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Téssa tutkielmassa kasittelemme stokastisia McKean-Vlasov -yhtéloitda. Namé ovat
stokastisia differentiaaliyhtloité, joiden kerroinfunktiot riippuvat myos ratkaisun jakau-
masta. Tamaé riippuvuus lisédd yhtéaloiden monimutkaisuutta, joten tutkielmassa tutkim-
me yhtaloitd diskreetin approksimaation kautta.

Keskitymme téssé tutkielmassa tarkastelemaan yksikésitteisen vahvan ratkaisun ole-
massaoloa stokastisille McKean-Vlasov -yhtélgille diskreettia ja rekursiivista Euler-
Maruyama -approksimaatiota kayttden, sekd tdmén approksimaation suppenemis-
nopeutta. Péddasiallisena ldhteend tédssd tutkielmassa kidytdmme Xiaojie Dingin ja
Huijie Qiaon artikkelia Fuler-Maruyama Approximations for Stochastic McKean-
Vlasov Equations with Non-Lipschitz Coefficients.

Tutkielmassa esittelemme pohjateoriaa ja joitakin tuloksia stokastisten prosessien
seké stokastisten differentiaaliyhtéloiden ymparilla. Esitdmme muun muassa mééaritel-
mén McKean-Vlasov -yhtdloiden vahvalle ja heikolle ratkaisulle seké esittelemme
martingaaliongelman. Kéymme ldpi myos joitakin hyodyllisid epédyhtaloitd. Ase-
tamme liséksi oletukset, joiden puitteissa tutkielmassa tyoskentelemme: oletamme
tassé tutkielmassa esimerkiksi, ettd McKean-Vlasov -yhtéloiden kerroinfunktiot tayt-
tavét tietyt ei-Lipschitz -ehdot.

Yksi tutkielman padtuloksista on néyttda yksikésitteisen vahvan ratkaisun olemas-
saolo. Toteutamme tdmén kahdessa osassa: ensin naytdmme, kuinka diskreetti Euler-
Maruyama -approksimaatio voidaan méaéritelld rekursiivisesti. Tamén approksimaa-
tion avulla todistamme, etté tarkastelemallemme yhtélolle on olemassa ratkaisu mar-
tingaaliongelmaan, ja téiten saamme osoitetuksi myos heikon ratkaisun olemassaolon.

Téamén jéalkeen ndytdmme Iton kaavaa hyodyntaen, ettd poluittainen yksikéasitteisyys
pétee oletustemme ollessa voimassa. Néiden vaiheiden jélkeen osoitamme, ettd vah-
van yksikésitteisen ratkaisun olemassaolo voidaan néyttédi. Tarkastelemme Iton kaa-
van avulla myos ratkaisun olemassaolon osoittamiseen kiytetyn Euler-Maruyama -
approksimaation suppenemisnopeutta.
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Abstract:

In this thesis we study stochastic McKean-Vlasov equations. These are stochastic
differential equations where the coefficients depend also on the distribution of the
solution. This dependency adds to the complexity of the equation so in this thesis we
will study these equations using a discrete approximation.

We focus on considering the existence of a unique strong solution to stochastic
McKean-Vlasov equations using a discrete and recursive Euler-Maruyama approx-
imation, as well as the convergence rate of the approximation. Our main source is
the article Euler-Maruyama Approzimations for Stochastic McKean-Viasov Equations
with Non-Lipschitz Coefficients written by Xiaojie Ding and Huijie Qiao, which we
follow throughout this thesis.

In the thesis we recall some preliminary theory surrounding stochastic processes and
stochastic differential equations and introduce some results. We give the definitions
for weak and strong solutions for the McKean-Vlasov equation as well as the defini-
tion for the martingale problem. We also introduce some useful inequalities. We give
the assumptions under which we work in this thesis, such as the assumption that the
coefficients of the McKean-Vlasov equations satisfy some non-Lipschitz conditions.

One of the main results in this thesis is to show the existence of unique strong solu-
tions. We approach this in two steps: first, we show the recursive construction of the
Euler-Maruyama approximation. With this approximation we show that there exists
a solution to the martingale problem and hence we get the existence of a weak solution.

Then, using Ito’s formula we prove that pathwise uniqueness holds under our as-
sumptions. After these two steps we show that the existence of a strong unique
solution can be proven. We also investigate with the help of Ito’s formula the conver-
gence rate of the Euler-Maruyama approximation used to show the existence of the
solution.
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Introduction

Stochastic differential equations have been of interest amongst researchers thanks
to their many applications, for example in physics and engineering. Thus the existence
of their solutions as well as their uniqueness has also been investigated under different
assumptions regarding the regularity of the coefficients. In order to utilize computers
in the research numerical approximations have become of use. A useful and relatively
simple tool is the Euler-Maruyama approximation which is a discrete, recursively
defined method. [30]

In this thesis we consider stochastic McKean-Vlasov equations, also known as
mean-field equations, and the existence of unique strong solutions using the Euler-
Maruyama approximation. McKean-Vlasov equations are stochastic differential equa-
tions whose coefficients depend also on the distribution of the solution. In this thesis
we consider the coefficients to be non-Lipschitz.

Throughout this thesis we follow the article [10] by Xiaojie Ding and Huijie Qiao
as our main source. We provide the calculations and deduction from the article in
more detail in this thesis. Some basic probability theory is assumed to be known,
but some preliminary definitions and results are introduced in the first chapter. In
section 1.1. we recall some basic probability theory, from defining the stochastic basis
to considering some convergence results as well as probability measures on metric
spaces.

In section 1.2. stochastic processes are introduced and we give a definition for the
Brownian motion. We introduce the McKean-Vlasov stochastic differential equation
and the definition for weak and strong solutions. We also consider the martingale
problem and some notions of uniqueness, and give Ito’s formula for the multidimen-
sional case. Section 1.3. consists of some useful and fundamental inequalities such as
the Burkholder-Davis-Gundy inequality and the Gronwall inequality. In section 1.4.
we introduce some notation and in section 1.5. the assumptions under which we will
work in this thesis are presented.

As one of our main goals of this thesis, in chapter 2 we focus on proving the exis-
tence and uniqueness of a strong solution for the stochastic McKean-Vlasov equation
introduced in section 1.2. In section 2.1. we consider the FEuler-Maruyama approx-
imation to show the existence of a solution to the martingale problem, which then
implies the existence of weak solutions. In section 2.2. we use Ito’s formula to prove
that pathwise uniqueness holds under our conditions. We then conclude that these
together imply the existence of a unique strong solution. Section 2.3. consists of some
technical results that are used in chapter 2.

Finally, in chapter 3 we consider the convergence rate of the Euler-Maruyama ap-
proximation used to show the existence results. We use Ito’s formula to approximate
the convergence rate.



CHAPTER 1

Preliminaries

1.1. Probability Theory

First we introduce some basic probability theory and notations. In this thesis some
basic theory is assumed to be known.

Unless stated otherwise, we assume a probability space (€2, F,[P), where 2 is the
sample space, F is the o-algebra and P the probability measure on . The probabil-
ity space is introduced more in depth in [13] Chapter 2. Additionally, for 7' > 0 we
assume a filtration (F;)cjo,77 on (£2, F) to form a stochastic basis (2, F, P, (F¢)tejo,r)
([14] Definition 2.1.8.).

In the following we state the conditions, so-called "usual conditions”, which we assume
to be satisfied throughout this thesis.

DEFINITION 1.1 (The usual conditions, see [14] Definition 2.4.11.). The stochastic
basis (€2, F, P, (Fi)co,r]) satisfies the usual conditions if

(i) the probability space (2, F,P) is complete, i.e. for all A € F with P(A) =0 it
holds that B C A implies B € F,

(ii) for all A € F with P(A) = 0 it holds that A € F; for ¢t € [0,T]
(iii) the filtration (F)¢cjo,r) is right-continuous, i.e. for t € [0,T) we have

M

t<s<T

For t = T we note that the relation Fr = [\ Fs does not pose any condition on
T<s<T
Fr.

We denote by E the expectation with respect to the probability measure P. To specify
that we take the expectation with respect to some probability measure P we write EP.

DEFINITION 1.2 (see [I] Definitions 2.3.5, 2.3.7). We say that a measurable func-
tion f on a measure space (£2, F, ) is integrable (with respect to p) provided that

| 1f1du < o
Q
For 0 < p < oo we denote

LP(Q, F, ) :={f : |f|P is measurable and integrable with respect to u}.
2
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The conditional expectation of a measurable and integrable function f given a sub-
sigma-algebra G C F is denoted by E[f|G]. The conditional expectation is introduced
in [23] 2.b.- 2.b.0.

Here we give some notions regarding continuity:

DEFINITION 1.3 (Uniform continuity, see [11] Definition 5.1.). Let f: D — R be
a function. Suppose that for all € > 0 there exists a § > 0 such that for z,y € D
v -yl <d  implies  [f(x)— f(y)] <e.
Then the function f is called uniformly continuous.

PROPOSITION 1.4 (See [25] Theorem 3.1). A composition of two continuous func-
tions 1s continuous.

