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Abstract: The hydrazine s-triazine ligand (E)-4,4’-(6-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)-1,3,5-
triazine-2,4-diyl)dimorpholine (DMPT) was used to synthesize two new Ni(II) complexes via a
self-assembly technique. The two complexes were synthesized by a one-pot synthesis strategy
and characterized by elemental analysis, FTIR and single-crystal X-ray diffraction analysis to be
[Ni(DMPT)(H2O)3](NO3)2.3H2O (1) and [Ni(DMPT)(H2O)3](NO3)2.H2O (2). The structures of both
complexes were very similar regarding the coordination sphere and counter anions, but differ only in
the number of the crystal water molecules. In the case of complex 1, there are three water molecules
instead of one H2O molecule as in complex 2. In the two complexes, the DMPT ligand acts as a
neutral tridentate NNN-chelate via three Ni–N coordination interactions. The coordination sphere of
the Ni(II) ion is completed by three water molecules. As a result, the two complexes exhibit distorted
octahedral geometry. The Hirshfeld surfaces around each entity in both complexes have been
computed. Subsequently, their corresponding intermolecular interactions were quantified separately.
Because the number of crystal water molecules is different in both complexes, their monomeric units
are connected differently in their crystal structures where the crystal water molecules act as both
hydrogen bond donor and acceptor. The polar O . . . H interactions are the most dominant in all
entities of both complexes. As a result, strong O . . . H interactions are the driving force in the crystal
packing of both complexes, and this is attributed to the presence of the nitrate anions and water
molecules. The antimicrobial activity of the free ligand and complex 1 were determined against two
selected fungal species, Gram-negative and Gram-positive bacterial strains. The free ligand was
found to be inactive against all microbial species. On the other hand, the Ni(II) complex 1 was found
active against the Gram-positive bacterial species Bacillus subtilis and also the Gram-negative bacterial
species Escherichia coli. The respective inhibition zone diameter of the Ni(II) complex was 12 and
11 mm, respectively.

Keywords: s-triazine hydrazone; molecular packing; X-ray; Ni(II) complexes; Hirshfeld surface;
antimicrobial

1. Introduction

Schiff base ligands are an important class of organic chelating ligands which have
been widely used for the synthesis of a large number of metal complexes. Schiff bases have
become a significant class of ligands that are widely used in coordination chemistry and
are considered as privileged multitopic ligands. There is a wide range of potential uses for
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Schiff bases and their metal complexes, including luminescent probes [1], catalysis [2–5],
dye and polymer industry, analytical chemistry, agriculture [6–8], magneto-structural
chemistry, food industry, agrochemical and biological fields [9,10], and also as antitumor,
antifungal and antimicrobial agents [11–22]. Hydrazones Schiff bases are among these
important chelating ligands which have drawn particular interest from researchers because
of their known chelating ability beside their structural flexibility, which can add stiffness to
the skeletal structure of the synthesized metal complexes [23–27]. In addition, the nitrogen–
nitrogen covalent bond that exists in the azomethine group of hydrazones increases its
ability to synthesize stable metal complexes. Additionally, hydrazones and related com-
pounds play a significant part in enhancing the toxicity and selectivity aspects of some
anticancer agents by building drug carrier systems using proper carrier proteins [28].

On the other hand, the majority of the first row of transition metals and their complexes
have biological necessities and a variety of known bioactivities. One of these transition
metals is nickel, which exists in the nickel (II) form as the most stable oxidation state [29–31].
Ni(II) complexes are one of these crucial transition metal complexes which have different
coordination geometries, including tetrahedral [32], square planar [32,33], trigonal bipyra-
midal [34] and octahedral [35], where the square planar and octahedral geometries are the
most prevalent. Each nickel (II) complex with a particular ligand has unique chemical and
physical characteristics, which makes their investigation both fascinating and challenging.
Its significance in bioinorganic chemistry expands with the identification of the nickel
enzyme, urease [36,37]. The ability of nickel complexes to permeate into the microbial cells
and impact the enzyme activity has led to the discovery of numerous nickel complexes
with broad-spectrum efficacy against many pathogens [38–44].

In our previous work, the X-ray structure and biological evaluations of the three
metal complexes, [Mn(DMPT)Cl2], [Cu(DMPT)Cl2]. H2O and [Cu(DMPT)(NO3)2] were
presented. In continuation to our previous study, the present work aims to synthesize
two novel Ni(II) complexes using the hydrazine s-triazine ligand DMPT [45] shown in
Figure 1. The synthesized complexes were characterized by different analytical techniques
such as FTIR, single-crystal X-ray diffraction (SCXRD) and elemental analysis. Hirshfeld
surface analysis is performed to describe and quantify the intermolecular interactions in
their crystal structures. Additionally, an assessment of their antibacterial activity against
six harmful microorganisms was performed.
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Figure 1. Structure of DMPT.

2. Results and Discussion
2.1. Synthesis and Characterizations

The self-assembly of the organic ligand (DMPT) [45] and Ni(NO3)2.6H2O in ethanol
lead to the formation of two new crystalline Ni(II) complexes in the same pot (Scheme 1).
The two complexes 1 and 2 were distinguished very clearly as green and turquoise crystals,
respectively. Additionally, both complexes are separated easily from the reaction pot as
the green crystals of 1 were formed on the glass beaker’s walls, while turquoise crystals
of 2 were collected from the bottom of the beaker. FTIR data of the ligand DMPT and its
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two complexes were compared in Figure S1 (Supplementary Data). The FTIR spectra of
DMPT showed the ν(C=N) modes at 1523 and 1492 cm−1. These bands are shifted to higher
wavenumbers of 1593 and 1572 cm−1 in the case of 1, while appeared as a split band at
1575 and 1607 cm−1 in the case of 2, indicating the coordination of the Ni(II) ion in the
two complexes via the nitrogen atoms of azomethine, triazine and pyridine moieties of
DMPT. The broad band at 3382 cm−1 in complex 1 and 3327 cm−1 in complex 2 confirms
the presence of water molecules in the two complexes. Additionally, the (N–O) stretches of
the nitrate group in the two complexes appeared at the same frequency at 1385 cm−1.
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Scheme 1. Synthesis of complexes 1 and 2.

