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Abstract

Tolvanen, Alex
Semileptonic decays of heavy-flavour hadrons
Master’s thesis
Department of Physics, University of Jyväskylä, 2023, 55 pages.

Heavy-flavour hadrons, i.e. hadrons that contain at least one heavy quark, are
interesting as their masses are large enough that it is possible to calculate their
production cross sections even at small transverse momenta. As measuring the
spectra for the hadrons themselves is not always possible, it is often useful to study
the decay products, or more precisely their spectra. Semileptonic decay channels are
particularly useful for this purpose since detecting decay particles, such as electrons
and positrons, is often relatively easy.

In this thesis, we have developed a simulation that allows us to study the decay of
heavy-flavour hadrons. The simulation uses production cross sections obtained using
the so-called SACOT-mT scheme as a starting point. Furthermore, the simulation
uses the PYTHIA event generator to model the decay processes. In this work, the
production cross sections of the decay particles, in this case electrons and positrons,
are the main object of interest. Our aim is to assess the validity of the use of the
SACOT-mT scheme by comparing our numerical results with experimental results and
FONLL calculations. We find that our numerical results are in good correspondence
with experimental data and therefore we can consider our simulation to be successful.
Thus, we can also conclude that the use of the SACOT-mT scheme is justified in
this context.

Keywords: heavy-flavour hadron, semileptonic decay, simulation, SACOT-mT
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Tiivistelmä

Tolvanen, Alex
Raskaiden hadronien semileptoniset hajoamiset
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2023, 55 sivua

Raskaat hadronit, eli hadronit jotka sisältävät vähintään yhden raskaan kvarkin,
ovat kiinnostavia, koska niiden massat ovat tarpeeksi suuria jotta niiden tuottovaiku-
tusalat voi laskea jopa pienillä poikittaisliikemäärillä. Koska itse hadronien spektrien
mittaaminen ei ole aina mahdollista on usein hyödyllistä tutkia hajoamistuotteita, tai
pikemminkin niiden spektrejä. Semileptoniset hajoamiskanavat ovat erityisen hyödyl-
lisiä tähän tarkoitukseen sillä hajoamisessa syntyvien hiukkasten, tässä tapauksessa
elektronien ja positronien, havaitseminen on yleensä suhteellisen helppoa.

Tässä tutkielmassa olemme kehittäneet simulaation, jonka avulla voidaan tutkia
raskaiden hadronien hajoamisia. Tämä simulaatio käyttää niinkutsutun SACOT-
mT skeeman avulla saatuja tuottovaikutusaloja lähtökohtana. Lisäksi, simulaatio
käyttää PYTHIA eventtigeneraattoria hajoamisprosessien mallintamiseen. Tässä
työssä keskeisinä kiinnostuksen kohteina ovat hajoamistuotteiden tuottovaikutusalat.
Tavoitteena on arvioida SACOT-mT skeeman käytön pätevyyttä vertaamalla saatuja
numeerisia tuloksia kokeellisiin tuloksiin ja FONLL laskuihin. Saatujen numeeristen
tulosten havaitaan olevan hyvässä sopusoinnussa kokeellisen datan kanssa ja täten
simulaatiota voidaan pitää onnistuneena. Näin ollen, voidaan myös todeta, että
SACOT-mT skeeman käyttäminen on tässä yhteydessä perusteltua.

Avainsanat: raskas hadroni, semileptoninen hajoaminen, simulaatio, SACOT-mT
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1 Introduction

The year 1964 was groundbreaking for the field of particle physics. It was during this
year that the existence of a type of sub-particles that made up the numerous known
particles, considered at the time to be elementary particles, was first proposed. The
existence of such particles was independently proposed by Murray Gell-Mann [1] and
George Zweig [2]. These sub-particles have since become commonly known as quarks
and they are the cornerstone of our understanding of the structure and behaviour of
hadrons.

The original quark model that consisted of three quark flavours, namely up,
down and strange, has since been supplemented with the existence of three other
flavours, namely charm, bottom and top. The original three quark flavours are
collectively referred to as light quarks whereas the other quark flavours are collectively
referred to as heavy quarks. This distinction is due to the significant difference
between the masses of light-flavour quarks, mu = 2.16 MeV, md = 4.67 MeV and
ms = 93.4 MeV, and the heavy-flavour quarks, mc = 1.27 GeV, mb = 4.18 GeV and
mt = 172.69 GeV [3].

In this thesis, we focus on charm and bottom quarks, henceforth referred to
as heavy quarks. More precisely, we are interested in heavy-flavour hadrons, by
which we mean hadrons that contain at least one heavy quark. Henceforth, we will
refer to hadrons containing at least one b quark as B-hadrons and we will similarly
refer to hadrons containing at least one c quark as C-hadrons. Heavy quarks are
particularly interesting, because their masses make it possible to calculate their
production cross sections at low pT, i.e. at low values of transverse momentum, using
perturbative Quantum Chromodynamics (pQCD). Next-to-leading order calculations
involve logarithms of the form log

(
pT
m

)
that become problematic if the mass is small.

This property has given rise to the fixed-order-plus-next-to-leading-log (FONLL) ap-
proach [4], which has become an essential method of obtaining theoretical predictions
and serves as reliable tool that can be used as a point of comparison for experimental
data, as is done in Ref. [5]. Such experimental results have been obtained in the
plethora of experimental studies that have been performed, for example at the Large
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Hadron Collider (LHC) [6].
The experimental study of heavy-flavour hadrons is still being conducted and

future research has been planned for example at A Large Ion Collider Experiment
(ALICE) [7]. Therefore, since measuring the spectra of heavy-flavour hadrons is not
always possible, it is imperative that we both understand and are able to model their
decay processes and study the decay products. Due to the fact that heavy-flavour
hadrons have significant semileptonic decay channels, one is able to study their
properties through the observation of heavy-flavour electrons, by which we mean
electrons produced in the decay process.

The goal of this work is to create a simulation program that models the decay of
heavy-flavour hadrons and to obtain numerical estimates for the production cross
sections of heavy-flavour electrons from both charm and bottom decays. Our aim is
to compare the numerical estimates with theoretical predictions from FONLL calcula-
tions and experimental results obtained by the PHENIX Collaboration [5]. This will
allow us to assess the validity of our approach and the underlying implementation of
the general-mass variable-flavour-number scheme, the so-called SACOT-mT scheme
discussed in Ref. [8].

The structure of this thesis is as follows. In chapter 2 we shall discuss the
theoretical background of this work. The discussion covers the most significant
theoretical approaches to the production of heavy-flavour hadrons as well as the
SACOT-mT scheme. We will also discuss the decay processes of heavy-flavour
hadrons and briefly explain how the PYTHIA event generator [9], models such
decays. Chapter 3 will contain a detailed in-depth discussion of the numerical
methods present in our simulation. In chapter 4 we present the numerical results
and discuss the comparison between the numerical results, FONLL calculations and
experimental results. Finally, in chapter 5 we present the final conclusions of this
thesis.

In this thesis we shall use the common system of natural units in which the
reduced Planck’s constant and the speed of light are equated to unity: ~ = c = 1.
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2 Theoretical background

2.1 Parton-to-hadrons distribution functions

Parton distribution functions (PDFs) are essentially number densities for observing
certain types of partons in a hadron. Let us assume that a parton of type a is found
from a hadron of type A in such a way that it carries the fraction x of the hadron’s
momentum. The probability of observing such a parton, with x ∈ [x, x+ dx], would
then be [10]

Pa = fAa (x, µfact)dx, (2.1)

where fAa (x, µfact) is the parton distribution function and µfact is the factorization
scale. We note that the particle distribution functions themselves are obtained by
performing a fit to experimental data in such a way that the experimental and
theoretical cross sections agree with one another. For example, a fit to LHC data
has been done in Ref. [11].

