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Ethics of Artiicial Intelligence (AI) is a growing research ield that has emerged in response to the challenges related to

AI. Transparency poses a key challenge for implementing AI ethics in practice. One solution to transparency issues is AI

systems that can explain their decisions. Explainable AI (XAI) refers to AI systems that are interpretable or understandable to

humans. The research ields of AI ethics and XAI lack a common framework and conceptualization. There is no clarity of

the ield’s depth and versatility. A systematic approach to understanding the corpus is needed. A systematic review ofers

an opportunity to detect research gaps and focus points. This paper presents the results of a systematic mapping study

(SMS) of the research ield of the Ethics of AI. The focus is on understanding the role of XAI and how the topic has been

studied empirically. An SMS is a tool for performing a repeatable and continuable literature search. This paper contributes

to the research ield with a Systematic Map that visualizes what, how, when, and why XAI has been studied empirically in

the ield of AI ethics. The mapping reveals research gaps in the area. Empirical contributions are drawn from the analysis.

The contributions are relected on in regards to theoretical and practical implications. As the scope of the SMS is a broader

research area of AI ethics the collected dataset opens possibilities to continue the mapping process in other directions.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Networks→ Network

reliability.

Additional Key Words and Phrases: AI Ethics, Explainable AI, Artiicial Intelligence, Systematic Mapping Study

1 INTRODUCTION

Artiicial Intelligence (AI) is one of the most prominent and inluential technologies of modern times. Its rapid
development and increasing human dependency on it has facilitated the adoption of AI in almost all imaginable
sectors of life [13]. Furthermore, AI’s proliferation in critical areas, its speed of development, and the race between
nations and companies to build robust AI tools has increased the need to set ethical guidelines and principles for
AI development and deployment.

AI ethics is a burgeoning research ield that has emerged in response to the challenges related to the impact of
AI. The challenges posed by AI include data bias, privacy, and fairness issues, in addition to the requirement
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for AI practitioners to gain better knowledge about the impact of the technology. As such, the subject of
AI ethics itself is versatile, ranging from highly technical issues to understanding human behavior in the
research, interaction, development, and usage of AI [113]. AI ethics is often broken down into principles, such as
transparency, responsibility, trust, privacy, sustainability, autonomy, and dignity. Five of these principles have
emerged as dominant, including transparency, justice and fairness, non-maleicence, responsibility, and privacy
[89]. Transparency, which is arguably the most prevalent [89], is often viewed as a pro-ethical principle and an
enabler for ethical AI [166]. Consequently, transparency plays an important role in AI ethics, where it covers
a broad scope that includes XAI [101]. XAI refers to an interpretable system that provides an understandable
explanation of the system output [2]. XAI draws attention to the area of AI ethics research focused on how AI
systems make decisions, the explanations of the decisions, and how the decisions are communicated to relevant
stakeholders [91].
XAI is a growing area of research, especially as AI systems are implemented in critical sectors that warrant

transparency for AI actions. One example of this is medical AI, in which the need for an understandable system
is tied to the core ethical values of medicine [11]. Here, expectations for explainability are high [83]However, due
to its novelty, the ield remains riddled with unclarity and lack of structure. Despite its importance, the role of
transparency is not well deined in AI ethics. Moreover, XAI currently sufers from a lack of commonly agreed
deinitions of core concepts [54, 89]. Most of the research and reviews of XAI in view of AI ethics are tailored
toward a particular aspect of explainability, such as algorithm explanations [155, 191], black box explanations
[71], and methods that aim to describe explainability [179]. A recent systematic review [184] helped to explore
current approaches and limitations for XAI. However, the review focuses on the area of reinforcement learning
with no recourse to its role in AI ethics. Consequently, there is currently limited research that explore XAI and
its speciic part in AI ethics in depth.
Given the gap in previous studies, this paper examines the research ield of XAI and its role in AI ethics

scholarship. The paper’s research question, łWhat is the role of XAI in the AI ethics research ield?ž requires an
overview of the corpus of academic literature on AI ethics. The focus of the paper is on concrete, actionable
issues rather than philosophical discussion, with the main emphasis on empirical research studies.
The paper adopts an SMS to map the research literature of AI ethics. SMS is a form of Systematic Literature

Review (SLR) [94]. SLR and SMS are secondary studies where the attention is placed on analyzing the evidence of
previous research. SLR aims to ind and evaluate the relevant papers, which are called primary studies, on a speciic
research area. SMS aims to identify and categorise the existing literature more in general [94]. High-quality SMSs
can have a signiicant beneit for the research area in establishing baselines for future research [94].

To understand the role of XAI in the research ield of AI ethics, SMS methodology represents a better approach
than SLR. The infancy and lack of coherence of the AI Ethics research area support the use of SMS. The size of
the research area is unknown, and the role of XAI is new. The conceptual ambiguity of the research area [89]
necessitates SMS usage. Several SMSs are studied, and guidelines are utilized. However, the most inluential
papers for this study are the guidelines of [130] and the SMS of [128]. This paper builds on the SMS of Vakkuri
and Abrahamsson [168].
The rest of this paper proceeds as follows: Section 2 serves as a background for XAI and related AI topics,

machine learning, and the principles for ethical AI. Section 3 reports the literature search process. The section
starts with a theoretical framework of SMS and continues with reporting the use of SMS in this paper. The
literature search process results in primary studies (n = 142) that form the scope of this study.
Section 4 presents the classiication schema and the numeric results of classiication. Section 5 presents the

systematic mapping, where the results are analyzed and compared, and the annual trends and the publication
venues are investigated. Section 6 proposes theoretical and practical implications of primary empirical contribu-
tions. Section 7 proposes some future research topics. Finally, towards the end of the paper, Section 8 draws some
inal conclusions.
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2 BACKGROUND

AI has a long history in software development, with its roots stretching back to the 1950s [111]. During its
history, AI has had its ups and downs in the hype curve, making it appear brand-new at certain intervals in public
discourse. Although there has been a lack of build-up around AI in the industrial sector, AI has been a standard
part of the industrial repertoire ever since the 1980s [36]. However, it was not until 2007 that the introduction
and generalization of smartphones and social media channels started to generate large amounts of data. This
afected machine learning by providing it with training material and target applications [36].

As the most common form of AI today, machine learning has been coded to learn either by human supervision
or independently with training data. By the deinition of [10], machine learning refers to a computer program
that is programmed to optimize its performance using example data or past experience. Machine learning models
can be used to make future predictions or gain knowledge from the past [10].
Data is the key to train a machine learning model. Although the amount of data is growing exponentially,

the major challenge is the usability of the data. This is because raw data are unlabeled or unstructured and
require extensive reinement eforts. Techniques like deep learning can be used as part of a solution because
deep learning requires a smaller training data-set. A deep learning model can be fed with raw data, and used for
detection and classiication. Models using unsupervised deep learning are expected to become more critical in the
future. Deep learning can be employed for more complex tasks like natural language recognition and imitation of
human vision, and in the future, it can be combined with complex reasoning [103].

2.1 AI ethics

Because of the capability of AI systems to learn and make decisions autonomously, coupled by the broad concern
in deploying AI in various ields, the interest and need for ethical research and guidelines have increased. In
academia, discussions and research on AI ethics have been running for decades. Yet, these initiatives rarely cross
with the development of AI systems [168]. Research on AI ethics has been focusing on the potential of AI on a
theoretical level and on inding technological solutions. However, a broader perspective is often required [34]. AI
ethics is a continually evolving research area that holds relevance for several domains, including computer science,
economics, and philosophy. The research consists of a large variety of papers from diferent areas concerning AI
ethics, which makes the deinition of the ield of AI ethics a challenging task [168].

The ethics of AI is often deined using lists of principles, laws, or guidelines for AI developers or implementers
to follow [200]. Jobin et al. [89] mapped the corpus, including the grey literature (e.g., corporations’ white papers
and reports) of AI ethical guidelines and principles. The results revealed ive primary principles: transparency,
justice and fairness, non-maleicence, responsibility, and privacy. The interpretation of these principles varies
depending on the domain, actors, and issue. Transparency is interpreted as explainability, understandability,
interpretability, communication, disclosure, and showing. Justice is most often interpreted as fairness, consistency,
inclusion, equality, equity, (non-)bias, and (non-)discrimination. Most frequently, non-maleicence refers to
general security, safety, and not causing of foreseeable or unintentional harm. Responsibility and accountability
refers to liability and integrity or to the diferent actors named as accountable for AI’s actions. Finally, privacy in
AI ethics is both a value to uphold and a right to be protected [89].

