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ABSTRACT 

Juppi, Hanna-Kaarina 
Associations of the Menopausal Transition with Body Composition: Examining 
the Influence of Hormonal Changes, Muscle RNA Signaling and Lifestyle Habits 
Jyväskylä: University of Jyväskylä, 2023, 177 p. 
(JYU Dissertations 
ISSN 2489-9003; 648) 
ISBN 978-951-39-9615-4 (PDF) 

Women’s hormonal aging is characterized by the cessation of the menstrual cycle 
during menopause. Menopause-related hormonal changes have previously been 
associated with increased body adiposity, decreased skeletal muscle mass and 
function, and decreased metabolic health. However, longitudinal data on the 
topic remains scarce. The aim of this study was to investigate the longitudinal 
associations of the menopausal transition with body composition, metabolic 
health indicators, and skeletal muscle tissue cellular properties and 
transcriptome. A further aim was to investigate whether physical activity, diet 
quality, and the use of exogenous hormones were associated with these same 
variables during mid-life. The data used in this thesis is from the Estrogenic 
Regulation of Muscle Apoptosis (ERMA) (n=234) and Estrogen, MicroRNAs and 
the Risk of Metabolic Dysfunction (EsmiRs) (n=149) studies. All the participating 
women (aged 47-55) were either pre- or perimenopausal at baseline, and 
postmenopausal at follow-up. Hormone and adipokine levels were measured 
from blood samples. Body composition and fat distribution were measured using 
dual-energy X-ray absorptiometry, quantitative computed tomography, and 
anthropometry. Muscle biopsies of m. vastus lateralis were used to determine 
muscle tissue properties and transcriptome. Physical activity, diet quality, and 
the use of exogenous hormones were examined using accelerometers and 
questionnaires. Menopause was associated with increased total body and waist 
adiposity and decreased lean and muscle mass. Systemic leptin and adiponectin 
levels increased, while resistin levels decreased. During the menopausal 
transition the expression level of 49 protein-coding genes, which take part in 
important cellular signaling pathways, changed. A higher physical activity level, 
higher diet quality, and the use of exogenous hormones were associated with less 
adiposity, gynoid-type fat distribution, and higher lean and muscle mass. The 
menopausal transition is associated with unfavorable changes in body 
composition, but these changes and their effects on metabolic health may be 
alleviated by healthier lifestyle habits. Observed changes in skeletal muscle gene 
expression may help to understand the mechanistic details of muscle tissue and 
total body health regulation during menopause. 

Keywords: estrogen, physical activity, metabolic health 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Juppi, Hanna-Kaarina 
Vaihdevuosien siirtymävaiheen vaikutukset kehonkoostumukseen: hormonaalisten 
muutosten, lihaksen RNA signaloinnin ja elintapamuuttujien yhteydet. 
Jyväskylä: Jyväskylän yliopisto, 2023, 177 s. 
(JYU Dissertations 
ISSN 2489-9003; 648) 
ISBN 978-951-39-9615-4 (PDF) 