In order to understand the concept of factorization in this context, let us consider
jet production of the form A+B → Jet+X, where A and B are hadrons from which
the partons a and b originate and a jet is essentially a well-collimated hadron shower
that originates from the high-pT quarks and gluons that are produced. Now, if dσ̂

dPT

is the differential cross section for partons a and b to produce the jet in question,
the cross section for producing the jet is [10]

dσ
dPT

∼
∑
a,b

∫
dxAfAa (xA, µfact)

∫
dxBfBb (xB, µfact)

dσ̂
dPT

, (2.2)

where the sum goes over the possible types of partons. In this case, the principle
of factorization states that Eq. (2.2) must hold up to certain corrections. This
includes corrections of order

(
m
PT

)n
, m being a typical hadronic mass scale and n

being determined by the process

dσ̂
dPT

∼
∑
N

(
αs(µren)

π

)N
HN(xA, xB, PT; a, b;µren), (2.3)
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where µren is the renormalization scale and the coefficients HN(xA, xB, PT; a, b;µren)
are calculated using pQCD [10].

2.2 Parton fragmentation functions

As opposed to PDFs, which describe how partons are found in colour-neutral particles,
parton fragmentation functions (FFs) describe how particles that have a colour charge,
namely quarks and gluons, transform into colour-neutral final-state particles such as
hadrons. More precisely, parton fragmentation functions are probability densities for
producing colour-neutral particles from partons [12].

In this thesis, we have used the well-known unpolarized fragmentation function
Dh/i(z). The fragmentation function Dh/i(z) describes how an unpolarized parton
of type i fragments into an unpolarized hadron of type h in such a way that the
hadron carries the fraction z of the parton’s momentum [12]. As such, we obtain the
number of hadrons of type h, with z ∈ [z, z + dz], observed in a parton of type i as

Nh = Dh/i(z)dz. (2.4)

The importance of the concept of FFs, as well as PDFs, becomes apparent when
considering the cross section of single-inclusive hadron production in, for example, a
proton-proton collision, p+ p→ h+X. Now in order to calculate the cross section
for such a process we would need to know the relevant fragmentation function and
parton distribution functions and also the partonic cross section, σ̂, for the process
in question.

2.3 Hadroproduction

In this section, we shall briefly present some of the most significant theoretical
approaches to heavy-flavour production. Our discussion will include the fixed-flavour-
number scheme (FFNS), the zero-mass variable flavour number scheme (ZM-VFNS),
the general-mass variable flavour number scheme (GM-VFNS) and the fixed-order-
plus-next-to-leading-log (FONLL) approach, which is one of the most significant
GM-VFNS approaches. We shall, however, limit our discussion to heavy-flavour
production in proton-proton collisions.
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2.3.1 FFNS

The fixed-flavour-number scheme can be considered the simplest approach to open-
heavy-flavour production. This is due to the fact that the heavy quark is not treated
as an active parton in the proton. In this framework, the differential cross section
for the inclusive production of a heavy quark, denoted as Q, is obtained as [6]

dσQ+X [s, pT, y,mQ] '
∑
i,j

∫ 1

0
dxi

∫ 1

0
dxjfAi (xi, µfact)fBj (xj, µfact)dσ̃ij→Q+X [xi, xj,

s, pT, y,mQ, µfact, µren]. (2.5)

In equation (2.5) s is the squared hadron center-of-mass energy, mQ is the mass
of the heavy quark, fAi and fBj are the parton distribution functions and µfact and
µren are the factorisation and renormalization scales respectively. Finally, dσ̃ is the
partonic cross section from which the collinear singularities associated with the gluon
and the light quarks have been removed.

Equation (2.5) contains a sum over all possible subprocesses i+j → Q+X, where
i and j are the active partons in the proton. We may then use one of two approaches:
FFNS with three active flavours, i, j ∈ {q, q̄ = (u, ū, d, d̄, s, s̄), g}, or FFNS with
four active flavours, i, j ∈ {q, q̄ = (u, ū, d, d̄, s, s̄, c, c̄), g}, where the charm quark is
treated as an active parton for µfact > mc and where we neglect mc in dσ̃ [6]. The
fixed-flavour-number scheme with three flavours can be used for both charm and
bottom production, whereas FFNS with four flavours can only be used for bottom
production.

We know that at the leading order in αs, the strong coupling constant, there are
only two contributing sub-processes, namely q+ q̄ → Q+ Q̄ and g + g → Q + Q̄.
Furthermore, we must, at the next-to-leading order, include the virtual one-loop cor-
rections to the aforementioned sub-processes as well as the following sub-processes [6]:

q + q̄ → Q+ Q̄+ g,

g + g → Q+ Q̄+ g,

g + q → q +Q+ Q̄,

g + q̄ → q̄ +Q+ Q̄.

Complete next-to-leading order calculations for the cross section for heavy-flavour
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production have been performed, for example, in Ref. [13] and Ref. [14]. Finally,
we note that at the next-to-leading order the FFNS is applicable approximately
within the range 0 ≤ pT . 5 ×mQ beyond which the FFNS prediction begins to
overestimate the cross section [6].

2.3.2 ZM-VFNS

The logarithms involving the heavy-quark mass, αs

2π ln( p
2
T

m2
Q

), which are present in the
partonic cross section dσ̃, clearly become large in the region pT � mQ. Therefore,
the logarithms must eventually be resummed to all orders in the perturbation theory,
which is done by absorbing them into the PDFs and FFs. As a result, the FFs
become scale-dependent. In this approach the heavy-quark must be treated as an
active parton for factorization scales µfact ≥ µtran where the transition scale, µtran, is
generally identified with the heavy-quark mass [6]. Thus, we have a scheme in which
the number of active flavours changes when the transition scale is crossed. This is
known as a variable flavour number scheme.

The zero-mass variable flavour number scheme is a special case of the variable
flavour-number scheme in which we neglect the heavy-quark mass when calculating
the short-distance cross section, dσ̂ij→k+X . Because of this, the ZM-VFNS only
produces accurate predictions for the region of large transverse momentum. In the
ZM-VFNS the differential cross section for producing a heavy-flavour hadron, in a
process of the form A+B → H +X is obtained from the following equation [6]

dσH+X '
∑
i,j,k

∫ 1

0
dxi

∫ 1

0
dxj

∫ 1

0
dzfAi (xi, µfact)fBj (xj, µfact)dσ̂ij→k+X

DH
k (z, µ′fact) +O

(
m2
Q

p2
T

)
. (2.6)

A complete NLO calculation of all sub-processes has already been performed, for
example, in Ref. [15].
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2.3.3 GM-VFNS

Both the FFNS and the ZM-VFNS are good methods for calculating the cross section
for heavy-flavour production but they are only valid in limited pT regions. The
general-mass variable flavour number scheme combines the benefits of the fixed-order
(FO) calculations in the FFNS at low pT and the massless calculation in the ZM-VFNS
at high pT in order to generate a framework that is valid over the entire kinematic
range. To be precise, the large logarithms are resummed by the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution [16–19] of nonperturbative fragmentation
functions and PDFs and the mass-dependent terms from the FFNS are retained [20].
The differential cross section for the production of heavy-flavour hadrons is obtained
from [6]

dσH+X '
∑
i,j,k

∫ 1

0
dxi

∫ 1

0
dxj

∫ 1

0
dzfAi (xi, µfact)fBj (xj, µfact)dσ̂ij→k+X [pT,mQ]

DH
k (z, µ′fact). (2.7)

Next-to-leading order calculations for the cross section of heavy-flavour production
in proton-proton collisions have been discussed for example in Ref. [20] and Ref. [21].

