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and collaboration. Special thanks are due to Panu Lahti and Matthew Romney for their
valuable comments on my thesis. I am grateful to my family and friends for their support.
Finally, my deepest thanks to my partner Jenni for all the love and encouragement.
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Abstract
The main subject of this dissertation is Sobolev extension domains, specially with focus

on their boundaries. A fundamental question is to find necessary and sufficient conditions
for classifying domains on which each function may be extended to the whole space while
preserving inclusion to a given function space. On Euclidean plane, in particular in the sim-
ply connected case, characterizations are known for all values of the integralibity of Sobolev
functions. In the present work we establish dimension estimates for the boundary and for
special subsets of the boundary. On the plane our approach is based on the known character-
izations. In higher dimensions the results are proven directly in terms of the operator norm
of the extension operator. We also establish a necessary condition for extendability in higher
dimensions. The dissertation consists of four articles.

In article [A] we study the size of the boundary of bounded planar simply connected
Sobolev extension domains. We show that the boundary is weakly mean porous and establish
an upper-bound for the Hausdorff dimension of the boundary. We provide examples showing
the sharpness of the result.

In articles [B] and [C] we study the size of the set of two-sided points of Sobolev and BV
extension domains. In the simple case, two-sided points are the set of points of where the
boundary of the domain intersects itself. In article [B] we establish an upper-bound for the
Hausdorff dimension of the set of two-sided points in the case that the domain is bounded
simply connected planar extension domain. We provide examples showing the sharpness of
the result, and prove equivalence of different definitions of two-sided points. In article [C]
we extend the result of [B] for arbitrary Sobolev and BV extension domains in terms of the
operator norm of the extension operator. We construct examples that show the sharpness of
some of the results and give lower-bounds for others.

In article [D], we give a necessary condition for a domain to have a bounded extension
operator between homogeneous Sobolev spaces for 1 < p < 2 in higher dimensions. We
establish a quantitative version of the necessity direction of an earlier characterization in
terms of the operator norm, and construct a topologically simple extension domain having a
boundary with large Hausdorff dimension.



Tiivistelmä
Tämän väitöksen pääaiheena on Sobolev-laajennusalueet, erityisesti niiden reunojen omi-

naisuudet. Perustavanlaatuinen kysymys on löytää riittäviä ja välttämättömiä ehtoja, jotka
luokittelevat alueet, joissa jokainen funktio voidaan jatkaa koko avaruudelle, siten että se kuu-
luu edelleen samaan funktioavaruuteen. Euklidisessa tasosossa, erityisesti yhdesti yhteinäisen
alueen tapauksessa, tunnemme karakterisaatioita kaikille Sobolev-funktioiden integroituvuu-
den arvoille. Tässä työssä annamme ylärajoja laajennusalueiden reunan sekä erityisten reunan
osajoukojen dimensioille. Tasossa sovellamme tunnettuja karakterisaatioita. Korkeammissa
ulottuvuuksissa tulokset ovat muotoiltu laajennusoperaattorin normin avulla. Todistamme
myös uuden välttämättömän ehdon laajennettavuudelle korkeamassa ulottuvuudessa. Väitös-
kirja koostuu neljästä artikkelista.

Artikkelissa [A] tutkimme tason yhdesti yhtenäisen rajoitetun laajennusalueen reunan
kokoa. Osoitamme, että reuna on heikosti keskiarvohuokoinen sekä annamme ylärajan reunan
Hausdorff-dimensiolle.

Artikkeleissa [B] ja [C] tarkastelemme laajennusalueen kaksipuolisten pisteiden joukon
kokoa. Yksinkertaisessa tapauksessa kaksipuoliset pisteet muodostuvat reunapisteistä, joissa
laajennusalueen reuna leikkaa itseään. Artikkelissa [B] annamme ylärajan kaksipuoleisten
pisteiden joukon Hausdorff-dimensiolle tapauksessa, jossa tason alue on rajoitettu ja yhdesti
yhtenäinen. Esitämme esimerkkejä jotka näyttävät, että tulos on paras mahdollinen, sekä
todistamme erilaisten kaksipuolisten pisteiden määritelmien yhtäpitävyyden. Artikkelissa [C]
laajennamme artikkelin [B] tuloksen koskemaan yleisiä Sobolev- ja BV-laajennusalueita laa-
jennusoperaattorin normin avulla muotoiltuna. Esitämme esimerkkejä, jotka näyttävät, että
osa tuloksista on tarkkoja toisten antaessa alarajat parhaille mahdollisille tuloksille.

Artikkelissa [D] annamme uuden välttämättömän ehdon lajennusoperaattorin olemassaololle
korkeammissa ulottuvuuksissa integroituvuuden ollessa 1 ja 2 välillä. Todistamme kvan-
titatiivisen version aiemman karakterisaation välttämättömyys suunnasta operaattorinormin
avulla lausuttuna. Annamme myös esimerkin topologisesti yksinkertaisesta laajennusalueesta,
jonka reunan dimensio on suuri.
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1. Introduction

An extension domain Ω ⊂ X is a domain such that there exists an extension operator
E : Z(Ω) →W (X) between (semi)normed function spaces Z andW . By an extension operator
we mean an operator that is bounded: for all u ∈ Z(Ω)

∥Eu∥W (X) ≤ C∥u∥Z(Ω),

where C is independent of u, and Eu|Ω = u for all u ∈ Z(Ω). Extendability of functions on a
domain depends strongly on the geometric properties of the domain, as well as the topological
properties such as connectivity.

In this dissertation we always have Z = W , and X is either R2 or Rn, n ≥ 2. The spaces
we consider are the first order Sobolev spaces W 1,p(Ω), L1,p(Ω) and the space of functions
of bounded variation BV (Ω). The Sobolev space W 1,p(Ω), for p ∈ [1,∞], is the set of all
functions u ∈ Lp(Ω) whose weak derivatives are in Lp(Ω). We endow W 1,p(Ω) with the norm

∥u∥W 1,p(Ω) = ∥u∥Lp(Ω) + ∥∇u∥Lp(Ω).

For the (homogeneous) space L1,p(Ω) we assume only u ∈ L1
loc(Ω) and endow L1,p(Ω) with

the seminorm ∥u∥L1,p(Ω) = ∥∇u∥Lp(Ω). The space of functions of bounded variation BV (Ω)

is the space of L1(Ω) functions with finite bounded total variation

∥Du∥(Ω) = sup

{∫

Ω
udiv(v) dx : v ∈ C∞

0 (Ω;Rn), |v| ≤ 1

}
.

The space BV (Ω) is endowed with the norm ∥u∥BV (Ω) = ∥u∥L1(Ω) + ∥Du∥(Ω).
Extension of functions has a long history going back at least to Whitney [34, 35]. For

Sobolev functions, Calderón [3] proved that Lipschitz domains Ω ⊂ Rn are Sobolev W k,p-
extension domains for all k ∈ N and 1 < p <∞. Stein [30] extended the result to the missing
cases p = 1,∞. In his seminal paper, Jones [9] defined the much larger class of (ϵ, δ)-domains
and proved that they are W k,p-extension domains for all k ∈ N, p ∈ [1,∞]. Bugaro and
Maz’ya [2] gave a first characterizing result, for the function space BVl(Ω) = {u ∈ L1

loc(Ω) :
∥Du∥(Ω) < ∞}, in terms of sets of finite perimeter: A domain Ω ⊂ R2 is a BVl-extension
domain if and only if there is a constant C > 0 such that whenever E ⊂ Ω is a Borel set of
finite perimeter in Ω

τΩ(E) := inf{ P (F,R2 \ Ω) : F ∩ Ω = E} ≤ CP (E,Ω),

where P (F,R2 \Ω) := inf{P (F,U) : U is open and R2 \Ω ⊂ U}. We remind the reader that a
measurable set E ⊂ Rn is called a set of finite perimeter in Ω if χE ∈ BVl(Ω). The perimeter
of E in Ω is defined as P (E,Ω) := ∥DχE∥(Ω). We return to sets of finite perimeter in article
[D] of this dissertation. For more recent results on extendability see Section 1.3.

The structure of the introduction is as follows. In Section 1 we give the definitions and
introduce the tools needed in the rest of the introduction and in the articles of the dissertation.
In Section 2 we look at the concepts of porosity and how they relate to dimension. We also
present the results of article [A] where we give an upper bound for Hausdorff dimension of the
boundary of a simply connected planar Sobolev extension domain. In Section 3 we study the
set of two-sided points of Sobolev extension domains, which is the subject of articles [B] and
[C]. Finally, in Section 4 we present a higher dimensional necessary condition for extendability
proved in article [D].
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1.1. Properties of domains using curves. Geometric conditions characterizing Sobolev
extension are often represented by different types of curve conditions. A bounded domain
Ω ⊂ Rn is called J-John if there exists a point x0 ∈ Ω and a constant J > 0 so that given
z ∈ Ω there exists curve parametrized by arc length γ ⊂ Ω joining z with x0 so that

dist (γ(t), ∂Ω) ≥ Jt.

Another often seen class of domains is that of quasiconvex domains. A domain Ω ⊂ Rn is
called c-quasiconvex if there exists c > 0 so that for each x, y ∈ Ω there exists a curve γ ⊂ Ω
connecting x, y such that

ℓ(γ) ≤ c|x− y|.
Domains satisfying a similar condition where ℓ(γ) is replaced by diam (γ) are called c-bounded
turning. Obviously a c-quasiconvex domain is c-BT. For properties of John, quasiconvex and
related domains we refer the reader to [23, 20, 7, 32] and the references therein.

Many other types of domains have been studied in relation with Sobolev extension do-
mains. Apart from the ones mentioned above let us mention a few. There are the so-called
cone condition domains which are closely related to Lipschitz domains, QED-domains [11],
quasicircle domains [8], slice property domains [1], (ϵ, δ) or locally uniform and uniform do-
mains [9], α-subhyperbolic domains [5, 19, 1, 26, 14, 27], and so on. Results based on the last
property mentioned are discussed in the next subsection, as it turns out that it is the correct
condition for characterizing Sobolev extension domains in the plane.

1.2. Characterizations of extensions. By now the planar case of Sobolev extension do-
mains is well understood. From the work of Gol’dstein, Latfullin and Vodop’yanov [33], it
follows that a bounded simply connected domain Ω ⊂ R2 is an L1,2-extension domain if and
only if ∂Ω is a quasicircle. By quasicircle we mean the boundary of a domain Ω ⊂ R2 that
is an image of unit disk under a global quasiconformal homeomorphism. Notice that by [8]
a bounded domain is a W 1,p-extension domain if and only if it is an L1,p-extension domain
for 1 < p < ∞. More generally Jones [9] proved that in the bounded finitely connected case
W 1,2-extendability is equivalent to Ω being a uniform domain or equivalently that the bound-
ary of Ω consists of a finite number of points and quasicircles. In [26] Shvartsman proved the
following result:

Theorem 1.1 (Shvartsman). Let p ∈ (2,∞) and let Ω ⊂ R2 be a finitely connected bounded
domain. Then Ω is a Sobolev W 1,p-extension domain if and only if for some C > 0 the
following condition is satisfied: for every x, y ∈ Ω there exists a rectifiable curve γ ⊂ Ω
joining x to y such that ∫

γ
dist (z, ∂Ω)

1
1−p ds(z) ≤ C∥x− y∥

p−2
p−1 . (1.1)

In the simply connected case this is generalized by Shvartsman and Zobin in [27] to hold
for Lk,p-extension domains for every 2 < p <∞ and k ∈ N.

Koskela, Rajala and Zhang [14] characterized the bounded simply connected case for 1 <
p < 2 : a bounded simply connected Ω ⊂ R2 is a Sobolev W 1,p-extension domain if and
only if there exists a constant C > 1 such that for every z1, z2 ∈ R2 \ Ω there exists a curve
γ ⊂ R2 \ Ω connecting z1 and z2 and satisfying

∫

γ
dist (z, ∂Ω)1−p ds(z) ≤ C∥z1 − z2∥2−p. (1.2)
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In [15] the same authors gave the following characterization for W 1,1-extension domains in
the planar bounded simply connected case: Ω ⊂ R2 is W 1,1-extension domain if and only if
there is C > 0 so that for every x, y ∈ Ωc there exists curve γ ⊂ Ωc connecting x and y with

ℓ(γ) ≤ C|x− y|, and H1(γ ∩ ∂Ω) = 0.

In the case of p = ∞ for an arbitrary domain Ω ⊂ Rn, Ω is a W 1,∞-extension domain if and
only if Ω is uniformly locally quasiconvex [6]. For results for higher order spaces W k,∞(Ω)
see [38]. Koskela, Miranda and Shanmugalingam [13] proved that simply a connected planar
domain Ω is a BV -extension domain if and only if Ωc is quasiconvex. For earlier results see
[22, 11, 8, 16, 1, 12].

1.3. Measure density condition and cuspidal domains. In many proofs we start from
weaker geometric information on the domain given in measure theoretic terms. In particular,
Haj lasz, Koskela and Tuominen [6] proved that for all p ∈ [1,∞) and all k ∈ N any W k,p-
extension domain is a regular set or n-set, i.e., there exists a constant c > 0 such that for all
x ∈ Ω and all 0 < r ≤ 1

|Ω ∩B(x, r)| ≥ crn. (1.3)

This is often called the measure density condition. The corresponding result for BV-extension
domains was proved by Garćıa-Bravo and Rajala [4]. Note that (1.3) combined with the
Lebesgue differentiation theorem implies that necessarily |∂Ω| = 0. In the case p = ∞ we do
not have measure density, since there are obvious examples of quasiconvex domains that do
not satisfy the measure density condition, as discussed below.

A typical example of a domain in which we cannot extend all Sobolev functions is one
having a cusp on the boundary. Domains with external cusps are not Sobolev extension
domains for p ∈ [1,∞) as they do not satisfy the measure density condition. In the plane
inward cusps are not allowed on the boundary. For 1 < p < 2 this follows from (1.2), and for
p ∈ [2,∞] from the fact that the domain is quasiconvex [11, Theorem 3.1]. However for p = 1
and for BV functions there may be inward cusps as seen by the characterizations.

Heuristically, we could have a function f with small derivative on Ω but have |f(x)−f(y)| ≫
|x − y| for points which are close together yet separated by the cusp. This would force any
extension to have very large derivative between x and y. Contrary to the situation in the
plane, in higher dimensions points on different sides of a cusp may be connected without
going around the vertex of the cusp. Thus we do not have the problem described by the
heuristic. Similarly, we see that there are (ϵ, δ)-domains with inward cusps in Rn for n ≥ 3.
When extending from W k,p(Ω) to W k,q(Rn), q < p, the above results do not usually hold.
For properties of domains with cusps and about (p, q)-extensions we refer reader to thesis [37]
and references therein; see also [21, 18]. In what follows we will always have p = q.

2. Size of the boundary of Sobolev extension domains

In article [A] of the dissertation we give a sharp estimate for the Hausdorff dimension of the
boundary of a simply connected planar Sobolev extension domain. This is done for p ∈ (1, 2)
in terms of the constant of the characterizing curve condition (1.2). With (1.2) we show
that the complement of the boundary has enough holes to satisfy the weak mean porosity
introduced by Nieminen in [24]. For the relations between different concepts of porosity and
dimension see the elegant survey [25].



8

2.1. Definitions of porosity. A set A ⊂ Rn is called porous if

por(A) := inf
x∈A

lim inf
r↘0

por(A, x, r) > 0,

where

por(A, x, r) := sup{α ≥ 0 : B(y, αr) ⊂ B(x, r) \A for some y ∈ Rn}.
A porous set has the dimension upper bound

dimH(A) ≤ n− c por(A)n, (2.1)

where c is a positive constant depending on n (see [31, proof of Theorem 2]). The estimate
(2.1) is asymptotically sharp when por(A) → 0 ([17], [10, Remark 4.2]).

Koskela and Rohde [17] gave a weaker definition of porosity they called mean porosity. The
difference with the definition of porosity is that, instead of requiring balls in the complement
of the set for all scales, mean porosity requires balls to be evenly distributed in averaged sense.
Nieminen generalized this further with a notion of porosity he called weak mean porosity. The
difference is that there are many holes in sparser set of scales. This is the notion of porosity
we use, so let us give the precise definition.

Let E ⊂ Rn be a compact set. Let α : (0, 1) → (0, 1) be a continuous function such that
α(t)/t is increasing in t, and let λ : Z+ → R be a function. Let D be a disjoint collection of
open cubes in Rn \ E. Define

χD
k (x) =

{
1 if there exist at least λ(k) cubes Q ∈ D with Q ⊂ Ak(x) and ℓ(Q) ≥ α(2−k),

0 otherwise,

where Ak(x) := B(x, 2−k) \B(x, 2−k−1). Let

SD
j (x) =

j∑

k=1

χD
k (x).

We say that E is weakly mean porous with parameters (α, λ) if there exist a collection D and
j0 ∈ Z+ such that

SD
j (x)

j
>

1

2

for all x ∈ E and for all j ≥ j0.
Let ε ∈ (0, 1) and c > 0 be a fixed constant. Using weak mean porosity with parameters

λ(k) = cε−1 and α(t) = εt

we get as a direct corollary to [24] Theorem 3.3 the following: there exists C(n, c) > 0 such
that any weakly mean porous set E ⊂ Rn with parameters (α, λ) as defined above satisfies

dimH(E) ≤ n− C(n, c)εn−1. (2.2)

2.2. Porosity of the boundary of a Sobolev extension domain. Straightforward argu-
ment shows that for the boundary of a planar simply connected Sobolev extension domain
we have por(A) ≥ c

C where c > 0 is universal constant and C is the constant in (1.2). With
(2.1) we get the upper bound

dimH(∂Ω) ≤ 2 − c′

C2
. (2.3)

As a main result of [A] we show the following:
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Theorem 2.1 ([A], Theorem 3.2). There exist universal constants C ′, C ′′ > 0 so that the
following holds. Let 1 < p < 2 and let Ω ⊂ R2 be a bounded simply connected W 1,p-extension
domain. Let C be the constant from the curve condition (1.2). Then ∂Ω is weakly mean

porous with parameters (α, λ), where λ(k) = C ′C and α(t) = C′′
C t.

Combining Theorem 2.1 with (2.2) we get a better bound than (2.3)

Theorem 2.2 ([A], Theorem 1.1). There exists a universal constant M > 0 such that for
every bounded simply connected domain Ω ⊂ R2 satisfying the curve condition (1.2) with some
C ∈ (1,∞) the following holds:

dimH(∂Ω) ≤ 2 − M

C
.

Let us remark that the proof of Theorem 2.1 holds true (with necessary modifications)
for the assumptions with which curve condition (1.1) of Shvartsman holds. In other words,
the conclusion of Theorem 2.1 holds when 2 < p < ∞ and Ω ⊂ R2 a bounded and finitely
connection W 1,p-extension domain. Let us sketch the differences in the proof in this case. In
the case of Theorem 1.1 the curve condition (1.1) holds in the interior of the domain, and Ω
is bounded and finitely connected. To tackle the finite connectedness, denote the maximal
connected components of ∂Ω by Cj , j = 1, . . . ,m. Trivially we may assume that #Cj > 1 for
all j. Then, fix the smallest positive integer k0 such that

2−k0 < min(min{diam (Cj) : j ∈ {1, . . . ,m}},min{ dist (Ci, Cj) : i ̸= j}).

Replacing ∂Ω with Cj , the proof of Theorem 3.2 holds true in Case 1 (of the proof of Theorem
3.2 in [A]). In Case 2 of the proof, instead of the original selection, we choose points wi ∈
B(yi, ε2

−k+5) ∩ Ω. Since x ∈ Cj and Cj \ B(x, 2−k) ̸= ∅ we have that any curve connecting

wi to wi+1 in Ω must exit B(wi, 2
−k−3). The rest of the proof then holds with obvious

modifications.
In [A] we show that that there exists a constant M ′ > 0 so that for every p ∈ (1, 2) and

C ∈ ( M ′
2−p ,∞) there exists a Jordan domain (the Koch snowflake) ΩC ∈ R2 satisfying (1.2)

with

dimH(∂ΩC) ≥ 2 − M ′

(2 − p)C
.

This shows that the theorem is sharp modulo the factor 1
2−p .

Koskela and Rohde [17] showed that the boundary of a J-John domain Ω ∈ R2 has the
dimension bound dimH(∂Ω) ≤ 2− cJ for some c > 0. In [A] we show that this bound is sharp
and that using the result of Koskela and Rohde with mean porosity (defined also in [17]) it
is not possible to get better bound than

dimH(∂Ω) ≤ 2 − M

((2 − p)C)1/(2−p)
.

We mention some results in the cases not covered by our results. Let Ω ⊂ R2 be a bounded
simply connected W 1,p-extension domain with the extension operator E. For p = 1, the
complement of Ω is C(∥E∥)-quasiconvex [15] and in particular C(∥E∥)-bounded turning.
Then by [23, Theorem 4.5] Ω is J(C)-John.

In the case of p = ∞, Ω is 2∥E∥-bounded turning [36] and thus Ωc is J(2∥E∥)-John.
Therefore with the estimate given by Koskela and Rohde [17] the boundary of Ω has the
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Hausdorff dimension upper-bound

dimH(∂Ω) ≤ 2 − CJ.

For p = 2, Ω is a k(∥E∥)-quasidisk and a well-known theorem of Smirnov [28] states that
the Hausdorff dimension of a k-quasicircle is at most 1 + k2.

Our method for proving dimension estimates for the boundary does not work in the cases
p ∈ {1, 2,∞}. It would be interesting to know the sharp behaviour in terms of the constant
in the various characterizations (also in these cases).

For a general extension domain we do not have a non-trivial dimension estimate. Take
Ω = [0, 1]n \Cn with C a Cantor set of dimH(C) = 1 but Lebesgue measure zero. Then Ω is a
Sobolev W 1,p extension domain, but dimH(∂Ω) = n. In the article [D] of the dissertation we
show that such dimension bounds for the boundary do not exist for higher dimensions even
when the domain is topologically nice:

Theorem 2.3 ([D], Theorem 1.2). There exists a domain Ω ⊂ R3 such that Ω = h(B(0, 1))
for a homeomorphism h : R3 → R3, dimH(∂Ω) = 3 and Ω is a W 1,p-extension domain for all
p ∈ [1,∞].

3. Two-sided points of an extension domains

In articles [B] and [C] of the dissertation we study the boundary behaviour of Sobolev
extension domains. Even in the planar simply connected case the extension domain is not
necessarily Jordan. Rather, in some cases the boundary of an extension domain may intersect
itself. To quantify this property we give an upper bound for the Hausdorff dimension for the
set of two-sided points of the boundary. In [B] this is done in the plane in terms of the
constant for the characterizing curve condition (1.2), and in [C] in terms of operator norm
∥E∥ of the extension operator for n ≥ 2.

Definition 3.1 ([B], Two-sided points of the boundary of a domain). Let Ω ⊂ Rn be a
domain. A point x ∈ ∂Ω is called two-sided, if there exists R > 0 such that for all r ∈ (0, R)
there exist connected components Ω1

r and Ω2
r of Ω ∩ B(x, r) that are nested: Ωi

r ⊂ Ωi
s for

0 < r < s < R and i ∈ {1, 2}. The set of two-sided points is denoted TΩ.

A slightly different definition of two-sided points was used in [29]. We note that in [B] all
the domains we consider are John in which case the two definitions are equivalent. In general
our definition implies that of [29] but the converse does not hold. For a counterexample
consider a domain where the two-sided point is approached “from one side” by a Topologist’s
comb on all scales. We note however, that in [C] either of the definitions may be used.

ForW 1,p-extension domains the existence of two-sided points is dependent on the parameter
p. For n ≤ p < ∞ there are no two-sided points which is readily seen from the fact that
extension domains in this case are quasiconvex. For p = ∞ quasiconvexity is known for
finitely connected planar domains. In the case of 1 < p < n we prove

Theorem 3.2 ([C] Theorem 1.2). Let 1 < p < n and let Ω ⊂ Rn be a Sobolev L1,p-extension
domain. Then there exists a constant C(n, p) > 0 so that

dimH(TΩ) ≤ n− p− C(n, p)

∥E∥n log(∥E∥)
.
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In the other direction, we construct a class of extension domains with explicit (Withney
type) extension operators such that

dimH(TΩ) ≥ n− p− C1(n, p)

∥Eλ∥
, (3.1)

where TΩ = Cλ, λ ∈ (0, 12), is a Cantor set and ∥Eλ∥ → ∞ as dimH(Cλ) → n− p.
Theorem 3.2 together with the set of examples bounds the asymptotic behaviour for the

dimension of the two-sided points in terms of the norm of the extension operator between
n− p− C/∥E∥ and n− p− C/(∥E∥n log(∥E∥)).

In the planar simply connected case we have the characterizing curve condition (1.2). We
then get the following

Theorem 3.3 ([B], Theorem 1.2). Let 1 < p < 2 and Ω ⊂ R2 a simply connected, bounded
Sobolev W 1,p-extension domain. Let T be the set of two-sided points of Ω. Then

dimH(T) ≤ 2 − p+ log2

(
1 − 2p−1 − 1

25−2pC

)
≤ 2 − p− M1(p)

C
, (3.2)

where M1(p) = 2p−1−1
25−2p log 2

and C ≥ 1 is the constant in (1.2).

Let us sketch the ideas in the proofs of Theorem 3.2 and Theorem 3.3 while highlighting the
similarities and differences. In both cases the fundamental idea is to cover the set of two-sided
points in a geometric progression of scales with disjoint balls. As a starting point we prove
a lemma which gives a sufficient condition for an upper bound of Hausdorff dimension of a
set F . The lemma says that, for any 0 < s < dimH(F ) there exists a ball B with radius λi,
0 < λ < 1, for which all maximal λj-nets in B ∩ F , j > i, contain at least Nj ≥ λ−js points.
In both cases we calculate (here c = c(n, p) is a constant and the meaning of variables A and
K is described below)

cK ≥
∞∑

j=0

(λA)jNj ≥
∞∑

j=0

(λA−s)j =
1

1 − λA−s

which gives

dimH(F ) ≤ A− log(1 − c/K)

log(λ)
.

The upper bound K for the series is obtained by estimating the series above with a suitable
integral, which is then estimated with a constant given by the corresponding condition which
holds for Sobolev extension domains. The difference in the estimates comes from the fact that
in the plane we have the subhyperbolic distance condition (1.2), while in the general case we
do not have such a condition. There, instead, we construct a test function which has values
zero and one in components on opposite sides of the two-sided points and estimate the series
above with L1,p-norm of the test function.

In the planar case we have K = C from (1.2) and A = 2−p, and we can choose λ = 1/2. In

the case n ≥ 2 we have K = ∥E∥n, A = n− p and λ ≤ c1(n, p)∥E∥c2(n,p). In the planar case
we can choose λ = 1/2, which stems from the fact that we have better control over relative
positions of the covering balls in different scales. In the n-dimensional case we cannot control
the relative positions of the balls between different scales, and therefore we make the parts of
the sets contributing to the L1,p-norm disjoint by removing smaller balls for each scale. We
then estimate the sum from above with the L1,p-norm of the test function. The constant K is
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obtained by the measure density condition for Sobolev extension domains, which guarantees
that in each ball there is enough measure for the sets where the test function has values 0 and
1, giving a lower bound for the L1,p-norm in terms of λ. In order to have the lower bound
we need to choose λ small enough. The selection of λ leads to the factor log(∥E∥) in the
theorem.

We show the sharpness of Theorem 3.3 by constructing a collection of domains (see also
[19]) such that the following holds.

Theorem 3.4 ([B], Theorem 1.4). Let 1 < p < 2. There exist constantsM2 > 0 and C(p) ≥ 1
such that for each C > C(p) there exists Sobolev W 1,p-extension domain Ωp,C satisfying (1.2)
with C, and

dimH(TΩp,C
) ≥ 2 − p− M2

C
. (3.3)

For W 1,1- and BV -extension domains we do not obtain better results in the plane in com-
parison to higher dimensions. The dimension estimates in this case do not have a dependence
on the operator norm.

Theorem 3.5 ([C] Theorem 1.2). Let Ω ⊂ Rn be a Sobolev L1,1-extension domain. Then
Hn−1(TΩ) = 0.

This is also sharp. Sharpness can be shown by replacing the slit in Ω = (−1, 1)2 \([0, 1]×0)
with a larger set such that the modified domain Ω′ has two-sided points containing a Cantor
set with dimH(C) = 1 and H1(C) = 0. Then it is enough to show that Ω′ × (−1, 1)n−2 is an
extension domain.

As W 1,1-extension domains are always BV-extension domains, it is natural to extend the
result to BV -extension domains.

Theorem 3.6 ([C], Theorem 1.3). Let n ≥ 2 and let Ω ⊂ Rn be a BV -extension domain.
Then TΩ has σ-finite (n− 1)-dimensional Hausdorff measure.

The estimate in Theorem 3.6 is also sharp, as seen by the the slit disk, which is a BV-
extension domain since its complement is quasiconvex.

4. Necessary condition for extension in Euclidean spaces

As discussed in the beginning of this introduction, in the planar case the search for geomet-
ric characterizations of Sobolev extension domains is quite complete. The same is not true in
the case n > 2. By Jones [9], uniform domains are W 1,p-extension domains for all 1 ≤ p ≤ ∞.
This however does not cover all extension domains. See for example [D, Theorem 1.2]. It
would be interesting to see how the planar geometric characterizations generalize to higher
dimension. In the article [D] we looked into the condition (1.2) and obtained the following
version in higher dimensions.

Theorem 4.1 ([D], Theorem 1.1). Let Ω ⊂ Rn be an L1,p-extension domain for some 1 <

p < 2. Then for any ε > 0 and any measurable set A ⊂ Ω there exists a set Ã ⊂ Rn with

A = Ã ∩ Ω and∫

∂M Ã
dist (z, ∂Ω)1−p dHn−1(z) ≤ C(n, p, ε)∥E∥n+p+ε

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z),

(4.1)
where ∥E∥ denotes the norm of the L1,p-extension operator, and the constant C(n, p, ε) de-
pends only on n, p and ε.
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Note that in higher dimensions a natural replacement for γ in (1.2) is the measure theoretic
boundary

∂MA = {x ∈ Rn : D(A, x) > 0 D(Rn \A, x) > 0},
where

D(A, x) := lim sup
r↘0

|A ∩B(x, r)|
|B(x, r)| .

