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ABSTRACT 

Laitinen, Mika 

Mathematical Modelling of Conductive-Radiative Heat Transfer 
Jyvaskyla: University of Jyvaskyla, 2000, 18 p. (+included articles) 

(Jyvaskyla Studies in Computing 

ISSN 1456-5390; 6) 
ISBN 951-39-0789-9 
Finnish summary 

Diss. 

This study focuses on mathematical models combining conductive and radiative 

heat transfer. In these models, radiation appears as a source or flux term in the 
heat conduction equation, and, on the other hand, for radiation we need to solve 

simultaneously an integral or transport equation depending on temperature. 
The intention of this work is to find the general mathematical properties of 

conductive-radiative equations that guarantee the well-posedness of a model. 

First, we show that the equations are in general coercive and pseudomonotone 
and therefore they have a solution. Then, we establish a comparison principle 
which implies that the solution is unique. Further, we prove the boundedness of 

a solution. The general theory is then demonstrated by analysing the most com
mon cases encountered in practice: opaque bodies with diffuse-grey surfaces and 
semitransparent materials with either diffuse or specular boundary reflections. 

Finally, we study heat transfer in optically thick (i.e. highly absorptive) mate

rials. Intuitively, in such materials radiation propagates diffusively, and in very 
thick materials radiation concentrates on surfaces. We justify these conceptions 

rigorously using asymptotic analysis. We also propose a simple and effective dif
fusion approximation accurate for optically thick materials. 

The thesis is restricted to materials whose radiative properties are indepen
dent of wavelength (grey materials). 

Keywords: conductive-radiative heat transfer, Stefan-Boltzmann law, compari
son principle, diffuse-grey surfaces, semitransparent material, optical 

thickness, diffusion approximation 
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INTRODUCTION 

This thesis is devoted to the analysis of heat transfer models, where heat radia

tion is combined with conduction. Heat radiation is a significant factor in heat 
transfer, especially if temperature is high or conductivity is low. Therefore, heat 

radiation is important in understanding various heating, melting, cooling, drying 

and combustion phenomena, and it plays an important role, for example, in space 

technology [5, 18], glass industry [23] and silicon crystal growth [7]. 
Conduction and radiation are very different by nature and, for this reason their 

coupling is nontrivial. On the other hand, if the interaction between conduction 
and radiation is understood, it is relatively easy to include also convection [20]. 

Conduction is characterized by a local second order differential operator, whereas 

radiation is usually presented by a nonlocal integral operator or a first order direc
tion dependent transport equation. Then, due to the Stefan-Boltzmann radiation 

law, the coupling is nonlinear leading to somewhat nonstandard function spaces. 
As a result of nonlinearity and nonlocality, the coupled problem is also nonmono
tone. Finally, since radiation can carry heat through a vacuum, geometries in ap
plications are often nonconnected. 

To illustrate these features in more detail, let us next consider heat transfer in 

a furnace which is used, for example, to produce silicon crystals [7]. This problem 
has been our favourite since it contains all the essential mathematical difficulties 
of conductive-radiative heat transfer and yet is relatively easy to write down. The 

designers of the furnace would like to simulate the temperature distribution in 

the furnace in order to heat and design the furnace in an optimal way. The fur

nace walls conduct heat and the interior surfaces of the furnace exchange heat by 
radiation. The furnace interiors are usually quite complex consisting of several 

disjoint components (heaters, thermal shields, heated objects) often lacking sym

metry. Frequently, also other complicated phenomena have to be modelled simul

taneously, such as fluid flow, phase changes and thermal stresses. Therefore, a 

thorough mathematical understanding of heat transfer is important. 
For illustrative purposes, it suffices to describe the furnace by a container con

sisting of two conducting components fh , 02 c R3 , as sketched in Figure 1. As

suming for simplicity that heat transfer is stationary and that the medium between 

0 1 and 02 behaves like a vacuum, the heat equation for absolute temperature T

reads as 

-V· (kVT)=f

oT 
-k- = Qc 

on 

oT 
-k- = Qr 

on 

onr, 

on 'E, 

where n is the outward unit normal, k is the coefficient of heat conduction, f is a 
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r 