The GM-VFNS succesfully combines the benefits of the FFNS and the ZM-
VFNS but the use of the zero-mass approximation can lead to some problems. To
be precise, these problems occur in some applications of the GM-VFNS when the
fragmenting parton is a light one or when there are heavy-quarks in the initial state
of the process [8]. At large pT, more precisely when pT � mQ, the results of the
GM-VFNS approach the results of the ZM-VFNS as we would expect. However, at
low pT the massless coefficient functions display divergent behaviour which causes
the cross sections to diverge as pT approaches zero. This behaviour makes obtaining
a well-behaved description for the heavy-flavour hadrons, that is valid through the
entire kinematic range, rather difficult. These significant issues have motivated the
need for general-mass variable flavour number schemes that circumvent them. One
such scheme is the SACOT-mT scheme which is discussed in section 2.4.
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2.3.4 FONLL

One of the most significant general-mass variable flavour number schemes is the
FONLL approach. The FONLL approach is a particularly significant theoretical
framework in the study of heavy-flavour production that is valid through the entire
kinematic range. As the FONLL approach is a general-mass variable flavour number
scheme, it combines the virtues of the FFNS and the ZM-VFNS. The main idea is
linked to how the leading-logarithmic terms (LL), α2

s(αslogpT
m

)k, and next-to-leading
logarithmic terms (NLL), α3

s(αslogpT
m

)k, that arise in the power expansion of the
cross section, are treated.

To be precise, the FONLL approach combines two different approaches to handling
these terms, namely an order-α3

s calculation, referred to as the fixed-order approach,
and another calculation, referred to as the resummed-approach (RS), where the LL
and NLL corrections are calculated with the fragmentation function formalism [22].
Furthermore, all terms of order α2

s, α3
s, α2

sα
k
s logk

(
pT
m

)
and α3

sα
k
s logk

(
pT
m

)
are included

exactly.

The cross section is obtained by combining the result of the FO calculation at
NLO [4]

dσ
dp2

T
= A(m)α2

s +B(m)α3
s +O(α4

s), (2.8)

and the RS calculation at NLL [4]

dσ
dp2

T
= α2

s

∞∑
i=0

ai

(
αslog

µ

m

)i
+ α3

s

∞∑
i=0

bi

(
αslog

µ

m

)i

+O
(
α4
s

(
αslog

µ

m

)i)
+O(α2

s × PST), (2.9)

where ai and bi are coefficients that depend on the center-of-mass energy Ecm, pT

and µ. In equation (2.9) PST refers to the terms that are suppressed by the powers
of m

pT
, and thus neglected. In the FONLL approach the equations (2.8) and (2.9) are

combined in such a way that we obtain

dσ
dp2

T
= A(m)α2

s +B(m)α3
s +

(
α2
s

∞∑
i=2

ai

(
αslog

µ

m

)i
+ α3

s

∞∑
i=1

bi

(
αslog

µ

m

)i)

×G(m, pT) +O
(
α4
s

(
αslog

µ

m

)i)
+O(α4

s × PST), (2.10)
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where G(m, pT ) is some arbitrary function that approaches 1 when m
pT
→ 0 [4]. The

function G(m, pT ) appears due to the fact that G(m, pT ) = 1 + PST, and thus
Eq. (2.9) can be written in the form

dσ
dp2

T
= G(m, pT )

(
α2
s

∞∑
i=0

ai

(
αslog

µ

m

)i
+ α3

s

∞∑
i=0

bi

(
αslog

µ

m

)i)

+O
(
α4
s

(
αslog

µ

m

)i)
+O(α2

s × PST). (2.11)

In order to complete the calculation we need an approximation of the FO calcula-
tion at the so-called massless limit (FOM0), where the finite power-like mass terms
may be neglected. This is due to the fact that we need to subtract the fixed-order
terms, that are already present in the FO result, from the RS result. The FOM0
cross section is

dσ
dp2

T

= a0α
2
s +

(
a1log

µ

m
+ b0

)
α3
s +O(α2

s × PST), (2.12)

which is obtained from equation (2.8) by using the following propertiesA(m) = a0 + PST
and B(m) = a1log µm + b0 + PST [4]. Now we obtain the FONLL cross section as [6]

dσFONLL = dσFO +G(mQ, pT)× (dσRS − dσFOM0), (2.13)

whereG(mQ, pT) is a matching function that ensures that the conditions dσFONLL → dσRS

for pT � mQ and dσFONLL → dσFO for pT → 0 are fulfilled. In the FONLL approach
the function G(mQ, pT) is chosen to be [6]

G(mQ, pT) = p2
T

p2
T + a2m2

Q

, (2.14)

where one chooses a = 5.
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2.4 SACOT-mT scheme

2.4.1 Background

As mentioned in section 2.3.3, the difficulties in obtaining a well-behaved description
for the heavy-flavour hadrons, that is valid through the entire kinematic range, in the
GM-VFNS have motivated the need for other general-mass variable flavour number
schemes that circumvent these issues. The SACOT-mT scheme, first suggested in
Ref. [8], is one such scheme. It takes advantage of the scheme dependence present in
the GM-VFNS in order to prevent the problematic divergent behaviour at low pT

with a convenient choice of scheme.

The choice of scheme is based on the observation that, in the absence of intrinsic
charm components, the contributions from both the heavy-quark PDFs and the light
parton FFs can be regarded as an efficient way to resum diagrams where a heavy
quark-antiquark pair is dynamically produced [8]. These contributions can then be
required to obey the same kinematic constraints as the channels where the pair is
explicitly produced. Including these effects in the definition of the scheme will then
lead to the contributions from the heavy-quark PDFs and light parton FFs that are
regulated by the heavy-quark mass, thus preventing the divergent behaviour in the
production cross sections when pT → 0.

2.4.2 Kinematics

The SACOT-mT scheme was developed for the study of inclusive hadroproduction
of heavy-flavour hadrons. Specifically the process

h1(P1) + h2(P2)→ h3(P3) +X,

where h1, h2 and h3 refer to hadrons and P1, P2 and P3 to their respective momenta.
This process is illustrated in Figure 1. If the masses of partons and the produced
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hadron are neglected, the differential cross section has the factorized form

dσ(h1 + h2 → h3 +X)
dPTdY

=
∑
ijk

∫ 1

zmin

dz
z

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

Dk→h3(z, µ2
frag)fh1

i (x1, µ
2
fact)fh2

j (x2, µ
2
fact)

dσ̂ij→k(τ1, τ2, µ
2
ren, µ

2
fact, µ

2
frag)

dpTdy
, (2.15)

where PT and Y refer to the hadron’s transverse momentum and rapidity whereas
pT and y refer to the fragmenting parton’s transverse momentum and rapidity [8].
In equation (2.15), fh1

i (x1, µ
2
fact) and fh2

j (x2, µ
2
fact) are the PDFs for parton species i

and j in hadrons h1 and h2 respectively and Dl→h3(z, µ2
frag) is the parton-to-hadron,

specifically h3, FF. Furthermore, the invariants are defined as [8]