In the following we will recall some results and definitions regarding convergence.
First we introduce monotone and dominated convergence:

THEOREM 1.5 (Monotone Convergence Theorem, see [29] Theorem 1.3.5 (i)).
Suppose fr e LY(Q, F,P) forn >1 and let f* 1 f as n — oo a.s. Then it holds that

Ef = lim Ef".

n—oo

THEOREM 1.6 (Dominated Convergence Theorem, see [I] Corollary 2.3.12). As-
sume that (Q,F,p) is a measure space and fi, fa,...,q : Q@ — R are measurable
functions. Suppose that |f,| < g p-a.e for alln > 1, [, gdy < oo and lim f, = f

n—oo

p-a.e. Then it holds that f € L'(Q, F, n) and

lim fndu:/fdu.
n—oo

Next we define different forms of convergence for measurable functions:

DEFINITION 1.7 (See [23] 1.a.). Assume f, fi, fa,... to be measurable functions
defined on the probability space (€2, F,P).

(i) We say that the sequence of functions {f, },en converges to f in L' provided
that || X, — X[l = E(|f. — f]) = 0. We write f, <> f.

(ii) We say that the sequence of functions {f,},en converges to f (P-) almost
surely if it holds that P(w € Q : f,(w) = f(w)) = 1. We write f, —> f.

(iii) We say that the sequence of functions { f,, },en converges to f in probability
if for all £ > 0 we have P(|f, — f| > ¢) = 0. We write f, 5y

THEOREM 1.8 (See [23] 1.a.0.). (i) Almost sure convergence implies convergence
i probability.
(ii) Convergence in L' implies convergence in probability.
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In addition to having different types of convergence for measurable functions, we also
consider convergence for probability measures in the weak sense:

DEFINITION 1.9 (Weak convergence, see [5] Chapter 1 Section 1). Let S be a met-
ric space and S be the Borel o-algebra generated by S. Let {P, },en, P be probability
measures on (.5, S) such that for all continuous bounded real functions f on S it holds
that

lim f(:z:)Pn(dzz:):/f(:L’)P(dx).

n—o0

Then we say that the sequence of probability measures { P, },en converges weakly to
P. We denote this by P, = P.

Next we will consider uniform integrability:

DEFINITION 1.10 (Uniform integrability, see [7] Definition 4.5.1). Assume a family
of functions & C LY(Q, F,P). We say that < is uniformly integrable provided that

lim Sup/ | f|dP = 0.
{If[>c}

c——+00 fed

PROPOSITION 1.11 (see [23] 1.b.7). Let 1 < p < oco. A family of measurable
functions { fo, }nen C LP(Q, F,P) is uniformly integrable provided that sup,,cy E| f,,|P <
0.

The following theorem gives us the implication between convergence in probability
and in L' in the other direction with the help of uniform integrability:

THEOREM 1.12 (Lebesgue-Vitali theorem, see [7] Theorem 4.5.4.). Let f be a
measurable function and let {f,}, be a sequence of integrable functions. Then the
following assertions are equivalent:

(i) the sequence { fn}n is uniformly integrable and converges to f in probability,
(11) the function f is integrable and {f,}, converges to f in L.

As a corollary of Theorem [1.12| we get the following lemma:

LEMMA 1.13. Let f be a measurable function and let {f,}nen be a uniformly
integrable sequence of measurable functions such that { f, }nen converges to f in prob-
ability. Then it holds that

lim Ef, = Ef.
n—oo
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PROOF. By Theorem [1.12| it holds that lim ||f, — f||[z: = 0 so the statement
n—oo

follows from

O

Tonelli’s Theorem given below is a useful tool for changing the order of integration,
for example when taking expectations of integrals.

THEOREM 1.14 (Tonelli’s Theorem, see [2] Theorem 5.28). Let (X, F,u) and
(Y, G,v) be o-finite measure spaces and let f : X XY — [0, 00| be a F @ G-measurable
function. Then the following holds:

(i) x— [, f(x,y)dv( ) is an F-measurable function on X,

(ii) y — fX x,y)du(z) is a G-measurable function on'Y and

i) [ e - //f:vydu )i ( //fxydu )du(y).

DEFINITION 1.15 (7-system, see [6]). A class P of subsets of €2 is called a 7w-system
provided that for all A, B € P it holds that AN B € P.

THEOREM 1.16 (See [6] Theorem 3.3). Let P be a m-system and let p and v be
probability measures on o(P). Assume that u(A) = v(A) for all A € P. Then one has
that u(B) = v(B) for all B € o(P).

In the following we consider tightness for a family of probability measures:

DEFINITION 1.17 (see [20] Definition 4.6). Assume that (S, p) is a metric space
and II is a family of probability measures on (S, B(.S)), where B(S) denotes the Borel
o-algebra on S. Then II is called

(i) relatively compact provided that every sequence of its elements contains a
weakly convergent subsequence,

(ii) tight, if for all € > 0 there exists a compact set K C S satisfying P(K) > 1—¢
for every P € II.

THEOREM 1.18 (see [20] Theorem 4.7). Let S be a complete, separable metric space
and let 11 be a family of probability measures on S. Then 11 is relatively compact if
and only if it is tight.
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1.2. Stochastic Processes

In this section we introduce theory regarding stochastic processes, the Brownian mo-
tion and the McKean-Vlasov stochastic differential equation as well as the definitions
of the solutions.

DEFINITION 1.19 (Stochastic Process, see [14] Definition 2.1.1.). Let (22, F,P) be
a probability space. An F-measurable map X :  — R? is called a d-dimensional
random variable. A family of random variables (X;);>0 with X; : Q — R? is called a
stochastic process.

DEFINITION 1.20 (Brownian motion, see [19] Definition 2.1.1.). (a) A real-valued
adapted stochastic process (B;):>o on the stochastic basis (2, F, P, (F;)i>0) is called
a one-dimensional standard Brownian motion with respect to the filtration (F)i>o
provided that the following conditions are satisfied:

(1) BO =0 a.s.

(ii) The process has stationary increments: for 0 < s < ¢ the random variable
By — By has a normal distribution N'(0,¢ — s), i.e. for a € R

1 @ o2
P(Bi— B, <a)=—— e 20-9) dx.
(B < a) 27r(t—3)/_00
(iii) The process has independent increments: for 0 < t; <ty < ... < t,, n € N,
the random variables By — DBy, ..., By, — B;, , are independent.

(iv) The paths t — B;(w) are continuous for almost all w € 2.

(b) A d-dimensional (standard) Brownian motion is a stochastic process (B;)i>o =

B!, ..., B%),~o, where the processes (B})i>o, ..., (B%);>o are independent real-valued
t t/t= t/t= t/t=

Brownian motions.

The stochastic integral used in the following is assumed to be known in this thesis.
The construction and definition of the stochastic integral can be found [19] Chapter 5.

In this thesis our main focus is on stochastic differential equations (abbreviated SDEs),
and more specifically on so-called McKean-Vlasov equations, also known as mean-field
equations. For SDEs which do not have a mean-field term the existence and unique-
ness of solutions is shown in [19] Chapter 6.

For the McKean-Vlasov type SDEs introduced in [9] Section 4.2. the coefficients
depend also on the distribution of the solution:

(1.1)

X, =&+ [ b(Xs, pus)ds + [ o(Xs, i) dBs
1ts = probability distribution of Xj.



1.2. STOCHASTIC PROCESSES 7

Here (By)s>o is the d-dimensional Brownian motion on our assumed stochastic basis,
¢ is an Fy-measurable random variable and the coefficients b : R x M, — R and
o :RYx My2 — R? x R?%, where M is defined in section 1.4., are Borel-measurable.

Now we define what it means to have a weak and a strong solution to Eq. (1.1)).
The weak and strong solution for SDEs without a mean-field term are defined in [19]
Chapter 6.

DEFINITION 1.21 (Weak solution, see [2I] Definition 3.1.). Assume that there
exists a stochastic basis & = (0, F,P, (Fi)eo,r)) which satisfies the usual condi-

tions, a d-dimensional (P, (ﬁt)t€[07T])—Brownian motion B and a continuous R%valued

A~

(ﬁ)te[O,T]—adapted process X = (X¢)teo,r) on S. Then (S’,W,X) is called a weak
solution to Eq. (1.1]) with the initial law pg = Po £t if

(1) IEDO)EVO_1 = Mo,
(ii)

~

T
/ (Ko )| + |0 (Ko )P ds < 00, as. P,
0

where /i, = Po X{l,
(ili) For all ¢ € [0, T it holds that

t t
Xo=¢+ / b(Xs, j1s)ds + / o(Xo i) dB, s
0 0

The existence of a unique strong solution to a McKean-Vlasov equation in a slightly
different setting is shown in [9] Section 4.2.

