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Patterns and processes shaping ecosystems vary across spatiotemporal scales. As plant 
functional traits reflect ecosystem properties, investigating their relationships with 
environment provides an important tool to understand and predict ecosystem struc-
ture and functioning. This is particularly important in the tundra where a chang-
ing climate may trigger severe alterations in plant communities as both summer and 
winter conditions are changing. Here, we investigate the relationships between key 
environmental drivers including summer temperature, snow persistence, topographic 
position and soil pH, and species height, specific leaf area (SLA) and seed mass as 
plant traits. The study is carried out at three spatial extents in the arctic–alpine region 
of Fennoscandia, modelling the trait-environment relationships at each scale to inves-
tigate whether the relationships are scale dependent. Our results show that summer 
temperature and snow persistence are the most important variables explaining com-
munity trait composition. Temperature is important especially to vegetation height, 
which increased towards higher temperatures, whereas seed mass and SLA are related 
to snow persistence. Seed mass decreased towards longer snow persistence, while SLA 
responded in scale-dependent ways. Topographic position and soil pH affect com-
munity trait composition moderately. Overall, our study demonstrates that trait-
environment relationships in the tundra are largely consistent across spatial scales. 
Our findings highlight the ecological relevance of snow for all three functional traits 
regardless of scale, showing that snow information could be particularly important to 
better understand large-scale trends in plant community composition and ecosystem 
functioning as seasonal snow cover is shrinking globally.

Keywords: arctic–alpine vegetation, functional traits, snow, summer temperature, 
vascular plants
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Introduction

Scale is a fundamental issue in describing and understand-
ing patterns and processes shaping ecosystems in space and 
time (Levin 1992). Across scales, environmental conditions 
drive plant species distributions (Guisan and Zimmermann 
2000), functional properties, and community structure 
(Bruelheide et al. 2018) as species coping well with prevail-
ing biotic and abiotic conditions maintain viable popula-
tions if the species can disperse to the region. Therefore, 
plant communities and their relationships with environment 
have been widely studied to characterize and predict eco-
system structure and functioning on a broad range of scales 
and biomes (Bruelheide et al. 2018, Bjorkman et al. 2018a, 
Rolhauser et al. 2021, Trujillo et al. 2022). However, differ-
ent interpretations and conclusions regarding these relation-
ships arise depending on the scale of the study and thereby 
available data. For example, it has been shown that large-scale 
climatological factors tend to drive species distributions and 
community patterns at a global or regional scale while locally 
soil resources and disturbances may be more decisive (Guisan 
and Zimmermann 2000, Bruelheide et al. 2018). Yet, whether 
these relationships are constant over a range of scales remains 
poorly understood as multiscale approaches are scarce.

Plant functional traits provide an important tool to exam-
ine feedbacks of environmental conditions to ecosystem 
functioning (Reich 2014) as they can explain both individ-
ual plant responses to abiotic factors as well as effects of the 
species on ecosystems (Lavorel and Garnier 2002). Above-
ground plant traits vary mainly on two axes. The first size-
structural axis determines vegetation based on e.g. plant 
height and seed mass (Díaz  et  al. 2016) describing species 
light-competitiveness and reproductive ability which affect 
for instance shading, trapping of snow and biogeochemical 
cycling across landscapes (Lavorel and Garnier 2002, Myers-
Smith  et  al. 2019, Sørensen  et  al. 2019). The second axis 
describes vegetation based on leaf economic spectrum i.e. leaf 
area and nutrient content (Wright et al. 2004) which in turn 
relate to species resource usage strategy (fast vs slow resource 
acquisition) influencing photosynthetic efficiency as well as 
water and nutrient cycles (Reich 2014). Additionally, seed 
traits can form a third axis depicting species dispersal and 
survival ability (Westoby 1998). Previous research has shown 
that variation in size traits has been related especially to limi-
tation in water or energy whereas variation in economics 
traits is also explained by soil fertility (Ordoñez et al. 2009, 
Joswig  et  al. 2022). However, the significance of different 
environmental factors controlling community functioning 
may vary with scale (Bruelheide et al. 2018).

Trait-environment relationships in environmentally 
extreme tundra are increasingly studied to better understand 
the effects of rapid warming on cold ecosystems (Myers-
Smith et al. 2019, Kemppinen et al. 2021, Testolin et al. 2021). 
Alterations both in growing season and winter conditions trig-
ger possible changes in plant communities (Bjorkman et al. 
2018a), for example, due to shrubification of the tundra 
(Reichle  et  al. 2018) or as boreal species disperse to areas 

currently dominated by arctic–alpine species (Niittynen et al. 
2020). Consequently, changes in community traits affect eco-
system structure and functions (Reich 2014, Bruelheide et al. 
2018, Happonen et al. 2022). Previous research indicates that 
changes in snow cover might be particularly important for 
plant community structure in tundra (Niittynen et al. 2020). 
The uneven distribution of snow across the tundra landscapes 
drives variation in the availability of soil moisture and nutri-
ents (Johansson et al. 2013, Semenchuk et al. 2015), deter-
mines the length of growing season, and provides shelter for 
species (Rixen et al. 2022, Rapacz et al. 2014). In addition to 
commonly used climatic and soil variables, snow information 
also provides a more process-based approach to characterize 
trait-environment relationships.

