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Abstract
We consider unions of 𝑆𝐿(2) lines in ℝ3. These are lines
of the form

𝐿 = (𝑎, 𝑏, 0) + span(𝑐, 𝑑, 1),

where 𝑎𝑑 − 𝑏𝑐 = 1. We show that if  is a Kakeya set of
𝑆𝐿(2) lines, then the union∪ hasHausdorff dimension
3. This answers a question of Wang and Zahl. The 𝑆𝐿(2)
lines can be identified with horizontal lines in the first
Heisenberg group, and we obtain the main result as a
corollary of amore general statement concerning unions
of horizontal lines. This statement is established via a
point-line duality principle between horizontal and con-
ical lines inℝ3, combined with recent work on restricted
families of projections to planes, due to Gan, Guo, Guth,
Harris, Maldague andWang. Our result also has a corol-
lary for Nikodym sets associated with horizontal lines,
which answers a special case of a question of Kim.
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1 INTRODUCTION

The purpose of this note is to study the Hausdorff dimension of unions of 𝑆𝐿(2) lines in ℝ3. Here
is the definition of 𝑆𝐿(2) lines, following [10].

Definition 1.1 (𝑆𝐿(2)). The family 𝑆𝐿(2) consists of the following lines 𝐿 ⊂ ℝ3. Either 𝐿 is a line
contained in the 𝑥𝑦-plane, and 0 ∈ 𝐿, or then

𝐿 ∶= 𝐿𝛼,𝛽,𝛾,𝛿 ∶= (𝛼, 𝛽, 0) + span(𝛾, 𝛿, 1),

where 𝛼𝛿 − 𝛽𝛾 = 1.

We also use the following notation. If  is any family of lines in ℝ3, we write dir() ∶= {𝑒 ∈
𝑆2 ∶ 𝓁‖ span(𝑒) for some 𝓁 ∈ }. Here is the main result of the note.

Theorem 1.2. Let  ⊂ 𝑆𝐿(2) be a set with2(dir()) > 0. Then

dimH(∪) = 3.

Here ‘dimH(∪)’ is the Euclidean Hausdorff dimension of the union ∪ ∶=
⋃

𝓁∈ 𝓁.

Remark 1.3. Theorem 1.2 answers a question posed by Wang and Zahl in [10, Section 1.2]. This
question was motivated by earlier work of Katz and Zahl [5]. Theorem 1.2 continues to hold if the
full lines in  are replaced by line segments of positive length. We will discuss this briefly below
(3.2).
Katz, Wu and Zahl [4] also proved Theorem 1.2 independently, using a different method.

The 𝑆𝐿(2) lines are essentially (up to a change in coordinates) the same as horizontal lines
in the first Heisenberg group ℍ = (ℝ3, ∗), viewed as subsets of ℝ3 (see Proposition 2.1). We will
infer Theorem 1.2 from a more general statement concerning unions of these horizontal lines,
Theorem 1.5 below. We first need to define the concepts properly.
The family of all horizontal lines is denoted by (ℍ). The ‘Heisenberg’ definition of these lines

is the following. LetΠ0 ∶= {(𝑥, 𝑦, 0) ∶ 𝑥, 𝑦 ∈ ℝ} be the𝑥𝑦-plane, and for𝑝 ∈ ℝ3, letΠ𝑝 ∶= 𝑝 ∗ 𝐻0
be the left translate of Π0 by the Heisenberg group product

(𝑥, 𝑦, 𝑡) ∗ (𝑥′, 𝑦′, 𝑡′) =
(
𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑡 + 𝑡′ +

1

2
(𝑥𝑦′ − 𝑥′𝑦)

)
.

