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Abstract. Real-world multiobjective optimization problems involve de-
cision makers interested in a subset of solutions that meet their prefer-
ences. Decomposition-based multiobjective evolutionary algorithms (or
MOEAs) have gained the research community’s attention because of
their good performance in problems with many objectives. Some efforts
have been made to propose variants of these methods that incorporate
the decision maker’s preferences, directing the search toward regions of
interest. Typically, such variants adapt the reference vectors according to
the decision maker’s preferences. However, most of them can consider a
single type of preference, the most common being reference points. Inter-
active MOEAs aim to let decision-makers provide preference information
progressively, allowing them to learn about the trade-offs between objec-
tives in each iteration. In such methods, decision makers can provide
preferences in multiple ways, and it is desirable to allow them to select
the type of preference for each iteration according to their knowledge.
This article compares three interactive versions of NSGA-III utilizing
multiple types of preferences. The first version incorporates a mecha-
nism that adapts the reference vectors differently according to the type
of preferences. The other two versions convert the preferences from the
type selected by the decision maker to reference points, which are then
utilized in two different reference vector adaptation techniques that have
been used in a priori MOEAs. According to the results, we identify the
advantages and drawbacks of the compared methods.

Keywords: Multiobjective optimization · Interactive methods · Deci-
sion making · Multiobjective evolutionary algorithms · Decomposition-
based MOEAs · NSGA-III.

1 Introduction

Real-world problems typically involve multiple conflicting objective functions
to be optimized simultaneously. Because of such conflict among the objectives,
the so-called multiobjective optimization problems (MOPs) do not have a single
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solution, but a set of trade-off solutions called Pareto front. However, solving
these problems aims to help a DM, which is a domain expert, to find their most
preferred solution.

In the operations research field, multiobjective optimization methods have
been classified according to the role of the DM during the solution process [25].
No preference methods do not involve the DM at all, being suitable when the
DM does not have clear expectations of the final solution. A priori methods
only ask for preference information from the DM at the beginning of the solu-
tion process. These methods are mainly utilized when the DM already knows
the trade-offs between the objectives and their preferences are clear. A posteriori
methods consider the DM’s preferences after approximating the Pareto optimal
set. Finally, interactive methods allow the DM to provide preference information
iteratively during the solution process. In each iteration, the DM can learn about
the trade-offs among the objectives and utilize this new insight for updating the
preference information.

DMs can express their preferences in multiple ways, e.g., by providing de-
sirable values for each objective function, specifying desirable ranges for each
objective function, comparing pairs of solutions, etc. The type of preferences
utilized in the solution process should depend on the DM, as according to their
experience, they may feel more comfortable using a specific type of preference.
In interactive methods, there should also be possible to allow the DM to change
the type of preferences according to their needs [1].

MOEAs have been successfully applied to approximate the Pareto front of
multiobjective optimization problems. There are mainly three types of MOEAs
[35]: dominance-based, indicator-based, and decomposition-based. Decomposi-
tion-based MOEAs have received much attention from the research community
in recent years for maintaining a good performance even when the number of
objectives is increased, as opposed to domination-based methods [18]. These
methods decompose an MOP into multiple single-objective optimization prob-
lems or multiple simpler MOPs, which are then optimized collaboratively. Such
decomposition is performed using a set of reference vectors (RVs)1 and a scalar-
ization function. To find a representative set of near-Pareto optimal solutions,
the RVs are generated uniformly in a simplex. The most popular decomposition-
based MOEAs are MOEA/D [36], RVEA [5], and NSGA-III [10]. These methods
typically do not consider the preferences of the DM during the solution process.
However, multiple variants of such methods have been proposed that utilize
preference information a priori or interactively (e.g., [14, 15, 19, 33]).

Decomposition-based MOEAs with preference incorporation generally utilize
the preferences to adapt the RVs, directing the search toward the region of inter-
est. However, most of them work with a single type of preference, reference points
being the most common. Interactive RVEA [15] is the only decomposition-based
MOEA that can handle multiple types of preferences. This method allows DM
to choose among four types of preferences: reference points, preferred ranges,

1 RVs also known as weight vectors or reference points in different MOEAs. To avoid
confusion, we will continue to use the term “RVs” only.
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and preferred and non-preferred solutions. Then, the RVs are adapted according
to the selected type of preference. As this approach does not need any other
modification in the structure of the MOEA, the RV adaptation technique can
be used in other decomposition-based MOEAs (e.g., MOEA/D [17]).

