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Abstract. The discovery of two-dimensional (2D) iron monolayer in graphene pores
stimulated experimental and computational material scientists to investigate low-dimensional
elemental metals. There have been many advances in their synthesis, stability, and properties
in the last few years. Inspired by these advancements, we investigated the electronic structure
and elasticity of free-standing monolayers of group 10 elemental metals, viz. Ni, Pd, and Pt.
Using density-functional theory (DFT), we explored the energetic, geometric, electronic, and
elastic properties of hexagonal, honeycomb, and square lattice structures of each element, in
both planar and buckled forms. Among planar configurations, the order of increasing stability
is honeycomb, square, and hexagonal. In buckled form, this ordering remains the same for Pt
but is reversed for Ni and Pd. Upon geometrical optimization, the extent of buckling for Pt was
found to be small compared to Ni and Pd. The effect of buckling on the electronic structure
was further scrutinized through the projected density of states, and it was found that highly
buckled configurations derive their of states from 3D bulk, which highlights the correlation
between buckled configurations and 3D bulk. For Pt in buckled square and honeycomb lattices,
the density of states correlates more closely to their 2D monolayers. Regarding elasticity, the
in-plane elastic constants indicate that all planar and buckled square lattices are unstable.

1. Introduction
The revelation of two-dimensional (2D) iron monolayer in graphene pores [1] stimulated
computational material scientists to investigate the 2D elemental metals [2–9]. Theoretical
studies have suggested that several 2D metals could exist either as freestanding monolayers,
buckled monolayers, or patches embedded within graphene pores. Density functional theory
(DFT) studies suggested that some of the 2D metals are unexpectedly stable against bending,
and their bending moduli are comparable to the bending modulus of graphene or other layered
2D materials [6]. The magnetic properties of 2D metals in different lattices were studied by
Yinti Ren et al. [10] and it was found that 18 elemental 2D metals exhibit magnetism. The most
preferable lattice for magnetism was found to be honeycomb, followed by hexagonal and square.
For the search for energetic stability of binary alloys of 2D metals, the high-throughput DFT
was used in Ref. [11]. It was identified that out of 1081 binary compounds, 41 different binary
compounds are dynamically stable in a buckled honeycomb lattice structure. Motivated by this
finding a systematic investigation on the dynamical stability of buckled honeycomb alloy of the
noble metals (Cu, Ag, and Au) were performed [12] and it was revealed that 48 alloys of noble
metals in the buckled form are dynamically stable. Alongside theoretical investigations of 2D
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metals, there have been several advances in experimental research and these advancements are
reported in recent review articles in a systematic manner [13–16].

2D elemental metals are still a relatively new field of research and are driven primarily by
theoretical and a few experimental studies mentioned above. In this article, to understand the
properties and electronic structure of elemental metals, we focused only on group 10 elemental
metals. This group features elements that belong from 3d (Ni), 4d (Pd), and 5d (Pt) series, and
typically crystallizes in face-centered cubic (fcc) structure. In comparison to bulk systems, 2D
planar and buckled metal systems are thinner, and reduced dimensionality possesses a reduced
number of coordination sites for chemical bonding. This leads to differences in their mechanical,
electronic, and optical properties. The buckling effect can influence the stability and strength of
the chemical bonds, and it can result in a different distribution of electrons in the system, leading
to differences in the electronic structures and other properties. These features make 2D planar
and buckled metal systems promising candidates with tailored properties for applications in fields
such as electronics, catalysis, and energy storage [17, 18]. With a low coordination number and
reduced interaction between neighbouring atoms, it is reasonable to expect that the 2D systems
will give rise to distinct geometric, electronic, and elastic properties from that of 3D bulk.
Herein, we used the first-principles approaches using DFT to study 2D lattices (honeycomb,
square, and hexagonal) of the chosen metals. All elements were considered in planar as well as
in their buckled form. The cohesive energy, bond lengths, and in-plane elastic parameters were
computed and compared. The electronic structure was analysed using the projected density of
states (PDOS) on s, p, and d orbitals and compared with the 3D bulk.