Environmental conditions and plant functional traits 
have consistent local-scale relationships over different tun-
dra regions (Kemppinen et al. 2021) but whether consistent 
relationships also occur across spatial scales remains unclear. 
Traditionally, species data used in community trait calcula-
tions are based on in-situ species observations limiting the 
location and spatial extent of study regions. However, as 
species observation data come increasingly available e.g. in 
national and global databases, these data could be utilised 
to study species communities at larger extents. Examining 
trait-environment relationships from local to broader scales 
could expand our knowledge not only about the ecology of 
the sensitive tundra environments, but also about the effect 
of methodological choices (e.g. data and study setting) on 
modelling trait-environment relationships. Here, we aim to 
address these issues by combining vascular plant occurrences 
and global plant functional trait measurements with envi-
ronmental data based both on local in-situ measurements as 
well as broader scale climate measurements and remote sens-
ing products to investigate trait-environment relationships 
within the tundra biome at subcontinental, regional and local 
scale in Fennoscandia. We examine the effect of summer tem-
perature, snow persistence, moisture conditions and nutrient 
status on functional traits representing plant growth, persis-
tence and reproduction. More specifically, we aim to find out 
how plant height, seed mass and specific leaf area (SLA) vary 
over the studied scales and examine:

1.	 What is the relative importance of key environmental 
variables explaining variation in plant height, seed mass 
and SLA at subcontinental, regional, and local scales?

2.	 Are the observed trait-environment relationships consis-
tent across the three scales?

Material and methods

Research area

Our study is located at the arctic–alpine region of Fennoscandia 
(ca 55–72° N, 5–32 °E) at three geographical scales (Fig. 1). 
Study area at the subcontinental scale (SUB, Fig. 1a) cov-
ers the arctic–alpine region of Fennoscandia based on the 
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arctic and alpine biogeographical regions of Europe (European 
Environment Agency 2015, Rissanen  et  al. 2021). Two cli-
matic gradients characterise the SUB area as climate shifts from 
oceanic in the east coast to continental in the western parts, 
and from temperate climate in the south to arctic conditions 
in the north (Aalto et al. 2014). Average annual temperature 
ranges from 7.8 in the south to −8.3°C in the northern parts 
of the study region, respectively (Karger et al. 2017). Variations 
in temperature and precipitation are also driven by the strong 
orographic effect of the Scandes mountains as elevation ranges 
from sea level to over 2400 m a.s.l. (Tikkanen 2005). The wide 
climatic and topographic gradients reflect also to snow per-
sistence ranging from areas which are practically free of snow 
whole year to the coldest parts where snow may persist to late 
summer (Supporting information). Due to past orogenies and 
glaciations, the quality of bedrock varies within the area reflect-
ing to variations in soil geochemical status (Virtanen 2003, 
Lidmar-Bergström and Näslund 2005).

The regional scale study area (REG, Fig. 1b) size of 195 km2 
is located in Finnmark, northern Norway (70°0ʹ N, 26°14ʹE) 
around two mountain massifs Rastigaisa and Geidnogaisa. 
From valley bottoms to mountain peaks elevation ranges from 
ca 100 to 1065 m a.s.l. and the average annual temperature 
varies between −0.3 and −5.7°C (Niittynen and Luoto 2018). 
Vegetation is dominated by tundra heath, though meadows 

occur at moister and nutrient richer sites and mountain birch 
forest occurs in the southeast parts of the area. Snow is a fun-
damental feature of the area and persists to late summer in 
sheltered areas where redistributed snow by wind accumulates 
(day of year [DOY] for average snow melt ranging from 112 
to 270, Supporting information). The bedrock of the area is 
mainly acidic crystalline rocks (Ryvarden 1969).

The local scale study area (LOC, Fig. 1c) size of 6 km2 
is located within the REG scale study area at the south-
eastern slope of Rastigaisa mountain (69.987° N, 26.345° 
E). Elevation within the area ranges from ca 400 to 764 m 
a.s.l. and the whole study area is located above forest line 
with the average annual temperature ranging from −2.5 to 
−4.5°C (gridded climate dataset 1981–2010, Aalto  et  al. 
2017). Vegetation is dominated by dwarf shrubs, such as 
crowberry Empetrum hermaphroditum, dwarf birch Betula 
nana and dwarf willow Salix herbacea, like at the REG scale. 
There are several long-lasting snow patches around the area 
and the average DOY of snow melt ranges from 129 to 206 
(Supporting information).

Species and functional trait data

Vascular plant species data included both field observations 
gathered by the authors (the LOC and REG scales) and 

Figure 1. Research area at three geographical scales. The SUB scale (a) includes 4991 study sites, the REG scale (b) 968 sites and the LOC 
scale (c) 49 sites respectively. Forested areas at the SUB and REG scales are excluded. Density plots show the distributions of the investigated 
community weighted mean (CWM) plant functional traits (d) and environmental variables at the SUB, REG and LOC scale (e). SLA = spe-
cific leaf area, Temp = average July temperature, Snow = snow persistence, TPI = topographic position index.
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occurrence data from databases (the SUB scale). At each scale, 
only species with at least three observations in unique study 
sites were considered in the plant community data to decrease 
the effect of single observations but to include as many spe-
cies as possible (especially at the LOC scale). Similarly, at 
each scale, we used only sites with at least three species pres-
ent to calculate community traits. Threshold of three species 
per site was chosen to include all LOC scale study sites in 
the analyses, as the minimum number of species present at a 
site in the LOC scale was three. Study sites and their species 
observations were independent at each scale as the sites from 
the finer scales were excluded from the broader scales.

Subcontinental community data were based on species 
occurrence observations gathered from the national data-
bases of Finland (https://laji.fi/en), Sweden (www.artpor-
talen.se) and Norway (www.artsdatabanken.no) as well as 
from GBIF (GBIF.org [25 February 2019] GBIF occurrence 
download https://doi.org/10.15468/dl.4tfm4y). Only occur-
rences within the defined arctic–alpine realm with a coordi-
nate accuracy of at least 100 m (surveyed 1990–2019) were 
included. Occurrence observations were aggregated into a 
grid with a cell size of 1 km2 and each grid cell was considered 
as a study site resulting in 12 041 study sites. Size of the SUB 
scale study sites was chosen to match the resolution of avail-
able environmental data and to decrease the possible effect of 
clustered sites.