τ1 ≡
p1 · p3

p1 · p2
= pTe

−y

x2
√
s
, τ2 ≡

p2 · p3

p1 · p2
= pTe

y

x1
√
s
, (2.16)

where p1, p2 and p3 are the momenta of the partons, p1 and p2 refer to the incoming
partons and p3 to the produced parton, and

√
s is the center-of-mass energy of

the process. Finally, the integration limits arising from kinematic constraints in

X

h1

h2

P1

P2

P3

p1

p2

p3

h3

Figure 1. Illustration of the process h1(P1) + h2(P2)→ h3(P3) +X.
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equation (2.15) are [8]

xmin
1 = pTe

y

√
s− pTe−y

, xmin
2 = x1pTe

−y

x1
√
s− pTey

, zmin = 2PTcoshY√
s

. (2.17)

Since we are dealing with heavy-flavour production the zero-mass partonic kine-
matics need to be adjusted so that the heavy-quark mass, mQ, is taken into account.
This is essentially done by replacing the transverse momentum pT in the expressions
for τ1, τ2, xmin

1 and xmin
2 , equations (2.16) and (2.17), with the transverse mass

mT =
√
p2

T +m2
Q. Furthermore, since we cannot use the zero-mass version of the

fragmentation scaling variable z, we define it in a Lorentz invariant manner

z ≡ P3 · (P1 + P2)
p3 · (P1 + P2) , (2.18)

which obeys z → Ehadron
Eparton

in the hadronic center-of-mass frame. If we assume that the
collision is collinear in the center-of-mass frame and use equation (2.18), we obtain
the following equations

z = MTcosh(Y )
mTcosh(y) , (2.19)

PT

MTsinh(Y ) = pT

mTsinh(y) , (2.20)

where M is the mass of the produced hadron and MT =
√
M2 + P 2

T is its transverse
mass [8]. The equations (2.19) and (2.20) can then be solved in order to obtain
expressions for the hadronic transverse momentum and rapidity, namely

P 2
T(y, pT) = z2m2

Tcosh2(y)−M2

1 + (m2
Tsinh2(y))/p2

T
, (2.21)

Y (y, pT) = sinh−1
(
mTsinh(y)

pT

PT

MT

)
. (2.22)

Finally the expression for the cross section that corresponds to our definition of the
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scaling variable is [8]

dσ(h1 + h2 → h3 +X)
dPTdY

=
∑
ijk

∫ 1

zmin
dz
∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

∫
dy
∫

dpT

Dk→h3(z, µ2
frag)fh1

i (x1, µ
2
fact)fh2

j (x2, µ
2
fact)

dσ̂ij→k(τ1, τ2,mQ, µ
2
ren, µ

2
fact, µ

2
frag)

dpTdy
δ(Y − Y (y, pT))δ(PT − PT(y, pT)). (2.23)

Now, if we use the relation
∫
dydpT = 1

z

∫
dPT(y, pT)dY (y, pT), equation (2.23)

becomes identical to equation (2.15), with the distinction that

p2
T =

M2
Tcosh2(Y )− z2m2

Q

z2

(
1 + M2

Tsinh2(Y )
P 2

T

)−1

, (2.24)

y = sinh−1
(
MTsinh(Y )

PT

pT

mT

)
, (2.25)

zmin = 2MTcosh(Y )√
s

. (2.26)

We note that in our implementation we use the following definition for the
fragmentation scaling variable z instead of the one given in Eq. (2.18)

z ≡ P3 · (P1 − P2)
p3 · (P1 − P2) . (2.27)

The reason for this is that using the definition of z given in Eq. (2.18) leads to
problematic behaviour for the double differential cross section around rapidity
y = 0.00 at low pT. This is due to the fact that if the definition given in Eq. (2.18)
is used, heavy quarks will not form heavy-flavour mesons at sufficiently low pT, as
discussed in Ref. [23].
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2.4.3 Partonic cross section

In order to obtain partonic cross sections in the SACOT-mT scheme, we must first
consider NLO one-particle inclusive heavy-quark cross section in the FFNS. In this
case, heavy quark production, where a qq̄ pair is produced, only occurs in the
following partonic processes:

q + q̄ → Q+ Q̄+X,

q + g → Q+ Q̄+X,

g + g → Q+ Q̄+X.

In the ZM-VFNS calculation, the partonic cross sections then develop logarithmic
divergences in the high-pT limit. These logarithmic divergences come from the
kinematic regions where the quarks become collinear with other partons [8]. As
discussed in the section 2.3.3 these logarithms are resummed when the interaction
scale exceeds the chosen transition scale which in the SACOT-mT scheme is identified
as the heavy-quark mass, µT = mQ.

If left unaddressed, taking the contributions from both the heavy-quark PDFs
and parton-to-hadron FFs into account would lead to double counting. In order to
avoid this, the logarithmic terms must be subtracted from the coefficient functions.
To be precise, this is done by determining the correct subtraction terms which, at
NLO, can be done by considering the LO contributions from the channels where the
fragmenting parton is light or where the initial state contains heavy-quarks. These
contributions uniquely determine the correct subtraction terms, which can then be
taken into account.

This reasoning can now be applied to the aforementioned partonic processes.
A detailed discussion of how this is done in practice has been given in Ref. [8] and
therefore we shall not go into detail here. However, we mention that the exact
form of the multiplied matrix element can be chosen at will as long as it tends
to its zero-mass expression at the m → 0 limit. This is important because the
integration limits mentioned in the previous section behave similarly. Therefore, we
may choose the simplest possibility, namely using the zero-mass matrix element and
kinematics discussed in section 2.4.2, which is usually called the simplified ACOT,
SACOT, scheme. Finally, we note that the SACOT-mT scheme takes into account
the O(α3

s) contributions from Ref. [15] and the contributions from all other partonic
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subprocesses whose inclusion does not require the subtraction of terms at NLO [8].

2.5 Decay processes

As mentioned in section 1, heavy-flavour hadrons have significant semileptonic decay
channels. For example, the B− meson has the decay channel B− → e−ν̄eXc, where Xc

refers to any C-hadron, with a branching fraction of (10.8± 0.4)% and the D+ meson
has the decay channel D+ → K̄0

e+νe with a branching fraction of (8.72± 0.09)% [3].
Heavy-flavour decays are largely defined by the decay processes of the heavy-quarks.
Therefore, it is imperative to understand how a heavy quark can transform into a
lighter quark by emitting a W± boson. This is essentially what happens when a
heavy-flavour hadron decays through a semileptonic decay channel.

Let us consider the B− decay B− → e−ν̄eD0 in the lowest order. Here the b quark
transforms into a lighter quark, namely the c quark, through the weak interaction.
This involves emitting a W− boson, which then decays into an electron and an
electron antineutrino. If we consider the D+ decay D+ → e+νeK̄

0 in the lowest
order, we again find that the heavy quark decays into a lighter one through the
weak interaction. In this case, the c quark transforms into a s quark by emitting a
W+ boson, which decays into a positrons and an electron neutrino. The Feynman
diagrams of these decays are displayed in Figures 2 and 3 respectively.

As one might imagine, these simple decay processes become much more difficult as
higher-order contributions are taken into account. However, the weak interaction still
plays a central part in all contributions. We omit a detailed discussion of the higher
order contributions as it would be beyond the scope of this thesis. Furthermore,
as we have used the PYTHIA event generator to model the decay events, we must
discuss how PYTHIA models these decays. The following section is dedicated to
briefly discussing heavy-flavour decays from the perspective of the PYTHIA event
generator.
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Figure 2. Feynman diagram for the decay B− → e−ν̄eD0.