Then, (ℍ) consists of all the lines in Π𝑝 (for every 𝑝 ∈ ℝ3) which contain the point 𝑝.
The family (ℍ) is a three-dimensional submanifold of the full (four-dimensional) family of

lines in ℝ3. In fact, the definition above of horizontal lines will not be used in the note: rather, we
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A NOTE ON KAKEYA SETS OF HORIZONTAL AND 𝑆𝐿(2) LINES 3

focus attention on the following parameterised subset of (ℍ):

′(ℍ) = {𝓁(𝑎,𝑏,𝑐) ∶ (𝑎, 𝑏, 𝑐) ∈ ℝ
3},

where

𝓁(𝑎,𝑏,𝑐) =
{
(𝑎𝑠 + 𝑏, 𝑠,

𝑏

2
𝑠 + 𝑐) ∶ 𝑠 ∈ ℝ

}
.

The subset ′(ℍ) consists of all elements of (ℍ), except for those contained in some translate of
the plane𝕎0 ∶= {(𝑥, 0, 𝑡) ∶ 𝑥, 𝑡 ∈ ℝ}. By definition, every set  ⊂ ′(ℍ) can be written as

 = 𝓁(𝑃) ∶= {𝓁(𝑎,𝑏,𝑐) ∶ (𝑎, 𝑏, 𝑐) ∈ 𝑃}

for some set 𝑃 ⊂ ℝ3. This identification of′(ℍ)withℝ3 allows us to transport notions like ‘Borel
set’ and ‘dimension’ from ℝ3 to corresponding notions for subsets of ′(ℍ).

Definition 1.4. Let  = 𝓁(𝑃) ⊂ ′(ℍ). We say that  is a Borel set if 𝑃 ⊂ ℝ3 is a Borel set. We
definedimH  ∶= dimH 𝑃, where ‘dimH 𝑃’ refers to theEuclideanHausdorff dimension of𝑃 ⊂ ℝ3.

Now we can state our main result about unions of horizontal lines.

Theorem 1.5. Let  ⊂ ′(ℍ). Then,

dimH(∪) = min{dimH  + 1, 3}.

The following corollary implies Theorem 1.2, as we will verify in Section 2.

Corollary 1.6. Let  ⊂ (ℍ) with2(dir()) > 0. Then,

dimH(∪) = 3.

Remark 1.7. Theorem 1.5 and Corollary 1.6 continue to hold if full lines are replaced by line seg-
ments of positive length, see the discussion below (3.2). Thus, if  ⊂ ′(ℍ), and every line 𝓁 ∈ 

contains a segment 𝐼(𝓁) ⊂ 𝓁 of positive length, then

dimH

(⋃
𝓁∈

𝐼(𝓁)

)
= min{dimH  + 1, 3}. (1.8)

1.1 Nikodym sets associated with horizontal lines

Theorem 1.5 easily yields information about the dimension of Nikodym sets associated with hor-
izontal lines. A set 𝑁 ⊂ ℝ3 is called an (ℍ)-Nikodym set if for every 𝑝 ∈ ℝ3 (or more generally
every 𝑝 ∈ ℝ3 in a measurable set of positive measure Ω ⊂ ℝ3), there exists a line 𝓁𝑝 ∈ (ℍ)

containing 𝑝 such that 𝑁 contains a line segment 𝐼𝑝 ⊂ 𝓁𝑝 of positive length.

Corollary 1.9. Every (ℍ)-Nikodym set𝑁 ⊂ ℝ3 has dimH 𝑁 = 3.
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4 FÄSSLER and ORPONEN

It is well known that bounds for Kakeya sets yield bounds for Nikodym sets: we only repeat the
standard details below for the reader’s convenience. For a similar argument in the case of classical
Kakeya and Nikodym sets, see [9, Section 11.3].