2. Computational Methods
The spin-polarized density functional theory (DFT) calculations were performed using the
QuantumATK [19]. The core electrons were traced by projector augmented wave (PAW)
potential, and the valence electron orbitals were extended on the basis of plane waves (PW)
with the energy cut-off of 800 eV [20, 21]. The non-empirical Perdew-Burke-Ernzerhof (PBE)
form of the generalized gradient approximation (GGA) exchange-correlation functional was used
in all calculations [22]. This choice of exchange-correlation functional is reasonable for the
systems lacking empirical data and able to produce reliable energetics, electronic structure,
and mechanical properties for the metals. Three different 2D systems, the honeycomb (HC),
square (SQ), and hexagonal(HEX) were studied in planar as well as in buckled form (Figure
1). To obtain the self-consistent electron density, the total energy convergence criteria of 10−7

eV was employed. Geometry optimizations of the structures were done by using the LBFGS

algorithm [23]. Optimized structures have the forces smaller than 1 meVÅ
−1

and stresses below

0.3 meVÅ
−3

. The k-point sampling was done using the Monkhorst-Pack method [24]. The
Fermi-Dirac smearing scheme was used with a broadening of 0.05 eV.

3. Results and Discussion
3.1. Convergence Analysis:
We performed the convergence analysis to set the converged k-point and vacuum along the
non-periodic direction of the 2D systems. The convergence tests were conducted on the planar
systems of each elemental metal.

3.1.1. Convergence test for k-point: While performing the k-point convergence test we used
the lattice parameters from the Atlas of 2D metals [6]. A vacuum of 15 Å was used along the
non-periodic direction to diminish the spurious interactions between two layers of the adjacent
unit cell. We calculated the total energy difference by using

∆E = ENk×Nk×1 − E30×30×1 , (1)
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Figure 1: Schematics of 2D systems. The solid black line shows a computational unit cell.
(a) Top view of planar and buckled systems. (b) Side view of planar systems. (c) Side view of
buckled systems.

where ENk×Nk×1 is the total energy at any given k-point Nk , and E30×30×1 is the total energy
at Nk = 30. The convergence tolerance of lower than 10 meV was achieved at Nk = 13 for all
the studied systems (Figure 2a).

Figure 2: Convergence test plot on a logarithmic scale for 2D metals of group 10 (a) k-point
(b) Vacuum.

3.1.2. Convergence test for vacuum: Using the converged k-point we will now perform the
vacuum convergence analysis. Following the similar formalism as defined in Eq.(2). Now the
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energy difference will be:
∆E = Evacuum − E15Å , (2)

where Evacuum is the total energy of the system at any given value of vacuum along the non-
periodic direction of the 2D system, and E15Å is the total energy of the system having vacuum of
15 Å. The scattering in raw data becomes relatively small as compared to k-point convergence
testing. Irrespective of the lattice type the data points obtained from a particular element
were firmly stitched together (Figure 2b). However, for each element, the upper bound of the
scattering envelope was of a honeycomb (HC) lattice, and the lower bound is of a hexagonal
(HEX) lattice. Thus, the hexagonal lattice will converge relatively at a smaller vacuum compared
to the honeycomb lattice. The square (SQ) lattice was embedded between HC and HEX for
each element. With convergence criteria of less than 0.1 meV a vacuum of 13 Å was achieved
for further calculations. However, for Pt, the set convergence criteria was satisfied around
10 Å but with a profound scattering. This can be attributed to non-monotonicity in energy
differences and the sign change of ∆E results in an apparent dip when viewed on a logarithmic
scale that considers only absolute values. In the subsequent calculations of geometric, energetic,
and mechanical properties, we will use the obtained converged k-point and vacuum. However,
before we get started with these analyses, it is necessary to provide an overview of the buckling
mechanism and the method by which buckling parameters are selected in this article.

3.2. Buckling parameter:
The buckling is a phenomenon that enhances the overlapping of orbitals and by virtue of which
a flat monolayer becomes buckled, i.e. the thickness of a planar 2D system towards the out-
of-plane direction (Figure 1c). The extent of buckling is quantified by the value of parameter
δ that quantifies the thickness of the system. Cartesian coordinates of two atoms placed in a
computational unit cell will be different for a planar and buckled system in each symmetry (Table
1). For the initial guess of the buckling parameter δ, we considered the planar 2D systems and

Table 1: Atomic position in terms of bond length (d) in a unit cell of two atoms.

