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Kognitiivinen kuormitusteoria pyrkii kehittämään ohjeistuksia, jotka helpottavat 
oppimisen aikana koettavaa henkistä kuormitusta. Useita periaatteita on 
kehitetty kognitiivisen kuormituksen luontaisten, ulkoisten ja hyödyllisten 
piirteiden hallintaan. Tavat vähentää ulkoista kuormitusta kohdistuvat usein 
oppimateriaalin ulkonäöllisiin ja rakenteellisiin piirteisiin. Kuvien on todettu 
joko edistävän tai heikentävän oppimista niiden tarpeellisuuden mukaan. 
Koristeelliset kuvat motivoivat oppijaa ja tekevät oppimistilanteesta 
mieluisamman. Tutkimustieto ei kuitenkaan ole samaa mieltä kuvituskuvien 
vaikutuksesta varsinaiseen oppimiseen. Aikaisempaa tutkimusta kuvituskuvien 
vaikutuksista ohjelmoinnin oppimiseen ei ole tehty. Tämä tutkimus pyrkii 
selvittämään, miten asiayhteyteen liittyvät kuvituskuvat vaikuttavat olio-
ohjelmoinnin oppimisen kognitiivisen kuormitukseen noviiseilla oppijoilla. 
Tulokset näyttävät, että kuvituskuvilla ei ole merkityksellistä vaikutusta 
opiskelijoiden kokemaan kognitiiviseen kuormitukseen. Tutkimuksessa 
havaittiin keskikokoinen korrelaatio tehtävistä suoriutumisen ja kognitiivisen 
kuormituksen välillä. Tulokset osoittavat, että kognitiivista kuormitusteoriaa 
voidaan hyödyntää myös ohjelmoinnin oppimateriaalien suunnittelussa. 
Ohjelmointi on monitahoinen kokonaisuus, jonka oppimateriaalien ja 
kognitiivisen kuormituksen yhteyttä tulisi tutkia enemmän. 
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ABSTRACT 

Mäkelä, Ella 
Decorative images effect on the cognitive load of computer programming 
learning 
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Cognitive science, master’s Thesis 
Supervisor: Jokinen, Jussi 

Cognitive load theory aims to develop instructional materials that manage 
learners’ mental effort used during learning. Many principles have been 
developed to aid in managing its intrinsic, extraneous, and germane features. 
Methods for reducing extraneous load often assess the visuality and structure of 
the learning material’s elements. Images have been found to either promote or 
hinder learning depending on their redundant nature. Decorative images have 
been found to motivate students and make the learning experience more 
enjoyable. There is however contradicting research on their effects on actual 
learning. No prior research has been done on decorative images' effects on 
computer programming learning. This study aims to find how decorative, 
context-specific images affect the cognitive load of object-oriented programming 
learning for novice students. The results show that decorative images have no 
significant effect on the cognitive load experienced by learners. A medium-sized 
correlation between task performance and cognitive load was observed. The 
results indicate that cognitive load theory can be utilized also in the design of 
computer programming materials. As computer programming can be considered 
to be complex learning, more research should be conducted on cognitive load 
and its implications for computer programming instructional materials.  

Keywords: cognitive load theory, instructional design, object-oriented 
programming 
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1 INTRODUCTION 

Effective learning materials do not make learning exhausting for students. If the 
cognitive load of learning material is high, actual learning might not happen. 
Managing the natural complexity of the instructional material in addition to 
minimizing the cognitive load imposed by the visual and structural parts of the 
material is essential for promoting learning. Reducing useless cognitive load lets 
students allocate more effort to learning. Redesigning instructional materials to 
manage cognitive load is the main goal of cognitive load theory (Sweller, 1988). 

Online learning or e-learning has become an integral part of education and 
its adoption has been accelerated by forced remote learning during the COVID-
19 pandemic. E-learning materials and teaching online however require more 
research and effort to implement designs proven effective (Teräs et al., 2020; 
Vergara et al., 2022; Zhu & Liu, 2020). Higher education might have been too fast 
in implementing their learning materials online and experienced difficulties in 
providing pedagogically sound learning experiences due to lacking resources  
(Crick et al., 2020). Educators have limited resources compared to their workload 
(Ylijoki, 2013) and worry about how e-learning will affect it further  (Crick et al., 
2020). Effective and easy-to-implement e-learning design principles should be 
developed and studied in order to ease the burden of creating usable online 
materials put onto educators. 

Images are easy to source and place on online learning materials. They 
could provide a practical way of introducing multimedia to static e-learning 
materials without too big of a workload. Decorative images have been found to 
motivate students and create a more positive learning experience (Carney & 
Levin, 2002; Lenzner et al., 2013). Research on how decorative images affect 
computer programming has not been done before. 

This paper examines the effects decorative, context-specific images have on 
cognitive load experienced during learning computer programming. It will cover 
the essentials of cognitive load theory and instructional design before presenting 
the implemented study and its results. The paper will end with conclusions and 
limitations covering the summary of results and reliability of the research. 



2 THEORY AND RELATED WORK 

Relevant previous studies of cognitive load theory and instructional design will 
be presented here in order to fully understand the implications this research 
makes. Cognitive load theory will be covered through its three categories of 
intrinsic, extraneous, and germane load in addition to briefly explaining ways of 
measuring cognitive load. The chapter Instructional theories and models will 
present briefly some learning theories and instructional models as well as discuss 
e-learning and decorative images in learning. Lastly, the chapter Cognitive load
theory in e-learning materials will present four instructional design guidelines
based on CLT and e-learning and summarize the principles presented in them.

2.1 Cognitive load theory 

Cognitive load means the mental workload humans need to carry out tasks. The 
term can be connected to the discovery that humans have a limited working 
memory which presents itself as a limitation to information processing and in 
turn learning (Miller, 1956). The beginnings of utilizing cognitive load in learning 
material design are in the late 1980s and early 90’s when the article Cognitive 
Load During Problem Solving: Effects on Learning (Sweller, 1988) was published 
and Sweller began his extensive research with colleagues. Sweller found that the 
cognitive load required by conventional problem solving, in this case having a 
specific goal to achieve, intervenes with learning. In his subsequent paper he 
suggests that in addition to not using conventional problem solving but instead 
formats such as goal-free problems, the learning material’s format itself should 
support knowledge acquisition by minimizing needed cognitive load (Sweller, 
1988, 1989). 

The two papers by Sweller (1988, 1989) were the beginning of Cognitive 
Load Theory (CLT). CLT implies that instructional material should be designed 
to minimize the required cognitive load to facilitate learning. In simpler terms, 
when solving a problem takes up too much mental capacity, there is not enough 
room to transfer knowledge to memory. Cognitive Load Theory is used 



specifically when talking about instructional design’s relationship to cognitive 
load and should not be confused with the general terms of Cognitive Load or 
Mental Workload used for mental effort. 

Early research on CLT focused on the split-attention effect, redundancy 
effect, schema acquisition, and rule automation. The split-attention effect 
happens when learning material’s two or more mutually dependent materials are 
split, e.g. diagram’s labels are based below the diagram rather than within it and 
learners need to mentally integrate them to fully understand the topic (Bobis et 
al., 1993; Chandler & Sweller, 1991, 1992; Sweller, 1989, 1993; Sweller et al., 1990; 
Tarmizi & Sweller, 1988; Ward & Sweller, 1990). The redundancy effect is present 
when the same information is explained simultaneously with different formats 
or excessively (Bobis et al., 1993; Sweller, 1993). Schema acquisition is a way of 
understanding learning as acquiring patterns and rules (Sweller, 1988, 1989, 1993; 
Tarmizi & Sweller, 1988; Ward & Sweller, 1990) that can be later instinctually 
utilized by rule automation (Sweller, 1989, 1993). 

In the last ten years cognitive load theory has become a tool to study and 
develop new innovative learning formats like educational computer games 
(Hwang et al., 2013), flipped classroom (Abeysekera & Dawson, 2015), 
educational videos (Brame, 2016),  virtual reality learning (Makransky et al., 2019) 
and online learning (Mukhtar et al., 2020). 

Early on research started to focus on specific types of cognitive load. The 
cognitive load imposed by the representation of the problem, or extraneous 
cognitive load, was first introduced when studying the effect learning materials’ 
structure had on learning (Sweller et al., 1990; Sweller & Chandler, 1991; Tarmizi 
& Sweller, 1988). When doing research on extraneous cognitive load it had to be 
considered how much of cognitive load was by the materials’ extraneous aspects 
and what was imposed by the problems’ difficulty itself. The problems’ inherent 
complexity was studied as intrinsic cognitive load (Bobis et al., 1993; Sweller, 
1994; Sweller & Chandler, 1991). Later, the positive mental effort that encourages 
learning was introduced as germane cognitive load (Mwangi & Sweller, 1998; 
Sweller et al., 1998). Intrinsic, extraneous, and germane cognitive loads will be 
discussed further in the following chapters. 