The most frequent requirement in AI ethics literature is transparency, followed by the requirements of justice
and fairness [89]. Transparency is often needed to ensure the system’s ethical functioning because without
transparency, fairness cannot be evidenced in the system. A third, closely connected issue is accountability.
Together, these three elements construct the fairness, accountability, and transparency (FAT) theorem. In recent
years, the questions about responsibility and transparency in autonomous systems have been raised in mainstream
media due to pedestrian fatalities with self-driving cars. Autonomous driving is a broadly discussed topic in the
AI ethics ield. It has opened an avenue for non-practitioners to join the conversation and in understand the

ACM Trans. Interact. Intell. Syst.
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issues related to AI ethics. Massachusetts Institute of Technology’s "Moral Machine" -research [18] collected 40
million answers to their online experiment, which studied decisions in ethical situations related to autonomous
driving. In recent years, the discussion around AI ethics has opened to incorporate a broader scope.
Governments and regulators like the European Union (EU) are increasingly becoming interested in the topic

of AI ethics. European Commission’s AI High-Level Expert Group [5] has identiied "Trustworthy AI" as the
EU’s foundational ambition for ethical AI. Companies and private organizations are also establishing ethical
frameworks and principles. Large practicing organizations, such as Google, Intel, and Microsoft, have also
presented their guidelines concerning ethics in AI [169]. In academia, guidelines and principles aim to structure
the research ield. One notable example is the IEEE standard for Ethically Aligned Design [120].
Frameworks and guidelines may be a good starting point for the conversation, but they are not suicient

to solve the challenge of AI ethics without other measures in place. The challenge of frameworks is that they
tend to lack practices and modeled behavior upon which to implement them. Furthermore, they often require
more work to be production-ready [118]. Often, the principles and associated frameworks presented in the
literature are not actively used in practice [171]. By the end of 2020, there were over 100 sets of principles, many
of which were vaguely formulated [42]. Hence, choosing the right framework from all available ones may be a
challenging decision because AI ethics lacks the commonly agreed ethical framework [60]. Also, there is a lack of
existing methodology in identifying the relevant frameworks for AI development in the context of implementing
explainability [177]. The choice of suitable methods to create AI with the desired outcome extends beyond
frameworks and must be made in each case individually, considering the needs of the relevant stakeholders and
the desired explanation method properties [177].
One notable connection to AI ethics is the concept of Responsible AI, a paradigm to ensure that fairness,

model explainability, and accountability are included in the practical implementation of AI methods. Besides
AI principles, the Responsible AI practices include technical and non-technical training, guidance and tools to
avoid and mitigate issues that may arise, and a governance model to assign responsibilities and accountabilities.
Where there are many organizations that are listing their AI principles, there are viewer examples of how to
implement the AI principles into practice. For practical implementation list of principles is not solely enough, but
Responsible AI practices are required.[14]

2.2 XAI

XAI refers to an AI system that can explain its decisions [146]. AI technologies such as machine and deep
learning techniques are used for automating and optimizing predictive data patterns to achieve better or faster
decision-making. However, the complexity of techniques such as deep learning, makes the resulting decisions
hard to understand for humans. Thus, explanations can help communicate the justiication behind a decision or
action. This can engender trust in the decision [80]. Such transparency can also ensure that the complexity of the
explanation matches the complexity capacity of the consumer [80].
Understanding human decision-making and explanation deinition provides good grounds for XAI that re-

quires multidisciplinary collaboration and the use of existing research from social sciences, such as philosophy,
psychology, and cognitive science [114]. Explainability is viewed as important in assigning responsibility in cases
of a system failure [141], such as a collision incident of a self-driving car. To ensure the right for explanations,
legislation such as the General Data Protection Regulation (GDPR) outlines individuals’ right for a meaningful
explanation of decisions made by automated systems. However, while calls for XAI have increased, there have
also been some arguments against it. Some AI researchers have advocated that since humans are unable to
provide exact explanations for their decisions, AI systems should not be expected to do so either [56, 80].
Another aspect of XAI is interpretability. AI models are expected to be interpretable, which means that they

can explain the decision in understandable terms to a human [82]. Interpretability deals with understanding
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the algorithm output to be implemented for end users [62]. Sophisticated knowledge extraction and preference
elicitation is required to extract a meaningful explanation from the raw data used in the decision-making process
[146]. This often means that a trade-of must be made between accuracy, efectiveness, and interpretability [2].
Interpretability is not merely a technical problem; to gain interpretability of machine learning systems, it is
necessary to focus on humans rather than technical aspects and provide personalized explanations to individuals
[146].
Interpretability may not be expected from AI systems when users trust the system, even if it is known to

be imperfect, or when the consequences of a wrong decision are considered insigniicant [82]. Interpretability
has divergent requirements depending on the stakeholders involved [82]. Overall, interpretability requires
explanations at varying degrees to help illuminate decisions made by AI [141]. Reasons behind the need for XAI
vary. Based on Wachter et al. [180], the reasons may be as follows: (1) to inform the subject of the reasoning for a
particular decision or explain the reasons for rejection; and (2) to understand how the decision-model needs to be
changed to receive the desired decisions in the future. Overall, the application area and purpose may determine
the need for interpretability.
Explainable and understandable systems are required for society to trust and accept algorithmic decision-

making systems [180]. Better explanations can also improve existing models and open new opportunities, such as
the use of machines for teaching humans [146]. XAI is also a potential tool to detect laws in the system, decrease
biases in the data, and gain new insights into the problem at hand [141], this can help ensure transparency of the
system.

2.2.1 Transparency. The meaning of transparency varies depending on the subject. As a result, the concept
is vague, making misinterpretations likely. In the discipline of information management, transparency often
refers to the form of information visibility, such as access to information [166]. In computer science and IT
disciplines, transparency often refers to a condition of information visibility, such as the transparency of a
computer application to its users, as well as how much and what information is made accessible to a particular
user by the information provider [166]. In this paper the term transparency is used in the sense of the condition
of information visibility.

Although transparency is often required, it is not easy to provide. The information provider (e.g., company or
public institution) must deine who has the right to access the information and the accessibility conditions for it
[166]. Legislation such as GDPR may control the access and sharing of a speciic type of information between
users.

As mentioned above, transparency is listed as one of the primary principles of AI ethics [89]. At the same time,
transparency can actually be seen as the pro-ethical circumstance that makes the implementation of AI ethics
possible in the irst place. Without understanding how the system works, it is impossible to understand why it
malfunctioned, and consequently, to establish who is accountable for the malfunction’s efects. Instead of seeing
transparency as an ethical principle, it would be more accurate to treat it as an ethically enabling or impairing
factor, or as described above, a pro-ethical condition. Information transparency enables ethical implementation
when the system provides the information necessary for the endorsement of ethical principles or when it provides
details on how information is constrained. Transparency can impair ethical principles if it gives misinformation
or inadequate information or exposes an excessive amount of information. The impairing of ethical principles
could lead to challenges, for example, with discrimination, privacy, and security [166]. Transparency is normally
associated with the black box problem in AI ethics.

2.2.2 Black box problem. The term "black box" is used when the AI model is not understandable and cannot
provide a suitable explanation for its decisions [2]. A black box refers to a model that is either too complicated
for any human to comprehend or proprietary to someone [139]. To understand the black box, the model needs
to be built to be interpretable, or a second model must be created that explains the irst black box model [139].

ACM Trans. Interact. Intell. Syst.
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Interpretability in the AI context refers to the capability to understand the overall operational logic in machine
learning algorithms, not just the answer [2]. The terms interpretability and explainability are often used as
synonyms [2], but this can be challenging because there is a subtle diference between them related to the level
of required understandability. In public discussions, the term "Explainable" AI is more often referred to than
"Interpretable" AI, whereas, in academic discourse, the situation is contrary [2]. Current AI regulation, such
as GDPR, requires the right to explanation, not an interpretable model, which might cause problems as only
requiring an explanation does not require the explanation to be accurate and/or complete, and therefore right for
explanation is an incomplete requirement [139].

A second post hoc explainable model may provide explanations that do not make sense or that are not detailed
enough to understand in terms of what the black box is doing. In order to acquire a full understanding of the model,
the information provided by its transparency should also be interpretable. Secondary explanatory models are
often incompatible with information outside the black box. The lack of transparency in the whole decision process
may prevent interpretation by human decision-makers. Secondary models can also lead to overly complicated
decision pathways when transparency is actually required from two models (i.e., the original black box and the
explanatory model). [139]
Neither interpretable machine learning model is challenge-free. First, this is because it is a computational

challenge to build such a model. Second, the AI system’s total transparency can jeopardize the system owner’s
business logic because the system owner must give away intellectual property [45]. In addition, constructing an
interpretable model is often expensive because this requires domain-speciic knowledge, and there are no general
solutions that would work in diferent use cases. In creating an interpretable model, it is a challenge to ind the
balance between interpretability and accuracy because interpretable models tend to reveal hidden patterns in
data that are not relevant to the subject [139, 140].

2.2.3 Accountability and Algorithmic Bias. In addition to interpretable machine learning and black box problems,
core concepts around XAI include AI’s accuracy, a performance metric to compare the number of correct pre-
dictions to all predictions, and responsible AI [2]. Accountability refers to an actor who is accountable for the
decisions made by AI. To establish accountability, the system must be understandable. A lack of transparency and
accountability in predictive models can cause serious problems, such as discrimination in the juridical system,
endangering a person’s health, or misuse of valuable resources [171]. Based on Vakkuri’s [171] research, trans-
parency is the enabler for accountability, and together, transparency and accountability motivate responsibility.
Finally, responsibility produces fairness. Fairness is often linked with algorithmic biases. In other words, an AI
system might repeat and magnify biases in our society, such as by segregating groups with a history of being
marginalized (e.g., in preferring men over women or discriminating against people of color).

Machine learning bias is deined as "any basis for choosing one generalization over another, other than strict
consistency with the instances" [117] p.1. Machine learning systems are neutral and do not have opinions, but the
models are not used in voids, which makes them vulnerable to human bias. In the context of machine learning
models, discrimination and unfairness in the models can be caused by unfairness in the data and the collection
and processing of data or the selected machine learning system. The practical deployment of the system may
reveal biases that were invisible during the development process. Ultimately, there is no easy solution to ensure
fairness of algorithmic decisions [175]. But, there is an interest in inding a working solution.