D+ K̄0

W+

d̄ d̄

c s

e+
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Figure 3. Feynman diagram for the decay D+ → e+νeK̄
0.
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2.6 Weak decays in PYTHIA

In order to properly understand how heavy-flavour decays are numerically modelled
we will briefly discuss how heavy-flavour decays are processed in PYTHIA 8.3.
Knowledge about the properties, such as mass or decay channels, of different particles
are a built-in part of the PYTHIA 8.3 framework. PYTHIA applies measured
branching ratios to sample the decay channel and decay products. In fact, in
PYTHIA 8.3 the decay channels of all the hadrons whose decays we wish to model
are based on the LHCb decay tables.

Once all relevant properties have been specified, the decay channel are randomly
chosen from a list of possible decay channels with weights proportional to their
respective branching fractions [9]. The decay products must also be distributed
according to the phase space. This is not necessarily trivial and therefore in PYTHIA
8.3 this is done using specialized algorithms that are presented in Ref. [9]. We
will henceforth limit our discussion to the decay events for which PYTHIA 8.3 has
dedicated matrix elements.

In this work, we are interested in semileptonic decays that always occur through
the weak interaction. In what follows, we will discuss how weak decays are handled
in PYTHIA, using the semileptonic decay channel B− → e−ν̄eD0, which is discussed
above and illustrated in Figure 2, as an example. The idea is to use the unpolarized
matrix element for the t-channel weak scattering of fermions, f0f1 → f2f3,

|M|2 ∝ (p0p1) (p2prem) , (2.28)

where pi is the momentum of the fermion fi and prem is the sum of the remaining
momenta, which in this case is merely p3, to approximate the semileptonic decays
of heavy-flavour hadrons [9]. By using crossing symmetry, this matrix element can
be used for the decay process f0 → f1f2f3. One example of such a decay is the muon
decay which is discussed for example in Ref. [24].

In PYTHIA, the idea is to ignore the light quarks and treat the decaying hadron
as if it was only composed of the heavy quark. In essence, PYTHIA models the decay
of the heavy quark and takes the light quarks into account when determining the
decay products. The semileptonic decays can then be specified with their partonic
content. Finally, the parton system is collapsed into a hadron according to the
flavour-selection rules present in PYTHIA [9].
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3 Numerical methods

The main purpose of this work was to numerically model the decay of heavy-flavour
hadrons. To this end, we have constructed a simulation that takes a heavy-flavour
hadron with arbitrary values of transverse momentum and rapidity, uses the PYTHIA
event generator to model its decay process and processes the results.

In this section, we shall describe in detail the structure and implementation of
this simulation. We will also present the performed normalizations and explain the
chosen method for estimating the uncertainty associated with the results. For the
sake of reproducibility, the entire simulation code alongside its command and header
files and all separate scripts used for plotting have been made available as mentioned
in Appendix A.

3.1 Initialization

Before the simulation can begin, we need to specify what we specifically wish to
study. First, we must specify the data we wish to use. In this work, we use the data
obtained with the numerical implementation of the SACOT-mT scheme, discussed
in Ref. [8], as a starting point.

Using this numerical implementation, we have obtained values for the double
differential production cross section, d2σ

dPTdY , for B
+ and D0 mesons at certain values

of transverse momentum and rapidity, N.B. the transverse momentum and rapidity
are studied within the intervals 0.0 GeV ≤ PT ≤ 20.0 GeV and −2.0 ≤ Y ≤ 2.0.
Using the numerical implementation of the SACOT-mT scheme we have obtained
datapoints within these intervals in such a manner that the values of pT are 0.5 GeV
apart and the values of rapidity are 0.25 apart.

More precisely, we have obtained sets of such values with the different possible vari-
ations of the factorization, renormalization and fragmentation scales, (µfact, µren, µfrag).
We have then used these values to create tables from which we can then interpolate
the cross section at arbitrary values of transverse momentum and rapidity, within
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the studied intervals. These tables have been collected into external files and thus
we must specify the desired one at the start of the simulation.

When starting the simulation both the decaying particles and the type of decay
particles which we wish to study must be specified. We note that currently we have
only studied the electrons/positrons that are formed in the decays. However, the
framework could also be used to study other types of decay particles. Finally, we
specify a set of seeds for random number generation.

Once the necessary settings have been specified, the data obtained using the
numerical implementation of the SACOT-mT scheme is read from an external file.
After the data have been read, we define the necessary variables and histograms and
specify the individual bins in the histograms. In this work, we have defined the bins
of the histograms to be identical to those used in Ref. [5] so that we will be able
to compare our results to the experimental results of the PHENIX Collaboration.
Finally, once all this has been done we initialize the PYTHIA event generator in
order to begin the event generation loop.

3.2 Decay event generation and processing

The event generation loop begins with the precise specification of the decaying
particle. This is done by checking whether we are studying B- or C-hadrons, and
by determining a specific hadron according to branching fractions. To be precise,
we specify the PDG particle code that is used to identify the particle in PYTHIA
8.3 [9]. The possible decaying particles and their fragmentation fractions are known
for B-hadrons from Ref. [3] and for C-hadrons from Ref. [25]. These fractions are
listed in Tables 1 and 2.

Table 1. B-hadron fragmentation fractions from Ref.[3].

B-hadron Production fraction
B+ (40.8 ± 0.7)%
B0 (40.8 ± 0.7)%
B0

s (10.0 ± 0.8)%
b-baryon (8.4 ± 1.1)%
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Table 2. C-hadron fragmentation fractions from Ref.[25].

C-hadron Production fraction
D+ 0.232 ± 0.010
D0 0.573 ± 0.023
Ds 0.080 ± 0.006
Λc 0.104 ± 0.010

Once the decaying particle has been specified we also need to define its four-
momentum. This is done by first using PYTHIA to find the mass, m, of the decaying
particle and then randomly sampling values for transverse momentum and rapidity,
within the studied intervals, and for the azimuthal angle θ. We note that the values
of PT and rapidity are sampled from a flat probability distribution. This approach
was chosen because it made it possible to obtain good statistics throughout the entire
kinematic range. Furthermore, as we use the double differential cross sections as
weights for the events, we are able to compensate for not sampling the kinematics
according to the cross section. Thus, there was no explicit need to sample the values
of PT and rapidity from realistic distributions.

The sampled values of PT and rapidity are also used to interpolate the corre-
sponding cross section from the input data. This value is only valid for a certain
meson, in this case either B+ or D0, and must therefore be scaled to account for
other possible B- or C-hadrons. The scaling factor is obtained as the inverse of
the production fraction of the meson the table was originally generated for. These
fractions for B+ and D0 are listed in Tables 1 and 2. The hadron’s four-momentum,
P = (E,Px, Py, Pz), can then be specified with the known equations

mT =
√
m2 + P 2

T, (3.1)

E = mT ×
eY + e−Y

2 , (3.2)

Px = PTcos(θ), (3.3)

Py = PTsin(θ), (3.4)

Pz = mT ×
eY − e−Y

2 . (3.5)

Before the simulation proceeds further, a pair of simple tests, that are performed
to check the validity of the simulation, are primed. We note that these test do
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not involve heavy-flavour decay. To be precise, the tests were only necessary until
the script was complete and explicitly checking the results after every run is not
necessary. However, they were not removed from the script as their existence serves
as proof of the validity of the simulation. These tests are done by comparing the
results with our input data and checking that they agree with one another. The
tests are described in detail in section 3.3.