The reason for the range of exponents is that if p ≥ 2, then (4.1) is always satisfied by

the choice Ã = A since the integral on the right-hand side is infinite in the nontrivial cases.
Thus, for p ≥ 2 the conclusion of Theorem 4.1 provides no information.

With the objective of finding characterizations in mind, one may ask whether the condition
is also sufficient. The answer to this is negative. To see this, take an arbitrary domain Ω ⊂ Rn

and modify Ω into a new domain Ω′ = Ω \⋃∞
i=1B(xi, ri), where the balls B(xi, ri) ⊂ Ω are

selected in a such way that B(xi, 2ri) \B(xi, ri) ⊂ Ω′ (so that we have an extension operator
L1,p(Ω′) → L1,p(Ω)), but that B(xi, ri) accumulate densely enough to the boundary so that

for any A ⊂ Ω′ we can take Ã to be empty outside Ω′ due to the right-hand side of (4.1)

being infinite for any A for which we would not be able to take Ã = A when considering (4.1)
with respect to Ω. Thus condition (4.1) gives us no information on Ω′ as it holds regardless
of Ω and thus Ω′ being an extension domain or not.

Let us now sketch the proof of Theorem 4.1. First, to get better control of the extended set
we show that it is enough, instead of A, to consider a union of Whitney cubes of the domain
which intersect A in a large proportion of the cube. We denote this set by A′. The extended

set Ã is then defined as A ∪ A0 where A0 is defined as a union of Whitney cubes Q̃ of the

complementary domain where Q̃ is included into the extension A0 if the part where scaled

cube cQ̃ intersects A′ is larger than the part where it intersects Ω \ A′. To be able to apply
the extension operator later, we pass from the indicator of A′ to a Sobolev function u via a
Whitney smoothing operator. By the isoperimetric inequality and properties of the Whitney
smoothing operator we obtain an upper bound for the L1,p-norm of u by the right-hand side
of (4.1).

As a second step we prove that
∫

∂MA0\Ω
dist (z, ∂Ω)1−p dHn−1(z)

is bounded above by C(n, p, ϵ)∥E∥n+p+ϵ∥∇u∥pLp(Ω). Here we are motivated by the ideas of

the proof of the necessity direction of (1.2) (see [14, Lemma 3.6]). By the choice of A0, the

definition of u and the measure density condition of Ω, we get that 9cQ̃ ∩ Ω contains sets of
large enough measure where u ≤ 0 and u ≥ 1, so that we get

(∫

9cQ̃
|∇Eu(x)|s dx

)p/s

≥ (C(n, p)∥E∥−nℓ(Q̃)n−p)p/s,

for s ∈ (1, p). Since

ℓ(Q̃)n−p ≈ Hn−1(∂Q̃)ℓ(Q̃)1−p ≈
∫

∂Q̃
dist (z, ∂Ω)1−p dHn−1(z),

by using the Hardy-Littlewood maximal operator, which is bounded when p/s > 1, we get
the second step in the proof.
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What remains to show is that the set where ∂M Ã intersects the boundary of the domain

is negligible. More exactly, we show that Hn−p(∂M Ã ∩ ∂Ω) = 0. The idea of the proof is as

follows. We cover F ⊂ ∂Ω, where D(Ã,Rn, x) is neither 0 or 1 for x ∈ F , by a nice cover
F ⊂ ∪B (which is refined by the Vitali covering theorem). Then, using the Sobolev function
u defined as a Whitney smoothing of χA′ , in a similar way as in the previous part of the proof,
we obtain an upper bound for Hn−p(F ) in terms of the norm of L1,p(∪B). Finally, letting
the radii of the covering go to zero and by the fact that |F | ≤ |∂Ω| = 0, which is again given
by the measure density condition, we obtain the claim.

As an application of Theorem 4.1 we give a quantitative version in terms of the operator
norm of the necessary direction of the curve condition (1.2).

Theorem 4.2 ([D], Theorem 1.3). Let Ω ⊂ R2 a bounded simply connected L1,p-extension
domain for some 1 < p < 2. Then for every ε > 0 there exists a constant C(p, ε) > 0 such
that for all z1, z2 ∈ ∂Ω there exists a curve γ ⊂ R2 \ Ω joining z1 and z2 so that

∫

γ
dist 1−p(z, ∂Ω) ds(z) ≤ C(p, ε)∥E∥

4+4p−p2

2−p
+ε|z1 − z2|2−p. (4.2)

We note that the combination of the example giving (3.1) and Theorem 3.3 show that C
in (1.2) has to grow at least linearly as a function of ∥E∥, and the combination of Theorem
4.2 with Theorem 3.3 gives a version of Theorem 3.2 in the case n = 2. However the bound
obtained this way is worse than that of Theorem 3.2.
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1 Introduction
A set is porous if it has holes arbitrarily close to any point, and those holes have diameter comparable to the
distance to the point. It is easy to see that porous sets in ℝd have zero Lebesgue measure. If the porosity of
the set A ⊂ ℝd is stronger, in the sense that

por(A) := inf
x∈A

lim inf
r↘0

por(A, x, r) > 0,
where we denote the maximal size of a hole of the set A ⊂ ℝd at x ∈ ℝd and of scale r > 0 by

por(A, x, r) := sup{α ≥ 0 : there exists y ∈ ℝd such that B(y, αr) ⊂ B(x, r) \ A},
then the Hausdorff dimension of A is strictly less than d. It was shown byMattila [8] that as por(A) gets closer
to its maximal value 1

2 , the dimension upper-bound for A goes to d − 1. The sharp asymptotic behavior when
por(A)→ 1

2 was then established by Salli in [11]. Later, several variants of porosity have been considered. For
example, in a variant of porosity called k-porosity, one looks at k holes in orthogonal directions, insteadof just
one, see [3, 4]. For it, the dimension upper-bound approaches d − k as the porosity goes to its maximal value.

In the present paper we are interested in the asymptotic behavior of the dimension upper-bound when
por(A)→ 0. In this case, for the usual porosity defined above we have the sharp upper-bound

dimH(A) ≤ d − c por(A)d ,
for some constant c depending on the dimension, see for instance [7]. However, sometimeswe are in a setting
where the porosity condition is not satisfied in the exact form as stated above, but almost. One such instance
is the studyof growth conditions on thehyperbolicmetric,which imply the existence of holes only in aportion
of the scales, but not all scales. Motivated by this, Koskela and Rohde introduced a version of porosity called
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mean porosity and proved a sharp dimension upper bound for mean porous sets [6] (see also the estimates
by Beliaev and Smirnov [1] that deal also with a generalization of Salli’s result).

Our aim in this paper is to show sharp dimension bounds for boundaries of Sobolev extension domains.
For obtaining these, even the mean porosity of Koskela and Rohde is not flexible enough, because we might
have many holes in a more sparse set of scales. Therefore, we use a variant of mean porosity introduced by
Nieminen in [10], called weak mean porosity (see Section 2.1 for the definition).

Recall that a domain Ω ⊂ ℝd is called a Sobolev W1,p-extension domain if there exists a constant
C ∈ (1,∞) so that for every f ∈W1,p(Ω) there exists F ∈W1,p(ℝd) so that F|Ω = f and ‖F‖W1,p(ℝd) ≤ C‖f‖W1,p(Ω).
When p > 1, the operator f → F can always be assumed to be linear [2]. In [12] and [5], bounded simply-
connected Sobolev extension domains Ω ⊂ ℝ2 were characterized by a curve condition, which for the range
1 < p < 2 is the following: There exists a constant C > 1 such that for every z1, z2 ∈ ℝ2 \ Ω there exists a curve
γ ⊂ ℝ2 \ Ω connecting z1 and z2 and satisfying∫

γ
dist(z, ∂Ω)1−p ds(z) ≤ C‖z1 − z2‖2−p . (1.1)

We give an upper bound on the Hausdorff dimension dimH of the boundary of Ω in terms of the constant C
in (1.1). This is done by showing the weak mean porosity of the boundary in Theorem 3.2 and by combining
it with the dimension estimate proven by Nieminen (Theorem 2.1). The result we obtain is the following.

Theorem 1.1. There exists a universal constant M > 0 such that for every bounded simply-connected domain
Ω ⊂ ℝ2 satisfying the curve condition (1.1) with some C ∈ (1,∞) the following holds:

dimH(∂Ω) ≤ 2 − MC .

In Section 4, we show that Theorem 1.1 is sharp in the sense that there exists another constantM > 0 so that
for every p ∈ (1, 2) and C ∈ ( M

2−p ,∞) there exists a Jordan domain ΩC ⊂ ℝ2 satisfying (1.1) with
dimH(∂ΩC) ≥ 2 − M(2 − p)C .

Notice, however, the factor 1
2−p difference between Theorem 1.1 and the examples. The curve condition

(1.1) implies that ℝ2 \ Ω is quasi-convex. Consequently, the domain Ω is a J-John domain [9], meaning
that there exists a constant J > 0 and a point x0 ∈ Ω so that for every x ∈ Ω there exists a unit speed curve
γ : [0, ℓ(γ)]→ Ω such that γ(0) = x, γ(ℓ(γ)) = x0, and

dist(γ(t), ∂Ω) ≥ Jt for all t ∈ [0, ℓ(γ)]. (1.2)

Koskela and Rohde showed that the boundary of a J-John domain Ω ⊂ ℝ2 has the dimension bound

dimH(∂Ω) ≤ 2 − cJ, (1.3)

for some constant c > 0. In Section 4 we show that the bound (1.3) is also sharp.
In Section 4 we also show that from the curve condition, via the John condition and the mean porosity of

Koskela and Rohde [6], it is not possible to get a better bound than

dimH(∂Ω) ≤ 2 − M((2 − p)C)1/(2−p) .
A reason why the John condition does not give the sharper bound is that using it we consider holes only in
the domain (or its complement), whereas by going from the curve condition directly to weak mean porosity,
we can use holes on both sides of the boundary.

2 Preliminaries
Let us start by introducing some notation and preliminary results. By a cube in ℝd we mean an open cube
whose sides are parallel to the axes in ℝd. The side-length of a cube Q ⊂ ℝd will be denoted by ℓ(Q). By
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Figure 1: In our proof, we will use a double dyadic decomposition similar to the one used in [6]. A domain is first decomposed
into its Whitney cubes. Then each Whitney cube is decomposed into its own Whitney cubes, as illustrated here only for the
largest cube in the first decomposition.

a dyadic cube Q we mean that it is of the form

Q = (i12−k , (i1 + 1)2−k) × (i22−k , (i2 + 1)2−k) × ⋅ ⋅ ⋅ × (id2−k , (id + 1)2−k)
for some k, i1, i2, . . . , id ∈ ℤ. We denote the set of dyadic cubes in ℝd by Dd. Given an open nonempty set
U ⊂ ℝd that is not the wholeℝd, we denote byWU theWhitney decomposition of U, defined as

WU = {Q ∈ W̃U : if Q ∈ W̃U with Q ∩ Q ̸= 0, then Q ⊂ Q},
where

W̃U = {Q ∈ Dd : if Q ∈ Dd with Q ∩ Q ̸= 0 and ℓ(Q) = ℓ(Q), then Q ⊂ U}.
See Figure 1 for an illustration of the Whitney decomposition.

It readily follows thatWU is a collection of pairwise disjoint dyadic cubes Q so that

U = ⋃
Q∈WU

Q.

Moreover, the following condition is satisfied by each Q ∈WU :ℓ(Q) ≤ dist(Q, ∂U) ≤ 4diam(Q) = 4√d ℓ(Q). (2.1)

Moreover, if Q, Q ∈WU with Q ∩ Q ̸= 0, then
1
2 ≤ ℓ(Q)ℓ(Q) ≤ 2. (2.2)

In the specific case where we take the Whitney decomposition of a dyadic cube Q ∈ Dd, we have

WQ = {Q ⊂ Q, : Q dyadic cube with ℓ(Q) = dist(Q, ∂Q)}.
See again Figure 1 for an illustration. It is then easy to check that

#{Q ∈WQ : ℓ(Q) = 2−jℓ(Q)} ≥ 2(j−1)(d−1) holds for every j ≥ 2. (2.3)

Given any ball B ⊂ ℝd and any r > 0, we denote by rB the ball having the same center as B and the radius r
times that of B. The ball of radius r > 0, centered in x ∈ ℝd is denoted by B(x, r), while by B(E, r) we denote
the r-neighborhood of a given set E ⊂ ℝd.

Recall that the Hausdorff dimension of a set E ⊂ ℝd is defined by
dimH(E) := inf{s > 0 : Hs(E) = 0} = sup{s > 0 : Hs(E) = +∞},

whereHs stands for s-dimensional Hausdorff measure inℝd.
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2.1 Weakly mean porous sets

In the present subsection, we recall the concept of weak mean porosity introduced in [10]. The weak mean
porosity is a variant of mean porosity introduced in [6].

Let E ⊂ ℝd be a compact set. Let α : ]0, 1[→ ]0, 1[ be a continuous function such that α(t)/t is increasing
in t, and let λ : ℤ+ → ℝ be a function. LetD be a disjointed collection of open cubes inℝd \ E. Define

χDk (x) = {{{1, if there exist at least λ(k) cubes Q ∈ D with Q ⊂ Ak(x) and ℓ(Q) ≥ α(2−k),
0, otherwise,

where Ak(x) := B(x, 2−k) \ B(x, 2−k−1). Let
SDj (x) = j∑

k=1
χDk (x).

We say that E is weakly mean porous with parameters (α, λ) if there exist a collectionD and j0 ∈ ℤ+ such that
SDj (x)

j > 12
for all x ∈ E and for all j ≥ j0.

We will apply weak mean porosity in the case

λ(k) = cε−1 and α(t) = εt, (2.4)

for some ε ∈ ]0, 1[ and a fixed constant c > 0. In this case, we have the following dimension estimate as a
direct corollary of [10, Theorem 3.3].

Theorem 2.1. There exists a constant C(d, c) > 0 such that any weakly mean porous set E ⊂ ℝd with parame-
ters (α, λ) defined in (2.4) satisfies

dimH(E) ≤ d − C(d, c)εd−1.
3 Weak mean porosity of the boundary of Sobolev extension
domains

In this sectionwewill show that the boundary of a planar bounded simply-connectedW1,p-extension domain
(with 1 < p < 2) is weakly mean porous with the parameters depending on the constant C appearing in the
curve condition (3.1) that characterizesW1,p-extension domains (cf. Theorem 3.1 below).

The following result has been proven in [5]:

Theorem 3.1. Let1 < p < 2and letΩ ⊂ ℝ2 be a bounded simply-connected domain. ThenΩ is aW1,p-extension
domain if and only if there exists a constant C = C(Ω, p) > 0 such that every z1, z2 ∈ ℝ2 \ Ω can be joined by
a rectifiable curve γ ∈ ℝ2 \ Ω satisfying∫

γ
dist(z, ∂Ω)1−p ds(z) ≤ C‖z1 − z2‖2−p . (3.1)

Now we are ready to state our main result.

Theorem 3.2. There exist universal constants C, C > 0 so that the following holds. Let 1 < p < 2 and let
Ω ⊂ ℝ2 be a bounded simply-connected W1,p-extension domain. Let C be the constant from the curve condi-
tion (3.1). Then ∂Ω is weakly mean porous with parameters (α, λ), where λ(k) = CC and α(t) = C

C t.

In the proof of Theorem 3.2, we use the following result to relate the length of the curve γ in (3.1) to the
diameter of cubes it intersects.
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Lemma 3.3. Let 1 < p < 2, let Ω ⊂ ℝ2 be a bounded simply-connected W1,p-extension domain and let two
points z1, z2 ∈ ℝ2 \ Ω be given. Then there exists a curve γ connecting z1 and z2 inℝ2 \ Ω that minimizes∫

γ
dist(z, ∂Ω)1−p ds(z) (3.2)

and satisfies
H1(γ ∩ Q) ≤ 10 ℓ(Q)

for every Q ∈Wℝ2\Ω.
Proof. The existence of a minimizer for (3.2) is standard and has been established in the proof of [5, Lemma
2.17]. Let Q ∈Wℝ2\Ω. Define t1 = min{t : γ(t) ∈ Q} and t2 = max{t : γ(t) ∈ Q}. Then, by (2.1) and the mini-
mality of γ,

H1(γ ∩ Q)(5√2ℓ(Q))1−p ≤ H1(γ ∩ Q)(dist(Q, ∂Ω) + diam(Q))1−p≤ ∫
γ∩Q

dist(z, ∂Ω)1−p ds(z)
≤ ∫
[γ(t1),γ(t2)]

dist(z, ∂Ω)1−p ds(z)≤ diam(Q)dist(Q, ∂Ω)1−p ≤ √2ℓ(Q)2−p .
Thus, the claim holds.

Proof of Theorem 3.2. Without loss of generality, we may assume that C ≥ 1. Let ε := 2−m ∈ (2−15C , 2−14C ] with
m ∈ ℤ. We start by constructing the collectionD of cubes in ℝ2 \ ∂Ω. We decompose every Q ∈Wℝ2\∂Ω into
WQ and enumerateWQ = {Qi(Q)}i∈ℕ. We will show that the family

D := {Qi(Q) : i ∈ ℕ, Q ∈Wℝ2\∂Ω}
gives the claimed weak mean porosity of ∂Ω with the functions λ(k) = ε−12−10 and α(t) = εt.

Let k0 be the smallest positive integer for which 2−k0 < diam(Ω). It suffices to show that χDk (x) = 1 for all
k ≥ k0 and x ∈ ∂Ω. Let us fix k ∈ ℕ, with k ≥ k0, and x ∈ ∂Ω.
Case 1. First, let us suppose that the following condition holds true:

For every r ∈ [23 2−k , 56 2−k] there exists y ∈ ∂B(x, r) so that B(y, ε2−k+5) ∩ ∂Ω = 0. (3.3)

Consider the set of radii
R := {r : r = 232−k + ε2−k+6i ≤ 56 2−k , i ∈ ℕ}.

For each r ∈ R we select a point yr ∈ ∂B(x, r) so that B(yr , ε2−k+5) ∩ ∂Ω = 0, as given by (3.3). Now, given any
r ∈ R, the set B(yr , ε2−k+5) ⊂ ℝ2 \ ∂Ω contains a dyadic square Q of sidelength ε2−k+2 with distance at least
ε2−k+2 to ∂Ω. Thus, ∂B(x, r) ∩ Q ̸= 0 for some Q ∈Wℝ2\∂Ω with ℓ(Q) ≥ ε2−k+2. Since x ∈ ∂Ω, diam(Ω) > 2−k
and Ω is bounded and simply-connected, we have

∂B(x, r) ∩ ∂Ω ̸= 0,
and so also arbitrarily small cubes inWℝ2\∂Ω intersect ∂B(x, r). Consequently, taking into account (2.2) there
exists Qr ∈Wℝ2\∂Ω with ℓ(Qr) = ε2−k+2 and

∂B(x, r) ∩ Qr ̸= 0.
By the bound (2.3), there existsQr ∈WQr ⊂ Dwith ℓ(Qr) = ε2−k. Then the collection of cubes {Qr : r ∈ R} ⊂ D
is disjointed. A simple calculation shows that we have #R ≥ 2−9

ε . Thus, χDk (x) = 1.
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Case 2. If condition (3.3) is violated, we argue as follows: Pick r ∈ (23 2−k , 56 2−k) such that for every
y ∈ ∂B(x, r) it holds that B(y, ε2−k+5) ∩ ∂Ω ̸= 0. Let {yi}mi=1 be a maximal ε2−k+5-separated net of points in
∂B(x, r) enumerated in a clockwise order around x. Since B(yi , ε2−k+5) ∩ ∂Ω ̸= 0, we can select, for each i
a point wi ∈ B(yi , ε2−k+5) \ Ω. Let us denote wm+1 = w1. We claim that for some i ∈ {1, . . . ,m},

any curve connecting wi to wi+1 inℝ2 \ Ω must exit B(wi , 2−k−3). (3.4)

Suppose this is not the case. Then we can connect wi to wi+1 by a curve σi in B(wi , 2−k−3) \ Ω. The concate-
nation σ of σ1, . . . , σm is then contained in the annulus

B(x, r + 2−k−3) \ B(x, r − 2−k−3) ⊂ B(x, 2−k) \ B(x, 2−k−1)
and has winding number −1 around x. However, since x ∈ ∂Ω and Ω \ B(x, 2−k) ̸= 0, the curve σ then discon-
nects Ω, which is impossible. Thus, we have the existence of i for which (3.4) holds.

Let γ : [0, 1]→ ℝ2 \ Ω be a curve connecting z1 := wi and z2 := wi+1 which minimizes the integral (3.2).
Call A := {z ∈ γ : dist(z, ∂Ω) > 5√2ε2−k+2} and note that (3.1) yields(5√2ε2−k+2)1−p H1(γ \ A) ≤ ∫

γ\A

dist(z, ∂Ω)1−p ds(z)
≤ ∫

γ
dist(z, ∂Ω)1−p ds(z) ≤ C(ε2−k+7)2−p .

Consequently, by the choice of ε, we have that

H1(γ \ A) ≤ 25(2−p)+2(5√2)p−1εC2−k ≤ 210εC2−k ≤ 2−k−4
and hence

H1(A ∩ B(wi , 2−k−3)) = H1(γ ∩ B(wi , 2−k−3)) −H1(γ \ A) ≥ 2−k−3 − 2−k−4 ≥ 2−k−4. (3.5)

Now, notice that by the choice of the radius r, the point wi and the factor ε, we get

dist(ℝ2 \ Ak(x), B(wi , 2−k−3)) ≥ 162−k − ε2−k+5 − 2−k−3 ≥ 2−k−6. (3.6)

Write
Q := {Q ∈Wℝ2\Ω : ℓ(Q) ≥ ε2−k+2 and Q ∩ B(wi , 2−k−3) ̸= 0}.

Suppose first that there exists Q ∈ Qwith ℓ(Q) ≥ 2−k−7. Then, by the definition of the decompositionWQ and
by (3.6) a square Q ∈WQ with ℓ(Q) = ε2−k that is closest to wi satisfies

dist(ℝ2 \ Ak(x), Q) ≥ dist(ℝ2 \ Ak(x), B(wi , 2−k−3)) −√2dist(Q, ∂Q) − diam(Q)≥ 2−k−6 −√2ℓ(Q) −√2ℓ(Q) ≥ 2−k−6 − ε2−k+2.
Therefore, by counting the consecutive squares of side-length ε2−k inWQ starting from this square, we obtain
the estimate

#{Q ∈ D : Q ∈WQ , Q ⊂ Ak(x) and ℓ(Q) = ε2−k} ≥ 2−k−7ε2−k
≥ 2−7ε

and thus, χDk (x) = 1.
Suppose then that for all Q ∈ Q we have ℓ(Q) ≤ 2−k−7. Then, by (3.6) for all Q ∈ Q we have Q ⊂ Ak(x).

Notice that by (2.1),A is contained in the closure of the union ofWhitney cubesQ ∈Wℝ2\Ω with ℓ(Q) ≥ ε2−k+2
and that H1-almost every point in ℝ2 is contained in the closure of at most two Q ∈ Q. Therefore, by using
Lemma 3.3 and (3.5), we get∑

Q∈Q
ℓ(Q) ≥ 1

10 ∑Q∈QH1(γ ∩ Q) ≥ 1
20H

1(A ∩ B(wi , 2−k−3)) ≥ 2−k−9.
So, by (2.3)

#{Q ∈ D : Q ⊂ Ak(x) and ℓ(Q) = ε2−k} ≥ ∑
Q∈Q

ℓ(Q)
ε2−k+1

≥ ε−12−10.
Again, χDk (x) = 1, concluding the proof.
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4 Examples
In this section we show the sharpness of our estimate between the constant in the curve condition and the
dimension of the boundary. We also show that the dimension estimate via the John condition is necessarily
less sharp. Let us write the conclusions from the two sets of examples we consider in the following theorem.
The examples we consider are well known and the optimal John constants folklore. We still provide here full
details for the convenience of the reader.

Theorem 4.1. The following sets exist.
(1) For every J ∈ (0, 12 ) there exists a Jordan J-John domain Ω ⊂ ℝ2 for which

dimH(∂Ω) ≥ 2 − 2
log(2) J.

(2) For every p ∈ (1, 2) and C ∈ ( 722−p ,∞) there exists a Jordan domain Ω ⊂ ℝ2 satisfying the curve condition
(3.1) with the constant C and exponent p, for which

dimH(∂Ω) ≥ 2 − 24
log(2)(2 − p)C .

(3) There exists a universal constant c > 0 so that for every p ∈ (1, 2) and C ∈ (c,∞) there exists a Jordan
domain Ω ⊂ ℝ2 satisfying the curve condition (3.1) with the constant C, but failing to be a J-John domain
for any

J ≥ c((2 − p)C) 1
p−2 .

Recall that the quasi-convexity of the complement of a domain Ω ⊂ ℝ2, and thus in particular the curve
condition (3.1), implies that Ω is John, [9]. However, the curve condition (3.1) does not imply that the com-
plementary open set ℝ2 \ Ω would be even connected. In particular, the complementary domain does not
have to be a John domain in the Jordan domain case.

In the rest of the section we prove the existence of the sets mentioned in Theorem 4.1.

4.1 Cones

The first set of examples shows claim (3) in Theorem 4.1. We consider a fixed square and on top of it attach a
conewhosewidth is the parameter ε that we vary in order to change the constants in the curve condition (3.1)
and the John condition.

Example 4.2. Let ε ∈ (0, 12 ) and 1 < p < 2. Let
Ω := {(x1, x2) : |x1| < 1, |x2 + 1| < 1} ∪ {(x1, x2) : |x1| < (1 − x2)ε, x2 ≥ 0} ⊂ ℝ2.

Then the following hold:
(i) For z1, z2 ∈ ℝ2 \ Ω the curve condition (3.1) holds with constant C = c

2−p εp−2 with some constant c > 0
independent of ε.

(ii) The set Ω fails to be J-John for any J > ε.
Proof of (i). Notice first that for Ω := Ω ∪ (0, 1) × (0, 1) there exists a constant C > 0 independent of ε so
that Ω satisfies (3.1) with this C. Write zi = (z1i , z2i ). Thus, we may assume that −1 ≤ z11 ≤ 0 ≤ z12 ≤ 1 and
0 ≤ z21, z22 ≤ 1.

Let us definew1 = (z11 + z21 − 1, 1) andw2 = (z12 − z22 + 1, 1).We claim that the concatenation γ of the line-
segments [z1, w1], [w1, w2] and [w2, z2] satisfies the curve conditionwith the claimed constant. See Figure 2
for an illustration of the curve. For the lengths of the line-segments we have the estimates‖wi − zi‖ = √2|z2i − 1| ≤ √2ε |z1i | ≤ √2ε ‖z1 − z2‖
and ‖w1 − w2‖ = |(z11 + z21 − 1) − (z12 − z22 + 1)| ≤ |z21 − 1| + |z22 − 1| + |z11 − z12| ≤ 3ε ‖z1 − z2‖.
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w w

z z

x

γ(t)
Figure 2: The failure of the John condition for J > ε in Example 4.2 is seen by taking the point x near the tip of the cone. Then
every curve γ connecting x to a John center will fail the condition at a point γ(t). The critical case for the curve condition (3.1) is
the case where z1 and z2 are on the opposite sides of the cone. Up to a constant, an optimal way to connect them goes through
the points w1 and w2.

Thus, we get

∫
[zi ,wi]

dist(z, ∂Ω)1−p ds(z) ≤ √2
ε ‖z1−z2‖∫

0

( t√2)1−p dt = 23/2−p2 − p εp−2‖z1 − z2‖2−p
and ∫

[w1 ,w2]

dist(z, ∂Ω)1−p ds(z) ≤ 2 3
ε ‖z1−z2‖∫

0

( t√2)1−p dt = 2(3−p)/232−p2 − p εp−2‖z1 − z2‖2−p .
Combining the above estimates, the claim is proven.

Proof of (ii). Figure 2 shows the idea of the proof. Suppose Ω is a J-John domain with the John center
x0 = (x10, x20) ∈ Ω. For x20 < x2 < 1, consider a John curve γ : [0, ℓ(γ)]→ Ω from (0, x2) to (x10, x20), and let
t ∈ [0, ℓ(γ)] be such that γ(t) ∈ ℝ × {max(0, x20)}. Then

Jt ≤ dist(γ(t), ∂Ω) ≤ εmin(1 − x20, 1) ≤ εmin( 1 − x20
x2 − x20 , 1

x2 − x20 )t ≤ ε 1 − x20x2 − x20 t.
Thus, by letting x2 ↗ 1, we see that J ≤ ε.
4.2 Koch snowflakes

The second set of examples showing claims (1) and (2) in Theorem4.1 is the vonKoch snowflakewith varying
contraction constant λ as the parameter.

Example 4.3. Let us first recall the construction of the von Koch curve K with parameter λ ∈ [13 , 12 ). It is
defined as the attractor of iterated function system {F1, F2, F3, F4}, where F1, . . . , F4 are the similitudemap-
pings

F1x = Sx, F2x = T(λ,0)RθSx, F3x = T( 12 ,h)R−θSx, F4x = T(1−λ,0)Sx.
Here Sx = λx is the scaling by λ, Rτ is the rotation of the plane by the angle τ, the used rotation angle θ here
is defined by

cos θ = 1
2 − λ
λ ,

Ta is the translation Tax = x + a, and h = √λ − 1
4 . Recall that K being the attractor means that it is the unique

nonempty compact set satisfying

K = 4⋃
i=1

Fi(K).
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x

γ

Figure 3: An illustration of the domain Ω bounded by three copies of a von Koch curve K together with the John center x0 and a
John curve γ.

Wedefine our domainΩ to be a snowflake domainwhose boundary consists of three copies of K, see Figure 3.
More precisely, Ω is the bounded component of the setℝ2 \ 3⋃

i=1
Gi(K),

where
G1x = x, G2x = T(1,0)R− 2π3 x, G3x = T( 12 ,− √32 )R 2π

3
x.