Veale and Binns [175] identiied three distinctive approaches to ensure fairer machine learning. The irst is the
third-party approach, where an outside organization manages data fairness for the main organization. The second
is the collaborative knowledge base approach, where linked databases containing fairness issues are lagged by
researchers and practitioners. Finally, the third approach is an exploratory approach, where exploratory fairness
analysis of the data is performed before training or practically implementing the model. In this paper, the interest
is in the exploratory approach because it is connected to the black box problem [175]. The biases are studied
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from the perspective of XAI, which aims to bring transparency to the AI system. Less emphasis is dedicated to
research on how data can be collected or processed to avoid biases.

2.3 Summary of Emerging Issues

AI ethics research lacks harmony and standard agreement on deining the core principles of the ield [45, 89].
Moreover, the research ield of XAI is complex and is in need of a common vocabulary and formalization [53].
This paper aims not to solve the issue of deinitions of fairness and transparency but rather to investigate the
existing research connected to transparency as understood in this paper, as a requirement for the AI system to
provide an understandable explanation if needed in the context of the application. This requirement applies to
systems that are non-explainable because of the training method, or biased as a result of bias in the training data.
This paper takes no stand upon ranking the principles. Instead, it aims to provide a more in-depth understanding
of what has been studied and how in terms of transparent and explainable AI systems.
The research ield of XAI studied as a sub-ield of AI ethics examines the challenges and looks for potential

solutions for transparent machine learning models, aiming to enable the fulillment of such ethical principles as
accountability, responsibility, and fairness [157]. XAI can beneit a broad range of domains relying on AI systems.
Especially in domains such as law, inance, military, and transportation, the need for XAI is emphasized [2]. In
such areas, AI systems have a direct inluence on the physical conditions of people and can cause injuries [2]. In
other domains, transparency may not be a critical requirement. There is no one-for-all framework or solution
available for transparency issues. Hence, domain-speciic solutions and frameworks are required.
Adadi et al.’s [2] research showed that the impact of XAI is spanning a broad range of application domains.

However, the lack of formalism regarding problem formulation, divergence in explanation methods and results
[96], and clear unambiguous deinitions burdens the research ield. Moreover, they noted that the human’s role
is not suiciently studied [45, 56]. A recently published paper recognized the same challenge with the lack of
user-centric design in XAI [58]. For implementation, it is important to understand user requirements and needs,
to ensure trust and acceptance of algorithmic decision systems [155]. In addition to understanding the user’s
needs, the research ield lacks knowledge on industrial practices with AI ethics [171] and knowledge on how
diferent explanation methods result in varied results. Overall, there is a concern that the XAI ield sufers from
the distancing of real-world problems [139].
AI ethics and XAI are broad, versatile topics with increasing importance. The present SMS is timely, as it

enables an understanding of what has been studied in AI ethics. It is required to understand what is studied in AI
ethics research to clarify the role of explainable AI. More systematic research is required for this purpose, and in
the next sections, an SMS is used to understand the study ield of AI ethics and how XAI is manifested in the
research.

3 LITERATURE SEARCH FOR PRIMARY STUDIES

This study employed the SMS method. The main focus of SMS is to "provide an overview of a research area, and
identify the quantity and type of research and results available within it" [130] p.2. The SMS aims to identify the
potential research gaps and trends, including the understudied topics and research types. The expected outcome
for SMS is to identify and choose the primary studies and map the literature. [94].

The research builds on an SMS developed by Vakkuri and Abrahamsson [168], who studied the key concepts
in the ield of AI ethics. For this paper, the research was updated twice, irst during mid-way through 2020 and
later in the last quarter of 2021. In this paper, the goal is to analyze how XAI is researched in the study ield of
AI ethics. The interest is in practical implementation and connection to real-world issues. Thus, the focus is on
empirical studies, and papers without data analysis, such as literature reviews, were considered theoretical. We
included papers analysing empirical data regardless of the data type, or data collection or analysis method.

ACM Trans. Interact. Intell. Syst.
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The research question for an SMS can cover issues such as what topics are addressed, what empirical methods
are used, and what sub-topics have been suiciently empirically studied [94]. This guideline forms the basis of
the current research question, "What is the role of explainable AI in the AI ethics research ield?" and its three
sub-questions:

R1 What has been empirically researched in the ield of AI ethics?
R2 What is the state of published research on XAI in the ield of AI ethics in the past 10 years?
R3 Where are the research gaps in the ield?

To answer the main research question, it is irst important to answer the irst sub-question [R1]. In this paper,
the question is studied on a supericial level to ofer enough background to understand the main research question.
The major topics are noted and the research ield’s size and proportion of empirical research from the existing
academic literature are delineated.

To address the second question [R2] and to understand XAI’s role and importance in AI ethics, research with
XAI as the focus is relected against a full data-set of empirical studies. More in-depth analysis and classiication
are performed on papers focusing on XAI to understand what, how, and why it has been studied in past 10 years.
The analysis includes investigation of research methods, contributions, focus, and pertinence to XAI. In addition,
the annual changes in the research ield are studied to reveal trends. The connection to real-world issues is also
reviewed. This paper investigates the current research corpus with empirical evidence to understand the AI ethics
research ield in a way that is closer to real-world issues.

The third question [R3], can be addressed based on a background literature review and a profound SMS. The
background literature review revealed gaps, such as the lack of understanding of the human role in XAI [2] that
were also highlighted in SMS analysis.

The processes of building an SMS is cumulative, and it includes several rounds of screening papers. The process
steps and outcomes are presented in Figure 1 based on [130]. The headline of each block describes the process
step, and the body relects this study. The igure guides the reader through the entire study.

Due to the fact that an SMS’s goal is to understand the research area rather than give evidence, the articles do
not need to feature in-depth examination. Thus, the number of articles included can be larger [130]. The total
number of papers included from ive databases, after deleting duplicates, was 4,411. After applying the inclusion
and exclusion criteria, the sample was narrowed to 142 papers. In the following, each step is further explained
based on the theoretical framework.

3.1 Primary search

The irst step in an SMS is to identify the primary studies that contain relevant research results [37]. This paper
builds on the SMS of Vakkuri and Abrahamsson [168], and the search strings and selected databases were adopted
from their research. With the research question of, "What topics are covered in AI ethics research?" the search
string consisted of the two following parts: (1) AI and its synonyms (robotics, artiicial, intelligence, machine,
and autonomous); and (2) ethics and its synonyms (morals). The search string was as follows:

(AI OR artificial* OR auto* OR intelligen* OR machine* OR robo*) AND (ethic* OR moral*)

The search was narrowed to include only the headline and abstract. The search was performed in the ive
following electronic databases: IEEE, ACM, Scopus, ProQuest, and Web of Science. In total, there were 221,363
results. Table 1 shows the results of primary search per database.

Because of rapid progress in the development of AI in early 2010s, previous studies, such as those carried out
before 2012, are often not as relevant as the more current research. Thus, these were excluded from the results.
Since the aim is to understand the state of academic research related to the topic, only peer-reviewed articles
were included [20]. The search with four ilters (document type, publication year, peer-reviewed and language)
performed in ive databases resulted in 49,333 papers. All the abstracts of the resulted papers were screened
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Fig. 1. SMS process based on Petersen et al. (2018)

Table 1. Results of primary search: 2012-2021

Database Total papers Filtered papers Selected papers

IEEE Xplore 5,132 2,437 861
ACM Digital Library 1,121 914 739

Scopus 58,081 19,822 3,326
ProQuest 132,410 13,457 1,038

Web of Science 24,619 12,703 1,084

Total 221,363 49,333 7,048

manually to exclude papers that were irrelevant to the study. The primary search was done irst in 2016 and
updated in 2019 and 2021. Manual screening was executed by the four irst authors. At this stage each paper was
screened once. To guarantee consistency between readers, if the reader was uncertain the paper was included.
The primary search resulted in 7,048 papers, which were combined into one data-set, and duplicates were deleted.
The remaining papers amounted to 4,411 that were left for closer review in the inclusion and exclusion process.

3.2 Inclusion and Exclusion

The second step of SMS is to examine the selected papers and ind the primary studies [37]. This process requires
deining a greater number of narrower inclusion criteria. The inclusion process is guided by the research goal
and desirable contribution [128]. The inclusion and exclusion criteria are presented in Figure 2.
The study’s aim is to map the relevant research area of the ethics of AI in the domain of information system

science. Hence, in this step only papers focusing on the ethics of AI [I1] were included. Because many papers were
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Fig. 2. Inclusion and exclusion criteria

included after the primary search, it was decided to include only the papers with full access [I5]. The inclusion
criteria from the primary search (year range [I2], academic peer-reviewed papers [I3], and language [I4]) were
cross-checked during the inclusion process. To guarantee the high academic quality of the included papers, only
white literature, peer-reviewed, papers were included [I6]. White literature refers to full papers published in
venues of high control and credibility, and it excludes pre-prints, technical reports, blogs, and other types of
publications that are referred to as grey and black literature [65].

In SMS studies, exclusion criteria may require excluding papers that only mention the main interest area in the
abstract. General concepts are often used in abstracts, even if the paper focuses on something else [130]. The irst
exclusion criterion [E1] is the exclusion of papers that do not contribute to AI ethics research and only mention
the potential ethical issues related to AI in the general introduction. Moreover, in this paper, the interest is in
practical AI implementation rather than a philosophical concern. Therefore, papers without empirical research,
were excluded from the study [E2]. In the inal screening, papers that did not focus on XAI or related topics were
excluded [E3].

The inclusion and exclusion criteria were established and deined during the screening process. The inclusion
criteria provided the general boundary and quality conditions, and the exclusion criteria gave more detailed
limitations to distinguish the sample relevant for this paper.