2.2. X-ray Structure Description

The molecular structure of complex 1 was confirmed by crystal X-ray diffraction to be
[Ni(DMPT)(H2O)3](NO3)2.3H2O. The crystal system of 1 is monoclinic and the space group
is P21/n. The unit cell parameters are a = 11.4900(2) Å, b = 17.6794(3) Å, c = 14.1294(2) Åand
β = 90.110(1)◦. In the unit cell, there are four molecules of the abovementioned formula and
its volume is 2870.19(8) Å3, while the calculated density is 1.563 mg/m3. The asymmetric
formula is one [Ni(DMPT)(H2O)3](NO3)2.3H2O molecule (Figure 2).
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The inner sphere of this complex comprised a hexa-coordinated Ni(II) ion with one
DMPT and three water molecules, while the outer sphere composed of two nitrate counter
ions and three crystal water molecules. It is clear from Figure 2 that the DMPT ligand acts
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as a neutral tridentate NNN-chelate via three Ni–N coordination interactions which are
the Ni(1)–N(2), Ni(1)–N(1) and Ni(1)–N(4) bonds. Their respective Ni–N distances are
2.0031(12), 2.1002(13) and 2.2608(12) Å, respectively. It is clear that the Ni–N(hydrazone) is the
shortest interaction. In contrast, the Ni–N(s-triazine) is the longest Ni–N bond. The chelate
angles N(2)–Ni(1)–N(1) and N(2)–Ni(1)–N(4) are determined to be 77.93(5) and 76.47(4)◦,
respectively, while the trans-N(1)–Ni(1)–N(4) is determined to be 154.38(5)◦. On the other
hand, the coordination sphere of the Ni(II) ion is completed by three water molecules.
The equatorial Ni1–O2 bond, which is trans to the Ni–N(hydrazone) bond, is the shortest
interaction with the water molecules. The two axial Ni1–O3 and Ni1–O4 bonds are slightly
longer than the equatorial Ni–O bond. The corresponding Ni–O distances are 2.0466(12)
and 2.0764(12) Å, respectively (Table 1). The distorted octahedron comprised the four
atoms N1, N2, N4 and O2 as corners for the distorted square as a basal plane, while the
two oxygens O1 and O3 are apical.

Table 1. Bond distances and angles (Åand ◦) for the coordination environment of
[Ni(DMPT)(H2O)3](NO3)2.3H2O complex.

Bond Distance Bond Distance

Ni(1)–N(2) 2.0031(12) Ni(1)–O(3) 2.0764(12)
Ni(1)–O(2) 2.0242(12) Ni(1)–N(1) 2.1002(13)
Ni(1)–O(1) 2.0466(12) Ni(1)–N(4) 2.2608(12)

Bonds Angle Bonds Angle

N(2)–Ni(1)–O(2) 171.68(5) O(1)–Ni(1)–N(1) 92.93(5)
N(2)–Ni(1)–O(1) 90.08(5) O(3)–Ni(1)–N(1) 87.39(5)
O(2)–Ni(1)–O(1) 90.28(5) N(2)–Ni(1)–N(4) 76.47(4)
N(2)–Ni(1)–O(3) 91.46(5) O(2)–Ni(1)–N(4) 111.85(5)
O(2)–Ni(1)–O(3) 88.20(5) O(1)–Ni(1)–N(4) 88.12(5)
O(1)–Ni(1)–O(3) 178.46(5) O(3)–Ni(1)–N(4) 92.24(5)
N(2)–Ni(1)–N(1) 77.93(5) N(1)–Ni(1)–N(4) 154.38(5)
O(2)–Ni(1)–N(1) 93.75(5)

As clearly seen from Figure 2, the solid state structure of complex 1 comprised a large
number of coordinated and hydration water molecules which participate significantly
with the nitrate counter anions in the molecular packing of this monomeric complex.
The important hydrogen bond contacts are shown in Figure 3A and the corresponding
geometric parameters are depicted in Table 2. The nitrate counter ions as hydrogen bond
acceptor connect the monomeric complex units via short hydrogen bonding interactions
with the free and coordinated water molecules. In this supramolecular structure, the free
water molecules act as both hydrogen bond donors as well as hydrogen bond acceptors
while the coordinated H2O molecules are only hydrogen bond donors. In addition, the
oxygen atom of the morpholine substituents and one of the free triazine N-atoms (N5)
participated in the molecular packing of complex 1 as hydrogen bond acceptors (Figure 3B).

On the other hand, the structure of complex 2 was found very similar to that for 1
regarding the coordination sphere and counter anions but differ only in the number of the
crystal water molecules. In case of complex 2, there is one water molecule instead of three
H2O molecules in complex 1. Additionally, this complex crystallized in the less symmetric
triclinic crystal system and P-1 space group. The unit cell parameters are a = 8.3135(2) Å,
b = 10.9175(2) Å, c = 15.7611(4) Å, α = 71.119(1)◦, β = 80.188(1)◦ and γ = 84.58(1)◦. In the unit
cell there are two molecules of the asymmetric formula [Ni(DMPT)(H2O)3](NO3)2.H2O
and its volume is 1332.20(5) Å3 while the calculated density is 1.594 mg/m3 (Figure 4).
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Figure 3. All of the important hydrogen bond contacts (A) and 3D H-bonding network (B) in
[Ni(DMPT)(H2O)3](NO3)2.3H2O complex.