2.1.1 Intrinsic cognitive load 

Intrinsic cognitive load is created by the problem’s innate complexity, which in 
turn is determined by element interactivity. The elements of the learning material 
are interacting with each other if they cannot be learned without attending to 
them simultaneously. High interactivity results in high task complexity and high 
intrinsic cognitive load. (Sweller, 1994). Intrinsic cognitive load can be defined 
also to depend on the learner’s prior knowledge. The severity of element 
interactivity is subjective. Some learners may have acquired schemata that allow 
them to process multiple element relationships automatically and so perceive less 
element interactivity (Ayres, 2006; Renkl & Atkinson, 2003). 

It was previously thought that intrinsic cognitive load cannot be 
manipulated. This was due to the idea that it is completely defined by the element 
interactivity and the learner’s previous knowledge. (Sweller et al., 1998; Sweller 



& Chandler, 1994). Managing intrinsic cognitive load by means of instructional 
design has become a new area of study within CLT. Summarized by Schnotz & 
Kürschner (2007) intrinsic cognitive load, or task difficulty, can and should be 
managed to not be too high or too low. Many new approaches to reducing 
intrinsic cognitive load use some sort of sequencing of the instructional material 
(Gerjets et al., 2004; Kester et al., 2006; Pollock et al., 2002; Renkl & Atkinson, 
2003). 

The expertise reversal effect has proved that in some circumstances 
thorough and detailed instructional material designed for novice learners 
imposes a heavier cognitive load on more experienced learners. Expert learners 
must analyze the given information, redundant to them, against their prior 
knowledge which puts more pressure on the working memory. The expertise 
reversal effect emphasizes the need to tailor learning material to the learner’s 
level (Kalyuga et al., 2003). 

Renkl & Atkinson (2003) suggest gradually introducing problem solving 
after first studying the initial example. With this strategy called fading, learners 
would first study the complete example (model) and then an example with a part 
omitted (coached problem solving). Gradually the number of omitted parts 
increases until there is only left the whole problem (independent problem 
solving). This method gradually decreases intrinsic cognitive load by means of 
cognitive skill acquisition and allows an increase in the complexity of problem-
solving tasks without heavy cognitive load. Renkl & Atkinson’s study also 
supports the expertise reversal effect. 

Gerjets et al. (2004) have a modular approach to decreasing intrinsic 
cognitive load. They suggest breaking down solution procedures into smaller 
ones that can be understood separately. They found that this approach is effective 
for learners with different levels of prior knowledge and is stable with a variety 
of instructional conditions. 

Pollock et al. (2002) suggested an isolated-interacting elements instructional 
method that tries to combat element interactivity directly. The approach requires 
the material to be first learned in smaller isolated parts. This lessens the amount 
of information being held and cross-referenced in working memory. In contrast 
to Gerjets et al. modular approach isolated-interacting elements instructional 
method doesn’t require the smaller parts to be fully understood independently. 
After the singular parts have been studied, their relationships are revealed and 
the whole of the topic will be understood completely (Pollock et al., 2002). With 
the isolated-interacting elements instructional method understanding of complex 
topics had been observed to be higher compared to students who had all the 
information presented to them simultaneously and repeatedly (Lu et al., 2020; 
Pollock et al., 2002). 

2.1.2 Extraneous cognitive load 

The effect extraneous components of learning material have on cognitive load is 
dependent on the level of the material’s intrinsic nature. It is imposed by the 



learning material’s design and structure. The more complex a problem is the 
more meaningful minimizing extraneous cognitive load is (Sweller, 1994). 

Element interactivity, which is a key element defining intrinsic cognitive 
load, can also be due to the manner of presentation. If the information 
representation is faulty of high element interactivity, it can be reduced by 
restructuring (Sweller, 2010). The goal for restructuring is to facilitate schema 
acquisition and automation (Sweller & Chandler, 1994; Van Merriënboer et al., 
2002). Reducing extraneous load and increasing germane load facilitates putting 
propositional knowledge into action and acquiring schemata. Extraneous load 
while studying complex information can be reduced by applying instructional 
designs proven effective and combining them with complementary teaching. 
Removing split-attention and redundancy effects have been proven to be 
effective design choices for reducing extraneous cognitive load (Pociask & 
Morrison, 2008). 

Extraneous cognitive load can be the result of four types of mistakes in 
extraneous structures of the material: 1) high element interactivity, 2) 
unnecessary efforts to maintain relevant information in working memory, 3) 
enforced interactivity of irrelevant information or 4) waste of time and effort on 
too easy tasks or unneeded instructional help (Schnotz & Kürschner, 2007). Some 
methods of assessing these problems are presented here. 

Completion problems are a method of lowering extraneous cognitive load 
by providing a problem statement with a partial solution of it that then should 
be completed by the learners. The method has been found to be useful for novice 
learners and has a positive effect on far transfer. Far transfer is when learners are 
able to utilize previously learned knowledge later in a different problem scope 
than where they learned it from (van Merriënboer et al., 2002).  

One approach to reducing extraneous cognitive load is to determine if the 
redundancy effect is present. Removing redundant information is beneficial for 
limiting cognitive load but learning material designers should be considerate 
when reducing information to not reverse the desired effect (Antonenko & 
Niederhauser, 2010; Bobis et al., 1993; Pociask & Morrison, 2008). 

Antonenko & Niederhauser (2010) studied the effect of lead-augmented 
conditions on extraneous and germane load. Leads are previews of link contents 
that can be accessed without leaving the current page. Leads have been thought 
to be effective also in encouraging learners to relate new information to their 
prior knowledge and therefore activating relevant representations from long-
term memory. Utilizing also long-term memory bypasses some of the use of 
short-term memory and increases germane processing. They also prepare 
learners for upcoming information without leaving the current position in the 
material. This limits the split-attention effect, compared to having to open links 
in between reading, and improves structural and domain learning. Leads might 
however make reading times longer (Antonenko & Niederhauser, 2010). 
Wikipedia for example implemented leads of internal links as summaries of the 
contents that show up when hovering over the link. Leads can also be seen on 
social media platforms like Facebook, Twitter, and LinkedIn which provide a 
small preview of the linked site at the end of a post.   



Salden et al. (2010) found that computer-based tutors can support learning 
by offering individualized methods of selecting appropriate problems to solve, 
following student-specific alternative solution strategies, providing step-by-step 
feedback, and giving context-specific hints and examples of next steps. Cognitive 
computer tutors reduce extraneous cognitive load by defining a smaller area of 
the learning material from which students must search to find the information 
needed to solve problems. They also found a positive effect of combining worked 
examples and computer tutoring. 

2.1.3 Germane cognitive load 

Germane cognitive load facilitates learning as it is defined as the effort required 
for acquiring schemata. It is thought that learning happens as long as the sum of 
the learning material’s intrinsic and extraneous cognitive load and the germane 
cognitive load needed for schema acquisition do not exceed working memory. 
When there are significant amounts of intrinsic and extraneous load, working 
memory can be overloaded and not much is left for germane load. This can result 
in minimal or nonexistent learning (Ayres, 2006; Renkl & Atkinson, 2003; Sweller 
et al., 1998). Kalyuga (2011) argued against the well-established existence of 
germane cognitive load. They believe the distinction between intrinsic and 
germane load in traditional views of cognitive load theory is not clear. Intrinsic 
load is considered to be from how complex the subject matter is to learn while 
germane load is considered to be from the activities used to learn the learning 
material. Kalyuga proposes to revert to the framework of having only intrinsic 
and extraneous cognitive loads. The germane load, or any activities related to 
actual learning, would be combined with intrinsic cognitive load. 

Increasing germane cognitive load is often done by decreasing extraneous 
and sometimes intrinsic cognitive load. Combinations from all the available 
methods of managing germane and extraneous load should be studied to find 
the most suitable one (van Merriënboer et al., 2002). Some studies that combat 
promoting germane cognitive load directly are presented here. 

Renkl & Atkinson (2003) argue that once knowledge is acquired examples 
and self-explanation strategies transfer from germane to extraneous cognitive 
load. Schema acquisition allows learners to focus on speed and accuracy and 
strive for automation and going through redundant examples becomes 
burdensome. This is why Renkl & Atkinson encourage to not introduce problem-
solving too late. 

High contextual interference is when the structure for learning skills doesn’t 
follow a logical order of simple-to-complex but instead different levels of 
information and problems are presented in a mixed order. This method has been 
found to increase the germane load for experienced learners as has been 
variability in presentation formats, asking learners questions to increase their 
depth of processing and provoking group discussions (van Merriënboer et al., 
2002). 