The performance of interactive RVEA using multiple types of preferences
has been analyzed in various articles [2, 17]. From the results, it has been shown
that the method’s performance decreases when preferred ranges are utilized in
most of the test instances. However, it is difficult to identify the reason behind
this behavior, as the method has not been compared with other MOEAs using
different types of preferences.

In this article, we compare three interactive versions of NSGA-III. All of them
work by adapting the RVs using the preference information. However, the adap-
tation technique is performed differently in all versions. The first version utilizes
the RV adaptation techniques employed in interactive RVEA. In this case, the
RVs are adapted differently depending on the type of preference. The other two
versions incorporate an intermediate step that converts the preferences from the
type given by the DM to reference points. We do this, as reference points are
the most common type of preference utilized by the RV adaptation techniques.
This preference conversion allows us to adopt the existing RV adaptation tech-
niques allowing the DM to select between multiple types of preferences. The
main contributions of this article are the following:

– We incorporate the RVs adaptation technique from interactive RVEA into
NSGA-III. Both methods are compared utilizing reference points and pre-
ferred ranges in different benchmark problems to identify their main advan-
tages and disadvantages.

– We propose a simple conversion technique for transforming preferred ranges
and preferred solutions into reference points. The resulting reference points
are utilized as input for two different RV adaptation techniques: the one
employed by R-NSGA-III [33] and NUMS [19]. In addition, we utilize these
techniques in an interactive method for the first time.

– We compare three interactive versions of NSGA-III utilizing multiple types
of preference information. These methods are tested with various benchmark
problems considering 5, 7, and 9 objective functions. As involving real DMs
will be very time consuming, the experimentation was conducted using an
artificial DM [2], which enabled inexpensive comparison of interactive meth-
ods without real DMs.

The rest of the article is organized as follows. Section 2 discusses the back-
ground of multiobjective optimization and evolutionary algorithms. A brief overview
of the a priori and interactive versions of NSGA-III available in the literature is
presented in Section 3. Interactive RVEA, RNSGA-III, and NUMS are also de-
scribed in the same section. The proposed interactive versions of NSGA-III and
the mechanism to convert preferred ranges and preferred solutions into reference
points are described in section 4. Section 5 compares the three interactive ver-
sions of NSGA-III presented in this article using various benchmark problems.
Finally, we conclude this article in Section 6.
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2 Background

2.1 Multiobjective Optimization

A multiobjective optimization problem can be mathematically formulated as
follows:

minimize F(x) = (f1(x), . . . , fk(x))

subject to x ∈ S,
(1)

where fi (i = 1, . . . , k) are the k conflicting objective functions (with k ≥ 2).
S ⊂ Rn is the feasible set of decision vectors x = (x1, ..., xn)

T with n deci-
sion variables. There is a corresponding objective vector F(x) for every feasible
decision vector x. The problem can involve equality and inequality constraints
that must be satisfied by the decision vectors for them to be feasible. It is not
possible for all of the objective functions in (1) to reach their optimal values
simultaneously due to the conflicts between them. Given two solutions x∗ ∈ S
and x′ ∈ S, x∗ dominates x′ if and only if fi(x

∗) ≤ fi(x
′) for all i = 1, . . . k,

and fj(x
∗) < fj(x

′) for at least one index j = 1, . . . , k. If there is no solution
x ∈ S that dominates solution x∗ ∈ S, then x∗ is Pareto optimal. The set of all
Pareto optimal solutions is known as Pareto optimal set, and the corresponding
objective vectors compose the Pareto front.

The best and worst objective function values in the Pareto front are known as
ideal z∗ and a nadir znad points, respectively. The ideal point can be computed
by minimizing each objective function separately. Usually, calculating the nadir
point requires computing the whole Pareto set. However, it can be approximated
using a pay-off table [25], or other means [11].

In real-world problems, a DM is usually involved in the solution process. A
DM is typically interested in a part of the Pareto front close to their preferences,
named region of interest. DM can express their preference information in multiple
ways [3, 23]. In this article, we are interested in the following types of preferences:

– Giving a reference point r = (r1, ..., rk), where each ri is a desirable value
(also known as aspiration level) for the objective function fi (i = 1, ..., k).

– Selecting t (with t ≥ 1) most preferred solutions from a solution set. We
denote them by PS = [ps1, ...,pst].