FIGURE 1 A "furnace" consisting of two components. 

given heat source, Qc is the convective heat flux and Qr is the radiative heat flux. We 
assume that the convective heat flux is proportional to the temperature difference, 
Qc = a(T -To), with a heat transfer coefficient a and the exterior temperature T0 • 

To model the radiative flux, we make two typical assumptions: We assume 
that E is diffuse and grey, that is, the emissivity coefficient E of E depends neither 
on direction nor on wavelength of the radiation. Then, the radiative heat flux can 
be modelled be means of the total incoming radiation u(x) and the total outgoing 
radiation p(x), 

Qr(x) = p(x) - u(x), X EE. 

The outgoing radiation p is composed of emission and reflected part of u. Accord
ing to Stefan-Boltzmann law emission is proportional to T4

, so that 

X EE, 

a- denoting Stefan-Boltzmann constant. The incoming radiation u(x) at x E E, on
the other hand, is a "sum" of radiation leaving other parts of E, described by an 
integral operator K, 

( )-(K )( )·-1n(s)-(x-s)n(x)· (s-x)=( ) ( )d u X - p X .-

I 14 
� x, s p s s, 

r; 7rX-S 

where 3(x, s) is the visibility factor: 3(x, s) = 1 if x and s see each other (that is 
xs n n = 0) and 3(x, s) = 0 otherwise. The above relations can be gathered as 

Qr
= (I - K)p,

By showing that K maps LP(E) to itself and that I -(1 -1:)K is invertible, we 
can write our problem in variational form as: Find TE V := H1 (f!) n L5(E) such 
that 

lo k'VT · 'Vcpdx + l (Ga-T4)cpds + h aTcpds = (j,cp) Vcp E V (*) 

where the operator G is defined by Gv := (I -K)(I - (1 -1:)K)- 1 w and j E V*

is a data term due to external heat source and convective heat flux. 
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The existence and uniqueness of this problem have been studied indepen
dently in [15, 16, 19) and the basic theory has also been extended to include several 
conducting bodies [17, 20) and time dependence [14). However, these articles are 
either confined to geometries where :E is not an enclosed surface, pose restrictions 
to for assume that there exist a pair of sub and super solutions. Note that if the 
radiating surface :E were convex, the problem would be simpler [5, 13). 

One of our goals in [C] was to analyse problem(*) without such restrictions. 
First we needed to resolve the properties of the operator G, particularly the fol
lowing facts 

1. G is a linear operator from £P(:E) to itself, 1 � p '.S oo. 

2. H := I - G is positive, i.e. Hu� 0 if u � 0. 

3. G can be factorized as G = E - F where Eis a multiplication operator and 
F is a compact operator. 

4. J
E

(GT 4 )Tds � 0 for allT E £5(:E) . 

5. If J
E 

( GT 4 )T ds = 0, then T is a constant on :E. 

Note that here :E is allowed to be nonconnected enclosure and the emissivity f is 
restricted only by physics 0 � E(x) � 1, f # 0. Owing to these properties, we can 
infer that problem(*) is a special case of the general theory presented in [Cl and, 
thus, it satisfies the following 

(i) For each j E V*, there exists a unique solution to(*).

(ii) Let T 1, T2 be solutions to (*) corresponding to data Ji, '2 E V* and suppose
(!1 - h, cp) � 0 for all cp � 0. Then T 1 � T2 a.e. in n and a.e on an.

(iii) If f E £3/2+<5(0) + £2+<5(80) for some o > 0 then the solution of(*) is in
£00(0) n £00(80) .