The variability effect has been found to affect extraneous cognitive load 
negatively while also increasing germane load. The positive effects of higher 



germane load overpower the negatives of increased extraneous load. Variability 
within learning materials can be done by for example having different kinds of 
problems and themes, changing the visual presentation of the material, and the 
time and place of instruction (Likourezos et al., 2019; Lu et al., 2020; Paas & 
Merrienboer, 1994; Sweller et al., 1998; van Merriënboer et al., 2006). Germane 
load can also be affected by giving learners power over their preferred problem 
formats (Van Merriënboer et al., 2002). 

Germane load becomes increasingly important when learning complex 
materials, such as real-life tasks. Van Merriënboer et al. (2006) suggest a two-
stage approach to tackle complex learning: 1) decrease the intrinsic load by 
limiting element interactivity, 2) increase the germane load with methods like the 
variability effect. 

Cheon & Grant (2012) found that metaphorical interfaces promote schema 
acquisition and automation. In other words, combining the learning material and 
user interface by reflecting the topic being learned within the UI elements has a 
positive effect on germane cognitive load. 

2.1.4 Measuring cognitive load 

To make use of cognitive load theory researchers started to develop tools to 
measure it. The first and still widely popular cognitive load measurement tool 
was developed by Paas in 1992 (Klepsch et al., 2017; Sweller et al., 2019). Paas 
developed a single-item 9-grade symmetrical scale to measure the mental effort 
of single statistics problems. The scale was found to be a successful and sensitive 
subjective rating scale for cognitive load (Paas, 1992). Paas’ scale as well as other 
single-item scales seem very convenient from the researchers’ and subjects’ 
points of view but have been critiqued for their problematic reliability and 
incapability of differentiating between different types of cognitive loads (Klepsch 
et al., 2017; Leppink & Pérez-Fuster, 2017; Sweller et al., 2019). Other subjective 
rating scales have emerged since Paas’. Leppink et al. (2013) tackled the problem 
of measuring the multiple types of cognitive load. Their ten-item 10-grade scale 
questionnaire was later modified by Morrison et al. (2014) for measuring the 
cognitive load of computer science education. Klepsch et al. (2017) developed 
two rating scales, naïve and informed, for measuring all three types of cognitive 
load differentially. The naïve rating is a self-report Likert questionnaire with 
items relating to each type of cognitive load. The informed rating requires 
participants to first learn and understand cognitive load theory and its three 
types. They are then equipped to evaluate their perceived cognitive load with 
questions directly referring to each type of cognitive load by their name (“During 
this task extraneous load was…”). Schmeck et al. (2015) found that when using 
subjective cognitive load rating scales, estimating cognitive load with a single 
scale at the end of a series of tasks (delayed) results in a higher perceived 
cognitive load than what would be each task’s mean rating (immediate). 

Objective measures, such as secondary tasks and physiological measures, 
have become increasingly studied in the area of CLT (Sweller et al., 2019). 
Secondary tasks have been found to be effective in sensing cognitive load (Haji 
et al., 2015; Park & Brünken, 2015). The performance of completing or keeping 



up with a secondary task simultaneously with the primary task can be analyzed 
to deduce the primary task’s cognitive load. Examples of secondary tasks are 
rhythm or tapping tasks such as tapping a predetermined rhythm with feet 
throughout the primary task (Park & Brünken, 2015), stimulus-monitoring tasks 
such as pressing a button every time a vibration is felt on legs (Brünken et al., 
2004; Cierniak et al., 2009; Haji et al., 2015) or mental tracking tasks such as 
reciting a previously showed letter while simultaneously memorizing the next 
letter (Chandler & Sweller, 1996). Pupillary movements have been proven to 
correlate with cognitive load. When the load in memory is increasing so is the 
diameter of the pupil. Pupil movements have been studied as task-evoked 
pupillary responses (Beatty, 1982; Duchowski et al., 2018; Klingner et al., 2008). 
Pupillary movements have been measured by head-mounted trackers. Remote 
video eye trackers have also been found to have the required precision, making 
eye-tracking more comfortable for participants (Klingner et al., 2008). Remote 
video measurements of breathing and heart rate variability were found to also 
indicate changes in cognitive load (McDuff et al., 2014; Nicolò et al., 2020). 

Learners' prior knowledge affects cognitive load, especially intrinsic load, 
and thus learning materials should be modified to meet the level of expertise. 
Kalyuga & Sweller (2004) developed a rapid method of measuring learners’ 
levels of knowledge in a specific area. The students were asked to write only the 
next step in a couple of given problems in a very short period. The level of 
knowledge was determined by the completion time and success of the tasks. The 
rapid test was found to be an effective tool for evaluating learners’ level of 
knowledge and utilized in adapting learning materials to manage cognitive load. 

2.2 Instructional theories and models 

Teachers, educators, and instructors planning and creating instructional 
materials should understand learning theories and instructional design 
principles to assist learners to reach their learning goals. Being able to create 
effective learning materials is crucial for a positive learning experience for 
students and teachers alike. (Ertmer & Newby, 2013; Khalil & Elkhider, 2016). 

Learning theories can be divided into at least three categories of 
behaviorism, cognitivism, and constructivism. Behaviorism is focused on how 
learning is encouraged with cues, practice, and reinforcement. Cognitivism puts 
emphasis also on learners’ cognitive processes that support acquiring knowledge. 
(Ertmer & Newby, 2013). Both behaviorist and cognitivist approaches to 
instruction can be put under the umbrella of instructivism, which promotes the 
instructors’ role in deciding what is taught and how (Khalil & Elkhider, 2016). 
Behaviorism considers the learner a passive agent reacting to stimulus from the 
environment while in cognitivism learners are considered to take an active part 
in the whole process. Constructivism is thinking that learning is creating 
meaning from experience and elaborating and interpreting information even 
further. Like cognitivism, or even more so, constructivism believes learners are 
an active part of the learning process (Ertmer & Newby, 2013). 



Instructional models are guidelines created to help apply learning theories 
to learning materials and ensure informed and effective design. Most 
instructional models have some key principles in common. Learning is thought 
to happen when 1) real-world problems are solved, 2) prior knowledge is utilized, 
3) new knowledge is demonstrated, 4) new knowledge is applied, and 5) new
knowledge is integrated (Merrill, 2002). A few instructional design models are
briefly presented next.

ADDIE is an instructional design model that follows five steps of analyze, 
design, develop, implement, and evaluate (Branch, 2009). The ADDIE model is 
the most used among instructional design professionals for its simple and 
straightforward structure that is easy to learn and implement (Khalil & Elkhider, 
2016). The Dick and Carey method is a nine-step process that consists of all the 
same principles ADDIE described but in more detail. Both ADDIE and the Dick 
and Carey method have a behavioral approach (Khalil & Elkhider, 2016). The 
4C/ID -model developed by van Merriënboer et al. (2002) combats complex 
learning by describing four components of learning environments 1) learning 
tasks, 2) supportive information, 3) just-in-time information, and 4) part-task 
practice. The 4C/ID -model has a background in constructivism and 
instructivism. It emphasizes managing the cognitive load of learners by 
presenting suggestions for better design of the four identified components. The 
method is targeted for the transfer of complex skills in complex learning modules 
(van Merriënboer et al., 2002). 

2.2.1  E-learning materials 

E-learning, online learning, and distance learning are not synonyms for learning
that happens online. People in different institutions and areas can define them
differently and hence it is important to differentiate them (Moore et al., 2011). In
this paper e-learning and online learning are used interchangeably. The terms are
used to express learning that happens using learning materials found online.
These situations can be done independently without any connection to an
instructor or in an online-course situation where learners can contact and talk to
an instructor either in compulsory lessons or when needed. Such learning
experiences can be for example university online courses, MOOCs, open online
courses, or learning independently from online materials not bound to any
specific learning module.

E-learning can be a solution for students that are working alongside studies
or live in another city and for communities in rural areas (Boulos et al., 2006; 
Muthuprasad et al., 2021). E-learning offers students to dictate the pacing and 
path of their learning experience which can be effective in reducing redundant 
information but requires self-discipline (Muthuprasad et al., 2021; Zhang et al., 
2004). Early research on e-learning found it more effective than traditional, 
instructor-centered classroom teaching (Zhang et al., 2004). 