Proof of Corollary 1.9. We may assume without loss of generality that all the lines 𝓁𝑝 ∈ (ℍ)

appearing in the definition of ‘𝑁’ lie in ′(ℍ). Namely, if this is true for a positive measure subset
of the points 𝑝 ∈ Ω, we simply replace Ω by that subset. If this fails for Lebesgue almost every
point 𝑝 ∈ Ω, then we apply a rotation 𝑅 of, say, 10◦ around the 𝑡-axis to the objectsΩ,𝑁, and the
lines 𝓁𝑝, 𝑝 ∈ Ω. Rotations around the 𝑡-axis preserve (ℍ), and the measure and dimension ofΩ
and 𝑁. After this procedure, we moreover have 𝓁𝑝 ∈ ′(ℍ) for a.e. 𝑝 ∈ 𝑅(Ω).
Using Fubini’s theorem, start by picking 𝑦0 ∈ ℝ such that 2(Ω ∩𝕎𝑦0) > 0. Here, 𝕎𝑦 =

{(𝑥, 𝑦, 𝑡) ∶ 𝑥, 𝑡 ∈ ℝ3} for 𝑦 ∈ ℝ. By assumption, for every 𝑝 = (𝑥, 𝑦0, 𝑡) ∈ Ω ∩𝕎𝑦0 , there exists a
line

𝓁𝑝 ∶= 𝓁(𝑎(𝑝),𝑏(𝑝),𝑐(𝑝)) ∈ ′(ℍ)

containing 𝑝 such that 𝑁 contains a line segment 𝐼𝑝 ⊂ 𝓁𝑝 of positive length.
Now, note that the map (𝑎, 𝑏, 𝑐) ↦ Ψ(𝑎, 𝑏, 𝑐) = (𝑎𝑦0 + 𝑏, 𝑦0,

𝑏

2
𝑦0 + 𝑐) is Lipschitz, and

Ω∩𝕎𝑦0 ⊂ Ψ({(𝑎(𝑝), 𝑏(𝑝), 𝑐(𝑝)) ∶ 𝑝 ∈ Ω ∩𝕎𝑦0}).

(This is because the lines 𝓁𝑝 contain the points 𝑝 ∈ Ω ∩𝕎𝑦0 .) Therefore,

dimH{(𝑎(𝑝), 𝑏(𝑝), 𝑐(𝑝)) ∶ 𝑝 ∈ Ω ∩𝕎𝑦0} ⩾ dimH(Ω ∩𝕎𝑦0) = 2.

In particular, the set of lines ∶= {𝓁𝑝 ∶ 𝑝 ∈ Ω} ⊂ ′(ℍ) has dimH  ⩾ 2 by definition. Therefore,
it follows from Theorem 1.5, or to be precise (1.8), that

dimH 𝑁 ⩾ dimH

(⋃
𝑝∈Ω

𝐼𝑝

)
= 3.

This completes the proof. □

Remark 1.10. Nikodym set for ‘restricted’ families of lineswas earlier considered byKim [6]. Corol-
lary 1.9 answers (a special case of) a question raised on [6, p. 478]. We elaborate on this a little
further. The paper [6] considered general families of 2-planes 𝑝 ↦ Π𝔞(𝑝) ⊂ ℝ3, where 𝑝 ↦ 𝔞(𝑝)
is a non-vanishing measurable vector field, and

𝑝 ∈ Π𝔞(𝑝) and span(𝔞(𝑝)) = Π𝔞(𝑝)
⟂.

One can associate Nikodym sets 𝑁 ⊂ ℝ3 to such a plane family, as follows: for every 𝑝 ∈ ℝ3, the
requirement is that there exists a line 𝓁𝑝 ⊂ ℝ3 satisfying

𝑝 ∈ 𝓁𝑝 ⊂ Π𝔞(𝑝),
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A NOTE ON KAKEYA SETS OF HORIZONTAL AND 𝑆𝐿(2) LINES 5

and a non-trivial segment 𝐼𝑝 ⊂ 𝑁 ∩ 𝓁𝑝. How small can such aNikodym set𝑁 ⊂ ℝ3 be? In [6], Kim
approached the question viamaximal function estimates, and his results depend on the properties
of the vector field 𝔞. Kim considered vector fields 𝔞 of the form

