,24,42—a property of the entire interface with an
adsorbate rather than the reactant alone. Often, the surface dipole
is treated as an effective quantity for fitting dA as a function of the
total charge or the explicit electric field. Since the field is related to
the surface charge by Gauss’s law, the slope of Aes as a function of
the surface charge gives an estimate for Mr .11 While fitting Aes works
very well in practice,11,42 it remains unclear whether this fit captures
only the dipole field interactions or whether other interactions also
contribute to the slope. For instance, the effective (surface) dipole
moment Mr

eff is considered constant even though it should depend
on the field [Eq. (32)].

In addition to fitting the effective dipole moment, it can also
be extracted using the work function changes due to adsorption in
the canonical ensemble.14,24,44,45 The effective dipole moment should

then be viewed as a property of the entire surface + adsorbate sys-
tem and the adsorbate must be considered as part of the surface.24

While practical, combining the dipole field model with the effective
surface dipole concept leads to a physically ambiguous situation: the
dipole field model describes the interaction energy between an effec-
tive dipole of the interface and the effective field generated by the
very same interface. In this situation, the dipole field model should
break down since the underlying electrostatic multipole expansion
[Eq. (27)] is not well-defined because the electrode and reactant can
no longer be treated separately.

The aforementioned conceptual problem can be partially alle-
viated by treating the field as an external variable, as shown in
Eq. (31), which develops the dipole field model from a Taylor
expansion of the canonical free energy with respect to the electric
field19 rather than the multipole expansion. To achieve the Tay-
lor expansion rigorously, the free energy should be written as a
functional of the electric field (A[E E

]) However, the connection
between A[E E

] and Helmholtz or grand free energies is not straight-
forward because these are not functionals of the electric field, but
rather, functions of the number of particles and chemical potentials,
respectively. Unlike the number of electrons or electrode poten-
tial, the electric field depends on properties of the electrolyte and
is not a suitable independent thermodynamic variable for electro-
chemical interfaces. Furthermore, while an external electric field
can easily be added to standard DFT calculations, connecting the
external field to the applied electrode potential cannot be achieved
without free parameters.46 A third way to arrive at the dipole
field model is the electrostatic conceptual DFT approach treated
as follows in Eq. (34).

F. Impact of geometric changes
Up to this point, we have focused solely on the ∂A/∂NdN

terms, and the second term in Eq. (6) related to variations in the
external (nuclear) potential has been ignored. Explicit treatment of
this contribution is mostly missing from the capacitor-like mod-
els in the literature but should be included in general. Without
compromising generality, the nuclear potential (δv(r)) can be
assumed to present changes in the external nuclear potential brought
about by geometric changes.

A notable exception is the recent dipole- or force-dependent
method, which we call the dipole-force model,12 developed to
estimate electrode potential effects on transition state energy
with canonical DFT calculations. This method implicitly includes
geometry-dependency in both potential and geometric variables (R)
through the reactant or surface dipole moment along the reaction
coordinate Ð→ω : dAdip−force(R, U) ≈ U × ∂

Ð→
M

∂R ⋅
Ð→ω for a macroscopi-

cally large electrode.12 This clever scheme was shown to work well
for “short” reaction pathways, when the reaction coordinate can
be taken as a single bond length, and when the dipole-field and
capacitor-based approximations hold. However, the method cannot
be used when the reactant or solvent structures/geometries change
drastically as a function of the electrode potential or when the reac-
tion coordinate depends on the electrode potential. Difficulties for
such systems likely result from the capacitor approximation focusing
only on the effective dipole moment rather than the dipole vec-
tor, and the difficulty of determining the reaction coordinate for
complex reactions.
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We next show how this dipole-force model can be related to the
general geometric term through electrostatic conceptual DFT.47,48

One first realizes that the ∫ (
δA

δv(r)){Ni}
δv(r)dr term can be simpli-

fied by writing ( δA
δv(r)){Ni}

= ρ(r).28 In its original formulation, elec-

trostatic DFT describes only the electrostatic energy in terms for the
electronic dipole moment.47,48 To describe the electrostatic energy
using the total dipole moment, we need to account for nuclear
degrees of freedom and the nuclear dipole moment. This can be
achieved within the multicomponent conceptual DFT framework,
as shown in the supplementary material. Within the electrostatic
conceptual DFT approximation, the first-order geometric term is

dAdip−geom ≈ dÐ→E ⋅
Ð→
M, (34)

indicating that Adip−geom ≈
Ð→
E ⋅
Ð→
M and the total differential

dAdip−geom ≈ dÐ→E ⋅
Ð→
M + d

Ð→
M ⋅Ð→E . Here, changes in both the field

and dipole moment are considered, and the model presents a
generalization of the dipole-field method developed in Ref. 12. Our
derivation also presents an alternative way to obtain the dipole-field
model without a multipole expansion, but an external electric field
has to be assumed.

The relation between the external field and electrode potential
can be sought through Gauss’ theorem similar to Eq. (33). Keeping
the field constant and assuming it mimics the electrode potential,
dAdip−geom is a model for the energetics of electrode potential-driven
changes in the geometry. Considering geometric changes only along
the reaction coordinate leads to a conceptual DFT equivalent of the
dipole-force model,

dAdip−geom(
Ð→ω) ≈ U × (d

Ð→
M ⋅Ð→ω), (35)

which shows that the dipole-force method12 can be seen as the
first-degree approximation to the geometric term of the electro-
static conceptual DFT. This development also reveals another side
of dipole-force and dipole-field methods—they can also be derived
using electrostatic conceptual DFT rather than pure electrostatics.
As shown in Sec. II G and discussed in Sec. II G, switching to the
conceptual DFT framework allows us to include other interactions
and corrections in addition to electrostatics.