Notice that K can also be obtained with an IFS consisting of just two functions. Consequently, the interior
and exterior of the snowflake can be swapped in the arguments below. Since the iterated function system
defining K satisfies the open set condition, the Hausdorff dimension agrees with the similarity dimension,
which gives

dimH(∂Ω) = − log(4)log(λ) ≥ 2 − 4
log(2)(12 − λ).

We claim that the following hold:
(i) The domain Ω is

1
2−λ
λ -John, which is also optimal.

(ii) The domain Ω satisfies the curve condition (3.1) with C = 6λ2p−3
(2−p)( 12−λ)

.

Before proving the claims, let us introduce some additional notation for the Koch snowflake. For a nonnega-
tive integer k, and a word a0a1 . . . ak ∈ {1, 2, 3} × {1, 2, 3, 4}k, we define the composed mapping

Fa0 ...ak := Ga0 ∘ Fa1 ∘ ⋅ ⋅ ⋅ ∘ Fak .
Now, we set Ka0 ...ak := Fa0 ...ak (K). Similarly, by defining L := [0, 1] × {0}, we set La0 ...ak := Fa0 ...ak (L).We also
fix the following notation:

∆a0 ...ak = ch(La0 ...ak2 ∪ La0 ...ak3), Ta0 ...ak = La0 ...ak2 ∩ La0 ...ak3,
where ch(A) denotes the convex hull of set A.
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Proof of (i). Let us first show that Ω cannot be John with a constant better than
1
2−λ
λ . The proof is similar to

the proof of (ii) in Example 4.2. Suppose that Ω is J-John with x0 ∈ Ω the John center. Let k ∈ ℕ be such that
x0 ̸∈ ch(L12a1 ...ak ∪ L13b1 ...bk ) =: ∆,

where aj = 4 and bj = 1 for all 1 ≤ j ≤ k. Notice that the triangle ∆ is similar to ∆1 with both having the same
top vertex T = T1. Let γ be aunit speed curve connecting T to x0 inΩ∪ {T}. Let x ∈ ∂Ω∩ (L12a1 ...ak4∪L13b1 ...bk1)
and t ∈ [0, ℓ(γ)] be such that dist(γ(t), ∂Ω) = ‖γ(t) − x‖ > 0. Then

t
dist(γ(t), ∂Ω) ≥ ‖T − γ(t)‖‖γ(t) − x‖ ≥ λ

1
2 − λ .

Therefore, J ≤ 1
2−λ
λ .

Let us then show that Ω is
1
2−λ
λ -John. Let x0 be the barycenter of Ω, and let x1 ∈ Ω be the point con-

nected to x0 with γ. Figure 3 shows the idea behind the following construction of the John curve γ. In the case
x1 ∈ ∆0 := ch(L1 ∪ L2 ∪ L3) the claim is clear. Assume that x1 ∈ ∆a0 ...ak , k ≥ 0, a0 ∈ {1, 2, 3}, aj ∈ {1, 2, 3, 4},
1 ≤ j ≤ k. Let Pa1 ...ak ∈ Ω be the point on the line bisecting ∆a0 ...ak through Ta0 ...ak such that‖Ta0 ...ak − Pa1 ...ak‖ = λk+12h , where h = √λ − 14 .
Now the line segment [x1, Pa0 ...ak ]has length atmost λk+12h and (1.2) holds for all x ∈ [x1, Pa1 ...ak ]with J = 1

2−λ
λ .

By symmetry and self-similarity, the points Pa0 , Pa0a1 , . . . , Pa0a1 ...ak have the followingproperties (where
a0 ∈ {1, 2, 3} and a1, . . . , ak ∈ {1, 2, 3, 4}): for x = tPa0 ...am + (1 − t)Pa0 ...am+1 , t ∈ [0, 1] and m ≥ 0,ℓ([Pa0 ...am+1 , x]) = t λm+1(1 − λ)2h
and

dist(∂Ω, Pa0 ...am ) ≥ (12 − λ)λm2h ,

which by the construction of Ω gives

dist(∂Ω, x) ≥ (1 − t) (12 − λ)λm+12h + t (12 − λ)λm2h = [(1 − t)λ + t] (12 − λ)λm2h .

Therefore, for all 1 ≤ m ≤ k − 1 and x ∈ [Pa0 ...am+1 , Pa0 ...am ],ℓ(γ|x1→x) = ℓ([x1, Pa0 ...ak ]) + k∑
j=m+2
ℓ([Pa1 ...aj−1 , Pa1 ...aj ]) + ℓ([Pa1 ...am+1 , x])

≤ λk+12h + k∑
j=m+2

λj(1 − λ)
2h + t λm+1(1 − λ)2h= [λ(1 − t) + t] λm+12h≤ λ

1
2 − λdist(∂Ω, x),

where γ|x1→x denotes curve made of the line segments[x1, Pa0 ...ak ], [Pa0 ...ak , Pa1 ...ak−1 ], . . . , [Pa0 ...am+2 , Pa0 ...am+1 ], [Pa0 ...am+1 , x].
So (1.2) holds for all x ∈ γ|x1→Pa1 with J = 1

2−λ
λ and (1.2) still holds (with the same constant) when γ|x1→Pa1 is

extended to x0 with [Pa1 , x0].
Proof of (ii). We will show that any two points z1, z2 ∈ ℝ2 \ Ω can be connected by a curve γ ⊂ ℝ2 \ Ω satis-
fying (3.1) with

C = 9λ3p−7(2 − p)(12 − λ) .
First of all, we may assume without loss of generality that z1, z2 ∈ ∂Ω. Secondly, we may assume that
z1, z2 ∈ K1. We nowdivide the proof into three cases, thembeing Case 1: z1 ∈ K11, z2 ∈ K12, Case 2: z1 ∈ K12,
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pz

pzz

zI

Figure 4: In the proof of the curve condition (3.1) we consider three critical cases. Here, in the zoomed in picture of Case 1, the
points z1 and z2 are connected to points pz1 and pz2 on a line-segment I using the curves constructed in the proof of claim (i).

z2 ∈ K13, and Case 3: z1 ∈ K11, z2 ∈ K13 ∪ K14. Other cases follow then by symmetry, and from self-similarity
by zooming in to the construction. We treat only the case 1 in detail, giving the ideas for the other two.

Case 1: z1 ∈ K11 and z2 ∈ K12. Let us call z1, z2 the orthogonal projections of z1 and z2 on the line-segment

I := T(λ,0)R(π−θ)/2L
(a line-segment in mirroring K11 and K12). We will define points pz1 and pz2 in I, that are connected to z1
and z2 by curves, which we will call γ1 and γ2. We then join the points pz1 and pz2 with a line-segment. See
Figure 4 for an illustration. Let us write {o} := K11 ∩ K12. If z1 = o, we take pz1 = z1. If not, then there exists
k ≥ 1 such that z1 ∈ K11a1 ...ak with ai = 4 for all i < k and ak ̸= 4. We can make a crude estimate‖z1 − z1‖ ≥ (12 − λ)λk+2. (4.1)

Now, by the proof of (i), z1 can be connected to a point pz1 ∈ I by a John curve with John constant
1
2−λ
λ and

length less than λk−1. Combining this with (4.1), we get

∫
γ1

dist(z, ∂Ω)1−p dz ≤ 2 λk−1∫
0

( 12 − λλ t)1−p dt
= 2
2 − p( 12 − λλ )1−p(λk−1)2−p≤ 2
2 − p λ3p−7

1
2 − λ ‖z1 − z1‖2−p ≤ C3 ‖z1 − z2‖2−p .

(4.2)

By symmetry, with the same arguments we also find pz2 and the curve γ2 connecting z2 to pz2 , and get∫
γ2

dist(z, ∂Ω)1−p dz ≤ 2
2 − p λ3p−7

1
2 − λ ‖z1 − z1‖2−p ≤ C3 ‖z1 − z2‖2−p . (4.3)

For the line-segment [pz1 , pz2 ], notice that we have‖pz1 − pz2‖ ≤ ‖z1 − z2‖ + ‖pz1 − z1‖ + ‖pz2 − z2‖ ≤ ‖z1 − z2‖ + 2λk−1≤ ‖z1 − z2‖ + λ−3(12 − λ)−1(‖z1 − z1‖ + ‖z2 − z2‖)≤ 3λ−3(12 − λ)−1‖z1 − z2‖
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and thus ∫
[pz1 ,pz2 ]

dist(z, ∂Ω)1−p dz ≤ ‖pz1−pz2 ‖∫
0

( 12 − λλ t)1−p dt
≤ ( 12 − λλ )1−p 1

2 − p(3λ−3(12 − λ)−1‖z1 − z2‖)2−p≤ 32−p
2 − p λ3p−7

1
2 − λ ‖z1 − z2‖2−p≤ C3 ‖z1 − z2‖2−p .

(4.4)

Combining (4.2), (4.3), and (4.4), we conclude the first case.

Case 2: z1 ∈ K12 and z2 ∈ K13. In this case, we connect z1 and z2 to the unique point p ∈ K12 ∩ K13 by curves
γ1 and γ2. The estimate for γ1 and γ2 are exactly the same as in Case 1.We connect z1 to pz1 with a John curve
and then pz1 to p (instead of z1) with a line-segment.

Case 3: z1 ∈ K11 and z2 ∈ K13 ∪ K14. Similarly as in the second case, we can connect z1 and z2 to the unique
point p ∈ K12 ∩ K13 obtaining the desired estimate also in this case.

Funding: All authors partially supported by the Academy of Finland, project 314789.
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DIMENSION ESTIMATE FOR THE TWO-SIDED POINTS OF

PLANAR SOBOLEV EXTENSION DOMAINS

JYRKI TAKANEN

Abstract. In this paper we give an estimate for the Hausdorff dimension of the set of two-
sided points of the boundary of bounded simply connected Sobolev W 1,p-extension domain
for 1 < p < 2. Sharpness of the estimate is shown by examples. We also prove the equivalence
of different definitions of two-sided points.

1. Introduction

This paper is part of the study of the geometry of the boundary of Sobolev extension
domains in Euclidean spaces. We investigate the size of the set of two-sided points of simply
connected planar Sobolev extension domains. Recall that a domain Ω is a W 1,p-extension
domain if there exists a bounded operator E : W 1,p(Ω) → W 1,p(Rn) with the property that
Eu|Ω = u for each u ∈ W 1,p(Ω). Here, for p ∈ [1,∞], we denote by W 1,p(Ω) the set of all
functions in Lp(Ω) whose first distributional derivatives are in Lp(Ω). The space W 1,p(Ω) is
normed by

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

When p > 1 operator E can be assumed linear [9]. For p = 1 the linearity is known for the
planar bounded simply connected case [14].

Several classes of domains are known to be W 1,p-extension domains. For instance, Lipschitz
domains [3], [21]. Jones [11] introduced a wider class of (ε, δ)-domains and proved that
every (ε, δ)-domain is a W 1,p-extension domain. Notice that the Hausdorff dimension of the
boundary of a Lipschitz domain is n− 1 and the boundary is rectifiable. For an (ε, δ)-domain
the Hausdorff dimension of the boundary may be strictly greater than n− 1 and it may not
be locally rectifiable (for example the Koch snowflake). However, an easy argument shows
that the boundary of an (ε, δ)-domain can not self-intersect.

The case we study in this paper is with Ω ⊂ R2 bounded and simply connected. In this case,
the W 1,p-extendability has been characterized. As we will see, from the characterizations it
follows that the only relevant case for us is with p < 2. Firstly, for p = 2, from the results in
[6], [7], [8], [11], we know that a bounded simply connected domain Ω ⊂ R2 is a W 1,2-extension
domain if and only if Ω is a quasidisk, or equivalently a uniform domain.

For 2 < p <∞ and a finitely connected bounded planar domain Ω, Shvartsman [20] proved
that Ω is a Sobolev W 1,p-extension domain if and only if for some C > 1 the following
condition is satisfied: for every x, y ∈ Ω there exists a rectifiable curve γ ⊂ Ω joining x to y
such that ∫

γ
dist (z, ∂Ω)

1
1−p ds(z) ≤ C‖x− y‖

p−2
p−1 .
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In particular, when 2 ≤ p < ∞, a finitely connected bounded W 1,p-extension domain Ω
is quasiconvex, meaning that there exists a constant C ≥ 1 such that any pair of points in
z1, z2 ∈ Ω can be connected with a rectifiable curve γ ⊂ Ω whose length satisfies `(γ) ≤
C|z1 − z2|. Let us point out that (uniformly locally) quasiconvex domains are exactly the
W 1,∞-extension domains [22], [9].

In paper [13] the case 1 < p < 2 was characterized: a bounded simply connected Ω ⊂ R2

is a Sobolev W 1,p-extension domain if and only if there exists a constant C > 1 such that for
every z1, z2 ∈ R2 \ Ω there exists a curve γ ⊂ R2 \ Ω connecting z1 and z2 and satisfying

∫

γ
dist (z, ∂Ω)1−p ds(z) ≤ C‖z1 − z2‖2−p. (1.1)

The above geometric characterizations give bounds for the size of the boundary of Sobolev
extension domains. The following estimate for the Hausdorff dimension of the boundary for
simply connected W 1,p-extension domain Ω in the case p ∈ (1, 2) was given in [15] :

dimH(∂Ω) ≤ 2− M

C
,

where C is the constant in (1.1) and M > 0 is an universal constant. Recall, that for s > 0,
the s-dimensional Hausdorff measure of a subset A ⊂ Rn is defined by

Hs(A) = lim
δ↓0

Hs
δ(A),

where Hs
δ(A) = inf {∑i diam (Ei)

s : A ⊂ ⋃iEi, diam (Ei) ≤ δ} , and H0 is the counting mea-
sure. The Hausdorff dimension of a set ∅ 6= A ⊂ Rn is then given by

dimH(A) = inf{t ≥ 0 : Ht(A) <∞}.
For notational convenience, we set dimH(∅) = −∞.

In this paper, we are interested in the case 1 < p < 2, when the boundary of Ω may
self-intersect, (for examples see [12, Example 2.5], [4], and Section 4). More accurately,
we study the size of the set of two-sided points. Our motivation is to obtain more concrete
measurements differentiating general simply-connected Sobolev extension domains from (ε, δ)-
domains.

In the literature domains with self-intersecting boundary have been studied in relation to
mixed boundary value problems (see [2], [10], [1]). Note that as an immediate consequence
of the curve condition (1.1) we see that at most one of the boundary parts intersecting any
given two-sided point can have a well-defined normal vector, allowing the Neumann boundary
condition.

Before giving the definition of two-sided points let us briefly mention the cases where p is
not in the interval (1, 2). In the case of 2 ≤ p ≤ ∞, there are no two-sided points which can
be seen from the quasiconvexity. The case p = 1 has been characterized in [14] as a variant of
quasiconvexity of the complement. In this case the dimension of the set of two-sided points
does not depend on the constant in quasiconvexity.

Let us now define what we mean by a two-sided point. Here we give a definition which
generalizes to Rn, but the proof of our main theorem will use an equivalent formulation based
on conformal maps, see Section 2.

Definition 1.1 (Two-sided points of the boundary of a domain). Let Ω ⊂ Rn be a domain.
A point x ∈ ∂Ω is called two-sided, if there exists R > 0 such that for all r ∈ (0, R) there exist
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connected components Ω1
r and Ω2

r of Ω ∩B(x, r) that are nested: Ωi
r ⊂ Ωi

s for 0 < r < s < R
and i ∈ {1, 2}.

We denote by T the two-sided points of Ω. Note that the nestedness condition in Definition
1.1 for the connected components Ωi

r implies that x ∈ ∂Ωi
r. We establish the following

dimension estimate for T for simply connected planar W 1,p-extension domains.

Theorem 1.2. Let 1 < p < 2 and Ω ⊂ R2 a simply connected, bounded Sobolev W 1,p-
extension domain. Let T be the set of two-sided points of Ω. Then

dimH(T) ≤ 2− p+ log2

(
1− 2p−1 − 1

25−2pC

)
≤ 2− p− M1(p)

C
, (1.2)

where M1(p) = 2p−1−1
25−2p log 2

and C ≥ 1 is the constant in (1.1).

Remark 1.3. If p and C are such that the right-hand side in (1.2) is strictly less than 0, then
T = ∅.

We divide the proof Theorem 1.2 in two parts. In Proposition 2.4 we show that T is covered
by countably many curves satisfying (1.1) and in Lemma 3.1 we show that on each such curve
we have the dimension bound (1.2).

In Section 4 we show the sharpness of Theorem 1.2 by proving the following existence of
examples.

Theorem 1.4. Let 1 < p < 2. There exist constants M2 > 0 and C(p) ≥ 1 such that for
each C > C(p) there exists Sobolev W 1,p-extension domain Ωp,C satisfying (1.1) with C, and

dimH(TΩp,C
) ≥ 2− p− M2

C
. (1.3)

2. Equivalent definitions for two-sided points

In this section we give equivalent conditions for the set of two-sided points in the case
that the domain is John. Although the equivalence stated in Theorem 2.1 is of independent
interest, the main motivation for us is Proposition 2.4, where using one of the equivalent
definitions for two-sided points we show the existence of a countable collection of curves
covering T such that each of the curves fulfills a slightly refined version of (1.1).

We note that a bounded simply connected planar domain satisfying the condition (1.1) is
John (this follows from [7, Chapter 6 Theorem 3.5] with [17, Theorem 4.5]). Recall, that Ω is
a J-John domain, if there exists a constant J > 0 and a point x0 ∈ Ω so that for every x ∈ Ω
there exists a unit speed curve γ : [0, `(γ)]→ Ω such that γ(0) = x, γ(`(γ)) = x0, and

dist (γ(t), ∂Ω) ≥ Jt for all t ∈ [0, `(γ)]. (2.1)

We denote the open unit disk of the plane by D. For a bounded simply connected John
domain Ω ⊂ R2, a conformal map f : D → Ω can always be extended continuously to a map
f : D → Ω. This is because a John domain is finitely connected along its boundary [17] and
a conformal map from the unit disk to Ω can be extended continuously onto the closure Ω if
and only if the domain is finitely connected along its boundary [18].

Theorem 2.1. Let Ω ⊂ R2 be a bounded simply connected John domain (especially, if Ω
is a bounded simply connected W 1,p-extension domain for 1 < p < 2). Let f : D → Ω be a
conformal map extended continuously to a function D→ Ω still denoted by f . Define

E = {x ∈ ∂Ω : f−1({x}) disconnects ∂D}
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and
Ẽ = {x ∈ ∂Ω : card (f−1({x})) > 1}.

Then
T = E = Ẽ,

where T is the set of two-sided points according to Definition 1.1.

In the proof of Theorem 2.1 we need the following lemma.

Lemma 2.2. Let Ω ⊂ R2 be a simply connected John domain, let x ∈ ∂Ω, and r ∈
(0, diam (Ω)). Suppose that there exist two disjoint open sets U1, U2 ⊂ Ω ∩ B(x, r) such
that x ∈ ∂U1 ∩ ∂U2 and both of the sets U1 and U2 are unions of connected components of
Ω ∩ B(x, r). Then there exist connected components U ′1 and U ′2 of U1 and U2 respectively,
such that x ∈ ∂U ′1 ∩ ∂U ′2.

Proof. Let us first show that there exists N ∈ N independent of x and r such that

card {Ω̃ : Ω̃ connected component of Ω ∩B(x, r) such that Ω̃ ∩B(x, r/2) 6= ∅} ≤ N. (2.2)

Take M ∈ N components Ω̃i as in (2.2), and choose from each one a point xi ∈ Ω̃i∩B(x, r/2).
Let γi be a John curve connecting xi to a fixed John center x0 of Ω. For each i for which
x0 /∈ Ω̃i, the curve γi must exit B(x, 2r/3). For these i we consider points yi ∈ γi∩S(x, 2r/3),
which then exist for all but maybe one of the indexes i. By the John condition there exists
balls Bi = B(yi, Jr/6) ⊂ Ω̃i. As the balls Bi are disjointed and Bi covers an arc of S(x, 2r/3)
of length at least Jr/3, we have (M − 1)Jr/3 ≤ 4

3πr, hence M − 1 ≤ ( J4π )−1.
Next we show that (2.2) implies the claim of the lemma. Let us enumerate

{Aj}kj=1 := {Ω̃ ⊂ U1 : Ω̃ connected component of Ω ∩B(x, r) such that Ω̃ ∩B(x, r/2) 6= ∅}.
By (2.2) we have k ≤ N . Since U1 consists of connected components of Ω ∩ B(x, r), we

have

U1 ∩B(x, r/2) ⊂
k⋃

j=1

Aj .

Now, because x ∈ ⋃k
j=1Aj =

⋃k
j=1Aj there exists j such that x ∈ Aj . We call this Aj the

set U ′1. Similarly we find U ′2 for U2. �
Notice that Lemma 2.2 does not hold for general simply connected domain Ω, for example,

consider the topologist’s comb.

Proof of Theorem 2.1. We divide the proof into several claims. Showing that

Ẽ ⊂ E ⊂ T ⊂ Ẽ.

Claim 1: Ẽ ⊂ E.
Let z ∈ ∂Ω such that card (f−1({z})) > 1, and A = ∂D \ f−1({z}). Let x1, x2 ∈ f−1({z}).

By [19, Theorem 10.9], the set f−1({z}) has Hausdorff dimension zero. Therefore, we find
points of A from both components of ∂D \ {x1, x2}. Hence A is disconnected in ∂D, and thus
z ∈ E.

Claim 2: T ⊂ Ẽ.
Let z ∈ T. By assumption there exists R > 0 such that for each 0 < r < R there exists

disjoint connected components Ω1
r ,Ω

2
r ⊂ Ω ∩ B(z, r) with the property that Ωi

r ⊂ Ωi
s when

0 < r < s. Towards a contradiction, assume that f−1({z}) is a singleton (w = f−1(z)). By
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continuity of f (up to the boundary) there exists ε > 0 such that f(B(w, ε) ∩ D) ⊂ B(z, r).
Being a continuous image of a connected set f(B(w, ε) ∩ D) is connected. We show that

f−1(Ωj
r) ∩ B(w, ε) 6= ∅ for j = 1, 2 which gives a contradiction with Ωj

r being the disjoint

connected components of B(z, r) ∩ Ω. Let (zji )
∞
i=1 ⊂ Ωj

r be a sequence such that zji → z. By

going to a subsequence, we may assume that (f−1(zji ))
∞
i=1 converges to a point wj ∈ f−1(Ωj

r).
Since f is continuous, f(wj) = z. But then wj = w by the uniqueness of the preimage

of z. Hence, f−1(zji ) → w, meaning that for some i we have f−1(zji ) ∈ B(w, ε) showing

f−1(Ωj
r) ∩ B(w, ε) 6= ∅. Therefore, Ωj

r ∩ f(B(w, ε) ∩ D) 6= ∅, connecting sets Ωj
r. This

completes the proof.

Claim 3: E ⊂ T.
Let z ∈ E. We will show that z ∈ T. We do this by first showing by induction that there

exists i0 ∈ N so that for all i ≥ i0 there exist connected components Ωj
2−i of Ω ∩ B(z, 2−i),

j ∈ {1, 2}, that are nested for fixed j ∈ {1, 2}. At each step of the induction we will have to
make sure that z ∈ ∂Ω1

2−i ∩ ∂Ω2
2−i .

Initial step: Let us show that there exists r > 0 such that B(z, r)∩Ω may be written as
union of two disjointed open sets such that z is contained in the boundary of both sets. First,
since f−1({z}) = ∩r>0f

−1(B(z, r)∩∂Ω), there exists R > 0 such that H = f−1(B(z,R)∩∂Ω)
disconnects ∂D. By the continuity of f , K = f−1(B̄(z,R/2)) is a closed set in the closed
disk D. Let y1, y2 ∈ ∂D \ H such that y1 and y2 are in different connected components of
∂D \ H. Define e = min( dist (y1,K), dist (y2,K))/2. Now K \ B(0, 1 − e) is disconnected
in D. Next we notice that dist (f(B̄(0, 1 − e)), ∂Ω) = R′ > 0. Thus the original claim holds
with the radius r = min(R,R′)/2. Let us now define i0 ∈ N to be the smallest integer for
which 2−i0 ≤ r. Call U1 and U2 the two disjoint open sets for which z ∈ ∂U1 ∩ ∂U2 and
Ω ∩ B(x, 2−i0) = U1 ∪ U2. By Lemma 2.2 we have connected components Ω1

2−i0
⊂ U1 and

Ω2
2−i0
⊂ U2 of Ω ∩B(z, 2−i0) such that z ∈ ∂Ω1

2−i0
∩ ∂Ω2

2−i0
.

Induction step: Assume that for some i ∈ N there exist disjoint connected components
Ω1

2−i and Ω2
2−i of Ω ∩B(z, 2−i) such that z ∈ ∂Ω1

2−i ∩ ∂Ω2
2−i . Let U1 = Ω1

2−i ∩B(z, 2−i−1).

Let us show that U1 is some union of connected components of Ω ∩ B(z, 2−i−1). Let V
be a connected component of U1. It suffices to show that V is a connected component of
Ω ∩ B(z, 2−i−1). Take a connected component V ′ ⊃ V of Ω ∩ B(z, 2−i−1). There exists
connected component W ′ of Ω ∩ B(z, 2−i) such that W ′ ⊃ V ′. Since ∅ 6= V ⊂ W ′ ∩ Ω1

2−i we

have W ′ = Ω1
2−i . Furthermore V ′ ⊂ Ω1

2−i ∩ B(z, 2−i−1) = U1. As V ′ is connected we have
V ′ = V .

Similarly for U2. Now, by Lemma 2.2 we may choose connected components U ′1 ⊂ U1 and
U ′2 ⊂ U2 (of Ω ∩B(z, 2−i−1)) such that z ∈ ∂U ′1 ∩ ∂U ′2.

General r ∈ (0, 2−i0): Let 2−i−1 ≤ r < 2−i. Let Ω1
r be the connected component of

Ω∩B(z, r) containing Ω1
2−i−1 . Since Ω1

2−i is connected component of Ω∩B(z, 2−i) containing

Ω1
2−i−1 , we have Ω1

r ⊂ Ω1
2−i . Let us show that Ω1

r ⊂ Ω1
s for all 0 < r < s. Let 0 < r < s. We

consider two cases: (1) If 2−i−1 ≤ r < s < 2−i the sets Ω1
r and Ω1

s are connected components
of Ω ∩ B(z, r) and Ω ∩ B(z, s), respectively, both containing Ω1

2−i−1 . Since Ω1
r ⊂ Ω ∩ B(z, s)

and Ω1
r is connected we have Ω1

r ⊂ Ω1
s.

(2) If 2−i−1 ≤ r ≤ 2−i ≤ 2−j−1 ≤ s ≤ 2−j sets Ω1
r and Ω1

s are connected components of
Ω∩B(z, r) and Ω∩B(z, s) which contain Ω1

2−i−1 and Ω1
2−j−1 , respectively. Similarly as in (1)

we have Ω1
r ⊂ Ω1

2−i ⊂ · · · ⊂ Ω1
2−j−1 ⊂ Ω1

s. �
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The proof of the following lemma follows closely the proof of [13, Lemma 2.3]. We present
it here for the convenience of the reader and to point out that the condition (1.1) improves
to subcurves without increasing the constant C in (1.1).

Lemma 2.3. Let 1 < p < 2 and let Ω ⊂ R2 be a bounded simply connected domain for
which the following holds: There exists C > 0 such that for each z1, z2 ∈ R2 \ Ω there exists
γ ⊂ R2 \ Ω connecting z1, z2 for which (1.1) holds. Then the following stronger statement
holds: For each pair of points z1, z2 ∈ R2 \ Ω there exists an injective curve γ ⊂ R2 \ Ω
connecting z1 and z2 such that for each subcurve γ|[t1,t2]∫

γ|[t1,t2]
dist (z, ∂Ω)1−p ds(z) ≤ C‖γ(t1)− γ(t2)‖2−p, (2.3)

where C is the constant in the assumption.

Proof. Let z1, z2 ∈ R2 \ Ω, and let γ ⊂ R2 \ Ω be a curve between z1 and z2 for which (1.1)
holds. We then have the trivial estimate

∫

γ
dist (z, ∂Ω)1−p ds(z) ≥

∫ d(z1,∂Ω)+`(γ)

d(z1,∂Ω)
x1−p dx

=
1

2− p((`(γ) + d(z1, ∂Ω))2−p − d(z1, ∂Ω)2−p).

This, in combination with (1.1), gives an upper bound for the length of γ:

`(γ) ≤
(
(2− p)C‖z1 − z2‖2−p + d(z1, ∂Ω)2−p) 1

2−p − d(z1, ∂Ω). (2.4)

Let γj ⊂ R2 \ Ω be a sequence of curves joining z1 and z2 such that
∫

γj

dist (z, ∂Ω)1−p ds(z) ≤ cj‖z1 − z2‖2−p,

where cj ≤ C converge to the infimum c ≤ C of such constants cj for the pair z1 and z2. By
the continuity of the distance function, and since supi `(γi) < ∞ by (2.4), there exists (see
for example [13, Lemma 2.1]) a sequence ji → ∞ and a limit curve γ so that γji(t) → γ(t)
for all t as i→∞ and∫

γ
dist (z, ∂Ω)1−p ds(z) ≤ lim inf

i→∞

∫

γji

dist (z, ∂Ω)1−p ds(z) ≤ c‖z1 − z2‖2−p.

Thus there exists a curve minimizing the integral in (1.1). Now, fix z1, z2 ∈ R2 \ Ω and let
γ : [0, T ] → R2 \ Ω be a minimizer for the integral in (1.1) for z1 and z2. We claim that for
any 0 ≤ t1 < t2 ≤ T the subcurve γ|[t1,t2] of γ is also a minimizer between γ(t1) and γ(t2).
Otherwise, let γ′ be a minimizer between γ(t1) and γ(t2). Then by the linearity of the integral
we have that

∫

γ
dist (z, ∂Ω)1−p ds(z) =

(∫

γ|[0,t1]
+

∫

γ|[t1,t2]
+

∫

γ|[t2,T ]

)
dist (z, ∂Ω)1−p ds(z)

>

(∫

γ|[0,t1]
+

∫

γ′
+

∫

γ|[t2,T ]

)
dist (z, ∂Ω)1−p ds(z)

=

∫

γ′′
dist (z, ∂Ω)1−p ds(z),
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where

γ′′ = γ|[0,t1] ∗ γ′ ∗ γ|[t2,T ]

joins z1 and z2. This contradicts the minimality assumption on γ. Thus our claim follows.
Lastly, the injectivity of the curve is given by [5, Lemma 3.1]. �

Following the ideas of [14, Lemma 4.6] we use the equivalent definition E of two-sided points
from Theorem 2.1 to show that the set of two-sided points can be covered by a countable
union of injective curves fulfilling condition (1.1) for each subcurve.