For the irst screening round, three quality inclusion rules were applied: language [I4]; access to full text [I5];
and suiciently used references as well as overall academic quality [I6]. This means that workshop, keynote,
panel, and paper presentations were excluded, along with short papers, tutorials and abstracts. In addition, papers
that did not focus on the ethics of AI were excluded [E1]. During the screening round, the quality of each paper
was validated. Papers that did not meet the academic peer-review standards, such as short papers, tutorials, and
panel/keynote/workshop presentations, were excluded from the study.
The included papers were clustered into two categories, theoretical and empirical, to separate the empirical

papers that were meaningful for this paper’s goal. The empirical papers were manually separated during the
screening, because this was considered the most reliable way to ensure the sample would include all the relevant
papers. The screening was executed by the irst four authors. Each paper was screened by one or two authors.
If the irst reader was uncertain the second opinion was provided. From the total of 2,192 papers that met the
inclusion criteria, 503 used empirical material. The theoretical papers consist of reports, opinions, philosophical
papers, problem descriptions, proposals, and academic literature reviews.
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Table 2. Excluded papers

Reason for exclusion Number of papers

Duplicate 2,637
Inadequate Academic Quality [I3, I6] 391

Not Fully Available [I5] 534
Language [I4] 21

Out of Scope [I1, E1] 1,279
Theoretical - No empirical data used [E2] 1,653

Not related to XAI [E3] 361

For the second screening, the papers were skimmed and scanned for keywords based on the focus area to
ind the papers connected to XAI. As described in the second section, XAI is a vague concept, and there is no
commonly agreed framework on what topics are considered should be included under the term. Thus, papers
focusing on responsible AI, algorithmic bias, or black box models were included to ensure the inclusion of all
relevant papers. The excluded papers are visualized in Table 2.

The primary studies (n = 142) included in the SMS are further classiied and analyzed in the next section. The
full sample of papers with empirical evidence (n = 503) was further reviewed to understand the overall ield of
AI ethics described in them. However, the analysis was done on a supericial level because a more thorough
investigation was outside the scope of this study.

3.3 Short analysis of AI ethics research field with empirical evidence

Future studies are required to understand the research area of AI ethics more comprehensively. Yet, this short
analysis gives suicient background to relect the role of XAI against the full sample of AI ethics research with
empirical evidence (n = 503). The empirical papers represent 23% of the whole sample of manually included
papers (n = 2,192). This inding forms the irst empirical contribution (EC).

• EC1: Most of the research papers in the ield of AI ethics do not use empirical evidence. Only 23% of the
papers provide empirical evidence.

The two following dimensions were observed within the entire sample: emerging themes and the year of
publication. The theme analysis was done during the keywording process described in the next section. A more
profound analysis would require a more systematic approach.
Since the research area is in its infancy, the year of publication can provide insight into the research area’s

growth. The papers published per year are visualized in Figure 3. The size of the bar presents the number of
papers published each year.

The visualization reveals signiicant growth starting from 2018. There is a clear correlation to public discussions,
with discourse on AI ethics growing signiicantly in media in 2018 [124]. This inding forms the second empirical
contribution.

• EC2: Empirical research on AI ethics grew signiicantly in 2018, corresponding with trends in public
discourse.

Based on the shallow categorization of the topics during the classiication, most papers focused on general
issues and challenges related to AI ethics. Some notable topics in the research ield were human-robot interaction
for both physical and virtual robots (focus in 77 of 503 papers), autonomous vehicles (58 of 503 papers), health
and care (54 of 503 papers), education (31 of 503 papers) and governance/regulation (28 of 503 papers). The papers
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Fig. 3. Annual changes in publication of empirical papers in AI ethics research area

related to XAI (n = 142) represent 28% of the full sample of empirical papers (n = 503). This inding forms the irst
primary empirical contribution (PEC).

• PEC1: XAI is a signiicant research focus in the study ield of AI Ethics. Of the empirical research papers
published after 2012, 28% are related to XAI.

Since the inclusion of XAI did not require the paper to have full dedication and focus on XAI, the number
of papers engaging with XAI is not comparable to other emerging themes. In addition, papers with partial and
marginal input to XAI were included if they contributed to the topic. No further examination was performed on
excluded papers.

4 CLASSIFICATION

Classiication uses a systematic process where the classiication schema evolves and is speciied during the
process [130]. The irst step, keywording, reduces the time required for building the classiication schema and
ensures that the classiication schema represents existing studies [130]. The process was initiated during the last
stage of the inclusion process and continued with the inal sample, the primary studies, (n = 142) during the
classiication. Next, the classiication schema, classiication results, and the overview of the primary studies are
presented.
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4.1 Classification schema

For the classiication schema, the papers were examined in terms of the four facets adopted from SMS of
Paternoster et al [128]. These facets were research, contribution, focus, and pertinence.
(1) Research facet. The research type is used to distinguish between diferent types of studies and chosen

research methodology. A research type proposal of a solution refers to papers proposing a novel solution technique
and arguing for its relevance, without full justiication. At best, such papers provide a narrow proof of concept.
Validation research papers investigate the properties of their or others’ proposals of solutions that are not
implemented in practice. The investigation is performed in a methodologically sound research setup. Philosophical
papers propose new conceptual frameworks and structures. Finally, experience papers describe the implementation
in practice, such as listing the lessons learned. The experience may be the author’s or that of the person studied
[185].

(2) Contribution facet. The aim is to identify the tangible contribution of the paper. This can be an operational
procedure for development or analysis to provide a a new and more efective way to do something, such as a design
framework. Alternatively, it can be a model representing the observed reality and structuring the problem area,
an implemented computational tool to solve a particular problem, or a speciic solution for a speciic application
problem. The contribution can also be a piece of generic advice with a less systematic approach than the model.
It often focuses on one example case and is more vaguely directive than the procedure is. The contribution facet
is based on Shawn’s [153] research.
(3) Focus facet. Keywording that was performed during the last screening round revealed focus themes that

were highlighted during the classiication process. The focus themes detected were algorithmic bias, or the
challenges with fairness because of biased and discriminative training data or model; black box, or the challenges
with non-transparent systems; and accountability, with papers studying when and how the accountability of a
non-transparent system is divided. Some papers focused on understanding the attitudes, expectations, and trust
toward non-transparent systems. These papers were categorized as attitude.

(4) Pertinence facet. The pertinence facet shows the level of relation to XAI, which is the research focus of this
paper. The levels are as follows: full, where XAI or transparency issues are the main focus of the paper; partial,
where the paper is partially related to XAI or transparency; and marginal, where the paper’s primary research
focus is out of transparency or XAI themes.
In all facets, the same paper can it into several categories. Here, in such situations, the best possible it was

chosen. The process was highly opinion-based, and the evaluation of one individual could impair the study’s
quality and liability. Classiication was done by the irst author and the classiication schema was presented and
evaluated by two reviewers to ensure the research quality.

4.2 Results of Classification

After the classiication schema was established, the actual data extraction took place, and the articles were sorted
into diferent classes. A signiicant portion of papers focused on biased algorithms. These papers were classiied
under the pertinence facet as łfullž if the papers focused on making the whole system more transparent. Papers
that focused on cleaning and ixing biased data-sets were classiied as having a łpartialž pertinence toward XAI.
They were considered to have a main focus that related more to data science. The pertinence facet helped clarify
whether the paper has a strong focus on XAI and transparency issues. Papers with a marginal focus on XAI were
seen to contribute to the topic even if the main focus was elsewhere, and therefore, they were kept in the sample.

After the classiication, the papers were calculated in their respective classes and visualized with the number
of papers in each facet’s class and the percentage of the class compared with the full sample (n = 142). This
highlights what has been emphasized in past research, revealing potential research gaps and possibilities for
future research [130]. The classiication results are presented in Table 3.
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Table 3. Results of classification

Research Facet N Percentage

Proposal 83 58.5
Philosophical 24 16.9
Experience 21 14.8
Validation 14 9.9

Contribution Facet N Percentage

Tool 44 31.0
Model 36 25.4

Procedure 31 21.8
Speciic Solution 18 12.7

Advice 13 9.2

Focus Facet N Percentage

Bias 65 45.8
Attitudes 40 28.2
Black Box 31 21.8

Accountability 6 4.2

Pertinence Facet N Percentage

Full 62 43.7
Partial 59 41.5

Marginal 21 14.8

In the research facet, the proposal class was signiicantly emphasized, with 59% of the studies proposing a
technical, mathematical, or design solution. The main contribution classes were tools (computational solutions to
a particular problem) and models (structuring the problem area). Many papers proposing a new computational
tool suggested a new algorithm or mathematical solution.

Many papers focused on biased algorithms (46%). Papers where the main focus was to understand developers’
and users’ expectations, attitudes, and trust toward XAI systems represented 28% of the whole sample. From the
attitudes category, only 14 papers (10% of the sample) focused on practitioners’ expectations and opinions, and
the remaining 26 papers focused on understanding how the general public sees the issue.

In addition to classiication, the papers were clustered based on the publication venue (journal/conference) and
type of data used (real-life or synthetic). Most papers, representing 99 papers (69%), were published at conferences.
Only 10 papers (7%) used synthetic data, which indicates that the research on XAI is closely connected to real-life
issues.

The overview of the primary studies (n = 142) in light of the the classiication results is presented in Appendices.
All the papers are found in the reference list at the end of this paper. In the next section, the classiied data are
analyzed and visualized. The analysis aims to elucidate the study ield of XAI and its role in AI ethics research.