Adopting e-learning can be difficult. In the mid-2000s online learning 
content, especially video and audio formats, had the issue of having sufficient 
bandwidth for download (Boulos et al., 2006; Zhang et al., 2004). Even today 
variations in internet connectivity impose challenges in implementing e-learning, 



especially in countries with bigger digital divides (Almendingen et al., 2021; 
Muthuprasad et al., 2021; Valencia-Arias et al., 2019; Zalat et al., 2021). Different 
levels of knowledge and skills of technology affect the efficiency of learning 
online as some educators and learners might find using online learning systems 
uncomfortable (Hsia et al., 2014; Muthuprasad et al., 2021; Ong et al., 2004; 
Valencia-Arias et al., 2019; Zalat et al., 2021). Lack of immediate feedback and 
answers to questions has been found to affect e-learning experiences negatively 
(Muthuprasad et al., 2021). Even if learners find e-learning effective, they can still 
prefer traditional classroom teaching as learning is a socio-cognitive activity 
(Almendingen et al., 2021; Zhang et al., 2004). Issues of intellectual property, 
copyrights, and security are often overlooked when implementing e-learning 
materials. They add more workload for educators but are vital for sustainable 
learning modules (Boulos et al., 2006; Zhang et al., 2004). Vandalism, authenticity, 
and false information should be considered when developing and consuming e-
learning materials. Ensuring that students can verify the origins of information 
and allowing student feedback for errors and invalid information is vital for a 
safe and secure learning environment. In addition, the threat of security issues 
affects perceived credibility and might lessen acceptance of e-learning systems 
(Boulos et al., 2006; Ong et al., 2004; Zhang et al., 2004). 

Conventionally e-learning materials have been static, meaning they do not 
have any moving parts or interaction (Taylor & Pountney, 2009; Zhao et al., 2020). 
Many approaches to transforming static materials and utilizing the many 
possibilities of digital learning materials have been proposed. A combination of 
wikis, blogs, and podcasts can be used as mind tools, secondary sources of 
learning for reflection and amplification of new information, to connect with 
peers, and to apply variation to learning (Boulos et al., 2006). In specific situations, 
dynamic tools like animation can help with schema acquisition when used and 
developed appropriately (Taylor et al., 2007, 2008; Taylor & Pountney, 2009). 
Static contents have been sometimes found to be more effective than dynamic 
materials as they impose less cognitive load and help focus on the material while 
dynamic learning environments might include more redundant content (Huang 
& Fang, 2023). 

2.2.2 Decorative images and learning materials 

Multimedia learning is learning from words (written or spoken) and graphics 
(informative or decorative) (Kozma, 1991; Mayer & Moreno, 1998). Mayer and 
Moreno's cognitive theory of multimedia learning claims that presenting 
information in words and pictures instead of just words is more effective for 
learning as visual and verbal materials are processed in different systems (Mayer 
& Moreno, 2002). 

The effects of illustrative images on learning have been studied in varied 
contexts. There are multiple interpretations of the effect (Burin ym., 2021; 
Cardwell ym., 2017; Jaeger & Wiley, 2014; Lenzner ym., 2013, 2013; Mikheeva ym., 
2021; Rey, 2012; Schneider ym., 2016; Wiley, 2019). Some studies suggest that 
illustrative images disrupt learning (Burin et al., 2021; Jaeger & Wiley, 2014) and 
create a false sense of competence (Cardwell et al., 2017; Wiley, 2019), some state 



that illustrations generate positive experiences and motivation (Carney & Levin, 
2002; Lenzner et al., 2013), others argue that decorative images also help to 
acquire knowledge (Mikheeva et al., 2021; Schneider et al., 2016). Schneider et al. 
(2016) concluded that decorative images in learning materials can be classified 
into two categories. Conducive decorative pictures have a positive effect on 
learning and seductive decorative pictures impair learning.  

The effect illustrative images have on learning computer programming has 
not been studied before. The problems with teaching programming lie in the 
learning material. Cheah (2020) researched in their literary review reasons for 
difficulties in programming learning and teaching. One cause observed was the 
use of static materials, such as books, hand-outs, and presentation slides. The 
problem with static materials is their generic contents and lack of dynamic 
elements. Learning materials should adjust to the learner’s needs and represent 
the dynamic structure of software. The review highlighted that students struggle 
especially with understanding abstract features, creating algorithms, problem 
solving, and logical thinking. Conventional teaching methods unsuitable 
particularly for teaching object-oriented programming and creating mental 
representations of problems were common problems found in research (Cheah, 
2020). 

2.3 Cognitive load theory in e-learning materials 

Understanding cognitive load theory and the effects that create cognitive load for 
learners is vital for creating usable learning materials. However CLT-based 
design principles can make the design process more efficient and ensure all 
aspects imposing cognitive load are examined. In this chapter, guidelines for 
instructional material design that utilize cognitive load theory are presented and 
summarized. Similar principles are combined to create an extensive list of design 
suggestions to follow when developing learning materials that aim to manage 
the cognitive load of learners and promote learning. First, the included studies 
are presented briefly after which the principles are summarized and given 
examples of use in TABLE 1. 

Mayer & Moreno (2003) provide nine principles for reducing cognitive load 
in multimedia learning. They give five examples of problems that could occur 
with multimedia learning and provide one or two solutions for each. Their 
principles are based on the idea that visual and verbal information is processed 
in different channels and that cognitive load is imposed by three kinds of 
demands essential processing, incidental processing, and representational 
holding. If one channel is overloaded with incoming information it can be off-
loaded by reassigning some information to the other channel or by restructuring 
the material. Eliminating or managing the three different kinds of processing is 
used also. For the split-attention effect, Mayer and Moreno have three solutions 
off-loading, aligning, and synchronizing. Off-loading is the reassigning of 
information from one channel to the other. Aligning encourages placing text next 
to corresponding graphics. Synchronizing is when mutually dependent materials 



are presented simultaneously instead of successively. The redundancy effect is 
solved by eliminating multiple duplications of essential information. Innately 
complex material can be helped by segmenting and pretraining. Segmenting 
allows learners to process given information before continuing. Pretraining 
should teach important elements before the actual learning situation so that later 
learners can focus on the relationships of the elements. Individualizing can also 
help by making sure learners get materials suitable for them and that they have 
the right tools for holding mental representations. Seductive details, or 
interesting but irrelevant elements, can take up cognitive capacity and prevent 
learning. They should be either eliminated by weeding or ignored by signaling 
important information from the material to learners with cues and signals.

Morrison & Anglin (2005) summarized cognitive load theory design 
heuristics for e-learning from the special issue of Educational Technology 
Research and Development. The articles in the issue were also discussed by van 
Merriënboer & Ayres (2005). Morrison and Anglin recognized nine principles 
that could be used to develop good learning materials from the perspective of 
CLT. They emphasize that the heuristics should be used with care before 
extensive research is done to validate them. The first heuristic tackles high-
element interactivity experienced by learners with a low level of technical 
knowledge. Initial learning of technology skills before actual learning enhances 
their performance. Van Merriënboer and Ayres remind in their summary that 
sequencing of pretraining for the learning platform and actual learning content 
can however be detrimental for learners with a higher prior knowledge of the 
technology. Morrison and Anglin’s next heuristic regards task design. 

Exploratory practice that allows learners to consider different options in a 
realistic context involves experienced students more in the learning process than 
worked examples do. However, more novice students will not benefit from 
exploratory practice like experienced students. One heuristic suggests that 
representations including both verbal and visual nonredundant information 
results in better performance compared to providing the information only 
through verbal or visual means. The next heuristics cover supporting schema 
acquisition. Learning should be promoted by stimulating the learner by 
involving them in the process of understanding. This could be done by 
encouraging learners to analyze their own performance before giving feedback 
or correct answers. Furthermore, for learners with a lower level of prior 
knowledge, learning processes should be explicitly induced while higher 
expertise learners can benefit simply from elements that facilitate mental 
processes. A study on annotations generated three heuristics. Verbal annotations 
in a text can improve learning. Utilizing one type of annotation, such as 
definitions or explanations, doesn’t necessarily induce extraneous load but 
enhances germane load. However, using multiple types of annotations in a 
learning material results in lower performance. 

Cook (2006) provides seven design considerations for visual 
representations used in science instruction. Many of the principles concern 
elements only possible to implement in e-learning and the rest can be applied to 
digital learning environments. The split-attention effect is addressed here by 



suggesting that multiple representations should be linked in time and space so 
that information doesn’t need to be integrated from multiple sources. Like others, 
Cook also highlights that providing information in two different presentations, 
or in dual-mode presentations, increases mental capacity. Morrison and Anglin 
referred to this as using two nonredundant representations while Mayer and 
Moreno called it off-loading. Furthermore, Cook suggests that when combined 
with a visual element, verbal information should be provided as narration 
instead of written text, to give more attention to the visualizations. Animations 
can be effective learning tools when designed properly. Too fast and complex 
videos require too much cognitive effort to enable learning. For novice learners, 
highly interactive elements should be isolated from each other to prevent 
unintentional simultaneous processing. Once again guidance in schema 
acquisition, that is implicitly evoking learning processes, can help understanding. 
Especially for more experienced learners, eliminating redundant information is 
important for avoiding using mental effort multiple times for the same 
information. 