The structure of the coordination sphere of complex 2 comprised one tridentate DMPT
molecule and three water molecules. Similar to complex 1, the Ni–N(hydrazone) bond is the
shortest Ni–N interaction with the organic ligand compared to the Ni–N(s-triazine) and Ni–
N(pyridine) bonds. The respective Ni–N distances are 2.0079(18) Å, 2.1031(18) and 2.1907(18)
Å. The N(2)–Ni(1)–N(1) and N(2)–Ni(1)–N(8) angles are 78.11(7) and 77.95(7)◦, respectively,
while the trans N(1)–Ni(1)–N(8) is 156.03(7)◦. The hexa-coordination environment of
the Ni(II) is completed by the three Ni(1)–O(2), Ni(1)–O(3) and Ni(1)–O(1) bonds. The
respective Ni–O distances are 2.0378(17), 2.0409(17) and 2.0652(16) Å, respectively (Table 3).
Additionally, the equatorial Ni1–O2 bond is the shortest Ni–O bonds. The results of these
geometric parameters are similar to those for complex 1 and the NiN3O3 coordination
environment of the Ni(II) ion could be described as a distorted octahedron.
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Table 2. The hydrogen bond geometric parameters in [Ni(DMPT)(H2O)3](NO3)2.3H2O.

D–H . . . A D–H/Å H . . . A/Å D . . . A/Å D–H . . . A/◦ Symm. Code

C(11)–H(11B)...O(9)#1 0.99 2.39 3.356(2) 165.2 #1 −x + 3/2, y + 1/2, −z + 1/2
N(3)–H(3)...O(8)#2 0.88(2) 2.07(2) 2.9043(18) 158.0(19) #2 −x + 1/2, y + 1/2, −z + 1/2
O(1)–H(1A)...O(14) 0.82(2) 1.82(2) 2.6391(19) 179(2)
O(3)–H(3A)...O(6)#3 0.83(3) 2.00(3) 2.8245(18) 170(2) #3 x + 1, y, z
O(12)–H(12C)...O(9)#4 0.84(3) 2.46(3) 3.091(2) 133(2) #4 x − 1/2, −y + 1/2, z + 1/2
O(12)–H(12C)...O(10)#4 0.84(3) 2.04(3) 2.870(2) 170(3) #4 x − 1/2, −y + 1/2, z + 1/2
O(12)–H(12D)...O(5)#5 0.83(3) 1.98(3) 2.7972(17) 169(2) #5 −x + 1, −y, −z + 1
O(3)–H(3B)...O(11) 0.85(2) 1.91(2) 2.7540(18) 171(2)
O(13)–H(13C)...N(5)#6 0.80(3) 2.41(3) 3.138(2) 152(2) #6 −x + 3/2, y − 1/2, −z + 1/2
O(13)–H(13C)...O(6)#3 0.80(3) 2.43(3) 2.9541(19) 124(2) #3 x + 1, y, z
O(14)–H(14A)...O(12) 0.81(3) 1.96(3) 2.730(2) 159(3)
O(2)–H(2A)...O(12) 0.80(3) 1.93(3) 2.7227(18) 171(3)
O(2)–H(2B)...O(13) 0.84(3) 1.85(3) 2.6901(18) 175(2)
O(1)–H(1B)...O(4)#7 0.82(3) 1.95(3) 2.7684(17) 171(3) #7 −x + 1, −y + 1, −z + 1
O(14)–H(14B)...O(7) 0.81(3) 2.01(3) 2.810(2) 176(3)
O(13)–H(13D)...O(10)#6 0.83(3) 2.05(3) 2.861(2) 165(3) #6 −x + 3/2, y − 1/2, −z + 1/2
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The supramolecular structure of complex 2 is controlled only by a significant number
of O . . . H interactions (Table 4), which are considered as another major difference between
the two complexes. In this case, there is one crystal water molecule, and hence, the
monomeric units are connected differently in the crystal structure compared to 1. While
the hydrazone NH group participated in the hydrogen bond network of 1 by only the
N(3)–H(3) . . . O(8) hydrogen bond, there are two significant N–H . . . O hydrogen bonds in
complex 2, which are the N(3)–H(3)...O(6) and N(3)–H(3)...O(7). Additionally, the crystal
water molecule is both a hydrogen bond donor and acceptor in this complex via O(3)–
H(3A)...O(12), O(12)–H(12C)...O(11) and O(12)–H(12D)...O(9) hydrogen bonds (Figure 5A).
In addition, the two morpholine moieties and the nitrate counter anions participated in
the hydrogen bonding interactions as hydrogen bond acceptors via their oxygen atoms. A
view of the packing scheme is shown in Figure 5B.
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Table 3. Bond distances and angles (Åand ◦) for the coordination environment of
[Ni(DMPT)(H2O)3](NO3)2.H2O complex.