G. Separating chemical and electrostatic interactions
The above-mentioned analysis on different electrostatic cor-

rections has relied on the assumption that chemical and electro-
static contributions can be separated or differentiated. But are
these valid assumptions? This question dates back to the first
electrostatic correction, the Frumkin model, which was devel-
oped originally for outer-sphere reactions.26,49 The appropriate-
ness of the Frumkin model for outer-sphere electrochemical
electron transfer was recently verified for graphene-modified elec-
trodes50 through meticulous experiments and an extension of the
Schmickler–Newns–Anderson model Hamiltonian51,52 to include a
Frumkin-like correction term.50 However, it has been argued that
the Frumkin or other electrostatic corrections cannot distinguish
between specific adsorption and local electrostatic effects.26 This
view is also supported by our analysis and, in particular, Eq. (18)

shows that the same energy expression can be derived for two dif-
ferent equivalent circuits. As shown in Fig. 2, different circuits
present different physical and chemical processes indicating that the
capacitor models cannot distinguish between double-layer charging,
charge-transfer reactions, or adsorption processes.

These observations indicate that the distinction between elec-
trostatics and chemical interactions is at least somewhat artificial
and that electrostatic corrections can be cast as covalent chemical
interactions and vice versa. This bears direct relevance not only
for fundamental electrochemistry but also electrocatalyst design.
For instance, it has been suggested that dipole-field interactions
are important for single-atom catalysts in CO2 reduction11,14,42 but
the many approximations in the dipole-field model itself makes it
difficult to assess this suggestion. On the other hand, potential-
dependency of CO2 adsorption can be equally approached using,
e.g., a classical donation–backdonation method53 or charge-transfer
interactions54 addressed with, e.g., conceptual DFT.

To test the separation of electrostatic and charge-transfer inter-
actions, we develop a conceptual DFT model for a simple elec-
trosorption step with charge transfer. We follow the conceptual DFT
reactivity approach54 applied successfully to, e.g., ion-pair forma-
tion55 and charge-transfer interactions,54 but extend the model to
an electrochemical interface. This model describes the influence of
charge transfer on the reaction energy of a generic electrochemical
reaction A + B→ AB (where A is the adsorbate, B is the electrode,
and AB is the chemisorbed state) as

ΔEAB = (μ̃0
B − μ̃

0
A)ΔN +

1
2
(η0

B + η
0
A)ΔN2, (36)

where ΔN denotes the charge transfer between A and B during
the reaction, while the superscript “0” denotes quantities computed
at the chosen reference state. The first term includes the refer-
ence electrode potential and molecule chemical potential, which
is directly related to its redox properties through its ionization
energy and electron affinity.56 The second term is chemical hardness,

ηi = (
∂2Ei
∂N2

i
)

v(r)
= (

∂μ̃i
∂Ni
)

v(r)
. For electrochemical interfaces, the

hardness is related to the effective electrode capacitance through
Eq. (8): ηB =

1
CB

eff
. For molecule A, the hardness depends on its

redox properties such as electron affinity and ionization poten-
tial.56 Hence, Eq. (36) can be seen as a correction to electrosorption
energies due to charge transfer between A and B.

As shown in the supplementary material, the differential
adsorption energy as a function of the electrode potential (μ̃B) is

dΔEAB(μ̃B) ≈ δN[μ̃0
B − μ̃

0
A + ΔN0 × (η0

A + η
0
B +

1
δN
)]dμ̃B, (37)

where ΔN0 is the charge transfer between A and B at a refer-
ence potential and δN denotes the potential-dependent change from
ΔN0. As discussed in detail in the supplementary material, Sec.
S4.1, dΔEAB(μ̃B) depends on changes in both the adsorbate charge
and electrode potential. Hence, [μ̃0

B − μ̃0
A + ΔN0 × (η0

A + η0
B +

1
δN )]

acts as the kernel, which determines how the potential-dependent
changes in the adsorbate charge impact the adsorption energy.
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The previous equation has the same form as the dipole-field
model [Eq. (33)] and can equally well be used for fitting potential-
dependent adsorption energies. However, the conceptual and phys-
ical insights from these models are very different: the dipole-field
model interprets the slope as a dipole moment, while the slope of
Eq. (37) measures how the reaction energy depends on charge trans-
fer as a function of the electrode potential. Accordingly, the dipole-
field model would predict that electrostatics, interfacial dipoles, and
electric fields are the key quantities in electrocatalysis, whereas the
model based on the conceptual DFT emphasizes the importance of
charge transfer and (electro)chemical potential equalization. This
notion is strengthened by observing that the previous equation pro-
vides a conceptual DFT-based route to the recent model developed
by Ringe23 to quantify charge transfer and potential of zero-charge
effects in electrocatalysis.57

H. Testing the models for electroadsorption:
Electrostatics, charge transfer, or covalent bonding

While electrostatic and charge transfer contributions cannot,
in general, be separated for weak interactions,58 it remains an open
question whether the separation is possible for a strong chemisorp-
tion bond. To answer this question, we consider the CO2 adsorption
on an iron–nitrogen–graphene single-atom catalyst, Fe–NC. We
first computed grand-canonical adsorption free energies and sub-
sequently fitted different electrostatic models to these energies in
order to assess how well these approximations reproduce the explic-
itly potential-dependent adsorption energies. In addition to fitting
adsorption energies, our goal is to analyze whether the interaction
between Fe–NC and CO2 can be understood within the dipole-
field model, the charge transfer approach, or if something more
complex is needed. The studied system is motivated by the proven
success of dipole-field and capacitor models to fit the adsorption
energy as a function of the electrode potential and surface charge
for single-atom electrocatalysts.