The existence of a solution follows from coercivity and pseudomonotoni
city [22). Pseudomonotonicity is not so surprising since from property 3 of G we 
see that G can divided into monotone and compact part. The proof of coercivity is 
more difficult as in nonconnected geometries the null spaces of both conduction 
operator and radiative operator are nontrivial. The argumentation in this proof is 
somewhat similar than in the proofs of Poincare and Friedrichs inequalities. The 
uniqueness follows from the comparison principle (ii), which was proved follow
ing the work of Krizek & Liu [11) concerning nonlinear heat conduction equation. 
The boundedness of solutions is proved utilizing Moser iteration [6]. The main 
tools in determining properties 1-5 of G were the theory of positive operators [10) 
and the interpolation theory of operators [3]. 

Let us now briefly consider the time dependent counterpart of(*). We denote 
the stationary conductive-radiative operator by Q

(QT, cp) := lo k"vT · "Vcpdx + h, (GaT 4 )cpds + h c;Tcpds, 
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and introduce the function spaces 

x = £2 (0, r; H1 (O)) n £5(0, r; £5('E)), 
W = {T : TE X, T' E X*}. 

Then, setting heat capacity equal to one, the time dependent problem can be posed 
as: For f EX* and To E £2(0), find TEW such that 

(T'(t),cp)v + (QT(t),cp)v = (f(t),cp)v, 
T(O) = To, 

for all cp E V and almost all t E [0, r]. This problem is nontrivial since for Galerkin 
method [22] we need a priori estimates in the space £5(0, r; £5('E)) which does 
not follow from the coercivity of the stationary operator Q. We found two ways 
to proceed: First, if we assume that 'E is not an enclosure as in [14], then we have 
additionally an inequality J'i/GT4)T ds � CIITllts(E) which saves the game. Less
restrictive option is to assume for some {J > 0 that 

which enables us to derive the desired a priori estimate using Moser iteration. 
If either of these two assumptions hold, then from the general theory presented 
in [C] it follows that the above problem has at least one solution. The time depen
dent comparison principle is proved in [C] without additional assumptions and, 
therefore, the solution is always unique. 

In the above example we implicitly assumed that radiation is a surface phe
nomenon. However, in semitransparent materials such as glass or gas, radiation 
travels a significant distance before being absorbed and therefore radiation gives 
rise to a volumetric heat source or sink. To give a rough idea of this process, let us 
modify the above example such that 01 is made of semitransparent material. For 
simplicity we assume that the absorption coefficient"' of 01 is a constant and we 
ignore the scattering. Then, the heat equation in 01 is reads as 

-v' · (kv'T) = f - K-(4o-T4 
- l v(x,w) dw)

where v(x,w) is the radiation intensity describing flow of photons in a point x E 
01 to direction w E S, S denoting the unit sphere of IR3

• The intensity v is governed 
by a transport equation depending on temperature 

w · V xv+ K-V = K.'!..T4 in 01 x S, 
7r 

vlr_ = R(vlr+,ulr_), 

where r +, r _ denote the outflow and inflow boundaries 

r + = {(x,w) E 801 x S : w · n(x) > O}, 
r _ = {(x,w) E 801 x S : w · n(x) < O}, 
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and R( vlr +, ulr_) is a reflection operator which gives the fraction of the inten
sity v on the outflow boundary that is reflected back and the fraction of incoming 
radiation u that is reflected into f!i . In applications the reflections are usually ei
ther diffuse (uniformly distributed) or specular (mirror-like). In [A] and [B] and we 
studied semitransparent materials with isotropic scattering and diffuse reflections 
whereas in [C] we examined general scattering laws and specular reflections. 

Although surface and volume radiation are modelled using somewhat differ
ent principles, they have similar mathematical structure. With techniques set forth 
in [B] and [C] we can solve the intensity v by means of temperature and write the 
heat equation in !11 as 

where G is an operator from LP(f!1) to itself and U characterizes the contribution 
of the incoming radiation u. Following [B] and [Cl we can also show that G has 
properties analogous to 1-5 of the operator G described earlier. Thus, the exis
tence, uniqueness, comparison principle and boundedness of a solution for this 
problem (as specified by assertions (i)-(iii)) can deduced from the general theory 
presented in [C]. Of course, we must first specify the reflection operator more pre
cisely and modify the boundary conditions on :E. 