Bond Distance Bond Distance

Ni(1)–N(2) 2.0079(18) Ni(1)–O(1) 2.0652(16)
Ni(1)–O(2) 2.0378(17) Ni(1)–N(1) 2.1031(18)
Ni(1)–O(3) 2.0409(17) Ni(1)–N(8) 2.1907(18)

Bonds Angle Bonds Angle

N(2)–Ni(1)–O(2) 172.54(7) O(3)–Ni(1)–N(1) 93.97(7)
N(2)–Ni(1)–O(3) 94.34(7) O(1)–Ni(1)–N(1) 91.21(7)
O(2)–Ni(1)–O(3) 90.20(8) N(2)–Ni(1)–N(8) 77.95(7)
N(2)–Ni(1)–O(1) 88.89(7) O(2)–Ni(1)–N(8) 108.09(7)
O(2)–Ni(1)–O(1) 87.08(7) O(3)–Ni(1)–N(8) 88.99(7)
O(3)–Ni(1)–O(1) 174.37(7) O(1)–Ni(1)–N(8) 87.17(7)
N(2)–Ni(1)–N(1) 78.11(7) N(1)–Ni(1)–N(8) 156.03(7)
O(2)–Ni(1)–N(1) 95.69(7)

Table 4. The hydrogen bond geometric parameters in [Ni(DMPT)(H2O)3](NO3)2.H2O.

D–H . . . A D–H/Å H . . . A/Å D . . . A/Å D–H . . . A/◦ Symm. Code

C(12)–H(12B)...O(7)#1 0.99 2.43 3.122(3) 126.9 #1 x, y + 1, z
N(3)–H(3)...O(6)#2 0.88(3) 2.06(3) 2.930(3) 168(3) #2 −x + 1, −y + 1, −z + 1
N(3)–H(3)...O(7)#2 0.88(3) 2.60(3) 3.170(3) 123(2) #2 −x + 1, −y + 1, −z + 1
O(2)–H(2A)...O(9) 0.83(3) 1.96(3) 2.773(3) 168(3)
O(1)–H(1A)...O(4)#3 0.81(3) 1.91(4) 2.691(2) 161(3) #3 −x + 1, −y + 2, −z + 1
O(1)–H(1B)...O(5)#4 0.86(4) 1.97(4) 2.798(2) 161(3) #4 x − 1, y, z
O(2)–H(2B)...O(10)#5 0.82(3) 1.96(3) 2.775(3) 175(3) #5 −x + 1, −y + 1, −z + 2
O(3)–H(3A)...O(12) 0.84(3) 1.85(4) 2.686(3) 170(3)
O(3)–H(3B)...O(6) 0.82(4) 1.95(4) 2.757(3) 171(4)
O(3)–H(3B)...O(8) 0.82(4) 2.57(4) 3.184(3) 134(3)
O(12)–H(12C)...O(11)#6 0.80(4) 2.10(4) 2.885(4) 165(4) #6 −x + 1, −y, −z + 2
O(12)–H(12D)...O(9) 1.01(6) 1.91(6) 2.841(3) 152(5)

In the studied complexes, we noted the presence of another common intermolecular
interaction between the nitrate anion and the π-system of the organic ligand (DMPT). It
is clearly seen from Figure 6 that the presence of short C6 . . . O9 (3.108 Å) and C8 . . . O6
(3.208 Å) contacts revealed this observation very well.

2.3. Hirshfeld Analysis

The results of the X-ray crystal structure analysis were accurately mirrored by the
Hirshfeld surface analysis, which also provided a novel visual way to understand inter-
molecular interactions via the colors of various regions [46,47]. The Hirshfeld (HF) surfaces
and the 2D fingerprint (FP) plots of complexes 1 and 2 were analyzed. As shown from X-ray
studies, the asymmetric unit in complex 1 consists of one [Ni(DMPT)(H2O)3]2+ cationic
complex unit as the inner sphere and two nitrate anions in addition to three crystallized
water molecules in the outer sphere. On the other hand, there is only one water molecule
present in an asymmetric unit of complex 2. Hence, the Hirshfeld surfaces around each
entity in both complexes have been computed (Figure 7). Using fingerprint plot, it is possi-
ble to decompose all intermolecular interactions and the percentage of all these contacts
could be easily obtained. Subsequently, their corresponding intermolecular interactions
were quantified separately in Figure 8.
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According to the aforementioned data, both complexes (1 and 2) are very close in their
intermolecular interactions. It is clear that the interactions involving hydrogen atoms are
the most dominant, mainly the hydrogenic H . . . H and the polar O . . . H interactions in all
entities, except nitrate anions, in which the O . . . H interaction is the only most prevalent
one (Figure 8). This suggests that strong O . . . H interactions is the driving force in the
formation of the crystal packing in both complexes, and this is attributed to the presence of
the nitrate anions and water molecules.

For the [Ni(DMPT)(H2O)3]2+ cation (E1 and E1‘ in complexes 1 and 2, respectively),
the most significant contact is the O . . . H interaction, which contributed by 35.1 and
33.5% in E1 and E1‘, respectively. Additionally, the H . . . H, N . . . H and C . . . H contacts
contributed 42.3, 7.8 and 11.1% in E1, respectively. The corresponding values in E1‘ are
43.3, 8.5 and 11.9%, respectively. These short interactions appeared as sharp spikes in the
FP plots (Figure 9), indicating strong interactions between the [Ni(DMPT)(H2O)3]2+ and
the neighboring units (Figure 10 and Table 5). In the entity E1 of complex 1, the shortest
O . . . H interactions are O13 . . . H2B (1.710Å), O12 . . . H2A (1.749 Å) and O14 . . . H1A
(1.656 Å). On the other hand, the O12 . . . H3A (1.713 Å) and O4 . . . H1A (1.749 Å) in the E1‘
entity of complex 2 are the most significant O . . . H contact. A summary of the significant
short interactions around the [Ni(DMPT)(H2O)3]2+ in both complexes is shown in Table 5.
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For the outer-sphere nitrate anions (E2 and E3 in 1, while E2‘and E3‘ in 2), the O...H
contact is the most dominant, which contributed 92.5% (E2), 86.6% (E3), 92.3% (E2‘) and
89.6% (E3‘) of the total HF surface area (Figure 11). The shortest contacts which appeared
in the dnorm maps as red spots are O7 . . . H14B (1.829Å) and O11 . . . H3B (1.779 Å) in
complex 1, while O10 . . . H2B (1.794 Å) and O6 . . . H3B (1.784 Å) in complex 2 (Table 5).