𝔞(𝑝) = (𝑎11𝑝1 + 𝑎21𝑝2, 𝑎12𝑝1 + 𝑎22𝑝2, −1), 𝑝 = (𝑝1, 𝑝2, 𝑝3) ∈ ℝ
3,

anddefined the ‘discriminant’𝐷𝔞 = (𝑎12 + 𝑎21)2 − 4𝑎11𝑎22. In [6, Corollary 1, p. 478], it was shown
that the dimension of 𝑁 equals 3 if 𝐷𝔞 ≠ 0. Right after the corollary, the question is raised, what
happens in the situation 𝐷𝔞 = 0.
Now, recall the definition of horizontal lines (ℍ): these were the lines contained in the

planes Π𝑝 = 𝑝 ∗ Π0, and passing through 𝑝. The planes Π𝑝 fit in the framework of [6], choos-
ing 𝔞(𝑝) = (−𝑝2∕2, 𝑝1∕2, −1), or (𝑎11, 𝑎12, 𝑎21, 𝑎22) = (0,

1

2
, −
1

2
, 0). In particular,𝐷𝔞 = 0. Also, the

(ℍ)-Nikodym sets defined above Corollary 1.9 are the same as the Nikodym sets of [6] associ-
ated with the planesΠ𝑝 = 𝑝 ∗ Π0. Thus, Corollary 1.9 covers the special case (𝑎11, 𝑎12, 𝑎21, 𝑎22) =
(0,
1

2
, −
1

2
, 0) of the problem raised on [6, p. 478].

1.2 Ingredients of the proof

The proof of Theorem 1.5 is based on two ingredients. The first one is a point-line duality between
horizontal lines and conical lines in ℝ3, namely translates of lines contained in the light cone
{(𝑥, 𝑦, 𝑡) ∶ 𝑡2 = 𝑥2 + 𝑦2}. This duality was formalised in our paper [2], although it was already
implicit in the work [7] of Liu. Using this point-line duality, Kakeya-type problems for horizon-
tal lines can be transformed into projection problems in ℝ3. These projection problems concern
‘restricted’ families of projections to planes in ℝ3. Sharp results for such families were recently
established byGan, Guo, Guth, Harris,Maldague andWang [3]. This is the second key component
in the proof of Theorem 1.5.

2 PROOFS CONCERNING 𝑺𝑳(𝟐) LINES

In this section, we formalise the connection between 𝑆𝐿(2) lines and horizontal lines. We also
deduce our main result, Theorem 1.2, from Corollary 1.6.
Recall the 𝑆𝐿(2) lines from Definition 1.1. We write ′

𝑆𝐿(2)
for all the lines in 𝑆𝐿(2), except for

the 𝑥-axis, and lines of the form 𝐿𝛼,𝛽,𝛾,𝛿 with 𝛿 = 0. The difference between 𝑆𝐿(2) and ′
𝑆𝐿(2)

is
the same as the difference between (ℍ) and ′(ℍ). Consider the map

Ξ(𝑥, 𝑦, 𝑡) ∶= (𝑥, 𝑦, 𝑡∕2).

We claim that Ξmaps the 𝑆𝐿(2) lines to horizontal lines. More precisely:

Proposition 2.1. If 𝐿𝛼,𝛽,𝛾,𝛿 ∈ ′
𝑆𝐿(2)

with 𝛿 ≠ 0 and 𝛼𝛿 − 𝛽𝛾 = 1, then

Ξ(𝐿𝛼,𝛽,𝛾,𝛿) = 𝓁(𝑎,𝑏,𝑐) ∈ ′(ℍ), (2.2)
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6 FÄSSLER and ORPONEN

where

⎧⎪⎨⎪⎩
𝑎 = 𝛾∕𝛿,

𝑏 = 1∕𝛿,

𝑐 = −𝛽∕(2𝛿).