Having saved the necessary variables in order to later complete the tests, the
simulation proceeds to the study of the decay processes. The decay is modelled by
inputting the decaying particle to the event record and by using PYTHIA to handle
the decay. To be precise, we use the PDG particle code, the particle’s mass and
the four-momentum defined earlier. Then, once PYTHIA has completed the decay
process, we study the results. We wish to compare our results to the ones presented
in Ref. [5] and thus we calculate the differential cross section 1

2πPT
dσ

dPT
using the

transverse momentum of the hadron and the corresponding cross section. Then, we
again save the PT of the hadron into two temporary histograms, one without weights
and one weighted by the differential cross section.

In this work we are particularly interested in the decay particles of heavy-flavour
hadrons, in this case only electrons and positrons. They are found by checking the
entire event record for their particle codes. In order to make our results comparable
to the ones presented in Ref. [5], we only take into account the electrons and positrons
whose pseudorapidities are within the interval −0.35 ≤ η ≤ 0.35. If a suitable decay
particle is found, we calculate the double differential cross section 1

2πpT
d2σ

dpTdy using
the electron’s transverse momentum and the production cross section of the hadron.
The electron’s pT is then saved to two temporary histograms one without weights
and one weighted by the double differential cross section.

We also wish to combine the results for B- and C-hadron decay electrons/positrons
in order to study inclusive heavy-flavour decay. Thus we must, in the case of B-
hadron decay, take into account the fact that the decaying particle could decay into a
D-meson which would then decay into an electron or a positron. If left unaddressed,
this would lead to double counts when the results are combined. Therefore, we take
another pair of temporary histograms into which we only save the pT of the decay
particles that do not originate from D-mesons.
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3.3 Testing

The main idea of the tests is to check that the sampled events, that have been binned
in finite histograms and correctly normalized, correspond to the input data. The
value of PT or rapidity is then saved to two temporary histograms, one without
weights and one weighted by the corresponding cross section. Two histograms are
used because it is a simple way to obtain both the number of events in a given
bin and the sum of the cross sections of said events which are both needed in the
normalization described in section 3.4. This procedure is also used when obtaining
the actual results of the simulation.

This process continues throughout the event generation and once all the results
have been obtained we will need to normalize them. The idea is to use two separate
histograms as an easy method of summing the cross sections we used as weights bin
by bin and similarly calculating the amount of events in each transverse momentum,
or rapidity, bin. Thus, we can calculate the average of the double differential cross
sections in each bin as

d2σ

dPTdY
= 1
Nj

×
Nj∑
i=1

(
d2σ

dPTdY

)
i

, (3.6)

where Nj is the amount of events within the bin and the summation goes over all of
said events. This average is then saved into the final histogram, with bins identical
to the temporary histograms, into the correct transverse momentum, or rapidity,
bin. Finally we check if the average of the double differential cross section in each
bin agrees with the input data, that was scaled to account for all possible B- or
C-hadrons, as we would expect.

In addition to these results, we will include a numerical prediction for the
double differential cross section, d2σ

dPTdY . This prediction is obtained by taking a
predetermined value of PT, or rapidity, as a known value and taking a very large
amount of rapidity, or PT, points with a set distance between them so that the
entire rapidity, or PT, range is covered. These known values were chosen to be
PT = 2.00 GeV and Y = 0.00 for B-hadrons and PT = 1.00 GeV and Y = 0.00 for
C-hadrons. Finally, the cross section is interpolated at all points and the resulting
prediction is plotted alongside the scaled input data and the numerical results.

The resulting plots are shown in Figures 4 and 5. Figure 4 presents the double
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Figure 4. Double differential cross section as a function of transverse momentum
at Y = 0.00, simulation with Y ∈ [−0.50, 0.50], for B-hadron production.
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Figure 5. Double differential cross section as a function of rapidity at
PT = 2.00 GeV, simulation with PT ∈ [1.50 GeV, 2.50 GeV], for B-hadron pro-
duction.
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differential cross section d2σ
dPTdY at Y = 0 as a function of PT in B-hadron production

using the following choice of scales µfact = 1.0, µren = 1.0, µfrag = 1.0. We observe
that the results of the simulation match both the prediction and the input data
well. However, we notice that the results of the simulation are systematically
smaller than the predicted results or the input data. This is to be expected as both
the prediction and the input data were obtained using Y = 0 as a known value
whereas the simulation takes into account the events within a small rapidity interval,
−0.50 ≤ Y ≤ 0.50. This difference explains the deviations since the largest cross
sections are obtained at Y = 0. We also note that, since the prediction matches the
input data perfectly, as one would assume, we can conclude that the interpolation is
working as expected.

Figure 5 on the other hand presents the double differential cross section d2σ
dPTdY

at PT = 2.00 as a function of Y in B-hadron production using the following choice
of scales µfact = 1.0, µren = 1.0, µfrag = 1.0. We again observe that the results of
the simulation match the prediction and the scaled input data well and that the
prediction matches the input data perfectly, which proves that the interpolation
is not flawed. In particular, this is supported by the fact that we observe no
deviations while interpolating the transverse momenta with a given rapidity or while
interpolating the rapidities with a given transverse momentum. Furthermore, we
observe similar small deviations between the numerical results and the data as we
did in Figure 4, namely that the simulated results are systematically smaller than
the predicted results and the input data. However, we again expect such deviations
as the data and the prediction are taken for a precise transverse momentum, in
this case PT = 2.00 GeV, while the numerical results are obtained using a small PT

interval, namely 1.50 GeV ≤ PT ≤ 2.50 GeV. This is due to the fact that the largest
cross sections for B-hadrons are obtained at approximately PT = 2.00, as seen in
Figure 4.
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3.4 Normalization

Once the event generation has been completed and all results have been saved into
temporary histograms, we can begin to normalize the results. The normalization
follows the logic of the general case of Monte Carlo integration, where each results
has its individual weight wj . Furthermore, since the bins we have used have differing
bin widths, we must again perform the normalization in each bin separately. We will
denote an arbitrary bin, whose widths are (∆PT)i and (∆Y )i, or (∆yT)i and (∆y)i
if we are dealing with decay products, as Bi. Now, the cross section in each bin is
given by

d2σ

dPTdY
= 1

(∆PT)i (∆Y )i
σint

wtot
×

∑
j∈Bi

wj

 , (3.7)

where σint is the integrated cross section, wtot is the sum of all weights and the sum
at the end goes over all results in the bin.

We also know that the integrated cross section in Eq. (3.7) is defined as

σint =
N∑
j=1

(
d2σ

dPTdY

)
j

× ∆PT∆Y
N

, (3.8)

where N is the total amount of events,
(

d2σ
dPTdY

)
j
is the production cross section

of an individual hadron and ∆PT and ∆Y are the widths of the entire ranges of
transverse momentum and rapidity. In this work the study was performed within the
intervals PT ∈ [0.00 GeV, 20.00 GeV] and Y ∈ [−2.00, 2.00] and therefore we have
∆PT = 20.00 GeV and ∆Y = 4.00.

We now recall that we have, in this work, used the particles’s cross sections as
weights, i.e. wj =

(
d2σ

dPT dY

)
j
. Therefore the sum of the cross sections of all events

in Eq. (3.8) is merely the sum of all weights, wtot = ∑
j

(
d2σ

dPT dY

)
j
, from Eq. (3.7).