For the water of crystallization (E4:E6 in 1 and E4‘ in 2), the O . . . H and H . . . H
interactions represent almost all the 2D fingerprint area (Figure S2, Supplementary Data).
The decomposed dnorm maps exemplify relatively short O . . . H and H . . . H interactions
that appear as dark red spots (Figure 12). The shortest O . . . H contacts in 1 are O13 . . .
H2B (1.710 Å), O14 . . . H1A (1.656 Å) and O12 . . . H2A (1.749 Å), while O12 . . . H3A (1.713
Å) in 2. For the H . . . H interaction, the shortest contacts are H13D . . . H2B (2.152Å), H14A
. . . H1A (2.118 Å) and H12D . . . H3A (2.151Å), as shown in Table 5.
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Table 5. Distances (Å) of the significant short interactions in both complexes.

Complex 1 Complex 2

Contact Distance Contact Distance

O11 . . . H3B 1.779 O8 . . . H3B 2.453
O13 . . . H2B 1.710 O6 . . . H3B 1.784
O12 . . . H2A 1.749 O9 . . . H2A 1.806
O14 . . . H1A 1.656 O9 . . . H1 2.533
O5 . . . H12D 1.829 O12 . . . H3A 1.713
O6 . . . H3A 1.854 O5 . . . H1B 1.855
O7 . . . H3A 2.439 O7 . . . H12B 2.371
O4 . . . H1B 1.793 O4 . . . H1A 1.749
O9 . . . H11B 2.300 O5 . . . H1B 1.855
O8 . . . H3 1.950 O10 . . . H2B 1.794
O6 . . . H3 2.528 O6 . . . H7B 2.573
O11 . . . H3C 2.508 O8 . . . H4 2.449
O7 . . . H4 2.405 O6 . . . H7A 2.458
O10 . . . H16B 2.561 O6 . . . H3 1.937
O11 . . . H16B 2.530 O7 . . . H3 2.535
O7 . . . H14B 1.829 O9 . . . H12D 1.932
O8 . . . H14B 2.585 O11 . . . H12C 1.928
O6 . . . H13C 2.333 O6 . . . C8 3.208
O9 . . . H12C 2.361 N10 . . . H2A 2.555
O10 . . . H12C 1.897 N9 . . . H3B 2.465
O10 . . . H13D 1.903 N5 . . . H7C 2.588
O11 . . . H13D 2.523 C5 . . . H18A 2.660
O12 . . . H14A 1.795 C16 . . . H1B 2.704
N5 . . . H13C 2.251 C12 . . . H1A 2.593
N10 . . . H16B 2.519 C9 . . . H12A 2.697
N10 . . . H3B 2.555 C9 . . . H7C 2.708
N9 . . . H14B 2.536 H12D . . . H3A 2.151
C9 . . . H10A 2.633
C4 . . . H18A 2.706
C17 . . . H12D 2.430
H1A . . . H14A 2.118
H2B . . . H13D 2.152
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2.4. Antimicrobial Assay

The antimicrobial activity of the free ligand and complex 1 were determined against
selected Gram-positive, Gram-negative bacterial strains and two fungal species. The results
of the inhibition zone diameters were collected in Table 6. The results indicated that both the
ligand and its Ni(II) complex are inactive toward both fungal species: A. fumigatus and C.
albicans. On the other hand, the Ni(II) complex was found active against the Gram-positive
bacterial species B. subtilis, but not active against S.aureus. The inhibition zone diameter
of the Ni(II) complex is 12 mm and the minimum inhibitory concentration is 1250 µg/mL.
Additionally, the Ni(II) complex is active against the Gram-negative bacterial species E. coli,
but is found inactive against P. vulgaris. The inhibition zone diameter of the Ni(II) complex
is 11 mm and the minimum inhibitory concentration is 1250 µg/mL. Interestingly, the free
ligand was found inactive against both Gram-positive and Gram-negative bacteria species.
The higher antibacterial activity of the Ni(II) complex against B. subtilis and E. coli compared
to the free Schiff base ligand (DMPT) might be attributed to the ability of the metal chelates
to inhibit the respiration mechanism of the microbial organisms, which make them unable
to manufacture their own proteins, preventing the organism from growing further [48].
On the other hand, the studied Ni(II) complex has a lower antimicrobial activity than the
gentamycin as a positive control. It is worth to note that the Cu(II) and Mn(II) complexes of
DMPT ligand [45] are better antimicrobial agents and have broader antibacterial spectra
than the corresponding Ni(II) complex.

Table 6. Antibacterial and antifungal activities of DMPT and its Ni(II) complex in terms of inhibition
zone diameters (mm) and MIC (µg/mL) a.

Microorganism DMPT 1 Control

A. fumigatus NA b (ND) c NA b (ND) c 17(156) d

C. albicans NA b (ND) c NA b (ND) c 20(312) d

S. aureus NA b (ND) c NA b (ND) c 24(9.7) e

B. subtilis NA b (ND) c 12 (1250) c 26(4.8) e

E. coli NA b (ND) c 11 (1250) c 30(4.8) e

P. vulgaris NA b (ND) c NA b (1250) c 25(4.8) e

a Values outside and inside parentheses for inhibition zone diameter and MIC, respectively. b NA: No activity; c

ND: not determined; d ketoconazole and e gentamycin.