5 SYSTEMATIC MAP

There are several ways to visualize the results of an SMS. The two most common approaches are bar plots and
bubble plots [131]. Bubble plot visualization is exceptionally well-suited to illustrating the number of studies for
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a combination of categorizations [131]. Because the classiication schema applied in this study includes several
categories, the bubble diagrams were built to visualize the number of papers in diferent classes and investigate
correlations between them. Since there were four main facets in the classiication schema, it was necessary to
create several diagrams to avoid over-complicating the view. Diferent types of visualizations were constructed
based on the area of inspection. In the next sections, the results of the classiication schema, pertinence, impact,
annual change, and the venue of the study ield are visualized and analyzed.

5.1 Systematic Map in the Bubble Plot Visualization

A bubble plot diagram helps to give a quick overview of the research ield and support the analysis more efectively
than the frequency tables [130]. Here, the bubble plot diagram was built using summary statistics presented
above previous section (Table 3). The diagram visualizes the frequencies and correlations between categories and
facets. The bubble plot diagram comprises two x-y scatterplots with bubbles in category intersections. The same
idea is used twice, on opposite sides of the same diagram, to show the intersection with the third facet on the
x-axis [130].

In the irst bubble plot, the contribution and research facets are compared to the focus facet. The size of a
bubble indicates the number of papers that are at the intersection of the coordinates. Next to a bubble, there is the
percentage of the total amount (n = 142) in the represented category of the x-axis. The bubble plot is presented in
Figure 4.

Fig. 4. Visualization of a systematic map in the form of a bubble plot

The bubble plot diagram shows the emphasis on focus facets in each of the research and contribution facets.
The bubble plot reveals that the most signiicant emphasis of the research facet is in proposals solving algorithmic
biases.

• EC3: The most popular paper type in the research facet is a proposal for solving algorithmic bias.

In addition, the proposals for black box issues are highlighted. Proposal research studies new and novel
techniques to solve a particular issue. When compared to validation research, which studies a speciic solution
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that has already been implemented in practice, the size of the proposals bubble is much larger, which indicates
the research ield’s freshness. It may be that there are few proper practical solutions to ix the ethical issues
related to XAI, these solutions are not yet implemented in practice, or the practical implementation has not yet
been studied. The scarcity in the validation research is probably partly due to all the reasons mentioned above.

• PEC2: In the study ield of Ethical XAI, the most common type of empirical research is studying a novel
technique that can solve a computational challenge.

From the contribution facet, the largest bubble can be found at the intersection of bias and tools. Nearly one
fourth, 23% (32 papers) of the whole sample contributes to the research ield with a computational solution to
solve algorithmic biases. A computational tool to solve black box issues was proposed in 12 papers.

• EC4: Almost one-quarter of the papers in the sample contribute to the research ield with a computational
solution to solve algorithmic biases.

In the contribution facet, the second-largest bubble (21 papers) can be found at the intersection of the attitude
facet and the model facet. The bubble visualizes how the research ield is modeled and structured by providing a
better understanding of users and practitioners. Procedures, contributing by proposing a new way to solve such
issues as design frameworks, are equally interesting in each focus facet when compared with the amount papers
categorized per focus facet.

• EC5: Half of papers interested in users’ and practitioners’ attitudes and perceptions related to XAI and AI
ethics are contributing by modeling and structuring the research area.

There is no strong weighting on any of the contribution types in the black box’s focus facet. In the bias category
there is an apparent weighting in the contribution of computational tools, and in the attitudes category there
is weighting placed on modeling the problem area. From 32 papers that focus on bias and contribute with a
computational tool, 30 papers (20% of the whole sample) have a research facet proposal. This is the most prevalent
type of paper in the present study.

• EC6: The most prevalent paper type is that of a computational tool proposing a solution to a problem with
bias. Every ifth paper presents this type of research.

From the bubble plot visualization, it can be concluded that the most common type of paper is a computational
tool proposing to solve problems with biases, and in general, most papers look for novel techniques and solutions
to computational problems. The results may indicate that the focus is slightly monotonous. Papers concerning
black boxes, accountability, or attitudes are more dispersed, with the exception of the strong emphasis on
proposals as a research type in the black box papers. In addition, the results indicate immaturity in the research
ield.

• EC7: The research ield seems to be somewhat monotonous and immature when considering the variety of
topics, research methods used, and contributions of the papers.

5.2 Pertinence Mapped in a Bubble Plot

Since the pertinence indicates the accuracy in the XAI topic, pertinence was visualized with a bubble plot
corresponding to the focus and research facets. The bubble plot visualization in Figure 5 aims to understand
which focus areas and types of research have full pertinence on XAI and transparency-related topics, and in
which focus areas the pertinence remains elsewhere.

Out of the papers focusing on algorithmic biases, 44% had full focus in XAI. Many of the papers with partial
focus had the main emphasis on cleaning data and ixing the data-sets that are causing the discriminating and
unfair decisions. These papers were considered to have their main pertinence in data science and fairness rather
than in XAI. Not surprisingly, most of the papers (26 out of 31 papers) focusing on the black box were categorized
to have full focus on XAI. The black box is one of the core concepts in XAI research [2].
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Fig. 5. Pertinence of the focus and research facets

• EC8: From the papers focusing on black box (n = 31) 84% had full pertinence on XAI.

In the results, 43% of papers with full pertinence were proposals of a novel solution. This again relects the
freshness of the research ield, and it may indicate that the research done in the ield is solution-oriented.

• EC9: The research ield of XAI seems to be solution-oriented, and the research corpus with empirical
evidence focuses more on inding solutions than exploring challenges.

Interestingly, only six papers with the main focus on attitudes and expectations of practitioners, users, and the
public had full pertinence toward XAI. The results indicate a research gap in understanding people’s perceptions
of the topic. Similarly, papers with experience as a research focus had mainly partial or marginal focus on XAI.

• PEC3: The human perspective toward XAI is not well known. There is no in-depth understanding of the
practitioners’ and users’ expectations and attitudes toward XAI.

It could be assumed that in research on XAI in AI ethics, there is a lack of understanding of the issues related
to users’ and practitioners’ attitudes. Only four papers [41, 170, 171, 182] studied the current state of industrial
implementation of AI ethics in general, and none of these had full pertinence to XAI. No paper studied the
managerial or business perspectives of XAI.

• PEC4: Industrial implementation of XAI is not yet profoundly studied in the research ield of AI ethics.
There is a research gap in the managerial perspective and the business implications of XAI.

In total, only six papers presented a main focus on accountability. Although accountability was mentioned in
several papers, it is interesting that it has not been more profoundly studied. Only one of the papers [138] had
full pertinence toward XAI, and the rest related to AI ethics more generally. There seems to be a research gap in
terms of understanding who takes responsibility and how this is decided if biased or non-transparent systems are
not working as expected.

• EC10: There is a research gap in understanding who is responsible for the actions of non-transparent
systems and how the responsibility is decided and communicated.

ACM Trans. Interact. Intell. Syst.



18 • Vainio-Pekka and Agbese, et al.

In conclusion, the pertinence was strongest in black box research, and it was strongly present in the bias
category. The attitudes category had a relatively weak connection to XAI. This indicates a need to understand
better how people, including practitioners, businesses, and the public, perceive XAI.

5.3 Visualization of Annual Changes in the Research Field

The year range for the SMS described in this paper was 2012ś2021, but none of the papers from 2012ś2016 were
included in the study after the inclusion and exclusion processes were implemented. One paper from 2017, 16
papers from 2018, 40 papers from 2019, 52 papers 2020, and 33 papers from 2021 were included. Notably, the
primary search was performed during September to December 2021. Hence, the record for 2021 is incomplete.

• EC11: XAI is a young but growing empirical research area in the ield of AI ethics.

The growth of the research area seems to be stabilizing. From empirical papers (visualized in section 3.3, Figure
3) published in 2019 (n = 93), 43% were connected to XAI; among those published in 2020 (n = 167), 31% (52
papers) were connected to XAI. Among empirical papers published in 2021 (n = 170), only 19% were related to
XAI. This could be due to the faster growth of other research interests in the ield of AI ethics or separation
related to individual research agendas that were not so tightly connected to AI ethics. However, this study is only
focused on XAI papers that are related to the research interest of AI ethics.

• EC12: The research interest in XAI compared with all published empirical papers on AI ethics was highest
in 2019. Since then, the interest in XAI has grown yearly but not as rapidly as the empirical research on AI
ethics has in general.

To visualize the annual changes in the research ield, Figure 6 shows the annual changes and evolution in the
contribution and research facets. The motivation for generating bubble plots was to detect trends in the research
ield. Although, as the research ield is still emerging, the trends might only be seasonal changes. Moreover,
because the year 2021 cannot be evaluated entirely, the results per year are not fully comparable.

Fig. 6. Annual changes in the research and contribution facets

ACM Trans. Interact. Intell. Syst.



The Role of Explainable AI in the Research Field of AI Ethics • 19

The bubble plot reveals that the proposal has been the most popular category from the research facet every
year. Experience and validation papers seem to be growing in popularity as the research ield matures. Simultane-
ously, the number of philosophical papers is decreasing. The research trend seems to be toward more practical
understandings and less philosophical framing, as well as structuring of the focus area.

• EC13: The trend is toward more practical implications and less philosophical framing of the focus area.

In the contribution facet, the division between categories is more even. The strongest growth is in procedures,
which are proposals for better ways of doing something. Interestingly, discussions on tools and computational
solutions showed a decreasing trend in 2020 and 2021. This could indicate that the research ield is evolving to
become more holistic and not as intensely focused on inding technical solutions. Moreover, the growth in speciic
solutions could indicate that the computational tools are proposed to ix speciic application issues. However,
more research is required to verify this conclusion.