Proposition 2.4. Let 1 < p < 2 and let Ω ⊂ R2 be bounded simply connected Sobolev W 1,p-
extension domain. Then there exists a countable collection Γ of injective curves γ ⊂ R2 \ Ω
satisfying ∫

γ|[t1,t2]
dist (z, ∂Ω)1−p ds(z) ≤ C‖γ(t1)− γ(t2)‖2−p, (2.5)

for each subcurve γ|[t1,t2], where C is the same constant as in (1.1), so that for the set T of
two-sided points we have

T ⊂
⋃

γ∈Γ

γ ∩ ∂Ω.

Proof. To prove the inclusion we use the equivalent definition E of two-sided points given by
Theorem 2.1. Let f : D→ Ω be continuous, and conformal in D. Let {xj}j∈N ⊂ ∂D be dense.
For each pair (xi, xj), i 6= j we define γi,j as an injective curve connecting f(xi) and f(xj),
with property (2.5) for each subcurve. The existence of such curves is given by Lemma 2.3.

Define Γ = {γi,j : i 6= j}, and let z ∈ E. By the definition of E there exist xa, xb ∈ f−1({z}),
xa 6= xb, which divide ∂D into two components Ia and Ib, so that f(Ia) 6= {z} 6= f(Ib). By
the continuity of f there exist i, j, i 6= j, such that xi ∈ Ia and xj ∈ Ib and f(xi) 6= z 6=
f(xj) 6= f(xi). Let γi,j ∈ Γ be the curve connecting f(xi) =: zi and f(xj) =: zj . Let
γ̃ := f([xi, 0] ∪ [0, xj ]). The curve [xi, 0] ∪ [0, xj ] divides D into two components A and B.
By interchanging A and B if necessary, we have xa ∈ Ā and xb ∈ B̄, and by continuity
z ∈ f(A) ∩ f(B).

Since the curve γi,j is injective, and zi 6= zj , the curve γ̃∪γi,j is Jordan. Let Ã and B̃ be the

corresponding Jordan components. Since f(A) ⊂ Ã, f(B) ⊂ B̃ we have z ∈ Ã∩ B̃ = γi,j ∪ γ̃.
Furthermore, since γ̃ ⊂ f(D) ∪ {zi, zj} = Ω ∪ {zi, zj}, we have z ∈ γi,j . �

3. Proof of Theorem 1.2

By Proposition 2.4 the proof of Theorem 1.2 is now reduced to proving the following lemma.

Lemma 3.1. Let 1 < p < 2 and γ ⊂ R2 \ Ω an injective curve satisfying
∫

γ|[t1,t2]
dist (z, ∂Ω)1−p ds(z) ≤ C‖γ(t1)− γ(t2)‖2−p,

for each subcurve γ|[t1,t2]. Then

dimH(γ ∩ ∂Ω) ≤ 2− p+ log2

(
1− 2p−1 − 1

25−2pC

)
.
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In particular, if p and C are such that the right-hand side in (1.2) is strictly less than 0, then
γ ∩ ∂Ω = ∅.1

To prove Lemma 3.1 we need the following sufficient condition for an upper bound of the
Hausdorff dimension.

Lemma 3.2. Let F ⊂ Rd, s ∈ R, 0 < λ < 1 and i0 ∈ N. Define for each i ≥ i0 a maximal
λi-separated net

{xik}k∈Ii ⊂ F.
Assume that the following holds: For each i ≥ i0 and k ∈ Ii there exists j > i, such that

Nj < λ−(j−i)s,

where Nj = card ({l ∈ Ij : B(xjl , λ
j) ∩B(xik, λ

i) 6= ∅}). Then dimH(F ) ≤ s.
In particular, if s < 0, then F = ∅.

Proof. Define Bi0 = {B(xi0k , λ
i0) : k ∈ Ii0} and inductively for n > i0 by

Bn =
⋃

B(xik,λ
i)∈Bn−1

{B(xjm, λ
j) : B(xjm, λ

j) ∩B(xik, λ
i) 6= ∅},

where j = j(i, k) > i is given by the assumption. Clearly, Bn is a cover of F for each n ≥ i0,
and for all B ∈ Bn

diam (B) ≤ 2λn.

By assumption, for each B = B(xik, λ
i) ∈ Bn−1 and with j = j(i, k) again given by the

assumption
∑

B(xjm,λj)∩B 6=∅

diam (B(xjm, λ
j))s = Nj(2λ

j)s < (2λi)s = diam (B)s,

and therefore ∑

B∈Bn

diam (B)s ≤
∑

B∈Bn−1

diam (B)s.

Let δ > 0 and choose n ∈ N such that 2λn < δ. Now

Hs
δ(F ) ≤

∑

B∈Bn

diam (B)s ≤
∑

B∈Bn−1

diam (B)s ≤ . . .

≤
∑

B∈Bi0

diam (B)s ≤ card (Ii0)(2λi0)s <∞.

By letting δ → 0, we get Hs(F ) ≤ card (Ii0)(2λi0)s <∞, and consequently dimH(F ) ≤ s. �

Proof of Lemma 3.1. Define the set

{xik}k∈Ii ⊂ γ ∩ ∂Ω

to be a maximal 2−i separated net for all i ∈ N. Let s < min(dimH(γ ∩ ∂Ω), 2− p). We make
the extra assumption s < 2 − p here to have convergence in (3.2). This has no consequence
on the dimension argument as we will show that s < 2− p+ δ for some δ = δ(C, p) < 0.

1In order to make the estimate on the dimension formally correct we adopted the notational convention
dimH(∅) := −∞.
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By Lemma 3.2, there exists i ∈ N and k ∈ Ii such that Nj ≥ 2(j−i)s for all j > i, where

Nj = card ({l ∈ Ij : B(xjl , 2
−j) ∩B(xik, 2

−i) 6= ∅}).

Note that, trivially also Ni ≥ 1. Denote B = B(xik, 2
−i+1). For all j ≥ i + 1 the ball B

contains at least Nj−1 pairwise disjoint balls B(xj−1
l , 2−j) centered at γ ∩∂Ω, and so we have

H1({z ∈ γ ∩B : d(z, ∂Ω) < 2−j}) ≥ Nj−12−j . (3.1)

Using (2.5), Cavalieri’s principle, (3.1), and Lemma 3.2 we estimate

C2−(i−2)(2−p) ≥
∫

γ∩B
dist (z, ∂Ω)1−p ds(z)

=

∫ ∞

0
H1({z ∈ γ ∩B : d(z, ∂Ω)1−p > t}) dt

=

∫ ∞

0
H1({z ∈ γ ∩B : d(z, ∂Ω) < t

1
1−p }) dt

=
∑

j∈Z

∫ 2−j(1−p)

2−(j−1)(1−p)

H1({z ∈ γ ∩B : d(z, ∂Ω) < t
1

1−p }) dt

≥
∞∑

j=i+1

∫ 2−j(1−p)

2−(j−1)(1−p)

H1({z ∈ γ ∩B : d(z, ∂Ω) < 2−j}) dt

≥
∞∑

j=i+1

2−j(1−p)(1− 21−p)Nj−12−j

≥
∞∑

j=i+1

(2p−1 − 1)2−(j−1)(1−p)2(j−1−i)s2−j ,

which implies

C ≥ (2p−1 − 1)22p−5
∞∑

j=i+1

2(j−i−1)(s+p−2)

= (2p−1 − 1)22p−5 1

1− 2−(2−(p+s))
.

(3.2)

A reordering of (3.2) gives

s ≤ 2− p+ log2

(
1− 22p−5(2p−1 − 1)

C

)
.

Since s < min(dimH(γ ∩ ∂Ω), 2− p) was arbitrary, we have

dimH(γ ∩ ∂Ω) ≤ 2− p+ log2

(
1− 22p−5(2p−1 − 1)

C

)
.

�
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4. Sharpness of the dimension estimate

In this section we show the sharpness of the estimate given in Theorem 1.2. We do this by
constructing a domain whose set of two-sided points contains a Cantor type set.

Let 0 < λ < 1/2. Let Cλ be the standard Cantor set obtained as the attractor of the
iterated function system {f1 = λx, f2 = λx+ 1− λ}. For later use we fix some notation. Let

I1
0 = [0, 1], and Ĩ1

1 := (λ, 1− λ) be the first removed interval. We denote by Iij the 2j closed

intervals left after j iterations of the construction of the Cantor set, and similarly the 2j−1

removed open intervals by Ĩij . The lengths of the intervals are

|Iij | = λj , i = 1, . . . , 2j , j = 0, 1, 2, . . .

and

|Ĩij | = (1− 2λ)λj−1, i = 1, . . . , 2j−1, j = 1, 2, 3, . . . .

Recall that, Cλ is of zero H1-measure, and dimH(Cλ) = log 2
− log λ (see e.g. [16, p.60–62]).

Define

Ωλ = (−1, 1)2 \ {(x, y) : x ≥ 0, |y| ≤ d(x,Cλ)}.
Set Ωλ is clearly a domain and the set of two-sided points is Cλ \ {(0, 0)}.
Lemma 4.1. The domain Ωλ above satisfies the curve condition (1.1) for 1 < p < 2 + log 2

log λ .

That is, for each x, y ∈ Ωc
λ there exists rectifiable curve γ : [0, l(γ)]→ Ωc

λ connecting x, y such
that

∫

γ
dist (z, ∂Ωλ)1−p ds(z) ≤ C(p, λ)‖x− y‖2−p. (4.1)

Moreover, we have the estimate

C(p, λ) ≤ c

(2− p)(1− 2λ2−p)
,

where c is an absolute constant.

Proof. To prove the claim we construct a curve connecting x and y in R2\Ωλ consisting of line
segments either parallel to the coordinate axes or at an angle ±π

4 . To simplify the discussion,
within the proof, we will call a component of Ωc

λ the closure of an open connected component
of int(Ωc

λ). Let us record the following observation: If I ⊂ R2 \ Ωλ is a line segment which
can be arclength parametrized by t in such a manner that

dist (z, ∂Ωλ) ≥ t√
2

for all z = z(t) ∈ I, (4.2)

then

∫

I
dist (z, ∂Ωλ)1−p ds(z) ≤ 2

p−1
2

∫ |I|

0
t1−p dt =

2
p−1
2

2− p |I|
2−p. (4.3)

Note that any line segment I ⊂ R2 \ (−1, 1) with angle ±π
4 can be decomposed into at

most two subsegments on which (4.2) holds, and similarly for any I parallel to coordinate
axes contained in a bounded component of Ωc

λ. For such segments we have

∫

I
dist (z, ∂Ωλ)1−p ds(z) ≤ 2

p+1
2

2− p |I|
2−p. (4.4)
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Let us assume first that x and y are in the same component of Ωc. If x and y are in the
unbounded component R2 \ (−1, 1)2 of Ωc, x and y may be connected with at most 4 diagonal
segments, two of which may have to be decomposed into two to fulfill (4.2). In case of x, y
being in the same bounded component of Ωc x and y may be connected with two segments
parallel to coordinate axes (both of which we may again have to decompose into two) for
which (4.4) holds. Let us now consider the case where x and y are in different bounded
components of Ωc

λ. By the above we may assume that x and y are on the real line. Let then
j ∈ N be such that

λj < ‖x− y‖ ≤ λj−1.

Now, [x, y] intersects at most two of the intervals Iij and one Ĩij , where Iij and Ĩij are the closed
and open intervals, respectively, related to the jth step of the construction of the Cantor set.
Interval Ĩij is of the type considered above, so we have the estimate (4.4). Let us estimate

the integral over Iij . By self-similarity we may consider the interval [0, 1] instead. Since the

Cantor set in our construction has measure zero, the integral over [0, 1] is exactly the integral

over all the removed intervals Ĩij . There are exactly 2j−1 of these with |Ĩij | = (1− 2λ)λj−1 for
j ≥ 1, so

∫

[0,1]
dist (z, ∂Ωλ)1−p ds(z) ≤ 2

p+1
2

2− p(1− 2λ)2−p
∞∑

j=1

2j−1λ(j−1)(2−p)

=
2

p+1
2

2− p(1− 2λ)2−p 1

1− 2λ2−p .

(4.5)

To get to the integral over Iij we multiply (4.5) by |Iij |2−p.
Combining the above we get the following: Any two x, y ∈ Ωc

λ can be joined using at most
6 line segments for which (4.4) holds and at most 2 segments to which (4.5), rescaled to the
interval, applies. Calling the resulting path γ and the segments Ik, we have

∫

γ
dist (z, ∂Ωλ)1−p ds(z) ≤ 2

p+1
2

2− p

(
6∑

k=1

|Ik|2−p +
(1− 2λ)2−p

1− 2λ2−p

8∑

k=7

|Ik|2−p
)

≤ 2
p+1
2

2− p

(
8∑

k=1

|Ik|
)2−p( 6∑

k=1

1 +

8∑

k=7

((1− 2λ)2−p

1− 2λ2−p

)1/(p−1)
)p−1

≤ 2
p+1
2

2− p

(
8∑

k=1

|Ik|
)2−p( 6∑

k=1

( 1

1− 2λ2−p

)1/(p−1)
+

8∑

k=7

( 1

1− 2λ2−p

)1/(p−1)
)p−1

≤ 2
p+1
2

2− p

(
8∑

k=1

|Ik|
)2−p

8p−1

1− 2λ2−p

by Hölder’s inequality. By the definition of Ωλ, we may choose Ik’s so that
∑8

k=1 |Ik| = |γ| ≤
c‖x− y‖ for an absolute constant c. �

Proof of Theorem 1.4. We show the existence of constants M2 > 0 and C(p) > 0 so that (1.3)
holds for C ≥ C(p). Fix p ∈ (1, 2), and let M2 = 2c

log 2 where c is the absolute constant from

Lemma 4.1. In order to make estimates, we use the construction for λ ∈ [1
22

1
p−2 , 2

1
p−2 ). In



12 JYRKI TAKANEN

Lemma 4.1 we established that domain Ωλ satisfies the curve condition with the constant
c

(2− p)(1− 2λ2−p)
. (4.6)

Setting λ = 1
22

1
p−2 in (4.6) we define

C(p) =
c

(2− p)(1− 2p−2)
.

Now, for C ≥ C(p), by the continuity of the constant in (4.6) as a function of λ and the

fact that it tends to infinity as λ↗ 2
1

p−2 , there exists λC ∈ [1
22

1
p−2 , 2

1
p−2 ) such that

C =
c

(2− p)(1− 2λ2−p
C )

.

We show that

dimH CλC = − log 2

log λC
≥ 2− p− M2

C
. (4.7)

In order to see that (4.7) holds, we show that

fp(λ) = 2− p− M2

c
(2− p)(1− 2λ2−p) +

log 2

log λ

is non-positive on the interval [1
22

1
p−2 , 2

1
p−2 ). This follows from

min
λ∈[ 1

2
2

1
p−2 ,2

1
p−2 ]

f ′p(λ) ≥ 2
M2

c
(2− p)2(2

1
p−2 )1−p − log 2

2−12
1

p−2 log2(2
1

p−2 )

=
(2− p)2

2
1

p−2

(
M2

c
− 2

log 2

)
≥ 0,

and

fp(λ) ≤ fp(2
1

p−2 ) = 0.

Hence, (4.7) holds.
�
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TWO-SIDED BOUNDARY POINTS OF SOBOLEV EXTENSION

DOMAINS ON EUCLIDEAN SPACES

MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND JYRKI TAKANEN

Abstract. We prove an estimate on the Hausdorff dimension of the set of two-sided bound-
ary points of general Sobolev extension domains on Euclidean spaces. We also present ex-
amples showing lower bounds on possible dimension estimates of this type.

1. Introduction

We continue the investigation of the geometric properties of Sobolev extension domains.
In this paper, the space of Sobolev functions we use on a domain Ω ⊂ Rn is the homogeneous
Sobolev space L1,p(Ω), which is the space of locally integrable functions whose weak derivatives
belong to Lp(Ω). We endow this space with the homogeneous seminorm

‖f‖L1,p(Ω) = ‖∇f‖Lp(Ω) =

(∫

Ω
|∇f(x)|p dx

)1/p

.

The reason for working with the homogeneous Sobolev space is simply to make our dimension
estimates scaling invariant. We will comment on the non-homogeneous spaces after stating
our main result.

We say that E : L1,p(Ω) → L1,p(Rn) is an extension operator if Eu(x) = u(x) for all
u ∈ L1,p(Ω) and x ∈ Ω, and if there exists a constant C ≥ 1 so that for every u ∈ L1,p(Ω)
we have ||Eu||L1,p(Rn) ≤ C||u||L1,p(Ω). We name the infimum over such possible constants
C by ||E||, and call it the norm of the extension operator. We say that a domain Ω ⊂ Rn
is an L1,p-extension domain if such an operator exists. The same definition applies for the
non-homogeneous spaces W 1,p(Ω).

Throughout this manuscript each time we refer to a Sobolev extension domain we mean it
with respect to the homogeneous norm, unless otherwise stated.

Already from the work of Calderón and Stein [16] we know that Lipschitz domains are W 1,p-
extension domains. However, much more complicated domains admit an extension operator.
For instance, the Koch snowflake domains are extension domains and in some sense serve as
sharp examples of extension domains in terms of the Hausdorff dimension of the boundary,
see [13]. In [13], the question of the possible size of the boundary for simply connected planar
Sobolev extension domains was studied. In particular, for these domains there is an upper
bound on the Hausdorff dimension of the boundary in terms of the norm of the extension
operator (although in [13] the bound was expressed in terms of a constant in a characterizing
curve-condition property provided in [9]). Note that for the boundary of a general extension
domain we cannot have a dimension estimate: take Ω = [0, 1]n \Cn with C ⊂ R a Cantor set
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of dimH(C) = 1 but Lebesgue measure zero. Then Ω is a Sobolev L1,p-extension domain, but
dimH(∂Ω) = n.

With a bound on the dimension of the boundary, one might wonder what other geometric
limitations does the existence of an extension operator imply. Let us approach this with
a basic example of a domain that is not an L1,p-extension domain for any p, the slit disc:
Ω := D \ [0, 1] × {0} ⊂ R2. A continuous Sobolev function in L1,p(Ω) which is one above
[1/2, 1]×{0} and zero below it serves as an example of a function that cannot be extended to
a global Sobolev function since no extension would be absolutely continuous on almost every
vertical line segment. Notice however, that the slit disc is an example of a BV -extension
domain because its complement is quasiconvex (see [8]).

The slit disc example can be modified to a more delicate one by replacing the removed line
segment [0, 1] × {0} by a larger set where the two-sided points are at a Cantor set on the
previously removed line segment, see Figure 1 in Section 4. This will give a domain where the
extendability of Sobolev functions depends on the exponent p. Such constructions will also
play a role in this paper, see Section 4.2 (also for the precise definitions of these domains).
By removing small neighbourhoods of the two-sided points from the domain, one can actually
make the example into a Jordan domain and still retain the property of being a Sobolev
extension domain for some p’s, but not for other, see [11] for a similar construction (and also
the earlier works [14, 15]).

The slit disc and its variations have boundary points that can be approached from two
different sides in the domain. In this paper we study the question of how large this set of two-
sided points can be for a Sobolev extension domain. This question was already investigated
in [17] by the third named author in the case of planar simply connected domains. Before
continuing, let us give the definition of two-sidedness that we will use in this paper. In the
case of simply connected planar domains, the definition can also be reformulated in various
ways using conformal mappings, see [17].

Definition 1.1 (Two-sided points of the boundary of a domain). Let Ω ⊂ Rn be a domain.
A point x ∈ ∂Ω is called two-sided, if there exists R > 0 such that for all r ∈ (0, R) there
exist disjoint connected components Ω1

r and Ω2
r of Ω ∩ B(x, r) that are nested: Ωi

s ⊂ Ωi
r for

0 < s < r < R and i ∈ {1, 2}.

We denote the set of two-sided points of ∂Ω by TΩ, or simply by T, if there is no possibility
for confusion. Notice that the set T need not be closed.

For p ≥ n, we know that L1,p extension domains are quasiconvex (see [7, Theorem 3.1]).
Therefore, for an L1,p-extension domain with p ≥ n, we have T = ∅. The interesting case is
thus 1 ≤ p < n. For this range we prove the following estimate on the size of T:

Theorem 1.2. Let n ≥ 2 and p ∈ [1, n) and let Ω ⊂ Rn be a Sobolev L1,p-extension domain.
Then

(1) If p = 1, then Hn−1(TΩ) = 0.
(2) If p > 1 there exists a constant C(n, p) > 0 so that

dimH(TΩ) ≤ n− p− C(n, p)

‖E‖n log(‖E‖) ,

where ‖E‖ is the operator norm of the homogeneous Sobolev extension operator.
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Here we use the convention that TΩ = ∅ whenever the bound on the right-hand side of the
estimate is strictly less than 0.1

Let us now comment on the non-homogeneous Sobolev spaces. For bounded domains
Ω it is known that Sobolev L1,p-extension domains are the same as Sobolev W 1,p-extension
domains (see [7]), so even though our main result is stated for homogeneous Sobolev extension
domains, it can be applied to W 1,p-extension domains in the case that Ω is bounded. Let
us note that there exist unbounded Sobolev W 1,p-extension domains which are not L1,p-
extension domains (see [7, Example 6.7]). However, one might expect that our result still
applies for this unbounded case because having a dimension bound relies on local properties.
Indeed, our method of proof will show that we can handle also with unbounded W 1,p-extension
domains because the measure density condition (see Proposition 2.2) is still true for every
r ∈ (0, 1) and the proof of Theorem 1.2 studies locally the set of two-sided points to estimate
its dimension. We prefer to state our main theorem only for L1,p-extension domains because
of their homogeneous norm. If we stated it for W 1,p-extension domains, then a scaling of the
domain Ω would perturb the norm of the operator E, and hence our estimate in the dimension
of the two-sided points. Obviously, a scaling of a set will never change its dimension.

We will also give a size estimate on the two sided-points of BV -extension domains.

Theorem 1.3. Let n ≥ 2 and let Ω ⊂ Rn be a BV -extension domain. Then TΩ has σ-finite
(n− 1)-dimensional Hausdorff measure.

Observe that taking Ω to be a slit disc shows the sharpness of this result.
We will present the proof of Theorem 1.2 in Section 2 and the proof of Theorem 1.3 in

Section 3. After that, in Section 4, we show that Theorem 1.2 (1) is sharp: there exist even
a planar simply connected L1,1-extension domain with dimH(T) = 1. We also give a class of
domains Ωλ for each n ≥ 2 with the sets of two-sided points Tλ = Cλ being Cantor sets, so
that for every p ∈ (1, n) there exists a constant C(n, p) for which, with the explicit extension
operators Eλ : L1,p(Ωλ)→ L1,p(Rn) we construct, we have ‖Eλ‖ → ∞ as dimH(Cλ)→ n− p
and the estimate

dimH(Cλ) ≥ n− p− C(n, p)

‖Eλ‖
(1.1)

is satisfied.
This set of examples together with Theorem 1.2 shows that the possible optimal asymptotic

behaviour for the dimension bound of the two-sided points in terms of the norm of the
extension operator is between n − p − C/‖E‖ and n − p − C/(‖E‖n log(‖E‖)). We note
that in [17] the exponents for the dimension bound and examples agreed, thus providing a
possibly sharper estimate. However, as the study in [17] was done in terms of a constant in a
characterizing curve condition, and since the dependence between this constant and the norm
of the extension operator has not been clarified, the estimate in [17] does not yet translate
to a sharp dimension estimate in terms of the norm of the extension operator in the planar
simply connected case.

2. Dimension estimate for the set of two-sided points

In this section we will prove Theorem 1.2. Before doing so, we go through some notation
and lemmata.

1To make this formally correct we adopt the notational convention dimH(∅) = −∞.



4 MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND JYRKI TAKANEN

We often denote by C(·) a computable constant depending only on the parameters listed
in the parenthesis. The constant may differ between appearances, even within a chain of
(in)equalities. By a . b we mean that a ≤ Cb for some constant C ≥ 1, that could depend on
the dimension n. Similarly for a & b. Then a ∼ b means that both a . b and a & b hold. We
denote by mn the n-dimensional Lebesgue measure on Rn. We will also denote by Q(x, s) the
cube of center x and side length s > 0 and for a given cube Q = Q(x, s) and some positive
K > 0 we write KQ = Q(x,Ks). We denote the side length of a cube by `(Q).

We will use the following basic lemma, similar to [17, Lemma 3.2].

Lemma 2.1. Let F ⊂ Rn, 0 < λ < 1, s ≥ 0, and i0 ∈ N. For every i ≥ i0 let {xik}k∈Ii be
a maximal λi-separated net in F . Assume that for each i ≥ i0 and k ∈ Ii there exists j > i
such that

Nj < λ−(j−i)s,

where Nj = #({l ∈ Ij : B(xjl , λ
j) ∩B(xik, λ

i) 6= ∅}). Then dimH(F ) ≤ s.

A measure density condition for Sobolev extension domains was proven in [4]. We will need
to make the dependence of the parameters more explicit, so we modify slightly the proofs of
[4, Lemma 11] and [4, Theorem 1] to obtain the following version of their measure density
condition.

Proposition 2.2 (Measure density condition). Let 1 ≤ p < ∞ and let Ω ⊂ Rn be a Sobolev
L1,p-extension domain with an extension operator E.

(1) If 1 ≤ p < n then for all x ∈ Ω and r ∈
(

0,min

{
1,
(

mn(Ω)
2mn(B(0,1))

)1/n
})

, denoting by

Ω′ a connected component of Ω ∩B(x, r) with x ∈ Ω′, we have

mn(Ω′) ≥ C(n, p)‖E‖−nrn.

(2) If p > n − 1 then for all x ∈ Ω and r ∈ (0, diam (Ω)), denoting by Ω′ a connected
component of Ω ∩B(x, r) with x ∈ Ω′, we have

mn(Ω′) ≥ C(n, p)‖E‖−prn.

Proof. The case (2) follows by Theorem 2.2 and the proof of Theorem 4.1 from Koskela’s
dissertation [7], where he uses the concept of variational p-capacity. Notice that in the proof
of Theorem 4.1 the support of the test function u is contained in Ω′.

We look now at the case 1 ≤ p < n.
Let us denote r0 = r. By induction, we define for every i ∈ N the radius ri ∈ (0, ri−1) by

the equality

mn(Ω′ ∩B(x, ri)) =
1

2
mn(Ω′ ∩B(x, ri−1)) = 2−imn(Ω′).

Since x ∈ Ω′, we have that ri ↘ 0 as i→∞.
For each i ∈ N, consider the function fi : Ω→ R

fi(y) =





1, for y ∈ B(x, ri) ∩ Ω′,
ri−1−|x−y|
ri−1−ri , for y ∈ (B(x, ri−1) \B(x, ri)) ∩ Ω′,

0, otherwise.
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For the homogeneous Sobolev-norm of fi we can estimate

‖fi‖pL1,p(Ω)
=

∫

Ω
|∇fi|p ≤ |ri − ri−1|−pmn((B(x, ri−1) \B(x, ri)) ∩ Ω′)

= |ri − ri−1|−p2−imn(Ω′).
(2.1)

Call p∗ = np
n−p . For any Efi ∈ L1,p(Rn), by the Sobolev-Poincaré-inequality (we will also

prove a variant of this later, see (2.3)), we know the existence of a constant ci ∈ R (that can
be assumed to be between 0 and 1) so that

‖Efi − ci‖Lp∗ (Rn) ≤ C(n, p)‖Efi‖L1,p(Rn).

Hence we have the following chain of inequalities

‖fi − ci‖Lp∗ (Ω) ≤ ‖Efi − ci‖Lp∗ (Rn) ≤ C(n, p)‖Efi‖L1,p(Rn) ≤ C(n, p)‖E‖ ‖fi‖L1,p(Ω).

Recall that by our choice of r = r0 we always have

mn(Ω \B(x, ri−1)) ≥mn(Ω \B(x, r0)) ≥mn(Ω)−mn(B(x, r0)) ≥ mn(Ω)

2

and

mn(B(x, ri) ∩ Ω′) ≤ mn(Ω)

2
for every i ≥ 1. Then
∫

Ω
|fi(y)− ci|p

∗
dy ≥ max

{∫

{y : fi(y)=0}
|ci|p

∗
dy,

∫

{y : fi(y)=1}
|1− ci|p

∗
dy

}

≥ max
{
|ci|p

∗
mn(Ω \B(x, ri−1)), |1− ci|p

∗
mn(B(x, ri) ∩ Ω′))

}

≥mn(B(x, ri) ∩ Ω′) ·max
{
|ci|p

∗
, |1− ci|p

∗
}
≥mn(B(x, ri) ∩ Ω′) · 2−p∗ ,

so we write, using (2.1),

2−p
∗−imn(Ω′) = 2−p

∗
mn(B(x, ri) ∩ Ω′) ≤ ‖fi − ci‖p

∗

Lp∗ (Ω)
≤ C(n, p)‖E‖p∗‖fi‖p

∗

L1,p(Ω)

= C(n, p)‖E‖p∗
(∫

Ω
|∇fi(y)|p dy

)p∗/p

≤ C(n, p)‖E‖p∗
(
|ri − ri−1|−p2−imn(Ω′)

)p∗/p

≤ C(n, p)‖E‖p∗2−ip∗/pmn(Ω′)p
∗/p|ri−1 − ri|−p

∗
.

Consequently,

ri−1 − ri ≤ C(n, p)‖E‖2i(1/p∗−1/p)mn(Ω′)1/p−1/p∗

= C(n, p)‖E‖2−i/nmn(Ω′)1/n.