DEFINITION 1.22 (Strong solution). Let X = (X¢);cjo,7 be a continuous d-dimensio-
nal process on (2, F,P). We say that X is a strong solution to Eq. (1.1)) with the
initial condition Xy = £ provided that the following conditions hold:

(i) The process X is (F7)ep,r-adapted, where (Ff),ci01) is the augmented fil-
tration generated by the Brownian motion B,

(i)
T
000, )+ (X)) e < 50 .
0
(iii) For all ¢ € [0,77] it holds that

t t
X =¢+ / DX, 12)ds + / (X ) dB. a5,
0 0

Next we will introduce the martingale problem. Martingales are defined in [27] Defi-
nition 1, and the martingale problem related to SDEs without a mean-field term are
discussed in [I9] Chapter 7.
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Let
W = C([0,T],RY), W =BW),
W= {w(-At):weW},  #=[)BOW,), te[0,T], (1.2)

where HB(A) denotes the Borel-o-algebra on A, i.e. the smallest o-algebra generated
by all open sets in A. By [28] Chapter 1.3 (p. 30) it holds that for Z,(w) = w,, w € W,
we have Z(W,) = 0(Z,,0 <u <t).

DEFINITION 1.23 (The Martingale Problem, see [2I] Definition 3.2.). We call a
probability measure P on (W, #') a solution to the martingale problem associated
with 7, if for f € CZ(R?) the process (M;)te[o’T] with

M = flw) — [(wo) - / (o () ) (ws) ds

is a continuous (%)te[o’T]—adapted martingale, where ps := P o ws_1 and

T 9 d

(o (W) =3 Z(U(:C,M)JT(x,M))ij—ax?axjf + Zbi(il?,,u)aiif.

ij=1

In the following we will introduce some notions of uniqueness:

DEFINITION 1.24 (Pathwise uniqueness, see [20] Definition 3.2). Assume (X, B),
(Q, Z,P), {Z} and (X, B), (0, Z,P), {Z} to be weak solutions to Eq.(T.1) such
that P(X, = Xo) = 1. We say that pathwise uniqueness holds for Eq provided
that X and X are indistinguishable, i.e.,

DEFINITION 1.25 (Uniqueness in the sense of probability law, see [20] Definition
3.4.). Let (X, B), (,.7,P), {%} and (X, B), (2, .#,P), {#:} be weak solutions to
Eq.(1.1) with the same initial distribution, i.e.,

P(Xy € A) =P(X, € A) for all A € B(R?).

We say that uniqueness in the sense of probability law holds for Eq.(1.1) provided
that the processes X and X have the same law.

PROPOSITION 1.26 (see [20] prop 3.20). Pathwise uniqueness implies uniqueness
in the sense of probability law.

Ito’s formula is a useful tool when handling with processes of a certain type. In the
following we introduce Ito’s formula for the d-dimensional case:
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THEOREM 1.27 (Ito’s Formula, see [29] Theorem 2.3.3.). Assume a d-dimensional
Brownian motion B and functions b = (b, ...,bs,)" and ¢ = (0i)1<i<d,, 1<j<d Such
that b; € L, .((F)iep,m) and 0,5 € LE, . ((Fi)tepp), where for p=1,2

Lp

e (Ft)eepm) = {(Ft)eepo,r -progressively measurable processes (X )iepo,r]

T
such that / | X [Pdt < o0 a.s.}.
0

Suppose that for X = (X¢)c it holds that
t t
X :Xo+/ b(s)d3+/ o(s)dBs.
0 0

Let f:[0;T] x R{ - R, f € C". Then we have

ta \ dy t 9 X,
) =f0.0) + [ Ty [ )
i=1 v

dy da t 02
1 O f(s,Xs)
+ 3 Z Z/ D0z, oik(s)oj(s)ds

0
di dp t
0/ (s.X.) :
#3030 [ AR s)am,

THEOREM 1.28 (Kolmogorov-Chentsov tighness criterion, see [18] Corollary 14.9.).
Let (X™)2_, be a sequence of continuous processes satisfying

(i) supEI X3 < oo,
n>1

(ii) sup E| X — X2* < Cplt — s|*™P for all T >0 and 0 < s <t <T
n>1

for some a, B, 6 >0 and Cp > 0. Then it holds that P" :=Po (X")"!, n € N, form
a tight sequence on (C([0,T],R?),C).

THEOREM 1.29 (see [5] Theorem 6.7.). Let &, &1, &a, ... be random elements in a
separable metric space (S, p) such that &, LN &. Then, on a suitable probability space,

there exist some random elements n 2 € andn In &n, € N, with n, = n a.s.

In the following we define closable martingales and the connection with uniform in-
tegrability:

DEFINITION 1.30 (Closable Martingale, see [26] Chapter 2). Let M = (M;);>0 be
a martingale. We say that M is closable if there exists a random variable Y such that
E|Y]| < oo and
M, = E[Y|F] for all ¢t > 0.

THEOREM 1.31 (see [26] Chapter 2 Theorem 13). Assume M = (M,;);>0 to be a
right continuous martingale. If M is closable then it is uniformly integrable.
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1.3. Some Inequalities

In this section we give some elementary inequalities. We start with Holder’s inequality,
which takes two forms:

THEOREM 1.32 (Holder’s inequality, see [24] Theorem 3.9.9.). Assume X and Y
to be two real-valued random variables. For p > 1, q > 1, such that 117 + % =1 and

E(|X|P) < o0, E(|Y]?) < o0, it holds that

E|(XY)| < (E(IX]")¥ (B(Y]9)".

For some cases Holder’s inequality can be presented in the following form:

REMARK 1.33 (see [15] p.53). Let z,y € R™ and let p > 1, ¢ > 1 such that
1+ 1=1. Then

> lwwil < (3 lel?)” (X i)

i=1 =1 =1

PROPOSITION 1.34 (Young’s Inequality, see [8] Section 2.2.4.). Let a,b > 0. For
1<pg<oo with%+%:1 it holds that
pp
ab < @ + —.
p q

DEFINITION 1.35 (see [22] p. xvii). (i) We denote by £3([a,b], R¥*™) the family
of R™™_valued (F;);>o-progressively measurable processes {f(t)}a<i<p for which it
holds that

/b\f(t)|2dt < o0 as.

(ii) We denote by L£*(R,,R¥™) the family of processes {f()}i>o which satisfy
{f () }ose<s € L2([0, 5], RT™) for every s > 0.

The following theorem is called the Burkholder-Davis-Gundy inequality. It is useful
when estimates for norms of stochastic integrals are needed.

THEOREM 1.36 (Burkholder-Davis-Gundy inequality, see [22] Theorem 7.3.). Let
g € L2(R,,R™™) and let || - || be the Frobenius norm (see page 12). For every p >0
there exist constants ¢, > 0, C, > 0 which depend only on p and for which it holds

that
t % s P t %
oB( [ lalras)” < sw | [ gwas") < o5 ( [ o)’
0 0<s<t 0 0
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THEOREM 1.37 (Gronwall Inequality, see [18] Lemma 18.4). Assume f(t) to be a
continuous function fort > 0. If for some a,b > 0 it holds that

t
f(t) < a+b/ f(s)ds
0
for allt > 0, then one has that
f(t) < ae”
for allt > 0.

The following lemma is a generalization of a Gronwall-Bellman type inequality:
LEMMA 1.38 (See [30] Lemma 2.1). Let 0 <n < 1 and let
0 =0,
ky(x) =< zlogz™, 0<z<n
(logn™ ' =Dz +n, z>n.

Assume that g and q are strictly positive functions on [0,00) such that g(0) < n
and

o0 < 90)+ [ amo(e)ds 120

Then it holds that t
g(t) < (9(0))69@{#0 A,

THEOREM 1.39 (Fatou’s Lemma, see [29], Theorem 1.3.6 (i)). Forn > 1, assume
that 0 < X" € LY(Q,.Z,P). Then one has
Eliminf X" < liminf EX™.

n—o0 n—oo

PROPOSITION 1.40 (Jensen’s inequality, see [29] Proposition 1.3.1). Assume that
X el Q,7,P), X:Q—R: and let ¢ : R — R be convexr. Then it follows that

p(E[X]) < E[p(X)).

For a concave function we get the opposite result for Jensen’s inequality:

COROLLARY 1.41. Let X € LY(Q,.Z,P), X : Q@ — R?, and let ¢ : R? — R be
concave. Then it holds that

¢(E[X]) > E[p(X)].
ProOOF. If ¢ is concave, then —¢ is convex. Thus by Jensen’s inequality

—E(p(X)) = E(—¢(X)) = —p((X)),
and the statement follows from multiplying with —1. O
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1.4. Notation

By C(R?) we denote the space of all continuous functions on R?, and by C([0, 7], R¢)
the space of continuous R¢valued functions defined on [0,7]. By CZ(RY) we mean
the collection of continuous functions which have continuous partial derivatives up to
order 2 and vanish at infinity.

=11
y € R? x R? we use the Frobenius norm ||y|| = \/Z?,j:1 y4. For f e C([0,T],R%)

we use the sup norm || f||e = supep 7y [f(t)[- Additionally, we denote with (-, -) the
scalar product in R?. The transpose of a matrix A is denoted by AT

As for norms, for z € R? we use the Euclidean norm |z| = /3% 22 and for

Set

dy . a _ |o(2)] |o(x) = ()]
C,(RY) := {gp € O(R), lellc,mey = :él{é)d e + SUDy£y Pe— < oo}.

Let M(R?) be the space of probability measures on Z(R?) carrying the usual topology
of weak convergence and let M3, (R?) be the Banach space of signed measures m on
A(RY) for which

e i= [ (1-+lalPpml(d) <
where |m| = m* 4+ m~ and m = m* — m~ is the Jordan decomposition of m. Let

My2(R?) = M5 (R N M(R?) be the set of probability measures on Z(R?).

