
Approximations for Stochastic McKean-Vlasov Equations with
Non-Lipschitz Coefficients by an Euler-Maruyama Scheme

Emilia Koskela

Master’s Thesis

University of Jyväskylä
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Tässä tutkielmassa käsittelemme stokastisia McKean-Vlasov -yhtälöitä. Nämä ovat
stokastisia differentiaaliyhtälöitä, joiden kerroinfunktiot riippuvat myös ratkaisun jakau-
masta. Tämä riippuvuus lisää yhtälöiden monimutkaisuutta, joten tutkielmassa tutkim-
me yhtälöitä diskreetin approksimaation kautta.

Keskitymme tässä tutkielmassa tarkastelemaan yksikäsitteisen vahvan ratkaisun ole-
massaoloa stokastisille McKean-Vlasov -yhtälöille diskreettiä ja rekursiivista Euler-
Maruyama -approksimaatiota käyttäen, sekä tämän approksimaation suppenemis-
nopeutta. Pääasiallisena lähteenä tässä tutkielmassa käytämme Xiaojie Dingin ja
Huijie Qiaon artikkelia Euler-Maruyama Approximations for Stochastic McKean-
Vlasov Equations with Non-Lipschitz Coefficients.

Tutkielmassa esittelemme pohjateoriaa ja joitakin tuloksia stokastisten prosessien
sekä stokastisten differentiaaliyhtälöiden ympärillä. Esitämme muun muassa määritel-
män McKean-Vlasov -yhtälöiden vahvalle ja heikolle ratkaisulle sekä esittelemme
martingaaliongelman. Käymme läpi myös joitakin hyödyllisiä epäyhtälöitä. Ase-
tamme lisäksi oletukset, joiden puitteissa tutkielmassa työskentelemme: oletamme
tässä tutkielmassa esimerkiksi, että McKean-Vlasov -yhtälöiden kerroinfunktiot täyt-
tävät tietyt ei-Lipschitz -ehdot.

Yksi tutkielman päätuloksista on näyttää yksikäsitteisen vahvan ratkaisun olemas-
saolo. Toteutamme tämän kahdessa osassa: ensin näytämme, kuinka diskreetti Euler-
Maruyama -approksimaatio voidaan määritellä rekursiivisesti. Tämän approksimaa-
tion avulla todistamme, että tarkastelemallemme yhtälölle on olemassa ratkaisu mar-
tingaaliongelmaan, ja täten saamme osoitetuksi myös heikon ratkaisun olemassaolon.

Tämän jälkeen näytämme Iton kaavaa hyödyntäen, että poluittainen yksikäsitteisyys
pätee oletustemme ollessa voimassa. Näiden vaiheiden jälkeen osoitamme, että vah-
van yksikäsitteisen ratkaisun olemassaolo voidaan näyttää. Tarkastelemme Iton kaa-
van avulla myös ratkaisun olemassaolon osoittamiseen käytetyn Euler-Maruyama -
approksimaation suppenemisnopeutta.
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Abstract:

In this thesis we study stochastic McKean-Vlasov equations. These are stochastic
differential equations where the coefficients depend also on the distribution of the
solution. This dependency adds to the complexity of the equation so in this thesis we
will study these equations using a discrete approximation.

We focus on considering the existence of a unique strong solution to stochastic
McKean-Vlasov equations using a discrete and recursive Euler-Maruyama approx-
imation, as well as the convergence rate of the approximation. Our main source is
the article Euler-Maruyama Approximations for Stochastic McKean-Vlasov Equations
with Non-Lipschitz Coefficients written by Xiaojie Ding and Huijie Qiao, which we
follow throughout this thesis.

In the thesis we recall some preliminary theory surrounding stochastic processes and
stochastic differential equations and introduce some results. We give the definitions
for weak and strong solutions for the McKean-Vlasov equation as well as the defini-
tion for the martingale problem. We also introduce some useful inequalities. We give
the assumptions under which we work in this thesis, such as the assumption that the
coefficients of the McKean-Vlasov equations satisfy some non-Lipschitz conditions.

One of the main results in this thesis is to show the existence of unique strong solu-
tions. We approach this in two steps: first, we show the recursive construction of the
Euler-Maruyama approximation. With this approximation we show that there exists
a solution to the martingale problem and hence we get the existence of a weak solution.

Then, using Ito’s formula we prove that pathwise uniqueness holds under our as-
sumptions. After these two steps we show that the existence of a strong unique
solution can be proven. We also investigate with the help of Ito’s formula the conver-
gence rate of the Euler-Maruyama approximation used to show the existence of the
solution.
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Introduction

Stochastic differential equations have been of interest amongst researchers thanks
to their many applications, for example in physics and engineering. Thus the existence
of their solutions as well as their uniqueness has also been investigated under different
assumptions regarding the regularity of the coefficients. In order to utilize computers
in the research numerical approximations have become of use. A useful and relatively
simple tool is the Euler-Maruyama approximation which is a discrete, recursively
defined method. [30]

In this thesis we consider stochastic McKean-Vlasov equations, also known as
mean-field equations, and the existence of unique strong solutions using the Euler-
Maruyama approximation. McKean-Vlasov equations are stochastic differential equa-
tions whose coefficients depend also on the distribution of the solution. In this thesis
we consider the coefficients to be non-Lipschitz.

Throughout this thesis we follow the article [10] by Xiaojie Ding and Huijie Qiao
as our main source. We provide the calculations and deduction from the article in
more detail in this thesis. Some basic probability theory is assumed to be known,
but some preliminary definitions and results are introduced in the first chapter. In
section 1.1. we recall some basic probability theory, from defining the stochastic basis
to considering some convergence results as well as probability measures on metric
spaces.

In section 1.2. stochastic processes are introduced and we give a definition for the
Brownian motion. We introduce the McKean-Vlasov stochastic differential equation
and the definition for weak and strong solutions. We also consider the martingale
problem and some notions of uniqueness, and give Ito’s formula for the multidimen-
sional case. Section 1.3. consists of some useful and fundamental inequalities such as
the Burkholder-Davis-Gundy inequality and the Grönwall inequality. In section 1.4.
we introduce some notation and in section 1.5. the assumptions under which we will
work in this thesis are presented.

As one of our main goals of this thesis, in chapter 2 we focus on proving the exis-
tence and uniqueness of a strong solution for the stochastic McKean-Vlasov equation
introduced in section 1.2. In section 2.1. we consider the Euler-Maruyama approx-
imation to show the existence of a solution to the martingale problem, which then
implies the existence of weak solutions. In section 2.2. we use Ito’s formula to prove
that pathwise uniqueness holds under our conditions. We then conclude that these
together imply the existence of a unique strong solution. Section 2.3. consists of some
technical results that are used in chapter 2.

Finally, in chapter 3 we consider the convergence rate of the Euler-Maruyama ap-
proximation used to show the existence results. We use Ito’s formula to approximate
the convergence rate.

1



CHAPTER 1

Preliminaries

1.1. Probability Theory

First we introduce some basic probability theory and notations. In this thesis some
basic theory is assumed to be known.

Unless stated otherwise, we assume a probability space (Ω,F ,P), where Ω is the
sample space, F is the σ-algebra and P the probability measure on F . The probabil-
ity space is introduced more in depth in [13] Chapter 2. Additionally, for T > 0 we
assume a filtration (Ft)t∈[0,T ] on (Ω,F) to form a stochastic basis (Ω,F ,P, (Ft)t∈[0,T ])
([14] Definition 2.1.8.).

In the following we state the conditions, so-called ”usual conditions”, which we assume
to be satisfied throughout this thesis.

Definition 1.1 (The usual conditions, see [14] Definition 2.4.11.). The stochastic
basis (Ω,F ,P, (Ft)t∈[0,T ]) satisfies the usual conditions if

(i) the probability space (Ω,F ,P) is complete, i.e. for all A ∈ F with P(A) = 0 it
holds that B ⊂ A implies B ∈ F ,

(ii) for all A ∈ F with P(A) = 0 it holds that A ∈ Ft for t ∈ [0, T ]

(iii) the filtration (Ft)t∈[0,T ] is right-continuous, i.e. for t ∈ [0, T ) we have

Ft =
⋂

t<s<T

Fs.

For t = T we note that the relation FT =
⋂

T<s<T

Fs does not pose any condition on

FT .

We denote by E the expectation with respect to the probability measure P. To specify
that we take the expectation with respect to some probability measure P̃ we write EP̃.

Definition 1.2 (see [1] Definitions 2.3.5, 2.3.7). We say that a measurable func-
tion f on a measure space (Ω,F , µ) is integrable (with respect to µ) provided that∫

Ω

|f |dµ < ∞.

For 0 < p < ∞ we denote

Lp(Ω,F , µ) := {f : |f |p is measurable and integrable with respect to µ}.
2
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The conditional expectation of a measurable and integrable function f given a sub-
sigma-algebra G ⊂ F is denoted by E[f |G]. The conditional expectation is introduced
in [23] 2.b.- 2.b.0.

Here we give some notions regarding continuity:

Definition 1.3 (Uniform continuity, see [11] Definition 5.1.). Let f : D → R be
a function. Suppose that for all ε > 0 there exists a δ > 0 such that for x, y ∈ D

|x− y| < δ implies |f(x)− f(y)| < ε.

Then the function f is called uniformly continuous.

Proposition 1.4 (See [25] Theorem 3.1). A composition of two continuous func-
tions is continuous.

In the following we will recall some results and definitions regarding convergence.
First we introduce monotone and dominated convergence:

Theorem 1.5 (Monotone Convergence Theorem, see [29] Theorem 1.3.5 (i)).
Suppose fn ∈ L1(Ω,F ,P) for n ≥ 1 and let fn ↑ f as n → ∞ a.s. Then it holds that

Ef = lim
n→∞

Efn.

Theorem 1.6 (Dominated Convergence Theorem, see [1] Corollary 2.3.12). As-
sume that (Ω,F , µ) is a measure space and f1, f2, ..., g : Ω → R are measurable
functions. Suppose that |fn| ≤ g µ-a.e for all n ≥ 1,

∫
Ω
gdµ < ∞ and lim

n→∞
fn = f

µ-a.e. Then it holds that f ∈ L1(Ω,F , µ) and

lim
n→∞

∫
fndµ =

∫
fdµ.

Next we define different forms of convergence for measurable functions:

Definition 1.7 (See [23] 1.a.). Assume f, f1, f2, ... to be measurable functions
defined on the probability space (Ω,F ,P).

(i) We say that the sequence of functions {fn}n∈N converges to f in L1 provided

that ∥Xn −X∥1 = E(|fn − f |) n−→ 0. We write fn
L1

−→ f.

(ii) We say that the sequence of functions {fn}n∈N converges to f (P-) almost

surely if it holds that P(ω ∈ Ω : fn(ω)
n−→ f(ω)) = 1. We write fn

a.s.−−→ f .

(iii) We say that the sequence of functions {fn}n∈N converges to f in probability

if for all ε > 0 we have P(|fn − f | > ε)
n−→ 0. We write fn

P−→ f .

Theorem 1.8 (See [23] 1.a.0.). (i) Almost sure convergence implies convergence
in probability.

(ii) Convergence in L1 implies convergence in probability.
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In addition to having different types of convergence for measurable functions, we also
consider convergence for probability measures in the weak sense:

Definition 1.9 (Weak convergence, see [5] Chapter 1 Section 1). Let S be a met-
ric space and S be the Borel σ-algebra generated by S. Let {Pn}n∈N, P be probability
measures on (S,S) such that for all continuous bounded real functions f on S it holds
that

lim
n→∞

∫
f(x)Pn(dx) =

∫
f(x)P (dx).

Then we say that the sequence of probability measures {Pn}n∈N converges weakly to

P . We denote this by Pn
w−→ P.

Next we will consider uniform integrability:

Definition 1.10 (Uniform integrability, see [7] Definition 4.5.1). Assume a family
of functions A ⊂ L1(Ω,F ,P). We say that A is uniformly integrable provided that

lim
c→+∞

sup
f∈A

∫
{|f |>c}

|f |dP = 0.