Therefore, the equation for the integrated cross section simplifies to

σint = wtot
∆PT∆Y

N
. (3.9)

Inserting this form of the integrated cross section into equation (3.7), we obtain

d2σ

dPTdY
= 1

(∆PT)i (∆Y )i
∆PT∆Y

N
×
∑
j∈Bi

(
d2σ

dPTdY

)
j

, (3.10)
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which is the general form of the cross section we have used.
Now we can easily obtain the exact forms of normalization we have used. While

studying the decaying hadrons themselves, we were only interested in the differential
cross section 1

2πPT
dσ

dPT
. The correct normalization is essentially the same as given in

Eq. (3.10) but the widths of the rapidity bins are not included. We also note that
in this case we must include the factor 1

2πPT
in the double differential cross sections

and therefore the weights. Thus, we have wtot = ∑
j

(
1

2πPT
d2σ

dPT dY

)
j
. However, this

does not otherwise affect the equations. The correctly normalized cross section is
therefore

1
2πPT

dσ
dPT

= 1
(∆PT)i

∆PT∆Y
N

×
∑
j∈Bi

(
1

2πPT

d2σ

dPTdY

)
j

. (3.11)

The normalization used for the cross sections of the decay electrons, 1
2πpT

d2σ
dpTdy ,

was obtained in a similar manner. However, this time the procedure was more
straightforward as we were interested in the double differential cross sections. We
only needed to include a factor of 1

2 to make our results comparable to the experimental
data that was averaged as σ = 1

2

(
σe

− + σe
+
)
. The correctly normalized cross section

is thus given by

1
2πpT

d2σ

dpTdy
= 1

2
1

(∆pT)i (∆y)i
∆PT∆Y

N
×
∑
j∈Bi

(
1

2πpT

d2σ

dPTdY

)
j

. (3.12)

3.5 Theoretical uncertainty

The simulation described above naturally contains uncertainty which must be ac-
counted for. In this work, we limit our analysis to the variation of the factorization,
renormalization and fragmentation scales that are present in the calculations where
the SACOT-mT scheme is used. We note, that this analysis does not account for
all sources of uncertainty, such as PDF and FF uncertainties, and will therefore
underestimate the size of the error bands. However, we will assume that scale
variation is the predominant source of uncertainty and thus this approach can be
deemed sufficient for the purposes of this work. The idea is to vary the scales by a
factor of two meaning that we have three possible variations of each scale, namely
0.5, 1.0 and 2.0, leading to a total of 27 possible combinations.

However, not all of these combinations are desirable. This is due to the fact
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that the numerical implementation of the SACOT-mT scheme described in Ref. [8]
involves logarithms of the form log

(
µ2

fact
µ2

ren

)
and log

(
µ2

ren
µ2

frag

)
. Thus, if we take the

factorization and renormalization scales, or the renormalization and fragmentation
scales, and vary one of them up and the other down, the absolute values of the
logarithms will become artificially large which would lead to very large errors that
are, in a sense, artificial. We therefore ignore the 10 combinations that would result
in such errors and perform the scale variation with the 17 remaining combinations.

As we mentioned in section 3.1, the simulation described in sections 3.1 – 3.4
is performed separately for the sets of double differential production cross sections
obtained with different combinations of the factorization, renormalization and frag-
mentation scales. Therefore, we obtain an equal number of sets of results. Once
the simulation has been performed for all combinations we can use the results to
obtain an estimate for the uncertainty due to scale variation. The idea is to study
the resulting histograms bin by bin in order to obtain the final results.

More precisely, we take the results obtained using the combination µfact = 1.0,
µren = 1.0, µfrag = 1.0 and then compare the results obtained using the other
combinations in order to obtain the maximum and minimum values for the cross
section and use them as the limits of the error band. We repeat this for each bin.
Note that the maximum or minimum values in different bins need not originate from
the same variation of the scales. This procedure is used for both the differential
production cross sections of the hadrons and the double differential cross sections of
the decay electrons and positrons.

This procedure is illustrated in Figures 6 and 7. Figure 6 displays the results
obtained for the cross sections of the B-hadron decay events, with all 17 possible
combinations of the varied scales and the ratios between each of these results and the
main results, i.e. the results obtained using the combination µfact = 1.0, µren = 1.0,
µfrag = 1.0. From it we can see that the maximum and minimum values of the cross
section are obtained with different combinations of the scales in different regions
of the pT interval. Furthermore, we notice that the deviations between the results
obtained from different simulations are particularly large in the low-pT region.

Similarly Figure 7 displays the results obtained for the cross sections of the
C-hadron decay events, with all possible combinations of the varied scales. We
again observe that the maximum and minimum values are obtained with different
combinations of the scales in different pT regions. Furthermore, the deviations
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between the results obtained from different simulations show a similar behaviour in
the low pT region as observed in Figure 6, namely that they become smaller as pT

increases.
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Figure 6. Differential cross sections for B-hadron production with all scale
combinations.
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Figure 7. Differential cross sections for C-hadron production with all scale
combinations.
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4 Results

In order to assess the validity of our numerical approach we will, as mentioned
in section 1, compare our results with the experimental results obtained by the
PHENIX Collaboration in Ref. [5]. First we will discuss the differential production
cross sections of the hadrons themselves. These results were obtained by performing
a simulation with 50 million events, where we have, as mentioned in section 3, used
the production cross sections obtained with SACOT-mT as a starting point and
simulated the decays of different kinds of B- or C-hadrons in correct proportions.

In Figure 8 we present our numerical results for the differential cross sections of
B-hadron production, with the estimated error bands, and compare them with the
data from Ref. [5]. In Figure 8, we also plot the ratio between the experimental data
and our numerical results. We observe that the numerical results seem to match the
experimental data very well as all datapoints are within the error bands. In addition,
the errorbands are significantly large in the low-PT region and reduce in size as PT

increases, which is a direct consequence of the behaviour observed in Figures 6 and 7.
As a whole, Figure 8 shows that the SACOT-mT scheme is in good agreement with
experimental data.

The results for C-hadron production, displayed in Figure 9, where we again plot
our results alongside the experimental datapoints and also include their ratio, seem
somewhat lacking. The numerical results for the differential cross section match the
experimental data well in the low-PT region, but at higher values of PT significant
deviations are observed. However, we must take into account that, as mentioned in
section 3.5, we have not taken into account all sources of uncertainty and have thus
most likely underestimated the magnitude of the uncertainty in our results. Therefore,
as most datapoints only are only slightly beyond the limits of uncertainty we may
again conclude that the SACOT-mT scheme is in agreement with experimental data,
but that the agreement seems to suffer at larger values of PT.
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Figure 8. Differential cross sections for B-hadron production alongside experi-
mental datapoints from the PHENIX Collaboration [5].
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Figure 9. Differential cross sections for C-hadron production alongside experi-
mental datapoints from the PHENIX Collaboration [5].
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Now we can address the main results of this work, namely the double differential
production cross sections of electrons and positrons in heavy-flavour decay. Here we
have, as discussed in section 3.2, taken all events where desired decay particles, namely
electrons and positrons, are produced and studied the decay particles individually.
Our results are again compared with the experimental results presented in Ref. [5] and
the ratio between the experimental data and the numerical results is also included in
Figures 10 and 11. Furthermore, we have also compared our results with theoretical
FONLL calculations [26].