– Specifying preferred ranges for the objective functions. The preferred range
for an objective fi (i = 1, ..., k) is denoted by [f l

i , f
u
i ], being f l

i and fu
i the

lower and upper bounds, respectively. Then, the preferred ranges for all the
objectives is a k-dimensional hyper-box PR = [f l

1, f
u
1 ]×, ...,×[f l

k, f
u
k ].

In interactive methods, the DM provides preference information progres-
sively. The intervals in which MOEAs ask for preference information from the
DM are known as iterations. In most cases, iterations take place every Ngen

generations, where Ngen is a parameter that is set before the method begins.
Typically, two stages can be observed in an interactive solution process: the
learning and decision phases [24]. During the learning phase, the DM explores
different parts of the Pareto front until they find a region of interest. Then, in the
decision phase, the DM tries to fine-tune the solutions in the region of interest
until finding the most preferred solution.
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2.2 Evolutionary Algorithms

MOEAs are capable of generating an approximation of the Pareto optimal front
in a single run [9]. They can be classified [35] according to their structure into:
dominance-based MOEAs, which compare solutions utilizing Pareto dominance-
based mechanisms; indicator-based MOEAs that use quality indicators as selec-
tion criteria; and decomposition-based MOEAs, which decompose the MOP into
multiple single objective optimization problems or a set of simpler MOPs, which
are optimized collaboratively.

In this article, we are interested in decomposition-based MOEAs. These
methods need two main components: a set of RVs (typically uniformly dis-
tributed in the objective space) and a scalarization function. RVs can be gener-
ated using a simplex lattice design [7]. The number of vectors generated by such
a method is given by

(
q+k−1
k−1

)
, where q is a parameter to control the density of

the solutions and k is the number of objective functions. Scalarizing functions
map objective vectors to real-value scalars and are used to evaluate the solu-
tions of a section of the objective space. Such sections evolve in the direction of
the RV associated with them. Among the most well-known decomposition-based
MOEAs are MOEA/D [36], RVEA [5], and NSGA-III [10].

3 Related Work

Multiple versions of NSGA-III with a priori and interactive preference incorpo-
ration have been proposed in the literature. Such methods typically modify the
distribution of the RVs according to the preferences provided by the DM. As a
result, the method does not provide an approximation of the complete Pareto
front, but the obtained solutions focus on a region of interest. In this section,
we describe the existing versions of NSGA-III that consider the preferences of
the DM. We classify these methods according to the type of preference incorpo-
ration: a priori and interactive. We also describe some methods utilized in the
rest of the article: interactive RVEA, R-NSGA-III, and NUMS.
A priori methods: In the article where NSGA-III was proposed [10], the au-
thors suggested a mechanism to incorporate preferences a priori by filtering the
RVs utilized by the method. A similar approach was used by Yan et al. [34] and
da Silva et al. [8, 31, 30]. Cheng et al. [6] proposed an a priori version of NSGA-
III that requires the DM to specify a central RV, which is utilized to adapt the
complete set of RVs. P-NSGA-III [4] also modifies the RVs according to the pref-
erence information, but it asks the DM for information about the importance
of objectives. Finally, R-NSGA-III [33] receives one or multiple reference points
from the DM, which are used to adapt the RVs toward one or multiple regions
of interest. The RVs are updated at each generation, as the process involves nor-
malizing the reference points utilizing an approximation of the ideal and nadir
points, which change depending on the obtained solutions.
Interactive methods: Mnasri et al. [27] proposed PI-NSGAIII-VF, the first
interactive version of NSGA-III. This method is a hybrid of NSGA-III and a
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strategy for incorporating DM’s preferences on any MOEA: PI-EMO-VF [12].
PI-NSGAIII-VF asks the DM to classify a set of solutions during each iteration.
Such information is utilized to approximate a value function progressively. Then,
a stopping condition is set up according to this value function. T-NSGA-III [22]
modifies the selection procedure of NSGA-III to incorporate the DM’s prefer-
ences in the form of preferred ranges. Such ranges are utilized to transform the
objective values into a new coordinate system defined by the upper and lower
bounds for each objective function specified by the DM. I-NSGA-III-PLVF [20]
asks the DM to score a set of solutions. The method learns a value function
using the provided scores, which is then employed to model the DM’s prefer-
ences. IOPIS-NSGA-III [29] asks the DM for a reference point, which is utilized
to create a (typically lower-dimensional) preference-incorporated space (consist-
ing of a set of scalarization functions) to reformulate the optimization problem.
Finally, PI-NSGA-III-PC-INK [26] modifies the dominance relation using poly-
hedral cones constructed using the preference information. This method shows a
set of solutions in each iteration, from which the DM can select the preferred one.