Mayer (2017) highlights 11 research-based principles for creating 
multimedia instruction. The principles are based on the multimedia principle 
that students perform better when they learn with words and pictures rather than 
words alone. Mayer divided the principles into three categories, five to 
extraneous load,  three to intrinsic load, and three to germane load. The principles 
concerning the reduction of extraneous load are coherence, which is to exclude 
extraneous material, signaling, which is highlighting essential material, 
redundancy, which is to not add on-screen text to narrated graphics, spatial 
contiguity, which is to place words next to corresponding graphics, and temporal 
contiguity, which is to present corresponding narration and graphics 
simultaneously.  All but the first one are self-explanatory and have appeared also 
in the principles presented before. Coherence by reducing extraneous material in 
Mayer’s article is explained as limiting seductive details that are interesting but 
irrelevant elements such as fun tidbits or relaxing background music. The three 
principles for managing intrinsic load are segmenting which is presenting 
multimedia lessons in user-paced segments, pretraining which is teaching the 
key terms before a multimedia lesson, and modality which is presenting words 
in spoken form rather than printed text. Once again we can see the recurrence of 
principals from previously presented guidelines. The last three principles foster 
germane load. Though similar to other guidelines, personalization is approached 
from a new perspective here. In multimedia learning, it is beneficial to present 
words in a conversational style rather than a formal style. Other principles for 
germane load are voice which is to use a human voice rather than a machine-like 
voice and embodiment which is to use human-like gestures and movement for 
onscreen agents. 



TABLE 1 CLT-based principles for designing e-learning materials. 

Principle Description Example Sources 

Multimedia 

Use both verbal and 
visual information, 
instead of only one of 
them. 

Learning material about 
spider webs has an 
animation depicting the 
process of creating one and 
text explaining its physical 
properties. 

(Cook, 2006; Mayer & 
Moreno, 2003; Morrison 
& Anglin, 2005) 

Aligned 
Place text next to 
corresponding 
visualizations. 

In a map of Europe, the 
countries' names are placed 
within the countries instead 
of having a list next to the 
map and connecting the list 
and map with lines. 

(Mayer, 2017; Mayer & 
Moreno, 2003) 

Synchronized 
Present mutually 
dependent materials 
simultaneously. 

A new term is explained 
with an in-text annotation, 
e.g. a lead, instead of using 
footnotes. 

(Cook, 2006; Mayer, 
2017; Mayer & Moreno, 
2003; Morrison & 
Anglin, 2005) 

Reduced 

Remove redundant or 
duplicated information 
regardless of their 
presentation. 

Learning material with an 
animation explaining 
photosynthesis does not 
explain the process again in 
the text. 

(Cook, 2006; Mayer, 
2017; Mayer & Moreno, 
2003) 

Segmented 

Provide the material in a 
way that allows learners 
to pace their learning 
sessions as they wish. 

An animation showing the 
stroke order of a Chinese 
character can be paused at 
any point. 

(Mayer, 2017; Mayer & 
Moreno, 2003) 

Pretrained 

Teach essential elements 
of the learning platform 
and key terms of the 
topic before beginning 
actual learning. 

Before the first lesson, 
students can complete a 
tutorial on how code is run 
on a programming learning 
website. 

(Mayer, 2017; Mayer & 
Moreno, 2003; Morrison 
& Anglin, 2005) 

Personalized 

Ensure learners have 
learning materials 
suitable for their prior 
knowledge and abilities. 

A driving school’s online 
learning material is 
adapted based on the 
student's previous license. 

(Cook, 2006; Mayer, 
2017; Mayer & Moreno, 
2003; Morrison & 
Anglin, 2005) 

Guided 

Guide learners to use 
schema acquisition tools 
and induce cognitive 
processes. 

Students have to analyze 
their performance before 
revealing correct answers 
or giving feedback. 

(Cook, 2006; Mayer & 
Moreno, 2003; Morrison 
& Anglin, 2005) 

Focused 
Weed out seductive 
details and signal 
important information. 

Learning material about 
felines has all species with 
bold text and excludes a 
funny gif of Garfield. 

(Cook, 2006; Mayer, 
2017; Mayer & Moreno, 
2003; Morrison & 
Anglin, 2005) 

Narrated 
Use narration instead of 
written text with 
visualizations. 

Video about how lightning 
is produced is explained 
simultaneously with 
narration instead of 
subtitles. 

(Cook, 2006; Mayer, 
2017) 

Humanized 
Make on-screen agents, 
narrations, and texts 
human-like. 

A video about AI is 
narrated with a human 
voice and uses casual 
language. 

(Mayer, 2017) 



3 RESEARCH AND METHODS 

Studying the effects instructional materials’ components have on learners’ 
cognitive load is vital for developing learning experiences that promote learning. 
However, restructuring or redesigning existing materials can be time-consuming 
and expensive. Educational institutions might not have the resources to invest in 
instructional design and professors' time is already very limited (Ylijoki, 2013). It 
should be tested if some quick and easy alterations to learning materials could be 
effective in promoting learning. One of these methods could be adding 
illustrative images among the textual learning materials. Free images are easy to 
find and use. They could provide a quick fix for sprucing up existing text-based 
instructions and promote students’ motivation and willingness to read provided 
materials. However, studying the effects decorative images have on the cognitive 
load of learners should be done to ensure the possibly redundant elements do 
not hinder learning. 

3.1 Research question and hypothesis 

The research question is do illustrative images affect the cognitive load of 
learning computer programming? From the research questions the following 
hypotheses are induced: 
 
H0) Learning material’s illustrative images do not affect the cognitive load of 
learning computer programming. 
H1) Learning material’s illustrative images affect the cognitive load of learning 
computer programming. 
 
Additional hypotheses are tested: 
H2) The smaller the perceived cognitive load of the learning material, the better 
the success in tasks is. 
H3) The smaller the perceived cognitive load of the tasks, the better the success in 
tasks is. 



3.2 Participants 

Participants were recruited through the University of Jyväskylä’s faculties’ email 
lists and through personal social media accounts on Instagram, Facebook, and 
LinkedIn. For email, the invitation letter was written on the email itself. For social 
media platforms, a link to a website containing the invitation letter was included. 
The invitation advertised that participants could win a 30 € gift card to Finnkino-
movie theaters. The emails for the lottery were collected through a different 
question form which could be accessed through a link after completing the study.  

Participants were divided into two groups based on the parity of their 
birthdays. People born on an even day were instructed to open one link, while 
people born on an odd day were to open another one. The method of using 
birthday parity for dividing groups was thought to produce more even groups 
and be more anonymous than for example dividing by the first letter of the 
participant’s last name. The method however did not produce similar-sized 
groups as the odd-day group got more replies. Dividing with the birthday-parity 
method should be considered carefully, especially when expecting a smaller 
sample size. 

The required sample size for a statistically significant result from two 
independent samples’ mean comparison with t-tests was calculated with 
G*Power. The calculation was done as two-tailed with effect size d = 1.0, alpha 
risk  = 0.05, power 1- = 0.8, and equal sample sizes. The result was a sample 
size of 34, or 17 per group. There have been multiple studies where Paas’ (1992) 
9-point scale resulted in an effect size over 1.5 (Chien & Chang, 2012; Khacharem 
et al., 2013; van Leeuwen & Rummel, 2022; van Meeuwen et al., 2014; Van 
Merriënboer et al., 2002), which applied to the power analysis could allow a total 
sample size of 18 or 9 per group. 

The recruitment period for 34 participants was planned to last for three 
weeks but was extended to four in hopes of acquiring more participants. 
However, only a total of 28 answers were received of which 16 were for the no 
images group (odd birthday) and 12 for the images group (even birthday). 
Participants whose self-evaluated level of programming was under 3, who had 
never used or tried Python before, and who did not know what the term class 
means in object-oriented programming were accepted. Two answers did not 
fulfill these requirements for a novice Python programmer and were excluded to 
eliminate possible expertise reversal effects. Overall number of subjects shrank 
to 26 with both groups losing one participant. All data analyzed going forward 
will not include these two cases.  

The no images group had 15 participants with one under 18-year-old, four 
18–25-year-olds, eight 26–35-year-olds, and one both in the 46-55 and the 56-65 
age groups. The images group had four participants in the 18-25 age group, two 
26–35-year-olds, three 36–45-year-olds, and again one in both the 46-55 and the 
56-65 age groups. Neither group had any participants over 65 (see FIGURE 1). 