• EC14: The research contribution and interest seems to be shifting from proposing general computational
solutions to proposing more holistic design/framework level solutions and tools for speciic application
issues.

Another interesting observation is that advice papers seem to be decreasing in prevalence as the research ield
is maturing. This might be connected to the same trend to move from general advises to more application or
problem speciic solutions.

5.4 Venue and focus of the research

The research venue was studied to understand the quality and depth of the research area. All the papers were
published either in conferences or journals. The papers published in journals should include the most mature
research [86]. In addition, a higher degree of empirical evidence is expected from papers published in journals
than from the conference of workshop proceedings [86].
As mentioned above, most papers were conference proceedings, representing 99 papers (69.7%). The most

popular venue was the AAAI/ACM Conference on AI, Ethics, and Society (AIES). Thirty-nine papers (28%) of the
total sample (n = 142) were published in AIES.

• EC15: The most popular publication venue is AIES, with 28% of papers published in it.

The annual variation of the publication venue and focus facet is visualized in Figure 7 with a view to elucidating
how the research area has been evolving.

Interestingly, in 2021 almost as many papers were published in journals as in conferences, but since the primary
search was performed during late 2021, the incomplete nature of the data may have afected the result. The
division between conference proceedings and journals since 2020 seems as expected, that conferences are the
main publication venues in information systems. The growth in interest in publishing in journals could indicate
a shift in the depth of the research.

• EC16: Nearly similar numbers of papers were published in journals and conferences during 2021.

No signiicant trends can be detected from annual changes in the research focus. The research focusing on
black boxes seemed to gain in popularity, whereas the research with the main focus on biases seemed to decrease
in popularity. The number of papers focusing on attitudes seemed to grow relatively steadily. From the attitude
papers, the annual division of papers focusing on understanding the developers and practitioners was as follows:
one paper in 2018, two papers in 2019, six papers in 2020, and four papers in 2021. Understanding the expectations,
needs, and opinions of practitioners seems to be a slowly growing trend. This could indicate that the research
ield is increasingly interested in practical implementation.

• EC17: There is a growing interest in practical implementation and understanding of the needs and expecta-
tions of users and practitioners.
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Fig. 7. Annual changes in publication venue and focus facet

Out of 43 papers published in journals, 18 focused on attitudes. This is a large proportion of attitude papers,
reaching 45% (n = 40). Since the rigor in journal publications is higher than that of conference papers [86], this
indicates that although the ield lacks a plurality of studies on humans’ role and attitudes, the quality of this type
of research is high.

• EC18: The studies on the role and expectations of users and practitioners represent high-quality research.

This relection may be explained according to the type of data used in the research. User research usually
requires more time-consuming research methods. Therefore, the originality and quality of the evidence are higher,
which its better with the publication criteria of journals. This can be compared to the black box papers, where
26% (8 papers) were published in journals, and the bias papers, where 23% (15 papers) were published in journals.

5.5 Analysis of connection to real-world problems

To understand whether the study ield focuses on real-world problems, the papers were evaluated based on the
use of real-world data versus synthetic data. As mentioned at the end of section four, only 7% of papers (10
papers) used synthetic data. In addition, most of the papers described the connected real-world challenges in the
introduction and background sections. Overall, the research ield is close to real-world problems.

• PEC5: XAI researchers are interested in real-world problems and applications, not only technical aspects of
the topic.
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If the ield of XAI research had been studied independently without the association of AI ethics, the connection
to real-world problems may have been diferent.

5.6 Summary of empirical contributions

Next, we summarize the empirical contributions and primary empirical contributions of this paper. The paper’s
main theoretical contribution is to map the research area, which supports future research by framing and
visualizing the existing research. The secondary contribution comprises the PECs derived from the maps. The
PECs are supplemented with ECs. ECs that were highlighted from the text body in previous sections are listed
below.

• EC1: Most of the research papers in the ield of AI ethics do not use empirical evidence. Only 23% of the
papers provide empirical evidence.

• EC2: Empirical research on AI ethics grew signiicantly in 2018, corresponding with trends in public
discourse.

• EC3: The most popular paper type in the research facet is a proposal for solving algorithmic bias.
• EC4: Almost one-fourth of the papers in the whole sample contribute to the research ield with a computa-
tional solution to solve algorithmic biases.

• EC5: Half of the papers interested in users’ and practitioners’ attitudes and perceptions related to XAI and
AI ethics are contributing by modeling and structuring the research area.

• EC6: The most prevalent paper type is a computational tool proposing a solution to a problem with bias.
Every ifth paper presents this type of research.

• EC7: The research ield seems a bit monotonous and immature when considering the variety of topics,
research methods used, and contributions of the papers.

• EC8: Out of the papers focusing on black box (n = 31) 84% had full pertinence on XAI.
• EC9: The research ield of XAI seems to be solution-oriented, and the research corpus with empirical
evidences focuses more on inding solutions than exploring challenges.

• EC10: There is a research gap in understanding who is responsible for the actions of non-transparent
systems and how the responsibility is decided and communicated.

• EC11: XAI is a young but growing empirical research area in the ield of AI ethics.
• EC12: The research interest in XAI compared with all published empirical papers on AI ethics was highest
in 2019. Since then, the interest in XAI has grown yearly but not as rapidly as the empirical research on AI
ethics in general has.

• EC13: The trend is toward more practical implications and less philosophical framing of the focus area.
• EC14: The research contribution and interest seems to be shifting from proposing general computational
solutions to proposing more holistic design/framework level solutions and tools for speciic application
issues.

• EC15: The most popular publication venue is AIES, with 28% of papers published in it.
• EC16: Fairly similar numbers of papers were published in journals and conferences during 2021.
• EC17: There is a growing interest in practical implementation and understanding the needs and expectations
of users and practitioners.

• EC18: Studies on the role and expectations of users and practitioners represent high-quality research.

The primary empirical contributions are listed below. In previous sections, the primary empirical contributions
were listed from the text body to bring them to the reader’s attention and ensure easy accessibility when skimming
the paper. Primary empirical contributions are written in a context-enriched manner to support the understanding
of readers who are not familiar with the full paper.
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• PEC1: XAI is a signiicant research focus on the study ield of AI ethics. Of the empirical research papers
published after 2012, 28% are related to XAI.

• PEC2: In the study ield of Ethical XAI, the most common type of empirical research is studying a novel
technique that can solve a computational challenge.

• PEC3: The human perspective toward XAI is not well known. There is no in-depth understanding of the
practitioners’ and users’ expectations and attitudes toward XAI.

• PEC4: Industrial implementation of XAI is not yet profoundly studied in the research ield of AI ethics.
There is a research gap in the managerial perspective and the business implications of XAI.

• PEC5: XAI researchers are interested in real-world problems and applications, not only technical aspects of
the topic.

Theoretical and practical implications of the primary empirical contributions are evaluated next.

6 DISCUSSION

This section lists the proposals for the theoretical and practical implications of the PECs, which were the SMS
process outcomes. In theoretical implications, PECs are relected against the existing research. The practical
implications are proposals and ideas for how the conclusions could be implemented in practice. The limitations
of the research are discussed at the end of the section.

6.1 Theoretical Implications

The main theoretical implication of this paper is the mapping of the research area presented in section 5. The key
outcomes of the analysis of the mapping process are in this section mirrored existing research. PECs are mirrored
to the existing research and evaluated if they contradict or correspond to the existing research or provide a
novel perspective. As the focus of this paper is to understand the research area’s scope and depth, rather than
the quality of the articles, the primary empirical contributions are related to those factors. The summary of the
results is presented in Figure 8.

Fig. 8. Theoretical implications
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A signiicant proportion of papers related to XAI in the empirical research of AI ethics (PEC1) corresponds to
the research of Jobin et al. [89], who noted that the transparency is the most frequently highlighted principle in
AI ethics. Besides, the result relects the overall importance and interest of XAI. At the same time, it illustrates
XAI’s connection to real-world problems as it is studied with empirical methods.

The interest in proposing novel computational solutions (PEC2) shows the freshness in the ield without
practical results to validate. The research area of AI ethics holds interest in inding technical solutions to ethical
problems [34], which correlates with a broader perspective. To our knowledge, there is no previous research that
has analyzed the type of research done in the ield, so the relation to existing research may be shallow.
Previous research has shown that the human role and perspective are understudied subjects, both from the

user’s and practitioner’s point of view [2, 45, 57, 58]. The same inding was evident in this SMS (PEC3). Concerning
the lack of research on users’ and practitioners’ expectations, there was a more speciic gap with the lack of
research on XAI’s industrial implementation (PEC4). Vakkuri et al. [171] pointed out an analogous dilemma with
AI ethics. Their research is one of the few papers cited in this SMS that aims to understand the current state of
the practical implementation of ethical principles.

Unlike black box problems where the research ield is distanced from real-world problems [139], XAI makes a
strong contribution to addressing real-world problems (PEC5). The vast majority of the papers focusing on black
boxes used real-world data in their research. In addition, in most of the papers, societal issues were highlighted
in background sections or introductions.
This paper has brought some novel perspectives to the research area, contributed to existing research, and

contradicted some prior perspectives. It is important to remember that in SMS, the papers are not studied as
profoundly as they are in SLR. To form a more in depth conclusion, the research should be continued with SLR,
which could provide new insights.