Regional data comprised of 1102 study sites and the com-
munity data of each site consisted of four plots 1 m2 of size 
located 5 m from the centre of the study site towards the prin-
cipal compass directions. From all plots vascular plants were 
identified to species level (with few exceptions of ambiguous 
species, e.g. Taraxacum spp.) and their percentage cover was 
estimated. In the final site-level data the coverage of each spe-
cies was averaged over the four plots on each site. The data were 
collected during summers 2014–2018 (Niittynen et al. 2020).

Local data consisted of 49 study sites 1 m2 of size from 
which the occurrence and coverage of vascular plants were 
surveyed as at the regional scale during summer 2019. The 
sites were located beforehand based on stratified sampling, 
with minimum distance of 50 m between sites, to make sure 
that main environmental gradients are represented in the 
data, but the final positioning of the sites was judged in the 
field (Supporting information). At the centre of each site, a 
TMS-4 microclimate logger (Wild et al. 2019) was installed 
to measure soil and air temperature. Originally 50 study sites 
with microclimatic loggers were founded, but one site had to 
be excluded due to a broken logger.

To focus the study to open tundra environments and to 
harmonize both species and environmental data across the 
three scales, we excluded all forested areas from the SUB 
and REG scales. We removed all study sites within areas that 
were classified as ‘broad-leaved forest’, ‘coniferous forest’ or 
‘mixed forest’ in Corine Land Cover (CLC) data (European 
Environment Agency 2018). Additionally, we removed study 
sites that had any observations on tree species that form for-
ests in Fennoscandia (species list in the Supporting informa-
tion). In the final data, the SUB scale had 4991 study sites 

and the REC scale 968 sites in total. Final data at all scales 
contain species with both arctic–alpine and boreal distri-
butional background. We did not remove all boreal species 
as they (e.g. Vaccinium sp.) play a fundamental role in the 
Fennoscandian tundra communities. Forested areas were 
removed from the environmental raster layers, respectively, 
to prevent spatial predictions outside model calibration area.

Trait observations for three plant functional traits rep-
resenting leaf-height-seed -scheme were derived from three 
international databases: Tundra Trait Team (Bjorkman et al. 
2018b), TRY plant trait database (Kattge  et  al. 2011) and 
botanical information and ecology network (Maitner  et  al. 
2018). Measurements of plant height, seed mass and SLA 
were chosen as they represent both species growth and repro-
duction, competitive ability as well as tolerance for stress and 
disturbances (Westoby 1998, Wright et al. 2004). We calcu-
lated community weighted mean (CWM) traits for each site 
using species’ median trait value. CWM traits were calculated 
utilising R-package ‘FD’ (Laliberté et al. 2014) for sites from 
which trait data was available for > 90% of species (cover-
weighted at the LOC and REG scale). At the LOC and REG 
scales CWM traits were calculated using the abundances of 
the species, whereas at the SUB scale trait calculations were 
based on presence-absence data (and thus reflect the mean 
trait values across species) as abundance information was 
not derivable from the database occurrence observations. To 
include cryptogams in the community data, though they do 
not have seeds but spores instead, we used minimum seed 
mass (0.001 mg) found among other species to reflect their 
dispersal capability (Niittynen et al. 2020). Species with no 
trait data available (56 species at the SUB, 7 species at the 
REG and 1 species at the LOC scale) as well as genus level 
taxa (two taxa at the SUB and REG scale and one taxon at 
the LOC scale) were excluded from the CWM trait calcu-
lations and further analyses. In the final CWM data, the 
SUB scale comprised 574 species, the REG scale 141 species 
and the LOC scale 55 species respectively. Distributions of 
CWM traits at three study scales are presented in Fig. 1d and 
descriptive statistics in the Supporting information.

Environmental data

To investigate trait-environment relationships we chose four 
key environmental variables (Fig. 1e, Supporting informa-
tion) driving tundra ecosystem functioning representing 
growing season, snow cover, moisture conditions and soil pH 
(Bjorkman et al. 2018a, Myers-Smith et al. 2019). Moreover, 
we chose variables that were possible to acquire for each scale 
using as detailed information as possible to enable plausible 
comparison between scales. Hence, biotic factors and dis-
turbances were not included in this study. July mean tem-
perature (Temp) was chosen to account for growing season 
conditions, as it usually is the warmest summer month in 
northern regions and thus crucial for tundra vegetation. 
At the SUB scale Temp was derived from monthly aver-
age temperatures of CHELSA dataset (period 1979–2013, 
Karger et al. 2017) resampled to 1 km resolution. Temp at 
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the REG scale was based on a gridded climate dataset which 
was created utilising a digital elevation model (DEM) and the 
climate record (period 1981–2010) of 942 climate stations in 
Finland, Sweden and Norway (Aalto et al. 2017). Originally, 
climate surfaces were statistically modelled at 50 m resolu-
tion resampled here to 10 m resolution. At the LOC scale, 
Temp was calculated from monthly TMS-4 microclimate 
logger measurements averaging July temperature over three 
summers (2019–2021) based on measurements of T3 sensor 
(15 cm above ground) (for more detailed logger information 
see the Supporting information and Wild et al. 2019). A few 
measurement gaps in the temperature data (e.g. due to a fallen 
logger or detached radiation shield) were imputed using pre-
dictive mean matching based on temperature records from 
other years (van Buuren and Groothuis-Oudshoorn 2011). 
Additionally, to enable spatial predictions at the LOC scale, 
we modelled a spatially continuous Temp surface (at 2 m 
resolution) based on the logger data, geographical location, 
elevation, potential incoming solar radiation, slope and topo-
graphic position index (TPI, 10 m radius) utilising gener-
alised additive model (gam, Hastie and Tibshirani 1986), 
generalised boosted regression (gbm, Ridgeway 1999) and 
random forest (rf, Breiman 2001) (Supporting informa-
tion). Final Temp raster was the median of the three model 
predictions.