Proof. Fix 𝛼, 𝛽, 𝛾, 𝛿 with 𝛿 ≠ 0 and 𝛼𝛿 − 𝛽𝛾 = 1. Write 𝐿𝛼,𝛽,𝛾,𝛿(𝑠) = (𝛼, 𝛽, 0) + (𝑠𝛾, 𝑠𝛿, 𝑠). It is a
straightforward computation to check that

Ξ(𝐿𝛼,𝛽,𝛾,𝛿(𝑠)) = 𝓁(𝑎,𝑏,𝑐)(𝛽 + 𝑠𝛿), 𝑠 ∈ ℝ.

Since 𝛿 ≠ 0 by assumption, this completes the proof. □

We are then prepared to prove Theorem 1.2.

Proof of Theorem 1.2. We may assume that  ⊂ ′
𝑆𝐿(2)

, since the directions of the lines in 𝑆𝐿(2) ⧵

′
𝑆𝐿(2)

are contained in the2 null set 𝑆2 ∩ {(𝑥, 0, 𝑡) ∶ 𝑥, 𝑡 ∈ ℝ}. Similarly, we may assume that 
contains no lines in the 𝑥𝑦-plane; thus, every 𝐿 ∈  has the form 𝐿 = 𝐿𝛼,𝛽,𝛾,𝛿 for some 𝛼, 𝛽, 𝛾, 𝛿
with 𝛿 ≠ 0 and 𝛼𝛿 − 𝛽𝛾 = 1.
Since ⊂ ′

𝑆𝐿(2)
, we infer from Proposition 2.1 thatΞ() ∶= {Ξ(𝓁) ∶ 𝓁 ∈ } ⊂ ′(ℍ). We claim

that

2(dir(Ξ())) > 0. (2.3)

According to Corollary 1.6, this will imply that

dimH(∪) = dimH Ξ(∪) = dimH(∪Ξ()) = 3,

and complete the proof.
To verify (2.3), fix 𝐿 = 𝐿𝛼,𝛽,𝛾,𝛿 ∈ . Then, by (2.2), we have Ξ(𝐿) = 𝓁(𝑎,𝑏,𝑐) with

⎧⎪⎨⎪⎩
𝑎 = 𝛾∕𝛿,

𝑏 = 1∕𝛿

𝑐 = −𝛽∕(2𝛿).

Wewill use this information in the form of the following inclusion: writing 𝐹(𝛾, 𝛿) ∶= (𝛾∕𝛿, 1∕𝛿),
we have

{(𝑎, 𝑏) ∈ ℝ2 ∶ 𝓁(𝑎,𝑏,𝑐) ∈ Ξ()} ⊃ {𝐹(𝛾, 𝛿) ∶ 𝐿𝛼,𝛽,𝛾,𝛿 ∈ }. (2.4)

Since 2(dir()) > 0, and the direction of 𝐿𝛼,𝛽,𝛾,𝛿 = (𝛼, 𝛽, 0) + span(𝛾, 𝛿, 1) is determined by 𝛾
and 𝛿, we know that

2({(𝛾, 𝛿) ∈ ℝ2 ∶ 𝐿𝛼,𝛽,𝛾,𝛿 ∈ }) > 0.
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A NOTE ON KAKEYA SETS OF HORIZONTAL AND 𝑆𝐿(2) LINES 7

It now follows from (2.4), and the fact that 𝐹 is locally bilipschitz in the set ℝ2 ⧵ {(𝛾, 𝛿) ∶ 𝛿 = 0}
(since |det 𝐷𝐹(𝛾, 𝛿)| = 1∕𝛿3), that also

2({(𝑎, 𝑏) ∈ ℝ2 ∶ 𝓁(𝑎,𝑏,𝑐) ∈ Ξ()}) ⩾ 2({𝐹(𝛾, 𝛿) ∶ 𝐿𝛼,𝛽,𝛾,𝛿 ∈ }) > 0.

Since the direction of𝓁(𝑎,𝑏,𝑐) = (𝑏, 0, 𝑐) + span(𝑎, 1, 𝑏∕2) is determined by (𝑎, 𝑏), wemay now infer
that2(dir(Ξ())) > 0, as claimed in (2.3). □

3 PROOFS CONCERNING HORIZONTAL LINES

We start by proving Theorem 1.5.