Proposition 1.11 (see [23] 1.b.7). Let 1 < p < ∞. A family of measurable
functions {fn}n∈N ⊂ Lp(Ω,F ,P) is uniformly integrable provided that supn∈N E|fn|p <
∞.

The following theorem gives us the implication between convergence in probability
and in L1 in the other direction with the help of uniform integrability:

Theorem 1.12 (Lebesgue-Vitali theorem, see [7] Theorem 4.5.4.). Let f be a
measurable function and let {fn}n be a sequence of integrable functions. Then the
following assertions are equivalent:

(i) the sequence {fn}n is uniformly integrable and converges to f in probability,

(ii) the function f is integrable and {fn}n converges to f in L1.

As a corollary of Theorem 1.12 we get the following lemma:

Lemma 1.13. Let f be a measurable function and let {fn}n∈N be a uniformly
integrable sequence of measurable functions such that {fn}n∈N converges to f in prob-
ability. Then it holds that

lim
n→∞

Efn = Ef.
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Proof. By Theorem 1.12 it holds that lim
n→∞

∥fn − f∥L1 = 0 so the statement

follows from

0 ≤ | lim
n→∞

E(fn)− E(f)| = lim
n→∞

|E(fn − f)| ≤ lim
n→∞

E|fn − f | = 0.

□

Tonelli’s Theorem given below is a useful tool for changing the order of integration,
for example when taking expectations of integrals.

Theorem 1.14 (Tonelli’s Theorem, see [2] Theorem 5.28). Let (X,F , µ) and
(Y,G, ν) be σ-finite measure spaces and let f : X×Y → [0,∞] be a F ⊗G-measurable
function. Then the following holds:

(i) x 7→
∫
Y
f(x, y)dν(y) is an F-measurable function on X,

(ii) y 7→
∫
X
f(x, y)dµ(x) is a G-measurable function on Y and

(iii)

∫
X×Y

fd(µ× ν) =

∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

∫
Y

∫
X

f(x, y)dµ(x)dν(y).

Definition 1.15 (π-system, see [6]). A class P of subsets of Ω is called a π-system
provided that for all A,B ∈ P it holds that A ∩B ∈ P .

Theorem 1.16 (See [6] Theorem 3.3). Let P be a π-system and let µ and ν be
probability measures on σ(P). Assume that µ(A) = ν(A) for all A ∈ P . Then one has
that µ(B) = ν(B) for all B ∈ σ(P).

In the following we consider tightness for a family of probability measures:

Definition 1.17 (see [20] Definition 4.6). Assume that (S, ρ) is a metric space
and Π is a family of probability measures on (S,B(S)), where B(S) denotes the Borel
σ-algebra on S. Then Π is called

(i) relatively compact provided that every sequence of its elements contains a
weakly convergent subsequence,

(ii) tight, if for all ε > 0 there exists a compact set K ⊂ S satisfying P (K) ≥ 1−ε
for every P ∈ Π.

Theorem 1.18 (see [20] Theorem 4.7). Let S be a complete, separable metric space
and let Π be a family of probability measures on S. Then Π is relatively compact if
and only if it is tight.
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1.2. Stochastic Processes

In this section we introduce theory regarding stochastic processes, the Brownian mo-
tion and the McKean-Vlasov stochastic differential equation as well as the definitions
of the solutions.

Definition 1.19 (Stochastic Process, see [14] Definition 2.1.1.). Let (Ω,F ,P) be
a probability space. An F -measurable map X : Ω → Rd is called a d-dimensional
random variable. A family of random variables (Xt)t≥0 with Xt : Ω → Rd is called a
stochastic process.

Definition 1.20 (Brownian motion, see [19] Definition 2.1.1.). (a) A real-valued
adapted stochastic process (Bt)t≥0 on the stochastic basis (Ω,F ,P, (Ft)t≥0) is called
a one-dimensional standard Brownian motion with respect to the filtration (Ft)t≥0

provided that the following conditions are satisfied:

(i) B0 = 0 a.s.

(ii) The process has stationary increments: for 0 ≤ s ≤ t the random variable
Bt −Bs has a normal distribution N (0, t− s), i.e. for a ∈ R

P(Bt −Bs ≤ a) =
1

2π(t− s)

∫ a

−∞
e−

x2

2(t−s) dx.

(iii) The process has independent increments: for 0 ≤ t1 < t2 < ... < tn, n ∈ N,
the random variables B1 −B0, ..., Btn −Btn−1 are independent.

(iv) The paths t 7→ Bt(w) are continuous for almost all w ∈ Ω.

(b) A d-dimensional (standard) Brownian motion is a stochastic process (Bt)t≥0 =
(B1

t , ..., B
d
t )t≥0, where the processes (B1

t )t≥0, ..., (B
d
t )t≥0 are independent real-valued

Brownian motions.

The stochastic integral used in the following is assumed to be known in this thesis.
The construction and definition of the stochastic integral can be found [19] Chapter 5.

In this thesis our main focus is on stochastic differential equations (abbreviated SDEs),
and more specifically on so-called McKean-Vlasov equations, also known as mean-field
equations. For SDEs which do not have a mean-field term the existence and unique-
ness of solutions is shown in [19] Chapter 6.

For the McKean-Vlasov type SDEs introduced in [9] Section 4.2. the coefficients
depend also on the distribution of the solution:{

Xt = ξ +
∫ t

0
b(Xs, µs)ds+

∫ t

0
σ(Xs, µs) dBs

µs = probability distribution of Xs.
(1.1)
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Here (Bs)s≥0 is the d-dimensional Brownian motion on our assumed stochastic basis,
ξ is an F0-measurable random variable and the coefficients b : Rd ×Mλ2 → Rd and
σ : Rd×Mλ2 → Rd×Rd, where Mλ2 is defined in section 1.4., are Borel-measurable.

Now we define what it means to have a weak and a strong solution to Eq. (1.1).
The weak and strong solution for SDEs without a mean-field term are defined in [19]
Chapter 6.

Definition 1.21 (Weak solution, see [21] Definition 3.1.). Assume that there

exists a stochastic basis Ŝ := (Ω̂, F̂ , P̂, (F̂t)t∈[0,T ]) which satisfies the usual condi-

tions, a d-dimensional (P̂, (F̂t)t∈[0,T ])-Brownian motion B̂ and a continuous Rd-valued

(F̂t)t∈[0,T ]-adapted process X̂ = (X̂t)t∈[0,T ] on Ŝ. Then (Ŝ; Ŵ , X̂) is called a weak
solution to Eq. (1.1) with the initial law µ0 = P ◦ ξ−1 if

(i) P̂ ◦ X̂−1
0 = µ0,

(ii) ∫ T

0

|b(X̂s, µ̂s)|+ ∥σ(X̂s, µ̂s)∥2 ds < ∞, a.s. P̂,

where µ̂t = P̂ ◦ X̂−1
t ,

(iii) For all t ∈ [0, T ] it holds that

X̂t = ξ +

∫ t

0

b(X̂s, µ̂s)ds+

∫ t

0

σ(X̂s, µ̂s) dB̂s a.s. P̂.

The existence of a unique strong solution to a McKean-Vlasov equation in a slightly
different setting is shown in [9] Section 4.2.

Definition 1.22 (Strong solution). LetX = (Xt)t∈[0,T ] be a continuous d-dimensio-
nal process on (Ω,F ,P). We say that X is a strong solution to Eq. (1.1) with the
initial condition X0 = ξ provided that the following conditions hold:

(i) The process X is (FB
t )t∈[0,T ]-adapted, where (FB

t )t∈[0,T ] is the augmented fil-
tration generated by the Brownian motion B,

(ii) ∫ T

0

(
|b(Xt), µt)|+ ∥σ(Xt, µt)∥2

)
dt < ∞ a.s.

(iii) For all t ∈ [0, T ] it holds that

Xt = ξ +

∫ t

0

b(Xs, µs)ds+

∫ t

0

σ(Xs, µs) dBs a.s.

Next we will introduce the martingale problem. Martingales are defined in [27] Defi-
nition 1, and the martingale problem related to SDEs without a mean-field term are
discussed in [19] Chapter 7.
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Let

W := C([0, T ],Rd), W = B(W),

Wt := {w(· ∧ t) : w ∈ W}, W̄t =
⋂
s>t

B(Ws), t ∈ [0, T ], (1.2)

where B(A) denotes the Borel-σ-algebra on A, i.e. the smallest σ-algebra generated
by all open sets in A. By [28] Chapter 1.3 (p. 30) it holds that for Zu(w) = wu, w ∈ Wt

we have B(Wt) = σ(Zu, 0 ≤ u ≤ t).

Definition 1.23 (The Martingale Problem, see [21] Definition 3.2.). We call a
probability measure P on (W ,W ) a solution to the martingale problem associated

with A , if for f ∈ C2
0(Rd) the process (M f

t )t∈[0,T ] with

M f
t := f(wt)− f(w0)−

∫ t

0

(A (µs)f)(ws) ds

is a continuous (W̄t)t∈[0,T ]-adapted martingale, where µs := P ◦ w−1
s and

(A (µ)f)(x) :=
1

2

d∑
i,j=1

(σ(x, µ)σT (x, µ))ij
∂2

∂xi∂xj

f +
d∑

i=1

bi(x, µ)
∂

∂xi

f.

In the following we will introduce some notions of uniqueness:

Definition 1.24 (Pathwise uniqueness, see [20] Definition 3.2). Assume (X,B),

(Ω,F ,P), {Ft} and (X̃, B), (Ω,F ,P), {F̃t} to be weak solutions to Eq.(1.1) such
that P(X0 = X̃0) = 1. We say that pathwise uniqueness holds for Eq(1.1) provided
that X and X̃ are indistinguishable, i.e.,

P(Xt = X̃t ; 0 ≤ t ≤ ∞) = 1.

Definition 1.25 (Uniqueness in the sense of probability law, see [20] Definition

3.4.). Let (X,B), (Ω,F ,P), {Ft} and (X̃, B̃), (Ω̃, F̃ , P̃), {F̃t} be weak solutions to
Eq.(1.1) with the same initial distribution, i.e.,

P(X0 ∈ A) = P̃(X̃0 ∈ A) for all A ∈ B(Rd).

We say that uniqueness in the sense of probability law holds for Eq.(1.1) provided
that the processes X and X̃ have the same law.

Proposition 1.26 (see [20] prop 3.20). Pathwise uniqueness implies uniqueness
in the sense of probability law.

Ito’s formula is a useful tool when handling with processes of a certain type. In the
following we introduce Ito’s formula for the d-dimensional case:
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Theorem 1.27 (Ito’s Formula, see [29] Theorem 2.3.3.). Assume a d-dimensional
Brownian motion B and functions b = (b1, ..., bd1)

T and σ = (σi,j)1≤i≤d1, 1≤j≤d such
that bi ∈ L1

loc((Ft)t∈[0,T ]) and σi,j ∈ L2
loc((Ft)t∈[0,T ]), where for p = 1, 2

Lp
loc((Ft)t∈[0,T ]) = {(Ft)t∈[0,T ] -progressively measurable processes (X)t∈[0,T ]

such that

∫ T

0

|Xt|pdt < ∞ a.s.}.

Suppose that for X = (Xt)t∈[0,T ] it holds that

Xt = X0 +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dBs.

Let f : [0;T ]× Rd
1 → R, f ∈ C1,2. Then we have

f(t,Xt) =f(0, X0) +

∫ t

0

∂f(s,Xs)

∂t
ds+

d1∑
i=1

∫ t

0

∂f(s,Xs)

∂xi

bi(s)ds

+
1

2

d1∑
i,j=1

d2∑
k=1

∫ t

0

∂2f(s,Xs)

∂xi∂xj

σi,k(s)σj,k(s)ds

+

d1∑
i=1

d2∑
j=1

∫ t

0

∂f(s,Xs)

∂xi

σi,j(s)dB
i
s.