Interactive RVEA. Interactive RVEA [15] is the only decomposition-based
MOEA that provides the DM with multiple options to give preferences. The
method initializes a set of uniformly distributed RVs, which are adapted dif-
ferently according to the type of preferences selected by the DM. For reference
points and preferred solutions, the RVs are redirected toward the preference.
For non-preferred solutions, the RVs closer to such solutions are removed, while
the rest are kept. A Latin hyper-cube sampling is utilized for preferred ranges.
Then, the obtained vectors are normalized into unit vectors, which replace the
initial RVs. This method needs a parameter v ∈ (0, 1) to control the spread of
the RVs. A small value of v results in RVs close to the preference information,
while a value close to 1 will produce more sparse RVs. In the rest of this article,
we will refer to this RV adaptation technique as IRA.

R-NSGA-III. R-NSGA-III [33] is an a priori method that requires the DM to
provide one or multiple reference points. As a result, the method will provide
one set of solutions close to each of the provided reference points. R-NSGA-III
adapts the RVs at each generation to incorporate the preferences of the DM.
First, the reference points provided by the DM are normalized using the nor-
malization procedure of NSGA-III. Then, a set of uniformly distributed RVs is
generated and shrunk using a spread parameter that controls the size of the
region of interest. The intercepts of the unit hyperplane and the vectors from
the ideal point to each normalized reference point are computed. Finally, the
obtained values are utilized to shift the shrunken RVs to the unit hyperplane.
The same procedure is performed for each reference point provided by the DM.
In addition, the extreme points of the hyperplane are also added to the set of
RVs. In the rest of this article, we will refer to this technique as RPA.

NUMS. Li et al. [19] proposed a nonuniform mapping scheme (NUMS) to map
a set of uniformly distributed RVs on a canonical simplex to new positions close
to a reference point provided by the DM. In this case, the mapping function is
nonlinear and is determined by an RV’s position in relation to the pivot point.
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A pivot point represents the region of interest on a simplex and determines its
position. The nonuniform mapping is utilized to bias the RVs toward the pivot
point. The method gives the option of keeping the boundary of the simplex or
not. In addition, a spread parameter is needed for this method, which is a value
between 0 and 1, representing the relative ratio of the size of the region of inter-
est with respect to the Pareto front. This method has been applied to MOEA/D
both a priori and interactively.

4 Proposal

In this article, we propose three interactive versions of NSGA-III that can uti-
lize multiple types of preference information: reference points, preferred ranges,
and preferred solutions. The proposed methods do not change the structure of
NSGA-III but only modify the distribution of the RVs to obtain solutions in a
region of interest.

The first interactive NSGA-III proposed on this article incorporates the IRA
technique to handle multiple types of preferences. We will refer to this method
as iNSGA-III-IRA. It is worth noting that the possibility of having this type of
method has been mentioned in [29]. However, the authors compared this method
with interactive RVEA using only reference points. Although some experiments
with interactive RVEA have shown a lower performance when using preferred
ranges [2], it is difficult to identify if this behavior is related to the performance
of RVEA or the IRA technique. In this article, we compare iNSGA-III-IRA with
interactive RVEA utilizing reference points, preferred ranges, and preferred so-
lutions to identify the potential and drawbacks of the IRA technique in problems
with different features.

The second and third methods proposed in this article adopt a preference con-
version layer that converts preferred ranges and preferred solutions into reference
points. The preference conversion layer allows us to utilize reference-point-based
RV adaptation techniques from the literature but with other types of preference.
In a real-world scenario, the DM is unaware of the preferences conversion, as it is
an intermediate layer between the user interface and the method. The conversion
of the preference information is performed as follows:

– Preferred ranges: Let PR = [[f l
i , f

u
i ], . . . , [f

l
k, f

u
k ]] be a preferred range given

by the DM. We can obtain a reference point r = [f l
1, f

l
2, . . . , f

l
k], or alterna-

tively r = [fu
1 , f

u
2 , . . . , f

u
k ].

– Preferred solutions: If the DM selects a single solution (ps) in an iteration,
it can be directly utilized as a reference point. If more than one solution
is selected (PS), a reference point can be computed as r = [max(PS1),
max(PS2), . . . ,max(PSk)].