Adsorption energies as a function of the electrode potential are
given in Table II. Between −1.0 and −0.25 V, the adsorption energy
changes linearly as a function of the electrode potential. When the
potential is between −0.25 and 0.0 V, the surface charge changes
from negative to positive. Below 0.0 V, CO2 adsorbs on the sur-
face, but above this potential, CO2 spontaneously desorbs from the
surface upon structural optimization. This behavior is in quantita-
tive disagreement with the capacitor approximation, which predicts
that (differential) adsorption energy is symmetric with respect to the
potential of zero charge (see Fig. S1).

Consequently, we evaluated the effective capacitance by fitting
the adsorption energies using different capacitor models. The results

TABLE II. Analysis of CO2 adsorption on Fe–NC as a function of the electrode poten-
tial. U: applied potential, Ωads: adsorption energies, Mm: magnetic moment, and Q:
system charge of CO2 + FeNC.

U/V Ωads/eV Mm Q/e

0.0 −0.67 1.33 −0.48
−0.25 −1.03 1.13 −0.95
−0.5 −1.16 1.15 −1.22
−0.75 −1.32 1.06 −1.43
−1.0 −1.55 0.73 −1.77

TABLE III. Capacitance values extracted by fitting the GCE adsorption energies with
different electrostatic models. Ce+r

eff is computed for the electrode + reactant system
from GCE energies Eq. (8). Ce+r

cap , Ce
cap, and Cr

cap are the capacitance of the electrode
+ reactant and electrode systems from Eq. (16). Ce

part and Cr
part are for the partitioned

capacitance model from Eq. (18). The unit is μF/cm2.

Ce+r
eff Ce+r

cap Ce
cap Ce

part Cr
part

2.76 12.47 11.09 24.30 7.27

in Table III show that the computed capacitances of the same surface
depend sensitively on the chosen model as they vary between 2.7 and
24 μF/cm2. The smallest capacitance difference is that of the pris-
tine Fe–NC and CO2 adsorbed on Fe–NC computed from the direct
definition of effective capacitance [Eq. (8)]. Extracting Ceff from the
adsorption energies within the original capacitor model [Eq. (16)]
leads to a significantly smaller capacitance. The partitioned capacitor
model of Eq. (18), on the other hand, gives a much larger capacitance
for the surface but the value is in line with the capacitance of pristine
graphene.59 Other partitioned capacitor models were not consid-
ered because they assume that the adsorbate charge should remain
unaltered, but Table IV clearly shows that the CO2 charge does not
remain constant—hence the assumption N2

n,r ≫ N2
n,e leading to the

mixed capacitor does not hold.
The dipole-field model achieves a good qualitative agreement

between the electrode charge or potential and adsorption energy. As
a linear dependency between charge and adsorption energy is seen,
the effective dipole moment can be obtained from Eq. (33), which
gives 0.59 e Å or 2.83 Debye at −0.5 V in good agreement with
the corresponding values in Ref. 11. However, the dipole moment
from the dipole-field model is surprisingly large—almost five times
the gas-phase dipole moment of fully reduced CO−2 , which is 0.55
Debye. Table IV shows that the adsorbed CO2 carries a significant
negative charge but the fitted dipole moment of 2.81 Debye cannot
arise from the CO2 alone. It might be possible that this large dipole
moment effectively implies stronger stabilization of the system due
to its interaction with the electric field.14 Such a large dipole moment
may also arise from the failure of the multipole expansion to dis-
sect the adsorption interaction in dipole and field contributions as
discussed in Sec. II E.

To analyze the results from the dipole-field model, the effec-
tive dipole moment was calculated from atomic charges. Assuming
that CO2–FeNC can be approximated as a diatomic molecule, the
effective dipole moment is computed as

TABLE IV. Bader charges of CO2 and Fe, and the dipole moment in both eÅ and
Debye units calculated using Eq. (38) as a function of the applied potential U.

U/V CO2/e Fe/e eÅ D

0.0 −0.66 1.73 2.39 11.48
−0.25 −0.74 0.26 1.00 4.80
−0.5 −0.77 −0.18 0.59 2.83
−0.75 −0.80 −0.42 0.38 1.82
−1.0 −0.85 −0.92 −0.07 −0.34
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FIG. 3. The projected density of states
for CO2 adsorbed on Fe–NC as a func-
tion of the potential. The dashed lines
indicate the iron d-states and the solid
lines represent the CO2 sp-states. The
inset shows the states around the Fermi
level. Electrode potentials are given on
the standard hydrogen electrode (SHE)
scale.

Meff ≈∑
i

qi(ri − rcb), (38)

where ri is the position of the ith nucleus and rcb denotes the mid-
point of the Fe–C bond. The potential-dependent dipole moments
are given in Table IV and it is clearly visible that Meff exhibits signif-
icant variations as a function of the electrode potential. The largest
value is 16 times larger than the CO−2 dipole moment and the small-
est has a reversed direction, i.e., the dipole moment points from
CO2 to Fe. These features can be understood by the strong depen-
dency between atomic charges and the electrode potential as shown
in Table IV.