Theorem 1.28 (Kolmogorov-Chentsov tighness criterion, see [18] Corollary 14.9.).
Let (Xn)∞n=1 be a sequence of continuous processes satisfying

(i) sup
n≥1

E|Xn
0 |δ < ∞,

(ii) sup
n≥1

E|Xn
t −Xn

s |α ≤ CT |t− s|1+β for all T > 0 and 0 ≤ s ≤ t ≤ T

for some α, β, δ > 0 and CT > 0. Then it holds that Pn := P ◦ (Xn)−1, n ∈ N, form
a tight sequence on (C([0, T ],Rd), C).

Theorem 1.29 (see [5] Theorem 6.7.). Let ξ, ξ1, ξ2, ... be random elements in a

separable metric space (S, ρ) such that ξn
d−→ ξ. Then, on a suitable probability space,

there exist some random elements η
d
= ξ and η

dn= ξn, n ∈ N, with ηn → η a.s.

In the following we define closable martingales and the connection with uniform in-
tegrability:

Definition 1.30 (Closable Martingale, see [26] Chapter 2). Let M = (Mt)t≥0 be
a martingale. We say that M is closable if there exists a random variable Y such that
E|Y | < ∞ and

Mt = E[Y |Ft] for all t ≥ 0.

Theorem 1.31 (see [26] Chapter 2 Theorem 13). Assume M = (Mt)t≥0 to be a
right continuous martingale. If M is closable then it is uniformly integrable.
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1.3. Some Inequalities

In this section we give some elementary inequalities. We start with Hölder’s inequality,
which takes two forms:

Theorem 1.32 (Hölder’s inequality, see [24] Theorem 3.9.9.). Assume X and Y
to be two real-valued random variables. For p > 1, q > 1, such that 1

p
+ 1

q
= 1 and

E(|X|p) < ∞, E(|Y |q) < ∞, it holds that

E|(XY )| ≤
(
E(|X|p)

) 1
p
(
E(|Y |q)

) 1
q .

For some cases Hölder’s inequality can be presented in the following form:

Remark 1.33 (see [15] p.53). Let x, y ∈ Rn and let p > 1, q > 1 such that
1
p
+ 1

q
= 1. Then

n∑
i=1

|xiyi| ≤
( n∑

i=1

|xi|p
) 1

p
( n∑

i=1

|yi|q
) 1

q

Proposition 1.34 (Young’s Inequality, see [8] Section 2.2.4.). Let a, b ≥ 0. For
1 < p, q < ∞ with 1

p
+ 1

q
= 1 it holds that

ab ≤ ap

p
+

bq

q
.

Definition 1.35 (see [22] p. xvii). (i) We denote by L2([a, b],Rd×m) the family
of Rd×m-valued (Ft)t≥0-progressively measurable processes {f(t)}a≤t≤b for which it
holds that ∫ b

a

|f(t)|2dt < ∞ a.s.

(ii) We denote by L2(R+,Rd×m) the family of processes {f(t)}t≥0 which satisfy
{f(t)}0≤t≤s ∈ L2([0, s],Rd×m) for every s > 0.

The following theorem is called the Burkholder-Davis-Gundy inequality. It is useful
when estimates for norms of stochastic integrals are needed.

Theorem 1.36 (Burkholder-Davis-Gundy inequality, see [22] Theorem 7.3.). Let
g ∈ L2(R+,Rd×m) and let ∥ · ∥ be the Frobenius norm (see page 12). For every p > 0
there exist constants cp > 0, Cp > 0 which depend only on p and for which it holds
that

cpE
(∫ t

0

∥g(s)∥2ds
) p

2 ≤ E
(

sup
0≤s≤t

∣∣∣ ∫ s

0

g(u)dBu

∣∣∣p) ≤ CpE
(∫ t

0

∥g(s)∥2ds
) p

2
.
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Theorem 1.37 (Grönwall Inequality, see [18] Lemma 18.4). Assume f(t) to be a
continuous function for t ≥ 0. If for some a, b ≥ 0 it holds that

f(t) ≤ a+ b

∫ t

0

f(s)ds

for all t ≥ 0, then one has that

f(t) ≤ aebt

for all t ≥ 0.

The following lemma is a generalization of a Grönwall-Bellman type inequality:

Lemma 1.38 (See [30] Lemma 2.1). Let 0 < η < 1
e
and let

κη(x) :=


0 x = 0,

x log x−1, 0 < x ≤ η

(log η−1 − 1)x+ η, x > η.

Assume that g and q are strictly positive functions on [0,∞) such that g(0) < η
and

g(t) ≤ g(0) +

∫ t

0

q(s)κη

(
g(s)

)
ds, t ≥ 0.

Then it holds that

g(t) ≤
(
g(0)

)exp{− ∫ t
0 q(s)ds}

.

Theorem 1.39 (Fatou’s Lemma, see [29], Theorem 1.3.6 (i)). For n ≥ 1, assume
that 0 ≤ Xn ∈ L1(Ω,F ,P). Then one has

E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn.

Proposition 1.40 (Jensen’s inequality, see [29] Proposition 1.3.1). Assume that
X ∈ L1(Ω,F ,P), X : Ω → Rd, and let φ : Rd → R be convex. Then it follows that

φ
(
E[X]

)
≤ E[φ(X)].

For a concave function we get the opposite result for Jensen’s inequality:

Corollary 1.41. Let X ∈ L1(Ω,F ,P), X : Ω → Rd, and let φ : Rd → R be
concave. Then it holds that

φ
(
E[X]

)
≥ E[φ(X)].

Proof. If φ is concave, then −φ is convex. Thus by Jensen’s inequality

−E(φ(X)) = E(−φ(X)) ≥ −φ((X)),

and the statement follows from multiplying with −1. □



12 1. PRELIMINARIES

1.4. Notation

By C(Rd) we denote the space of all continuous functions on Rd, and by C([0, T ],Rd)
the space of continuous Rd-valued functions defined on [0, T ]. By C2

0(Rd) we mean
the collection of continuous functions which have continuous partial derivatives up to
order 2 and vanish at infinity.

As for norms, for x ∈ Rd we use the Euclidean norm |x| =
√∑d

i=1 x
2
i and for

y ∈ Rd × Rd we use the Frobenius norm ∥y∥ =
√∑d

i,j=1 y
2
ij. For f ∈ C([0, T ],Rd)

we use the sup norm ∥f∥∞ = supt∈[0,T ] |f(t)|. Additionally, we denote with ⟨·, ·⟩ the
scalar product in Rd. The transpose of a matrix A is denoted by AT .

Set

Cρ(Rd) :=
{
φ ∈ C(Rd), ∥φ∥Cρ(Rd) = sup

x∈Rd

|φ(x)|
(1 + |x|)2

+ supx ̸=y
|φ(x)− φ(y)|

|x− y|
< ∞

}
.

LetM(Rd) be the space of probability measures on B(Rd) carrying the usual topology
of weak convergence and let Ms

λ2(Rd) be the Banach space of signed measures m on
B(Rd) for which

∥m∥2λ2 :=

∫
Rd

(1 + |x|)2|m|(dx) < ∞,

where |m| = m+ + m− and m = m+ − m− is the Jordan decomposition of m. Let
Mλ2(Rd) = Ms

λ2(Rd)
⋂

M(Rd) be the set of probability measures on B(Rd).

Define

ρ(µ, ν) := sup
∥φ∥

Cρ(Rd)≤1

∣∣∣ ∫
Rd

φ(x)µ(dx)−
∫
Rd

φ(x)ν(dx)
∣∣∣. (1.3)

As stated in [10] Section 2.1., (Mλ2(Rd), ρ) is now a complete metric space.

1.5. Assumptions

In this section we will state the assumptions under which we will work in this thesis.

(H1) The functions b : Rd × Mλ2(Rd) → Rd and σ : Rd × Mλ2(Rd) → Rd×d are
continuous and satisfy

|b(x, µ)|2 + ∥σ(x, µ)∥2 ≤ L1(1 + |x|2 + ∥µ∥2λ2)

for all (x, µ) ∈ Rd ×Mλ2(Rd), where L1 > 0 is a constant.

(H2) The functions b : Rd × Mλ2(Rd) → Rd and σ : Rd × Mλ2(Rd) → Rd×d sat-
isfy for all (x1, µ1), (x2, µ2) ∈ Rd ×Mλ2(Rd) that

2⟨x1 − x2, b(x1, µ1)− b(x2, µ2)⟩+ ∥σ(x1, µ1)− σ(x2, µ2)∥2

≤ L2

(
κ1(|x1 − x2|2) + κ2

(
ρ2(µ1, µ2)

))
,
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where L2 > 0 is a constant and κi(x), i = 1, 2, are positive, strictly increasing, con-
tinuous and concave and satisfy κi(0) = 0, and

∫
0+
(κ1(x) + κ2(x))

−1dx = ∞.

(H′
2) The functions b : Rd × Mλ2(Rd) → Rd and σ : Rd × Mλ2(Rd) → Rd×d sat-

isfy for all (x1, µ1), (x2, µ2) ∈ Rd ×Mλ2(Rd) that

|b(x1, µ1)− b(x2, µ2)| ≤ λ1

(
|x1 − x2|γ1(|x1 − x2)|+ ρ(µ1, µ2)

)
,

∥σ(x1, µ1)− σ(x2, µ2)∥2 ≤ λ2

(
|x1 − x2|2γ2(|x1 − x2)|+ ρ2(µ1, µ2)

)
,

where λ1, λ2 > 0 are constants and γ1, γ2 are positive and continuous functions such
that they are bounded on [1,∞) and satisfy

lim
x↓0

γi(x)

x log(x−1)
= δi < ∞ i = 1, 2.

Remark 1.42. Assume b(x, µ) satisfies (H′
2). Then for (x1, µ1), (x2, µ2) ∈ Rd ×

Mλ2(Rd) one has that

⟨x1 − x2, b(x1, µ1)− b(x2, µ2)⟩
≤ |x1 − x2||b(x1, µ1)− b(x2, µ2)|

≤ λ1

(
|x1 − x2|2γ1(|x1 − x2|) + |x1 − x2|ρ(µ1, µ2)

)
≤ λ1

(
|x1 − x2|2γ1(|x1 − x2|) + |x1 − x2|2 + ρ2(µ1, µ2)

)
.

From the proof of Theorem 2.3. in [30] one has that since lim
x↓0

x2γi(x)+x2

x2 log(x−2)
= 0, it follows

that there exists an 0 < η < 1
e
such that for a constant C > 0 we have

x2γi(x) + x2 ≤ Cκη(x
2)

x2γ2
i (x) ≤ Cκ2

η(x)

x2γi(x) ≤ Cκη(x
2) for i = 1, 2, (1.4)

where

κη(x) :=


0 x = 0,

x log x−1, 0 < x ≤ η

(log η−1 − 1)x+ η, x > η,

(1.5)

is a positive, strictly increasing, continuous concave function with κη(0) = 0 and∫
0+

1
κη(x)+x

dx = ∞.

Hence we get

⟨x1 − x2, b(x1, µ1)− b(x2, µ2)⟩ ≤ λ̂1

(
κη(|x1 − x2|2) + ρ2(µ1, µ2)

)
,

where λ̂1 depends on C and λ1.
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Additionally, assuming that σ(x, µ) satisfies (H′
2) we have with (1.4) that

∥σ(x1, µ1)− σ(x2, µ2)∥2 ≤ λ2

(
|x1 − x2|2γ2(|x1 − x2)|+ ρ2(µ1, µ2)

)
≤ λ̂2

(
κη(|x1 − x2|2) + ρ2(µ1, µ2)

)
,

where λ̂2 depends on C and λ2.

Therefore it holds that (H′
2) implies (H2).



CHAPTER 2

The Existence and Uniqueness of Strong Solutions

In this chapter we will show that there exists a unique strong solution to Eq.(1.1),
which is one of the main results of this thesis. To prove this statement we consider
a solution to the martingale problem and pathwise uniqueness and show how these
imply a unique strong solution.