3. Materials and Methods
3.1. Physical Measurements

All the chemicals were bought from Sigma-Aldrich and used without additional pu-
rifications. CHN analyses were carried out using a PerkinElmer 2400 Elemental Analyzer.
The amount of Ni was determined with the aid of a Shimadzu atomic absorption spec-
trophotometer (AA-7000 series, Shimadzu, Ltd., Tokyo, Japan). FTIR spectra were recorded
at the Central Lab, Faculty of Science, Alexandria University, using a Bruker Tensor 37 FTIR
spectrophotometer (Bruker Company, Berlin, Germany) in KBr pellets at 4000–400 cm−1.

3.2. Preparation of DMPT
3.2.1. Synthesis of Ligand (DMPT) [45]

s-Triazine hydrazine derivative (2 mmol, 563 mg) mixed with 2-acetylpyridine
(2 mmol, 242 mg) in ethanol (20 mL in the presence of a drop of acetic acid and then
refluxed overnight; the reaction was monitored by (TLC 2% MeOH/CHCl3 then 50:50
EtOAc/n-hexane). After evaporation 1/3 of the solvent the desired product was precipi-
tated as white powered materials and then filtered and washed with a small quantity of
ethanol to afford the requisite ligand (DMPT).

Ligand (DMPT): m.p: 230 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.54 (d, J = 4.6 Hz, 1H),
8.20 (d, J = 8.1 Hz, 1H), 8.08 (s, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.20 (dd, J = 7.3, 4.9 Hz, 1H), 3.81
(q, J = 8.2, 6.4 Hz, 8H), 3.72 (t, J = 4.8 Hz, 8H), 2.40 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3)
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δ 165.36, 164.61, 155.63, 148.48, 147.51, 139.00, 136.27, 123.68, 119.89, 66.95, 43.75 ppm. IR
(KBr, cm−1): 3442 ν (N–H), 2962, 2895, 2855 ν(C–H), 1606, 1584 ν(C=N), 1523, 1492 ν(C=C),
1256 ν(C–N).

3.2.2. Synthesis of Complexes [Ni(DMPT)(H2O)3](NO3)2.3H2O (1) and
[Ni(DMPT)(H2O)3](NO3)2.H2O (2)

Equimolar amounts of 15 mL ethanolic solution of Ni(NO3)2.6H2O (29.1 mg, 0.1 mmol)
and 15 mL ethanolic solution of organic ligand DMPT (38.4 mg, 0.1 mmol) were added into
one pot. The resulting clear green solution was allowed to evaporate slowly and crystallize
at room temperature. After one week, green crystals of complex 1 were collected from the
walls of the glass beaker, whereas turquoise crystals of 2 were collected from the bottom of
the beaker. The crystals were left for drying and used for single-crystal X-ray diffraction
measurement.

Complex 1, Anal. Calc. C18H36N10NiO14: C, 32.02; H, 5.37; N, 20.74; Ni, 8.69%. Found:
C, 31.61; H, 5.26; N, 20.63; Ni, 8.47%. IR (KBr, cm−1): 3382 ν(O–H) water, 3246 ν (N–H),
2977, 2930, 2860 ν(C–H), 1593, 1572 ν(C=N), 1509 ν(C=C), 1385 ν(N–O),1260 ν(C–N), 785
ρr (H2O), 641ρw (H2O).

Complex 2, Anal. Calc. C18H32N10NiO12: C, 33.82; H, 5.05; N, 21.91; Ni, 9.18%. Found:
C, 33.63; H, 4.98; N, 21.75; Ni, 9.09%. IR (KBr, cm−1): 3327 ν(O–H)water, 3247 ν (N–H),
2959, 2929, 2864 ν(C–H), 1607, 1575 ν(C=N), 1509 ν(C=C), 1385 ν(N–O),1259 ν(C–N), 809
ρr (H2O), 634 ρw (H2O).

3.3. X-ray Crystallography

The experimental measurements [49–54] for the complexes 1 and 2 are provided in the
Supplementary Materials. Crystal data of complexes 1 and 2 are presented in Table S1.

3.4. Hirshfeld Analysis

The Crystal Explorer Ver. 3.1 program [55] was used to perform this analysis.

3.5. Antimicrobial Assay

Using the procedure mentioned in Method S1 (Supplementary Data), the antibacterial
activities [56] of DMPT and complexes 1 and 2 toward several microbes were determined.

4. Conclusions

Using analytical and spectroscopic techniques, the structures of the recently syn-
thesized Ni(II) complexes were determined as [Ni(DMPT)(H2O)3](NO3)2.3H2O (1) and
[Ni(DMPT)(H2O)3](NO3)2.H2O (2). The structures of complexes 1 and 2 were very similar
regarding the coordination sphere and counter anions, but differ only in the number of the
crystal water molecules. The inner spheres of both complexes comprised a hexa-coordinated
Ni(II) ion with one DMPT and three water molecules with a distorted octahedral coor-
dination environment, while the outer sphere composed of two nitrate counter ions in
addition to three crystal water molecules in complex 1 compared to only one crystallized
water molecule in complex 2. The DMPT ligand acts as a neutral tridentate NNN-chelate
via three Ni–N coordination interactions. The supramolecular structures of 1 and 2 were
described on the basis of a Hirshfeld analysis along side an X-ray single-crystal diffraction.
The Hirshfeld surfaces around each entity in both complexes have been computed. The
hydrogenic H . . . H and the polar O . . . H interactions are the most dominant. Additionally,
the presence of short C6...O9 (3.108 Å) and C8...O6 (3.208 Å) contacts in complexes 1 and 2,
respectively, revealed the presence of anion–π stacking interactions. The organic ligands
have no antimicrobial activity against the studied microbes at the applied concentration.
In contrast, the Ni(II) complex 1 showed antimicrobial activity against Bacillus subtilis and
Escherichia coli.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11050222/s1, X-Ray structure determinations; Table
S1. Crystal Data; Evaluation of antimicrobial activity [56]; Figure S1. FTIR spectra of complexes 1
and 2 compared to the free ligand DMPT; Figure S2. The 2D fingerprint plots of the major contacts
around the water moieties (E4, E5, E6 in complex 1 and E4‘ in complex 2).
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3. Grivani, G.; Ghavami, A.; Kučeráková, M.; Dušek, M.; Khalaji, A.D. Synthesis, characterization, crystal structure determination,