Snow persistence (Snow), defined using DOY of average 
snow melt, describes here the length of snow period. SUB 
scale snow persistence map (at ~ 400 m resolution) was 
constructed from two MODIS (moderate resolution imag-
ing spectroradiometer) imagery-based snow cover products 
(MOD10A1 and MYD10A1) from January to September 
2001–2018 (Hall et al. 2002). The snow melting DOY was 
determined per pixel from daily binary snow maps using 
binomial generalised linear model for each year and then 
averaging the melting DOY over the years (Niittynen and 
Luoto 2018, Rissanen et al. 2021). At the REG scale, snow 
information was derived from Landsat TM 5, ETM 7 and 
OLI 8 images from March to October 1984–2016 following 
the procedure by Niittynen and Luoto (2018) like at the SUB 
scale. LOC scale snow variable was derived from microcli-
mate loggers using T2 sensor (2 cm above ground) surface 
temperature measurements from two winters (2019–2020 
and 2020–2021). Snow persistence was calculated based 
on the days when the maximum T2 temperature remained 
below 1°C and the temperature range was below 10°C (cal-
culated with a 10 day moving average). Different temperature 
ranges were tested manually to empirically find the range that 
best detected the snow cover period based on visual interpre-
tation of the outcome. Final DOY of snow melt was aver-
aged over the two hydrological years. For LOC scale spatial 
predictions, we modelled also a spatially continuous snow 
persistence map using the logger data, remotely sensed snow 
information, geographical location, elevation, slope, TPI (10 
m radius) and wind index. Snow information for the spatial 
model was from 54 cloud-free PlanetScope satellite images 
(at 3 m resolution). We trained a RandomForest model to 
separate snowy pixels from melted ones resulting in two 

predictions per satellite image: 1) binary classification (snow 
or no-snow) and 2) a probability (0–1) of the predicted 
classes. Next, we calculated the snow persistence pixel-wise by 
using a binomial generalised linear model where binary clas-
sification was treated as a response variable and the day of the 
year of the image as an explanatory variable. Additionally, the 
class probabilities of the snow classifications were included 
as weights in the models to give more weight to observations 
with high certainty. Then the model was used to predict snow 
probability to a sequence of days and the melting DOY was 
determined as they day when snow probability drops below 
0.5. Snow persistence map was modelled similarly as Temp 
surface and the final snow map was the mean of gam, gbm 
and rf predictions (Supporting information).

Moisture conditions were accounted for using topographic 
position index as it was derivable for each scale respectively. 
TPI is the difference between the elevation of the focal loca-
tion to the mean surrounding elevation within a given radius 
(Guisan et al. 1999, Wilson and Gallant 2000, Weiss 2001). 
Positive values indicate sites which are located higher than 
the mean elevation, negative values indicate depressions 
and values close to zero represent continuous slopes or flat 
areas. TPI was calculated for all scales using the Topographic 
Position Index Tool in SAGA-GIS (www.saga-gis.org/saga_
tool_doc/7.6.2/ta_morphometry_18.html) with R-package 
‘Rsagacmd’ (Pawley 2021). TPI was calculated from DEM 
of each study area with a 1000 m radius at the SUB scale, a 
30 m radius at the REG scale and a 5 m radius at the LOC 
scale. As TPI is highly scale dependent, we calculated TPI 
using several radii at each scale and chose the one with high-
est Spearman correlations with the CWM traits (Supporting 
information). DEMs for each study area were based on com-
bined national DEMs from the Land Surveys of Finland, 
Sweden and Norway (2 m resolution for the LOC and REG 
scales and 50 m resolution for the SUB scale [aggregated for 
500 m resolution]).

Soil nutrient status was incorporated in our study using 
pH (Gough et al. 2000, Hobara et al. 2016, Happonen et al. 
2019). At the SUB scale, pH was derived from global 
SoilGrids data (topsoil pH in water) at 1 km resolution 
(Hengl et al. 2014). REG scale pH was determined from soil 
samples collected in summer 2014 from 429 plots around 
the study area at 5–10 cm depth. pH was analysed from 
freeze dried soil samples using distilled water as a solution 
liquid following standard International Organization for 
Standardization 10 390 protocol. To derive pH information 
to all REG study sites we spatially modelled pH based on the 
in-situ measurements using geographic location, elevation, 
annual average temperature, slope, water balance, SAGA wet-
ness index (Conrad et al. 2015) and soil conditions (soil qual-
ity and edaphic index, Niittynen et al. 2020) as predictors. 
Final pH value derived for study sites, was median of three 
model predictions: gam, gbm and rf. At the LOC scale, pH 
was determined following the same ISO protocol as at REG 
scale from topsoil samples collected at the centre of each LOC 
study site during the vegetation survey in 2019. Additionally, 
pH was spatially modelled at the LOC scale to enable spatial 
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predictions of traits using measured pH, geographical loca-
tion, elevation, water balance, SAGA wetness index, slope, 
soil class and edaphic index. Models were created similarly as 
for Temp and Snow and the final pH raster was the median of 
the three model predictions (Supporting information). Since 
pH was detected from topsoil samples, which often include 
both organic and mineral material depending on the organic 
and mineral layer depths as noticed from the REG and LOC 
scale samples, the values also reflect the organic vs mineral 
origins of the soil, with organic soils often having a lower pH.