2.1. The Martingale Problem

In the first step we use the existence of a solution to the martingale problem to get a
weak solution to Eq. (1.1). First we show some techincal results:

Lemma 2.1. Assume that b(x, µ) and σ(x, µ) satisfy (H1). Let (Ŝ; B̂, X̂) be a

weak solution to Eq.(1.1) and let Ê denote the expectation under P̂. Then, for p ≥ 1,
it holds that

Ê(|X̂t|2p) ≤ C(1 + Ê|X̂0|2p) eCt, 0 ≤ t ≤ T, (2.1)

Ê(|X̂t − X̂s|2p) ≤ C(1 + Ê|X̂0|2p) (t− s)p, 0 ≤ s ≤ t ≤ T, (2.2)

where C > 0 is a constant depending on T , p and L1 from (H1).

Proof. Let τk := inf{t ≥ 0, |X̂t| ≥ k}, k ∈ N. Since lim inf
k→∞

|X̂τk∧t
| = |X̂t| then

by Fatou’s Lemma (Theorem 1.39) we have that Ê|X̂t| ≤ lim inf
k→∞

Ê|X̂τk∧t|. Thus if

X̂τk∧t satisfies (2.1) and (2.2) then the inequalities hold also for X̂t.

For 0 ≤ t ≤ T , by Hölder’s Inequality (Remark 1.33) we have

Ê|X̂t|2p ≤ Ê
(
|X̂0|+

∣∣∣ ∫ t

0

b(X̂s, µ̂s)ds
∣∣∣+ ∣∣∣ ∫ t

0

σ(X̂s, µ̂s)dB̂s

∣∣∣)2p
≤ Ê

(
3

2p−1
2p

(
|X̂0|2p +

∣∣∣ ∫ t

0

b(X̂s, µ̂s)ds
∣∣∣2p + ∣∣∣ ∫ t

0

σ(X̂s, µ̂s)dB̂s

∣∣∣2p) 1
2p
)2p

=32p−1
(
Ê|X̂0|2p + Ê

∣∣∣ ∫ t

0

b(X̂s, µ̂s)ds
∣∣∣2p + Ê

∣∣∣ ∫ t

0

σ(X̂s, µ̂s)dB̂s

∣∣∣2p).
By Lemmas 2.8 and 2.9 from section 2.3. it holds that

Ê|X̂t|2p ≤ 32p−1
(
Ê|X̂0|2p + t2p−1Ê

∫ t

0

|b(X̂s, µ̂s)|2pds+ Cp t
p−1 Ê

∫ t

0

∥σ(X̂s, µ̂s)∥2pds
)

≤C1

(
Ê|X̂0|2p +

∫ t

0

Ê
(
|b(X̂s, µ̂s)|2p + ∥σ(X̂s, µ̂s)∥2p

)
ds
)

15
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for C1 := 32p−1(1 + t2p−1 + Cpt
p−1).

Furthermore, by Lemma 2.10 from section 2.3. we get that for some positive constants
C2, C3, C4

Ê|X̂t|2p ≤C2

(
Ê|X̂0|2p +

∫ t

0

Ê(1 + |X̂s|2p + Ê(1 + |X̂s|2p))ds
)

≤C3

(
Ê|X̂0|2p +

∫ t

0

2(1 + Ê|X̂s|2p)ds
)

≤C4

(
1 + Ê|X̂0|2p +

∫ t

0

Ê|X̂s|2pds
)

=C4

(
1 + Ê|X̂0|2p

)
+ C4

∫ t

0

Ê|X̂s|2pds

Hence by Grönwall’s inequality (Theorem 1.37) we get

Ê|X̂t|2p ≤ C
(
1 + Ê|X̂0|2p

)
eCt,

where C is a constant depending on p, L1, and T .

To show (2.2) we conduct similar calculations using Hölder’s Inequality (Remark

1.33) and Lemmas 2.8, 2.9 and 2.10 from section 2.3.:

Ê|X̂t − X̂s|2p = Ê
∣∣∣ ∫ t

s

b(X̂u, µ̂u)du+

∫ t

s

σ(X̂u, µ̂u)dB̂u

∣∣∣2p
≤ Ê

(∣∣∣ ∫ t

s

b(X̂u, µ̂u)du
∣∣∣+ ∣∣∣ ∫ t

s

σ(X̂u, µ̂u)dB̂u

∣∣∣)2p
≤ Ê

((∣∣∣ ∫ t

s

b(X̂u, µ̂u)du
∣∣∣2p + ∣∣∣ ∫ t

s

σ(X̂u, µ̂u)dB̂u

∣∣∣2p) 1
2p
2

2p−1
2p

)2p
= Ê

(∣∣∣ ∫ t

s

b(X̂u, µ̂u)du
∣∣∣2p + ∣∣∣ ∫ t

s

σ(X̂u, µ̂u)dB̂u

∣∣∣2p)22p−1

≤ C̃1(t− s)p−1Ê
∫ t

s

|b(X̂u, µ̂u)|2p + ∥σ(X̂u, µ̂u)∥2pdu

≤ C̃2(t− s)p−1

∫ t

s

1 + Ê|X̂u|2pdu.

Now we can use (2.1) and get

Ê|X̂t − X̂s|2p ≤ C̃3(t− s)p−1

∫ t

s

C(1 + Ê|X̂0|2p)eCudu

≤ C̃(t− s)p−1(1 + Ê|X̂0|2p)(t− s)

= C̃(1 + Ê|X̂0|2p)(t− s)p,

where C̃ is a constant depending on T, p, and L1. □
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Proposition 2.2 (See [4] Theorem V.1.1. p.98). The existence of a solution to
the martingale problem implies the existence of weak solutions and vice versa.

Next we will prove the existence of a solution to the martingale problem:

Proposition 2.3. Suppose that (H1) holds and E|ξ|2p < ∞ for any p > 1. Then
there exists a solution to the martingale problem related to Eq. (1.1).

Proof. Let n ∈ N be fixed. For t ∈ [0, T ], we consider the Euler-Maruyama
approximation equation

Xn
t = Xn

0 +

∫ t

0

b(Xn
tn(s), µ

n
tn(s))ds+

∫ t

0

σ(Xn
tn(s), µ

n
tn(s))dBs, (2.3)

where Xn
0 = ξ and tn(s) =

kT
2n

=: tk for s ∈
[
kT
2n
, (k+1)T

2n

)
, k = 0, 1, ..., 2n − 1.

Since b(Xn
tn(s)

, µn
tn(s)

) and σ(Xn
tn(s)

, µn
tn(s)

) are constant on the interval [tk, tk+1), we
have that

Xn
t1
= Xn

0 +

∫ t1

0

b(Xn
t0
, µn

t0
)ds+

∫ t1

0

σ(Xn
t0
, µn

t0
)dBs

= ξ + b(ξ, µn
t0
)t1 + σ(ξ, µn

t0
)Bt1 ,

and again

Xn
t2
= Xn

t1
+ b(Xn

t1
, µn

t1
)(t2 − t1) + σ(Xn

t1
, µn

t1
)(Bt2 −Bt1).

Thus we can construct a recursive definition for Xn
t , for t ∈ [tk, tk+1), as follows:

Xn
t = Xn

tk
+

∫ t

tk

b(Xn
tn(s), µ

n
tn(s))ds+

∫ t

tk

σ(Xn
tn(s), µ

n
tn(s))dBs

= Xn
tk
+ b(Xn

tk
, µn

tk
)(t− tk) + σ(Xn

tk
, µn

tk
)(Bt −Btk). (2.4)

Hence there exists a solution Xn := (Xn
t )t∈[0,T ] to Eq.(2.3), and by (H1) and Lemma

2.1 we have

E(|Xn
t |2p) ≤ C(1 + E|ξ|2p)eCt, 0 ≤ t ≤ T, (2.5)

E(|Xn
t −Xn

s |2p) ≤ C(1 + E|ξ|2p)(t− s)p, 0 ≤ s ≤ t ≤ T,

where C does not depend on n.

Moreover, since E|ξ|2p < ∞, we get

sup
n≥1

E(|Xn
0 |2p) = E|ξ|2p < ∞,

sup
n≥1

E(|Xn
t −Xn

s |2p) ≤ C(1 + E|ξ|2p)(t− s)p ≤ C2(t− s)p.
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Put P n := P ◦ (Xn)−1. By Theorem 1.28 we have that {P n} is tight on (W ,W )
defined in (1.2), and by Theorem 1.18 we further have that there exists a subse-
quence, which we still denote by {P n}, and a probability measure P 0 on (W ,W )
such that P n converges weakly to P 0 as n → ∞.

Set

Mn,f
t :=f(wt)− f(w0)−

1

2

∫ t

0

d∑
i,j=1

[σ(wtn(s), µ
n
tn(s))σ

T (wtn(s), µ
n
tn(s))]ij

∂2

∂xi∂xj

f(ws)ds

−
∫ t

0

d∑
i=1

bi(wtn(s), µ
n
tn(s))

∂

∂xi

f(ws)ds, f ∈ C2
0(Rd),

where µn
tn(s)

= P n ◦ w−1
tn(s)

.

Since there exists a strong and therefore also a weak solution Xn to Eq.(2.3), by
Proposition 2.2 we have that Eq.(2.3) has a solution P n to the martingale problem

on (W ,W ). Thus (Mn,f
t )t∈[0,T ] is a continuous (W̄t)t∈[0,T ]-adapted martingale under

P n, so for a continuous, bounded and W̄s-measurable functional Gs we have that

EPn((Mn,f
t −Mn,f

s )Gs) = 0, 0 ≤ s < t ≤ T.

In order to prove that P 0 on (W ,W ) is a martingale solution to Eq.(1.1) we use

Lemma 2.15 from Section 2.3 to show that (M f
t )t∈[0,T ] is a continuous W̄t-adapted

martingale under P 0, i.e. we want to get

EP 0

((M f
t −M f

s )Gs) =

∫
W

((
f(wt)−f(ws)−

∫ t

s

A (µu)f(wu)du
)
Gs(w)

)
P 0(dw) = 0.

We prove this by showing

lim
n→∞

EPn((Mn,f
t −Mn,f

s )Gs) = EP 0

((M f
t −M f

s )Gs).

By Definition 1.3 the map w 7→ wt, where w ∈ W , t ∈ [0, T ], is Lipschitz continuous:
Let ε > 0 and put δε = ε. If for all w, ŵ ∈ W

∥w − ŵ∥∞ = sup
s∈[0,T ]

|ws − ŵs| < δε,

then one has that

|wt − ŵt| ≤ sup
s∈[0,T ]

|ws − ŵs| < δε = ε.

Now since both f and G are bounded and continuous, from Proposition 1.4 and the
weak convergence of P n to P 0 we get

lim
n→∞

∫
W

(
f(wt)− f(ws))Gs(w)

)
P n(dw) =

∫
W

(
(f(wt)− f(ws))Gs(w)

)
P 0(dw).
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Our goal is to now show that

lim
n→∞

∫
W

((∫ t

s

d∑
i=0

bi(wtn(u), µ
n
tn(u))

∂

∂xi

f(wu)du
)
Gs(w)

)
P n(dw)

=

∫
W

((∫ t

s

d∑
i=0

bi(wu, µu)
∂

∂xi

f(wu)du
)
Gs(w)

)
P 0(dw) (2.6)

and

lim
n→∞

∫
W

((∫ t

s

d∑
i,j=0

(
σ(wtn(u), µ

n
tn(u))σ

T (wtn(u), µ
n
tn(u))

)
ij

∂2f(wu)

∂xi∂xj

du
)
Gs(w)

)
P n(dw)

=

∫
W

((∫ t

s

d∑
i,j=0

(
σ(wu, µu)σ

T (wu, µu)
)
ij

∂2f(wu)

∂xi∂xj

du
)
Gs(w)

)
P 0(dw). (2.7)

Since we know that P n converges weakly to P 0, we get from Theorem 1.29 that
there exists a probability space (Ω̃, F̃ , P̃) and W-valued processes X̃n := (X̃n

t )t∈[0,T ]

and X̃ := (X̃t)t∈[0,T ] on that space such that

(i) P n = P̃ ◦ (X̃n)−1 and P 0 = P̃ ◦ (X̃)−1

(ii) X̃n a.s.−−→ X̃ as n → ∞.