The above-mentioned analysis shows that adsorption ener-
gies can be fitted using capacitance and dipole-field approxima-
tions, but the physical insight depends on the chosen method
and the computed capacitances or dipole moments do not always
appear physically correct. To understand the source of these uncer-
tainties, we performed a detailed analysis of CO2 adsorption on
Fe–NC as a function of the potential. First, it needs to be noted
that separating the adsorption process into well-defined interac-
tions is not straightforward. While atomic charges as a function
of the potential can be easily computed, separating charge-transfer
from electronic polarization, which is an electrostatic effect rather
than charge-transfer, is difficult because charge partitioning can-
not distinguish between these two effects. For an electronically
adiabatic process, a more practical and somewhat more robust
alternative to distinguish among charge-transfer, covalent bonds,
and electrostatics is tracing the changes in the projected density
of states (PDOS) upon adsorption as a function of the electrode
potential.60

The PDOS ρ(ε)(U) = ∑i∣⟨Ψ(ε
′; U)∣ψ⟩∣2δ(ε − ε′), shown in

Fig. 3, provides a quantitative and qualitative measure of the cova-
lent interactions between adsorbate orbitals (∣ψ⟩)with the total wave
function (∣Ψ⟩), and how this interaction changes as a function of
the electrode potential U. The comparison of PDOS plots in Fig. 3
and Fig. S3 in the supplementary material shows that the covalent
interactions between Fe and CO2 take place mainly between −2.5
and 2.5 eV around the Fermi level. The PDOS plots show that there
are only few CO2 states around the Fermi level at all potentials. The
bonding and antibonding states are located around −1.5–−1.0 eV
and 1.5–2.0 eV depending on the potential. These figures also show

that the covalent interactions depend very sensitively on the elec-
trode potential and spin. At 0.0 V vs SHE (orange lines), there is
a broad peak between −2 and −1 eV corresponding to filled CO2
states. For the down-spin, a narrower peak for covalent interactions
is observed at −1 eV. The iron down-spin states span the Fermi level
while the up-spin has a band gap.

As the electrode potential is decreased, the surface becomes
negatively charged and the PDOS goes through a series of notable
changes. The filled Fe up-spin states are split, while the down-
spin states move to lower energies as the potential is decreased
from 0.0 to −0.5 V. As shown in Table II, the iron spin changes
significantly. On the other hand, the CO2 states remain rather
unchanged. As the potential is further decreased to −1.0 V, the
CO2 and corresponding Fe states move to lower energies. The
Fe down-spin states become more occupied and the Fe spin state
approaches zero (Table II). At other potentials, similar changes are
observed (Fig. S3).

The above-mentioned analysis shows that the CO2 interaction
with the Fe–NC catalyst is very complex. The adsorption energy is
not only sensitive to the electrode potential but also notable changes
in atomic charges point to charge-transfer effects, while the PDOS
shows that the covalent bonding depends on both the potential and
spin. As discussed, both the dipole-field and capacitor models can
accurately fit potential-dependent adsorption energy. However, it is
very questionable whether either model often used for CO2 adsorp-
tion on Fe–NC-type materials can condense this complex chemistry
to a single parameter.

III. DISCUSSION
This work systematically derives and discusses various elec-

trostatic corrections that have been developed to study electro-
catalytic thermodynamics and kinetics within canonical, constant
charge DFT without explicitly treating the electrode potential. We
have analyzed different electrostatic models in detail to understand
the assumptions, limitations, and physical/chemical implications of
the different electrostatic approximations. As it has been widely
demonstrated in the literature that these methods can capture or
fit potential-dependent reaction energies, our primary goal is to
analyze what physicochemical insight can be obtained from the dif-
ferent electrostatic corrections to canonical DFT. We also propose
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some alternative approaches to extend canonical DFT to electro-
chemical systems. The present work answers the question as to
which extent canonical DFT can approximate the in-principle exact
thermodynamics from GCE-DFT.61

Through free energy differentiation, it was shown that the
capacitor and dipole-field approximations only focus on changes
in the number of particles, whereas geometric changes are usu-
ally ignored. This essentially means that the electrostatic corrections
cannot account for the interplay between energetics, potential, and
geometry. As such, these approaches cannot be applied to situations
where the adsorption, transition state, or electrolyte configuration
changes as a function of the electrode potential. While this might
be a reasonable assumption for simple molecules, this can hardly be
the case for complex molecules with different binding motifs and
orientations.

A closely related issue pertains to the infinite-cell extrapolation
schemes,62,63 which are often used for validating or parametrizing
electrostatic models. In particular, it is not always explicitly specified
whether geometric variations are accounted for when the cell/charge
extrapolation is performed. If the transition state and other geome-
tries are not optimized at all different charge states and cell sizes,
the situation schematically shown Fig. 4 arises. Specifically, without
accounting for the geometric contribution, the extrapolation scheme
is not a fully reliable reference. It is also questionable whether the
extrapolation scheme can treat μ̃n and μ̃± as independent thermody-
namic variables since the electrode potential (∝ μ̃n) is changed by
including a different concentration of cations/anions (∝ μ̃±) in the
simulation cell.