thermal study and catalytic activity of a new oxidovanadium Schiff base complex. J. Mol. Struct. 2014, 1076, 326–332. [CrossRef]
4. Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.-R. Multidentate unsymmetrically-substituted Schiff bases

and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev. 2018, 357,
144–172. [CrossRef]

5. Ghaffari, A.; Behzad, M.; Pooyan, M.; Rudbari, H.A.; Bruno, G. Crystal structures and catalytic performance of three new methoxy
substituted salen type nickel (II) Schiff base complexes derived from meso-1, 2-diphenyl-1, 2-ethylenediamine. J. Mol. Struct.
2014, 1063, 1–7. [CrossRef]

6. Li, L.-J.; Yang, L.-K.; Chen, Z.-K.; Huang, Y.-Y.; Fu, B.; Du, J.-L. Synthesis and characterization of multifunctional Schiff base
and Cu(II) complex: Degradation of organic dyes and an optical property investigation. Inorg. Chem. Commun. 2014, 50, 62–64.
[CrossRef]

7. Fan, H.-T.; Liu, J.-X.; Sui, D.-P.; Yao, H.; Yan, F.; Sun, T. Use of polymer-bound Schiff base as a new liquid binding agent of diffusive
gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 2013, 260, 762–769. [CrossRef]

8. Masuya, A.; Igarashi, C.; Kanesato, M.; Hoshino, H.; Iki, N. One-pot synthesis and structural characterization of a Tb(III)
coordination polymer based on a tripodal Schiff base ligand adopting an exo-bridging coordination mode. Polyhedron 2015, 85,
76–82. [CrossRef]

9. Neelakantan, M.; Esakkiammal, M.; Mariappan, S.; Dharmaraja, J.; Jeyakumar, T. Synthesis, Characterization and Biocidal
Activities of Some Schiff Base Metal Complexes. Indian J. Pharm. Sci. 2010, 72, 216. [CrossRef]

10. Patil, A.R.; Donde, K.J.; Raut, S.S.; Patil, V.R.; Lokhande, R.S. Synthesis, characterization and biological activity of mixed ligand
Co(II) complexes of schiff base 2-amino-4-nitrophenol-n-salicylidene with some amino acids. J. Chem. Pharm. Res. 2012, 4,
1413–1425.

11. Salehi, M.; Rahimifar, F.; Kubicki, M.; Asadi, A. Structural, spectroscopic, electrochemical and antibacterial studies of some new
nickel (II) Schiff base complexes. Inorg. Chim. Acta 2016, 443, 28–35. [CrossRef]

12. Chandra, S. Ruchi Synthesis, spectroscopic characterization, molecular modeling and antimicrobial activities of Mn(II), Co(II),
Ni(II), Cu(II) complexes containing the tetradentate aza Schiff base ligand. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013,
103, 338–348. [CrossRef]

13. Bharti, S.; Choudhary, M.; Mohan, B.; Rawat, S.; Sharma, S.; Ahmad, K. Syntheses, characterization, superoxide dismutase, an-
timicrobial, crystal structure and molecular studies of copper (II) and nickel (II) complexes with 2-((E)-(2, 4-dibromophenylimino)
methyl)-4-bromophenol as Schiff base ligand. J. Mol. Struct. 2017, 1149, 846–861. [CrossRef]

14. Layek, S.; Agrahari, B.; Tarafdar, A.; Kumari, C.; Ganguly, R.; Pathak, D.D. Synthesis, spectroscopic and single crystal X-ray
studies on three new mononuclear Ni(II) pincer type complexes: DFT calculations and their antimicrobial activities. J. Mol. Struct.
2017, 1141, 428–435. [CrossRef]

15. Chandra, S.; Agrawal, S. Spectroscopic characterization of Lanthanoid derived from a hexadentate macrocyclic ligand: Study on
antifungal capacity of complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 124, 564–570. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/inorganics11050222/s1
https://www.mdpi.com/article/10.3390/inorganics11050222/s1
https://doi.org/10.1002/chem.200901943
https://www.ncbi.nlm.nih.gov/pubmed/19876976
https://doi.org/10.1016/j.molstruc.2014.07.073
https://doi.org/10.1016/j.ccr.2017.11.030
https://doi.org/10.1016/j.molstruc.2014.01.052
https://doi.org/10.1016/j.inoche.2014.10.020
https://doi.org/10.1016/j.jhazmat.2013.05.049
https://doi.org/10.1016/j.poly.2014.08.033
https://doi.org/10.4103/0250-474X.65015
https://doi.org/10.1016/j.ica.2015.12.016
https://doi.org/10.1016/j.saa.2012.10.065
https://doi.org/10.1016/j.molstruc.2017.07.101
https://doi.org/10.1016/j.molstruc.2017.03.114
https://doi.org/10.1016/j.saa.2014.01.042
https://www.ncbi.nlm.nih.gov/pubmed/24508895