To address comparability of differently derived environ-
mental data across the three study scales, we extracted Temp, 
Snow and pH data from REG and SUB scale raster layers 
to LOC scale study points (TPI was not considered as it is 
scale-specific). Some variation occurred in the ranges of the 
coarser scale data compared to ground-truthed LOC scale 
data (Supporting information). However, the ranges of the 
environmental variables overlapped substantially across the 
datasets indicating that the data at each scale represent rather 
similar environmental conditions. Furthermore, the ranges of 
all variables at each scale are plausible considering the envi-
ronmental conditions in the Fennoscandian tundra (Seppälä 
2005). Hence, environmental data was considered represen-
tative at each scale.

Statistical analyses

All statistical analyses were carried out using R (ver. 4.0.4, 
www.r-project.org). Before model fitting, environmental pre-
dictors were tested for possible collinearity problems examin-
ing pairwise correlations at each study scale. The correlation 
coefficient did not exceed |0.7| for any variable combination so 
the four predictors were kept for further analyses (Supporting 
information). To examine the relationship between plant 
functional traits and environmental conditions we used gen-
eralised linear models (glm, McCullagh and Nelder 1989). 
Glms were chosen as they allow non-linear relationships 
between response and predictor variables but are less prone 
to overfitting than more complex modelling methods and 
thus the responses are more easily interpreted (McCullagh 
and Nelder 1989, Elith et al. 2005). Glms were fitted with 
quadratic terms and without interactions using Gamma dis-
tribution and log-link. Gamma distribution was chosen as 
all three CWM traits were non-negative and positive-skewed 
at all study scales. Interactions between predictors were not 
included especially due to low number of study sites in the 
LOC scale to simplify model structure and hence increase the 
interpretability of the results.

Glms were fitted separately for each trait at each study 
scale resulting in nine different models. To increase model 
parsimony and keep only the most significant predictor vari-
ables for each trait we selected final model structure based 
on AIC value (Akaike information criterion, Akaike 1973). 
Variable selection was done with function stepAIC in pack-
age ‘MASS’ (Venables and Ripley 2002). Further analyses 
and presented results are based on these trait-specific mod-
els and referred to as final models. Final model structures 

for each trait at each scale are presented in the Supporting 
information.

From the final models we derived model fit, relative 
variable importance and response curves utilising all data 
from each scale. Model fit was expressed as mean explained 
deviance (D2) calculated using ten times bootstrapping, 
i.e. fitting model ten times with sampled data. At each 
bootstrapping round we also calculated relative variable 
importance based on decrease in D2 using variable shuf-
fling (Mod  et  al. 2021). First, D2 of the final model was 
recorded and then the model was re-fitted ten times by 
randomly shuffling one variable at time and recording D2 
of the model. At each round, the decrease in D2 in com-
parison to the final model with non-shuffled variables was 
calculated (larger decrease in D2 indicates higher variable 
importance). Mean decrease per variable was then propor-
tioned to summed mean decrease of all environmental vari-
ables in the model and multiplied by 100 to present relative 
importance of each variable in percentages (Mod  et  al. 
2021). To visualise the shapes of the relationship between 
traits and environmental variables i.e. response curves, we 
used the final model (fitted with non-sampled data) to pre-
dict values of environmental variables keeping other vari-
ables than that of interest constant in their median values 
(Elith et al. 2005). Response curves are projections of com-
munity trait variation in an environmental space where the 
predictor variable of interest varies whereas other predictors 
are kept constant. This enables to investigate the relation-
ship between each trait and each environmental variable 
(Elith et al. 2005). In the visualisations, we set the range of 
the predictors to the shared minimum and maximum values 
over the three scales to enhance comparability of responses 
across the scales. However, as TPI values depend on scale-
specific DEMs the range of TPI varies between scales also 
in the plotted response curves. The predictive power of the 
models was evaluated with repeated cross-validation (10 
rounds with 70% calibration and 30% evaluation data) for 
the SUB and REG scale models. The LOC scale models 
were evaluated with leave-one-out cross-validation due to a 
small sample size. Predictive accuracy of the models across 
scales was expressed calculating root mean squared error 
(RMSE). In addition, the correlation between observed and 
predicted CWMs was calculated.

To visualise spatial variation in CWM traits across scales 
we produced spatial predictions of each trait at each scale. 
Spatial predictions were produced at each scale using the final 
model (fitted with all non-sampled data) of each trait and a 
raster stack of the predictor variables utilising ‘raster’package 
(Hijmans 2020). The SUB scale predictions were produced at 
1 km-resolution, the REG scale at 10 m and the LOC scale at 
2 m resolution respectively.

Results

CWM trait values as well as the ranges of Temp, Snow, TPI 
and pH differed at the three geographical scales, with the 
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SUB scale covering the widest range of variation (Fig. 2). 
Differences were prominent in plant height, seed mass and 
SLA showing distinction between plant communities. Yet, 
the investigations indicated similar trends in the relation-
ships between CWM traits and environmental predictors 
across scales. In the preliminary examinations, the scatter-
plots of plant height and seed mass showed similar responses 
to all predictors regardless of the study scale. For example, 
these trait values increased towards warmer summer tem-
peratures (Fig. 2a). The scatterplots of SLA differed from the 
two other traits and also indicated more varying responses 
both between scales and environmental predictors. For 
example, at the LOC and REG scale, SLA showed a positive 
trend to increasing snow persistence, whereas at the SUB 
scale the trend was negative (Fig. 2b). According to the pre-
liminary investigations, TPI and pH seemed to have some-
what weaker relationship with the studied traits than Temp 
and Snow (Fig. 2c–d).