The main issue with the original capacitor model in the fully
canonical situation [Eq. (14)] is the use of an effective capaci-
tance that makes the model insensitive toward electrolyte properties.
The electrolyte effects can, however, be included in the semi-grand
canonical ensemble [Eq. (15)]. If the common approximation of
effective capacitance is made, the electrode and electrolyte prop-
erties cannot be addressed separately, while this is possible both
experimentally and in GCE-DFT calculations. The effective capac-
itor model cannot capture the subtle interplay between the elec-
trode potential and charge, which is a fundamental feature of an
electrochemical interface.

Another issue with the constant capacitance assumption is
related to the description of electrode potential effects in reaction
energies [Eq. (1)] when geometric changes take place. We have
shown that for CO2 adsorption on Fe–NC, and more generally for
different initial and final states,64 the effective capacitance is not
constant. Furthermore, the capacitance should not be treated as a

free variable to convert adsorption energies from canonical, con-
stant charge calculations to potential-dependent adsorption energies
as shown in the supplementary material, Sec. S2. The capacitor
model also predicts the differential free energy to be symmetric and
parabolic with respect to the PZC. This would indicate that both
negative and positive applied potentials would lead to identical free
energy changes as a function of the electrode potential, which is not
observed in numerical GCE-DFT simulations. Despite these theoret-
ical issues, the capacitor model seems robust, in practice, for metallic
electrodes and when (potential-induced) changes in geometry are
small. However, the effective capacitance should not be used as a
free parameter but should be self-consistently computed for a given
system using the chosen capacitor model. Finally, if the capacitance
scheme is to be applied to semiconductor electrodes, space-charge
capacitance should be included in Ceff .

The partitioned capacitance approaches include further
approximations as partitioning is mathematically ambiguous
because some terms in the free energy Taylor expansion are
neglected and it is not a priori clear how these omissions impact
different systems. The partitioned capacitance [Eq. (18)] will always
suffer from artificial separation of the electrochemical interface to
the electrode and reactants/double-layer subsystems, which makes
the model prone to computational artifacts as noted in Ref. 17.
This can lead to a situation where different parts of the system
have seemingly different capacitances. This thermodynamic incon-
sistency is, however, a computational artifact resulting from system
partitioning and/or the use of mixed explicit–implicit solvent mod-
els: the division into different subsystems cannot be done without
extrathermodynamic assumptions.

Also, the physical interpretation of partitioned capacitance
approaches is problematic because the total capacitance cannot be
uniquely separated to double-layer, Helmholtz, or Gouy–Chapman
charging and electrosorption (adsorption) contributions without
extrathermodynamic assumptions. Based on an impedance spec-
troscopy perspective (Fig. 2) and Eq. (18), the Grahame model
and parallel capacitors should be the most appropriate repre-
sentations for adsorption and double-layer charging while the
Gouy–Chapman–Stern model should be used for explicit/implicit
double layers. In practice, however, Eq. (18) cannot separate between
these two physically very distinct cases: by fitting A(Nn) with
Eq. (18), it is not possible to separate (1) DL charging and charge
transfer due to adsorption or (2) separate explicit (Helmholtz)
and implicit (DL) charging processes. Another partitioned paral-
lel capacitor model, Eq. (21), is expected to perform better for
electrosorption energies but only when charge transfer between

FIG. 4. The geometric term in cell-size
extrapolation. If the TST is not recal-
culated for each cell size, the geomet-
ric term, ∫ δA

δv(r) δv(r)dr, is not cor-

rectly accounted for in the extrapolation
scheme.
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the electrode and double-layer or reactant is negligible. The aver-
age capacitor model, Eq. (22), introduces least approximations and
is, therefore, expected to be the most robust partitioned capacitor
scheme. Finally, if the partitioned capacitors are used for semicon-
ductor electrodes, the space-charge capacitance Ceff should also be
included either in series or in parallel.

Even further approximations are introduced in the dipole-field
model. While it was shown that this model can be derived by apply-
ing a multipole expansion on the partitioned capacitor model or
through Taylor expansion with respect to the electric field, sev-
eral theoretical issues were raised. First, the underlying partitioned
capacitance model already contains several assumptions. Second,
the multipole expansion is divergent when applied to spatially close
interacting subsystems, such as those treated in chemisorption or
electrosorption problems. Third, only the dipole-field term of the
full multipole expansion is retained and effects such as induced
dipole moments or polarizability are typically omitted. For compar-
ison, in the context of oriented electric field catalysis, higher-order
field dependencies are needed even for qualitative understand-
ing of polarization and field effects,65 and the linear dependency
between field and reaction energies seems to be valid only for
a very narrow range of fields.66 Fourth, the practical dipole-field
model [Eq. (33)] contains several effective quantities such as effec-
tive capacitance, surface charge, and the dipole moment, which are
effectively treated as fitting quantities in most cases. Fifth, the phys-
ical interpretation Eq. (33) is that of surface dipole interacting with
the effective field generated by the surface itself. In this case, the
electrostatic energy and the multipole model leading to the dipole-
field model are not well-defined as discussed in Sec. II E. Sixth,
the Taylor expansion with respect to the electric field is problem-
atic because neither the canonical nor grand canonical ensembles
or free energies are functionals of the electric field and the electric
field cannot be considered an independent thermodynamic variable
of an electrochemical interface because it depends on the properties
of the electrolyte. These features limit the applicability, general-
ity, and physical insight of the dipole-field models. Furthermore,
our derivations show that it is necessary to test and parameter-
ize the model and its many effective quantities for each surface
and reactant. In practice, we observed that the dipole moments
extracted from the dipole-field model appear unreasonably large
and show substantial potential dependencies (Table IV). While these
are acceptable traits of an effective model and for fitting purposes,
fundamental understanding on the role of the electric field, dipole
moments, polarizability, etc., should be approached cautiously,
given the amount of effective quantities and implicit assumptions in
the model.