It is worth noting that when selecting a set of preferred solutions, the DM
can provide preferences with different ideologies in mind. The case we considered
here is the simplest one, where the DM chooses solutions close to each other,
indicating that they are interested in a specific region of interest. However, this
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is not always the case, as it is also possible that the DM selects solutions on
different parts of the Pareto front. The interpretation in such a case can be di-
vided into two. The first option is that the DM is interested in multiple regions
of interest and wants to obtain more solutions for all of them. In such a case,
the conversion would not lead to a single reference point but a set of them. This
can easily be handled by the RPA technique, as it can distribute the RVs among
multiple regions of interest. However, if a technique such as NUMS is utilized, it
would be necessary to make separate runs for each reference point. The second
cause is related to the learning process of the DM. Suppose the solutions are
too sparse in the Pareto front. In that case, it can also mean that the DM still
does not have a clear idea of their preferences and that the method should keep
providing solutions in a region of interest that cover most of the Pareto front.
Both types of interpretations together with different mechanisms to compute a
suitable reference point are subject to further research.

In this article, we utilize two reference point-based RV adaptation techniques
with NSGA-III: NUMS, and RPA (we refer to these algorithms as iNSGA-III-
NUMS and iNSGA-III-RPA, respectively). To make these methods interactive,
we run them multiple times changing the preference information. As the exper-
iments only involve benchmark problems, no further changes are needed. How-
ever, it is worth noting that when utilizing interactive methods in real-world
problems, some general properties need to be considered to reduce the cognitive
load of the DM [1, 32, 16].

Figure 1 illustrates the structure of one iteration for each proposed method.
The yellow line represents the stages involved in iNSGA-III-IRA. In this case,
the preferences of the DM are received directly by the IRA method, as it can
already handle multiple types of preference. Then, both iNSGA-III-NUMS (blue
line) and iNSGA-III-RPA (red line) convert the preferences into reference points,
which are utilized as input for the RV adaptation technique. For all the proposed
methods, the adapted reference vectors are used by NSGA-III to direct the search
toward a region of interest.

DM
Preferences
conversion

Preferences RV adaptation

Reference points 

NSGA-III

Preferred solutions

Preferred ranges

IRA

RPA

NUMS

iNSGA-III-IRA

iNSGA-III-RPA

iNSGA-III-NUMS

Fig. 1. Structure of an iteration of each of the methods proposed in this article.

Our proposal is the first attempt to unify preference information provided
by the DM, which is an important research topic for both a priori and inter-
active methods [28]. In addition, although we only consider two RV adaptation
techniques, a similar structure can be utilized with other methods.
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5 Algorithmic Comparison

In this section, we compare the three interactive versions of NSGA-III presented
in this article utilizing ADM-II [2], an artificial DM capable of comparing in-
teractive methods using reference points, preferred ranges, and preferred and
non-preferred solutions. The performance evaluation using ADM-II is divided
into two stages: one for the learning phase and another for the decision phase.
The main difference between the two stages is how ADM-II computes the prefer-
ence information. For the learning phase, the preferences are distributed on the
Pareto front, indicating that the DM is still exploring multiple regions of interest.
For the decision phase, the preferences are closer to a specific region of interest,
fine-tuning the solutions belonging to it. Each iteration, ADM-II generates a
reference point that is utilized in the method and when applying some of the
performance indicators (e.g., R-IGD). If the method requires preferred ranges,
they are obtained by perturbing the reference point. This feature of ADM-II will
allow us to evaluate if the solutions provided by the proposed methods are in
the same region of interest after changing the type of preferences.

For the experimentation, we considered four iterations for the learning phase
and three for the decision phase. After each iteration, ADM-II computes the
performance indicators for the solutions obtained by the methods. Then, a cu-
mulative indicator value is calculated for each phase as suggested in [2]. We
run the methods 15 times for each problem with a given number of objectives.
We considered two problems of the DTLZ benchmark [13] in the experiments:
DTLZ1 and DTLZ3, with 5, 7, and 9 objectives. The number of variables is given
by 10+k−1. The maximum number of generations for each iteration was set to
200 for each method. The spread parameter was set to 0.2 for all the methods.

We utilized two performance indicators with ADM-II: R-IGD [21] and the
composite front contribution (CFC) [2]. R-IGD measures the convergence and
diversity of the obtained solutions. On the other hand, CFC measures the num-
ber of non-dominated solutions provided by each method when constructing a
composite front. The more non-dominated solutions a method has contributed to
constructing the composite front, the better the performance of this method is.