By summing up all these quantities we conclude that

r = r0 =
∞∑

i=1

(ri−1 − ri) ≤ C(n, p)‖E‖
∞∑

i=1

2−i/nmn(Ω′)1/n =
C(n, p)‖E‖

21/n − 1
mn(Ω′)1/n.

This gives the claimed inequality. �
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Observe that the measure density condition only holds for 1 ≤ p <∞. For W 1,∞-extension
domains this is not true. Take for instance C ⊂ [0, 1] a fat Cantor set with m1(C) > 0. Then
almost every point of C is of density 1 on C, so [0, 1] \C, whose closure is the whole interval
[0, 1], cannot satisfy any measure density condition. Then take Ω = Rn \ Cn which will be
quasiconvex by [5, Theorem A], and consequently a W 1,∞-extension domain by [4, Theorem
7], but does not satisfy any measure density condition either.

In the proof of Theorem 1.2 we will use the following consequence of a Sobolev-Poincaré
type inequality (2.3). The proof of the lemma follows the proof for the classical Sobolev-
Poincaré inequality that can be found in many text books. However, for our application of
the lemma we need to include a set F that is removed when integrating the gradient of the
Sobolev function. This fact forces us to be more cautious. For the convenience of the reader,
we provide here the proof with the needed modifications.

Lemma 2.3. Let 1 ≤ p < n, Q ⊂ Rn be a cube, δ ∈ (0, 1) and F ⊂ Q such that for any
i ∈ {1, . . . , n} we have

mn−1(Pi(F )) ≤ δ

2n · 2nmn−1(Pi(Q))

with Pi the projection Pi : (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi+1, . . . , xn). Then for any f ∈
W 1,p(Q) so that 0 ≤ f ≤ 1 and

min

(
mn({y ∈ 1

2
Q : f(y) = 0}),mn({y ∈ 1

2
Q : f(y) = 1})

)
> δ

`(Q)n

2n
,

we have ∫

Q\F
|∇f(y)|p dy ≥ C(n, p)δ

n−p
n `(Q)n−p. (2.2)

Remark. Observe that for the conclusion of Lemma 2.3 it is not enough to only require
mn(F ) to be small. Consider for instance the cube minus a very thin central band which
separates the cube in two connected components.

Proof. We will show that the following version of Sobolev-Poincaré inequality holds for our
function f :

(∫

A
|f(y)− fA|

pn
n−p dy

)n−p
pn

≤ C(n, p)

(∫

Q\F
|∇f(y)|p dy

)1/p

, (2.3)

where A =
{
x ∈ 1

2Q : Pi(x) /∈ Pi(F ) for every i
}

and

fA =
1

mn(A)

∫

A
f(y) dy.

Let us first observe that this implies

∫

Q\F
|∇f(y)|p dy &

(∫

A
|f(y)− fA|

pn
n−p dy

)n−p
n

& max
(
mn({y ∈ A : f(y) = 1})n−pn |1− fA|p,mn({y ∈ A : f(y) = 0})n−pn |fA|p

)

& δ
n−p
n `(Q)n−p max (|1− fA|p, |fA|p)

& δ
n−p
n `(Q)n−p,
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thus giving the inequality (2.2). Above we used the simple observation that

mn(
1

2
Q \A) ≤ δ

4 · 2nmn(Q). (2.4)

To prove (2.3) we start by presenting the Sobolev embedding in the form

(∫

A′
|g(y)|

pn
n−p dy

)n−p
pn

≤ C(n, p,K)

(∫

Q\F
|∇g(y)|p dy

)1/p

, (2.5)

for all g ∈ W 1,p
0 (Q) with |g| ≤ 1 and mn({x ∈ A′ : |g(x)| ≥ 1/2}) ≥ Kδ`(Q)n for some

positive constant K > 0, and where A′ = {x ∈ Q : Pi(x) /∈ Pi(F ) for every i}. Following the
proof of [2, Theorem 4.8] what we first get is

(∫

A′
|g(y)|

pn
n−p dy

)n−1
n

≤ C(n, p)

(∫

Q\F
|g(y)|

pn
n−p dy

) p−1
p
(∫

Q\F
|∇g(y)|p dy

)1/p

.

Note that by the properties of g and by definition of A′

∫

Q\A′
|g(y)|

pn
n−p dy ≤mn(Q \A′) < nδ

2n · 2n `(Q)n

and
∫

A′
|g(y)|

pn
n−p dy ≥

(
1

2

) pn
n−p

Kδ`(Q)n.

Therefore,

∫

Q\F
|g(y)|

pn
n−p dy ≤

∫

Q
|g(y)|

pn
n−p dy =

∫

A′
|g(y)|

pn
n−p dy +

∫

Q\A′
|g(y)|

pn
n−p dy

≤ (1 + C(n, p,K))

∫

A′
|g(y)|

pn
n−p dy,

(2.6)

and finally we can get (2.5).
Secondly, we apply the inequality (2.5) to the function g(y) = (f(y) − fA′)φ(y), where

φ ∈ C∞0 (Rn) is supported in Q, is equal to 1 on 1
2Q and |∇φ| . 1

`(Q)
. We get

(∫

A
|f(y)− fA|

pn
n−p dy

)n−p
pn

≤
(∫

A′
|(f(y)− fA)φ(y)|

pn
n−p dy

)n−p
pn

≤ C(n, p)

(∫

Q\F
|∇f(y)|p dy

)1/p

(2.7)

+
C(n, p)

`(Q)

(∫

Q\F
|f(y)− fA|p dy

)1/p

.
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To handle the last term above, we first prove that
(∫

Q\F
|f(y)− fA|p dy

)1/p

≤ C(n, p)

(∫

A′
|f(y)− fA|p dy

)1/p

≤ C(n, p)

((∫

A′
|f(y)− fA′ |p dy

)1/p

+

(∫

A′
|fA′ − fA|p dy

)1/p
)

≤ C(n, p)

(∫

A′
|f(y)− fA′ |p dy

)1/p

.

In the first inequality we are using a similar trick like in (2.6) (that 0 ≤ f ≤ 1 and that f = 1
and f = 0 in large enough sets). In the last inequality we use Hölder inequality and the fact
that by (2.4) we have

mn(A) ≥mn(
1

2
Q)−mn(

1

2
Q \A) ≥ mn(Q)

2n
− δmn(Q)

4 · 2n ≥ 2−n−1mn(Q) ≥ 2−n−1mn(A′).

Finally, by modifying the standard proof for the Poincaré inequality (see [2, Section 4.5.2])
by first writing

|f(y)− f(x)| ≤
n∑

i=1

|f(zi)− f(zi−1)|,

with zi = (y1, . . . , yi, xi+1, . . . xn) so that zi and zi−1 differ only in one coordinate, we are able
to consider absolute continuity only along lines going in the coordinate directions. Thus, we
obtain ∫

A′
|f(y)− fA′ |p dy ≤ C(n, p)`(Q)p

∫

Q\F
|∇f(y)|p dy.

Combining the above with (2.7) concludes the proof. �
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let us first make some initial reductions. By the definition of two-sided
points we can write TΩ =

⋃
i∈N Ti, where

Ti = {x ∈ ∂Ω : for every r < 2−i, there exist two different connected components Ω1
r ,Ω

2
r

of Ω ∩B(x, r) that are nested, that is Ωj
s ⊂ Ωj

r for 0 < s < r, j = 1, 2}.
Observe that if x ∈ Ti and Ω1

r , Ω2
r are the associated nested connected components of Ω ∩

B(x, r) for each r ∈ (0, 2−i), then x ∈ Ω1
r ∩ Ω2

r for all r ∈ (0, 2−i).
It is clear that it is enough to estimate dimH(Ti) for a fixed i ∈ N. We now cover Ti by

countably many balls B(zk, 2
−i/6), where zk ∈ Ti. Then, for every k ∈ N we introduce the

family of pairwise disjoint connected components of B(zk, 2
−i/2) ∩ Ω, which we denote by

{Okl }l∈I . Let us check now that

Ti ∩B(zk, 2
−i/6) ⊆

⋃

l 6=l̃

∂Okl ∩ ∂Okl̃ . (2.8)

Take x ∈ Ti ∩ B(zk, 2
−i/6). Since x ∈ Ti there exist two different connected components of

Ω∩B(x, 2−i), given by the definition of Ti which we call U1, U2, so that we in particular have
x ∈ ∂U1 ∩ ∂U2. Therefore, using that

B(zk, 2
−i/2) ∩ Ω ⊂ B(x, 2−i) ∩ Ω,
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the sets U1 ∩ B(zk, 2
−i/2) and U2 ∩ B(zk, 2

−i/2) will have connected components, which we
call Okl , O

k
l̃
, so that x ∈ ∂Okl ∩ ∂Okl̃ . We have then proved (2.8). Observe that we can write

TΩ =
⋃

i,k

⋃

l 6=l̃

Ti ∩B(zk, 2
−i/6) ∩ (∂Okl ∩ ∂Okl̃ ).

Therefore, it is enough to just estimate the Hausdorff dimension of Ti∩B(zk, 2
−i/6)∩ (∂Okl ∩

∂Ok
l̃
) for fixed i, k, l, l̃ with l 6= l̃. Each set of this type, that we call from now on G, has the

following properties: there is some x0 ∈ ∂Ω and some radius r ∈ (0, 1) so that

G ⊂ ∂Ω ∩B(x0, r),

and there exist connected components Ω1,Ω2 ⊂ Ω ∩B(x0, 3r) for which

G ⊂ ∂Ω1 ∩ ∂Ω2.

We will now proceed to estimate the Hausdorff dimension of such a set G.

(1) Let us first prove that Hn−p(G) = 0 for all 1 ≤ p < n. In particular, this will handle
the case p = 1 in the claim (1) of the theorem. We will use the well-known fact that for any
given h ∈ L1

loc(Rn) and 0 ≤ s < n we have

Hs

({
x ∈ Rn : lim sup

ε↘0

1

εs

∫

B(x,ε)
|h(y)| dy > 0

})
= 0. (2.9)

See for instance [2, Theorem 2.10] for a proof of this assertion.
We start by defining a function u ∈ L1,p(Ω),

u(x) = max
(
0,min

(
1, 3− r−1 dist (x, x0)

)
χΩ1(x)

)
,

where χΩ1 denotes the indicator function of the set Ω1. Notice that u is locally Lipschitz in Ω
by the fact that Ω1 is a connected component of Ω∩B(x0, 3r). By Proposition 2.2, for every
x ∈ G and every 0 < ε ≤ r sufficiently small,

min
(
mn(Ω1 ∩B(x, ε/2

√
n)),mn(Ω2 ∩B(x, ε/2

√
n))
)
≥ C(n, p)‖E‖−nεn.

Now, we apply Lemma 2.3 with the removed set F = ∅ and the cube Q(x, 2ε/
√
n) centered

at x and with side length 2ε/
√
n. Notice that Q(x, 2ε/

√
n) contains the ball B(x, ε/

√
n) and

is contained in the ball B(x, ε), and so the Lemma 2.3 gives
∫

B(x,ε)
|∇Eu(y)|p dy ≥

∫

Q(x,2ε/
√
n)
|∇Eu(y)|p dy ≥ C(n, p)‖E‖p−nεn−p.

Therefore,

lim sup
ε↘0

1

εn−p

∫

B(x,ε)
|∇Eu(y)|p dy ≥ C(n, p)‖E‖p−n > 0

for every x ∈ G, and using (2.9) we conclude Hn−p(G) = 0.
We are done with the case p = 1 of Theorem 1.2. For the case p > 1 we will be able to

be more precise in the estimation of the Hausdorff dimension in terms of the norm of the
extension operator E : L1,p(Ω)→ L1,p(Rn). For this we will follow a different approach.
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(2) Let us now focus on the case p > 1. First of all, call C1(n, p) and C2(n, p) the constants
given by Proposition 2.2 and Lemma 2.3 respectively. Now we choose i0 ∈ N and 0 < λ < 1
such that 0 < λi0 < r small enough so that Proposition 2.2 is satisfied and

λp−1

1− λp−1
=

C1(n, p)1+n−p
n C2(n, p)

22n+13nn(2n+1−p)/2mn(B(0, 1))
‖E‖−2n.

We can do this because the term on the left hand side tends to zero as λ→ 0.
For every i ∈ N, let {xik}k∈Ii be a maximal λi-separated net of points in G. For every i ∈ N

and k ∈ Ii define

B
i,k
j = {B(xi+jl , λi+j) : B(xi+jl , λi+j) ∩B(xik, λ

i) 6= ∅},

N i,k
j = #B

i,k
j for j ≥ 0, and

Aik = B(xik, λ
i) \ (

∞⋃

j=1

⋃

l∈Ii+j
B(xi+jl , λi+j)).

Now define ui,k = u ∈ L1,p(Ω) by

u(x) = max
(
0,min

(
1, 3− λ−i dist (x, xik)

)
χΩ1(x)

)
.

Without loss of generality we can assume that the extension operator applied to any function
0 ≤ u ≤ 1 also satisfies 0 ≤ Eu ≤ 1. We then have

‖u‖p
L1,p(Ω)

≤
∫

B(xik,3λ
i)
|∇u(x)|p dx ≤ (3nmn(B(0, 1)))λi(n−p). (2.10)

By Proposition 2.2 and because λi0 < r λ < r, we have for i ≥ i0

min
(
mn(Ω1 ∩B(xi+jl , λi+j/2

√
n)),mn(Ω2 ∩B(xi+jl , λi+j/2

√
n))
)
≥ C1(n, p)‖E‖−nλ

n(i+j)

2nnn/2

for every B(xi+jl , λi+j) ∈ B
i,k
j . (In the case n − 1 < p < n Proposition 2.2 will give a better

estimate with ‖E‖−p in the above estimate. We shall comment about this case in a remark
at the end of the proof.) Applying Lemma 2.3 where again the removed set F = ∅, for

the corresponding cube Q(xi+jl , 2λi+j/
√
n) centered at xi+jl and side length 2λi+j/

√
n (thus

containing the ball B(xi+jl , λi+j/
√
n) and contained in the ball B(xi+jl , λi+j)), we have

∫

B(xi+jl ,λi+j)
|∇Eu(y)|p dy ≥

∫

Q(xi+jl ,2λi+j/
√
n)
|∇Eu(y)|p dy

≥ C2(n, p)C1(n, p)(n−p)/n

n(n−p)/2 ‖E‖p−nλ(n−p)(i+j).

(2.11)
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Thus, since
∑

B∈Bi,kj
χB(x) ≤ 3n for all x ∈ B(xi+jk , λi+j), and by using (2.11) and (2.10),

we get the estimate

C2(n, p)C1(n, p)(n−p)/n

n(n−p)/2 N i,k
j ‖E‖p−nλ(n−p)(i+j) ≤

∑

B∈Bi,kj

∫

B
|∇Eu(y)|p dy

≤ 3n
∫

Rn
|∇Eu(y)|p dy

≤ 3n‖E‖p‖u‖p
L1,p(Ω)

≤ (mn(B(0, 1))32n)‖E‖pλi(n−p).

This implies the bound

N i,k
j ≤

mn(B(0, 1))32nn(n−p)/2

C2(n, p)C1(n, p)(n−p)/n ‖E‖
nλ−j(n−p) (2.12)

for every i, j ∈ N with i ≥ i0 and k ∈ Ii.
Let us next estimate the Hn−1-measure of the (n− 1)-projections of the sets

Fi,k =
∞⋃

j=1

⋃

B∈Bi,kj

B

for all i ≥ i0 and k ∈ Ii. By applying the estimate (2.12) and by the choice of λ, for every
i ≥ i0 and m = 1, . . . , n,

Hn−1(Pm(Fi,k)) ≤
∞∑

j=1

N i,k
j (2λi+j)n−1

≤ 2n−1

(
mn(B(0, 1))32nn(n−p)/2

C2(n, p)C1(n, p)(n−p)/n

)
‖E‖nλi(n−1)

∞∑

j=1

λj(p−1)

= 2n−1

(
mn(B(0, 1))32nn(n−p)/2

C2(n, p)C1(n, p)(n−p)/n

)
‖E‖n λp−1

1− λp−1
λi(n−1)

≤ C1(n, p)‖E‖−n
2n · 4n

(
2λi√
n

)n−1

.

Note that in Proposition 2.2 one can always assume C1(n, p)‖E‖−n < 1.
Suppose now that s < dimH(G). By Lemma 2.1 there exist m0 ≥ i0 and k0 ∈ Im0 such

that Nm0,k0
j ≥ λ−js for all j ≥ 0.

For those fixed valuesm0, k0 and using the above estimate on the Hn−1-measure of Pm(Fi,`),
for the case i = m0 + j, ` ∈ Ii, j ≥ 0, we can apply Lemma 2.3 to the function um0,k0 = u,
that was defined before. That is,
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∫

A
m0+j
l

|∇Eu(y)|p dy ≥
∫

A
m0+j
l ∩Q(x

m0+j
l ,2λm0+j/

√
n)
|∇Eu(y)|p dy

=

∫

Q(x
m0+j
l ,2λm0+j/

√
n)\Fm0+j,`

|∇Eu(y)|p dy

≥ C(n, p)‖E‖p−nλ(n−p)(m0+j),

where Am0+j
l ⊂ B(xm0+j

l , λm0+j) ∈ B
m0,k0
j . Now, by (2.10), and by summing over all the

scales j ≥ 0, we get

C(n)‖E‖pλm0(n−p) ≥ C(n)‖E‖p‖u‖p
L1,p(Ω)

≥ C(n)

∫

Rn
|∇Eu(y)|p dy

≥
∞∑

j=0

∑

{l∈Im0+j
:B(x

m0+j
l ,λm0+j)∈Bm0,k0

j }

∫

A
m0+j
l

|∇Eu(y)|p dy

≥
∞∑

j=0

Nm0,k0
j C(n, p)‖E‖p−nλ(n−p)(m0+j)

≥
∞∑

j=0

λ−jsC(n, p)‖E‖p−nλ(n−p)(m0+j)

= C(n, p)‖E‖p−n λm0(n−p)

1− λn−p−s .

This implies (observe that by the choice of λ we have C(n, p)‖E‖
−2n
p−1 ≤ λ)

s ≤ n− p− log (1− C(n, p)‖E‖−n)

log(λ)
≤ n− p− C(n, p)

‖E‖n log(‖E‖) .

Since s < dimH(G) was chosen arbitrarily, this concludes the proof of (2). �
Remark 2.4. Let us make a remark on the case n − 1 < p < n. In this case, by applying
Proposition 2.2 (2) we could slightly improve the estimates in the previous theorem. We
would have that for the function u defined above,∫

Ai+jl

|∇Eu(y)|p dy ≥ C(n, p)‖E‖−p(n−pn )λ(n−p)(i+j),

and therefore

s ≤ n− p−
log
(

1− C(n, p)‖E‖−p(n−pn )−p
)

log(λ)
≤ n− p− C(n, p)

‖E‖2p− p
2

n log(‖E‖)
.

3. Two-sided points of BV -extension domains

For a given domain Ω ⊂ Rn the space of functions of bounded variation in Ω is

BV (Ω) = {u ∈ L1(Ω) : ‖Du‖(Ω) <∞},
where

‖Du‖(Ω) = sup

{∫

Ω
udiv(v) dx : v ∈ C∞0 (Ω;Rn), |v| ≤ 1

}



TWO-SIDED BOUNDARY POINTS OF SOBOLEV EXTENSION DOMAINS 13

denotes the total variation of u on Ω. We endow this space with the norm ‖u‖BV (Ω) =
‖u‖L1(Ω) + ‖Du‖(Ω). We say that Ω is a BV -extension domain if there exists a constant
C > 0 and a (not necessarily linear) extension operator T : BV (Ω) → BV (Rn) so that
Tu|Ω = u and

‖Tu‖BV (Rn) ≤ C‖u‖BV (Ω)

for all u ∈ BV (Ω) and where C > 0 is an absolute constant, independent of u.
Let us point out that Ω being a W 1,1-extension domain always implies that it is also a

BV -extension domain (see [8, Lemma 2.4]).
A Lebesgue measurable subset E ⊂ Rn has finite perimeter in Ω if χE ∈ BV (Ω), where

χE denotes the indicator function of the set E. We set P (E,Ω) = ‖DχE‖(Ω) and call it the
perimeter of E in Ω. Moreover, the measure theoretic boundary of a set E ⊂ Rn is defined as

∂ME =

{
x ∈ Rn : lim sup

r↘0

|E ∩B(x, r)|
|B(x, r)| > 0 and lim sup

r↘0

|(Rn \ E) ∩B(x, r)|
|B(x, r)| > 0

}
,

and for a set of finite perimeter in Ω one always has P (E,Ω) = Hn−1(∂ME∩Ω). Finally, let us
recall the useful coarea formula for BV functions. Namely, for a given a function u ∈ BV (Ω),
the superlevel sets ut = {x ∈ Ω : u(x) ≥ t} have finite perimeter in Ω for almost every t ∈ R
and

‖Du‖(Ω) =

∫ ∞

−∞
P (ut,Ω) dt. (3.1)

Proof of Theorem 1.3. We want to prove that TΩ has σ-finite (n− 1)-dimensional Hausdorff
measure. Similarly to the beginning part of the proof of Theorem 1.2 and reasoning by
contradiction assume that there exists a set G ⊂ ∂Ω ∩ B(x0, r0), with r0 ∈ (0, 1), x0 ∈ G,
and two connected components Ω1,Ω2 ⊂ B(x0, 3r0) ∩ Ω for which G ⊂ ∂Ω1 ∩ ∂Ω2 such that
Hn−1(G) =∞.

Consider the set E = B(x0, r0)∩Ω1 for which we have χE ∈ BV (Ω). Take any measurable

function v in Rn so that v|Ω = χE . Note that Ẽt ∩ Ω = E for every t ∈ (0, 1) for the

superlevel sets Ẽt = {x ∈ Rn : v(x) ≥ t}. By using the measure density condition proved
in [3, Proposition 2.3] applied to both connected components Ω1 and Ω2, we get that there
exists c > 0 so that

mn(Ωi ∩B(x, r)) ≥ crn

for i = 1, 2 and all x ∈ G, r ∈ (0, r0). In particular, for every x ∈ G we have

lim sup
r↘0

mn(B(x, r) ∩ Ẽt)
mn(B(x, r))

≥ lim sup
r↘0

mn(B(x, r) ∩ Ω1)

mn(B(x, r))
> 0

and

lim sup
r↘0

mn(B(x, r) ∩ (Rn \ Ẽt))
mn(B(x, r))

≥ lim sup
r↘0

mn(B(x, r) ∩ Ω2)

mn(B(x, r))
> 0.

This means that G ⊂ ∂M Ẽt. Hence, Hn−1(∂M Ẽt) ≥ Hn−1(G) = ∞, so Ẽt does not have
finite perimeter in Rn for any t ∈ (0, 1). Hence, by the coarea formula (3.1), v /∈ BV (Rn). �
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Figure 1. The domain showing the sharpness of Theorem 1.2 (1). The set T

here is the fat Cantor set without its left-most point.

4. Examples

4.1. Sharpness of the estimate for p = 1. The following example shows the sharpness of
Theorem 1.2 (1). In this case, where p = 1, we do not need to care about the norm of the ex-
tension operator and consequently, we can rely on previous non-quantitative characterizations
of W 1,1-extension domains.

Example 4.1. Let us define

Ω2 = (−1, 1)2 \ {(x, y) : |y| ≤ dist (x,C), 0 ≤ x ≤ 1}
with C ⊂ [0, 1] a Cantor set with dimH(C) = 1 and H1(C) = 0. See Figure 1 for an
illustration of the domain Ω2.

We claim that Ω2 is a W 1,1-extension domain and that

dimH(T) = 1.

It is easy to see that dimH(T) = 1, since T = (C × {0}) \ {(0, 0)}. In order to see that Ω2

is a W 1,1-extension domain, one can use the following characterization from [10] for bounded
planar simply connected domains: Ω is a W 1,1-extension domain if and only if

there exists a constant K so that for every x, y ∈ Ωc there exists a curve

γ ⊂ Ωc with x, y ∈ γ, `(γ) ≤ K|x− y|, and H1(γ ∩ ∂Ω) = 0.
(4.1)

Now, the domain Ω2 clearly satisfies (4.1) and is thus a W 1,1-extension domain.

Let us remark that Example 4.1 can also be generalized to higher dimensions n > 2 by
defining Ω ⊂ Rn as a product Ω2 × (−1, 1)n−2. It is then clear that

dimH(T) = n− 1.

The fact that Ω is a W 1,1-extension domain does not seem to immediately follow from known
explicit results. One way to see that Ω is a W 1,1-extension domain is the following. Observe
that the proof in [12] of the fact that a product of W 1,p-extension domains, with p > 1, is
again a W 1,p-extension domain relies on the explicit form of the extension operators (which in
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that case can always be assumed to be a Whitney extension operators). In the case p = 1 it is
unknown if the extension can always be done with a Whitney-type extension. However, the
extension operator constructed in [10] for simply connected planar domains, and in particular
for Ω2 is of Whitney-type. Thus, the argument in [12] goes through for our product domain
Ω.

4.2. A bound for the estimates for 1 < p < n. The case 1 < p < n requires more work
than the case p = 1, since the estimate in Theorem 1.2 depends on the norm of the extension
operator. The assignment of reflected cubes in the construction of the extension operator, and
the estimate of the norm of the extension operator follow roughly the proof of the sufficiency
of the characterizing curve condition of planar simply connected W 1,p-extension domains [9].

Let us describe the family of domains Ωλ we consider, where λ ∈ (0, 1/2) refers to the
contraction ratio of the Cantor set Cλ ⊂ Rn−1. The Cantor sets Cλ we use are the standard
ones obtained as Cλ =

∏n−1
i=1 Kλ with Kλ being the Cantor set on the unit interval given as

the attractor of the iterated function system {f1(x) = λx, f2(x) = λx+ 1− λ}.
We define first a set

D = (0, 1)n−2 ×
(
(−2, 1)× (−3/2, 3/2) \ [−1, 0]× [−1, 1]

)

and then the actual domain by carving out part of D:

Ωλ = D \Nλ,

where
Nλ = {(x1, . . . , xn) ∈ [0, 1]n : |xn| ≤ dist ((x1, . . . , xn−1), Cλ)} .

Then, the set of two-sided points for Ωλ is

TΩλ = Cλ × {0}
and so it has dimension

dimH(TΩλ) = dimH(Cλ) = −(n− 1) log 2

log λ
. (4.2)

Our aim is to build an extension operator Eλ from L1,p(Ωλ) to L1,p(Rn) for which we have

dimH(Cλ) ≥ n− p− C(n, p)

||Eλ||
.

As will be explicit in (4.5), the constructed operator Eλ will be bounded only for p in the
range

1 < p < n− dimH(Cλ).

It is enough to construct an extension operator Eλ : L1,p(Ωλ)→ L1,p(D), since the extension
from L1,p(D) to L1,p(Rn) is independent of λ, and exists since D is a Lipschitz domain.
Moreover, our definition of Eλ will be independent of p and will give a bounded operator
between the Sobolev spaces W 1,p(Ωλ) and W 1,p(D). From now on we consider λ ∈ (0, 1/2)
fixed and we denote the extension operator by E instead of Eλ to simplify the notation.

Below by a dyadic cube we mean a set of the form Q = [0, 2−k]n + j ⊂ Rn for some k ∈ Z
and j ∈ 2−kZn. Let W = {Qi}i∈N be a Whitney decomposition of the interior of Nλ and

W̃ = {Q̃i}i∈N a Whitney decomposition of Rn \Nλ. This is

(W1) Each Qi is a closed dyadic cube inside Nλ.
(W2) Nλ =

⋃
iQi and for every i 6= j we have int(Qi) ∩ int(Qj) = ∅.

(W3) For every i we have
√
n`(Qi) ≤ dist (Qi, ∂Nλ) ≤ 4

√
n`(Qi).
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(W4) If Qi ∩Qj 6= ∅, we have 1
4`(Qi) ≤ `(Qj) ≤ 4`(Qi).

The definition of W̃ goes parallel. See [16, Chapter VI] for the existence of such Whitney
decompositions. Consider also the subfamily of Whitney cubes

V = {Q ∈W : Q ∩ ([0, 1]n−1 × {0}) 6= ∅}.
Let us also distinguish an important subset of Ωλ, that we call

Q̃0 = (0, 1)n−2 × ((−2, 1)× (−3/2, 3/2) \ [−1, 1]× [−1, 1]) .

Note that Q̃ are dyadic, so for every Q̃ ∈ W̃ we have ∂((0, 1)n−1× (−1, 1))∩ int(Q̃) = ∅. Next
we choose {ψi}i∈N a partition of unity subordinate to the open cover {(9/8)int(Qi)}i∈N and
so that |∇ψi(x)| . `(Qi)−1.

Now, given u ∈ L1,p(Ωλ) we assign a value

ai =
1

mn(Q̃R(i))

∫

Q̃R(i)

u(x) dx

for every i ∈ N, where the function R : N → N is defined as follows. If Qi ∈ V, then

R(i) = 0. If Qi /∈ V we assign R(i) to be the unique index so that Qi and Q̃R(i) belong to

the same half-space {xn < 0} or {xn > 0}, Pn(Qi) ⊂ Pn(Q̃R(i)), `(Q̃R(i)) ≤ 2`(Qi) where

Pn : Rn → Rn−1 : (x1, . . . , xn) 7→ (x1, . . . , xn−1), and Q̃R(i) is the closest cube to Qi with the
first three properties.

Now, we define the extension of the function u by

Eu(x) =





u(x), if x ∈ Ωλ∑∞
i=1 aiψi(x), if x ∈ int(Nλ),

0, if x ∈ ∂Nλ ∩D, .

(4.3)

Let us explain first why Eu ∈ L1,p(D). On the one hand, Eu ∈ L1,p(Ωλ) and, on the other
hand, we will see later that Eu ∈ L1,p(int(Nλ)). Since Cλ has Hausdorff-dimension strictly
less than n− 1, we have that almost every line parallel to the coordinate axis does not meet
the set Cλ. Consequently, any function in L1,p(D \ Cλ) is also ACL on D, implying that
L1,p(D) = L1,p(D \ Cλ) as sets. So, in order to then have Eu ∈ L1,p(D), it suffices to show
that Eu ∈ L1,p(D \ Cλ). This follows by noticing that by the definition of the operator E,
the trace of u

Tu(x) = lim
r↘0

1

mn(B(x, r) ∩ Ωλ)

∫

B(x,r)∩Ωλ

u(y) dy

on ∂Nλ \ Cλ coincides with that of Eu|int(Nλ)

TEu(x) = lim
r↘0

1

mn(B(x, r) ∩Nλ)

∫

B(x,r)∩int(Nλ)
Eu(y) dy.