Define
o, v) = ijéﬂwwm—éﬂmmmy (1.3)

”(pHcp(Rd)Sl

As stated in [10] Section 2.1., (My2(R%), p) is now a complete metric space.

1.5. Assumptions

In this section we will state the assumptions under which we will work in this thesis.
(H;) The functions b : R? x M,2(R?) — R? and o : R? x Mj2(R?) — R are
continuous and satisfy
bz, )|* + llo (@, wlI* < La(1 + |l + [lpl3)
for all (z,u) € R x M2(R%), where L; > 0 is a constant.
(Hy) The functions b : R x Mj2(R?) — R? and o : R? x Mj2(R?) — R4 sat-
isfy for all (1, p11), (zo, pto) € RY x My2(RY) that
2(w1 — @2, b1, 1) — b(2, p2)) + o (w1, 1) — o (2, o) |
< L, </<1(|5E1 — 2]%) + K2 (p* (111, ,uz))>7
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where Ly > 0 is a constant and ;(x), i = 1,2, are positive, strictly increasing, con-
tinuous and concave and satisfy £;(0) = 0, and [, (k1(z) + K2(z)) " dz = oo.

(H)) The functions b : RY x My2(R?) — R? and o : R x My2(RY) — R>? sat-
isfy for all (1, p11), (T2, pto) € RY x My2(R?) that

b, ) = bl )| < A (Jor = ol = 22)| + oo, 2))

s, ) = o, ) |2 < Do = oy = 22)| + 0211, 12))

where A1, Ay > 0 are constants and 7, 72 are positive and continuous functions such
that they are bounded on [1, 00) and satisfy

lim —%(x)

— 5 < = 1,2.
z0 xlog(x~1) <

REMARK 1.42. Assume b(z, i) satisfies (H}). Then for (x1, 1), (22, u2) € R4 x
M2(R?) one has that

<$1 — T2, b(%; Ml) - 5(51327,“2»
< |y — @a[b(a1, 1) — b2, p2)|
< )\1<|931 — zo*y1(|z1 — xa) + |71 — 932|P(M1,M2)>

<A\ (\951 — 2oy (|21 — @) + o1 — o|* + P2(M1,u2))-

i (z)+a?

From the proof of Theorem 2.3. in [30] one has that since liﬁ)l Z‘; oae-2) — 0, it follows

that there exists an 0 < n < % such that for a constant C' > 0 we have
2?7y (z) + 2* < Chy(2?)
2(x) < O ()
2

2%v,(z) < Chy(2?) fori=1,2, (1.4)
where
0 x =0,
ky(x) =< zlogz™, 0<x<ny (1.5)

(logn™ ' =Dz +n, z>n,
is a positive, strictly increasing, continuous concave function with «,(0) = 0 and
Jos mdl’ = 0.
Hence we get

(11 — xg, b1, 1) — b2, p2)) < A (ffn(|$1 — zo|*) + P2(M17M2)>»

where \; depends on C' and \;.
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Additionally, assuming that o(z, ) satisfies (HY) we have with (1.4]) that
lo(ar, ) = oo, mo)|I* < Xafoer = @2 a(lar = 22)| + %1, 1))

<X (ﬁn(ll’l — o?) + p* (11, u2)>7
where A depends on C' and \,.

Therefore it holds that (HY) implies (Hs).



CHAPTER 2

The Existence and Uniqueness of Strong Solutions

In this chapter we will show that there exists a unique strong solution to Eq.,
which is one of the main results of this thesis. To prove this statement we consider
a solution to the martingale problem and pathwise uniqueness and show how these
imply a unique strong solution.

2.1. The Martingale Problem

In the first step we use the existence of a solution to the martingale problem to get a
weak solution to Eq. (1.1). First we show some techincal results:

LEMMA 2.1. Assume that b(z, ) and o(z, ) satisfy (Hy). Let (S;B,X) be a

weak solution to Fq.(1.1) and let E denote the expectation under P. Then, forp > 1,
it holds that

E(1X;|%?) < O(1+E|Xo[*) e,  0<t<T, (2.1)
E(|X, — X,|%) < CA+E|X|?)(t—s), 0<s<t<T, (2.2)
where C' > 0 is a constant depending on T, p and Ly from (Hy).

PROOF. Let 7 := inf{t > 0,|X;| > k}, k € N. Since li}gninf\f(ﬂw] — | X;| then
—00
by Fatou’s Lemma (Theorem [1.39) we have that E|X,| < lilgn inf B| X, n|. Thus if
—00

ka ¢ satisfies (2.1)) and (2.2)) then the inequalities hold also for X,.

For 0 <t < T, by Holder’s Inequality (Remark [1.33]) we have
)"

2p b R
+| [ ot s,
0

t t
B <B(1%ol+ | [ o(Kis] + | [ oK pab,
0 0

2}?) 211,)217

t R ~ 12p
/ (X, j1s)d B, )
0

t t
1%, 332P—I(E|Xo|2p+t2p—1xa/ bR, fu)[ds + Cy 17! E/ lo(Xe o) 7ds)
0 0

— A t A
< E(g%l (\XOPP + ‘ / b(X,, is)ds
0

_otfme e wl (e s o a
=3 E|Xo|?+E b( X, f1s)ds| +E
0

By Lemmas [2.8] and [2.9] from section 2.3. it holds that

t
< (1o + / B(Ib(Xe, )2 + (X, 1) |2) ds )
0

15
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for Cy := 327711 + ¢! + Cptpfl).

Furthermore, by Lemma from section 2.3. we get that for some positive constants
027 037 04

BIX, 7 < O (B X0 + / B(L+ X, + B(1+ | X, ))ds )

IN

IN

SETTY P
t A A
04(1 R + / IE|XS|2”ds>
A A t A A
=Cy(1+ E|Xo|?) + 04/ E|X,|*ds
0
Hence by Gronwall’s inequality (Theorem [1.37) we get
BIX, |7 < c<1 + E\Xoﬁp)eﬂ
where C' is a constant depending on p, Ly, and T

To show (2.2) we conduct similar calculations using Hoélder’s Inequality (Remark

1.33) and Lemmas [2.8] 2.9 and [2.10] from section 2.3.:

t
]E|Xt X |2p—E‘/ u,,uu)du—f—/ (Xu,ﬂu)dBu
<(] [ ]| [ ot
2P\ 55 2p—1\ 2P
(‘/ X, fua)du +‘/ X, fu)dB, )22P>
<‘/ u,,uu du —i—’/ u,uu >Q2p—1

Gyt — sy B / (R ) 2 + [l (Ko )|

2p

2p
u)

IN
&>

I
=

IN

IN

Co(t — )Pt /t 1+ E|X,|*du.
Now we can use and get S

BIX, - X7 < Gyt — 5! / CO(1 + BIXo ) du
< Gt — sy (1 E|X7) (¢ — s)

= C(1+E|Xo>)(t — )P,

where C is a constant depending on 7', p, and Lj. 0
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PROPOSITION 2.2 (See [4] Theorem V.1.1. p.98). The existence of a solution to
the martingale problem implies the existence of weak solutions and vice versa.

Next we will prove the existence of a solution to the martingale problem:

PROPOSITION 2.3. Suppose that (Hy) holds and E|£|?P < oo for any p > 1. Then
there exists a solution to the martingale problem related to Fq. (1.1)).

PROOF. Let n € N be fixed. For ¢t € [0,7], we consider the Euler-Maruyama
approximation equation

t t
Xf:X5+/O (X" oy e (s )ds—I—/O o (X3 (s)s Hi (5))dBs, (2.3)

where X = ¢ and t,,(s) = & =: t; for s € [Qn, (k;,ll)T), k=0,1,...,2" — 1.

Since b(X}! ), 1t () and J(Xt’i(s),ufn(s)) are constant on the interval [ty,txi1), we
have that

t1 t1
Xﬁ = X§ +/ b(th,uto)dS +/ (Xto"uto)st
0 0

= 5 + b(&? M?O)tl + 0-(57 M:&B)Btu
and again

XtZ = thl + b(Xn7ﬁ‘t1)< 2 —t1) + U<Xﬁ7/ﬁ?1)(3t2 — By,).

Thus we can construct a recursive definition for X}, for ¢ € [tg, tx41), as follows:

t t
XZL = XZC +/ b(XZL(S)aﬂ?n(S))dS_’_/ U(X;(S)’M?n(s))st

ty 173

Hence there exists a solution X™ := (X}")co,r] to Eq.(2.3)), and by (H;) and Lemma
2.1 we have

E(|X7'*)
E(1X} — X71™)

where C' does not depend on n.

< C(1+E[¢[*P)e, 0< (2.5)
< 0

C(1+E[E*)(t - s)",

IN
I/\ S

t
<s

Moreover, since E|£]|?P < oo, we get
sup (| X3[) = EJ¢[ < oo,
n>1

sup E(| X" — XJ[7) < C(1+E[E[P)(t — 5)" < Caft — )"

n>1
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Put P := Po (X®)~!. By Theorem we have that {P"} is tight on (W, #)
defined in (|1.2)), and by Theorem we further have that there exists a subse-
quence, which we still denote by {P"}, and a probability measure P° on (W, #)
such that P" converges weakly to PY as n — o0.