First, we compared interactive RVEA (referred as iRVEA in Table 1 and 2)
and iNSGA-III-IRA using reference points and preferred ranges. Table 1 and 2
show the obtained cumulative R-IGD and CFC, respectively. The best results
are highlighted in boldface. When utilizing reference points, the iRVEA out-
performs iNSGA-III-IRA in most of the test instances, both in the learning and
decision phase, according to the cumulative R-IGD and CFC. Such values mean
that the solutions obtained by iRVEA are closer to the preference information
and that this method produces more non-dominated solutions than iNSGA-III-
IRA. When using preferred ranges, the R-IGD values indicate a better perfor-
mance of iNSGA-III-IRA in DTLZ1, while iRVEA obtained better results for
DTLZ3. However, according to the cumulative CFC, iNSGA-III-IRA obtained
more non-dominated solutions in most test instances.

Then we compared iNSGA-III-IRA, iNSGA-III-NUMS, and iNSGA-III-RPA
using reference points, preferred ranges, and preferred solutions. It is worth not-
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Table 1. Cumulative R-IGD for iRVEA and iNSGA-III using reference points and
preferred ranges.

Problem k Phase
Reference Points Preferred Ranges

iRVEA iNSGA-III-IRA iRVEA iNSGA-III-IRA
Mean Std Mean Std Mean Std Mean Std

DTLZ1 5 Learning 2.5333 0.1772 2.5910 0.2128 2.7213 0.3402 2.6263 0.3677
Decision 1.9421 0.2115 1.8894 0.2673 2.1656 0.2291 1.9068 0.4622

7 Learning 2.7599 0.1845 3.1748 0.4511 3.1315 0.6090 3.0019 0.8780
Decision 2.0264 0.3609 3.0600 1.1414 3.0205 0.5322 2.5845 1.1048

9 Learning 2.6071 0.1974 2.7505 0.2968 3.2852 0.5054 2.9947 0.5919
Decision 1.8139 0.1492 2.5000 0.6562 3.1749 0.6887 2.3387 1.0481

DTLZ3 5 Learning 0.2460 0.2358 0.3289 0.3686 0.5332 0.1669 1.0590 0.7600
Decision 0.3913 0.6630 0.4887 1.1339 0.2312 0.2518 0.9985 0.9803

7 Learning 0.6357 0.5161 0.7592 0.2355 1.9082 0.4623 3.6905 1.4945
Decision 0.6928 0.7482 0.7321 0.7137 0.7134 0.4282 3.3938 1.4959

9 Learning 0.6371 0.3334 0.8224 0.4365 0.2361 0.7682 3.6308 1.3574
Decision 0.4576 0.3578 0.8221 0.7066 0.4497 0.3196 3.4340 1.9351

ing that R-IGD cannot be utilized to compare methods using preferred solutions.
For this reason, we only considered the cumulative CFC for that type of prefer-
ence. The obtained results are shown in Table 3. The best results are highlighted
in boldface. According to the cumulative R-IGD and CFC, iNSGA-III-IRA
showed a better performance than the compared methods in most test instances
when utilizing reference points. For preferred ranges, the solutions obtained by
iNSGA-III-RPA are closer to the preference information and provide more non-
dominated solutions than the compared methods. For preferred solutions, we
selected five solutions as preferences for each iteration. According to the results,
iNSGA-III-IRA obtained many more non-dominated solutions. However, this is
due to how the IRA technique handles sets of preferred solutions. It computes
a region of interest for each solution the DM selects without considering if they
overlap. The other compared methods convert the preferred solutions into a
reference point, making it easier to compare their performance. Among them,
iNSGA-III-RPA obtained more non-dominated solutions in most test instances.

5.1 Discussion

When comparing iNSGA-III-IRA and interactive RVEA we could notice that the
latter obtained better results when using reference points. Although iNSGA-III-
IRA obtained better R-IGD values only on DTLZ1 utilizing preferred ranges, we
can notice that it produces more non-dominated solutions than the compared
method in both DTLZ1 and DTLZ3. A more extensive experimentation is needed
to have a clearer idea of the features of the problems in which iNSGA-III-IRA
outperforms interactive RVEA. Also, at the moment it is not possible to compare
the performance of these methods using preferred and non-preferred solutions
due to the lack of performance indicators utilizing these types of preferences.

After comparing iNSGA-III-NUMS and iNSGA-III-RPA with iNSGA-III-
IRA we could notice that the preference conversion did not affect the quality of
the solutions. According to the obtained results, the IRA method performs best
using reference points. However, utilizing the preference conversion mechanism
helps get better results with preferred ranges and preferred solutions. It is worth



Interactive NSGA-III by the adaptation of reference vectors 11

Table 2. Cumulative CFC for iRVEA and iNSGA-III using reference points and pre-
ferred ranges.