Apart from our works [A], [B], [C], the mathematical theory of volumetric 
conductive-radiative heat transfer is almost nonexistent. To our attention has 
come only a single work investigating the existence and uniqueness of a solution 
in one dimensional case with nonreflecting surfaces [81. On the other hand, trans
port equations alone are extensively studied in astrophysics and neutron trans
port; see [1, 41 and the references therein. 

Our main achievement [Cl focuses on generalized conductive-radiative model 

(.-lT,cp) + { (GT4)cpdµ = (f,cp) 
lAuE 

where A is an elliptic operator describing heat conduction and local heat transfer 
on surfaces (convection on r in the above example). Here µ measures both semi
transparent volumes and opaque surfaces; hence we no longer need to distinguish 
between surface and volume radiation. Also models with several disjoint compo
nents and combined volume and surface radiation can be analysed within this 
framework. We define the abstract model by postulating a set (minimal, we hope) 
of general mathematical properties which the operator G : L� -+ L� has to satisfy 
in order to guarantee the coercivity and pseudomonotonicity of the conductive
radiative operator and, thus, provide the existence of a weak solution. These 
postulates are generalizations of the properties 1-5 described above. Within this 
abstract framework we also establish comparison principle and boundedness of 
solutions as well as analyse time dependent models. To apply the general theory 
in some specific application, we need to formulate the measureµ and the operator 
Gas well as check that G has the desired features. 
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The final article of my thesis [D] focuses on heat transfer in optically thick 
(i.e. highly absorptive) materials. Intuitively, in such materials radiation propa
gates in a diffusive manner and in very thick materials radiation concentrates on 
surfaces . From the mathematical point of view, however, this is by no means ob
vious. Therefore, the first goal of this article was to prove that the sequence of 
solutions of volume radiation problems converge to a solution of surface radia
tion problem as absorption coefficient goes to infinity. In view of above examples, 
this means that we recover the original surface radiation problem (*) by letting 

"' ---+ oo in volumetric problem (**). The main tools in this analysis were singu
lar perturbation theory, boundary layer analysis as well as certain stability and a 
priori estimates, which had to be derived uniformly in"'· 

The second goal was to derive rigorously a diffusion equation (called diffusion 
or Rosseland approximation in the literature) which effectively approximates the 
volumetric problem for large absorption coefficients and is fairly easy to solve 
numerically. For example, when "' is large the problem (**) could approximated 
by a local nonlinear diffusion equation 

where the coefficients a;j, c;, d depend on"' and shape of 01• Such approximations 
are widely used in practice [9, 12, 18, 21], but they tend to be formally derived and 
tuned for some special application. In [23] a method based on two-scale asymp
totics is introduced and also theoretical analysis for the radiative transport equa
tion is carried out, but it seems that the analysis including the heat equation has 
not been performed before. In astrophysics and neutron transport the asymptotic 
analysis of transport equations is well studied [1, 2, 4] but from a slightly different 
perspective. 

Conclusions 

We showed that a large class of mathematical models combining conductive and 
radiative heat transfer are mathematically well defined. Furthermore, we charac
terized general mathematical properties of conductive-radiative models and con
cluded that the surface radiation models and the volume radiation models have 
similar mathematical structure, although these two models are derived from dif
ferent physical principles. The volume and surface radiation models were also 
related by proving that a volume radiation model converge to a surface radia
tion model as the volumetric absorption coefficient approaches infinity. This re
sult shows that conductive-radiative models behave physically with respect to ab
sorption coefficient and justifies the use of a surface radiation model for a highly 
absorptive material. We also proposed a systematic and rigorous method to de
rive diffusion approximations for optically thick materials, which appears to be of 
practical and engineering interest. In my opinion, these facts form a good foun
dation for numerical analysis and efficient numerical simulation. 
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There are several limitations to this study. First, we only investigated mate
rials whose radiative properties are independent of wavelength (grey materials). 
This allowed us to factorize the radiative part into a linear operator G and a non