Modelling results showed reasonable model fit for all 
traits at all scales, though for SLA at the SUB scale the fit 
was notably poorer (Fig. 3b.). All presented modelling results 
concern the final trait-specific models (selected based on the 
AIC value). Over all three CWM traits and scales, model fit 
was best for SLA (mean D2 0.31) even though at the LOC 
scale seed mass received almost as high values as SLA (mean 
D2 0.35 and 0.38, respectively). At the SUB scale, model 
fit was highest for plant height (mean D2 0.23) (Fig. 3b). 
Predictive performance of the models indicated similar 
results, suggesting higher predictability at the two finer scales 
(Supporting information). Correlation between the observed 
and predicted trait values was highest for SLA at the LOC 
and REG scale and for height at the SUB scale (Supporting 
information).

In the final trait-specific models, July temperature and 
snow persistence showed the highest relative variable impor-
tance values for the CWM traits, though there were some 

Figure 2. Relationships of CWM traits and environmental predictors at three study scales. Trend lines are based on a linear model between 
traits and environmental predictors. Temp = average July temperature (a), Snow = snow persistence (b), TPI = topographic position index 
(c), pH (d). Height: cm, Seed mass: mg, SLA: mm2 mg−1.
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variation between the traits and scales (Fig. 3a). Temp had 
the highest variable importance for plant height at each scale 
with a mean of 71.7 over all three scales. The relationship 
between plant height and Temp was positive at all scales, 
though at the LOC scale the response was noticeable only for 
taller vegetation (Supporting information).

For seed mass, Temp was an important predictor at all 
three scales and its effect was primarily positive. At the REG 
and SUB scale Temp had some importance also for SLA, 
though, the response of SLA was contrary between the two 

scales. Snow was highly important predictor for all CWM 
traits at the SUB scale (mean variable importance 52.7 over 
three traits) showing negative response with plant height, 
seed mass and SLA. At the REG scale Snow was the most 
important predictor for SLA (mean 72.5) and was of great 
importance for seed mass (mean 45.8) but its effect on plant 
height was minor (mean 7.3). SLA responded positively to 
longer snow persistence whereas seed mass and height showed 
negative or unimodal response. At the LOC scale, Snow was 
the only significant predictor for SLA with a positive effect 

Figure 3. Response curves and relative variable importance for each trait and scale in the final models (a). Blanks show variables that were 
not included in the final models based on AIC-value. Lower panel (b) shows the fit of the final models at each scale. Both variable impor-
tance and explained deviance show the mean across ten modelling rounds. Larger figures of response curves showing the range of the 
response are presented in the Supporting information.
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(variable importance 100.0) and the most important variable 
also for seed mass (mean 54.8), with a negative effect, how-
ever, snow did not affect plant height.

Soil pH and TPI had a minor effect on CWM traits at all 
three scales. At the LOC and REG scales, pH was included 
only in the models of plant height showing a positive response. 
The importance of pH was obvious (mean 20.3) at the LOC 
scale but negligible at the REG scale (mean 0.8). The effect 
of pH on community traits was modest also at the SUB scale 
(mean 13.1 over three traits) though for SLA it was nearly as 
important as Temp. Height and seed mass showed negative, 
whereas SLA had a positive response to pH, though the mag-
nitude of the effect was minor (Supporting information). TPI 
was not included in the LOC scale models and at the REG 
scale, it notably affected only SLA (mean variable importance 
24.8). At the SUB scale, TPI had a modest importance for 
plant height and SLA (mean 11.3 over the two traits). CWM 
traits had a negative response to TPI except seed mass at the 
REG scale, though the magnitude of that effect was small 
(Supporting information).

Spatial predictions (Fig. 4a–i) visualised the trends observed 
in variable importance and response curves. At the LOC and 
REG scales, the effect of Temp and Snow is evident as tallest 
plants as well as largest seeds are found in the southern and 
warmest parts of the study areas with shorter snow persistence 
(Fig. 4a, b, d and e). Additionally, at the LOC scale, the effect 
of pH on plant height (Fig. 4a) is more clearly observed in 
the spatial prediction when the prediction is compared with 
local pH raster (Supporting information). Furthermore, Snow 
was the only predictor of SLA at the LOC scale (Fig. 4c), and 
the spatial pattern of that trait follows the spatial variation in 
snow persistence (Supporting information). At the SUB scale, 
the spatial patterns look similar, as smallest trait values for all 
traits are found in the most central parts of the Fennoscandian 
arctic–alpine area (Fig. 4g–i).

Discussion

Our results showed that the trait-environment relation-
ships are mostly consistent over the studied spatial scales in 

Figure 4. Spatial predictions of the CWM traits at three geographical scales. Predictions are based on the final model of each trait at each 
scale. Due to large range of predicted trait values at the SUB scale, the predictions are plotted using log-transformed values to better visualise 
spatial variation.
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the Fennoscandian tundra, but some contrasting effects also 
emerged. In previous research, climatic variables have often 
been shown to be strong drivers of community trait com-
position at broader spatial scales (Bjorkman  et  al. 2018a; 
Myers-Smith et al. 2019) whereas soil resources (e.g. nutri-
ent status, moisture conditions) have played larger role locally 
(Bruelheide et al. 2018). Our study corroborates these former 
findings but also provides new insights into the trait-environ-
ment relationships. Across scales, summer temperature and 
snow persistence had consistently strong influence on plant 
functional traits, whereas topographic position and soil pH 
generally had lower effect. Snow cover duration and depth 
have been shown to be important drivers of functional traits 
at the local scale (Choler 2005, Venn et  al. 2011) and our 
study expands on previous research by showing the funda-
mental importance of snow persistence also at regional to 
subcontinental scales. This is particularly interesting, as to 
our best knowledge, snow information has rarely been uti-
lised in broader scale trait-environment studies.