Systems Cartesian coordinates
Atom-1 Atom-2

Honeycomb (HC) d(0, 0, 0) d(1/
√
3, 2/

√
3, 0)

Square (SQ) d(0, 0, 0) d(1/
√
2, 1/

√
2, 0)

Hexagonal (HEX) d(0, 0, 0) d(1/2,
√
3/2, 0)

Buckled honeycomb (BHC) d(0, 0, δ) d(1/
√
3, 2/

√
3, −δ)

Buckled square (BSQ) d(0, 0, δ) d(1/
√
2, 1/

√
2, −δ)

Buckled hexagonal (BHEX) d(0, 0, δ) d(1/2,
√
3/2, −δ)

calculated the total energy variation with respect to the value of δ (Figure 3a). The potential
energy surface (PES) of each system possesses a cusp demonstrating that the buckled systems
are energetically more stable. Around this cusp, we use the equation of state E = C+Bδ+Aδ2 ,
where E is the total energy, A, B, and C are fitting parameters. Forces vanishes off at the
minimum energy point i.e.: Fδ = ∂E/∂δ = 0.

Using this logical approach the initial guess of the buckling parameters δinitial were obtained
for each buckled system. Upon relaxing the geometry, the optimized buckling parameter
δoptimized is obtained, and for each system, it was found that δoptimized > δinitial. The optimized
δ for Pt is distributed around 0.1d3D (d3D is the bond length of 3D bulk) for each buckled
structure (Table 2). However, for Ni and Pd the buckled honeycomb and square have the
values of δoptimized in the range 0.30d3D − 0.45d3D , and for hexagonal, the δoptimized is around
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Table 2: Optimized geometrical dimensions (aoptimized & boptimized) of simulation box and
corresponding optimized buckled parameter (δoptimized) in Å.

Buckled honeycomb Buckled square Buckled hexagonal
aoptimized δoptimized aoptimized δoptimized aoptimized boptimized δoptimized

Ni 2.413 1.0252 2.402 0.8680 2.418 3.58 0.4243
Pd 2.694 1.1727 2.652 1.0242 2.658 4.12 0.4468
Pt 4.084 0.3385 3.407 0.3882 2.642 4.30 0.2976

0.15d3D. The buckled hexagonal of each element showed the lowest buckling effect. It was
also revealed that for Ni and Pd the buckling effect decreases with an increase in coordination
number. However, for the Pt, the buckling effect was largest for square followed by honeycomb
and hexagonal systems (Table 2). The low-buckled structures have large simulation cells and
the high-buckled structures have smaller simulation cells.

Figure 3: (a) Variation of total energy with respect to δ (b) Focused visualization around the
cusp in PES

3.3. Bond length:
After examining the buckling for different lattices of group 10 elements, now we will discuss
the calculated bond lengths of the optimized structures (Table 3). Bond lengths of 2D planar
geometries of each element were in the agreement with previously reported results [6]. In 3D
bulk, bond length increases as we move down a group, but in low dimensions, this trend is
reversed for Pd and Pt. The geometric analysis revealed that the hexagonal buckled structures
have shorter bonds than the planar monolayer for each element. Although the buckled structures
in honeycomb and square form have larger bonds compared to flat monolayers. For Ni and Pd
the longest bonds were in the BHC structure and the shortest bonds in HC. But the Pt showed
the longest bond in HEX and the shortest in HC. The simulation box size and intra-layer atomic
distance (dintra) of buckled systems is found to be equal for each element (Table 2 & 3).



Emergent phenomena in Quantum MATerials 2022 (E-QMAT 2022)
Journal of Physics: Conference Series 2518 (2023) 012006

IOP Publishing
doi:10.1088/1742-6596/2518/1/012006

6

Table 3: Bond length (Å) of planar and buckled configurations. Intra-planar bond length
denoted by dintra and inter-planar bond length by dinter .

Honeycomb Square Hexagonal
HC BHC SQ BSQ HEX BHEX
d dintra dinter d dintra dinter d dintra dinter

Ni 2.187 2.413 2.479 2.267 2.402 2.429 2.355 2.418 2.321
Pd 2.476 2.694 2.813 2.540 2.652 2.778 2.630 2.658 2.610
Pt 2.435 4.084 2.453 2.521 3.407 2.531 2.606 2.642 2.590

3.4. Cohesive Energies:
To investigate how the atomic cohesion is different for planar and buckled systems of group 10
elements we calculated the cohesive energy:

Ecoh = Eatom − Esystem/N , (3)

where Eatom is the total energy of a single atom placed in a cube of length 15 Å, Esystem is the
total energy of the system and N is the number of atoms in the system. The calculated cohesive
energies of each system were normalized to the 3D bulk cohesive energy [25] Enorm = Ecoh/E3D

and we considered it as a yardstick for each lattice and reflects the correlation of each system
with the 3D bulk (Table 4). The general observations from the calculated cohesive energies
are as follows. In planar 2D systems, each element in HC is the least stable and in HEX the
most stable. For buckled systems, this trend is retained by Pt only and gets reversed for Ni
and Pd. For all elements, the buckled system was found to be more stable than planar in each
lattice. For Ni and Pd the high-buckled structure has higher cohesive energy than the low-
buckled structure. This trend is not followed by Pt and BHEX has the highest cohesive energy
although the highest buckling was observed in a square lattice. In general, the buckled systems
showing high buckling have larger values of normalized cohesive energies (Enorm), which is an
indication of their energetic correlation with 3D bulk.

Table 4: Cohesive Energies (E in eV) and normalized cohesive energies Enorm = Ecoh/E3D.

Honeycomb Square Hexagonal

HC BHC SQ BSQ HEX BHEX

E Enorm E Enorm E Enorm E Enorm E Enorm E Enorm

Ni 2.837 0.64 4.163 0.94 3.240 0.73 3.950 0.89 3.610 0.81 3.680 0.83
Pd 1.974 0.51 3.200 0.82 2.362 0.61 3.025 0.78 2.656 0.68 2.773 0.71

Pt 3.751 0.64 3.831 0.65 4.115 0.70 4.383 0.75 4.620 0.79 4.701 0.80

3.5. Elastic Constants and Moduli:
Having observed the effect of buckling on geometric and energetic properties we will now focus
on the elastic properties of the planar and buckled 2D systems of group 10 metals. For this
purpose, the second-order elastic constants were determined within the linear elastic region. In
2D systems, the strain tensor is defined as:

ϵ2D =

(
ε1 ε6/2
ε6/2 ε2

)
. (4)
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The elastic strain energy per unit area is given by ∆U(εi) = U(εi)−U(0), where U(εi) represents
energy density of strained system and U(0) is the energy density of unstrained system.

∆U(εi) =
1

2
(C11ε

2
1 + C22ε

2
2 + 2C12ε1ε2 + 2C16ε1ε6 + 2C26ε2ε6 + C66ε

2
6) . (5)

The C
′s
ij are the elastic constants and computed by taking the second-partial derivative of

energy density with respect to strain in different directions ∂2∆U/∂εiεj . The elastic constants
were calculated by using the formalism given in Refs. [26, 27] for different 2D crystal systems.
While evaluating the elastic constants it was taken into consideration that the rectangular
computational unit cell was used to simulate the 2D Hexagonal lattice (Figure 1a). For a
rectangular computational cell all four elastic constants C11, C12, C22, and C66 are independent.
For square unit cells only three elastic constants C11, C12, and C66 are independent. For
hexagonal unit cells only C11 and C12 are independent elastic constants and C66 = (C11 − C12)/2.
The elastic moduli and Poisson’s ratio were evaluated using the C

′s
ij in formulae [28] Young’s

modulus Y = (C2
11 − C2

12)/C11, Bulk modulus B = (C11 + C12)/2, Shear modulus G = C66, and
Poisson’s ratio µ = C12/C11.

For elastic stability, the elastic constants should always be positive and C11 > C12 [27, 28].
Following this elasticity criterion, we found that the square lattices whether it is planar or
buckled are structurally unstable (Table 5). The bulk moduli of 2D planar structures correlate
with experimental bulk modulus as previously reported [6, 25]. Buckled structures have larger
bulk moduli than planar bulk moduli with an exception of buckled hexagonal of Pd. It was
observed that systems possessing a higher buckling effect have high values of bulk moduli. The
highest change in bulk modulus was observed when the planar HC of Pd changes to BHC.

Table 5: Elastic constants, Young’s modulus (Y), Bulk modulus (B), Shear modulus (G), and
Poisson’s ratio for each configuration. (Elastic constants and moduli are in units of GPa-nm
and the Poisson’s ratio has no unit.)