linear law T4
, and thus we could utilize theory of linear operators. When ra

diative coefficients depend on wavelength, this factorization is possible only for 

each wavelength and after integration over wavelengths the radiative operator 
becomes fully nonlinear. We observed some similarities between these two cases 

using theory of nonlinear operators, but more research in this direction is required. 
Concerning the asymptotic analysis, the most interesting question would be 

to see how the diffusion approximations derived in [D] perform in the two and 
three dimensional geometries, especially, around a comer point. The smoothness 
assumptions in [D] seem to be intrinsic character of the problem and additional 

error is introduced if the boundary is not smooth. Whether this error is negligible 
or additional corner layer terms are required, needs to be resolved. Another in
teresting question would be to extend the theory in [D] to include scattering, and 

particularly find an accurate and yet simple diffusion approximation. 

Author's Contribution 

Finally, I report my role in the articles [A], [B], [C] written with professor limo Tii

honen. The first work [B] employed and extended the ideas that Ttihonen had al
ready discovered for surface radiation [19). The most laborious part was to formu
late the volumetric problem such that the previous ideas could be used. This was 
inseparably teamwork. The main guidelines were drawn by liihonen whereas I 

did all the proofs. I discovered that the interpolation theory of operators is a use
ful tool in analysing radiative operators. The next article [A] combined the efforts 
of [19) and [B] and announced the idea of liihonen that both surface and volume 
radiation can be studied within the same framework. 

The core of [C], the abstract framework and the existence theory (Sections 2 

and 4), were derived mostly together, a notable exception being Lemma 9 which 

I discovered independently. I established independently the comparison princi
ple (Section 5), the boundedness of solutions (Section 6) and majority of the time 
dependence (Section 7). Apart from the time dependent comparison principle by 
Tiihonen, I provided all the proofs to [C]. 
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YHTEENVETO (FINNISH SUMMARY) 

Väitöskirjassa tarkastellaan lämmön johtumista ja säteilyä kuvaavia matemaat
tisia malleja. Lämmönjohtumisyhtälössä säteily esiintyy lähde- tai vuoterminä. 

Säteilyn selvittämiseksi täytyy samanaikaisesti ratkaista integraali- tai kuljetus

yhtälö, joka riippuu lämpötilasta. 
Tutkimuksen tavoitteena on määrittää lämmönsiirtoyhtälöiden yleiset mate

maattiset ominaisuudet. Työssä osoitetaan yhtälöiden pseudomonotonisuus ja 
koersiivisuus. Näistä kahdesta ominaisuudesta voidaan päätellä, että lämmön

siirtoyhtälöllä on ratkaisu. Toiseksi väitöskirjassa todistetaan vertailuperiaate 

lämmönsiirtoyhtälöille. Vertailuperiaatteesta seuraa, että ratkaisu on yksikäsit

teinen. Kolmanneksi työssä osoitetaan lämmönsiirtoyhtälöiden ratkaisujen rajoit
tuneisuus. 

Teoriaa havainnollistetaan analysoimalla tyypillisimpiä teollisuudessa esiin

tyviä tilanteita. Näistä toinen on säteilylämmönsiirto diffuusiivisten sekä harmai
den pintojen välillä ja toinen säteilylämmönsiirto puoliläpäisevässä materiaalissa 
diffuusi- tai peiliheijastavilla reunoilla. 

Lopuksi työssä tarkastellaan lämmönsiirtoa optisesti tiheissä materiaaleissa, 
joissa absorptiokertoimet ovat suuria. Väitöskirjassa osoitetaan, että tällaisissa 

materiaaleissa lämmönsiirtoyhtälöitä voidaan approksimoida diffuusioyhtälöillä. 
Samalla todistetaan, että optisen tiheyden kasvaessa puoliläpäisevän materiaalin 

lämmönsiirtomalli lähestyy pintasäteilymallia. 

Tutkimus rajoittuu tapauksiin, joissa materiaaliominaisuudet ovat riippumat

tomia säteilyn aallonpituudesta (harmaat materiaalit). 
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