Across three geographical scales summer temperature 
showed primarily a consistently positive effect on the com-
munity-level mean plant height and seed mass supporting 
earlier studies at local (Venn  et  al. 2011, Happonen  et  al. 
2019) and global scales (Dubuis  et  al. 2013, Moles  et  al. 
2014). Warmer summer temperatures often indicate lon-
ger growing season, which facilitates vegetative growth and 
investing in reproduction may be supported by increasing the 
mass of individual seeds. However, the strength of tempera-
ture’s effect may depend on other environmental conditions 
such as available moisture (Bjorkman et al. 2018a) or snow 
cover duration (Niittynen et al. 2020). Even though summer 
temperature had strong influence on the community traits, 
its effect was often overridden by snow persistence, which 
caused varying responses depending on the specific trait and 
scale. A consistent negative influence on plant height and seed 
mass across the scales, as well as positive impact on SLA, sup-
port former findings from arctic–alpine landscapes (Choler 
2005, Niittynen et al. 2020). Due to the short growing sea-
son in snowbed habitats species benefit from fast acquisition 
of resources leading to small seeds and low-cost leaves with 
short life span (Kudo et al. 2001). Additionally, shorter plants 
are better sheltered by the insulating effect of the snowpack 
especially in the beginning of the growing season decreasing 
possibility of frost damages, which also enables higher SLA 
leaves (Rapacz  et  al. 2014, Happonen  et  al. 2019). At the 
subcontinental scale, a somewhat negative response of SLA to 
snow persistence was observed, which might relate to a larger 
number of species with boreal distributional background in 
the community data, as similar negative trend was recorded 
by Niittynen et al. (2020) when they projected trait-environ-
ment relationships in possible future climate and snow cover 
conditions showing boreal species dispersion above current 
forest line. Even though forested areas were removed from 
the subcontinental scale data, it is possible that some forests 
remained due to the grid cell size increasing the number of 
boreal species, as the transition to treeless tundra may hap-
pen within short horizontal distance due to steep slopes e.g. 

in the coastal regions of Norway (Seppälä 2005). It has been 
shown that different species groups with differing ecology 
and functional characteristics have varying responses to envi-
ronmental processes such as snow persistence (Niittynen and 
Luoto 2018, Rissanen  et  al. 2021) and geomorphological 
disturbances (le Roux and Luoto 2014). Thus, a higher pro-
portion of boreal species likely affected the trait-environment 
relationships in areas close to the tree line which are especially 
represented in the subcontinental dataset.

The dominating importance of snow for community func-
tional trait composition in tundra, across the geographical 
scales, may be caused by several mechanisms. At finer scales, 
topography generates uneven distribution of snow creating 
a wide range of habitats from moist meltwater meadows to 
windblown ridges (Walker et al. 1993, French 2013). Overall, 
snow cover thickness and its duration affect both summer and 
overwintering conditions controlling growing season length, 
winter thermal conditions, and amount of incoming solar 
radiation at the ground level (Rixen et al. 2022). Our study 
shows that this ecologically relevant variation in environmen-
tal conditions seems to be captured also at broader spatial 
scales. As snow is connected with atmospheric conditions, 
topography and biosphere, it may characterise environmen-
tal heterogeneity more accurately than traditional macrocli-
matic, topographic or soil variables alone, thus overriding 
their effects when modelling vegetation patterns (Niittynen 
and Luoto 2018, Rissanen et al. 2021). It is also worth not-
ing that the importance of snow persistence was high both 
for variables derived from remote sensing products (Landsat 
and MODIS) as well as for a variable based on microclimatic 
temperature measurements, highlighting the availability of 
useful snow information regardless of the scale.

Soil pH and TPI showed a weak relationship with the 
CWM traits at all scales and their effect was low also at the 
finer scales where nutrient status and moisture conditions 
have earlier shown to play large role (Bruelheide et al. 2018, 
Happonen  et  al. 2019, Kemppinen  et  al. 2021). However, 
TPI is only a proxy of moisture conditions which likely 
decreases its importance compared to in-situ soil moisture 
measurements (Kemppinen  et  al. 2019).TPI caused a con-
sistent negative response for all traits, indicating the harsh 
growing conditions at ridges where available moisture is 
scarce (Kemppinen  et  al. 2018) and physical stress caused 
by wind and low temperatures is high, thus supporting only 
smaller-statured species with stress-tolerant (i.e. low-SLA) 
leaves (Dubuis et al. 2013). For soil pH, traits showed varying 
responses depending on the studied trait and scale. Higher 
soil pH might correlate positively with soil nutrient status 
(Gough  et  al. 2000, Hobara  et  al. 2016) and could there-
fore enhance taller plant growth and faster resource capturing 
providing an asset in light-competition (Lavorel and Garnier 
2002). However, a negative relationship between soil pH and 
plant height was detected as well. This might indicate that 
in our data soil pH represents more the amount of organic 
matter in soil due to the topsoil sampling rather than calcar-
eousness, which probably prevails more in deeper mineral soil 
samples. Consequently, the observed effects might indicate 
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for example environments with geomorphological distur-
bances mixing the soil thus supporting the occurrence of 
small-statured disturbance-tolerant arctic–alpine species (le 
Roux et al. 2013). An observed negative trend of seed mass 
with soil pH agreed with former research suggesting that 
more alkaline and consequently possibly nutrient richer soils 
enable faster production of numerous smaller seed instead 
of investing to the survival of few large ones (Westoby et al. 
2002, Kemppinen et al. 2021).