With the help of (i), (2.6) and (2.7) can now be written again as

lim
n→∞

EP̃
((∫ t

s

d∑
i=0

bi(X̃
n
tn(u), µ

n
tn(u))

∂

∂xi

f(X̃n
u )du

)
Gs(X̃

n)
)

= EP̃
((∫ t

s

d∑
i=0

bi(X̃u, µu)
∂

∂xi

f(X̃u)du
)
Gs(X̃)

)
(2.8)

and

lim
n→∞

EP̃
((∫ t

s

d∑
i,j=0

(
σ(X̃n

tn(u), µ
n
tn(u))σ

T (X̃n
tn(u), µ

n
tn(u))

)
ij

∂2

∂xi∂xj

f(X̃n
u )du

)
Gs(X̃

n)
)

= EP̃
((∫ t

s

d∑
i,j=0

(
σ(X̃u, µu)σ

T (X̃u, µu)
)
ij

∂2

∂xi∂xj

f(X̃u)du
)
Gs(X̃)

)
. (2.9)

Moreover, from (ii) it follows that X̃n
tn(u)

a.s.−−→ X̃u for u ∈ [s, t] as n → ∞.

Now we will show that for ρ defined in (1.3) we have ρ(µn
tn(u)

, µu) → 0 as n → ∞:
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Since Xn and X̃n have the same law, then by (2.5) we have for any λ > 0

∫
|X̃n

tn(u)
|>λ

|X̃n
tn(u)|dP̃ ≤

∫
|X̃n

tn(u)
|>λ

|X̃n
tn(u)|

( |X̃n
tn(u)

|
λ

)2p−1

dP̃

=

∫
|X̃n

tn(u)
|>λ

|X̃n
tn(u)

|2p

λ2p−1
dP̃

≤ 1

λ2p−1
EP̃|X̃n

tn(u)|
2p

=
1

λ2p−1
E|Xn

tn(u)|
2p

≤ 1

λ2p−1
C(1 + E|ξ|2p)eCT .

Furthermore, we have that

lim
λ→∞

sup
n≥1

∫
|X̃n

tn(u)
|>λ

|X̃n
tn(u)|dP̃ = 0,

so by Definition 1.10 we know that {X̃n
tn(u)

}n≥1 is uniformly integrable. From the

almost sure convergence of X̃n
tn(u)

to X̃u and the uniform integrability of {X̃n
tn(u)

}n≥1

it follows from Theorems 1.8 and 1.12 and Lemma 2.11 from section 2.3. that

0 ≤ lim
n→∞

ρ(µn
tn(u), µu) ≤ lim

n→∞
EP̃
∣∣∣X̃n

tn(u) − X̃u

∣∣∣ = 0,

and thus we get lim
n→∞

ρ(µn
tn(u)

, µu) = 0.

Let 1 < α < ∞. With (i), (H1), Hölder’s Inequality (Remark 1.33), (2.15) from
section 2.3. and (2.5) it holds that

EP̃
∣∣∣ d∑
i=0

bi(X̃
n
tn(u), µ

n
tn(u))

∣∣∣α = E
∣∣∣ d∑
i=0

bi(X
n
tn(u), µ

n
tn(u))

∣∣∣α ≤ E
( d∑

i=0

|bi(Xn
tn(u), µ

n
tn(u)|

)α
≤ E

(√
d |b(Xn

tn(u), µ
n
tn(u))|

2
)α

=
√
dα E|b(Xn

tn(u), µ
n
tn(u))|

2α

≤ C1 E
(
1 + |Xn

tn(u)|
2α + 22α−1E(1 + |Xn

tn(u)|
2α)
)

≤ C2

(
E(1 + |Xn

tn(u)|
2α)
)

≤ C
(
1 + C(1 + E|ξ|2α)eCT

)
< ∞, (2.10)

where the constant C does not depend on n. By Proposition 1.11 we have that
{
∑d

i=0 bi(X̃
n
tn(u)

, µn
tn(u)

)}n∈N is uniformly integrable.

Furthermore, since b is continuous, X̃n
tn(u)

a.s.−−→ X̃u, lim
n→∞

ρ(µn
tn(u)

, µu) = 0, f ∈ C2
0(Rd),
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and Gs is bounded and continuous, it holds that

d∑
i=1

bi(X̃
n
tn(u), µ

n
tn(u))

∂

∂xi

f(X̃n
u )

P−→
d∑

i=1

bi(X̃u, µu)
∂

∂xi

f(X̃u) and

Gs(X̃
n)

a.s.−−→ Gs(X̃).

Now from Theorem 1.8 and Lemma 1.13 it follows that (2.8) holds.

Similarly, with the help of (2.15) from section 2.3 and (2.5) we have

E
∣∣∣ d∑
i,j=1

(σ(X̃n
tn(u), µ

n
tn(u))σ

T (X̃n
tn(u), µ

n
tn(u))

)
ij

∣∣∣α
≤ E

( d∑
i,j=1

∣∣∣ d∑
k=1

σik(X
n
tn(u), µ

n
tn(u))σjk(X

n
tn(u), µ

n
tn(u))

∣∣∣)α
≤ E

(
d

d∑
i,j=1

∣∣∣ d∑
k=1

σik(X
n
tn(u), µ

n
tn(u))σjk(X

n
tn(u), µ

n
tn(u))

∣∣∣2)α
= dα E

(
∥σ(Xn

tn(u), µ
n
tn(u))σ

T (Xn
tn(u), µ

n
tn(u))∥

2
)α

≤ dα E
(
∥σ(Xn

tn(u), µ
n
tn(u))∥

4α
)

≤ C ′
(
1 + C ′(1 + E|ξ|4α)eC′T

)
< ∞, (2.11)

where the constant C ′ does not depend on n. Then by Proposition 1.11 it holds
that also {

∑d
i,j=1(σ(X̃

n
tn(u)

, µn
tn(u)

)σT (X̃n
tn(u)

, µn
tn(u)

)
)
ij
}n∈N is uniformly integrable, and

since σ is continuous, we get from Lemma 1.13 that also (2.9) holds. □

Now Propositions 2.2 and 2.3 give us the existence of weak solutions to Eq. (1.1).

2.2. Pathwise Uniqueness

Now that we have the existence of weak solutions, for the second step we will show
that the pathwise uniqueness holds under our conditions. First we show a technical
lemma:

Lemma 2.4. Let t ≥ 0. Provided that for a Borel-measurable function y : [0,∞) →
[0,∞) it holds that

0 ≤ yt ≤
∫ t

0

(κ1(ys) + κ2(ys))ds < ∞,

where κ1(u) and κ2(u) satisfy the conditions in (H2), it follows that yt ≡ 0 for all
t ≥ 0.
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Proof. Put zt :=
∫ t

0
(κ1(ys) + κ2(ys))ds. From the properties of κ1(u) and κ2(u)

we get that zt is absolutely continuous and nondecreasing. Now, since yt ≤ zt and κ1

and κ2 are increasing, we have for all t ≥ 0 that

dzt
dt

= κ1(yt) + κ2(yt) ≤ κ1(zt) + κ2(zt).

Now set t0 := sup{t ≥ 0; zs = 0∀s ∈ [0, t]}. If t0 < ∞ then for t > t0 we have zt > 0.

Using the properties of κ1 and κ2 and substitution we get

∞ =

∫ zt0+ε

0

du

κ1(u) + κ2(u)
=

∫ t0+ε

t0

dzt
κ1(zt) + κ2(zt)

=

∫ t0+ε

t0

κ1(yt) + κ2(yt)

κ1(zt) + κ2(zt)
dt

≤
∫ t0+ε

t0

dt = ε

for all ε > 0. This is a controdiction, and therefore t0 = ∞ from which it follows that
zt = 0.
Now 0 ≤ yt ≤ 0, so we get that yt = 0. □

Proposition 2.5. Assume that the conditions of (H2) are satisfied. Then we
have pathwise uniqueness for Eq.(1.1).

Proof. Assume that for Eq.(1.1) there exist two weak solutions (Ŝ; Ŵ , (X̂1
t )t∈[0,T ])

and (Ŝ; Ŵ , (X̂2
t )t∈[0,T ]) such that X̂1

0 = X̂2
0 a.s.

Let Zt := X̂1
t − X̂2

t . Now it holds that

Zt =

∫ t

0

(
b(X̂1

s , µ̂
1
s)− b(X̂2

s , µ̂
2
s)
)
ds+

∫ t

0

(
σ(X̂1

s , µ̂
1
s)− σ(X̂2

s , µ̂
2
s)
)
dŴs.

By Ito’s formula (Theorem 1.27) we get

|Zt|2 =
d∑

i=1

∫ t

0

2Zi
t

(
bi(X̂

1
s , µ̂

1
s)− bi(X̂

2
s , µ̂

2
s)
)
ds

+
1

2

d∑
i,k=1

∫ t

0

2
(
σi,k(X̂

1
s , µ̂

1
s)− σi,k(X̂

1
s , µ̂

1
s)
)2

ds

+
d∑

i,j=1

∫ t

0

2Zi
t

(
σi,j(X̂

1
s , µ̂

1
s)− σi,j(X̂

1
s , µ̂

1
s)
)
dB̂i

s
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=

∫ t

0

2⟨Zs, b(X̂
1
s , µ̂

1
s)− b(X̂2

s , µ̂
2
s)⟩ds+

∫ t

0

∥σ(X̂1
s , µ̂

1
s)− σ(X̂2

s , µ̂
2
s)∥2 ds

+

∫ t

0

2⟨Zs, (σ(X̂
1
s , µ̂

1
s)− σ(X̂2

s , µ̂
2
s))dB̂s⟩.

Since
∫ t

0
2⟨Zs, (σ(X̂

1
s , µ̂

1
s) − σ(X̂2

s , µ̂
2
s))dB̂s⟩ is a local martingale, there exits an in-

creasing sequence of stopping times (τn)
∞
n=1, lim

n→∞
τn = ∞, such that∫ t∧τn

0

2⟨Zs, (σ(X̂
1
s , µ̂

1
s)− σ(X̂2

s , µ̂
2
s))dB̂s⟩

is a martingale for all n ∈ N. Thus is holds that

Ê
∫ t∧τn

0

2⟨Zs, (σ(X̂
1
s , µ̂

1
s)− σ(X̂2

s , µ̂
2
s))dB̂s⟩ = 0.

Now, by (H2) we get that

Ê|Zt∧τn|2 = Ê
∫ t∧τn

0

2⟨Zs, b(X̂
1
s , µ̂

1
s)− b(X̂2

s , µ̂
2
s)⟩ds+ ∥σ(X̂1

s , µ̂
1
s)− σ(X̂2

s , µ̂
2
s)∥2 ds

≤ Ê
∫ t∧τn

0

L2

(
κ1(|Zs|2) + κ2(ρ

2(µ̂1
s, µ̂

2
s))
)
ds.

Since as := L2

(
κ1(|Zs|2) + κ2(ρ

2(µ̂1
s, µ̂

2
s))
)
≥ 0 for all s ≥ 0 and τn ≤ τn+1 for all

n ∈ N, then by monotone convergence (Theorem 1.5) we have

lim sup
n→∞

Ê|Zt∧τn|2 ≤ lim sup
n→∞

Ê
∫ t∧τn

0

as ds = lim
n→∞

Ê
∫ t∧τn

0

as ds

= Ê lim
n→∞

∫ t∧τn

0

as ds = Ê
∫ t

0

as ds.

Furthermore, by Fatou’s Lemma (Theorem 1.39) it holds that

Ê|Zt|2 = Ê lim inf
n→∞

|Zt∧τn |2 ≤ lim inf
n→∞

Ê|Zt∧τn|2 ≤ lim sup
n→∞

Ê|Zt∧τn |2 ≤ Ê
∫ t

0

as ds.