Problem k Phase
Reference Points Preferred Ranges

iRVEA iNSGA-III-IRA iRVEA iNSGA-III-IRA
Mean Std Mean Std Mean Std Mean Std

DTLZ1 5 Learning 443.2 68.0835 454.8 53.7788 111.6 112.6634 485.6 31.7055
Decision 387.6 2.2000 369.1 8.1664 283.5 206.3745 357.9 34.0307

7 Learning 343.5 18.7150 138.5 57.1896 116.2 99.8637 261.4 60.8805
Decision 269.7 0.6403 199.1 79.6485 168.0 183.7145 235.4 22.0191

9 Learning 671.1 40.2006 257.8 149.4957 218.4 187.6205 574.7 60.7339
Decision 517.4 1.6248 465.0 71.8053 249.4 293.6914 443.5 56.3777

DTLZ3 5 Learning 367.4 111.3240 441.2 85.5871 413.3 128.8682 477.0 43.0976
Decision 309.8 148.9495 334.6 72.7010 202.3 89.5255 358.0 40.9072

7 Learning 292.7 62.9842 169.6 95.9252 346.1 109.1040 221.0 91.3893
Decision 214.5 98.5792 192.7 52.2323 131.1 172.7637 176.4 66.6381

9 Learning 611.2 75.5299 415.0 130.3580 698.8 96.7831 532.0 102.3426
Decision 407.2 180.1426 367.8 132.7764 301.2 222.4984 409.1 92.2339

noting that iNSGA-III-RPA performed better than iNSGA-III-NUMS in most
test instances. Considering other types of preference conversions and more RV
adaptation techniques are interesting future research directions.

Using ADM-II enabled inexpensive comparison of interactive methods with-
out real DMs. However, it needs performance indicators to evaluate the solu-
tions provided by each method. There are only a few performance indicators for
MOEAs with preference incorporation. In addition, most of them can only com-
pare methods that utilize reference points. ADM-II can use R-IGD for preferred
ranges due to the mechanism utilized to generate the preference information.
When generating the preferred ranges, ADM-II employs an equivalent reference
point, which is then used in the performance indicator. Comparing methods
that utilize preferred solutions is still an open problem. In this case, although
the cumulative CFC gives us an idea of the number of non-dominated solutions
provided by each method, it is difficult to measure the quality of such solutions
without an additional quality indicator.

6 Conclusions

In this article, we proposed three interactive versions of NSGA-III. These meth-
ods incorporate the preferences of the DM by adapting the set of RVs. iNSGA-
III-IRA utilizes the RV adaptation technique used by interactive RVEA. How-
ever, when comparing both methods, we could identify that the performance of
interactive RVEA is better when utilizing reference points. However, when using
preferred ranges, iNSGA-III-IRA obtained better results for one of the test prob-
lems with 5, 7, and 9 objectives. Extended experimentation considering more re-
alistic problems is needed to identify the types of problems in which each method
performs better. We also proposed a mechanism to convert preferred ranges and
preferred solutions into reference points. The obtained reference points were uti-
lized as input for the NUMS and RPA techniques. The performance of iNSGA-
III-NUMS and iNSGA-III-RPA compared with iNSGA-III-IRA suggest that the
obtained results still reflect the preferences after the conversion. In addition,
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Table 3. Cumulative R-IGD and CFC for iNSGA-III-IRA, iNSGA-III-NUMS, and
iNSGA-III-RPA.Column k indicates the number of objectives, P is the phase of the
solution process (L: learning, D: decision), and the method names are shorten as IRA,
NUMS, and RPA.

R-IGD CFC
IRA NUMS RPA IRA NUMS RPAProblem k P
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Reference points
DTLZ1 5 L 2.5171 0.1017 3.5837 0.6634 2.5746 0.1360 425.0 81.0086 452.2 65.0443 409.9 113.7580

D 1.9301 0.1754 2.0761 0.2814 1.9064 0.1693 387.1 3.4482 360.2 7.3185 367.6 7.5657
7 L 2.5484 0.1501 9.2395 1.0619 2.7300 0.3176 329.4 39.0620 108.8 66.5219 132.3 49.3053
D 1.8378 0.1492 6.0133 2.2759 1.9784 0.3551 269.0 1.5492 47.8 38.6000 190.5 79.6382