To conclude that E is an extension operator it remains to control the Lp-norm of the
gradient of the extension on int(Nλ) by the Lp-norm of the gradient of the initial function.

We know that supp(ψi) ⊆ 9
8Qi and that |∇ψi(x)| . `(Qi)−1 for every x and i ∈ N, so it is

clear that for every x ∈ Qi,

|∇Eu(x)| ≤

∣∣∣∣∣∣
∑

Qj∩Qi 6=∅
∇ψj(x)(aj − ai)

∣∣∣∣∣∣
.

∑

Qj∩Qi 6=∅
`(Qj)

−1|aj − ai|.
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Now, if we take a cube Qi ∈ W, using that at most C(n) other cubes of the Whitney
decomposition are intersecting it and that `(Qi) ∼ `(Qj) if Qi ∩Qj 6= ∅ we write

‖∇Eu‖pLp(Qi)
=

∫

Qi

|∇Eu(x)|p dx .
∫

Qi

∑

Qj∩Qi 6=∅
`(Qj)

−p|ai − aj |p dx

. `(Qi)n−p
∑

Qj∩Qi 6=∅
|ai − aj |p.

(4.4)

It will be useful to work with chains of Whitney cubes that we next define. Given i, j so that

Qi∩Qj 6= ∅ and Qi, Qj /∈ V we define the chain of cubes joining Q̃R(i) with Q̃R(j), and denote

it by C(Q̃R(i), Q̃R(j)), to be a minimal family (in cardinality) of Whitney cubes whose union’s

interior is a connected set containing both the interiors of Q̃R(i) and Q̃R(j). Note that we

always have #C(Q̃R(i), Q̃R(j)) ≤ C0(n). Suppose Qi /∈ V is a cube so that there exists Qj ∈ V

with Qi ∩Qj 6= ∅. For the associated cube Q̃R(i) we define C(Q̃R(i), Q̃0) as a minimal family

of sets in W̃ ∪ {Q̃0} whose union’s interior is a connected set containing both the interiors of

Q̃R(i) and Q̃0 and so that every Q̃ ∈ C(Q̃R(i), Q̃0) satisfies Pn(Q̃R(i)) ⊂ Pn(Q̃).

We can assume there is an order in the chain when moving from Q̃R(i) to Q̃R(j) and call

Q̃next the next cube in the chain after Q̃. We write

C(Q̃R(i), Q̃R(j)) = {Q̃R(i), (Q̃R(i))next, . . . , Q̃R(j)}.
To ease the notation in the following sums from now on we write

Ci,j = C(Q̃R(i), Q̃R(j)) \ {Q̃R(j)} and Ci,0 = C(Q̃R(i), Q̃0) \ {Q̃0}.
Note that if Qi 6∈ V and there does not exists Qj such that Qj ∈ V and Qi ∩Qj 6= ∅ we define
Ci,0 = ∅.

Let also write

I =
{
Q̃ ∈ W̃ : Q̃ = Q̃R(i) for some i ≥ 1

}
.

We assert that the following claim holds.

Claim 4.2. With the above notation and for every r > 0 we have the following.

(i) For every Qi /∈ V

‖∇Eu‖pLp(Qi)
.

∑

{Q̃∈I : #C(Q̃R(i),Q̃)≤C0(n)}

∫

Q̃
|∇u(x)|p dx

+ `(Qi)
n−p−rpD(r, p)

∑

Q̃∈Ci,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx,

where D(r, p) = (1− 2
−rp
p−1 )1−p, and for every Qi ∈ V, we have

‖∇Eu‖pLp(Qi)
. `(Qi)n−p−rp

∑

Qj∩Qi 6=∅
Qj /∈V

D(r, p)
∑

Q̃∈Cj,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx.

(ii) For a given Q̃ ∈ W̃ and k ∈ Z we have

#
{
Qi ∈W \ V : Qi has a neighbouring cube in V, `(Q̃) = 2k`(Qi), Q̃ ∈ Ci,0

}
. 2

−(n−1) k log 2
log λ .
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Assuming for a moment that the claim is true let us show how one can estimate the full
norm ‖∇Eu‖pLp(Nλ). We first use Claim 4.2 (i) and change the order of summation to get

‖∇Eu‖pLp(Nλ) =
∑

Qi∈W
‖∇Eu‖pLp(Qi)

=
∑

Qi /∈V
‖∇Eu‖pLp(Qi)

+
∑

Qi∈V
‖∇Eu‖pLp(Qi)

.
∑

Q̃∈I

∑

{i : #C(Q̃R(i),Q̃)≤C0(n)}

∫

Q̃
|∇u(x)|p dx

+ 2
∑

Q̃∈W̃

∑

Q̃∈Ci,0

`(Qi)
n−p−rpD(r, p)`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx

. ‖∇u‖pLp(Ωλ) +
∑

Q̃∈W̃

∑

Q̃∈Ci,0

`(Qi)
n−p−rpD(r, p)`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx.

Moreover, by Claim 4.2 (ii) it follows that

∑

{i : Q̃∈Ci,0}

`(Qi)
n−p−rp .

∞∑

k=0

2
−(n−1) k log 2

log λ (2−k`(Q̃))n−p−rp =
`(Q̃)n−p−rp

1− 2
−n+p−(n−1) log 2

log λ
+rp

,

under the assumption

−n+ p− (n− 1)
log 2

log λ
+ rp < 0. (4.5)

So, joining these facts together we get

‖∇Eu‖pLp(Nλ) . ‖∇u‖
p
Lp(Ωλ) +

∑

Q̃∈W̃1

D(r, p)

(
1

1− 2
−n+p−(n−1) log 2

log λ
+rp

)∫

Q̃∪Q̃next

|∇u(x)|p dx

.
(

1

1− 2
−rp
p−1

)p−1(
1

1− 2
−n+p−(n−1) log 2

log λ
+rp

)
‖∇u‖pLp(Ωλ),

where W̃1 = {Q̃ ∈ W̃ : #{i : Q̃ ∈ Ci,0} > 0} and Q̃next ∈ Ci,0 for some i ∈ N such that

Q̃ ∈ Ci,0. Choosing r = p−1
p2

(n− p− dimH(Cλ)), we conclude that

||E|| . 1

1− 2
1
p

(−n+p+dimH(Cλ))
,

which yields

dimH(Cλ) ≥ n− p− C(n, p)

||E|| .

Let us now prove the Claim 4.2.
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Proof of Claim 4.2. To prove (i) we need to estimate |ai − aj |p in the expression (4.4). First
note that from (4.4) one gets

|ai − aj |p ≤


 ∑

Q̃∈Ci,j

∣∣∣∣∣
1

mn(Q̃)

∫

Q̃
u(x) dx− 1

mn(Q̃next)

∫

Q̃next

u(x) dx

∣∣∣∣∣



p

.


 ∑

Q̃∈Ci,j

`(Q̃)1−n
∫

Q̃∪Q̃next

|∇u(x)| dx



p

,

(4.6)

where we are using the Poincaré inequality in the last line (see [6, Lemma 2.2] and also [1]).
Observe that if Qj , Qi ∈ V then R(i) = R(j) = 0 and |aj − ai| = 0. We now consider two
cases.

(1) Suppose i, j are so that Qi ∩ Qj 6= ∅ and Qi, Qj /∈ V. Then using (4.6), that

#C(Q̃R(i), Q̃(R(j)) ≤ C0(n), that the sides of the cubes of the chain are compara-

ble to that of Q̃R(i), and hence that of Qi, and applying Hölder inequality

|ai − aj |p .
∑

Q̃∈Ci,j

`(Q̃)(1−n)p

(∫

Q̃∪Q̃next

|∇u(x)| dx
)p

. `(Qi)p−n
∑

Q̃∈Ci,j

∫

Q̃∪Q̃next

|∇u(x)|p dx.
(4.7)

(2) Suppose i, j are such that Qi ∩Qj 6= ∅, Qj ∈ V (then R(j) = 0) and Qi /∈ V then we
fix r > 0 to be determined later and apply Hölder inequality to (4.6) to get

|ai − aj |p .


 ∑

Q̃∈Ci,0

`(Q̃)−r`(Q̃)1−n+r

∫

Q̃∪Q̃next

|∇u(x)| dx



p

≤


 ∑

Q̃∈Ci,0

`(Q̃)
−r p

p−1



p−1

 ∑

Q̃∈Ci,0

`(Q̃)(1−n+r)p

(∫

Q̃∪Q̃next

|∇u(x)| dx
)p



.
( ∞∑

k=0

(2k`(Q̃R(i)))
−r p

p−1

)p−1

 ∑

Q̃∈Ci,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx




. D(r, p)`(Q̃R(i))
−rp


 ∑

Q̃∈Ci,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx


 .

(4.8)
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Going back to equation (4.4) for any Qi /∈ V, using (4.7) and (4.8) we have

‖∇Eu‖pLp(Qi)
. `(Qi)n−p


 ∑

Qj∩Qi 6=∅, Qj /∈V
|ai − aj |p +

∑

Qj∩Qi 6=∅, Qj∈V
|ai − aj |p




. `(Qi)n−p

 ∑

Qj∩Qi 6=∅, Qj /∈V
`(Qi)

p−n ∑

Q̃∈Ci,j

∫

Q̃∪Q̃next

|∇u(x)|p dx

+
∑

Qj∩Qi 6=∅, Qj∈V
D(r, p)`(Qi)

−rp ∑

Q̃∈Ci,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx




.
∑

{Q̃∈I : #C(Q̃R(i),Q̃)≤C0(n)}

∫

Q̃
|∇u(x)|p dx

+ `(Qi)
n−p−rpD(r, p)

∑

Q̃∈Ci,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx,

and if Qi ∈ V, using only (4.8)

‖∇Eu‖pLp(Qi)
. `(Qi)n−p

∑

Qj∩Qi 6=∅, Qj /∈V
|ai − aj |p

. `(Qi)n−p−rp
∑

Qj∩Qi 6=∅, Qj /∈V
D(r, p)

∑

Q̃∈Cj,0

`(Q̃)p−n+rp

∫

Q̃∪Q̃next

|∇u(x)|p dx.

which proves (i).
Let us prove (ii). Let us write the Cantor set Cλ ⊂ [0, 1]n−1 as

Cλ =

∞⋂

i=0

Ciλ =

∞⋂

i=0

⋃

1≤j≤2(n−1)i

Ii,j ,

where Ii,j is a translated copy of [0, λi]n−1 for all i = 0, 1, 2, . . . and j = 1, 2, . . . , 2(n−1)i. It is

clear that for i < i′, any cube Ii,j contains 2(n−1)(i′−i) cubes of side length λi
′
.

Fix Q̃ ∈ W̃ and k ∈ N. Let t ∈ N such that `(Q̃) = 2−t. We count the cardinality of

A =
{
Qi ∈W \ V : Qi has a neighbouring cube in V, `(Q̃) = 2k`(Qi), Q̃ ∈ Ci,0

}
.

Define B = {Pn(Qi)}Qi∈A, where Pn : Rn → Rn−1 : (x1, . . . , xn) 7→ (x1, . . . , xn−1).
Let m be the least positive integer such that λm < 2−t and let l be the least positive

integer so that λl ≤ 2−t−k. By the properties of the Whitney decomposition, the construction
of the Cantor set and the minimality of m it is enough to count #{Q ∈ B : dist (Q, Im,j) ≤
C(n)`(Q)} for a fixed Im,j . Moreover, by the selection of l none of the cubes Il,j contains any
Q ∈ B.

Because λl ≤ `(Q), we have

#
{
Q ∈ B : dist (Q, Il,j′) ≤ C(n)`(Q)

}
≤ c(n)



TWO-SIDED BOUNDARY POINTS OF SOBOLEV EXTENSION DOMAINS 21

for all Il,j′ ⊂ Im,j . Finally since Im,j ∩ C lλ is a disjoint union of 2(n−1)(l−m) cubes Il,j′ of side

length λl we conclude that

#A . #B ≤ c(n)2(n−1)(l−m) . 2
−k(n−1) log 2

log λ .

�
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A NECESSARY CONDITION FOR SOBOLEV EXTENSION DOMAINS IN

HIGHER DIMENSIONS

MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND JYRKI TAKANEN

Abstract. We give a necessary condition for a domain to have a bounded extension operator
from L1,p(Ω) to L1,p(Rn) for the range 1 < p < 2. The condition is given in terms of a power
of the distance to the boundary of Ω integrated along the measure theoretic boundary of
a set of locally finite perimeter and its extension. This generalizes a characterizing curve
condition for planar simply connected domains, and a condition for W 1,1-extensions. We
use the necessary condition to give a quantitative version of the curve condition. We also
construct an example of an extension domain in R3 that is homeomorphic to a ball and has
3-dimensional boundary.
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1. Introduction

A domain Ω ⊂ Rn is called a W k,p-extension domain, if we can extend each Sobolev
function u ∈ W k,p(Ω) to a global Sobolev function u ∈ W k,p(Rn) so that the Sobolev norm
of the extension is at most a constant times the norm of the original function. Sobolev
extension domains are interesting in several fields of analysis because on those one can use
many functional-analytic tools that are classically available for functions defined on the whole
space. Examples of Sobolev extension domains include Lipschitz domains [5, 32] and more
generally, (ε, δ)-domains [18]. For our context, the Lipschitz and (ε, δ) results should be
seen as sufficient conditions on the boundary of the domain for the extendability of Sobolev

Date: May 17, 2023.
2000 Mathematics Subject Classification. Primary 46E35.
Key words and phrases. Sobolev extension.
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functions. In this paper, we continue investigating the converse direction by finding a new
necessary condition for extendability.

Several necessary geometric conditions on the boundary of Sobolev extension domains are
already known. For instance, all Sobolev extension domains have positive densities at all the
points belonging to them (this is usually referred as to satisfy a measure density condition,
[19, 15]). Then, by the Lebesgue differentiation theorem we must have that their boundaries
are of zero Lebesgue measure. In general we cannot improve this to a non-trivial dimension
upper bound on the boundary of a Sobolev extension domain: take for example Ω = [0, 1]n\Cn
with C a Cantor set with zero Lebesgue measure and so that dimH(C) = 1.

However, one can still meaningfully study the dimension of the boundary of extension
domains. One approach is to limit the topology or other properties of the domain, and
another one is to investigate only those points that are more relevant for the extendability.
The second approach leads to the study of the size of the set of two-sided points of the
boundaries of Sobolev extension domains (that is, points where the boundary might self-
intersect and hence can be approached from two different sides in the domain). In the case
p ≥ n we have that W 1,p-extension domains are quasiconvex (see [19, Theorem 3.1]) and then
the set of two-sided points must be empty. The case 1 ≤ p < n is more interesting and has
been investigated in [33, 10], where bounds on the Hausdorff dimension of the set of two-sided
points are found.

Non-trivial dimension upper bounds for the whole boundary have been obtained only in
the special case of planar bounded simply connected extension domains [25]. These bounds
are based on the porosity of the boundary that is implied by the geometric characterizations
of bounded simply connected planar Sobolev extension domains, see (1.1) and (1.2) below.
The first such characterizations established that a bounded simply connected domain Ω ⊂ R2

is a W 1,2-extension domain if and only if Ω is a quasidisk (see [11, 12, 13, 18]).
In the case 2 < p <∞, Shvartsman [30] proved that a bounded finitely connected domain

Ω ⊂ R2 is a W 1,p-extension domain if and only if for some C > 1 the following condition is
satisfied: for every x, y ∈ Ω there exists a rectifiable curve γ ⊂ Ω joining x and y so that

∫

γ
dist (z, ∂Ω)

1
1−p ds(z) ≤ C|x− y|

p−2
p−1 . (1.1)

Let us mention that in [31], the curve condition (1.1) was also shown to characterize Lk,p-
extension domains for every 2 < p <∞ and k ∈ N. Here we define the homogeneous Sobolev
space Lk,p(Ω) to be the space of locally integrable functions whose distributional partial
derivatives belong to Lp(Ω).

Finally, for the case 1 < p < 2 the following result is proved in [22]: a bounded simply
connected domain Ω ⊂ R2 is a W 1,p-extension domain if and only if there exists C > 1 such
that for every x, y ∈ R2 \ Ω there exists a curve γ ⊂ R2 \ Ω connecting x and y such that

∫

γ
dist (z, ∂Ω)1−p ds(z) ≤ C|x− y|2−p. (1.2)

In Theorem 1.1 we generalize the condition (1.2) to higher dimensions; still for the range
1 < p < 2 of exponents. Before stating our result, let us look at the limiting case p = 1 that
partly motivates our formulation.

In the case of a bounded simply connected planar domain Ω, by the results from [23], we
know that Ω is a W 1,1-extension domain if and only if for every x, y ∈ Ωc there exists a curve
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γ ⊂ Ωc connecting x and y with

`(γ) ≤ C|x− y|, and H1(γ ∩ ∂Ω) = 0. (1.3)

In other words, the correct limit of the term dist (z, ∂Ω)1−p in (1.2) is 1/χR2\Ω(z) as p↘ 1.
The characterizing property (1.3) can also be seen as a combination of earlier results on BV -
extension domains and the following more general planar result [9]: A bounded BV -extension
domain Ω ⊂ R2 is a W 1,1-extension domain if and only if the 1-dimensional measure of the
set

∂Ω \
⋃

i∈I
Ωi

intersected with any Lipschitz curve is zero, where {Ωi}i∈I are the connected components of
R2 \ Ω. Recall that the space BV (Ω) consists of integrable functions u ∈ L1(Ω) whose total
variation

‖Du‖(Ω) = sup

{∫

Ω
udiv(v) dx : v ∈ C∞0 (Ω;Rn), |v| ≤ 1

}

is finite. As observed in [9], the above characterization of W 1,1-extension domains holds only
in the plane. This is essentially because the planar topology allows one to write the measure
theoretic boundary of a set of finite perimeter as the union of Jordan loops, see [1, Corollary
1] (recalled in Proposition 2.2 below).

In higher dimension where such decomposition result does not hold, the characterization is
written in terms of sets of finite perimeter. Before going to this characterization, let us recall
an earlier result on BVl-extension domains, where

BVl(Ω) = {u ∈ L1
loc(Ω) : ‖Du‖(Ω) <∞}.

In [4], Burago and Maz’ya proved the following characterization of BVl-extension domains:
Ω ⊂ Rn is a BVl-extension domain if and only if there exists some constant C > 0 so that

any set A ⊂ Ω of finite perimeter in Ω admits an extension Ã ⊂ Rn satisfying Ã∩Ω = A and

P (Ã,Rn) ≤ CP (A,Ω).

Since L1,1-extension domains are known to be BVl-extension domains (the proof of this fact
follows the same ideas as one may find in [21, Lemma 2.4]), the above property about extension
of sets of finite perimeter is a necessary condition both for BVl- and L1,1-extension domains.

In order to turn this into a characterization of L1,1- or W 1,1-extension domains, we have
to account for the intersection of the boundary of the extended set with the boundary of the
domain, analogously to (1.3). This leads to the following characterization in terms of strong
extension of sets of finite perimeter [9]: A bounded domain Ω is a W 1,1-extension domain if

and only if any set A ⊂ Ω of finite perimeter in Ω admits an extension Ã ⊂ Rn satisfying

Ã ∩ Ω = A,

P (Ã,Rn) ≤ CP (A,Ω) and also Hn−1(∂M Ã ∩ ∂Ω) = 0,

where ∂M Ã denotes the measure theoretic boundary of Ã. In order to remind ourselves of the
analogous condition in the planar simply connected case as the limit of (1.2), we can rewrite
this in an integral form

∫

∂M Ã

1

χRn\∂Ω(z)
dHn−1(z) ≤ C

∫

Ω∩∂MA

1

χRn\∂Ω(z)
dHn−1(z).

This motivates the formulation of the following main theorem of this paper.
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Theorem 1.1. Let Ω ⊂ Rn be an L1,p-extension domain for some 1 < p < 2. Then for any

ε > 0 and any measurable set A ⊂ Ω there exists a set Ã ⊂ Rn with A = Ã ∩ Ω and∫

∂M Ã
dist (z, ∂Ω)1−p dHn−1(z) ≤ C(n, p, ε)‖E‖n+p+ε

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z),

(1.4)
where ‖E‖ denotes the norm of the L1,p-extension operator, and the constant C(n, p, ε) de-
pends only on n, p and ε.

Let us immediately comment on the range 1 < p < 2 of exponents and the use of the
homogeneous Sobolev space L1,p in Theorem 1.1. The reason for the range of exponents is

that if p ≥ 2, then (1.4) is always satisfied by the choice Ã = A since the integral on the
right-hand side is infinite in the nontrivial cases. Thus, for p ≥ 2 the conclusion of Theorem
1.1 provides no information.

The use of the homogeneous Sobolev space is natural for scaling invariant results. In the
case Ω is bounded, the result still applies for W 1,p-extension domains because these are known
to be L1,p-extension domains as well (see [19]). When thinking about moving between W 1,p-
and L1,p-extensions in bounded domains, one should observe that for a set A occupying most

of Ω (in our proof, for A satisfying |A| > 1
2 |Ω|) the extension Ã satisfying (1.4) has to contain

all of the space Rn that is sufficiently far away from Ω.
It is worth noticing also that, if Ω is bounded, any measurable set A ⊂ Ω for which the

right hand side of the inequality (1.4) is finite must be of finite perimeter in Ω, and also the

set Ã that we construct will be of finite perimeter in Rn. If Ω were unbounded we would only

have that A and Ã are locally of finite perimeter in Ω and in Rn, respectively.
One might wonder if the condition in Theorem 1.1 is also sufficient for Ω to be an L1,p-

extension domain. It turns out that this is not the case: Suppose Ω′ ⊂ Rn is an arbi-
trary domain. We can modify Ω′ to a new domain Ω = Ω′ \ ⋃∞i=1B(xi, ri), where the balls
B(xi, ri) ⊂ Ω′ are selected in such a way that B(xi, 2ri) \B(xi, ri) ⊂ Ω (giving that we have
an extension operator from L1,p(Ω) to L1,p(Ω′)), but so that they accumulate densely enough

to the boundary of Ω′ so that for any A ⊂ Ω we can take Ã to be zero outside Ω due to
the right-hand side of (1.4) being infinite for any A for which we would not be able to take

Ã = A when considering (1.4) with respect to Ω′. Again, the condition (1.4) gives us no real
information on Ω as it holds regardless of Ω′ and thus Ω being an extension domain or not.

In dimensions at least three, one can make the above idea into a construction of a topo-
logically nice extension domain with large boundary. In the version of the construction that
we use to prove the following theorem, the removed balls from the domain are replaced by
removed tubes, and they accumulate only to a large portion of the boundary instead of the
whole boundary.

Theorem 1.2. There exists a domain Ω ⊂ R3 such that Ω = h(B(0, 1)) for a homeomorphism
h : R3 → R3, dimH(∂Ω) = 3 and Ω is a W 1,p-extension domain for all p ∈ [1,∞].

Note that the domain in Theorem 1.2 cannot be an (ε, δ)-domain, nor a John domain, since
these domains have porous boundaries and hence their Hausdorff (and packing) dimensions
would be strictly less than three. We also reiterate that the same type of example is not
possible in R2 by the dimension bounds on the boundary of a simply connected planar Sobolev
extension domain given in [25].

We wrote the dependence on the norm of the extension operator explicitly in Theorem
1.1 mainly in order to start the investigation of the dependence between the norm and the
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constant C in (1.2). Using this explicit form, we obtain a more quantified version of the
necessity of (1.2).

Theorem 1.3. Let Ω ⊂ R2 a bounded simply connected L1,p-extension domain for some
1 < p < 2. Then for every ε > 0 there exists a constant C(p, ε) > 0 such that for all
z1, z2 ∈ ∂Ω there exists a curve γ ⊂ R2 \ Ω joining z1 and z2 so that

∫

γ
dist 1−p(z, ∂Ω) ds(z) ≤ C(p, ε)‖E‖

4+4p−p2
2−p +ε|z1 − z2|2−p. (1.5)

We do not claim nor expect the dependence on ‖E‖ in (1.5) to be sharp. However, our
proof of Theorem 1.3 written in Section 4 gives the first explicit dependence. Since (1.2) is a
characterization, one could also try to get the dependence of the operator norm ‖E‖ on the
curve condition constant C. This direction of the proof of the characterization in [22] is more
technical. Consequently, we suspect the quantitative dependence in this direction to be more
difficult to obtain.

Acknowledgements. The authors acknowledge the support from the Academy of Finland,
grant no. 314789. This work was partly done while the first-named author was enjoying a
postdoctoral position at the Department of Mathematics and Statistics of the University of
Jyväskylä. He also wants to thank the department for their kind hospitality during his time
there.

2. Preliminaries

In what follows, we use the notation C(·) to mean a strictly positive and finite function on
the parameters listed in the parentheses, i.e. a constant once the listed parameters are fixed.
The function (constant) may change between appearances even within a chain of inequalities.

For any point x ∈ Rn and radius r > 0 we denote the open ball by B(x, r) = {y ∈ Rn :
|x− y| < r}. More generally, for a set A ⊂ Rn we define the open r-neighbourhood as

B(A, r) =
⋃

x∈A
B(x, r).

We denote by |A| the n-dimensional outer Lebesgue measure of a set A ⊂ Rn. For any
Lebesgue measurable subsets A ⊂ Ω ⊂ Rn and any point x ∈ Rn we define the upper density
of A at x over Ω as

D(A,Ω, x) = lim sup
r↘0

|A ∩B(x, r)|
|B(x, r) ∩ Ω| ,

and the lower density of A at x over Ω as

D(A,Ω, x) = lim inf
r↘0

|A ∩B(x, r)|
|B(x, r) ∩ Ω| .

If D(A,Ω, x) = D(A,Ω, x), we call the common value the density of A at x over Ω and denote
it by D(A,Ω, x). If Ω = Rn we simply write D(A, x), D(A, x), and D(A, x). The measure
theoretic interior of A is then defined as

ÅM = {x ∈ Rn : D(A, x) = 1},
the measure theoretic closure of A as

A
M

= {x ∈ Rn : D(A, x) > 0},
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and the measure theoretic boundary of A as

∂MA = {x ∈ Rn : D(A, x) > 0 and D(Rn \A, x) > 0}.
As usual, Hs(A) stands for the s-dimensional Hausdorff measure of a set A ⊂ Rn obtained

as the limit

Hs(A) = lim
δ↘0

Hs
δ(A),

where Hs
δ(A) is the s-dimensional Hausdorff δ-content of A defined as

Hs
δ(A) = inf

{ ∞∑

i=1

diam (Ui)
s : A ⊂

∞⋃

i=1

Ui, diam (Ui) ≤ δ
}
.

By a dyadic cube we refer to Q = [0, 2−k]n + j ⊂ Rn for some k ∈ Z and j ∈ 2−kZn. We
denote the side-length of such dyadic cube Q by `(Q) := 2−k.

2.1. Sets of finite perimeter. A Lebesgue measurable subset A ⊂ Rn has finite perimeter
in an open set Ω if χA ∈ BV (Ω), where χA denotes the characteristic function of the set A.
We set P (A,Ω) = ‖DχA‖(Ω) and call it the perimeter of A in Ω. Here

‖DχA‖(Ω) = sup

{∫

A
div(v) dx : v ∈ C∞0 (Ω;Rn), |v| ≤ 1

}

denotes the total variation of χA on Ω.
It is well known that a set E has finite perimeter in Ω if and only if Hn−1(∂ME ∩Ω) <∞

(see [8, Section 4..5.11]). Let us recall as well the isoperimetric inequality, which follows from
the (1∗, 1)-Poincaré inequality for BV functions (see for instance [2, Theorem 3.44]).

Proposition 2.1. Let Ω ⊂ Rn be an open set and A ⊂ Ω a set of finite perimeter in Ω. Let
also Q,Q′ ⊂ Ω be two dyadic cubes with 1

4`(Q
′) ≤ `(Q) ≤ 4`(Q′) and so that int(Q ∪ Q) is

connected. Then we have

P (A, int(Q ∪Q′)) ≥ C(n) min{|A ∩ (Q ∪Q′)|1−1/n, |(Q ∪Q′) \A|1−1/n}. (2.1)

The study of the boundary of planar sets of finite perimeter can be reduced to the study
of Jordan loops via the following decomposition result from [1, Corollary 1]. We will use this
result in Section 4.

Proposition 2.2. Let E ⊂ R2 have finite perimeter. Then, there exists a unique decompo-
sition of ∂ME into rectifiable Jordan curves {C+

i , C
−
k : i, k ∈ N}, modulo H1-measure zero

sets, such that

(1) Given int(C+
i ), int(C+

k ), i 6= k they are either disjoint or one is contained in the

other; given int(C−i ), int(C−k ), i 6= k, they are either disjoint or one is contained in

the other. Each int(C−i ) is contained in one of the int(C+
k ).

(2) P (E,R2) =
∑

iH
1(C+

i ) +
∑

kH
1(C−k ).

(3) If int(C+
i ) ⊂ int(C+

j ), i 6= j, then there is some rectifiable Jordan curve C−k such that

int(C+
i ) ⊂ int(C−k ) ⊂ int(C+

j ). Similarly, if int(C−i ) ⊂ int(C−j ), i 6= j, then there is

some rectifiable Jordan curve C+
k such that int(C−i ) ⊂ int(C+

k ) ⊂ int(C−j ).

(4) Setting Lj = {i : int(C−i ) ⊂ int(C+
j )}, the sets Yj = int(C+

j ) \ ⋃i∈Lj int(C−i ) are

pairwise disjoint, indecomposable and E =
⋃
j Yj.
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2.2. Whitney decomposition. If Ω ⊂ Rn is an open set, not equal to the entire space Rn,
we let W = {Qi}∞i=1 be the standard Whitney decomposition of Ω, by which we mean that it
satisfies the following properties:

(W1) Each Qi is a closed dyadic cube inside Ω.
(W2) Ω =

⋃
iQi and for every i 6= j we have int(Qi) ∩ int(Qj) = ∅.