Set Gt := Ê|Zt|2. From Lemma 2.11 from section 2.3. and Jensen’s inequality (The-
orem 1.40) it follows that

ρ2(µ̂1
s, µ̂

2
s) ≤

(
Ê
∣∣X̂1

s − X̂2
s

∣∣)2 ≤ Ê|Zs|2 = Gs.

Set κ̃i(u) = L2 κi(u), i = 1, 2. Then also κ̃i(u) satisfies the conditions in (H2) and
thus κ̃2(ρ

2(µ̂1
s, µ̂

2
s)) ≤ κ̃2(Gs).
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Since κ̃1 is concave, we have by Jensen’s inequality (Proposition 1.40) and Tonelli’s
Theorem (Theorem 1.14) that

Gt ≤ Ê
∫ t

0

κ̃1(|Zs|2) + κ̃2(Gs) ds ≤
∫ t

0

κ̃1(Ê|Zs|2) + κ̃2(Gs) ds

=

∫ t

0

κ̃1(Gs) + κ̃2(Gs) ds.

Now by Lemma 2.4 we get that Gt = Ê|Zt|2 = 0. Moreover, it follows that

Zt = X̂1
t − X̂2

t = 0 for all t ≥ 0 a.s. and by Definition 1.24 we have that pathwise
uniqueness holds for Eq.(1.1). □

Theorem 2.6. Suppose that for each given initial distribution there exists a so-
lution to Eq. (1.1) and that pathwise uniqueness holds. Then Eq. (1.1) has a unique
strong solution.

We will not prove Theorem 2.6 rigorously in this thesis but we will provide a brief
outline of the proof found in [17] in the proof for Theorem IV.1.1. and [20] p. 391
(solution to 3.22.):

Definition IV.1.6. in [17] gives us an alternative definition for strong solutions by
using the existence of a function F with certain measurability conditions for which
X = F (X(0), B) a.s., where X is a solution to Eq. (1.1) with a Brownian motion B.
Furthermore, we can consider strong solutions as the function F which gives us the
solution to Eq. (1.1) when plugging in an initial value and a Brownian motion.

We assume (X,B) and (X ′, B′) to be two weak solutions to Eq. (1.1) which can
be defined on different probability spaces. We then construct a new probability space
such that there are two solutions (w1, w3) and (w2, w3) defined on that space and
(w1, w3) and (X,B) have the same distribution as well as (w2, w3) and (X ′, B′).

Now pathwise uniqueness implies that QW ×Q
′W (w1 = w2) = 1 PW -a.s., where QW

and Q
′W are regular conditional probabilities given W (defined in [17]) and PW is the

probability law of the Brownian motion. Using [20] p. 391 we obtain the existence of a
function Fx(w) determined uniquely up to measure 0 such that QW = Q

′W = δ(Fx(w))

PW -a.s. Lastly we can see that the function Fx(w) has the desired measurability and
that any solution of Eq. (1.1) with the given initial value can be produced by Fx(w)
a.s.

Finally, Propositions 2.3 and 2.5 and Theorem 2.6 give us the desired result:

Theorem 2.7. Provided that (H1) and (H2) hold and E|ξ|2p < ∞ for any p > 1,
it follows that there exists a unique strong solution for Eq. (1.1).
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2.3. Some Techincal Results

In this section we provide some more techincal results and helpful calculations used
above:

Lemma 2.8. ∣∣∣ ∫ t

s

b(Xu, µu)du
∣∣∣2p ≤ (t− s)2p−1

∫ t

s

|b(Xu, µu)|2pdu.

Proof. By Hölder’s inequality (Theorem 1.32) it holds that∣∣∣ ∫ t

s

b(Xu, µu)du
∣∣∣2p = ( d∑

i=1

(∫ t

s

bi(Xu, µu)du
)2)p

≤
( d∑

i=1

((∫ t

s

(bi(Xu, µu))
2du
) 1

2
(∫ t

s

1du
) 1

2
)2)p

=
(
(t− s)

∫ t

s

d∑
i=1

(bi(Xu, µu))
2du
)p

=
(
(t− s)

∫ t

s

|b(Xu, µu)|2du
)p

≤
(
(t− s)

(∫ t

s

|b(Xu, µu)|2pdu
) 1

p
(∫ t

s

1du
) p−1

p
)p

= (t− s)2p−1

∫ t

s

|b(Xu, µu)|2pdu. (2.12)

□

Lemma 2.9.

E
∣∣∣ ∫ t

s

σ(Xu, µu)dBu

∣∣∣2p ≤ C2p(t− s)p−1E
(∫ t

s

∥σ(Xu, µu)∥2pdu
)
.

Proof. Using Theorems 1.36 and 1.32 we get

E
∣∣∣ ∫ t

s

σ(Xu, µu)dBu

∣∣∣2p ≤ E
(

sup
r∈[s,t]

∣∣∣ ∫ r

s

σ(Xu, µu)dBu

∣∣∣2p)
≤ C2pE

(∫ t

s

∥σ(Xu, µu)∥2du
)p

≤ C2pE
((∫ t

s

∥σ(Xu, µu)∥2pdu
) 1

p
(∫ t

s

1du
) p−1

p
)p

= C2p(t− s)p−1E
(∫ t

s

∥σ(Xu, µu)∥2pdu
)
. (2.13)

□
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Lemma 2.10. Assume that (H1) holds and µs := P ◦ (Xs)
−1. Then

|b(Xs, µs)|2p + ∥σ(Xs, µs)∥2p ≤ 3p−1Lp
1(1 + |Xs|2p + 22p−1E(1 + |Xs|2p)).

Proof. By Hölder’s inequality (Theorem 1.32) we have

∥µs∥2pλ2 =
(∫

Rd

(1 + |x|)2dµs(x)
)p

≤
((∫

Rd

(1 + |x|)2pdµs(x)
) 1

p
(∫

Rd

1
p

p−1dµs(x)
) p−1

p
)p

=

∫
Rd

(1 + |x|)2pdµs(x)

=

∫
Rd

(1 + |x|)2pd(P ◦X−1
s )(x)

= E(1 + |Xs|)2p

≤ E((1 + |Xs|2p)
1
2p · 2

2p−1
2p )2p

= 22p−1E(1 + |Xs|2p) (2.14)

and thus we get

|b(Xs, µs)|2p + ∥σ(Xs, µs)∥2p ≤
(
|b(Xs, µs)|2 + ∥σ(Xs, µs)∥2

)p
≤
(
L1(1 + |Xs|2 + ∥µ∥2λ2)

)p
≤
(
L1(1 + |Xs|2p + ∥µ∥2pλ2)

1
p 3

p−1
p
)p

= 3p−1Lp
1(1 + |Xs|2p + ∥µ∥2pλ2)

≤ 3p−1Lp
1(1 + |Xs|2p + 22p−1E(1 + |Xs|2p)). (2.15)

□

Lemma 2.11. Let µ1
t := P ◦ (X1

t )
−1 and µ2

t := P ◦ (X2
t )

−1. Then it holds that

ρ(µ1
t , µ

2
t ) ≤ E

∣∣X1
t −X2

t

∣∣.
Proof. The condition ∥φ∥Cρ(Rd) ≤ 1 gives that

sup
x̸=y

|φ(x)− φ(y)|
|x− y|

≤ ∥φ∥Cρ(Rd) ≤ 1,

so it follows that |φ(x)− φ(y)| ≤ |x− y| for x, y ∈ Rd, x ̸= y.
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Using the definition of ρ and the previous results we get

ρ(µ1
t , µ

2
t ) = sup

∥φ∥
Cρ(Rd)≤1

∣∣∣ ∫
Rd

φ(x)µ1
t (dx)−

∫
Rd

φ(x)µ2
t (dx)

∣∣∣
= sup

∥φ∥
Cρ(Rd)≤1

∣∣∣Eφ(X1
t )− Eφ(X2

t )
∣∣∣

≤ sup
∥φ∥

Cρ(Rd)≤1

E
∣∣∣φ(X1

t )− φ(X2
t )
∣∣∣

≤ E sup
∥φ∥

Cρ(Rd)≤1

∣∣∣φ(X1
t )− φ(X1

t )
∣∣∣

≤ E
∣∣∣X1

t −X2
t

∣∣∣. (2.16)

□

Lemma 2.12. For all 0 < δ < 2 there exists a constant cδ > 0 such that

x2(log x)2 ≤ cδx
2−δ for all x ∈ (0, 1].

Proof. Put cδ :=
(

2
δe

)2
, 0 < δ < 2. We show that xδ(log x)2 ≤ cδ for all x ∈ (0, 1]:

Looking at the first and second derivatives of xδ(log x)2 we can see that it reaches its

maximum at x = e−
2
δ . Thus we get

xδ(log x)2 ≤
(
e−

2
δ

)δ(
log e−

2
δ

)2
= e−2

(
− 2

δ

)2
=
( 2
δe

)2
= cδ.

Moreover, it holds that (log x)2 ≤ cδx
−δ, so the statement follows from multiplying

both sides by x2. □

In the following we will show how to confirm the martingale property with respect
to (W̄t)t∈[0,T ] defined in (1.2) using continuous, bounded and measurable functionals
as test functions instead of indicator functions of measurable sets. We will do this in
two steps: first we show the statement for a (B(Wt))t∈[0,T ]-martingale. Then we will
consider a right-continous filtration to help prove the final statement.

Lemma 2.13. Let (Mt)t∈[0,T ] be a (B(Wt))t∈[0,T ]-adapted, continuous and inte-
grable process. If for a continuous, bounded and B(Ws)-measurable functional Gs it
holds that

E
(
MtGs

)
= E

(
MsGs

)
for 0 ≤ s < t ≤ T , then (Mt)t∈[0,T ] is a (B(Wt))t∈[0,T ]-martingale.
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Proof. By [28] Chapter 1.3 (p. 30) we have that for Xu(w) = wu, w ∈ Wt it
holds that B(Wt) = σ(Xu, 0 ≤ u ≤ t).

Define a π-system P as P :=
{
{Xt1 ∈ (a1, b1), ... , Xtn ∈ (an, bn)} where , n ∈

N, −∞ ≤ ai < bi ≤ ∞, i = 1, ..., n and 0 ≤ t1 < ... < tn ≤ s
}
.

Now we have that B(Wt) = σ(P).

Set µ and ν to be finite measures on B(Wt) defined as follows:

µ
( n⋂

i=1

{Xti ∈ (ai, bi)}
)
:= E

(
Mt

n∏
i=1

1{Xti∈(ai,bi)}

)
ν
( n⋂

i=1

{Xti ∈ (ai, bi)}
)
:= E

(
Ms

n∏
i=1

1{Xti∈(ai,bi)}

)
.

Let {φi
k}k∈N be a family of continuous functions such that lim

k→∞
φi
k = 1(ai,bi) for

i = 1, ..., n.

Since w 7→ (wt1 , ..., wtn) and (y1, ..., yn) 7→
∏n

i=1 φ
i
k(yi) are continuous maps it fol-

lows from Proposition 1.4 that w 7→
∏n

i=1 φ
i
k(wti) is also continuous.

Therefore by our assumption it holds that

E
(
Mt

n∏
i=1

φi
k(wti)

)
= E

(
Ms

n∏
i=1

φi
k(wti)

)
for all k ∈ N.

Furthermore, by Theorem 1.6 we get that

lim
k→∞

E
(
Mt

n∏
i=1

φi
k(wti)

)
= E

(
Mt

n∏
i=1

1(ai,bi)(wti)
)
,

lim
k→∞

E
(
Ms

n∏
i=1

φi
k(wti)

)
= E

(
Ms

n∏
i=1

1(ai,bi)(wti)
)
,

and therefore it follows that

E
(
Mt

n∏
i=1

1(ai,bi)(wti)
)
= E

(
Ms

n∏
i=1

1(ai,bi)(wti)
)
.