9 L 2.5164 0.1352 5.6678 1.1235 2.5593 0.1840 655.8 63.3574 1.9 3.2696 422.4 133.4820
D 1.8940 0.3560 4.7159 1.2630 1.9412 0.4530 517.6 2.1541 2.2 4.9759 493.3 4.4508

DTLZ3 5 L 0.3032 0.1339 0.4785 0.0955 0.2405 0.0782 336.6 117.5884 444.7 66.8581 412.4 79.1052
D 0.4480 0.6420 0.2555 0.1301 0.1335 0.0482 293.5 146.2315 363.4 3.2311 370.2 6.9397

7 L 0.6406 0.2752 6.7688 2.5678 0.6795 0.6611 257.4 80.5409 67.7 27.7995 157.5 72.7451
D 0.4848 0.4233 4.4562 3.2389 1.3165 1.9153 199.3 96.5578 13.5 10.1316 178.5 60.7260

9 L 0.5366 0.2089 9.0865 1.2953 0.6724 0.3866 629.7 60.9230 94.6 46.7979 497.1 63.9022
D 0.3523 0.2050 7.4008 0.6856 0.8317 1.1832 514.5 8.9917 24.2 16.7021 435.7 69.2272

Preferred ranges
DTLZ1 5 L 2.9547 0.3119 2.9987 0.4754 2.4959 0.1699 91.5 118.4924 482.6 18.3314 443.9 66.3151

D 1.9964 0.1886 2.1821 0.5939 1.8669 0.2768 101.0 135.5699 363.1 10.2806 362.0 20.7605
7 L 3.0137 0.3383 8.2075 1.6523 2.4159 0.1714 49.3 51.7012 76.1 57.9473 312.6 48.8512
D 2.7146 0.9704 4.4261 2.8460 1.7150 0.0142 35.6 68.3728 12.4 21.7127 251.6 1.3565

9 L 3.2866 0.3085 6.1723 1.6570 2.5955 0.2913 294.8 141.4205 25.2 42.2583 644.0 46.4909
D 2.1963 0.5379 4.4676 1.2529 1.7571 0.1213 202.8 276.1850 17.5 42.3019 492.9 4.7634

DTLZ3 5 L 0.3937 0.1353 1.6153 0.2997 0.1137 0.0433 215.7 135.9059 446.4 70.3210 464.3 57.3882
D 0.3835 0.3890 1.0444 0.1871 0.1062 0.0416 122.7 95.7831 365.0 4.5826 368.2 13.3626

7 L 1.7638 0.4380 8.2372 2.0041 1.0111 0.6701 331.8 122.8184 73.2 25.4982 284.8 32.3691
D 0.6916 0.8202 5.9940 2.4421 0.2821 0.1333 113.1 124.3627 20.7 18.9634 192.7 51.9077

9 L 1.7413 0.3917 9.8321 0.6294 1.1918 0.7182 695.1 104.4581 152.9 74.4613 595.2 50.4892
D 0.5013 0.5152 6.8605 2.0710 0.2970 0.1104 261.0 217.8454 31.9 26.4290 422.9 76.1294

Preferred solutions
DTLZ1 5 L - - - - - - 1205.2 407.4918 398.3 96.2310 440.6 80.3308

D - - - - - - 1866.3 37.4514 349.6 36.9681 377.5 2.2472
7 L - - - - - - 1237.9 307.3807 101.1 59.6899 300.3 76.0514
D - - - - - - 1267.5 12.3713 48.4 39.4416 254.0 1.5492

9 L - - - - - - 4053.6 753.0172 16.7 47.4406 560.6 103.1079
D - - - - - - 2492.2 5.4000 11.9 34.3874 485.7 21.8406

DTLZ3 5 L - - - - - - 1599.5 345.5605 404.2 107.6362 463.5 54.9877
D - - - - - - 1895.4 3.3226 348.7 21.6474 378.6 1.4967

7 L - - - - - - 1508.1 409.6194 65.6 33.4610 194.3 91.0066
D - - - - - - 1263.8 24.1031 28.8 20.4392 245.7 21.9456

9 L - - - - - - 4075.1 704.5970 136.7 60.7833 583.7 96.0532
D - - - - - - 2472.6 25.2198 51.2 42.5977 485.4 15.6729

iNSGA-III-RPA obtained better results than the compared methods using pre-
ferred ranges. Converting between more types of preferences is subject to further
research and also considering other types of RV adaptation techniques.
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