(W3) For every i we have `(Qi) ≤ dist (Qi, ∂Ω) ≤ 4
√
n`(Qi),

(W4) If Qi ∩Qj 6= ∅, we have 1
4`(Qi) ≤ `(Qj) ≤ 4`(Qi).

The reader can find a proof of the existence of such a dyadic decomposition of the set Ω in
[32, Chapter VI].

For such Whitney decomposition W we take a partition of unity {ψi}∞i=1 so that for every
i we have ψi ∈ C∞(Rn), spt(ψi) = {x ∈ Rn : ψi(x) 6= 0} ⊂ B(Qi,

1
16`(Qi)), ψi ≥ 0,

|∇ψi| ≤ C(n)`(Qi)
−1, and

∞∑

i=1

ψi = χΩ.

Notice that for each Qi ∈ W the above together with the bound on the size of the supports
and (W4) implies

ψi(x) = 1−
∑

j 6=i
ψj(x) = 1 for all x ∈ 1

2
Qi. (2.2)

In order to ease the notation, we denote for eachQi ∈W by N(Qi) the collection of neighboring
cubes that have a common face with Qi:

N(Qi) = {Qj ∈W \ {Qi} : int(Qi ∪Qj) is connected} .

2.3. Size estimates. In this subsection we recall the remaining key auxiliary results that
will be used in the paper.

The following lemma is a modification of [22, Lemma 3.2]. This version of the estimate
was proven in [10, Lemma 2.3]. (Here we can simplify the presentation a bit since we do not
need an exceptional set F .)

Proposition 2.3. Let Q be an n-dimensional cube in Rn with sides parallel to the coordinate
axes. Let f ∈ C(Q) ∩W 1,p(Rn) for some 1 ≤ p < ∞ and suppose there exists δ ∈ (0, 1) so
that

min (|{y ∈ Q : f(y) ≤ 0}|, |{y ∈ Q : f(y) ≥ 1}|) > δ`(Q)n.

Then ∫

Q
|∇f(y)|p dy ≥ C(n, p)δ

n−p
n `(Q)n−p.

For L1,p-extension domains Ω with 1 ≤ p < ∞ the following measure density condition
holds for points x ∈ Ω. This version of the measure density condition was proven in [10,
Proposition 2.2] following the results in [15], see also [19].

Proposition 2.4. Let 1 ≤ p < ∞ and let Ω ⊂ Rn be a Sobolev L1,p-extension domain with
an extension operator E. Then, for all x ∈ Ω and

r ∈
(

0,min

{
1,

( |Ω|
2 |B(0, 1)|

)1/n
})

,



8 MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND JYRKI TAKANEN

we have

|Ω ∩B(x, r)| ≥ C(n, p)‖E‖−nrn.

3. Proof of the necessary condition

In this section we prove Theorem 1.1. In order to make the structure of the proof clearer,
we first present the proof assuming the more technical parts proven. These technical parts
are stated as separate lemmata. They are then proven after the proof of Theorem 1.1.

Proof of Theorem 1.1. We start with a measurable set A ⊂ Ω so that
∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z) <∞. (3.1)

Notice that if (3.1) fails, we can simply take Ã = A as the set satisfying the required inequality
(1.4).

Following the definitions in Subsection 2.2, let W = {Qi} and W̃ = {Q̃i} be the Whitney
decompositions of Ω and Rn \ Ω respectively, and let {ψi}∞i=1 be the partition of unity in Ω
subordinate to W = {Qi}.

We first modify our set A by means of selecting those Whitney cubes that intersect the set
A in a large enough measure set. Namely, we let

A′ =
⋃

Qi∈W
|A∩Qi|> 1

2
|Qi|

Qi.

It will be easier to handle this new set A′ rather than the original set A.
Next, for the constant c = 20

√
n we define

A0 =
⋃

Q̃∈W̃
|cQ̃∩A′|>|cQ̃∩(Ω\A′)|

Q̃.

Our extension of the set A is then defined as

Ã = A ∪A0.

The task in proving Theorem 1.1 is now to show that the choice of Ã above works. We
divide this task into several lemmata. The first lemma justifies the replacement of A by A′.

Lemma 3.1. For the sets A and A′ above we have∫

Ω∩∂MA′
dist (z, ∂Ω)1−p dHn−1(z) ≤ C(n)

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z).

The next step is then to go from the set A′ to a Sobolev function to which we can apply
our L1,p-extension operator. This is done with a Whitney smoothing operator SW defined via
the partition of unity {ψi}∞i=1 for Ω. We define for any v ∈ L1

loc(Ω) a smoothened version of
v as

(SWv)(x) =

∞∑

i=1

ψi(x)
1

|Qi|

∫

Qi

v(y) d(y). (3.2)

Whitney smoothing operators similar to the one above have been used for instance in [14, 3,
24, 9].
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In addition to smoothing the function, the operator SW has the important property of
leaving the trace of the function unmodified on the boundary of Ω. Within our proof, this
is the content of the last Lemma 3.4. The second lemma relates the integral in (1.4) to the
Lp-norm of the gradient of the smoothened version of the indicator function. We write the
lemma for a general set F , but here inside the proof of Theorem 1.1 use it only for the set A′.

Lemma 3.2. Let SW be the operator defined in (3.2). Then for any measurable F ⊂ Ω with

∫

Ω∩∂MF
dist (z, ∂Ω)1−p dHn−1(z) <∞

we have SWχF ∈ C∞(Ω) and

‖∇SWχF ‖pLp(Ω) ≤ C(n, p)

∫

Ω∩∂MF
dist (z, ∂Ω)1−p dHn−1(z).

We now use SW to pass from the characteristic function χA′ to a Sobolev function

u = SWχA′ ∈ L1,p(Ω).

Lemma 3.2 together with Lemma 3.1 then gives us

‖∇u‖pLp(Ω) ≤ C(n, p)

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z). (3.3)

The third lemma shows that the extension Ã of the set A has the correct property outside
the closure of the domain Ω. The fact that Ω is a Sobolev extension domain is used in the
proof of this lemma. Recall that ‖E‖ denotes the norm of the L1,p-extension operator.

Lemma 3.3. With the A0 and u defined above, for every ε > 0 we have

∫

∂MA0\Ω
dist (z, ∂Ω)1−p dHn−1(z) ≤ C(n, p, ε)‖E‖n+p+ε‖∇u‖pLp(Ω).

Now, the combination of Lemma 3.3 and the inequality (3.3) gives

∫

∂MA0\Ω
dist (z, ∂Ω)1−p dHn−1(z) ≤ C(n, p, ε)‖E‖n+p+ε

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z).

(3.4)
The last lemma deals with the boundary of Ω, where in principle some part of the measure

theoretic boundary of Ã could live and cause the integral on the left-hand side of (1.4) to be
infinite.

Lemma 3.4. With our set Ã defined above, we have Hn−p(∂M Ã ∩ ∂Ω) = 0.

Since we can write

∂M Ã = (∂MA0 \ Ω) ∪ (Ω ∩ ∂MA) ∪ (∂M Ã ∩ ∂Ω),
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we can split the integral on the left-hand side of (1.4) and use the estimate (3.4) and Lemma
3.4 to obtain

∫

∂M Ã
dist (z, ∂Ω)1−p dHn−1(z) =

∫

∂MA0\Ω
dist (z, ∂Ω)1−p dHn−1(z)

+

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z)

+

∫

∂M Ã∩∂Ω
dist (z, ∂Ω)1−p dHn−1(z)

≤ C(n, p, ε)‖E‖n+p+ε

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z)

+

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z) + 0

≤ C(n, p, ε)‖E‖n+p+ε

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z).

Thus, we conclude the proof of Theorem 1.1. �

Let us then focus on proving the lemmata we used in the proof of Theorem 1.1.

Proof of Lemma 3.1. Setting ai = |A′∩Qi|
|Qi| ∈ {0, 1} we start by writing

∫

Ω∩∂MA′
dist (z, ∂Ω)1−p dHn−1(z) ≤

∑

Qi

∫

Qi∩∂MA′
dist (z, ∂Ω)1−p dHn−1(z)

≤
∑

Qi

∑

Qj∈N(Qi)

`(Qi)
1−pP (A′, Qi ∪Qj)

=
∑

Qi

∑

Qj∈N(Qi)
ai 6=aj

`(Qi)
1−pP (A′, Qi ∪Qj),

and

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z) ≥ 1

2

∑

Qi

∫

Qi∩∂MA
dist (z, ∂Ω)1−p dHn−1(z)

≥ C(n, p)
∑

Qi

∑

Qj∈N(Qi)

`(Qi)
1−pP (A,Qi ∪Qj)

≥ C(n, p)
∑

Qi

∑

Qj∈N(Qi)
ai 6=aj

`(Qi)
1−pP (A,Qi ∪Qj).

Hence, we only need to check that for i, j ∈ N with Qj ∈ N(Qi) and ai 6= aj we have
P (A′, Qi ∪ Qj) ≤ C(n)P (A,Qi ∪ Qj). Assuming without loss of generality that ai = 1 and
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aj = 0, this is seen by using the isoperimetric inequality (2.1)

P (A,Qi ∪Qj) ≥ C(n) min{|A ∩ (Qi ∪Qj)|1−1/n, |(Qi ∪Qj) \A|1−1/n}
≥ C(n) min{|A ∩Qi|1−1/n, |Qj \A|1−1/n}
≥ C(n) min{(1/2)1−1/n`(Qi)

n−1, (1/2)1−1/n`(Qj)
n−1}

≥ C(n)`(Qi)
n−1

≥ C(n)P (A′, Qi ∪Qj). �
Proof of Lemma 3.2. From the definition of SW, for every Qk ∈W we get

‖∇SWχF ‖pLp(Qk) ≤ C(n, p)
∑

Qk∩Qi 6=∅

∑

Qj∈N(Qi)

`(Qi)
n−p|ai − aj |,

where

ai =
1

|Qi|

∫

Qi

χF (x) dx =
|F ∩Qi|
|Qi|

.

Assume that we have i, j ∈ N with Qj ∈ N(Qi). We may further assume that ai ≥ aj . Then,
by using the isoperimetric inequality (2.1) we get

P (F,Qi ∪Qj) ≥ C(n) min{|F ∩ (Qi ∪Qj)|1−1/n, |(Qi ∪Qj) \ F |1−1/n}
≥ C(n) min{|F ∩Qi|1−1/n, |Qj \ F |1−1/n}
≥ C(n) min{(ai)1−1/n`(Qi)

n−1, (1− aj)1−1/n`(Qj)
n−1}

≥ C(n)`(Qi)
n−1|ai − aj |

n−1
n

≥ C(n)`(Qi)
n−1|ai − aj |.

Hence, we have

‖∇SWχF ‖pLp(Qk) ≤ C(n, p)
∑

Qk∩Qi 6=∅

∑

Qj∈N(Qi)

`(Qj)
n−p|ai − aj |

≤ C(n, p)
∑

Qk∩Qi 6=∅

∑

Qj∈N(Qi)

`(Qi)
1−pP (F,Qi ∪Qj).

Therefore, by using the finite overlapping between Whitney cubes, we have

‖∇SWχF ‖pLp(Ω) ≤ C(n, p)
∑

Qk

∑

Qk∩Qi 6=∅

∑

Qj∈N(Qi)

`(Qi)
1−pP (F,Qi ∪Qj)

≤ C(n, p)
∑

Qk

∫

Qk∩∂MF
dist (z, ∂Ω)1−p dHn−1(z)

≤ C(n, p)

∫

Ω∩∂MF
dist (z, ∂Ω)1−p dHn−1(z). �

Proof of Lemma 3.3. We introduce the following subfamily of Whitney cubes of W̃

V0 =
{
Q̃ ∈ W̃ : Q̃ ⊂ A0, ∂

MA0 ∩ Q̃ 6= ∅
}
.

We then have
∂MA0 \ Ω ⊂

⋃

Q̃∈V0

∂(Q̃).
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Let us fix Q̃ ∈ V0 for the moment. Then there exists a neighbouring cube Q̃′ ∈ W̃, that is

Q̃′ ∩ Q̃ 6= ∅, so that Q̃′ 6⊂ A0. By the definition of A0, we have

|cQ̃ ∩A′| > 1

2
|cQ̃ ∩ Ω| (3.5)

and

|cQ̃′ ∩ (Ω \A′)| ≥ 1

2
|cQ̃′ ∩ Ω|. (3.6)

In particular, (3.5) and (3.6) imply that

Ω 6⊂ cQ̃ or Ω 6⊂ cQ̃′.

Therefore,

max{`(Q̃), `(Q̃′)} ≤ C(n) diam (Ω). (3.7)

Combining (3.7),(3.6) and (3.5) with the measure density condition stated in Proposition
2.4, we get

min
{
|cQ̃ ∩A′|, |cQ̃′ ∩ (Ω \A′)|

}
≥ C(n, p)‖E‖−n`(Q̃)n.

Recall that u = SWχA′ =
∑∞

i=1 aiψi where ai = |A′∩Qi|
|Qi| ∈ {0, 1}. By (2.2) we have ψi = 1 on

1
2Qi and so if Q ⊂ A′, then u = 1 on

1

2
Q and if Q 6⊂ A′, then u = 0 on

1

2
Q. Therefore,

min
{
|{y ∈ 9cQ̃ ∩ Ω : u(y) ≤ 0}|, |{y ∈ 9cQ̃ ∩ Ω : u(y) ≥ 1}|

}
> C(n, p)‖E‖−n`(9cQ̃)n.

Let s ∈ (1, p). Then by Proposition 2.3, we have

(∫

9cQ̃
|∇Eu(x)|s dx

) p
s

≥
(
C(n, p)‖E‖−n`(Q̃)n−s

) p
s ≥ C(n, p)‖E‖−nps `(Q̃)n−p`(Q̃)( p

s
−1)n.

This concludes our estimate for the fixed Q̃ ∈ V0.
Now, since p/s > 1, we may use the boundedness of the Hardy-Littlewood maximal oper-

ator

M : L
p
s (Rn)→ L

p
s (Rn),
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to get
∫

∂MA0\Ω
dist (z, ∂Ω)1−p dHn−1(z) ≤

∑

Q̃∈V0

∫

∂MA0∩Q̃
dist (z, ∂Ω)1−p dHn−1(z)

≤ C(n)
∑

Q̃∈V0

`(Q̃)n−p

≤ C(n, p)‖E‖nps
∑

Q̃∈V0

`(Q̃)(1− p
s

)n

(∫

9cQ̃
|∇Eu(x)|s dx

) p
s

≤ C(n, p)‖E‖nps
∑

Q̃∈V0

`(Q̃)n
(

–

∫

9cQ̃
|∇Eu(x)|s dx

) p
s

≤ C(n, p)‖E‖nps
∑

Q̃∈V0

∫

Q̃
|M(|∇Eu|s)(x)|

p
s dx

≤ C(n, p)‖E‖nps
∫

Rn\Ω
|M(|∇Eu|s)(x)|

p
s dx

≤ C(n, p)‖E‖nps
∫

Rn
|M(|∇Eu|s)(x)|

p
s dx

≤ C(n, p, s)‖E‖nps
∫

Rn
|∇Eu(x)|p dx

≤ C(n, p, s)‖E‖nps ||E||p
∫

Ω
|∇u(x)|p dx.

Since we may choose p
s > 1 to be arbitrarily close to 1 with the price of enlarging the constant

C(n, p, s), the lemma is proven. �

Proof of Lemma 3.4. We divide the proof into three parts. The parts 1 and 3 will imply the
claim of the lemma, while part 2 is needed in the proof of part 3.

Part 1: For Hn−p-a.e. x ∈ ∂Ω the limit D(A′,Ω, x) = limr→0
|A′ ∩B(x, r)|
|B(x, r) ∩ Ω| exists and is

either 0 or 1.

Proof of Part 1. Let

F =
{
x ∈ ∂Ω : D(A′,Ω, x) /∈ {0, 1} or the limit does not exist

}

and assume towards contradiction that Hn−p(F ) > 0. Then, there exists δ > 0 so that
Hn−p(Fδ) > 0 for

Fδ =

{
x ∈ ∂Ω : ∃rxi ↘ 0 such that

|A′ ∩B(x, rxi )|
|B(x, rxi ) ∩ Ω| ∈ [δ, 1− δ]

}
.

Fix ε ∈ (0, 1) and for every x ∈ Fδ choose i so that rxi < ε, then

Fδ ⊂
⋃

x∈Fδ
B(x, rxi )
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and hence by the Vitali covering theorem (see [6, Theorem 1.24]) there exists a countable
disjointed collection {B(xi, ri)}i∈N so that

|A′ ∩B(xi, ri)|
|B(xi, ri) ∩ Ω| ∈ [δ, 1− δ] (3.8)

and Fδ ⊂
⋃
i∈NB(xi, 5ri). Recall that u = SWχA′ , and that by Lemma 3.2 and Lemma 3.1

we have

‖∇u‖pLp(Ω) ≤ C(n, p)

∫

Ω∩∂MA′
dist (z, ∂Ω)1−p dHn−1(z)

≤ C(n, p)

∫

Ω∩∂MA
dist (z, ∂Ω)1−p dHn−1(z) <∞.

So, we have u ∈ L1,p(Ω). We extend u to Eu ∈ L1,p(Rn). Observe that for every i ∈ N, by
(3.8) and by the measure density condition (Proposition 2.4) we have

|A′ ∩B(xi, ri)| ≥ δ|B(xi, ri) ∩ Ω| ≥ C(n, p)‖E‖−nδrni
and

|B(xi, ri) \A′| ≥ |(B(xi, ri) ∩ Ω) \A′| ≥ δ|B(xi, ri) ∩ Ω| ≥ C(n, p)‖E‖−nδrni .
Therefore, by the definition of u via SW, and the fact that A′ is the union of the same Whitney
cubes used in the definition of SW, we have

|{x ∈ B(xi, ri) : Eu ≤ 0}| ≥ C(n, p, ‖E‖, δ)rni
and

|{x ∈ B(xi, ri) : Eu ≥ 1}| ≥ C(n, p, ‖E‖, δ)rni .
Hence, we may apply Proposition 2.3 to get the estimate

∫

B(xi,ri)
|∇u(y)|p dy ≥ C(n, p, ‖E‖, δ)rn−pi .

We can now conclude

Hn−p
ε (Fδ) ≤ C(n, p)

∑

i∈N
(5ri)

n−p ≤ C(n, p, ‖E‖, δ)5n−p
∑

i∈N

∫

B(xi,ri)
|∇u(y)|p dy

≤ C(n, p, ‖E‖, δ)
∫

B(Fδ,ε)
|∇u(y)|p dy.

Using that by the measure density condition |Fδ| ≤ |∂Ω| = 0, the right hand side tends to
zero as ε↘ 0. So Hn−p(Fδ) = 0 which is a contradiction. We have thus proven Part 1. �

Part 2: The following two implications hold for Hn−p-almost every x ∈ ∂Ω:

If D(A′,Ω, x) = 1, then D(A,Ω, x) = 1, (3.9)

and

if D(A′,Ω, x) = 0, then D(A,Ω, x) = 0. (3.10)
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Proof of Part 2. Let us first show that by going to complements, we only need to prove (3.9).
Towards this, assume that (3.9) is true for every measurable set A ⊂ Ω. Suppose then that
D(A′,Ω, x) = 0. Call B = Ω \A and consider the associated

B′ =
⋃

{Qi∈W: |B∩Qi|≥ 1
2
|Qi|}

Qi.

We have B′ = Ω \ A′. Since D(B′,Ω, x) = 1, we have by assumption that D(B,Ω, x) = 1.
Thus, D(A,Ω, x) = 0 and we have shown (3.10). (Notice that the form of the definitions of
the sets A′ and B′ differ slightly in that one has a strict inequality while the other does not.
However, it is easy to observe that this does not affect the proof below.)

Let us then prove (3.9). The argument is similar to the proof of Part 1. This time we write

G =
{
x ∈ ∂Ω : D(A′,Ω, x) = 1 and D(A,Ω, x) 6= 1

}

and assume towards contradiction that Hn−p(G) > 0. Then, as in the previous proof, there
exists δ > 0 so that Hn−p(Gδ) > 0 for

Gδ =

{
x ∈ ∂Ω : ∃rxi ↘ 0 such that

|A ∩B(x, rxi )|
|B(x, rxi ) ∩ Ω| < 1− δ

and
|A′ ∩B(x, r)|
|B(x, r) ∩ Ω| >

1

2
for all 0 < r < δ

}
.

Now, at this stage it is enough to notice that by the definition of A′ we have

|A ∩B(x,Cr)| ≥
∑

Qi∈W
Qi⊂B(x,Cr)

|Qi ∩A| ≥
∑

Qi∈W
Qi⊂B(x,Cr)

1

2
|Qi ∩A′| ≥

1

2
|A′ ∩B(x, r)|

so that by the measure density, we have that for some δ′ > 0

Gδ ⊂
{
x ∈ ∂Ω : ∃rxi ↘ 0 such that

|A ∩B(x, rxi )|
|B(x, rxi ) ∩ Ω| ∈ [δ′, 1− δ′]

}
. (3.11)

Let us now consider v = SWχA. By Part 1 of the proof the balls B(xi, ri) for which we
have

|{x ∈ B(xi, ri) : Ev ≤ η}| ≥ C(n, p, ‖E‖, δ′)rni (3.12)

and

|{x ∈ B(xi, ri) : Ev ≥ 1− η}| ≥ C(n, p, ‖E‖, δ′)rni (3.13)

for some constant η ∈ (0, 1
4) are well controlled. Therefore, we only need to control those

balls for which either (3.12) or (3.13) fails. By taking the constant η small enough, we have
by the measure density condition and (3.11) that for such balls

|{x ∈ B(xi, ri) : η < Ev < 1− η}| ≥ C(n, p, ‖E‖, δ′)rni .

This in turn via (2.1) means that the combined Lebesgue measure of the Whitney cubes
Q ⊂ B(xi, Cri) ∩ Ω for which we have

P (A,Q) ≥ C(η, n)`(Q)n−1
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is at least Crni . Call the collection of these cubes Ri. Now,
∫

∂MA∩Ω∩B(xi,Cri)
dist (z, ∂Ω)1−p dHn−1(z) ≥

∑

Q∈Ri

∫

∂MA∩Q
dist (z, ∂Ω)1−p dHn−1(z)

≥ C
∑

Q∈Ri
`(Q)n−p ≥ Crn−pi .

(3.14)

Since in the application of Vitali’s covering theorem we may take B(xi, Cri) pairwise disjoint,
the combination of the estimate from Part 1 for the balls satisfying (3.12) and (3.13), and
the estimate (3.14) for the rest gives

Hn−p
ε (Fδ) ≤ C

∫

B(Fδ,Cε)
|∇v(y)|p dy + C

∫

∂MA∩Ω∩B(Fδ,Cε)
dist (z, ∂Ω)1−p dHn−1(z).

This gives the needed contradiction and proves (3.9) and thus Part 2.
�

Part 3: The following two implications hold for Hn−p-almost every x ∈ ∂Ω:

If D(A′,Ω, x) = 1, then D(Ã, x) = 1, (3.15)

and

if D(A′,Ω, x) = 0, then D(Ã, x) = 0. (3.16)

Proof of Part 3. Since the definition of A0 passes (up to the difference between a strict and
non-strict inequality) to the complements, similarly to the Part 2 it is enough to prove the
implication (3.15).

Let x ∈ ∂Ω with D(A′,Ω, x) = D(A,Ω, x) = 1 and r > 0. (Notice that by Part 2 of the
proof, D(A,Ω, x) = 1 holds for Hn−p-almost every x ∈ ∂Ω with D(A′,Ω, x) = 1.) Now, if

Q̃ ∈ W̃ with Q̃ * A0, by the definition of A0 and the measure density condition (Proposition
2.4) we have

|cQ̃ ∩ (Ω \A′)| ≥ 1

2
|cQ̃ ∩ Ω| ≥ C(n, p, ‖E‖)|Q̃|. (3.17)

Consider the collection

B =
{
Q̃ ∈ W̃ : Q̃ * A0, Q̃ ∩B(x, r) 6= ∅

}

and let x
Q̃

be the center of each Q̃ ∈ W̃. By the Vitali covering theorem there exists a

subcollection B′ ⊂ B so that
⋃

Q̃∈B

B
(
x
Q̃
,
√
nc`(Q̃)

)
⊂
⋃

Q̃∈B′
B
(
x
Q̃
, 5
√
nc`(Q̃)

)

and

B
(
x
Q̃1
,
√
nc`(Q̃1)

)
∩B

(
x
Q̃2
,
√
nc`(Q̃2)

)
= ∅ (3.18)

for any two Q̃1, Q̃2 ∈ B′ with Q̃1 6= Q̃2. Notice that (3.18) implies that also

cQ̃1 ∩ cQ̃2 = ∅.
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Hence, by (3.17)

|B(x, r) \ (A0 ∪ Ω)| ≤
∑

Q̃∈B′

∣∣∣B
(
x
Q̃
, 5
√
nc`(Q̃)

)∣∣∣ ≤ C(n)
∑

Q̃∈B′
|Q̃|

≤ C(n, p, ‖E‖)
∑

Q̃∈B′
|cQ̃ ∩ (Ω \A′)|

≤ C(n, p, ‖E‖)|B(x,Mr) ∩ (Ω \A′)|,

(3.19)

where M > 0 is a constant depending only on n so that cQ̃ ⊂ B(x,Mr) for any Q̃ ∈ W̃ with

Q̃ ∩B(x, r) 6= ∅.
With (3.19) and the measure density condition we can estimate

|B(x, r) ∩ Ã|
|B(x, r)| = 1− |B(x, r) \ (A0 ∪ Ω)|

|B(x, r)| − |B(x, r) ∩ (Ω \A)|
|B(x, r)|

≥ 1− C(n, p, ‖E‖) |B(x,Mr) ∩ (Ω \A′)|
|B(x,Mr)| − |B(x, r) ∩ (Ω \A)|

|B(x, r)|

≥ 1− C(n, p, ‖E‖) |B(x,Mr) ∩ (Ω \A′)|
|B(x,Mr) ∩ Ω| − C(n)

|B(x, r) ∩ (Ω \A)|
|B(x, r) ∩ Ω| → 1,

as r ↘ 0, since D(A′,Ω, x) = D(A,Ω, x) = 1. This proves (3.15). �

We can now conclude the proof of the lemma by taking x ∈ ∂Ω for which the conclusions of

Part 1 and Part 3 above hold. Part 1 of the proof says that D(A′,Ω, x) = limr→0
|A′ ∩B(x, r)|
|B(x, r) ∩ Ω|

exists and is either 0 or 1. Then by Part 3 of the proof

D(Ã, x) = D(A′,Ω, x) ∈ {0, 1}
and hence x /∈ ∂M Ã. �

4. A quantitative version of the curve condition

In the present section we use Theorem 1.1 to prove Theorem 1.3. This gives a quantitative
version of a result proven in [22].

Theorem 1.3 states that if Ω ⊂ R2 is a bounded simply connected L1,p-extension domain
for some 1 < p < 2 with an extension operator E, then for every ε > 0 there exists a constant
C(p, ε) > 0 such that for all z1, z2 ∈ ∂Ω there exists a curve γ ⊂ R2 \ Ω joining z1 and z2 so
that ∫

γ
dist 1−p(z, ∂Ω) ds(z) ≤ C(p, ε)‖E‖

4+4p−p2
2−p +ε|z1 − z2|2−p. (4.1)

The curve condition (4.1) was proven in [22] to be a characterization of planar bounded
simply connected W 1,p-extension domains for 1 < p < 2 (a similar characterizing condition for
the complement of a bounded finitely connected planar domain for p > 2 was given in [30]).
Here we only prove the necessity, but provide a more explicit estimate on the dependence of
the operator norm ‖E‖ in (4.1).

The proof in [22] of the necessity of (4.1) starts by observing that the domain Ω is J-John,
by results in [19, Theorem 6.4], [12, Theorem 3.4], and [29, Theorem 4.5]. Recall that a
bounded domain Ω ⊂ R2 is called J-John for some constant J ≥ 1 if there is a point x0 ∈ Ω
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and a constant J ≥ 1 so that given z ∈ ∂Ω we can find a curve parameterized by arc length
γ ⊂ Ω joining z with x0 so that

dist (γ(t), ∂Ω) ≥ t

J
. (4.2)

The proof in [22] then continues by making a test function in Ω and by constructing the
required curve using conformal maps. These steps make it difficult to track the constants.

The proof of (4.1) in our approach starts by examining two conditions similar to the John
condition. We first prove a quantitative version of the so-called cigd condition (4.3) (see [29]
for this and similar conditions) for Sobolev extension domains. In the lemma below and
elsewhere in this section, for an injective curve γ ⊂ R2 (possibly defined on an open or half-
open interval) and two points x, y ∈ γ we denote by γx,y a minimal subcurve of γ so that
γx,y ∪ {x, y} is connected.

Lemma 4.1. Let Ω ⊂ R2 be a bounded simply connected L1,p-extension domain for some
1 < p < 2. Then for every x, y ∈ Ω there exists an injective curve γ ⊂ Ω ∪ {x, y} connecting
x to y and satisfying

min {diam (γx,z), diam (γy,z)} ≤ Ccig-d dist (z, ∂Ω) (4.3)

for all z ∈ γ, where Ccig-d = C(p)‖E‖
p

2−p .

Proof. Let us first prove the claim for x, y ∈ ∂Ω. By the Riemann mapping theorem there
exists a conformal map ϕ : D→ Ω. Since we know that Ω is a John domain, by [29, Theorem
2.18] the domain Ω is finitely connected along its boundary and hence ϕ extends as a con-
tinuous map to the boundary. We refer to this extension still by ϕ. Consider a ∈ ϕ−1({x})
and b ∈ ϕ−1({y}) so that one of the open arcs in S1 connecting a and b does not intersect
ϕ−1({x, y}). Call this arc I1 and write I2 = S1 \ (I1 ∪ {a, b}).