Naisten biologisen vanhenemisen erityispiirre ovat vaihdevuodet, jotka lähes 
kaikki naiset käyvät läpi keski-iässä. Vaihdevuosiin liittyvät hormonimuutokset 
on yhdistetty aiemmin epäsuotuisiin muutoksiin kehonkoostumuksessa ja 
suorituskyvyssä sekä kasvaneeseen riskiin sairastua aineenvaihduntasairauksiin. 
Aikaisempaa pitkittäisaineistoa vaihdevuosien siirtymävaiheesta on kuitenkin 
olemassa vain vähän. Tässä tutkimuksessa selvitettiin pitkittäisaineistossa 
vaihdevuosien siirtymävaiheen ja menopaussin läpikäymisen vaikutuksia kehon 
rasvoittumiseen, aineenvaihduntaterveyden indikaattoreille, sekä 
lihaskudoksen määrälle, transkriptomille ja lihassolujen ominaisuuksille. Lisäksi 
selvitettiin miten tietyt elintapatekijät olivat yhteydessä edellä mainittuihin 
muuttujiin. Tutkimuksessa käytettiin Estrogeeni, vaihdevuodet ja toimintakyky 
(ERMA, n=234)- ja Estrogeeni, mikro-RNA:t ja metabolisten toimintahäiriöiden 
riski (EsmiRs, n=149)-tutkimusten aineistoja. Molempien tutkimusten alussa 
naiset iältään 47–55 vuotta olivat joko pre- tai perimenopausaalisia ja 
tutkimusten lopussa postmenopausaalisia. Naisten verinäytteistä määritettiin 
veren hormoni- ja adipokiinitasot. Kehonkoostumusta ja rasvanjakautumista 
mitattiin kaksienergiaisella röntgenabsorptiometrialla, kvantitatiivisella 
tietokonetomografialla ja antropometrialla. Lihasbiopsioista määritettiin 
lihaskudoksen tarkempia ominaisuuksia ja transkriptomi. Fyysistä aktiivisuutta, 
ruokavalion laatua ja hormonivalmisteiden käyttöä tutkittiin kyselylomakkeilla 
ja aktiivisuusmittarilla. Vaihdevuosien siirtymävaiheen läpikäyminen lisäsi koko 
kehon ja erityisesti keskivartalon rasvamassaa, sekä vähensi lihasmassaa. Veren 
leptiinin ja adiponektiinin pitoisuudet nousivat ja resistiinin pitoisuus laski. 
Vaihdevuosien siirtymävaiheen aikana 49:n lähetti-RNA-molekyylin 
ilmentymistasot muuttuivat lihaksessa. Korkeampi fyysisen aktiivisuuden 
määrä ja ruokavalion laatu sekä sukupuolihormonivalmisteiden käyttö olivat 
yhteydessä matalampaan rasvamassaan, suotuisampaan rasvanjakautumiseen ja 
korkeampaan lihasmassaan. Vaihdevuodet muokkaavat kehonkoostumusta 
terveydelle epäsuotuisampaan suuntaan, mutta muutokseen ja sen vaikutuksiin 
aineenvaihduntaterveydelle voi vaikuttaa terveellisillä elintavoilla. 
Lihaskudoksessa ilmentymistasoiltaan muuttuneet geenit voivat auttaa 
ymmärtämään vaihdevuosien aikana havaittujen lihas- ja kehonkoostumuksen 
muutosten mekanismeja.  

Avainsanat: estrogeeni, aineenvaihduntaterveys, fyysinen aktiivisuus 
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1 INTRODUCTION 

Aging is a process, that affects all of us. Based on physical performance, we reach 
our peak capacity around the mid-20s, and thereafter, at a tissue-specific rate, 
start to age (Allen & Hopkins, 2015; Huebner & Perperoglou, 2019). Biological 
aging is characterized by a lowering of the regeneration capacity of cells and 
tissues, and the consequent accumulation of cellular defects and mutations, 
including significant defects in important organs and leading eventually to the 
cessation of life. Although men and women consist mostly of the same tissues, 
cells, and genes, some fundamental differences exist in their respective aging 
processes. One of the most prominent differences is in hormonal aging 
specifically related to reproduction. While men experience a steady decrease in 
fertility and sex hormone production between their 20s and old age (Harman et 
al., 2001; Niederberger, 2011), women virtually come to a halt during mid-life. 
Cumulative aging effects in the ovaries and hypothalamus cause menopause, 
which ends the fertile period of women and dramatically affects their 
endogenous sex hormone production. Changes in the hormonal milieu include 
decreases in the main female sex hormone estradiol (E2), progesterone (P4), 
inhibin B, and anti-Müllerian hormone, and an increase in gonadotropin follicle-
stimulating hormone (FSH) levels (Burger et al., 2007). These changes in the 
hormonal milieu have been associated with an increased risk of muscle weakness, 
osteoporosis, and metabolic syndrome along with decreased psychological well-
being and mental health and thus highlighting the significance of menopause for 
public health globally (S. R. Davis et al., 2015). As women nowadays may live in 
the postmenopausal state for nearly one-third of their lives, this is a topic that 
warrants serious attention. 