6.2 Practical Implications

Some of the PECs only had a clear practical contribution. Hence, they are not analyzed by their relevance to
practitioners. The research ield has a close connection to real-world problems (PEC5). The research provides
knowledge and perspective to regulators and communicators by contributing to the ield and tying the research
to societal issues. For practitioners looking for speciic solutions, the research area ofers open-source models
tested with real-world data that practitioners can bench-mark and modify to it their needs (PEC2 and PEC5).
There are many practical solutions and models built in academia; hence, the collaboration potential between
academia and practitioners is signiicant (PEC2).
In contrast to the above points, since the research ield is new and emerging, a shortage of practical imple-

mentation is recognizable (PEC3 and PEC4). There is no guarantee that the research area’s solution proposals
have the potential to serve practitioners and users and ever be implemented into practice (PEC3). The current
practical implementation level of XAI solutions is unknown, as well as the expectations or interest of business
decision makers. If decision-makers do not understand the need for XAI, the practical implementation of XAI in
businesses is not likely to happen on a bigger scale (PEC4). The summary of results is presented in Figure 9.
In conclusion, the analysis of practical implementation revealed the potential of even closer collaboration

between practitioners and academia. At the same time, the research gap when it comes to understanding the
perspectives of practitioners, users, or business decision makers can harm the practical implementation of XAI
solutions. Overall, more research is required in order to advance knowledge and further develop the ield.

6.3 Limitations of the research

A common bias that systematic reviews sufer from is that positive outcomes are more likely to be published
compared to negative ones [20]. Especially in the corpus of empirical research, this may lead to a lack of validation
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Fig. 9. Practical implications

studies and leave out solutions that were not working as expected. The inclusion of conference proceedings is
one solution to avoid publication bias [20]. Thus, bias should be decreased in this paper.
The framing of the research question posed limitations to this study. Since the focus of the paper was to

understand the research ield of AI ethics and the role of XAI in the ield, the mapping undertaken for the present
paper provided this speciic viewpoint. However, this viewpoint has its challenges because the deinition excludes
all research papers with a focus on AI’s interpretability without a clearly visible relation to ethical concerns.
Due to the variety of vocabulary used in these research topics, there is also uncertainty as to how accurately

the used search keywords relect the underlying research area. As the keywords were limited to ethics and its
synonyms, and AI, and its synonyms, there is a chance that key papers have been missed. These papers may be
relevant, yet if there was no mention of AI and ethics in the abstract, the papers were not included. Thus, it is
important to note that for the primary search, the keywords could have been expanded to include responsible AI
related concepts and principles such as transparency and accountability.
There could have also been a larger scope of technology-centered terminology included in the search, for

example, computer ethics, but while we have observed that Computer ethics and AI ethics are related ields, they
are still distinct from one another. Computer ethics is a branch of applied ethics that focuses on the ethical issues
related to computer technology. It encompasses a wide range of issues, including privacy, security, intellectual
property, access to information, and the impact of computer technology on society [38]. AI ethics, on the other
hand, is a more speciic ield that focuses on the ethical issues arising from the development and use of artiicial
intelligence (AI) systems [89]. While both ields are concerned with ethical issues related to technology, AI ethics
is a narrower and more specialized ield, focusing speciically on the unique ethical challenges presented by AI
systems.
We chose to scope our research to a 10-year period. There are some potential limitations that may arise. By

leaving out research done prior to 2012, the study may miss historical events and developments that have shaped
the research ield, which may lead to an incomplete understanding of the ield’s evolution. We acknowledge that
our study may lack historical context but our focus was on recent trends and developments. It is possible that
a 10-year period may not be enough to fully cover all the topics and issues in the ield potentially leading to a
narrow or incomplete analysis. Also, the indings may not be generalizable to the entire AI ethics ield. For these
reasons, we narrowed down the scope to the role of XAI in the AI ethics research ield, to gain a more detailed
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view on the state of this sub-ield in question. Through doing this, we found that the oldest papers added to
the inal sample were from 2017. Hence, leaving out research done prior to 2012 is justiied as it is unlikely to
signiicantly afect the inal sample.
During the primary search, some limitations were faced with the databases. Each database was screened,

starting from the oldest papers, to track its potential changes during the screening process. However, with
the larger databases of Scopus, Web of Science, and ProQuest, the number of hits varied between searches.
Because of these problems, there is a chance that not all relevant papers were included. However, since all three
multi-disciplinary databases were included in the study, it reduces the possibility that any relevant paper was
missed.
After the primary search, the sample size (N = 4,411) was larger than expected, which limited the amount of

attention dedicated to each paper during the screening and inclusion process. In other SMS studies, the initial
take-in from separate databases has been signiicantly lower, for example 1,062 papers [168], 1,769 papers [128],
and 2,081 papers [27]. Due to the large sample, the literature search and inclusion processes were conducted
mostly by one reviewer per paper. Thus, there is a chance for human error and false classiication during the
screening process. To ensure better quality, if the reviewer felt uncertain about a paper, the paper was tagged, and
another reviewer provided a second opinion. The papers included after each inclusion phase were re-evaluated
during the following phases. However, the papers excluded during the early inclusion were not further evaluated,
increasing the possibility that a suitable paper would be missing from the inal study because of manual labeling
failure.

7 FUTURE RESEARCH

There is potential to continue the SMS with the collected data-set to gain a more in-depth understanding of
the AI ethics research ield. The literature search and inclusion process were performed with clear guidelines,
disciplinary following a stringent search process, which enables future use of the research material [94]. One
potential research direction is to use the collected data-set with empirical evidence (n = 503) to observe other
emerging themes in the research ield of AI ethics, such as health, education or regulation. In the future, the
results could be extended by expanding the data-set via adding new keywords in the primary search. Closely
connected terms such as transparency and responsibility would provide deeper insight on the ethical perspective.
The SMS revealed research gaps in the existing corpus. There is a need to study how humans perceive XAI,

and what they are expecting from XAI systems, or whether they even value them at all. That knowledge could
guide the research area to search for solutions that are needed. Cross-disciplinary research between computer
scientists and humanists could continue to provide exciting insights to the ield, as already demonstrated in
research on the human perspective in AI (eg. [114]).
There is a shortage of understanding regarding users’ and practitioners’ expectations, needs, and attitudes

toward XAI, and there was no research on the managerial perspective of XAI identiied. A more profound
understanding of the current implementation level is needed to ensure that the research has value for practitioners
and business decision makers. The research area would beneit from a more advanced understanding of industrial
implementation of and especially the managerial perspective on transparent systems in companies using AI
solutions. Top managers are the inal decision-makers, and they are accountable for their products’ actions.
Moreover, they are the gatekeepers of funding for development. To ensure the solutions proposed in papers are
implemented in practice, it is necessary to understand what business decision makers want and where they are
ready to invest.
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8 CONCLUSION

In this paper, the SMS method was utilized to visualize how XAI is researched in the ield of AI ethics. SMS was
chosen to provide a broader perspective on AI ethics, elucidate the research area in a more profound way, and
clarify the role of XAI in the research area. There is potential to continue the SMS compiled in this paper to gain
a more in-depth understanding of the AI ethics research ield or other emerging topics in the research area.

The expected indings included mapping of the covered topic and analysis of when, how, and why the research
was done to reveal potential research gaps. The research question was, "What is the role of XAI in the research
ield of AI ethics?" and the three following sub-questions were identiied:

R1 What has been empirically researched in the ield of AI ethics?
R2 What is the state of published research on XAI in the ield of AI ethics in the past 10 years?
R3 Where are the research gaps in the ield?

The main interest behind this paper was XAI’s practical implications. Hence, the research was narrowed to
empirical papers.

A quick analysis of the dataset of empirical research in AI ethics (n = 503) revealed that overall, the AI ethics
research is rather theoretical, as only 23% of manually included papers (n = 2,192) used empirical evidence.
Empirical research grew signiicantly in 2018. Since 2018, the empirical research has kept on growing each year.
Similarly, the research focus in XAI grew signiicantly in 2018 and has kept growing ever since. The interest in
XAI is a signiicant area in AI ethics research with empirical evidence, as 28% of the papers (n = 503) contributed
to issues related to XAI.
In terms of its current state, XAI is a growing research area that is close to real-world problems. Most of the

papers were more concerned with the technical or design perspective of the problem compared to the practical
challenges in implementation. This indicates that XAI is still mainly interpreted as an academic challenge. The
ield would beneit from a more robust understanding of the needs, expectations and attitudes of users and
practitioners. Future research is required to understand how XAI is perceived by business decision-makers. This
could help to take research indings and solutions to practice.
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Table 4. Overview of primary studies part 1

1st Author Research Contribution Focus Pertinence

Caliskan et al (2017) [39] Proposal Model Bias Partial
Babu et al (2018) [21] Proposal Tool Bias Partial

Calmon et al (2018) [40] Proposal Tool Bias Partial
Dixon et al (2018) [52] Proposal Tool Bias Full
Ehsan et al (2018) [55] Proposal Tool Black Box Full
Flexer et al (2018) [59] Validation Model Bias Full

Grgić-Hlača et al (2018) a [70] Proposal Procedure Bias Full
Grgić-Hlača et al (2018) b [69]e Experience Model Attitudes (users) Partial
Henderson et al (2018) [78] Philosophical Model Bias Partial

Iyer et al (2018) [87] Proposal Tool Black Box Full
Raf et al (2018) [135] Proposal Tool Bias Full
Shank et al (2018) [150] Philosophical Model Attitudes (users) Marginal