Proof of Theorem 1.5. Without loss of generality, we may assume that  = 𝓁(𝑃) is a Borel set
of lines, that is, 𝑃 ⊂ ℝ3 is a Borel set. For the full details of this reduction, see [7, Section 3] or
[1, Theorem 7.9]. The idea is that we can first replace ∪ by a 𝐺𝛿-set 𝐺 ⊃ ∪ without affecting
dimH(∪). Then, it is easy to check that the set of parameters𝑃′ ∶= {𝑝 ∈ ℝ3 ∶ 𝓁(𝑝) ⊂ 𝐺} is a Borel
set with 𝑃′ ⊃ 𝑃, in particular dimH 𝑃′ ⩾ dimH 𝑃. Finally, writing ′ ∶= 𝓁(𝑃′), we have

dimH(∪) = dimH 𝐺 ⩾ dimH(∪
′).

So, if the result is known for Borel sets of lines, it follows for .
Write  ∶= 𝓁(𝑃), where 𝑃 ⊂ ℝ3 is Borel. Write also

𝐾𝑦 ∶=
{(
𝑎𝑦 + 𝑏,

𝑏

2
𝑦 + 𝑐

)
∶ (𝑎, 𝑏, 𝑐) ∈ 𝑃

}
, 𝑦 ∈ ℝ,

and note that 𝐾𝑦 is a ‘slice’ of ∪ with the plane𝕎𝑦 ∶= {(𝑥, 𝑦, 𝑡) ∶ 𝑥, 𝑡 ∈ ℝ}:

(∪) ∩ 𝕎𝑦 ≅ 𝐾𝑦,

where ‘≅’ refers to the isometry 𝜄𝑦 ∶ ℝ2 → 𝕎𝑦 , defined by 𝜄𝑦(𝑥, 𝑡) = (𝑥, 𝑦, 𝑡). In order to prove that

dimH(∪) ⩾ min{dimH  + 1, 3}, (3.1)

we now claim that

dimH 𝐾𝑦 = min{dimH 𝑃, 2} for a.e. 𝑦 ∈ ℝ. (3.2)

If  consisted of line segments of positive length, and not full lines, then we would have to mod-
ify (3.2) as follows: for every 𝜖 > 0, there exists an interval 𝐼 ⊂ ℝ of positive length such that
dimH 𝐾𝑦 ⩾ min{dimH 𝑃 − 𝜖, 2} for a.e. 𝑦 ∈ 𝐼. This interval would (be chosen to) consist of points
𝑦 ∈ ℝ with the property that the plane 𝕎𝑦 intersects a family of segments corresponding to a
(dimH 𝑃 − 𝜖)-dimensional Borel subset 𝑃′ ⊂ 𝑃. We refer the reader to [7, Section 3] for a very
similar argument.
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8 FÄSSLER and ORPONEN

Clearly, (3.1) follows from (3.2) by the ‘Fubini inequality’ for Hausdorff measures (hence
dimension), see [1, Theorem 5.8] or [8, Theorem 7.7]. To prove (3.2), we define

𝑣(𝑦) ∶= (𝑦, 1, 0) and 𝑤(𝑦) ∶= (0, 𝑦∕2, 1), 𝑦 ∈ ℝ.

Then, we note that for 𝑦 ∈ ℝ fixed, 𝐾𝑦 can be expressed as

𝐾𝑦 = {(⟨𝑝, 𝑣(𝑦)⟩, ⟨𝑝,𝑤(𝑦)⟩) ∶ 𝑝 ∈ 𝑃}
= {(⟨𝜋𝑉𝑦(𝑝), 𝑣(𝑦)⟩, ⟨𝜋𝑉𝑦 (𝑝), 𝑤(𝑦)⟩) ∶ 𝑝 ∈ 𝑃}, (3.3)

where ‘⟨⋅, ⋅⟩’ is the Euclidean dot product and 𝜋𝑉𝑦 the Euclidean orthogonal projection from ℝ3
onto the plane

𝑉𝑦 ∶= span({𝑣(𝑦), 𝑤(𝑦)}).