Set
; 1 t d T 82
M= f(wi) — fwo) — 5/0 Y [0 (W) 1y )0 (e, (5), My ()i g (ws)ds
i,j=1 Lt
t d 8
_/ Zbi(wtn(S)J/"L;Ln(s))a_f<w8)d87 f € Cg(Rd)7
(U— i

where i = P o w;ll(s).

Since there exists a strong and therefore also a weak solution X™ to Eq.(2.3), by
Proposition we have that Eq.(2.3) has a solution P" to the martingale problem

on (W, #). Thus (M Jtepo,1] is a continuous (%;).cpo,r;-adapted martingale under
P, so for a continuous, bounded and #;-measurable functional G4 we have that

EP (M — MG =0, 0<s<t<T.

In order to prove that PY on (W, #') is a martingale solution to Eq.(1.1) we use
Lemma [2.15( from Section 2.3 to show that (M )tejo,r] is a continuous #;-adapted
martingale under P°, i.e. we want to get

B - 006 = [ (700~ Fw = [/ ) Fwi)Gta)) P = .

w

We prove this by showing
lim B (M — M2)G,) = B (M — M)G).

n—oo

By Definition the map w — wy, where w € W, t € [0, T], is Lipschitz continuous:
Let € > 0 and put §. = ¢. If for all w,w € W

|lw — ]| = sup |ws — ws| < e,
s€[0,7

then one has that
[we — W < sup |ws — 5| <6 =e.
s€[0,T
Now since both f and G are bounded and continuous, from Proposition [I.4] and the
weak convergence of P" to PV we get

i [ (#(w) = F(w)Gulw)) P(du) = [

((F(we) = Fw))Gi(w) ) P (duw).
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Our goal is to now show that

lim [ (( / tibxwtn(u),u;(u)) 5 (0 ) G () ) P (dw)
-/ (( /:i@(wu,m)ai%ﬂwu)du)c;s(w))zﬂ%dw) (26)
and
wm ([ Z (a1 0) 00, 2 ) ) ) ()

- /W ((/: zd: <U(wu,ﬂu)aT(wu,Mu))ijagigz) du)Gs(w))pO(dw). (2.7)

Since we know that P" converges weakly to P°, we get from Theorem that
there exists a probability space (£, .#,P) and W-valued processes X" := (X}")icpo,1]
and X := (X¢)sejo,r] on that space such that

(i) P" =Po (X*)' and P’ =Po (X)!
(ii) X" 2% X as n — oo.

With the help of (i), (2.6) and (2.7) can now be written again as

lim EP<</: io bi( X7 (), uZ(@)%f@ﬁW“) Gﬁz”))

= / t Z bi(Xo, uu)%f(ffu)dU) G,(X)) (2.8)

2

t d
. P Y0 n Y20 n d Y20 Y0
lim EP((/ > (0<th(u)7:utn(u))UT(th(u)?Mtn(u)))ijMf<Xu)du>Gs(X ))
s ? J

([ 3 o o), o ARG C9)

i 81’181:3

Moreover, from (ii) it follows that XZ; () L2 X, for u € [s,t] as n — oc.

Now we will show that for p defined in (L.3) we have p(uf! (,y, ftu) = 0 as n — oo
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Since X" and X" have the same law, then by (2.5) we have for any A > 0

‘ Xn ’ 2p—1
X7 AP < By i dp
- tn(u) - - tn(u) A
X > IXT 1>

/ |X"”)|2pdp
- X7 1> A

[

tn (u)

)\2p 1]E|Xt7; U)|2p

1
< WC(l +E[¢[*)e"

Furthermore, we have that

A—=00 p>1

lim sup/ \Xﬁl(u)]dﬁ” =0,
X7 (1>

so by Definition |1.10| we know that {X )}n>1 is uniformly integrable. From the

almost sure convergence of X £ () tO X, and the uniform integrability of {X }nZl
it follows from Theorems [1.§ and [.12 and Lemma 2.11] from section 2.3. that

< 1 n < 1 ]f‘" Y20
0< lim p(pg, ) pa) < Tim BEX )

and thus we get lim p(u} () fy) = 0.
n—00 n

Let 1 < a < co. With (i), (H;), Holder’s Inequality (Remark [1.33)), (2.15)) from
section 2.3. and (2.5 it holds that

d
1=0

d d

= E‘ Z bi( X7 s By < E( Z 10:( X4 () M&(u)’)
i—0 i=0

< E(xf DX s 17, ) )

= Vd* E[b(X tn(u Mtn(u))|2a

S Cl E(l + |X£(u)|2a + 22a—1E(1 4 |X£(u)|2a))

< Oy <E(1 + \Xﬁ(u)|2a))

< 0(1 + O+ E|5y2a>eCT) < o0, (2.10)

where the constant C' does not depend on n. By Proposition we have that
4 bi(Xp (w)» 1t (u)) fnen is uniformly integrable.

Furthermore, since b is continuous, X" w — X, lim p(u? (wy ) = 0, f € GF(RY),
n n—00 n
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and G is bounded and continuous, it holds that

Go(X") =2 GS(X).

Now from Theorem [1.8 and Lemma it follows that (2.8) holds.

Similarly, with the help of (| m from section 2.3 and ([2.5)) we have

«

E‘ Z X (u)s i ))UT(X (w) Htp (u )))U

3,7=1

d
(Z ‘Zak ) i ()O3 (Xt () 18, ()

d
,J k=1

=1
d d
< <d Z ‘Zalk /’Ltn(u)>ajk(X (u ),/,L;Ln(u))

.
)y

ij=1 k=1
=d"E (| U(Xf s i, (u)) (X Ntn )|| )
< A" E(o (X7 s 112 ) 1)
< C’(l + C’(1 + E|§|4a)eC’T> < o0, (2.11)

where the constant C’ does not depend on n. Then by Proposition it holds
that also {37 oi(o (X[; ()’ H?n(u))UT(XZ; () U?n(u)))ij}nel\f is uniformly integrable, and
since o is continuous, we get from Lemma that also (2.9) holds. O

Now Propositions and give us the existence of weak solutions to Eq. ((1.1)).

2.2. Pathwise Uniqueness

Now that we have the existence of weak solutions, for the second step we will show
that the pathwise uniqueness holds under our conditions. First we show a technical
lemma:

LEMMA 2.4. Lett > 0. Provided that for a Borel-measurable functiony : [0, 00) —
[0, 00) it holds that

t
0<y < / (k1 (9s) + a(ys))ds < oo,
0

where ky1(u) and ko(u) satisfy the conditions in (Hy), it follows that y, = 0 for all
t>0.
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PROOF. Put z; := fg(/@'l(ys) + Kka(ys))ds. From the properties of x1(u) and ko (u)
we get that z; is absolutely continuous and nondecreasing. Now, since y; < z; and Ky
and kg are increasing, we have for all £ > 0 that

dZt

o K1(ye) + ra(ye) < ki(ze) + Ka(2e).

Now set to := sup{t > 0;z;, = 0Vs € [0,¢]}. If t; < oo then for ¢ > ¢, we have z > 0.
Using the properties of x; and k2 and substitution we get

/Zt0+5 /to-i-& dZt /to-i-a K1 (yt) + f€2<yt)
) + 52( ) o K1(z) + Ka(z) o Ki(z) + Ka(z)

for all € > 0. This is a controdiction, and therefore ¢y, = co from which it follows that
Zt = 0.
Now 0 <y, <0, so we get that y, = 0. U

PROPOSITION 2.5. Assume that the conditions of (Hsy) are satisfied. Then we
have pathwise uniqueness for FEq.(1.1]).

PROOF. Assume that for Eq.(T.T) there exist two weak solutions (S; W, (th)te[oﬂ)
and (S; W, (X 2)tepo,r) such that Xl =X2as.

Let Z, := X} — X2. Now it holds that
t R t A R
2= [ (oL = b2 ) ) ds + [ (oKL ) — o (X252 ).
0 0
By Ito’s formula (Theorem [1.27)) we get

d ¢
20 =3 [ 2L )~ b2 s

~ ! N 2
i1 z / (oKL L) — (X1, 1)) ds

1k1

3 [ 7oL — (L ) a5

2,j=1
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t
= [ 2tz ) — oz s+ [ oKL - o2, ) s
0
t
+ / 22, (0K, 1) ~ o(X2. 2)dB,)
0

Since o(XL al) — o(X2, 42))dB,) is a local martingale, there exits an in-
0 fig i3

creasing Sequence of stopping times (7,,)5°,, lim 7,, = 0o, such that
n—oo

tATh R
/ 27, (o(X1, i) — o(X2, 72))dBy)
0

is a martingale for all n € N. Thus is holds that

tATh R . .
B / 27, (o(X1, il) — o(X2, 32))dBy) = 0.
0

Now, by (H,) we get that

tATn " ~
E|Zinr,|” = E/ 22, b(X], 1) = b(XZ, @) ds + |lo (X], fiy) — o(X2, )| ds
0

~

tATh
<R / L (k1 (1:]2) + a0 (i1, 42)) ) ds.
0

Since as = Lo (k1(|Z,]?) + ra(p?(fil, 42))) > 0 for all s > 0 and 7, < 74y for all
n € N, then by monotone convergence (Theorem [1.5) we have

tATh . tATn
limsup E|Zinr, [* < lim supE/ asds = lim E/ asds
0 0

n—00 n—00 n—o0
. tATh t
=E lim a;ds =E asds.