Now we have that µ(A) = ν(A) for all A ∈ P . Then by Theorem 1.16 it holds
that µ(B) = ν(B) for all B ∈ B(Ws) and hence we conclude that (Mt)t∈[0,T ] is a
martingale with respect to (B(Wt))t∈[0,T ]. □

Lemma 2.14. Assume that (Mt)t≥0 is a continuous (Ft)t≥0-martingale. Then it
is also a martingale with respect to (Gt)t≥0 where Gt :=

⋂
s>t

Fs.
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Proof. Set X 1
n
:= Ms+ 1

n
, n ∈ N and X := Ms+1. Put A := { 1

n
: n ∈ N} and

Hr := Fs+r for r ∈ A.

Now lim
n→∞

X 1
n
= Ms and since (Mt)t≥0 is an (Ft)t≥0-martingale one has that

E[X 1
n
|H 1

n+1
] = E[Ms+ 1

n
|Fs+ 1

n+1
] = Ms+ 1

n+1
= X 1

n+1
a.s.

for all n ∈ N. Thus (Xr)r∈A is a (Hr)r∈A-martingale.

Furthermore, we have

E[X|H 1
n
] = E[Ms+1|Fs+ 1

n
] = Ms+ 1

n
= X 1

n
a.s.

for all n ∈ N, so (Xr)r∈A is a closable martingale. Then by Theorem 1.31 it
holds that (Xr)r∈A is uniformly integrable and from Lemma 1.13 it follows that
lim
n→∞

EMs+ 1
n
= EMs.

Let 0 ≤ s < t, A ∈ Gs and ε ∈ (0, t − s). Then A ∈ Fs+ε for all ε > 0, and
since (Mt)t≥0 is a (Ft)t≥0-martingale it holds that

E(Mt1A) = E((Mt −Ms+ε)1A) + E(Ms+ε1A) = 0 + E(Ms+ε1A)

for all ε ∈ (0, t− s).

Since the above holds for all ε ∈ (0, t − s) we can consider a sequence (εn)n∈N with
εn = min{ 1

n
, t− s− δ} for any δ ∈ (0, t− s− ε). It holds that lim

n→∞
εn = 0.

Now we get
E(Mt1A) = lim

n→∞
E(Ms+εn1A) = E(Ms1A)

for all A ∈ Gs. □

With Lemmas 2.13 and 2.14 we obtain the following result:

Lemma 2.15. Let (Mt)t∈[0,T ] be a (W̄t)t∈[0,T ]-adapted continuous process. If for any
continuous, bounded and W̄s-measurable functional Gs we have that

E(MtGs) = E(MsGs)

for 0 ≤ s < t ≤ T , then (Mt)t∈[0,T ] is a martingale with respect to (W̄t)t∈[0,T ].



CHAPTER 3

The Convergence Rate

In chapter 2 we proved the existence of a unique strong solution for Equation (1.1)
by using the Euler-Maruyama Approximation introduced in (2.3). In this chapter we
will consider the convergence rate of this approximation.

Definition 3.1 (”Big-O notation”, see [16] (5.42) p. 340). Let f and g be real-
valued functions such that there exists a C > 0 and a ∈ R with

|f(x)| ≤ C|g(x)| for all x > a.

We denote this by
f(x) = O(g(x)).

Lemma 3.2. Let κη, 0 < η < 1
e
, be defined as in (1.5). Then it holds that

x+ κη(x) ≤ Cηκη(x)

for x ≥ 0, where Cη is a constant depending on η.

Proof. Consider 0 < x ≤ η. Then

log x−1 ≥ log η−1 ≥ log
(1
e

)−1
= log e = 1,

and hence

x+ κη(x) = x+ x log x−1 ≤ x log x−1 + x log x−1 = 2x log x−1 = 2κη(x).

Next assume that x > η. Then we have

x = η + x− η ≤ η log η−1 + x− η

≤ η log η−1 + x− η + (log η−1 − 1)(x− η) +
η log η−1

log η−1 − 1

=
( 1

log η−1 − 1
+ 1
)(

η log η−1 + (log η−1 − 1)(x− η)
)

=
( 1

log η−1 − 1
+ 1
)
κη(x),

and thus we get

x+ κη(x) ≤
( 1

log η−1 − 1
+ 1
)
κη(x) + κη(x) ≤ Ĉηκη(x).

Now for x > 0 it holds that x+ κη(x) ≤ Cηκη(x), where Cη := Ĉη ∨ 2. □

30
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The following statement regarding the convergence rate of the approximation is a
slightly different formulation of that found in [10] Section 4:

Theorem 3.3. Consider Xt from Eq. (1.1) and the Euler-Maruyama Approxima-
tion from (2.3). Assume that (H1) and (H′

2) hold for b and σ and that E|ξ|2p < ∞
for any p > 1.
Then it follows that there exists a T0 > 0 such that

E
(

sup
t∈[0,T ]

|Xn
t −Xt|2

)
= O((2−nT0)

1−γ)

for any γ ∈ (0, 1).

Proof. Put Ht := Xn
t −Xt. Then we have

Ht =

∫ t

0

(
b(Xn

tn(s), µ
n
tn(s))− b(Xs, µs)

)
ds+

∫ t

0

(
σ(Xn

tn(s), µ
n
tn(s))− σ(Xs, µs)

)
dBs.

By a similar deduction as in Proposition 2.5 we get from Ito’s formula (Theorem 1.27)
that

|Ht|2 = J1(t) + J2(t) + J3(t),

where

J1(t) :=

∫ t

0

2⟨Hs, b(X
n
tn(s), µ

n
tn(s))− b(Xs, µs)⟩ds,

J2(t) :=

∫ t

0

2⟨Hs, (σ(X
n
tn(s), µ

n
tn(s))− σ(Xs, µs))dBs⟩,

J3(t) :=

∫ t

0

∥σ(Xn
tn(s), µ

n
tn(s))− σ(Xs, µs)∥2ds.

We first take a look at J1(t). By (H′
2) we have

|J1(t)| =
∣∣∣ ∫ t

0

2⟨Hs, b(X
n
tn(s), µ

n
tn(s))− b(Xs, µs)⟩ds

∣∣∣
≤ 2

∫ t

0

|Hs||b(Xn
tn(s), µ

n
tn(s))− b(Xs, µs)|ds

=2

∫ t

0

|Hs||b(Xn
tn(s), µ

n
tn(s))− b(Xn

s , µ
n
s ) + b(Xn

s , µ
n
s )− b(Xs, µs)|ds

≤ 2

∫ t

0

|Hs||b(Xn
tn(s), µ

n
tn(s))− b(Xn

s , µ
n
s )|+ |Hs||b(Xn

s , µ
n
s )− b(Xs, µs)|ds

≤
∫ t

0

|Hs|2 + |b(Xn
tn(s), µ

n
tn(s))− b(Xn

s , µ
n
s )|2ds

+ 2

∫ t

0

λ1

(
|Hs|2γ1(|Hs|) + |Hs|ρ(µn

s , µs)
)
ds.
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With (H′
2) and Hölder’s inequality (Remark 1.33) we get

|J1(t)| ≤
∫ t

0

|Hs|2ds+ 2

∫ t

0

λ2
1

(
|Xn

tn(s) −Xn
s |2γ2

1(|Xn
tn(s) −Xn

s |) + ρ2(µn
tn(s), µ

n
s )
)
ds

+ 2

∫ t

0

λ1|Hs|2γ1(|Hs|)ds+ λ1

∫ t

0

|Hs|2ds+ λ1

∫ t

0

ρ2(µn
s , µs)ds.

Furthermore, by Remark 1.42 and (2.16) we get for some constant c > 0

|J1(t)| ≤ (1 + λ1)

∫ t

0

|Hs|2ds+ 2λ2
1c

∫ t

0

κ2
η(|Xn

tn(s) −Xn
s |)ds

+ 2λ2
1

∫ t

0

|Xn
tn(s) −Xn

s |2ds+ 2λ1c

∫ t

0

κη(|Hs|2)ds+ λ1

∫ t

0

|Xn
s −Xs|2ds.

Next we want to consider the supremum. Since all the integrands are positive and κη

is increasing we have for 0 ≤ t ≤ T that

sup
s∈[0,t]

|J1(s)| ≤ (1 + 2λ1) sup
s∈[0,t]

∫ s

0

|Hr|2dr + 2λ2
1c sup

s∈[0,t]

∫ s

0

κ2
η(|Xn

tn(r) −Xn
r |)dr

+ 2λ2
1 sup
s∈[0,t]

∫ s

0

|Xn
tn(r) −Xn

r |2dr + 2λ1c sup
s∈[0,t]

∫ s

0

κη(|Hr|2)dr

≤ (1 + 2λ1)

∫ t

0

sup
s∈[0,r]

|Hs|2dr + 2λ2
1c

∫ t

0

κ2
η( sup

s∈[0,r]
|Xn

tn(s) −Xn
s |)dr

+ 2λ2
1

∫ t

0

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2dr + 2λ1c

∫ t

0

κη( sup
s∈[0,r]

|Hs|2)dr.

By linearity of expectation and Tonelli’s Theorem (Theorem 1.14) we now take the

expectation and obtain

E
(

sup
s∈[0,t]

|J1(s)|
)
≤ (1 + 2λ1)

∫ t

0

E
(
sup
s∈[0,r]

|Hs|2
)
dr + 2λ2

1c

∫ t

0

E
(
κ2
η( sup

s∈[0,r]
|Xn

tn(s) −Xn
s |)
)
dr

+ 2λ2
1

∫ t

0

E
(
sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
)
dr + 2λ1c

∫ t

0

E
(
κη( sup

s∈[0,r]
|Hs|2)

)
dr.

It is useful to notice that the map x 7→ κ2
η(
√
x) is concave:

For the case 0 < x ≤ η we have

d2

dx2
κ2
η(
√
x) =

d2

dx2
x
(
log(x− 1

2

)2
=

d2

dx2

x

4
(log x)2 =

d

dx

(1
4

(
log x

)2
+

x

2x
log x

)
=

d

dx

(1
4

(
log x

)2
+

1

2
log x

)
=

1

2x
log x+

1

2x
=

1

2x

(
log x+ 1

)
< 0



3. THE CONVERGENCE RATE 33

for all 0 < x < 1
e
.

Similarly, it holds for all x > η that

d2

dx2
κ2
η(
√
x) =

d2

dx2

(
(log η−1 − 1)

√
x+ η

)2
=

d2

dx2
(log η−1 − 1)2x+ 2(log η−1 − 1)η

√
x+ η2

=
d

dx
(log η−1 − 1)2 + (log η−1 − 1)η

1√
x

= −1

2
(log η−1 − 1)η

1

x
√
x
< 0.

Now by Jensen’s inequality (Proposition 1.40) we have for Y := sups∈[0,r] |Xn
tn(s)

−Xn
s |

that

Eκ2
η(Y ) = Eκ2

η(
√
Y 2) ≤ κ2

η(
√
EY 2).

Since κη is also concave, by Jensen’s inequality we get

E
(

sup
s∈[0,t]

|J1(s)|
)
≤ C1

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
dr

+ C1

∫ t

0

κ2
η

((
E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
)) 1

2
)
dr

+ C1

∫ t

0

E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
)
dr

+ C1

∫ t

0

κη

(
E( sup

s∈[0,r]
|Hs|2

))
dr. (3.1)

Next we will consider the term J3(t). With (H′
2) and Remark 1.42 we get

|J3(t)| =
∫ t

0

∥(σ(Xn
tn(s), µ

n
tn(s))− σ(Xs, µs)∥2ds

=

∫ t

0

∥σ(Xn
tn(s), µ

n
tn(s))− σ(Xn

s , µ
n
s ) + σ(Xn

s , µ
n
s )− σ(Xs, µs)∥2ds

≤ 2

∫ t

0

∥σ(Xn
tn(s), µ

n
tn(s))− σ(Xn

s , µ
n
s )∥2 + ∥σ(Xn

s , µ
n
s )− σ(Xs, µs)∥2ds

≤ 2λ̂2

∫ t

0

κη(|Xn
tn(s) −Xn

s |2)ds+ 2λ̂2

∫ t

0

ρ2(µn
tn(s), µ

n
s )ds

+ 2λ̂2

∫ t

0

κη(|Xn
s −Xs|2)ds+ 2λ̂2

∫ t

0

ρ2(µn
s , µs)ds.
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Using similar calculations as for the term J1(t) we have

|J3(t)| ≤ 2λ̂2

∫ t

0

κη(|Xn
tn(s) −Xn

s |2)ds+ 2λ̂2

∫ t

0

|Xn
tn(s) −Xn

s |2ds

+ 2λ̂2

∫ t

0

κη(|Hs|2)ds+ 2λ̂2

∫ t

0

|Hs|2ds,

and since κη is increasing and all the integrands are positive we get for 0 ≤ t ≤ T

sup
s∈[0,t]

|J3(s)| ≤C3

∫ t

0

κη( sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2)dr + C3

∫ t

0

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2dr

+ C3

∫ t

0

κη( sup
s∈[0,r]

|Hs|2)dr + C3

∫ t

0

sup
s∈[0,r]

|Hs|2dr.