We also addressed the general plausibility of separating chem-
ical and electrostatic contributions. In line with previous studies on
the Frumkin model, we conclude that electrostatics and chemical
interactions or covalent bonding cannot, in general, be differen-
tiated by studying reaction or adsorption free energies as a func-
tion of charge Nn or electrode potential U. By means of analytic
arguments on the capacitor model [Eq. (18)] and by contrast-
ing the dipole-field model with a charge transfer model derived
using conceptual DFT [Eq. (37)], we have shown that just by
fitting A(Nn) or Ω(μ̃n), one cannot differentiate between charge-
transfer and electrostatic interactions. While both electrostatic and
charge-transfer models are equally suitable for fitting purposes, their

physical implications are clearly different, which is a very important
point for computational electrocatalyst design; the interpretation
of electrocatalytic thermodynamics or kinetics based on electro-
static or charge-transfer models leads to different conclusions on
which interactions determine electrocatalytic performance. As such,
depending on the selected model, different quantities can be chosen
for optimization in electrocatalyst development. Here, insights and
approaches from conceptual DFT might prove to be very helpful as
it offers a rigorous way to describe chemical interactions through,
e.g., chemical softness or Fukui functions in addition to electro-
static or geometric terms. In fact, a detailed analysis of electrostatics
and geometrical changes at electrochemical interfaces conducted
in Ref. 67 has shown that general, reliable estimates of electro-
chemical thermodynamics are achievable with conceptual DFT, but
this requires the inclusion of several high-order terms. We, there-
fore, propose that addressing geometric, electrostatic, and chem-
ical interactions within conceptual DFT quantities would be very
beneficial for the next generation of approximate electrochemical
DFT schemes.

We wish to re-emphasize that all approximations discussed
in this work have been successfully applied to predict or fit elec-
trochemical thermodynamics and kinetics for different systems.
At the same time, it needs to be emphasized that different elec-
trostatic schemes have been developed and used for distinct sys-
tems, and it is important that the correct scheme is selected
and tested for a particular problem. This is clearly shown in
our analysis of potential-dependent CO2 adsorption on a Fe–NC
catalyst where largely varying capacitances and dipole moments
were obtained with different approximations. We also showed
that conceptual DFT approaches can be used to derive alterna-
tive and possibly more general ways to include geometric and
potential dependencies in the electrocatalytic DFT approximations.
Finally, if one wishes to avoid these electrostatic or conceptual
DFT approximations altogether, GCE-DFT should be the method
of choice. While GCE-DFT is not often employed in large-scale
(screening) studies, its computational cost is only ∼30% more
than that of canonical DFT and it can already be readily applied
to complex multi-step reactions68 and even molecular dynamic
simulations.31

IV. CONCLUSIONS
We have provided a detailed and systematic derivation of dif-

ferent electrostatic approximations developed to estimate the impact
of the electrode potential on reaction thermodynamics and kinetics
within canonical DFT. This allowed us to reveal the implicit assump-
tions behind these approximations and their limitations and physical
implications. We have shown that these approximations efficiently
capture or fit the potential-dependency in reaction energetics, but
care should be exercised when physical or chemical insight other
than energetics is drawn from them. Also, the validity of the cho-
sen approximation should be carefully considered separately for
each system. More specifically, several aspects and limitations have
been discussed in detail: (1) the constant effective capacitance pre-
cludes the study of electrolyte/solvent effects, (2) the physical picture
of partitioned capacitance schemes is unclear and extrathermody-
namic assumptions are made to achieve separation to subsystems,
(3) the dipole-field models contain multiple effective quantities
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limiting their predictive power, (4) the interplay between geomet-
rical changes and the electrode potential is often neglected, (5)
distinguishing between electrostatic, charge transfer, and covalent
interactions is difficult, and (6) the computed capacitances, dipole
moments, and physical insight depend sensitively on the selected
approximation. Careful consideration of these issues allowed us to
analyze model accuracy and insight, to suggest when a given model
should be chosen, and to propose alternative formulations based on
conceptual DFT or GCE-DFT.

V. COMPUTATIONAL METHODS
We performed grand-canonical ensemble density functional

(GCE-DFT) simulations using the Solvated Jellium Model (SJM)
method69 as implemented in GPAW.70 The solvent was treated using
the dielectric continuum model for water developed in Ref. 71 and
the vdW radius for Fe was set to 2.0 Å. The electronic structure
was calculated on a real-space grid with a spacing of 0.2 Å, and a
(3 × 3 × 1) k-point sampling was used. The Bayesian error esti-
mation functional with van der Waals correlation (BEEF–vdW)72

was used to model the exchange-correlation effects. The reactions
were simulated on a graphene layer constituting 3 hexagonal rings
per four and a half (54 atoms) with an Fe atom encrusted right
in the middle surrounded by four N atoms to each connection
to the graphene and one CO2 molecule adsorbed on top of the
Fe atom. A vacuum of 15 Å thickness was applied on the slab
along the z-direction to prevent interactions of the slab with its
upper and lower periodic images. The carbon atoms from the
graphene layer were kept fixed, while the remaining atoms were
allowed to relax.

The CO−2 dipole moment was computed with NWChem 7.0.73

The B3LYP-D374 function with the aug-cc-pVDZ basis set75 for both
C and O coupled with an ultrafine integration grid following the rec-
ommendation for accurate dipole moment calculations.76 Geometry
optimization was performed before the dipole moment calculation.