Having multiple questions establishing the participants’ knowledge of 
programming was found useful in understanding their actual level of prior 



knowledge. Some participants seemed to underestimate their level of knowledge 
on a Likert scale. Two participants in the no images group self-evaluated 
themselves to have little knowledge (2 on a scale of 1 to 5, none to excellent) in 
programming. All other participants (11 in the images group and 13 in the no 
images group) did not have any self-evaluated competence in programming. 
However, in both groups, only 9 participants reported not having learned or tried 
programming anywhere before. In the no images group four had tried 
programming in higher education, one in comprehensive school and one had 
self-studied it. In the images group one had tried programming in higher 
education and one at work. 10 people in the no images group had not tried any 
programming languages before, two had tried C#, one Python, one R, and one 
participant reported having tried “some language in middle school”. For the 
images group nine people had not tried any programming languages, one 
participant had tried C++, one C#, and one JavaScript. None of the participants 
had used Python before. One participant had reported having seen or read the 
language but not tried it themselves. No one reported knowing what the term 
class means in object-oriented programming. See Appendix 3 for all participant 
statistics. 

FIGURE 1 Distribution of age categories for both groups is uneven and centers around 18–
35-year-olds.

3.3 Learning material 

The learning material was specifically developed for the study. Python was 
chosen for the examples as it allows to present rather complex topics for novice 
learners with comparatively simple syntax. The material was a static website 
made with HTML and CSS-styling and hosted on the University of Jyväskylä’s 



users.jyu.fi-server. The study was designed to be done with a tablet or computer. 
To make sure participants used an appropriate device, the material was hidden 
with an overlay and error message when opened with a screen too small (see 
Appendix 2 for demonstration). Illustrative images for the images group website 
were sourced from pexels.com which provides free, modifiable images without 
the need to credit the creator (Free Stock Photo & Video License - Pexels,  
retrieved 4/2023).  

The learning material design attempts to minimize all other cognitive loads 
so that the cognitive load imposed by the existence of illustrative images could 
be observed. The images were placed on the left side of the page to reduce the 
split-attention effect by placing multiple representations in close approximate. 
The images affect the line breaks of the text, so for the no images website, the text 
width was set to follow the images website. The material also tries to mimic 
conventional designs of other online programming materials such as using code 
blocks and text styling every time actual code is shown. 

The learning material (see Appendix 2) taught the basic concept of classes. 
The topic was chosen for its important role in object-oriented languages and its 
relative complexity. The material would impose some cognitive load on novice 
learners but would also allow some acquisition of knowledge. It was designed so 
that readers would be able to at least read and recognize class and object 
structures written in Python and get used to the syntax of the language. The 
overall length was kept short to make sure that participants would read the 
whole material through. The material was divided into four sections 1) Objects 
and classes, which introduces the basic concept of classes and objects, 2) 
Implementing classes in Python, which provides a worked example of a class 
called Friend, 3) Creating objects in Python, with a worked example of creating 
an object emma using the Friend-class and some print-commands, 4) Complete 
program, that gives a standalone example of one class, creating objects with it 
and printing some text for the user to see. 

The decorative images for the images group’s learning material were 
chosen instinctively from the stock photo database. The goal was to choose 
images that had some relation to the example it was attached next to and that had 
a positive impression. All images can be seen on the screenshot in Appendix 2. 

The material was tested on two test subjects. Emphasizing code blocks with 
grey backgrounds and linking the examples to real-life use cases were redesigns 
due to feedback from test subjects. The intrinsic nature of the material was not 
tested further. More comprehensive tests might have revealed that the material 
was too complex and vague for novice learners which were mentioned in 
multiple participant feedbacks. If extensive testing is not possible, pre-existing 
learning materials that have been proven usable could be used instead of custom-
made materials. 



3.4 Procedure 

3.4.1 Study phase 

After answering the background questionnaire, which results were discussed on 
page 21 Participants, the participants were provided with a link to the learning 
material and instructed to study it thoroughly. They were informed that the 
learning material nor any other material shouldn’t be used in the following tasks. 
On the top and bottom of the learning material website, the participants were 
reminded to close the material after studying it. On returning to the questionnaire 
they answered the cognitive load scale from Morrison et al. (2014) to evaluate the 
cognitive load of the learning material. The cognitive load questionnaire was 
followed by an optional text box for comments about the material. 

3.4.2 Tasks 

After studying the learning material either with or without images and 
evaluating its cognitive load, participants completed four tasks. It was 
emphasized that the tasks should be done without any outside sources like the 
learning material or third-party online materials. The tasks were placed on 
individual pages of the questionnaire, but participants could return to previous 
tasks. One subject confessed in the open text feedback that they did go back to 
find answers from previous tasks. It can be deduced that also other participants 
utilized previous tasks and found answers from the phrasings of the questions. 
If no outside sources should be used while answering, future research should 
ensure that flipping between the tasks is not possible. 

The task page included the task itself, a three-item cognitive load scale 
modified from Morrison et al. (2014), Paas’ cognitive load scale (1992), and an 
optional open feedback textbox. Task 1 was a multiple-choice question asking to 
identify what the presented structure was called. Task 2 asked the participant to 
write a Song-class that gets the attributes song, performer, and release year. Task 
3 asked the participant to create an object named finland with the Country-class 
provided in the question. Task 4 was a multiple-choice question that provided a 
class, one object, and two print functions and asked what is printed to the user.  

Tasks 2 and 3 were producing tasks that required the participants to write 
actual code to the Webropol survey’s text box. The written code could not be run 
and so testing was not possible. Also, the text boxes did not allow using the tab 
button for indentations, so participants were instructed and taught to use spaces 
instead of tabs. It was reminded on the tasks’ 2 and 3 questions that spaces should 
be used instead of using the tab button. 

All tasks were scored by the same evaluator so no biases should occur in 
assessments. The multiple-choice questions were scored 1 if correct and 0 if 
incorrect. For task 2 each completely correct line of code was worth 1 point and 
a correct idea with some syntax errors could be awarded half a point. No 
recognizable idea of the correct concept for that line was scored 0. The example 
answer in FIGURE 2 would be scored a total of three points. The maximum score 



for task 2 was 5. For task 3 one point was granted for the correct naming of the 
object, correct instantiation of the class, and correct use of three arguments (see 
FIGURE 3). 

Task 2 example 

Answer Points 
Class: Song .5 
  def __init__(self, name, performer, published): 1 

  self.name: “Rick Astley” .5 
    self.performer: “Never Gonna Give You Up”         .5 
  self.year: “1987” .5 

FIGURE 2 Example of answer and scoring for task 2. 

Task 3 example 

Answer finland = Country (finland, euro, 5,6m) 

Points 1 1 .5 .5 .5 

FIGURE 3 Example of answer and scoring for task 3. 

3.5 Results 

3.5.1 Data analysis 

To assess the null hypothesis H0) Learning material’s illustrative images do not affect 
the cognitive load of learning computer programming, images and no images groups’ 
cognitive load scores were compared. The mean of the four tasks’ cognitive load 
scores was calculated individually for both scales, Morrison et al. and Paas. The 
learning material’s cognitive load score was tested for intrinsic, extraneous, and 
germane parts as well as a whole. The overall cognitive load score from the 
learning material's three first items and the modified Morrisons et al. scale of the 
tasks were combined to analyze the whole learning experience’s intrinsic 
cognitive load. Analyzed cognitive loads and their descriptive statistics can be 
seen in TABLE 2. The mental cognitive load across all cognitive load measures 
was more desirable for the images group than for the no images group. Germane 
load should be increased to promote learning and for the images group germane 
load of the learning material was higher (no images: M = 5.9, images: M = 6.6). 
All other scores of cognitive loads, the scores that should be reduced for 
enhancing learning, were lower for the images group. 



The statistical significance of the differences in cognitive loads was tested. 
Non-parametric tests were used as the sample sizes of both groups were small 
and not equal. An Independent-Samples Mann-Whitney U Test was performed 
to evaluate whether the perceived cognitive load of the learning material and 

Descriptive and non-parametric test statistics 

Descriptive statistics Mann-Whitney U 

Group: 
no images 
n = 15 

Group: 
images 
n = 11 

Learning material cognitive 
load, mean of all items (1-10) 
from Morrison et al. (2014) 

M 5.7 5.5 
Median 5.7 5.2 U 73.0 
SD .83 1.34 p .646 
SEM .21 .40 

Learning material cognitive 
load, mean of intrinsic items 
(1-3) from Morrison et al. 
(2014) 

M 6.1 5.4 
Median 7.3 3.7 U 72.5 
SD 3.00 2.50 p .610 
SEM .78 .75 

Learning material cognitive 
load, mean of extraneous 
items (4-6) from Morrison et 
al. (2014) 

M 5.0 4.0 
Median 5.0 3.7 U 67.0 
SD 3.01 2.23 p .443 
SEM .78 .67 

Learning material cognitive 
load, mean of germane 
items (7-10) from Morrison 
et al. (2014) 

M 5.9 6.6 
Median 6.3 7.0 U 94.0 
SD 3.10 2.91 p .574 
SEM .80 .88 

Mean intrinsic cognitive 
load of all tasks (Morrison et 
al., 2014) 

M 6.2 4.8 
Median 7.4 4.6 U 53.0 
SD 2.49 2.00 p .134 
SEM .64 .60 

Mean cognitive load of all 
tasks 
(Paas, 1992) 

M 5.4 4.7 
Median 5.8 5.0 U 62.0 
SD 1.81 1.50 p .305 
SEM .48 .45 

Mean intrinsic cognitive 
load of 
learning material and tasks 
(Morrison et al., 2014) 

M 6.1 5.1 
Median 6.3 5.2 U 64.0 
SD 2.66 1.97 p .357 
SEM .69 .60 

Mental efficiency (Paas & 
Van Merrienboer, 1993) 

M 1.0 1.0 
Median .9 .9 U 77.5 
SD .62 .87 p .799 
SEM .16 .26 

TABLE 2 Descriptive and Mann-Whitney U statistics show no significant differences 
between the images and no images groups. 



tasks differed between the no images and images groups. The results (see TABLE 
2) indicated that the distribution of cognitive load is the same for both no images
and images groups for all cognitive load categories. Based on the results the null
hypothesis remains true and the alternative hypothesis H1) Learning material’s
illustrative images affect the cognitive load of learning computer programming is
dismissed.