Figure 10 displays the results for B-hadron decay electrons and positrons. We
also note that here we do not filter the decay processes in which an electron or a
positron is produced by a decaying D-meson which was produced earlier in the decay
process. We observe some small deviation when the transverse momentum is above
4 GeV, but otherwise the numerical and experimental results are in good agreement
with one another. However, we also notice that the experimental datapoints are
systematically above the numerical results, which implies that the simulation might
underestimate the double differential cross sections albeit only slightly.
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Figure 10. Double differential cross sections for e+/e− production, averaged
as (e+ + e−)/2, in B-hadron decay alongside experimental datapoints from the
PHENIX Collaboration [5], and a FONLL calculation [26].
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Figure 11. Double differential cross sections for e+/e− production, averaged
as (e+ + e−)/2, in C-hadron decay alongside experimental datapoints from the
PHENIX Collaboration [5] and a FONLL calculation [26].

Similar behaviour is also observed in Figure 11, where the results for C-hadron
decay are presented. We note that only the first datapoint is slightly beneath the
numerical result. We again observe that the deviations between theoretical and
experimental results in C-hadron decay are slightly larger than in B-hadron decay.
However, the deviations observed in Figure 11 are significantly smaller than the ones
observed in Figure 9. All in all, we observe a decent correspondence between the
numerical and experimental results.

We also observe that the theoretical FONLL calculation are in good agreement
with our results. We notice that in both B- and C-hadron decay the correspondence
between our numerical results and the FONLL calculation improves as the transverse
momentum increases. Moreover, in the low-pT region we observe that the FONLL
calculation gives slightly smaller values for the double differential cross section than
our simulation, as can be seen in Figures 10 and 11. This difference is larger in
B-hadron decay than in C-hadron decay, albeit only slightly. However, since the limits
of uncertainty overlap, we conclude that our results and the FONLL calculations are
in agreement with one another.
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Based on the observations made from Figures 10 and 11, we can conclude that
our simulation produces results that are in agreement with experimental data, albeit
it would seem that the simulation slightly underestimates the double differential
cross sections in comparison to the experimental results. In B-hadron decay the
results are underestimated by 10–40% whereas the results in C-hadron decay the
results are underestimated by 0–60%. However, as the most of the datapoints are
nonetheless within the uncertainties of the theoretical results or only slightly beyond
them, we can still consider our results to be in agreement with the experimental
results. Furthermore, based on the results it would seem that the SACOT-mT scheme
produces results that are in better agreement with the experimental results than the
FONLL calculations are.

We note that the FONLL calculations were done at 200 GeV using the cur-
rent default parameters with CTEQ6.6 PDFs. For C-hadrons we used D0 as the
hadronic final state. The central values were mb = 4.75 GeV, mc = 1.5 GeV
and µR = µF = µ0 =

√
m2 + p2

T. The scales uncertainties were µ0
2 < µR,

µF < 2µ0 with 1
2 <

µR

µF
< 2, and the mass uncertainties were mb = 4.5, 5.0 GeV and

mc = 1.3, 1.7 GeV summed in quadrature to scales uncertainties. The PDF uncer-
tainties were calculated according to the individual PDF set recipe and summed in
quadrature to scales and mass uncertainties. Finally, the branching ratios that were
used were BR(D → l) = 0.103, BR(B → l) = 0.1086, BR(B → D → l) = 0.096,
BR(B → D) = 0.823, BR(B → D∗) = 0.173, BR(B → J/ψ) = 0.0116 and
BR(B→ ψ(2S)) = 0.00307.

In addition to the previous results, we have also considered the decay particles in
inclusive heavy-flavour decays. To be precise, we have, as mentioned in section 3.2,
combined our results for B- and C-hadron decay electrons/positrons. However, in
order to avoid double counts we had to filter out the B-hadron decays in which the
decay electrons or positrons originate from a D-meson, as explained in section 3.2.
These results are then compared with experimental results from Ref. [27]. In Figure 12,
we display these results alongside the results for both B- and C-hadron decay. We
observe that our results are in agreement with the experimental results in the low-pT

region but at larger pT the difference becomes significant. This behaviour is to be
expected as our results were systematically smaller than the experimental results for
both B- and C-hadron decay, as discussed above. Because of this we conclude that
there is reasonable agreement between our results and the numerical results.
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Figure 12. Collected double differential cross sections for e+/e− alongside
experimental data from the PHENIX Collaboration for (B→ e) and (C→ e) [5]
and for (B→ e) + (C→ e) [27].

We were also interested in the fraction of electrons that are formed in B-hadron
decay when compared to the inclusive case. Our results alongside experimental data
presented in Ref. [5] are displayed in Figure 13. We observe that our results are,
for the most part, in very good accordance with the experimental data. However,
when compared with the experimental data, our central results seem to overestimate
the data by 20–30% when the transverse momentum is around 1.50–2.75 GeV. We
notice that this is most likely related to the fact that, as seen from Figures 10 and 11,
the amount by which the results for B-hadron decay particles are underestimated is
significantly less than the amount by which the results for C-hadron decay particles
are underestimated when pT is around 1.50–2.75 GeV. Otherwise, the deviations are
much smaller. Therefore we conclude that the correspondence between numerical
and experimental results is good which supports our earlier conclusion that the
simulation produces results that are in good agreement with experimental data.
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5 Conclusions

The purpose of this thesis was to study the semileptonic decays of heavy-flavour
hadrons and to serve as a test for the validity of the so-called SACOT-mT scheme.
This was done by creating a simulation in which the decays of heavy-flavour hadrons,
whose production cross sections were obtained with a numerical implementation
of the SACOT-mT scheme, first introduced in Ref. [8], were modelled with the
PYTHIA event generator [9]. The obtained results were then compared with existing
theoretical predictions, in this case FONLL calculations [26], and experimental data.

As discussed in section 4, the obtained theoretical results were for the most part
in good accordance with the experimental results. This supports the conclusion that
the theoretical setup is sufficient to describe experimental results. This conclusion is
further supported by the fact that a good correspondence is observed regardless of
the fact that the size of the uncertainties is likely somewhat underestimated in our
results, as discussed in section 3.5. Furthermore, we observed that the results for
e+/e− production were also in agreement with FONLL calculations in both B- and
C-hadron decay.

Based on these observations we can conclude that the simulation functions without
major flaws. Furthermore, this implies that the numerical implementation of the
SACOT-mT scheme must also function without major flaws, as it was used to obtain
our input data and therefore serves as the foundation of the study performed in
this thesis. These conclusions thus serve as proof of the validity of the use of the
SACOT-mT scheme. Furthermore, the fact that we were able to obtain results that
are in agreement with both experimental data and FONLL calculations throughout
the entire kinematic range underlines the usefulness of the SACOT-mT scheme.

Even though the obtained theoretical results match the experimental data, there
is still room for improvement. The most obvious manner in which the analysis could
be improved would be to modify the estimation of uncertainty to take into account
other sources of uncertainty in addition to the variation of scales. This would allow us
to asses the validity of our assumption about scale variation being the predominant
source of uncertainty and the produced results would be more realistic.
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One way to expand the numerical setup would be to modify it to study other
decay particles besides electrons and positrons. In fact, the required framework is
already present in the simulation, as mentioned in section 3.1. We only limited our
study to the decay electrons and positrons because it was deemed sufficient for the
purposes of this work. Studying other decay processes, such as B→ J/Ψ, would also
allow us to perform further comparison between numerical and experimental data,
which would allow us to further assess the validity of the use of the SACOT-mT

scheme.
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A Simulation code and datapoints

The simulation code alongside other relevant codes and the datapoints can be found
at:

https://gitlab.jyu.fi/amtolvau/semileptonic-decays-of-heavy-flavour-hadrons
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