Furthermore, by Fatou’s Lemma (Theorem [1.39) it holds that

t
E|Z,|* = IEhm1nf|Zt/\T |? < hmmfIE\Zt/\T |? < hmsupIE|Zt/\T 2 < IE/ as ds.
0

n—oo

Set Gy := E|Z,|%. From Lemma from section 2.3. and Jensen’s inequality (The-
orem |1.40)) it follows that

A A N 2 A
Pk i) < (BIX! - X2|) < B|ZP =G

= 1,2. Then also &;(u) satisfies the conditions in (Hj) and
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Since R; is concave, we have by Jensen’s inequality (Proposition [1.40)) and Tonelli’s
Theorem (Theorem [1.14]) that

t t
GtSIE/ /%1(|ZS|2)+R2(GS)ds§/ Fiy (B| Zo|?) + Ro(Gy) ds
0 0

- /Ot 71(Gy) + Fa(Gy) ds.

Now by Lemma [2.4) we get that Gy = E|Z,|* = 0. Moreover, it follows that

Z, = X} — X2 =0forall t >0 as. and by Definition we have that pathwise
uniqueness holds for Eq.(|L.1]). O

THEOREM 2.6. Suppose that for each given initial distribution there exists a so-
lution to Eq. (1.1) and that pathwise uniqueness holds. Then Eq. (1.1) has a unique

strong solution.

We will not prove Theorem rigorously in this thesis but we will provide a brief
outline of the proof found in [I7] in the proof for Theorem IV.1.1. and [20] p. 391
(solution to 3.22.):

Definition IV.1.6. in [17] gives us an alternative definition for strong solutions by
using the existence of a function F' with certain measurability conditions for which
X = F(X(0), B) a.s., where X is a solution to Eq. with a Brownian motion B.
Furthermore, we can consider strong solutions as the function F which gives us the
solution to Eq. when plugging in an initial value and a Brownian motion.

We assume (X, B) and (X', B’) to be two weak solutions to Eq. (l.1)) which can
be defined on different probability spaces. We then construct a new probability space
such that there are two solutions (w;,ws) and (ws,ws) defined on that space and
(w1, w3) and (X, B) have the same distribution as well as (ws, w3) and (X', B).

Now pathwise uniqueness implies that Q" x QW (w; = wy) = 1 P"-a.s., where QW
and Q" are regular conditional probabilities given W (defined in [17]) and P" is the
probability law of the Brownian motion. Using [20] p. 391 we obtain the existence of a
function F,(w) determined uniquely up to measure 0 such that Q" = Q" = O(Fy (w))
PW_a.s. Lastly we can see that the function F},(w) has the desired measurability and
that any solution of Eq. with the given initial value can be produced by F,(w)
a.s.

Finally, Propositions [2.3 and [2.5| and Theorem [2.6] give us the desired result:

THEOREM 2.7. Provided that (H;) and (Hy) hold and E|§]*P < oo for any p > 1,
it follows that there exists a unique strong solution for Eq. ((1.1]).
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2.3. Some Techincal Results

In this section we provide some more techincal results and helpful calculations used
above:

LEMMA 2.8.

t 92 t
/ b(Xualuu)du ’ < (t - S>2p1/ ’b<Xu7:uu>’2pdu

ProoFr. By Hélder’s inequality (Theorem [1.32)) it holds that

2p d t 2\p
= (Z </S bi(XuaMu)dU> )
d

¢
/ b( Xy, pty)du

t—s/|b u,,uu|du)
t—s /’b ws M) |2pdu> (/tldu>;

Z(t—8)2”1/ |D(Xu, pr) [P (2.12)

LEMMA 2.9.

E‘/ X o)

PROOF. Using Theorems [I.30] - and [1.32] we get

s 2p
E‘ / u,,uu / O-(Xuaﬂu) u )

t
p
scmE(/ndX@uquo

< ([ lousmlran) ([ 1))’

S

= Oy (t — s)p_1E< / t |o(Xa, uu)||2pdu>. (2.13)
O

" < Ot — sy E( /|w X))

< E( sup

rE(s,t]
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LEMMA 2.10. Assume that (H;) holds and ps :=Po (X,)~'. Then
[B(X s, )7+ llo (X, ) I < 377 LY (L + [ X[ + 2771 E(L + | X))

ProOF. By Hélder’s inequality (Theorem [1.32)) we have

p
sl = (+ Jz)dp (@)

Rd

= )
<(([a+ |x|)2pdus<x>)’l”( /R d 1zﬁ1dus<x>)p'@l)p
)

R4

(
(
/ (1+ )% dpsy ()

= [ Al X))

_E(1+ X,

<E((1+ |Xs |2p)2p 2 % )

= 2271R(1 + | X, |*) (2.14)

and thus we get

[D(X s, 1) [+ [|0( X, ) I < ([0(Xos 1) * + o (X, 1) 12)”
< (Li(L+ X+ [lpl32))"
(L1 + X2+ [l 327 35 )
= 3P LR (1 + [ X% + [|ull35)
< PTLR(1 + | X2 4+ 227 B (1 + | X, ). (2.15)

IN

O

LEMMA 2.11. Let pul :=Po (X! and p? :==Po (X?)~'. Then it holds that
plugs 1) < E|X) — X¢|.

PROOF. The condition [|¢||¢, ey < 1 gives that

sup [p(z) — o(y)

j ’LE _ y’ < HSDHCP(Rd) < 17

so it follows that |o(z) — @(y)| < |x —y| for 2,y € R4, x # y.
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Using the definition of p and the previous results we get
phis p7) ‘ / @)y (dz) / p(x)p; (de)
“P”C (Rd)<1 R4

= sup E‘P(th) - EQO(XE)

H‘P”CP(Rd)Sl

< s Efp(X) - p(xP)

”(p”Cp(]Rd)gl

<E sup |o(Xy) —o(X;)

Hlpllcp(Rd)Sl

< E)th ~ x2,

(2.16)

LEMMA 2.12. For all 0 < § < 2 there exists a constant cs > 0 such that

2*(logz)? < c;2*°  for all x € (0, 1].

PROOF. Put ¢s := (%)2, 0 < 0 < 2. We show that 2°(log x)? < ¢; for all z € (0, 1]:

Looking at the first and second derivatives of 2°(log z)? we can see that it reaches its
maximum at z = e~ 5. Thus we get

2 2

loge)? < (1) (togety? = (2 = (2 =

e
Moreover, it holds that (logz)? < cs27%, so the statement follows from multiplying
both sides by 2. B

In the following we will show how to confirm the martingale property with respect
to (%)te[gﬂ defined in using continuous, bounded and measurable functionals
as test functions instead of indicator functions of measurable sets. We will do this in
two steps: first we show the statement for a (% (W;)):cjo,rj-martingale. Then we will
consider a right-continous filtration to help prove the final statement.

LEMMA 2.13. Let (My)icjor) be a (BOW))icor)-adapted, continuous and inte-
grable process. If for a continuous, bounded and B(W;)-measurable functional G it
holds that

E(M,G,) = E(M,G,)
for 0 < s <t <T, then (My)cor) is a (BOV))teo,r)-martingale.
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PRrROOF. By [28] Chapter 1.3 (p. 30) we have that for X,(w) = w,, w € W, it
holds that ZW,) = 0(X,,0 <u <t).

Define a m-system P as P := {{th € (a1,b),...., X4, € (an,b,)} where ;n €
N, —oogal-<bi§oo,izl,...,nand0§t1<...<tn§s}.

Now we have that B(W,) = o(P).

Set i and v to be finite measures on Z(W;) defined as follows:

u(ﬁ{Xti € (ai,bi)}) = ]E(Mtﬁ H{Xtie(ai,bi)})
; i=1

=1
v € (ai00}) = B(M T L, ctaunn )
i=1 =1
Let {¢}}ren be a family of continuous functions such that klim @l = Ligpy for
—00

1=1,...,n.

Since w + (wyy, ..., wy,) and (Y1, ..., Yn) — [y ¢} (y;) are continuous maps it fol-
lows from Proposition u 1.4) that w — [ ¢i(wy,) is also continuous.

Therefore by our assumption it holds that
E(M [T eiwn)) = E(M T oi(wr)
i=1 i=1
for all k£ € N.

Furthermore, by Theorem [1.6] we get that

leIgOE<Mt 11 wi(wti)> = E<Mt ll ﬂ(ai,bi>(wti)>v
;}LTOE<MS 11 sok(wti)) = E<Ms 11 1<ai,bi>(wti>)’

and therefore it follows that
E(Mt H ]‘(ai,bi)(wti)> = E(MS H ﬂ(aiybi)(wti)) .
i=1 i=1

Now we have that u(A) = v(A) for all A € P. Then by Theorem it holds
that p(B) = v(B) for all B € #(W;) and hence we conclude that (M;)icjor) is a
martingale with respect to (B(Wi))icio,r)- O

LEMMA 2.14. Assume that (My)i>o is a continuous (Fi)iso-martingale. Then it

is also a martingale with respect to (Gi)i>o where G := [ Fs.
s>t
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PROOF. Set X1 := M, 1, n € Nand X := M,,. Put A:= {% :n € N} and
H, = Fsy, for r € A.