C11 C12 C22 C66 Y B G µ

HC 53.91 29.06 53.91 12.42 38.24 41.49 12.42 0.54
BHC 190.58 66.84 190.58 61.87 167.14 128.71 61.87 0.35

Ni SQ 33.76 81.06 33.76 44.41 −160.88 57.41 44.40 2.40
BSQ 146.43 23.56 146.43 −2.13 142.65 84.99 −2.13 0.16
HEX 102.74 41.89 101.98 40.06 85.54 72.32 40.06 0.41
BHEX 102.27 42.85 79.53 35.88 79.18 72.56 35.88 0.42
HC 47.44 21.70 47.44 12.87 37.51 34.57 12.87 0.45
BHC 161.35 66.08 161.35 47.63 134.28 113.72 47.63 0.41

Pd SQ 53.35 54.25 53.35 29.14 −1.81 53.80 29.14 1.01
BSQ 85.61 97.10 85.61 53.08 −24.51 91.35 53.08 1.13
HEX 166.50 63.75 165.84 66.03 141.99 115.13 66.03 0.38
BHEX 95.36 45.15 81.35 35.89 70.30 70.26 35.89 0.47
HC 77.08 38.66 77.08 19.21 57.69 57.87 19.21 0.50
BHC 84.89 36.91 84.90 23.99 68.85 60.90 23.99 0.43

Pt SQ 87.14 93.67 87.14 26.70 −13.54 90.40 26.70 1.07
BSQ 85.61 97.10 85.61 53.09 −24.51 91.35 53.08 1.13
HEX 166.50 63.76 165.84 66.04 142.00 115.13 66.03 0.38
BHEX 160.24 70.85 153.39 63.67 127.52 115.54 63.67 0.44
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3.6. Projected Density of States (PDOS):
From the analysis of geometric, energetic, and mechanical properties it was revealed that 2D
planar structures start to behave quite differently upon buckling. To understand this distinct
behaviour we will now investigate the electronic structure of the different 2D lattices and will
compare them with 3D bulk. In the ground state, the valence electrons of group 10 elements
are accommodated in s and d orbitals. Thus, to realize the electronic structure of the Ni, Pd,
and Pt it is reasonable to get to know the contribution of these orbitals to the total density of
states. However, we also included the contribution from p orbitals in our analyses for the sake
of completeness. The optimized structures obtained were selected and orbital-projected electron
density of states (DOS) was evaluated using the k-point mesh of 13 × 13 × 1. We used the
Gaussian spectrum method with a smearing of 0.3 eV. From the DOS analysis, it was unveiled
that the d states dominate the density of states for group 10 elements in 2D as well as in 3D bulk
below Fermi-level. The d states are scarce above the Fermi level. The 2D planar honeycomb
lattice has the highest number of available s states below the Fermi level when compared to other
2D systems. The 4d element which is Pd has the p states distributed around the Fermi-level for
each 2D system. However, the 5d element which is Pt has strong peaks around the Fermi-level
for planar honeycomb, otherwise all other 2D systems have distributed p states similar to 4d
element. The p states of 2D systems of Ni are also distributed around the Fermi-level, but the p
states in 3D bulk are unavailable around the Fermi-level. In general, it was observed that in the
buckled systems in which the buckling effect is high the electrons in s, p, and d states resemble
more closely to 3D bulk than 2D monolayer’s PDOS.

Figure 4: DOS projected on s, p, and d orbitals of 2D systems of group 10 elements in the
planar and buckled form. 3D bulk is added for comparison.
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4. Conclusion
We systematically studied the planar and buckled 2D systems of group 10 elements. We found
that the ground state of 2D buckled systems of Pt possesses low buckling compared to Ni and Pd.
The low buckling in Pt means planar preference and it can be related to the relativistic effects.
The highest buckling effect was identified in Pd-BHC and the lowest in Pt-BHEX. In buckled
structures, the highest cohesion was in the honeycomb structure for Ni and Pd, but in the
hexagonal for Pt. The cohesive energy increases monotonically from honeycomb to hexagonal
for Pt in planar as well as in buckled form. The in-plane elastic constants indicate that all
elements of group 10 are unstable in a square lattice whether it is planar or buckled. There is an
indication that the buckling effect correlates with bulk modulus as the buckling enhances the bulk
modulus except for Pd-BHEX. In general, the electronic structure calculations revealed that in
the structures in which the extent of buckling is high their PDOS can be better approximated by
3D bulk rather than the 2D planar monolayer. In summary, the geometric, energetic, elasticity,
and DOS analyses are a reasonable starting point for understanding the different behaviour of
planar and buckled structures. But still, understanding the inherent driving force which dictates
the extent of buckling requires additional analyses which may give better insight. Although Ni,
Pd, and Pt belong to the same group of the periodic table, their physical properties differ
greatly in planar and buckled forms, so a theoretical study incorporating local and non-local
correlations, relativistic effects, and spin-orbit coupling (SOC), is especially desirable.
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