Using the sets I1 and I2 we now define a set

G = {z ∈ D : dist Ω,ϕ(z, I1) = dist Ω,ϕ(z, I2)} ,
where the distance dist Ω,ϕ(z, I) for a connected set I ⊂ S1 and a point z ∈ D is defined by

dist Ω,ϕ(z, I) = inf{`(γ) : γ ⊂ Ω curve such that ϕ−1(γ) ∪ I ∪ {z} is connected}.
Notice that since Ω is a John domain we have for any non-empty arc I and any z ∈ D
that dist Ω,ϕ(z, I) < ∞. This can be seen by taking c ∈ I, a sequence ci ∈ D converging
to c, the John curves γi connecting ci to the John-center x0, and finally a subsequence of
(γi) converging to the desired γ giving dist Ω,ϕ(ϕ−1(x0), I) ≤ `(γ) < ∞. The passage to an
arbitrary z ∈ D follows since any two points inside Ω can be connected by a curve in Ω of
finite length. Notice moreover, that dist Ω,ϕ(·, I) is a continuous function.

We claim that G ⊂ D is a closed set in D so that a and b are in the same connected
component of G∪ {a, b}. Suppose this is not the case. Then there exists a path α from I1 to
I2 that does not intersect G. However, the function

z 7→ f(z) = dist Ω,ϕ(z, I1)− dist Ω,ϕ(z, I2)

is continuous in D, and so in particular along the path α. Since f is negative near I1 and
positive near I2 the function f must be zero on some point of α. This contradicts G ∩ α = ∅
and the claim is proven. Let us call F the connected component of G ∪ {a, b} that contains
the points a and b.
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Now, consider the following open neighbourhood of G

U =

{
z ∈ D :

1

2
<

dist Ω,ϕ(z, I1)

dist Ω,ϕ(z, I2)
< 2

}
.

Since G ∪ {a, b} ⊂ U ∪ {a, b} contains a connected component connecting a to b, we can find
an injective curve β : (0, 1) → U so that β ∪ {a, b} is connected. Notice that at this point
we do not know if β can be extended to 0 and 1 as a curve connecting a and b, but after
establishing (4.4) below, we have that the image curve ϕ(β) : (0, 1)→ Ω extends uniquely to
a curve defined on [0, 1] connecting ϕ(a) to ϕ(b).

Next we will show that for any c ∈ β we have

min { diam (ϕ(βa,c)), diam (ϕ(βb,c))} ≤ C(p)‖E‖
p

2−p dist (ϕ(c), ∂Ω). (4.4)

Towards proving (4.4), let c ∈ β and C > 0 be so that

min {diam (ϕ(βa,c)), diam (ϕ(βb,c))} ≥ C dist (ϕ(c), ∂Ω). (4.5)

The estimate (4.4) is shown if we can prove that necessarily C ≤ C(p)‖E‖
p

2−p . We may
assume that C > 2.

Let γ1 be an injective curve in D∪{d1} joining d1 ∈ I1 to c and let γ2 be an injective curve
in D ∪ {d2} joining d2 ∈ I2 to c so that they satisfy

`(ϕ(γi)) < 2 dist Ω,ϕ(c, Ii).

Let ci ∈ γi ∩ β be such that γidi,ci ∩ β is a singleton. Now, the set D \ (γ1
d1,c1
∪ γ2

d2,c2
∪ βc1,c2)

consists of two connected components, which we denote byO1 andO2. Then, by the injectivity
of the curves γi and β and the selection of the points c1, c2, we have (by relabeling if necessary)
βa,c1 ⊂ O1 ∪ {a, c1} and βb,c2 ⊂ O2 ∪ {b, c2}.

Consequently, by (4.5) the sets Ωi = ϕ(Oi) satisfy

diam (Ωi) ≥ C dist (ϕ(c), ∂Ω).

Denote r = 4 dist (ϕ(c), ∂Ω) and notice that since c ∈ U , we have

r = 4 min { dist Ω,ϕ(c, I1), dist Ω,ϕ(c, I2)} ≥ 2 dist Ω,ϕ(c, Ii) > `(ϕ(γi)) for i = 1, 2. (4.6)

Define the test function

u(z) = χΩ1(z) max

{
min

{ |ϕ(c)− z| − r
r

, 1

}
, 0

}
.

Clearly spt(∇u) ⊂ B(ϕ(c), 2r) and |∇u| ≤ 1
r . Notice, that u = 0 on B(ϕ(c), r) and by (4.6)

we have ϕ(γi) ⊂ B(ϕ(c), r). Hence, for each z ∈ ϕ(γ1∪γ2) there exists ε > 0 such that u ≡ 0
in B(z, ε). Thus, u ∈W 1,p(Ω).

For the test function u we have ∫

Ω
|∇u|p ≤ 4πr2−p.

Let E : L1,p(Ω)→ L1,p(R2) be the extension operator. Then in polar coordinates

‖E‖p4πr2−p ≥ ‖E‖p
∫

Ω
|∇u|p ≥

∫

R2

|∇Eu|p ≥
∫ Cr

2r

∫ 2π

0
|∇Eu(α, t)|pt dα dt. (4.7)
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By absolute continuity and Hölder’s inequality for 2r < t < Cr we have

1 ≤
∫ 2π

0
|∇Eu(α, t)|tdα ≤

(∫ 2π

0
|∇Eu(α, t)|ptdα

) 1
p

(2πt)
1− 1

p .

Hence ∫ 2π

0
|∇Eu(α, t)|pt dα ≥ (2πt)1−p. (4.8)

By combining (4.7) and (4.8) we get

‖E‖p4πr2−p ≥ (2π)1−p
∫ Cr

2r
t1−p =

(2π)1−p

2− p
(
(Cr)2−p − (2r)2−p) .

This gives the upper bound

C ≤
(
‖E‖p21+pπp(2− p) + 22−p) 1

2−p . (4.9)

Thus we have established (4.4) and the lemma is proven in the special case x, y ∈ ∂Ω.
Let us then consider the general case x, y ∈ Ω. In this case we repeat the previous construc-

tion but replace Ω by the simply connected domain Ω′ = Ω\ ([x, x′]∪ [y, y′]) where x′, y′ ∈ ∂Ω
satisfy

|x− x′| = dist (x, ∂Ω) and |y − y′| = dist (y, ∂Ω)

and [x, x′] and [y, y′] denote the line segments from x to x′ and from y to y′, respectively.
Notice that Ω′ is not necessarily a Sobolev extension domain. However, for points near x and
y the condition (4.4) is satisfied trivially, and for points far from them, an enlarged ball meets
the sets ϕ(I1) \ ([x, x′] ∪ [y, y′]) and ϕ(I2) \ ([x, x′] ∪ [y, y′]), so one can still use the argument
from the special case. �

The next step is to go from the cigd condition (4.3) to a cigl condition (4.10). Before stating
this as a lemma, let us recall the corresponding implication from [26, p. 385–386] from the
so-called card condition to the so-called carl condition. This latter condition is very close to
the John condition (4.2), where one of the endpoints of all the curves is a fixed point x0.

Lemma 4.2. Let Ω ⊂ R2 be a bounded domain and let 0 < δ ≤ 1. Suppose that there exists
a curve γ : [0, 1]→ Ω such that for every t ∈ [0, 1]

γ([0, t]) ⊂ B(γ(t),
1

δ
dist (γ(t), ∂Ω)).

Then there exists another arc length parametrized curve γ̃ : [0, d] → Ω with γ̃(0) = γ(0),
γ̃(d) = γ(1) and

dist (γ̃(t), ∂Ω) ≥ 2−14δ2t for t ∈ [0, d].

Following the proof of [29, Theorem 2.14] we now use Lemma 4.2 to obtain the passage
from cigd to cigl.

Lemma 4.3. Let Ω ⊂ R2 be a bounded simply connected domain satisfying the condition
(4.3) with some constant Ccig-d. Then for every x, y ∈ Ω there exists an injective curve
γ ⊂ Ω ∪ {x, y} connecting x to y and satisfying

min {`(γx,z), `(γy,z)} ≤ Ccig-l dist (z, ∂Ω) (4.10)

for all z ∈ γ, where Ccig-l = 214C2
cig-d.
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Proof. Let us first consider the case where x, y ∈ Ω. Let γ ⊂ Ω be a curve joining x and
y and satisfying (4.3). Let x0 ∈ γ be a point such that diam (γx,x0) = diam (γy,x0). Then,
by using Lemma 4.2 separately to the curves α1 = γx,x0 and α2 = γy,x0 there exist arc
length parameterized curves α̃i : [0, di] → Ω, for i = 1, 2 so that α̃1(0) = x, α̃2(0) = y,
α̃1(d1) = α̃2(d2) = x0, and

dist (α̃i(t), ∂Ω) ≥ 2−14C−2
cig-dt for t ∈ [0, di] and i = 1, 2.

The concatenation of α̃1 and α̃2 now gives the curve satisfying (4.10).
Consider then the general case x, y ∈ Ω. Let {xi}, {yi} ⊂ Ω be sequences converging to

the points x and y, respectively, and let γi : [0, 1] → Ω be a collection of constant speed
parametrized curves connecting xi to yi, and satisfying (4.10) with the same constant Ccig-l.
Since Ω is bounded and the lengths of the curves are uniformly bounded, by Arzelá-Ascoli
there exists a sequence ij ↗∞ and a curve γ such that γij → γ uniformly. Moreover, by the
lower semicontinuity of length

min{`(γ|[0,t]), `(γ|[t,1])} ≤ lim inf
i→∞

min{`(γi|[0,t]), `(γi|[t,1])}

≤ lim inf
i→∞

Ccig-l dist (γi(t), ∂Ω) ≤ Ccig-l dist (γ(t), ∂Ω),

for all t ∈ [0, 1]. This concludes the general case.
Finally, note that the condition (4.10) still holds if we replace γ with an injective subcurve

[7, Lemma 3.1]. �

We are now ready to prove the main result of this section.

Proof of Theorem 1.3. Let 1 < p < 2, ε > 0 and Ω ⊂ R2 a bounded and simply connected
L1,p-extension domain. Let z1, z2 ∈ R2 \ Ω, r = |z1 − z2|, x = z1+z2

2 , and denote by Ωi the
connected components of B(x, 3r) ∩ Ω for which Ωi ∩ B(x, r) 6= ∅. We divide the proof into
two steps.

Step 1: Let us first show that we can connect any two points z′1, z
′
2 ∈ ∂Ωi ∩ ∂Ω with a

suitable curve. By Lemmata 4.1 and 4.3 we know that there exists a curve γ : [0, d] → Ω
parametrized by the arc length between z′1 and z′2 so that

min
{
`(γz′1,z), `(γz′2,z)

}
≤ Ccig-l dist (z, ∂Ω) (4.11)

for every z ∈ γ, where

Ccig-l = C(p)‖E‖
2p
2−p . (4.12)

Let us denote by αj , j = 1, 2, the subcurves of γ such that `(α1) = `(α2) and γ = α1 ∪ α2.
We parametrize αj : [0, `(αj)] → Ω so that αj(0) = z′j . We consider two cases. Assume first

that γ ⊂ B(x, 4r). By the condition (4.11) we have

`(αj |[0,t]) = t ≤ Ccig-l dist (αj(t), ∂Ω) ≤ 7Ccig-lr for all t ∈ [0, `(αj)].

Let us then consider the case γ 6⊂ B(x, 4r). Let ∆ be the connected component of Ωi \ γ
with z′1, z

′
2 ∈ ∂∆ and let C be a cross-cut in ∆ connecting z′1 to a point in γ \ B(x, 4r).

Let w be the first point where C intersects S1(x, 4r) when travelling from z′1. Denote by
S ⊂ S1(x, 4r) the maximal arc containing w such that S ∩ (α1 ∪ α2) = ∅. Let w1, w2 be
the endpoints of S. By reordering if necessary, there exist minimal times t1, t2 such that



22 MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND JYRKI TAKANEN

w1 = α1(t1) and w2 = α2(t2). Let α be the curve parametrizing α1|[0,t1] ∪ S ∪ α2|[0,t2] by arc
length. By (4.11), we have

`(αj |[0,t]) = t ≤ Ccig-l dist (αj(t), ∂Ω) ≤ Ccig-l|wj − zj | ≤ 7Ccig-lr

for all t ∈ [0, tj ]. Suppose that a ∈ S and b ∈ ∂Ω satisfy |a − b| < 1
2r. Then, since S

is contained in the interior of ∆ and Ωi ⊂ B(x, 3r), we have that the line segment [a, b]
intersects one of the αj at some point αj(t). Since `(αj |[0,t]) > 1

2r, we have

|a− b| ≥ |b− αj(t)| ≥ dist (αj(t), ∂Ω) ≥ r

2Ccig-l
.

Consequently,

dist (S, ∂Ω) ≥ min

{
r,

r

2Ccig-l

}
≥ r

2Ccig-l
.

Therefore (setting S = ∅ in the first case),
∫

α
dist (z, ∂Ω)1−p ds(z) ≤

∫

α1

dist (z, ∂Ω)1−p ds(z) +

∫

α2

dist (z, ∂Ω)1−p ds(z)

+

∫

S
dist (z, ∂Ω)1−p ds(z)

≤ 2

2− p
1

C1−p
cig-l

(7Ccig-lr)
2−p +

(
r

2Ccig-l

)1−p
8πr

≤ C(p)Ccig-l|z′1 − z′2|2−p.

(4.13)

Finally, a connected component A of Ω \α has finite perimeter in Ω, and since the domain

Ω is bounded, the extension Ã provided by Theorem 1.1 also has finite perimeter in R2. By

Proposition 2.2, the boundary ∂M Ã decomposes into Jordan loops {Γk}.
There exists one Jordan curve Γk in the decomposition with z1, z2 ∈ Γk z

′
1, z
′
2 ∈ Γk because

the points must be in the same connected component of ∂M Ã. We now write Γk = α ∗ α̃ as
a union of two curves, both having end points z′1, z

′
2. Therefore α̃ ⊂ R2 \ Ω and by Theorem

1.1 and (4.13), we have
∫

α̃
dist (z, ∂Ω)1−p ds(z) ≤ C(p, ε)‖E‖2+p+ε

∫

α
dist (z, ∂Ω)1−p ds(z)

≤ C(p, ε)‖E‖2+p+εCcig-l|z′1 − z′2|2−p.
(4.14)

Step 2: We now construct the curve γ by connecting the sets Ωi by suitable line-segments
and by using Step 1 for each Ωi to connect the entrance and exit points of Ωi. See Figure 1
for an illustration of the construction of γ.

Let us first check that by (4.11), we get an upper bound for the number k ∈ N of sets Ωi.
By the definition of sets Ωi, Ωi ∩B(x, r) 6= ∅ for all i = 1, . . . , k, so, there exists a curve in Ωi

satisfying (4.11) that starts in B(x, r) and exits B(x, 3r) at some point z ∈ S1(x, 3r) so that

dist (z, ∂Ω) ≥ 2r

Ccig-l
.

Consequently, there exists an arc S ⊂ S1(x, 3r) ∩ Ωi such that H1(S) > 4r
Ccig-l

. Hence,

4k r
Ccig-l

< 2π · 3r, and so

k <
3

2
πCcig-l. (4.15)
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z1 z2

Ω1

Ω2

Ω3

S0 S1

S2

α1

α2

α̃1

α̃2

Figure 1. The curve γ connecting z1 and z2 satisfying (4.1) is constructed
by concatenating radial line segments (giving the curves Si) inside disks com-
pletely contained in the complement of Ω and curves α̃i that are obtained
from Step 1 of the construction as (part of) the boundaries of extensions of
sets whose boundary in Ωi is αi.

Let us then construct a curve connecting z1 and z2 such that (4.1) holds. For notational
convenience, write Ω0 = {z1} and Ωk+1 = {z2}.

Define O0 = Ω0, U0 =
⋃

1≤i≤k+1 Ωi and a continuous function f0 by

f0 : t 7→ dist (O0, tz2 + (1− t)z1)− dist (U0, tz2 + (1− t)z1), 0 ≤ t ≤ 1.

Let t0 = max{t ∈ [0, 1] : f0(t) = 0}, and

R0 := dist (O0, t0z2 + (1− t0)z1) = dist (U0, t0z2 + (1− t0)z1).

Denote by P0 = t0z2 + (1− t0)z1. By the selection of P0 and R0 we have B(P0, R0) ⊂ R2 \Ω,

and there exists i0 ∈
{
i ∈ {1, . . . , k, k + 1} : Ωi ⊂ U0

}
such that O0 ∪ Ωi0 ∪ B(P0, R0) is

connected.
We continue by induction. Suppose we have found P0, . . . , Pj , R0, . . . , Rj , O0, . . . , Oj and

U0, . . . , Uj . Replacing Oj with Oj+1 = Oj ∪ Ωi0 and Uj with Uj+1 = Uj \ Ωi0 we repeat the
above process until i0 = k + 1.

The above process gives us a (relabeled) sequence Ω0, . . . ,Ωj+1 such that each adjacent pair
Ωm, Ωm+1 may be connected with Sm = [w2

m, Pm] ∪ [Pm, w
1
m+1] where w2

0 = z1, w1
j+1 = z2,

and w2
m ∈ ∂Ωm∩∂Ω∩B(Pm, Rm) and w1

m+1 ∈ ∂Ωm+1∩∂Ω∩B(Pm, Rm) for the other indices,
so that ∫

Sm

dist (z, ∂Ω)1−p ds(z) ≤ 2

2− p ·R
2−p
m ≤ 2

2− p |z1 − z2|2−p. (4.16)



24 MIGUEL GARCÍA-BRAVO, TAPIO RAJALA, AND JYRKI TAKANEN

For each m ∈ {1, . . . , j} we can connect w1
m and w2

m with a curve α̃m given by the special
case that satisfies (4.14) with the obvious changes of notation.

The final curve γ is obtained by the concatenation of the curves

S0, α̃1, S1, . . . , α̃j−1, Sj , α̃j , Sj+1.

By the bound (4.15) for the number of Ωi’s, combined with (4.14), (4.16), and (4.12), we see
that the curve γ satisfies

∫

γ
dist (z, ∂Ω)1−p ds(z) ≤ 3πCcig-l

2
·
(

2

2− p + C(p, ε)‖E‖2+p+εCcig-l

)
|z1 − z2|2−p

≤ C(p, ε)‖E‖2+p+εC2
cig-l|z1 − z2|2−p

≤ C(p, ε)‖E‖
4p
2−p+2+p+ε|z1 − z2|2−p

≤ C(p, ε)‖E‖
4+4p−p2

2−p +ε|z1 − z2|2−p.
This concludes the proof of the second step and the theorem. �

5. A Sobolev extension domain with large boundary

In this section we prove Theorem 1.2 which states the existence of a domain Ω ⊂ R3

such that Ω = h(B(0, 1)) for a homeomorphism h : R3 → R3, dimH(∂Ω) = 3 and Ω is a
W 1,p-extension domain for all p ∈ [1,∞].

We define first the following Cantor set C ⊂ [0, 1]3: Choose any strictly increasing sequence
of positive numbers {λi} satisfying

lim
i→∞

λi = 1/2 ;
∏

i≥1

2λi = 0.

For instance let λi := (1/2)e−1/i. Define inductively a family of closed sets Cn, with C0 =

[0, 1]3, so that each Cn =
⋃8n

i=1Cn,i consists of 8n disjoint cubes of sides ln = λ1 · · ·λn, in such
a way that for each i, Cn+1∩Cn,i is formed by 8 cubes equally distributed inside Cn,i (denote
l0 = 1). Namely, they are at least at a distance en+1 = ln(1 − 2λn+1)/3 between themselves
and also from the boundary of Cn,i.

Letting C =
⋂
n≥0Cn, we get a Cantor set of Hausdorff dimension 3 but L3(C) = 0. The

fact that dimH(C) = 3 follows from λi ↗ 1
2 , while L3(C) = 0 is implied by

∏
i≥1 2λi = 0. We

refer to [28, Corollary 4] for further details.
Let us next define tubes that approach our Cantor set. The tubes will be removed from the

open unit cube (0, 1)3 to form Ω so that C ⊂ ∂Ω. Define first xn,i to be the middle point of
the upper face of a cube Cn,i. Given a cube Cn,i we denote by Cn−1,j(i) the larger cube that
contains it from the previous iteration. Define a decreasing sequence of positive constants cn
by setting c0 = e1/8 ∈ (0, 1) and cn = cn−1/64 for all n ≥ 1. In particular, we then have
cn ≤ en/8 and cn ≤ ln for every n ∈ N.

The tubes will be defined as tubular neighbourhoods of curves Ln,i joining xn,i to a point
yn,i ∈ ∂Cn−1,j(i) on the top face of Cn−1,j(i). We require the curves Ln,i and points yn,i to
satisfy the following conditions:

(L1) Ln,i ⊂ Cn−1,j(i) \ int(Cn,i).
(L2) |yn,i − xn−1,j(i)| ≤ cn−1/8.
(L3) dist (Ln,i, Ln,j) ≥ cn for i 6= j.
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Figure 2. A two-dimensional illustration of the construction of Ω. We start
with a unit square and remove disjoint tubes that approach the top sides of
Cantor set construction pieces. This two-dimensional version is homeomorphic
to the unit ball, but contrary to n ≥ 3 it is not a Sobolev extension domain.

(L4) The curves Ln,i consist of segments that are parallel to the coordinate axes and have
length at least cn.

(L5) Ln,i approaches xn,i and yn,i perpendicular to the faces of Cn,i and Cn−1,j(i), respec-
tively.

Using the curves Ln,i we then define the tubes as

Tn,i =
{
x ∈ Cn−1,j(i) \ int(Cn,i) : dist (x, Ln,i) ≤ cn/4

}
.

Next we define

Tn =

8n⋃

i=1

Tn,i

for every n ≥ 1, and finally our domain as

Ω = (0, 1)3 \
⋃

n≥1

Tn.

See Figure 2 for a two-dimensional illustration of the construction.
By construction, we have

C ⊂ ∂
⋃

n≥1

Tn ⊂ ∂Ω ⊂ ∂(0, 1)3 ∪
⋃

n≥1

8n⋃

i=1

∂Tn,i ∪ C.
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Therefore, dimH(∂Ω) = 3 and L3(∂Ω) = 0 as required. What remains to be checked is that
Ω is homeomorphic to the open unit ball and that it is a Sobolev W 1,p-extension domain for
all 1 ≤ p ≤ ∞. We prove these separately in the following two lemmata.

Lemma 5.1. There exists a homemorphism h : R3 → R3 so that h(B(0, 1)) = Ω.

Proof. It is enough to prove the existence of a homeomorphism h : R3 → R3 so that h(Ω) =
(0, 1)3 since the unit cube and the unit ball are homeomorphic under a global homeomorphism.

Define the following decreasing sequence of open sets {Un}n≥1.

Un =



x ∈ R3 : dist


x,

⋃

i≥n
Ti


 <

cn
4



 .

Observe that each Un has exactly 8n disjoint connected components. Let us label these
components as Un,i ⊃ Tn,i. Notice also that

⋂

n≥1

Un = C.

We now define a sequence of homeomorphisms hn = hn,1 ◦ hn,2 ◦ · · · ◦ hn,8n so that each hn,i
satisfies the following conditions:

(H1) For the supports we have

spt(hn,i) := {x : hn,i(x) 6= x} ⊂ Un.
In particular, for a given n they are pairwise disjoint for different i.

(H2) For every two points x, y ∈ Un+1 ∩ Un,i we have

|hn,i(y)− hn,i(x)| ≤ |x− y|.
(H3) The map hn,i flattens the boundary of the tube Tn,i to the top face of Cn−1,j(i):

hn,i

(
(∂Cn−1,j(i) \ ∂Tn,i) ∪ (∂Tn,i \ ∂Cn−1,j(i))

)
= ∂Cn−1,j(i).

Using the maps hn we then define

h = lim
n→∞

h1 ◦ · · · ◦ hn.

Let us next check that h is well defined. On one hand, if x /∈ Un for some n, then
h(x) = h1 ◦ · · · ◦ hn(x), since by (H1) we have hk(x) = x when k > n. On the other hand,
if x ∈ ⋂n Un, by the pairwise disjointness of Un,i there exists a unique sequence (in) so that
x ∈ Un,in . Since diam (Un,in)→ 0 as n→∞, by (H2) also

diam (h(Un,in)) = diam (h1 ◦ · · · ◦ hn(Un,in))→ 0

as n→∞. Hence {h(x)} =
⋂
n h(Un,in).

Notice that h maps the Cantor set C bijectively to the Cantor set
⋂
n h(Un). Hence, being

a bijection outside the Cantor sets, h is a bijection Rn → Rn. Hence, in order to see that h
is a homeomorhism, by domain invariance it is enough to check that h is continuous. This
follows by the uniform continuity of the sequence (h1 ◦ · · · ◦ hn)n of homeomorphisms given
by (H1) and (H2). Thus, as the limit of uniformly continuous mappings, h is continuous.

Let us finally observe that h(Ω) = (0, 1)3. This is due to the condition (H3) implying
h(∂Tn) ⊂ ∂(0, 1)3 for all n and hence, by continuity of h, we have h(∂Ω) = ∂(0, 1)3. �
Lemma 5.2. Ω is a Sobolev W 1,p-extension domain for all 1 ≤ p ≤ ∞.
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Proof. Since Ω is a bounded domain it is enough to prove that it is an L1,p-extension domain
for the homogeneous norm since for bounded domains these are the same (see [19, 17]). We
will provide the extension in two steps. For this purpose we divide each of the tubes Tn,i
into an even number of shorter pieces of tubes to each of which we can extend the Sobolev
function from its small neighbourhood.

Recall that our tubes are of the form

Tn,i =
{
x ∈ Cn−1,j(i) \ int(Cn,i) : dist (x, Ln,i) ≤ cn/2

}
.

We now split each curve Ln,i into finitely many parts J(i, n)

Ln,i =

J(i,n)⋃

j=1

Ljn,i

so that the following four properties hold:

(P1) J(n, i) is an even number.

(P2) `(Ljn,i) ∈ [2cn, 6cn] for every j = 1, . . . , J(n, i).

(P3) Ljn,i ∩ L
j+1
n,i is just one point for every j = 1, . . . , J(n, i)− 1.

(P4) L1
n,i touches ∂Cn−1,j(i) and L

J(n,i)
n,i touches Cn,i.

The property (P1) together with (P2) can be satisfied because by the definition of cn, we have
`(Ln,i) ≥ 8cn. The condition (P3) and (P4) just say that the curves follow one after another

in the desired direction. Using the shorter curves Ljn,i we then write Tn,i =
⋃J(n,i)
j=1 T jn,i, where

each shorter tube T jn,i is the closure of the set of points of Tn,i which are closer to Ljn,i, for
every j.

We define the following open sets from which we extend a given Sobolev function to the
corresponding tube. If j is odd, we set

U jn,i =
{
x ∈ int(Cn−1,j(i)) : dist (x, Ljn,i) < 2cn, and x is closer toLjn,i than to other Lj

′
n,i

}
,

and if j is even, we set

U jn,i =
{
x : dist (x, T jn,i) < cn+1

}
.

By the assumptions (L4) and (P2), there exists a constant L so that for every n, i and

j there exists a map f jn,i : R3 → R3 which is a composition of an L-biLipschitz map and a
similitude so that

f jn,i(U
j
n,i) = Uodd and f jn,i(T

j
n,i) = T,

for j odd, and

f jn,i(U
j
n,i) = Ueven and f jn,i(T

j
n,i) = T,

for j even, where

T =

{
x = (x1, x2, x3) : x1 ∈ [0, 1] ,

√
x2

2 + x2
3 ≤ 1

}
,

Uodd =

{
x = (x1, x2, x3) : x1 ∈ (0, 1) ,

√
x2

2 + x2
3 < 2

}
,

and

Ueven = {x : dist (x, T ) < 1} .
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Figure 3. A two-dimensional illustration of the extension operator E1 (on
the left) that fills in every second piece of the tubes, and the extension operator
E2 (on the right) that fills in the rest of the pieces.

Now, for instance by Jones’ theorem [18], there exists an extension operator

Eodd : L1,p(Uodd \ T )→ L1,p(Uodd),

since Uodd is an (ε, δ)-domain. Consequently, the norms of the operators for odd j

Ejn,i : L
1,p(U jn,i \ T

j
n,i)→ L1,p(U jn,i) : u 7→ (Eodd(u ◦ (f jn,i)

−1)) ◦ f jn,i

are uniformly bounded. (Notice that the L-biLipschitz part of f jn,i changes the norms only
by a constant, whereas the similitude parts cancel out their effect on the norm since we use
the homogenous norm.)

Similarly, for j even, there exists an extension operator

Eeven : L1,p(Ueven \ T )→ L1,p(Ueven),

and so each of the operators for even j

Ejn,i : L
1,p(U jn,i \ T

j
n,i)→ L1,p(U jn,i) : u 7→ (Eeven(u ◦ (f jn,i)

−1)) ◦ f jn,i
are also uniformly bounded.

Next we see from the assumption (L3) that the collection {U jn,i}j odd is pairwise disjoint.
Hence, the extension operator

E1 : L1,p(Ω)→ L1,p

(
(0, 1)3 \

⋃

i,n
j even

T jn,i

)

defined by

E1u(x) =

{
Ejn,i(u|Ujn,i\T jn,i)(x), if x ∈ U jn,i with j odd,

u(x), otherwise,
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is bounded. Then we use again the assumption (L3) to notice that also the collection

{U jn,i}j even is pairwise disjoint. Therefore, also the extension operator

E2 : L1,p

(
(0, 1)3 \

⋃

i,n
j even

T jn,i

)
→ L1,p((0, 1)3 \ C)

defined by

E2u(x) =

{
Ejn,i(u|Ujn,i\T jn,i)(x), if x ∈ U jn,i with j even,

u(x), otherwise,

is bounded. See Figure 3 for an illustration of the extension operators E1 and E2.
Finally, we observe that (0, 1)3 is an extension domain (with some extension operator E3)

and the set C is removable for Sobolev functions since its projection to any coordinate plane
has zero two-dimensional measure. Thus, E3 ◦ E2 ◦ E1 : L1,p(Ω) → L1,p(R3) is a bounded
extension operator. �
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