We acknowledge that our results portray not only real eco-
logical processes but also methodological choices and rely on 
the plausibility of the study setting, data, and methods. Even 
though we aimed to harmonise the used data across the scales 
as far as possible while also utilising as detailed information as 
possible, challenges remain. Firstly, the three study scales cover 
different amount of variation both in the utilised species data, 
and hence in the CWM traits, as well as in the environmental 
predictors. However, in order to characterize the trait-envi-
ronment relationships as thoroughly as possible we wanted 
to use all data available for each scale after removing forested 
areas which represent a different habitat, and hence a large 
number of boreal species. This harmonized both trait and 
environmental data notably. Additionally, we wanted to create 
representative study settings at each scale following commonly 
utilised approaches, i.e. using in-situ measurements at the fin-
est scale and global datasets at the broadest scale, instead of 
deriving exactly comparable variables at the cost of accuracy.

Secondly, regarding to the species observation data used to 
define plant communities, local and regional scale vegetation 
data were plot-based observations, whereas subcontinental 
scale data were derived from databases using single species 
observations aggregated to a grid cell. Therefore, subcon-
tinental scale study sites do not cover all species occurring 
within each grid cell, and the observations might be biased 
towards rarer and easily identifiable species and to areas that 
are more easily reached. Due to the extent and resolution of 
the study area, subcontinental scale data holds more species 
with a boreal distributional background, even after removal 
of forested areas, compared to the two finer scales. This prob-
ably affected the scale-dependency of the trait-environment 
responses because areas close to the tree line were mostly 
represented in the subcontinental data whereas regional 
and local study areas were more strictly in tundra. However, 
boreal species often play a central role in the tundra commu-
nities as well, thus complete removal of boreal species was not 
considered. Moreover, the coarser resolution in the subconti-
nental data probably affected the trait-environment relation-
ships as small-scale environmental heterogeneity and small 
habitat patches (such as snowbeds) are not as well captured as 
in the regional and local scale data. Additionally, in the sub-
continental scale data, all species had the same weight in the 
CWM trait calculations due to the lack of abundance data, 
which decreases the weight of common species. However, the 
abundant species, such as crowberry and dwarf birch, had a 
high number of observations regardless of the scale suggest-
ing that the plant communities in the subcontinental scale 
were also most affected by the most dominant species. Our 

study indicates that such presence-only species observation 
data can be useful and informative for studies with functional 
approach, hence enabling investigations of trait-environment 
relationships at larger spatial grains and extents than available 
in traditional community-based sampling designs.

Thirdly, we acknowledge that even though our study areas 
were representative of the Fennoscandian tundra, the study 
design lacked replication as it contained only one study area 
at each scale. Hence, the results are not readily transferable to 
other tundra regions but need to be interpreted in the context 
of the current design. Thus, more multiscale studies across 
arctic–alpine regions are needed to make sound conclusions 
on the consistence of trait-environment relationships.

When it comes to the environmental data, microclimatic 
measurements represent habitat conditions at the plant scale, 
thus probably capturing the true effect of temperature bet-
ter than variables derived from global climate data, which 
might explain the strong effect of summer temperature on 
vegetation height at the local scale. We trust that in the 
future as more global data sets on microclimatic conditions 
(Lembrechts et al. 2020) become available, these restrictions 
between scales could be overcome. In addition, soil nutrient 
status could be better captured by including also information 
of soil nutrient concentrations (Ordoñez et al. 2009) rather 
than using pH alone. Furthermore, soil properties might be 
better described by measuring organic and mineral layers 
separately (Happonen et al. 2022) which might increase the 
effect and ecological relevance of pH. We also acknowledge, 
that even though our models seemed to capture the varia-
tion in community traits relatively well, though depending 
on the scale and trait, correlative approaches cannot eas-
ily take e.g. species interactions and population dynamics 
into account, thus possibly decreasing the model accuracy 
(Guisan and Thuiller 2005). The number of predictors 
included in the final models also varied across the scales, with 
decreasing number of predictors especially at the local scale, 
most likely due to fewer observations in the dataset leading 
to lower statistical significance. Additionally, the inclusion 
of interactions between environmental variables might have 
increased model fit, ecological relevance, as well as predict-
ability as the effect of environmental factors can depend on 
each other. This ecological context dependency can shape 
the observed vegetation-environment relationships like it has 
been shown in terms of temperature and soil moisture, for 
example (Bjorkman  et  al. 2018a, von Oppen  et  al. 2021). 
Therefore, considering interactions between environmental 
factors would benefit future studies. Moreover, predictive 
models of ecosystem structure could be further improved 
by accounting for intraspecific trait variability (Funk  et  al. 
2017), disturbances (le Roux et al. 2013) and biotic interac-
tions (Bruelheide et al. 2018) across the scales.

Conclusions

Here, we demonstrated that arctic–alpine community 
trait composition has a strong relationship with summer 
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temperature and snow conditions across geographical scales 
in the Fennoscandian tundra. Specifically, our study pin-
points the importance of snow, not only at local and regional 
scales, but also at subcontinental scale in regulating plant 
functional traits. Utilising snow information could be par-
ticularly important to better understand large-scale trends 
in plant community composition as seasonal snow cover is 
shrinking globally (Hock  et  al. 2019). With a multi-scale 
study setting, we showed that trait-environment relation-
ships are relatively consistent over different spatial scales, yet 
variability in these responses/contrasting relationships arise 
depending on the studied trait and environmental factor.
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