Now lim X1 = M, and since (M;);>0 is an (F;);>o-martingale one has that
n—o0 n - -

E[X2[H o J=E[M 2|Fy 2 ]=My,1 =X, as

n+1 n+1

for all n € N. Thus (X, ),c4 is a (H,),c4-martingale.

Furthermore, we have
E[X‘H;]:E[MS+1’FS+;]:MSJr;:X; a.s.
for all n € N, so (X,),ea is a closable martingale. Then by Theorem it

holds that (X,),c4 is uniformly integrable and from Lemma it follows that
lim EM,, 1 = EM,.

n—oo

Let 0 < s <t A€ Gsande € (0,t —s). Then A € Fyy. for all ¢ > 0, and
since (My)i>o is a (F)i>o-martingale it holds that

E(MtlA) = E((Mt - Ms—i—a)ﬂA) + E(Ms+EILA) =0 + E<Ms+eﬂA)
for all e € (0, — s).

Since the above holds for all ¢ € (0, — s) we can consider a sequence (&,)eny With
en =min{:, t —s — &} for any 0 € (0,¢ — s — ). It holds that lim &, = 0.
n—oo

Now we get
E(MtﬂA) = lim E(Ms—i-enlA) = E(MSILA)

n—o0

for all A € G,. O

With Lemmas and we obtain the following result:

LEMMA 2.15. Let (Mt)tg[()ﬂ be a (Wi)icpp,m-adapted continuous process. If for any
continuous, bounded and #;-measurable functional G4 we have that

E(M,Gs) = E(M,G)
for 0 < s <t <T, then (My)cjor) is a martingale with respect to (%)tE[O,T].



CHAPTER 3

The Convergence Rate

In chapter 2 we proved the existence of a unique strong solution for Equation (1.1
by using the Euler-Maruyama Approximation introduced in (2.3). In this chapter we
will consider the convergence rate of this approximation.

DEFINITION 3.1 ("Big-O notation”, see [16] (5.42) p. 340). Let f and g be real-
valued functions such that there exists a C' > 0 and a € R with

|f(z)] < Clg(z)] for all z > a.
We denote this by

LEMMA 3.2. Let k,, 0 <n < %, be defined as in (1.5). Then it holds that
T+ kig(x) < Cphig ()

for x >0, where C,, is a constant depending on 7.

PrOOF. Consider 0 < < 7. Then
logz™! > logn™' > log (%)_1 =loge =1,

and hence

z+ky(z) =2+ zlogr™ <zloga™ +axlogaz™ =2zloga™" = 2k, ().
Next assume that x > 7. Then we have

r=n+x—n<nlogn ' +x—1
nlogn™
logn=t —1

_ 1 -1 -1 .
= (—1ogn—1 — + 1) (nlogn ™" + (logn ™" = 1)(z = n))

—( ! +1> ()
- \logn—t—1 FonE)s

<nlogn' +z—n+ (logn™' —1)(z —n) +

and thus we get

1 Tt 1) Fog () + iy () < Cpi ().

x+ Kry(x) < <lognT

Now for > 0 it holds that z + r,(z) < Cyk, (), where C, := C, V 2. O

30
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The following statement regarding the convergence rate of the approximation is a
slightly different formulation of that found in [I0] Section 4:

THEOREM 3.3. Consider X; from Eq. (1.1)) and the Euler-Maruyama Approzima-
tion from (2.3). Assume that (Hy) and (Hj) hold for b and o and that E|{[* < oo

for any p > 1.
Then it follows that there exists a Ty > 0 such that

E( sup | X} — Xt|2> =0((27"Ty)'™)

t€[0,T]

for any v € (0,1).

PrOOF. Put H; := X" — X;. Then we have

t

t
Ht _ /0 (b(Xn ,utn( ) _ b(X87MS)>d$ —|—/0 (O'(XZ;(S),/VLZL(S)> - O-(Xsmu’s))st.

By a similar deduction as in Propositionwe get from Ito’s formula (Theorem [1.27))
that

|Hy|? = Ji(t) + Jo(t) + J5(2),

where

t

Tt) = [ 2L )~ D)),
0
t

Jut) = / O H, (0(XP 1 2 00)) — 0(Xe, 12))dBs),

t
lt) = [ o0 ) = o (X P
0

We first take a look at Ji(¢). By (Hj) we have
01 =] [ 2B O ) = DX
<2 [ THIO ) — DX ) s
=2 [ LK ) = DOXE )+ DO ) = DX, s
2 [ THABOE oy ) — O+ HLICE ) = B
/ L2+ DX 0 10 ) — DX, )P

#2 [ A (HPOHD + HAp 1))
0
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With (HY) and Hoélder’s inequality (Remark [1.33)) we get
t t
()] < / \H[2ds + 2 / NE(IXE o — XPPAR(XE ) — X2+ 02 (o, i) ds
t t t
2 / M P Hul)ds + A / L J2ds + M / (", 1) ds.
0 0 0

Furthermore, by Remark and ([2.16) we get for some constant ¢ > 0

t t
BRG] §(1+>\1)/ |Hs|2ds+2A§c/ /€727(|XZ:L(S)—X:|)dS
0 0

t t t
n 2Xf/ X7 —X§|2ds+2)\1c/ o (| HLJ2)ds + )\1/ X7 — X, |ds.
0 0 0

Next we want to consider the supremum. Since all the integrands are positive and &,
is increasing we have for 0 < ¢ < T that

sup |J1(s)] <(1+2\;) sup/ |H,|2dr + 2)\3c Sup/ H%(|X&(T)—Xf|)d7“

s€0,t] s€[0,t] s€(0,t] JO
+ 22 sup / | Xt ) — X"2dr + 2\;c sup / k(| Hy|?)dr
s€0,t] Jo s€[0,t] JO
t t
§(1+2A1)/ sup |Hs|2dr+2)\fc/ 2(sup X7 — X7|)dr
0 s€l0,r] 0 s€l0,r]
t t
+ 2)\2/ sup | Xy s Xf|2d7’+2)\10/ ki ( sup |H,|*)dr
0 s€l0,r] 0 s€[0,r]

By linearity of expectation and Tonelli’s Theorem (Theorem |1.14]) we now take the

expectation and obtain

t t
E( sup |7(s)]) §(1+2)\1)/0 E( sup |Hs|2)dr+2A§c/0 E(k2(sup | X}, — X2)))dr

s€[0,t] s€(0,r] s€[0,r]

t t
+2A§/ E( sup |X] (&) — Xg|2)dr+2A1c/ E(k,( sup |H|*))dr
0 0

s€[o,r] s€[0,r]

It is useful to notice that the map x — &7 (y/z) is concave:
For the case 0 < x <17 we have

a d? e dP oz , d T
2 (\/E):@x(log(x 2) :@Z(logx) :d—<zl(logx) —|—§log:c)
d /1 2 1 1 1 1
-2 (20 | ):—1 1 1
dx(4(ogx) + 5 log 5 1087 + o 2x(0g:c+ ) <0
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forall()<x<%.
Similarly, it holds for all z > n that

d? d?
— ko (V) = 12 ((logn™"

2

T ds?

~ Vi +n)’
(log nt— 1)2x + 2(log n~t— nvx + n*
1

d B
= - (logn” Y= 1)+ (lognt = 1)n

S

1 1
= ——(logn~ ! = 1)n— < 0.
2(Ogn >77x\/5<

Now by Jensen’s inequality (Proposition|1.40) we have for Y := sup,c(o, [ X} () — X'
that

2 w2 2
Ex, (Y) = Ex, (VY?) < K, (VEY?).
Since k, is also concave, by Jensen’s inequality we get
t
E( sup \J1(5)|> < Cl/ E( sup |HS\2)dr
s€[0,] 0 s€[0,r]

/@%((E( sup | Xy () —X;‘]?))Q)dr
s€[0,r]
E

=

+C4

(

k| E( sup |Hs]2>>dr. (3.1)

s€[0,r]

sup | Xy () XS”|2>dr

s€[0,r]

+C
+C

/
/
/

Next we will consider the term Js(t). With (H)) and Remark we get

(01 = [ 100 ) = o X s
Z/ HU(X&(S)»M?R(S)) —o(X{, py) +o(X ) — U(Xs,ﬂs)HQdS
0
t
<2 [ o0 ) = X2 )P (X2 2) = (o) P
0
R t R t
< 2/\2/ R (IX7 o) — X3 P)ds + 2)\2/ P (117 sy 115 )ds
0 0

t t
+ 2/\2/ k(| X2 — X,[*)ds + 2>\2/ P2 (U™, ) ds.
0 0
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Using similar calculations as for the term J;(t) we have
ot ot
a0 <28 [ (X0 = X2V + 2% [ XD — X2Pds
0 0

t t
+2)\2/ kn(|Hs?)ds + 2Xs [ |H|ds,
0 0

and since &, is increasing and all the integrands are positive we get for 0 <¢ < T