Srivastava et al (2018) [161] Proposal Procedure Bias Full
Veale et al (2018) [176] Experience Model Attitudes (practitioners) Full
Yang et al (2018) [192] Proposal Tool Bias Full
Zhang et al (2018) [196] Proposal Tool Bias Full
Zhou et al (2018) [199] Philosophical Model Attitudes (users) Marginal

Abeywickrama et al (2019) [1] Proposal Procedure Accountability Partial
Addis et al (2019) [4] Experience Advice Attitudes (practitioners) Full

Aïvodji et al (2019) [16] Proposal Tool Black Box Full
Ali et al (2019) [8] Proposal Tool Bias Full

Amini et al (2019) [12] Proposal Tool Bias Partial
Barn (2019) [25] Philosophical Model Attitudes (users) Marginal

Beutel et al (2019) [28] Proposal Tool Bias Partial
Bremner et al (2019) [33] Proposal Tool Black Box Partial
Brunk et al (2019) [35] Proposal Model Black Box Full
Cardoso et al (2019) [97] Proposal Tool Bias Full
Celis et al (2019) [43] Validation Model Bias Partial
Coston et al (2019) [47] Proposal Tool Bias Full
Crockett et al (2019) [48] Philosophical Model Attitudes (users) Partial
Garg et al (2019) [64] Proposal Tool Bias Partial
Goel et al (2019) [67] Proposal Tool Bias Partial
Green et al (2019) [68] Philosophical Advice Attitudes (users) Marginal
Heidari et al (2019) [76] Philosophical Advice Bias Partial
Hind et al (2019) [81] Proposal Procedure Black Box Full
Kim et al (2019) [93] Proposal Tool Black Box Full
Lai et al (2019) [98] Philosophical Model Attitudes (users) Partial

Lakkaraju et al (2019) [100] Proposal Procedure Black Box Full
Lux et al (2019) [108] Proposal Tool Bias Full

Mitchell et al (2019) [116] Proposal Procedure Bias Full
Noriega-Campero et al (2019) [119] Proposal Tool Bias Full

Radovanović et al (2019) [133] Proposal Speciic solution Bias Partial
Raji et al (2019) [136] Validation Tool Bias Full
Rubel et al (2019) [138] Philosophical Model Accountability Full
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Table 5. Overview of primary studies part 2

1st Author Research Contribution Focus Pertinence

Saxena et al (2019) [142] Philosophical Advice Attitudes (users) Marginal
Sivill (2019) [158] Philosophical Advice Bias Partial

Srinivasan et al (2019) [160] Proposal Tool Bias Partial
Teso et al (2019) [164] Proposal Procedure Black Box Full
Ustun et al (2019) [167] Proposal Tool Bias Partial
Vakkuri et al (2019) [169] Experience Procedure Attitudes (practitioners) Marginal

Vanderelst et al (2019) [174] Philosophical Advice Attitudes (users) Marginal
Vetrò et al (2019) [178] Philosophical Advice Bias Partial
Wang et al (2019) [182] Experience Model Attitudes (practitioners) Marginal
Webb et al (2019) [183] Philosophical Model Attitudes (users) Full
Wolf et al (2019) [188] Proposal Model Black Box Full

Wouters et al (2019) [189] Experience Model Attitudes (users) Partial
Yilmaz et al (2019) [193] Proposal Tool Black Box Full
Adams et al (2020) [3] Proposal Tool Black Box Full
Alonso et al (2020) [9] Validation Tool Black Box Full
Asatiani et al (2020) [15] Proposal Model Black Box Full
Aysolmaz et al (2020) [19] Experience Procedure Bias Full

Balachander et al (2020) [22] Proposal Speciic solution Black Box Full
Balasubramaniam et al (2020) [23] Experience Model Attitudes (practitioners) Partial

Belavadi et al (2020) [26] Proposal Tool Bias Partial
Bowyer et al (2020) [30] Validation Speciic solution Bias Partial
Brandão et al (2020) [31] Proposal Procedure Bias Full

Chakraborty et al (2020) [44] Proposal Tool Bias Full
Chen et al (2020) [46] Proposal Tool Bias Full
Clavell et al (2020) [63] Experience Tool Bias Full
Cortés et al (2020) [49] Proposal Procedure Bias Full
Dexe et al (2020) [51] Validation Procedure Attitudes (practitioners) Partial
Hafar et al (2020) [72] Proposal Tool Black Box Full
He et al (2020) [75] Proposal Tool Bias Full

Helberger et al (2020) [77] Philosophical Model Attitudes (users) Partial
Hong et al (2020) [84] Philosophical Model Attitudes (users) Partial
Jo et al (2020) [88] Experience Procedure Bias Marginal

Karpati et al (2020) [90] Philosophical Advice Black Box Full
Kouvela et al (2020) [95] Proposal Speciic solution Black Box Partial
Lakkaraju et al (2020) [99] Proposal Procedure Black Box Full
Leavy et al (2020) [102] Proposal Tool Bias Partial
Loi et al (2020) [105] Validation Procedure Accountability Marginal

Lonjarret et al (2020) [107] Proposal Tool Black Box Full
Madaio et al (2020) [109] Experience Model Attitudes (practitioners) Marginal

McDonald et al (2020) [112] Philosophical Advice Attitudes (users) Partial
Mitchell et al (2020) [115] Proposal Procedure Bias Partial

Nirav et al (2020) [6] Philosophical Procedure Attitudes (users) Marginal
Oppold et al (2020) [121] Proposal Procedure Bias Partial
Orr et al (2020) [122] Experience Model Attitudes (practitioners) Partial

Paraschakis et al (2020) [126] Proposal Speciic solution Bias Partial
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Table 6. Overview of primary studies part 3

1st Author Research Contribution Focus Pertinence

Park et al (2020) [127] Proposal Speciic solution Bias Full
Percy et al (2020) [129] Proposal Speciic solution Bias Partial

Radovanović et al (2020) [134] Proposal Tool Bias Full
Schelenz et al (2020) [143] Proposal Speciic solution Attitudes (users) Marginal
Schelter et al (2020) [144] Proposal Procedure Bias Partial
Seizov et al (2020) [147] Experience Model Attitudes (users) Partial
Sendak et al (2020) [148] Philosophical Model Black Box Full
Sharma et al (2020) [151] Proposal Procedure Black Box Full

Sharma, Zhang et al (2020) [152] Proposal Tool Bias Partial
Shi et al (2020) [154] Validation Speciic solution Bias Partial

Shulman et al (2020) [156] Proposal Tool Black Box Full
Slack et al (2020) [159] Proposal Procedure Black Box Full

Srivastava et al (2020) [162] Proposal Speciic solution Attitudes (users) Marginal
Sun et al (2020) Proposal Model Bias Partial

Vakkuri et al (2020) a [171] Experience Model Attitudes (practitioners) Partial
Vakkuri et al (2020) b [170] Experience Model Attitudes (practitioners) Partial
van Berkel et al (2020) [172] Philosophical Advice Attitudes (users) Partial
Wilson et al (2020) [186] Experience Model Black Box Marginal

Zhang, W. et al (2020) [197] Proposal Tool Bias Full
Zhang, X. et al (2020) [198] Experience Procedure Bias Partial

Albach et al (2021) [7] Philosophical Advice Attitudes (users) Partial
Bandi et al (2021) [24] Proposal Speciic solution Attitudes (users) Marginal

Camacho et al (2021) [41] Experience Advice Attitudes (practitioners) Partial
Gencoglu (2021) [66] Proposal Speciic solution Bias Partial

Henriksen et al (2021) [79] Experience Model Accountability Partial
Huynh et al (2021) [85] Proposal Tool Black Box Full

Jacqueline et al (2021) [73] Philosophical Advice Attitudes (users) Marginal
Li et al (2021) [104] Proposal Tool Bias Full
Loi et al (2021) [106] Validation Model Accountability Marginal

Mariotti et al (2021) [110] Proposal Procedure Black Box Full
Pandey et al (2021) [125] Validation Speciic solution Bias Full

Perrier (2021) Proposal Tool Bias Partial
Puiu et al (2021) [132] Validation Model Black Box Partial

Richardson et al (2021) [137] Validation Procedure Attitudes (practitioners) Full
Schmid et al (2021) [145] Proposal Procedure Attitudes (users) Marginal
Serban et al (2021) [149] Validation Model Attitudes (practitioners) Partial
Stumpf et al (2021) [163] Proposal Procedure Attitudes (users) Partial
van Stijn et al (2021) [173] Experience Procedure Bias Partial
Wang et al (2021) [181] Philosophical Model Attitudes (users) Marginal
Wilson et al (2021) [187] Proposal Speciic solution Bias Full
Yaghini et al (2021) [190] Proposal Procedure Attitudes (users) Full

Yoshikawa et al (2021) [194] Proposal Speciic solution Bias Partial
Yu et al (2021) [195] Proposal Speciic solution Bias Partial

Zicari et al (2021) [200] Proposal Procedure Accountability Partial
Aïvodji et al (2021) [17] Proposal Tool Bias Full

Blanes-Selva et al (2021) [29] Proposal Speciic solution Black Box Marginal

Table 7. Overview of primary studies part 4

1st Author Research Contribution Focus Pertinence

Breeden et al (2021) [32] Proposal Tool Bias Full
da Silva et al (2021) [50] Proposal Tool Bias Partial
Franco et al (2021) [61] Proposal Procedure Black Box Full

Hartmann et al (2021) [74] Experience Model Attitudes (practitioners) Full
Köchling et al (2021) [92] Validation Model Bias Partial
Ortega et al (2021) [123] Proposal Speciic solution Black Box Full
Tomalin et al (2021) [165] Proposal Procedure Bias Partial
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