Body composition is one of the variables that menopause is thought to affect. 
Body composition, or the proportions of adipose, muscle, and bone mass, and 
especially the balance between adipose and muscle mass, is a significant factor in 
human health and functional capacity (Dulloo et al., 2010). While adipose tissue 
is necessary for energy storage, the protection of vital organs, insulation, and as 
a hormonal secretory organ, the presence of redundant adipose tissue poses 
several risks. Excess overall adipose tissue, or fat accumulation in a suboptimal 
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location such as around the intestines, inside the liver, or between muscle fibers, 
can, by maintaining low-grade inflammation, affect physical functioning and 
increase the risk for cardiovascular diseases and cancer (Chait & den Hartigh, 
2020). In turn, skeletal muscle, which is one of the largest tissue types in the total 
of body mass, is responsible for producing motion and heat, and has an 
important role in energy metabolism, as an amino acid reservoir and in inter-
cellular signaling (Frontera & Ochala, 2015). Therefore, low muscle mass not only 
affects functional capacity but also energy balance and overall health. Earlier 
studies indicate that during menopause muscle mass is lost and adipose tissue is 
gained (Marlatt et al., 2022). However, the effect of menopause on waist and 
visceral adiposity, a fat distribution pattern, that predisposes to an increased risk 
of cardiovascular disease and metabolic conditions, is less well understood (G.-
C. Chen et al., 2019; M. Zhang et al., 2015). As both the accumulation of adipose 
tissue and decrease in muscle mass are aging- and therefore also menopause-
related phenomena, they are not completely unavoidable. Nevertheless, 
maintaining an adequate skeletal muscle mass combined with a moderate 
amount of body fat is one of the most successful methods for achieving healthier 
aging (Baumgartner, 2006).  

The mechanisms behind the menopausal changes in body composition and 
related decrements in metabolic health are thought to lie in hormonal changes, 
especially the decrease in estrogens. Estrogens, including E2, estrone (E1), and 
estriol (E3), are a class of steroid hormones of which E2 is the most 
physiologically prominent during fertile age (Gruber et al., 2002). In women, 
estrogen receptors have been found in several tissues, including bone, adipose 
tissue, and muscle (Anwar et al., 2001; Bord et al., 2001; Wiik et al., 2009). In this 
connection, E2 has established positive functions in adipose tissue mass and 
distribution regulation (Bracht et al., 2020) and skeletal muscle regeneration 
capacity (Collins et al., 2019; Enns & Tiidus, 2010), and it has been suggested to 
play a protective role against cardiovascular diseases and metabolic conditions 
(El Khoudary et al., 2020). In addition to E2, FSH has also recently been proposed 
to contribute to body composition, although the mechanisms are not yet 
completely understood (X. Cui et al., 2016; Veldhuis-Vlug et al., 2021).  

Besides endogenous hormones, lifestyle habits, including physical activity 
(PA), diet quality and the use of exogenous hormones, also contribute to body 
composition and metabolic health in mid-life. In middle-aged women, several 
types of PA have been associated with greater muscle mass, lower adiposity, 
better cardiometabolic and mental health and higher physical functioning 
(Cebula et al., 2020; Elavsky & McAuley, 2007; K. M. Park et al., 2019; Sipilä et al., 
2001; Ward et al., 2020). Although the specific positive effects vary across PA 
types, overall they are mediated through, for example, improved intra- and 
intercellular signaling and the release of anti-inflammatory molecules from 
muscle and adipose tissue (Neufer et al., 2015). Improved metabolic health, more 
beneficial body composition and lower inflammatory status are also well-
established effects of good diet quality (Galland, 2010; Mozaffarian et al., 2011). 
A diet including a high amount of vegetables and fruits, minimally processed 
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foods, soft fats, more fish than red meat and low amounts of dairy products with 
moderate energy content has been shown to associate with lower incidence of 
cardiovascular disease, certain cancers and inflammatory diseases in several 
cohorts including menopausal women (Tosti et al., 2018). Overall, the PA and 
diet quality guidelines for the adult population, aimed at achieving significant 
health benefits and reducing health risks, can also be applied to menopausal 
women (The Nordic Council of Ministers, 2014; World Health Organization, 2003, 
2020). 

In addition to exercise and diet, another important lifestyle choice for 
women is the use of exogenous sex hormones, mainly E2 and P4 and their 
derivates. Menopausal hormone therapy (HT), which aims to alleviate 
bothersome symptoms related to the changing hormone levels that occur in 
midlife, has also been associated with lower adiposity (Papadakis et al., 2018; 
Yüksel et al., 2007), decreased risk for metabolic conditions (Salpeter et al., 2006) 
and higher bone density (L. Zhu et al., 2016) in postmenopausal women. The 
beneficial results of HT on muscle mass and strength have become more 
controversial following the neutral results obtained from recent meta-analyses 
(Javed et al., 2019; Xu et al., 2020). While HT seems to have beneficial effects on 
cognition and cardiovascular disease, some of these effects may be related to the 
therapeutic window, i.e., the timing of the therapy (Vigneswaran & Hamoda, 
2022).  