¢ ¢
sup |J3(s)] SC';;/ Ky ( sup |XZ;(S) — X;L|2)dr—|—C’3/ sup ]X[L (5) — X"dr
0 0

s€[0,t] s€[0,r] s€[0,r]

t t
+C’3/ Ky ( sup |H,|?)dr + Cg/ sup |H,|*dr.
0 0

s€lo,r] s€[0,r]

Thus it follows from Tonelli’s Theorem (Theorem|1.14]) and Jensen’s inequality (Propo-

sition [1.40) that

E<§fo% |J3(S)I) <Cs /(:E( sup |Hs|2)d7“

s€[0,7]
t
-|—C'3/ Iin(E< sup | X} () X:|2)>dr
0 s€[0,r]

t
—|—Cg/ E( sup | X" () X§|2)dr
0

s€[0,r]
t
+03/ /@7(1&1( sup |Hs|2>>dr. (3.2)
0 s€[0,r]

Now we take a look at the term J(t). By the Burkholder-Davis-Gundy inequality
(Theorem |1.36])) we have for 0 < ¢ < T that

B sup 17(0]) =28 ( sup | [ ZH’ 01 (X2 ey ry) = (X ) AW

)

s€[0,t] s€[0,t]
d
<23 E( s / HH (035 (X1 0y, ) = 00 (X ) )W)
i,j:l s€|0,t
<QZCE /}H 053 (X vy i () — 0 (X, i) |d7“)
i,7=1

1
ZQCE / |Hl O’Zj Mt (r)) —O'Z'J(XT,ILLT))FCZ?")Q).
Z] 1
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Holder’s inequality (Remark [1.33)) gives us that

d d 1
Z Z ( | H3 (01,5 (XE, ()2 1) = 0 (X, o)) ‘26”) 2

i=1 j=1

.
o

IA
N
—
]
SR
M-
S~
B
9
M
;
35
3
S
S
b
5
35
i
&
~
”L?
~——
Nl
N

t d d A ) %
/0 Z Z }Hf’ (O-ivj(XgL(r)v lu?n(r)) - o-i,j(Xrnur))l dT)

i=1 j=1

[V

t
/0 | H. (U<th(r) Mtn( )) - U(Xm/lr))szT)

Hence we have
1
5

1
2

t
SC/]E< sSup |H| HU( tn(r)7ll’t?n(7')) - U(XT7MT>H2dT>

s€[0,t]

L, t 1
B ( sup |Hs|2)2(<c’>2 / ||a<Xzz<r>,uz<r>>—a(Xr,muzdr)?),

s€[0,t]

and furthermore by Young’s inequality (Proposition [1.34]) it follows that

1 1 - ! .
B sup |12(s)l) < 5B sup 1) + 57 E( / (X2 oy 12 ) = (X ) 2 ).

s€[0,4] s€(0,1]

[\]
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For the latter term we use (3.2)) and get

IE< sup |J2(s)\> g%E( sup |Hs|2) +Cy /Ot]E< sup |Hsy2>dr

s€[0,¢] s€[0,¢] s€[0,r]

+ Oy /Ot KW(E( sup | Xyl () — X;L|2>)d7‘

s€[0,r]

—i—C’z/Ot ( sup | Xy () XT"P)dS

rel0,s]

+ Oy /Ot mn<E< sup ]Hr|2))ds. (3.3)

rel0,s]
Now from (3.1]), (3.2)) and (3.3) we conclude that for 0 <t < T
E( sup [H,*) <E( sup [Ji(s)| + sup | a(s)| + sup |Js(s)])

s€[0,t] s€[0,t] s€[0,t] s€[0,t]

1 t
§—E< sup |H5|2) +C4/ E( sup |Hs|2>dr
2 0 s€[0,r]

s€[0,t]

+C'4/0t/{3]<<E( sup | X[ (5 — Xg|2)>;>dr

s€[0,r]

+Cy /Ot l€n<E< sup [ X7 (5 — X;L|2>>d7“

s€[0,r]

¢
+C'4/ E( sup | X7 (5 — X§|2>dr
0

s€[0,t]
¢
+ 04/ Ky (E( sup |HS|2>>dr, (3.4)
0 s€[0,7]
where C4 depends on A\;, Ay and d.

By moving the term %E( sup |Hs]2> to the left-hand side and multiplying both
s€[0,t]

sides of (3.4) by 2 we obtain

t
]E< sup |Hs|2> < C*/ E( sup ]Hs|2>dr
0

s€[0,t] s€[0,7]

¢ 1
+C*/ 727<<IE( sup | Xy () Xf]2)>2>dr
0 s€[0,r]
¢
+C*/ /@7<]E< sup | Xy () Xf|2>>dr
0 s€[0,r]
¢
+C*/ E( sup | X[ (5 X:\2>dr
0 s€[0,¢]
¢
~|—C’*/ I€77<E< sup |H5]2>)dr. (3.5)
0 s€[0,r]
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Next we will construct an estimate for E( sup | X} (5) X7 > By (2.4) and Holder’s
s€[0,r]

inequality we have for £k =0,..,2" — 1 and 0 < ¢ < T that

E( sup | X7 — X{Z|2>

k
Lt<s<hEEle

—E(  swp [B(XE i) (s — ) + o (X 1) (B = By )
Srt<s< il
k1l k

< 2E( t— 1y
’b( 7/’Ltk) on on

2
FloX )P sup  |B, - By [?)

DE(DCX, i )P) @02 + 2B (o (X )P sup B, = ByJ?).

grt<s<Eil
From Holder’s inequality (Theorem [1.32)) it follows that
E(lo (X502 sup  |B, — By )

k
Et<s< il

< (B(lo ez m)lY)* (B( sup 1B, — B, %))

k+1
Ft<s< Bl

= (E(HU(XZZ,/LZC)H‘l)é(E( ) sup ‘/tsdBrrl))é.

2—nt§5<%t k

NI

Furthermore, the Burkholder-Davis-Gundy inequality (Theorem |1.36]) gives us

k+1t

sup |/ dB} <Cl (/ n dr)izé’l (27")2.

Ft<s<Eily

By similar calculations as in (2.10) and (2.11]) we can see that

E(‘b(XtTZ?MZC)F) < CA12 < 00,
E(|lo (X, mp)I* < Cs < oo,

so we get that
E( s X7 XDP) < Ca@ Tt + G20 < G < G,

2%15<s< k;,}lt
Now (3.5 can be presented as

t
E( sup |H,|? SC’/ E( sup |H|*) + s, (E( sup |H,|?) )dr
<se[01,)t}| | ) 0 <se[0€ﬂ}| | ) n( <se[0,r]| | )>
+CTR(C(27"T)%) + CTk,(C27"T) + CT(27"T).  (3.6)
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Set A= CTr2(C(27"T)7) + CTk,(C27"T) + CT(27"T) and for 0 < t < T put

g(t) = E( sup [H,J*).

s€[0,t]

Then g is strictly positive and strictly increasing.

Now with (3.6) and Lemma we get

g(t) < C/;]E( sup |Hs|2> +/<on<E( sup |Hs|2)>dr+A

s€[0,r] s€[0,r]

= C/Otg(r) + mn(g(r))dr + A
< C, /Ot Ky <g(r)>dr + A.

Now Lemma m gives us that for a constant C' depending on 1, T, A1, A» and d

E< sup |Hs|2> < CASPI=CTY

s€[0,T]

Since it holds that lim C'(27"T)z = 0 and lim C(27"T) = 0, we can assume that

n—0o0 n—oo

C(27"T)z < and C(27"T) < n and use the property ky(x) = —zlog(x) for z <.

We can see that for A the term C’T/{%(C’(Q*"T)%) converges the slowest as n — oo,
so for large n we have A < C’(l)T/i%(C(T"T)%) and thus

E( sup |Ht|2> < cm <T,€3](C<2_TLT)é)>eXp{_C_’T}

t€[0,T]

By Lemma [2.12] we have that for all 0 < § < 2 there exists a constant cs > 0
such that

Tﬁ%(C(Z_nT)%) S TC(SCQ_(S(Z_nT)L;é — T2_3C502_62_n(1_g)'

Since 0 < ¢ ©T < 1 and for large n it holds that 0 < A < 1 we can see that
the estimate for ]E( sup |Ht|2> gets worse the smaller e=¢7 is.
t€[0,7]
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Let € > 0 and set T, € (0,1) such that e=¢™ > 1 — £. Now it follows that
<T0m27(0(2"To)%)>exp(_CT0) < cOTF DI gon-H)a-9)
< 0@ (27nTy)-2)(1-)
< CP(2 )
for any v € (0,1) since ¢ and & can be chosen arbitrarily small.

Therefore we get for T' € [0, Ty
E( swp |X7 - Xi[2) = 0(27"T) ).

t€[0,To)

For the case T' < Tj the statement is proved. If T" > T; we consider the intervals
[Ty, 2Ty], [2T0, 310, ..., H%]Tg, T and by similar means as above we get

E( sup [X] — Xi[2) = O((27"T)" ),

t€[0,T]

and thus the proof is finished.
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