SUPPLEMENTARY MATERIAL

See the supplementary material for Taylor expansions of the
grand canonical and canonical free energies, adsorption Helmholtz
free energy as a function of the electrode potential: impact of
capacitance, including the nuclear dipole in the electrostatic concep-
tual DFT picture, derivation of the electrocatalytic electrochemical
potential equilibrium model, and additional DOS figures.
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47L. Komorowski, J. Lipiński, and P. Szarek, “Polarization justified Fukui
functions,” J. Chem. Phys. 131, 124120 (2009).
48T. Clarys, T. Stuyver, F. De Proft, and P. Geerlings, “Extending conceptual
DFT to include additional variables: Oriented external electric field,” Phys. Chem.
Chem. Phys. 23, 990–1005 (2021).
49W. R. Fawcett, “Fifty years of studies of double layer effects in electrode
kinetics—A personal view,” J. Solid State Electrochem. 15, 1347 (2011).
50D.-Q. Liu, M. Kang, D. Perry, C.-H. Chen, G. West, X. Xia, S. Chaudhuri, Z. P. L.
Laker, N. R. Wilson, G. N. Meloni, M. M. Melander, R. J. Maurer, and P. R. Unwin,
“Adiabatic versus non-adiabatic electron transfer at 2D electrode materials,” Nat.
Commun. 12, 7110 (2021).
51W. Schmickler, “A theory of adiabatic electron-transfer reactions,” J. Elec-
troanal. Chem. Interfacial Electrochem. 204, 31–43 (1986).
52J. Huang, P. Li, and S. Chen, “Quantitative understanding of the sluggish kinet-
ics of hydrogen reactions in alkaline media based on a microscopic Hamiltonian
model for the Volmer step,” J. Phys. Chem. C 123, 17325–17334 (2019).
53C. G. Vayenas and S. Brosda, “Electron donation–backdonation and the rules of
catalytic promotion,” Top. Catal. 57, 1287–1301 (2014).
54R. A. Miranda-Quintana, P. W. Ayers, and F. Heidar-Zadeh, “Reactivity and
charge transfer beyond the parabolic model: The “∣Δμ∣ big is good” principle,”
ChemistrySelect 6, 96–100 (2021).
55R. A. Miranda-Quintana and J. Smiatek, “Theoretical insights into specific ion
effects and strong-weak acid-base rules for ions in solution: Deriving the law of
matching solvent affinities from first principles,” ChemPhysChem 21, 2605–2617
(2020).
56R. A. Miranda-Quintana, M. Martínez González, and P. W. Ayers,
“Electronegativity and redox reactions,” Phys. Chem. Chem. Phys. 18,
22235–22243 (2016).
57The potential-of-zero-charge effects are implicitly included in the reference
state chosen for Eq. (37).
58T. Clark, “Polarization, donor–acceptor interactions, and covalent contribu-
tions in weak interactions: A clarification,” J. Mol. Model. 23, 297 (2017).
59J. Chen, C. Li, and G. Shi, “Graphene materials for electrochemical capacitors,”
J. Phys. Chem. Lett. 4, 1244–1253 (2013).
60F. Dominguez-Flores, E. Santos, W. Schmickler, and F. Juarez, “Interaction
between chloride ions mediated by carbon nanotubes: A chemical attraction,”
J. Solid State Electrochem. 24, 3207 (2020).
61While some approximations, such as dielectric continuum solvent/electrolyte
models, need to be used currently in practical GCE-DFT calculations, it should
be noted that canonical DFT inherits all limitations of current GCE-DFT meth-
ods but many more are introduced when using canonical DFT and electrostatic
corrections.
62E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg, J.
Rossmeisl, T. Bligaard, H. Jónsson, and J. K. Nørskov, “Modeling the electrochem-
ical hydrogen oxidation and evolution reactions on the basis of density functional
theory calculations,” J. Phys. Chem. C 114, 18182–18197 (2010).