It is then easy to see that

dimH 𝐾𝑦 = dimH 𝜋𝑉𝑦 (𝑃), 𝑦 ∈ ℝ. (3.4)

Indeed, expression (3.3) shows that 𝐾𝑦 can be written as the image of 𝜋𝑉𝑦 (𝑃) under the linear
map

𝑀𝑦 ∶ 𝑉𝑦 → ℝ
2, 𝑀𝑦(𝑞) = (⟨𝑞, 𝑣(𝑦)⟩, ⟨𝑞,𝑤(𝑦)⟩),

and thus, dimH 𝐾𝑦 = dimH𝑀𝑦(𝜋𝑉𝑦 (𝑃)). Moreover, dimH𝑀𝑦(𝜋𝑉𝑦 (𝑃)) = dimH 𝜋𝑉𝑦 (𝑃) holds as the
linear map 𝑀𝑦 is invertible by the linear independence of 𝑣(𝑦) and 𝑤(𝑦). Hence, (3.4) holds
as desired.
To complete the proof, we claim that

dimH 𝜋𝑉𝑦 (𝑃) = min{dimH 𝑃, 2} for a.e. 𝑦 ∈ ℝ. (3.5)

The idea is that {𝜋𝑉𝑦 }𝑦∈ℝ is a one-parameter family of orthogonal projections to planes inℝ
3which

satisfies the hypotheses of [3, Corollary 1].
Which planes are the planes 𝑉𝑦? Note that

𝑣(𝑦) × 𝑤(𝑦) = (1, −𝑦, 𝑦2∕2) =∶ 𝑒𝑦.

Thus, 𝑉𝑦 = 𝑒⟂𝑦 . Moreover, the lines 𝓁𝑦 ∶= span(𝑒𝑦) are all contained in a 45
◦ rotated copy of the

light cone

 ∶= {(𝑥, 𝑦, 𝑡) ∈ ℝ3 ∶ 𝑡2 = 𝑥2 + 𝑦2},

see [2, Section 2.2] for the details. This implies that the projections {𝜋𝑉𝑦 }𝑦∈ℝ satisfy the curvature
condition [3, (1)]. In fact, up to the rotation by 45◦, this family of projections is precisely the ‘model
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A NOTE ON KAKEYA SETS OF HORIZONTAL AND 𝑆𝐿(2) LINES 9

example’ mentioned just below [3, (1)]. Therefore, (3.5) follows from [3, Corollary 1], and the proof
is complete. □

We conclude the paper by proving Corollary 1.6.

Proof of Corollary 1.6. Firstly, note that 2(dir( ∩ ′(ℍ))) > 0. This is because dir(′(ℍ)) con-
tains all the directions on 𝑆2, except for those contained in the null set {(𝑥, 0, 𝑡) ∶ 𝑥, 𝑡 ∈ ℝ}.
Therefore, we may assume that  ⊂ ′(ℍ).
Write  = 𝓁(𝑃), where 𝑃 ⊂ ℝ3. Recall that

 = 𝓁(𝑃) =
{(
𝑎𝑠 + 𝑏, 𝑠,

𝑏

2
𝑠 + 𝑐

)
∶ 𝑠 ∈ ℝ, (𝑎, 𝑏, 𝑐) ∈ 𝑃

}
=
{
(𝑏, 0, 𝑐) + span

(
𝑎, 1,

𝑏

2

)
∶ (𝑎, 𝑏, 𝑐) ∈ 𝑃

}
.

Since2(dir()) > 0 by assumption, we see that

2
({(
𝑎,
𝑏

2

)
∶ (𝑎, 𝑏, 𝑐) ∈ 𝑃

})
> 0,

and consequently, dimH 𝑃 ⩾ 2. The claim now follows from Theorem 1.5. □
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