Hypothesis H2) The smaller the perceived cognitive load of the learning material, 
the better the success in tasks was tested with the learning material's cognitive load 
score and the tasks’ combined points. The correlation was analyzed with a 
scatterplot and a nonparametric correlation test Spearman's rank correlation 
coefficient. The scatterplot (see FIGURE 4) suggested that there is no evident 
correlation which was reinforced by the Spearman’s test (rs = .06 and p = .757) 

hence hypothesis H2 is rejected. 
Hypothesis H3) The smaller the perceived cognitive load of the tasks, the better the 

success in tasks was tested from two perspectives of Morrison et al. and Paas 
cognitive load scales. Both scatterplots (see FIGURE 5 and FIGURE 6) show a 
weak correlation between cognitive load and task success. Spearman’s test 
resulted in rs = -.48 and p = .013 for Morrison et al. scale and rs = -.46 and p = .019 
for Paas’ scale. Both results indicate a medium to large negative correlation 
between the task scores and cognitive load, that is when cognitive load decreases 
the task success increases. The same hypothesis was tested also on the overall 
intrinsic cognitive load of the learning experience. The scatterplot (see FIGURE 
7) and Spearman’s test (rs = -.50, p = .011) both indicated a medium to large
correlation. Hypothesis H3 is accepted. Correlation statistics can be seen in
TABLE 3.

Mental efficiency (Paas & Van Merriënboer, 1993), was analyzed for the 
tasks. Performance was defined as the percentage of points from all tasks. That 
is, 12 points would make the performance 100%. The mental effort was defined 

FIGURE 4 No correlation was found for task success and learning material cognitive 
load. 



as the mean cognitive load from the tasks’ Paas scale readings. Performance (P) 
and effort (R) were transformed into z scores and used to calculate mental 
efficiency (E) with the formula . For both groups, the mean mental 
efficiency was calculated as M = 1.0. An Independent-Samples Mann-Whitney U 
Test found no statistically significant difference between the mean mental 
efficiencies (U = 77.5, p = .799). See TABLE 2 for all descriptive statistics. 

FIGURE 5 Negative correlation was found 
for task success and 
cognitive load score with the 
Morrison et al. scale. 

FIGURE 6 Neg 
for loa

ative correlation was 
found task success and 
cognitive d score with the 
Paas scale. 

FIGURE 7 Negative correlation was found for task success and combined cognitive load of 
learning material and tasks. 



TABLE 3 Correlation statistics for task points and different cognitive load categories show 
a significant correlation between task points and task cognitive load, and task 
points and intrinsic cognitive load. 

Spearman's rank correlation coefficient 

Cognitive load category 
Combined points from all tasks 

rs p 

Learning material mean cognitive load 
(Morrison et al., 2014) .06 .757 

Mean cognitive load of all tasks 
(Morrison et al., 2014) -.48 .013 

Mean cognitive load of all tasks 
(Paas, 1992) 

-.46 .019 

Mean intrinsic cognitive load of tasks and material 
(Morrison et al., 2014) -.50 .011 

3.5.2  Decorative images’ effect on cognitive load 

The results of the study suggest that decorative, context-specific images placed 
alongside computer programming material in a static e-learning environment do 
not affect perceived cognitive load significantly. There were however 
insignificant differences that might be able to be validated with a bigger sample 
size. 

In the optional feedback boxes, both groups commented about having 
difficulties with the material, especially when it came to learning new terms. 
Having to learn several new terms and understanding their meaning for the code 
was too a complex task for many. Also, the definitions and explanations for the 
terms were considered lacking for novice learners. The impact the images had on 
the material’s cognitive load might have been overpowered by the high cognitive 
load imposed by the unnecessarily complex topic and insufficient definitions.  

In general, the material’s examples were commended by both groups for 
being clear visually and contextually and having practical topics. One participant 
from the no images group said that the learning material was “a little boring and 
textbook-ish”. The visual look of the material was commented on by participants 
from the images group to be clear and the pictures were considered nice. As no 
comments on the structure or visuals came from the no images group, it could be 
suggested that visually more diverse materials make a bigger impact on learners. 
The implications this effect has on learning should be studied further.  

 It was found that the smaller the tasks’ cognitive load was the better 
participants performed. This supports cognitive load theory that implies that 
managing cognitive load can support learning and performance. Many 
participants commented that the tasks themselves weren’t complex but were 
mentally difficult because they had difficulty recollecting the material. On the 
other hand, some participants commented that the task wasn’t difficult since the 



learning material stuck to their minds quite well. It seems like the difficulty of 
the task is not as important as the learner’s ability to complete it. Participants 
who had a difficult time remembering the needed concept commented feeling 
annoyed and discouraged. This could support the idea of using goal-free 
problems that promote using the knowledge learner has instead of forcing them 
to try and recollect something they haven’t acquired yet. However, no previous 
studies about using goal-free problems in learning programming were found. 
Another solution to avoid frustration when learning programming could be to 
not introduce producing problems too early. This would require somehow 
assessing the acquired knowledge without too complex tasks. 

Still, improving static materials with decorative images does not seem to 
support learning and research should be done on how static materials could be 
redesigned efficiently and resourcefully to be dynamic and interactive. 



4 CONCLUSIONS 

Cognitive load is the mental workload humans need to carry out tasks. Cognitive 
load theory (CLT) was developed to create instructional materials that aim to 
minimize the required cognitive load. CLT divides the cognitive load imposed 
by learning materials into three categories of intrinsic, extraneous, and germane. 
Intrinsic cognitive load is created by the problem’s innate complexity and is 
commonly managed by different methods of sequencing the learning material. 
Extraneous cognitive load is imposed by the learning material’s design and 
structure. Many methods of reducing extraneous load have been developed, 
many of which aim to reduce redundant information. Germane cognitive load is 
the effort required for schema acquisition. It can be induced by managing 
extraneous load or coaching learners on how to construct schemata. 

Educators’ understanding and implementation of cognitive load theory in 
instructional design can be beneficial for creating effective learning experiences. 
Many instructional models have been created to ease the development of 
learning materials. They should be taken into consideration especially as e-
learning has made usable learning materials even more important. Variations in 
technology knowledge within teachers and students and educators' resources are 
an issue when it comes to developing or implementing new materials. It should 
be studied what are effective and resourceful ways of doing instructional 
material redesign.  

This paper studied if decorative images could help with cognitive load 
experienced during computer programming learning. Decorative images have 
been found to create a more positive learning experience and make students 
more motivated to learn. There has been contradicting research on if decorative 
images actually promote learning. Learning material images have been studied 
at least in the contexts of statistics and natural sciences learning. No previous 
studies on illustrative images’ effects in the context of programming learning 
were found.  

The study was conducted by creating a learning material about Python’s 
classes and objects and having one group study it without images and one group 
with context-specific decorative images. The material was designed for novice 
learners but was later found through participant feedback to be too complex for 



beginners. After studying the material participants evaluated the cognitive load 
it imposed. They continued to complete four tasks related to Python’s classes and 
objects and evaluated the cognitive load each task imposed. 

The group who studied the learning material with decorative images 
experienced slightly less cognitive load compared to the group that studied text-
only material. However, the difference was not statistically significant. The 
relatively high cognitive load of the plain material itself could have affected the 
results. If all mental effort was allocated to understanding the text and examples 
no capacity was left for the images to catch the learner’s interest or be utilized for 
schema acquisition. More extensive research with more suitable learning 
material and bigger sample size could provide more significant results. 