J. Chem. Phys. 158, 144701 (2023); doi: 10.1063/5.0138197 158, 144701-15

Published under an exclusive license by AIP Publishing

 30 June 2023 07:06:11

https://scitation.org/journal/jcp
https://doi.org/10.1021/acscatal.0c01375
https://doi.org/10.1021/acs.jpcc.0c02127
https://doi.org/10.1038/s41467-019-13777-z
https://doi.org/10.1021/acs.jctc.9b00717
https://doi.org/10.1039/c9ee01341e
https://doi.org/10.1039/c9ee01341e
https://doi.org/10.1021/acscatal.6b02299
https://doi.org/10.1021/acs.jpclett.6b00382
https://doi.org/10.1021/acs.jpclett.5b01043
https://doi.org/10.1021/acs.jpclett.5b01043
https://doi.org/10.1002/cphc.201900536
http://ChemRxiv.org/abs/10.26434/chemrxiv-2022-hvf9g
http://ChemRxiv.org/abs/10.26434/chemrxiv-2022-hvf9g
https://doi.org/10.1021/acscatal.2c00997
https://doi.org/10.1038/s41524-020-00394-4
https://doi.org/10.1023/a:1016812130377
https://doi.org/10.1016/0013-4686(90)85069-y
https://doi.org/10.1021/cr990029p
https://doi.org/10.1063/1.4999761
https://doi.org/10.1103/physrevb.103.l161403
http://ChemRxiv.org/abs/10.26434/chemrxiv-2021-r621x-v3
https://doi.org/10.1103/physrevb.34.5621
https://doi.org/10.1021/jp047349j
https://doi.org/10.1063/5.0089260
https://doi.org/10.1088/0965-0393/21/7/074005
https://doi.org/10.1021/acs.chemrev.2c00097
https://doi.org/10.1016/j.coelec.2022.100938
https://doi.org/10.1021/acs.jpcc.1c04464
https://doi.org/10.1016/j.electacta.2020.136109
https://doi.org/10.1016/j.electacta.2013.11.002
https://doi.org/10.1088/1361-648x/abef9d
https://doi.org/10.1021/acscatal.1c05750
https://doi.org/10.1016/0022-0728(88)80347-4
https://doi.org/10.1021/acs.jpclett.2c03588
https://doi.org/10.1063/1.3239503
https://doi.org/10.1039/d0cp05277a
https://doi.org/10.1039/d0cp05277a
https://doi.org/10.1007/s10008-011-1337-4
https://doi.org/10.1038/s41467-021-27339-9
https://doi.org/10.1038/s41467-021-27339-9
https://doi.org/10.1016/0022-0728(86)80505-8
https://doi.org/10.1016/0022-0728(86)80505-8
https://doi.org/10.1021/acs.jpcc.9b03639
https://doi.org/10.1007/s11244-014-0294-4
https://doi.org/10.1002/slct.202004055
https://doi.org/10.1002/cphc.202000644
https://doi.org/10.1039/c6cp03213c
https://doi.org/10.1007/s00894-017-3473-y
https://doi.org/10.1021/jz400160k
https://doi.org/10.1007/s10008-020-04802-z
https://doi.org/10.1021/jp1048887


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

63J. Rossmeisl, E. Skúlason, M. E. Björketun, V. Tripkovic, and J. K. Nørskov,
“Modeling the electrified solid–liquid interface,” Chem. Phys. Lett. 466, 68–71
(2008).
64M. D. Hossain, Y. Huang, T. H. Yu, W. A. Goddard III, and Z. Luo, “Reaction
mechanism and kinetics for CO2 reduction on nickel single atom catalysts from
quantum mechanics,” Nat. Commun. 11, 2256 (2020).
65P. Besalú-Sala, M. Solà, J. M. Luis, and M. Torrent-Sucarrat, “Fast and simple
evaluation of the catalysis and selectivity induced by external electric fields,” ACS
Catal. 11, 14467–14479 (2021).
66N. M. Hoffmann, X. Wang, and T. C. Berkelbach, “Linear free energy
relationships in electrostatic catalysis,” ACS Catal. 12, 8237–8241 (2022).
67J.-S. Filhol and M.-L. Doublet, “Conceptual surface electrochemistry and new
redox descriptors,” J. Phys. Chem. C 118, 19023–19031 (2014).
68T. Wu, M. M. Melander, and K. Honkala, “Coadsorption of NRR and HER
intermediates determines the performance of Ru-N4 toward electrocatalytic N2
reduction,” ACS Catal. 12, 2505–2512 (2022).
69G. Kastlunger, P. Lindgren, and A. A. Peterson, “Controlled-potential simula-
tion of elementary electrochemical reactions: Proton discharge on metal surfaces,”
J. Phys. Chem. C 122, 12771–12781 (2018).
70J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J.
Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma,
A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J.
Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G.
A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. H. Madsen,

R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen,
and K. W. Jacobsen, “Electronic structure calculations with GPAW: A real-space
implementation of the projector augmented-wave method,” J. Phys.: Condens.
Matter 22, 253202 (2010).
71A. Held and M. Walter, “Simplified continuum solvent model with a smooth
cavity based on volumetric data,” J. Chem. Phys. 141, 174108 (2014).
72J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis,
J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, “Density functionals for
surface science: Exchange-correlation model development with Bayesian error
estimation,” Phys. Rev. B 85, 235149 (2012).
73M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J.
J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A.
de Jong, “NWChem: A comprehensive and scalable open-source solution for
large scale molecular simulations,” Comput. Phys. Commun. 181, 1477–1489
(2010).
74S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate
ab initio parametrization of density functional dispersion correction (DFT-D) for
the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).
75R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron affinities of the first-
row atoms revisited. systematic basis sets and wave functions,” J. Chem. Phys. 96,
6796–6806 (1992).
76J. C. Zapata and L. K. McKemmish, “Computation of dipole moments: A rec-
ommendation on the choice of the basis set and the level of theory,” J. Phys. Chem.
A 124, 7538–7548 (2020).

J. Chem. Phys. 158, 144701 (2023); doi: 10.1063/5.0138197 158, 144701-16

Published under an exclusive license by AIP Publishing

 30 June 2023 07:06:11

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.cplett.2008.10.024
https://doi.org/10.1038/s41467-020-16119-6
https://doi.org/10.1021/acscatal.1c04247
https://doi.org/10.1021/acscatal.1c04247
https://doi.org/10.1021/acscatal.2c02234
https://doi.org/10.1021/jp502296p
https://doi.org/10.1021/acscatal.1c05820
https://doi.org/10.1021/acs.jpcc.8b02465
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1063/1.4900838
https://doi.org/10.1103/physrevb.85.235149
https://doi.org/10.1016/j.cpc.2010.04.018
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.462569
https://doi.org/10.1021/acs.jpca.0c06736
https://doi.org/10.1021/acs.jpca.0c06736