Inorganics 2023, 11, 222 16 of 17

16. Kumar, S.; Devi, J.; Dubey, A.; Kumar, D.; Jindal, D.K.; Asija, S.; Sharma, A. Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff
base ligands: Synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies. Res. Chem. Intermed.
2023, 49, 939–965. [CrossRef]

17. Tyagi, M.; Chandra, S.; Akhtar, J.; Chand, D. Modern spectroscopic technique in the characterization of biosensitive macrocyclic
Schiff base ligand and its complexes: Inhibitory activity against plantpathogenic fungi. Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 2014, 118, 1056–1061. [CrossRef]

18. Sathiyaraj, S.; Sampath, K.; Butcher, R.J.; Pallepogu, R.; Jayabalakrishnan, C. Designing, structural elucidation, comparison of
DNA binding, cleavage, radical scavenging activity and anticancer activity of copper (I) complex with 5-dimethyl-2-phenyl-4-
[(pyridin-2-ylmethylene)-amino]-1, 2-dihydro-pyrazol-3-one Schiff base ligand. Europ. J. Med. Chem. 2013, 64, 81–89. [CrossRef]

19. Khan, S.; Ibrahim, M.M.; Alhumaydhi, F.A.; Alqahtani, A.; Alshamrani, M.; Alruwaili, A.S.; Hassanian, A.A.; Khan, S. Recent
advances and therapeutic journey of Schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A
review. Anti-Cancer Agents Med. Chem. 2022, 22, 3086–3096. [CrossRef]

20. Odularu, A.T. Manganese Schiff base complexes, crystallographic studies, anticancer activities, and molecular docking. J. Chem.
2022, 2022, 7062912. [CrossRef]

21. Chen, G.J.; Qiao, X.; Qiao, P.Q.; Xu, G.J.; Xu, J.Y.; Tian, J.L.; Gu, W.; Liu, X.; Yan, S.P. Synthesis, DNA binding, photo-induced DNA
cleavage, cytotoxicity and apoptosis studies of copper (II) complexes. J. Inorg. Biochem. 2011, 105, 119–126. [CrossRef] [PubMed]

22. Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Mohamed, A.A. Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-
phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Some Phyto- or Human Pathogens. Int. J. Mol.
Sci. 2022, 23, 2110. [CrossRef] [PubMed]

23. Angelusiu, M.V.; Barbuceanu, S.-F.; Draghici, C.; Almajan, G.L. New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based
ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation. Eur. J. Med. Chem. 2010, 45, 2055–2062.
[CrossRef] [PubMed]

24. Wang, Q.; Yang, Z.-Y.; Qi, G.-F.; Qin, D.-D. Crystal structures, DNA-binding studies and antioxidant activities of the Ln(III)
complexes with 7-methoxychromone-3-carbaldehyde-isonicotinoyl hydrazone. Biometals 2009, 22, 927–940. [CrossRef]

25. Aslan, H.G.; Özcan, S.; Karacan, N. Synthesis, characterization and antimicrobial activity of salicylaldehyde benzenesulfonylhy-
drazone (Hsalbsmh) and its nickel (II), palladium (II), platinum (II), copper (II), cobalt (II) complexes. Inorg. Chem. Commun. 2011,
14, 1550–1553. [CrossRef]

26. Naskar, S.; Naskar, S.; Butcher, R.J.; Chattopadhyay, S.K. Synthesis, X-ray crystal structures and spectroscopic properties of two
Ni(II) complexes of pyridoxal Schiff’s bases with diamines: Importance of steric factor in stabilization of water helices in the
lattices of metal complex. Inorg. Chim. Acta 2010, 363, 404–411. [CrossRef]

27. Xu, Z.H.; Zhang, X.W.; Zhang, W.Q.; Gao, Y.H.; Zeng, Z.Z. Synthesis, characterization, DNA interaction and antibacterial activities
of two tetranuclear cobalt (II) and nickel (II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone. Inorg. Chem.
Commun. 2011, 14, 1569–1573. [CrossRef]

28. Kratz, F.; Beyer, U.; Roth, T.; Tarasova, N.; Collery, P.; Lechenault, F.; Cazabat, A.; Schumacher, P.; Unger, C.; Falken, U. Transferrin
Conjugates of Doxorubicin: Synthesis, Characterization, Cellular Uptake, and in Vitro Efficacy. J. Pharm. Sci. 1998, 87, 338–346.
[CrossRef]

29. Sobha, S.; Mahalakshmi, R.; Raman, N. Studies on DNA binding behaviour of biologically active transition metal complexes of
new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2012, 92, 175–183. [CrossRef]

30. Hazari, N.; Melvin, P.R.; Beromi, M.M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 2017,
1, 0025. [CrossRef]

31. Kar, P.; Yoshida, M.; Shigeta, Y.; Usui, A.; Kobayashi, A.; Minamidate, T.; Matsunaga, N.; Kato, M. Methanol-Triggered
Vapochromism Coupled with Solid-State Spin Switching in a Nickel(II)-Quinonoid Complex. Angew. Chem. 2017, 129, 2385–2389.
[CrossRef]

32. Emam, S.M.; AbouEl-Enein, S.A.; Emara, E.M. Spectroscopic studies and thermal decomposition for (bis-((E)-2-(4-
ethylphenylimino)-1,2-diphenylethanone) Schiff base and its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes prepared
by direct and template reactions. J. Therm. Anal. Calorim. 2017, 127, 1611–1630. [CrossRef]
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