Thus it follows from Tonelli’s Theorem (Theorem 1.14) and Jensen’s inequality (Propo-
sition 1.40) that

E
(

sup
s∈[0,t]

|J3(s)|
)
≤C3

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
dr

+ C3

∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
))

dr

+ C3

∫ t

0

E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
)
dr

+ C3

∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Hs|2
))

dr. (3.2)

Now we take a look at the term J2(t). By the Burkholder-Davis-Gundy inequality
(Theorem 1.36) we have for 0 ≤ t ≤ T that

E
(

sup
s∈[0,t]

|J2(t)|
)
=2E

(
sup
s∈[0,t]

∣∣∣ ∫ s

0

d∑
i,j=1

H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)
dW i

r

∣∣∣)

≤2
d∑

i,j=1

E
(

sup
s∈[0,t]

∣∣∣ ∫ s

0

H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)
dW i

r

∣∣∣)

≤2
d∑

i,j=1

C̃E
(∫ t

0

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2

=2C̃ E
( d∑

i,j=1

(∫ t

0

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2
)
.
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Hölder’s inequality (Remark 1.33) gives us that

d∑
i=1

d∑
j=1

(∫ t

0

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2

≤
d∑

i=1

((
d∑

j=1

(∫ t

0

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2
·2
) 1

2

· d
1
2

)

=
√
d

d∑
i=1

(
d∑

j=1

∫ t

0

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2

≤
√
d

(
d∑

i=1

(
d∑

j=1

∫ t

0

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2
·2) 1

2

·
√
d

= d

(∫ t

0

d∑
i=1

d∑
j=1

∣∣H i
r

(
σi,j(X

n
tn(r), µ

n
tn(r))− σi,j(Xr, µr)

)∣∣2dr) 1
2

= d

(∫ t

0

∥Hr

(
σ(Xn

tn(r), µ
n
tn(r))− σ(Xr, µr)

)
∥2dr

) 1
2

.

Hence we have

E
(

sup
s∈[0,t]

|J2(s)|
)
≤ C̃ ′ E

(∫ t

0

|Hr|2∥σ(Xn
tn(r), µ

n
tn(r))− σ(Xr, µr)∥2dr

) 1
2

≤ C̃ ′ E

(
sup
s∈[0,t]

|Hs|2
∫ t

0

∥σ(Xn
tn(r), µ

n
tn(r))− σ(Xr, µr)∥2dr

) 1
2

=E

((
sup
s∈[0,t]

|Hs|2
) 1

2
(
(C̃ ′)2

∫ t

0

∥σ(Xn
tn(r), µ

n
tn(r))− σ(Xr, µr)∥2dr

) 1
2

)
,

and furthermore by Young’s inequality (Proposition 1.34) it follows that

E
(

sup
s∈[0,t]

|J2(s)|
)
≤ 1

2
E
(

sup
s∈[0,t]

|Hs|2
)
+

1

2
(C̃ ′)2 E

(∫ t

0

∥σ(Xn
tn(r), µ

n
tn(r))− σ(Xr, µr)∥2dr

)
.
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For the latter term we use (3.2) and get

E
(

sup
s∈[0,t]

|J2(s)|
)
≤ 1

2
E
(

sup
s∈[0,t]

|Hs|2
)
+ C2

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
dr

+ C2

∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
))

dr

+ C2

∫ t

0

E
(

sup
r∈[0,s]

|Xn
tn(r) −Xn

r |2
)
ds

+ C2

∫ t

0

κη

(
E
(

sup
r∈[0,s]

|Hr|2
))

ds. (3.3)

Now from (3.1), (3.2) and (3.3) we conclude that for 0 ≤ t ≤ T

E
(

sup
s∈[0,t]

|Hs|2
)
≤E

(
sup
s∈[0,t]

|J1(s)|+ sup
s∈[0,t]

|J2(s)|+ sup
s∈[0,t]

|J3(s)|
)

≤ 1

2
E
(

sup
s∈[0,t]

|Hs|2
)
+ C4

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
dr

+ C4

∫ t

0

κ2
η

((
E
(
sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
)) 1

2
)
dr

+ C4

∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
))

dr

+ C4

∫ t

0

E
(

sup
s∈[0,t]

|Xn
tn(s) −Xn

s |2
)
dr

+ C4

∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Hs|2
))

dr, (3.4)

where C4 depends on λ1, λ2 and d.

By moving the term 1
2
E
(

sup
s∈[0,t]

|Hs|2
)

to the left-hand side and multiplying both

sides of (3.4) by 2 we obtain

E
(

sup
s∈[0,t]

|Hs|2
)
≤ C∗

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
dr

+ C∗
∫ t

0

κ2
η

((
E
(
sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
)) 1

2
)
dr

+ C∗
∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Xn
tn(s) −Xn

s |2
))

dr

+ C∗
∫ t

0

E
(

sup
s∈[0,t]

|Xn
tn(s) −Xn

s |2
)
dr

+ C∗
∫ t

0

κη

(
E
(

sup
s∈[0,r]

|Hs|2
))

dr. (3.5)
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Next we will construct an estimate for E
(

sup
s∈[0,r]

|Xn
tn(s)

−Xn
s |2
)
. By (2.4) and Hölder’s

inequality we have for k = 0, .., 2n − 1 and 0 ≤ t ≤ T that

E
(

sup
k
2n

t≤s< k+1
2n

t

|Xn
s −Xn

tk
|2
)

= E
(

sup
k
2n

t≤s< k+1
2n

t

|b(Xn
tk
, µn

tk
)(s− tk) + σ(Xn

tk
, µn

tk
)(Bs −Btk |2

)
≤ 2E

(
|b(Xn

tk
, µn

tk
)|2
∣∣∣k + 1

2n
t− k

2n
t
∣∣∣2 + ∥σ(Xn

tk
, µn

tk
)∥2 sup

k
2n

t≤s< k+1
2n

t

|Bs −Btk |2
)

= 2E
(
|b(Xn

tk
, µn

tk
)|2
)
(2−nt)2 + 2E

(
∥σ(Xn

tk
, µn

tk
)∥2 sup

k
2n

t≤s< k+1
2n

t

|Bs −Btk |2
)
.

From Hölder’s inequality (Theorem 1.32) it follows that

E
(
∥σ(Xn

tk
,µn

tk
)∥2 sup

k
2n

t≤s< k+1
2n

t

|Bs −Btk |2
)

≤
(
E(∥σ(Xn

tk
, µn

tk
)∥4
) 1

2
(
E
(

sup
k
2n

t≤s< k+1
2n

t

|Bs −Btk |2
)2) 1

2

=
(
E(∥σ(Xn

tk
, µn

tk
)∥4
) 1

2
(
E
(

sup
k
2n

t≤s< k+1
2n

t

∣∣ ∫ s

tk

dBr

∣∣4)) 1
2
.

Furthermore, the Burkholder-Davis-Gundy inequality (Theorem 1.36) gives us

E
(

sup
k
2n

t≤s< k+1
2n

t

∣∣ ∫ s

tk

dBr

∣∣4) ≤ Ĉ1 E
(∫ k+1

2n
t

k
2n

t

dr
) 4

2
= Ĉ1 (2

−nt)2.

By similar calculations as in (2.10) and (2.11) we can see that

E
(
|b(Xn

tk
, µn

tk
)|2
)
≤ Ĉ2 < ∞,

E(∥σ(Xn
tk
, µn

tk
)∥4 ≤ Ĉ3 < ∞,

so we get that

E
(

sup
k
2n

t≤s< k+1
2n

t

|Xn
s −Xn

tk
|2
)
≤ Ĉ4(2

−nt)2 + Ĉ4((2
−nt)2)

1
2 ≤ Ĉ(2−nt) ≤ Ĉ(2−nT ).

Now (3.5) can be presented as

E
(

sup
s∈[0,t]

|Hs|2
)
≤C

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
+ κη

(
E
(

sup
s∈[0,r]

|Hs|2
))

dr

+ CTκ2
η(C(2−nT )

1
2 ) + CTκη(C2−nT ) + CT (2−nT ). (3.6)
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Set A = CTκ2
η(C(2−nT )

1
2 ) + CTκη(C2−nT ) + CT (2−nT ) and for 0 ≤ t ≤ T put

g(t) := E
(

sup
s∈[0,t]

|Hs|2
)
.

Then g is strictly positive and strictly increasing.

Now with (3.6) and Lemma 3.2 we get

g(t) ≤ C

∫ t

0

E
(

sup
s∈[0,r]

|Hs|2
)
+ κη

(
E
(

sup
s∈[0,r]

|Hs|2
))

dr + A

= C

∫ t

0

g(r) + κη

(
g(r)

)
dr + A

≤ Cη

∫ t

0

κη

(
g(r)

)
dr + A.

Now Lemma 1.38 gives us that for a constant C̄ depending on η, T, λ1, λ2 and d

E
(

sup
s∈[0,T ]

|Hs|2
)
≤ C̄Aexp{−C̄T}.

Since it holds that lim
n→∞

C(2−nT )
1
2 = 0 and lim

n→∞
C(2−nT ) = 0, we can assume that

C(2−nT )
1
2 ≤ η and C(2−nT ) ≤ η and use the property κη(x) = −xlog(x) for x ≤ η.

We can see that for A the term CTκ2
η(C(2−nT )

1
2 ) converges the slowest as n → ∞,

so for large n we have A ≤ C(1)Tκ2
η(C(2−nT )

1
2 ) and thus

E
(

sup
t∈[0,T ]

|Ht|2
)
≤ C̄(1)

(
Tκ2

η(C(2−nT )
1
2 )
)exp{−C̄T}

.

By Lemma 2.12 we have that for all 0 < δ < 2 there exists a constant cδ > 0
such that

Tκ2
η(C(2−nT )

1
2 ) ≤ TcδC

2−δ(2−nT )
2−δ
2 = T 2− δ

2 cδC
2−δ2−n(1− δ

2
).

Since 0 < e−C̄T < 1 and for large n it holds that 0 < A < 1 we can see that

the estimate for E
(

sup
t∈[0,T ]

|Ht|2
)
gets worse the smaller e−C̄T is.
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Let ε > 0 and set T0 ∈ (0, 1) such that e−C̄T0 ≥ 1− ε. Now it follows that(
T0κ

2
η(C(2−nT0)

1
2 )
)exp(−C̄T0)

≤ C(2)T
(2− δ

2
)(1−ε)

0 2−n(1− δ
2
)(1−ε)

≤ C(2)(2−nT0)
(1− δ

2
)(1−ε)

≤ C(2)(2−nT0)
1−γ

for any γ ∈ (0, 1) since δ and ε can be chosen arbitrarily small.

Therefore we get for T ∈ [0, T0]

E
(

sup
t∈[0,T0]

|Xn
t −Xt|2

)
= O((2−nT )1−γ).

For the case T ≤ T0 the statement is proved. If T > T0 we consider the intervals
[T0, 2T0], [2T0, 3T0], ..., [[

T
T0
]T0, T ] and by similar means as above we get

E
(

sup
t∈[0,T ]

|Xn
t −Xt|2

)
= O((2−nT )1−γ).

and thus the proof is finished.
□
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