The correlation between task performance and cognitive load was assessed. 
It was found that the smaller the cognitive load was the better task performance 
was. This demonstrates that perceived cognitive load can be used to predict task 
success in computer programming learning. Thus cognitive load theory could be 
adopted by those designing programming learning materials to ensure good and 
effective learning experiences. This could be following instructional design 
principles based on cognitive load theory, like those presented in TABLE 1, or 
paying attention to the cognitive load perceived by users throughout the learning 
experience with systematically placed cognitive load measures like Paas' (1992) 
or Morrison et al. (2014). Instructional designers, would that be experts in that 
specific area or professors and other educators, should recognize the insights 
cognitive load theory gives about learning experiences and how to manage them 
accordingly. Cognitive load measurements are easy to implement, especially for 
e-learning materials. They can be analyzed quickly for understanding how
changes in a learning material affect its effectiveness and learnability.

In addition to educators, learners themselves could benefit from 
understanding the effects cognitive load has on learning. Some participant 
feedbacks in this study emphasized the importance of cognitive load theory and 
found it interesting to evaluate their own cognitive load during the study. 
Recognizing the important relationship between task performance and perceived 
cognitive load could make it easier for learners to manage their learning paths 
and schedules. Many use e-learning computer programming materials found 
free online and having the skills to recognize good materials from bad ones is 
vital. Not only the content itself, but the presentation of it is important for 
learning. Minimizing split-attention and redundancy effects during the learning 
experience can be done by knowledgeable learners themselves. Paying attention 
to the cognitive load experienced and adjusting study sessions accordingly could 
be an effective way for learners to manage their learning. Instructional design 
could also benefit from learners who have some knowledge about CLT and can 
give feedback from that perspective. Further studies on how learners' prior 
knowledge of CLT affect performance and cognitive load should be done.  

The study has some problems when it comes to validity and reliability. The 
reported results should not be referenced as evidence for decorative images' 
effect on learning programming or for the main result of cognitive load’s effect 
on task performance. The validity of the study is discussed further here. 



First, the external validity is examined. As the study was done completely 
remotely, the time and place the participants answered the questionnaire could 
not be controlled. Busy surroundings and quiet environments might affect the 
results individuals produce. However, in real-life e-learning, the time and space 
of learning varies also. It could be suggested that in e-learning studies these 
aspects should not be controlled to ensure realistic and applicable results. This 
study did not collect any information about where and when the learning 
happened so correlations between it and cognitive load could not be analyzed. 
Also, beyond prohibiting the use of small vertical screens, the technology used 
was not questioned. Furthermore, the used web browser could affect the 
experience. One participant commented that on task 4 one of the options had an 
odd line break. The problem however couldn’t be recreated. The background 
questions of the participants focused on evaluating their programming 
knowledge. The only question not related to programming background was age 
group. There was no correlation found between age group and performance or 
perceived cognitive load. Most participants fell between the ages of 18-35 and 
different results might be possible with a majority of younger or older 
participants. Educational background nor intelligence was recorded as they were 
considered unnecessary for the study. People using and studying programming, 
especially from e-learning materials can be from all age groups, backgrounds, 
and abilities so the design of learning materials should take into consideration all 
demographics. Gender, which is often asked in research, wasn’t recorded either. 
Lindqvist et al. (2021) emphasize that researchers should consider carefully when 
asking about gender in their studies and look at gender from four aspects: 
physiological aspects, self-defined gender identity, legal gender, and gender 
expression. As this study did not aim to analyze the effects these aspects of 
gender have on learning programming and cognitive load, it was deemed 
unnecessary to include gender in the background questions. In conclusion, the 
time and place of the learning environment were not controlled and hence could 
be generalized outside the study as e-learning is not bound to any specific 
environments. However, small screens were not allowed, which doesn’t 
correspond to real-life usage of e-learning materials, and participants’ 
background checks were not comprehensive enough to determine 
generalizability. Therefore, the study's external validity is not strong. 

Secondly, the study’s internal validity is considered. The problem of Paas’ 
scale’s validity was attempted to be avoided by adding another, possibly more 
reliable cognitive load scale. However, the complete Morrison et al. scale did not 
find significant results to analyze. For the tasks’ the scale was modified by 
presenting only the first three items. The reliability of the modified scale was not 
studied. The modified scale resulted in a slightly bigger correlation between 
cognitive load and performance than Paas’ scale. Even though multiple previous 
studies have argued for the validity of Paas’ scale and used the Morrison et al. 
scale successfully, the validity of the used scales remains questionable. The tasks 
were scored by the same person which minimizes the possibility of 
inconsistencies with evaluation but does not remove it completely. As the scoring 
of each line or element was either 1 point, half a point, or no points, the results 



were not very precise, and seemingly very different answers could have scored 
similar points. Since both the cognitive load scores and task performance have 
problems with validity the internal validity of the results is weakened. The 
finding that perceived cognitive load could predict task performance has been 
observed in previous studies which could provide support for the validity of the 
main result of this study. 

The learning material was not sufficiently tested. The pictures for the 
images group learning material were chosen instinctually and based on giving 
the viewer a positive feeling. The affective effect of the images was not tested, 
and they could impose different emotions on different people and so create 
different cognitive loads. Also, the results could be different with different 
individual images. The sample size of the material was too small to report any 
true results. For the learning material’s cognitive load score, the probability of 
falsely retaining the null hypothesis (Type II error) was 77% (calculated with 
G*Power). Also, it should be noted that the sample sizes were notably unequal. 

It can be concluded that decorative images do not affect the cognitive load 
of learning computer programming, but some evidence correlation between 
cognitive load and task performance was found. Managing the cognitive load of 
programming materials by other means than adding illustrative images should 
be researched further and implemented to promote learning.  
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APPENDIX 1: SCREENSHOTS OF THE LEARNING MATERIAL 

Scree nshot of the no images learning material 

Screen shot of the images learning material. 



APPENDIX 2: FULL CONTENT OF THE MATERIAL AND 
SMALL SCREEN ERROR 

Screenshot of the images group’s learning material. To 
see how the material fitted on a horizontal screen see 
Appendix 1. 

Screenshot of the error message shown for 
small screens 



APPENDIX 3: BACKGROUND STATISTICS 

Background questions (single choice) 

Question Option 

Frequency (percent) 

Group: 
(n 

no images 
= 15) 

Group: 
(n = 

images 
11) 

Age 

under 18 
18-25
26-35
36-45
46-55
56-65

over 66

1(6.7) 
4 (26.7) 
8 (53.3) 

0 (0) 
1 (6.7) 
1 (6.7) 

0 

0 (0) 
4 (36.4) 
2 (18.2) 
3 (27.3) 
1 (9.1) 
1 (9.1) 

0 

Level of programming 
competence 

(1- none, 5 - excellent) 

1 
2 
3 
4 
5 

13 (86.7) 
2 (13.3) 

0 (0) 
0 (0) 
0 (0) 

11 (100.0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

15 (100.0) 11 (100.0) 

Experience on Python background questions (single choice) 

Question Option 

Frequency (percent) 

Group: 
no images 

(n = 15) 

Group: 
images 
(n = 11) 

Experience of 
Python 

I 
No experience. 

have seen or read Python, but not used. 
I have used Python a couple of times. 

I use Python at least once a month. 
I use Python weekly 

14 (93.3) 
1 (6.7) 
0 (0) 
0 (0) 
0 (0) 

11 (100.0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

I know what class 
means in object-

oriented 
programming 

Yes 
No 

0 (0) 
15 (100.0) 

0 (0) 
11 (100.0) 

15 (100.0) 11 (100.0) 



Programming background questions (multiple choice) 

Question Option 

Frequency (percent) 

Group: 
no images 

(n = 15) 

Group: 
images 
(n = 11) 

Where have you 
learned or tried 
programming? 

No programming experience. 
Comprehensive school 

Higher education 
Online course not related to studies. 

At work 
Self-study 

elsewhere, where? 

9 (60.0) 
1 (6.7) 

4 (26.7) 
0 (0) 
0 (0) 

1 (6.7) 
0 (0) 

9 (81.8) 
0 (0) 

1 (9.1) 
0 (0) 

1 (9.1) 
0 (0) 
0 (0) 

What 
programming 

languages have 
you tried? 

None 
C 

C++ 
C# 

Haskell 
Java 

JavaScript 
PHP 

Python 
R 

Rust 
Swift 

Other, what/which? 

10 (66.7) 
0 (0) 
0 (0) 

2 (13.3) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

1 (6.7) 
1 (6.7) 
0 (0) 
0 (0) 

1 (6.7) 

9 (81.8) 
0 (0) 

1 (9.1) 
1 (9.1) 
0 (0) 
0 (0) 

1 (9.1) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 

15 (100.0) 11 (100.0) 
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