Nonetheless, the changes in body composition, skeletal muscle properties 
and metabolic health together with lifestyle factors in women undergoing 
menopause have not been adequately studied in a longitudinal design. Although 
several cross-sectional studies have been conducted in which premenopausal 
women have been compared to postmenopausal women in these parameters (e.g., 
Kanaley et al., 2001; Karvinen et al., 2019; Sternfeld et al., 2005; Svendsen et al., 
1995), longitudinal studies following the same women throughout menopause 
are less abundant (e.g., Abdulnour et al., 2012; Greendale et al., 2019; Marlatt et 
al., 2020; Simkin-Silverman et al., 2003). Studies aimed at capturing the 
immediate menopausal hormonal change-induced changes over the other aging-
related changes in a close timeframe around the final menstrual period are even 
fewer (C. G. Lee et al., 2009). Moreover, no previous longitudinal studies have 
been conducted on the effects of hormonal changes on skeletal muscle fiber 
properties and RNA signaling. 

Therefore, the aim of this thesis, using two longitudinal datasets of middle-
aged women going through menopause, was to study the factors and 
associations affecting women’s health during and after mid-life. The specific aims 
were to investigate how the menopausal transition associates with changes in 
body composition and, in particular, skeletal muscle properties, such as muscle 
fiber type and RNA transcriptome. A further aim was to study whether PA, diet 
quality and the use of exogenous hormones have additional associations with 
these same parameters.  
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2 LITERATURE REVIEW 

2.1 Reproductive aging in women 

2.1.1 Fertile age 

During the reproductive years following puberty, female sex hormones 
(gonadal/ovarian hormones) and gonadotropins fluctuate periodically during 
the menstrual cycle, which on average lasts for 28 days (Taylor et al., 2019). At 
the beginning of the follicular phase, starting from menses, the systemic levels of 
the four main regulatory hormones E2, P4, FSH and the luteinizing hormone (LH) 
are low. Gradually the systemic levels of pituitary secreted FSH increase, which 
leads to the maturation of usually one dominant follicle. During maturation, the 
follicle begins to secrete E2, P4 and inhibin B. This forms a negative feedback loop 
with FSH release to control follicle growth. When the E2 level reaches a threshold 
level, the hypothalamus reacts and releases gonadotropin-releasing hormone 
(GnRH) to induce a surge of LH from the anterior pituitary gland. This LH peak 
further induces release of the oocyte from the follicle in ovulation. The remaining 
follicle shell, the corpus luteum, begins to secrete both P4 and E2 in preparation 
for potential implantation simultaneously thickening the endometrium. If 
fertilization does not occur, the corpus luteum degenerates, hormone production 
ends and menstrual bleeding starts as the endometrium is no longer maintained 
(Taylor et al., 2019).  

2.1.2 Menopausal transition and menopause 

Menopause marks the end of the female fertile period. The cause of menopause 
are aging-related changes that mainly occur in the ovaries, although some aging 
modifications can also be seen in the pituitary gland and hypothalamus (Hall, 
2015). The key event behind the age-related loss of ovarian function is the 
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follicular depletion. At birth, the ovaries contain several hundreds of thousands 
of resting follicles, whereas around mid-life this number has decreased to 
hundreds or even less (Gougeon, 1996; Richardson et al., 1987). Serum anti-
Müllerian hormone has been proposed as a good marker of ovarian reserve (van 
Rooij et al., 2005). Typically, a few years before the final menstrual period (FMP) 
or menopause, the first signs of ovarian failure begin to show, as the menstrual 
cycle becomes irregular and systemic sex hormone and FSH levels start to 
fluctuate more due to endogenous ovarian hyperstimulation (Taylor et al., 2019). 
This is the start of perimenopause and the menopausal transition (Harlow et al., 
2012), and it is also the time when women may start to experience menopausal 
symptoms, such as hot flashes or sleep disturbance. The menopausal transition 
can be divided into early and late stages, that are differentiated by cycle length 
(consecutive menstrual cycle lengths extended by seven or more 
days/amenorrhea of more than 60 days) and blood FSH levels (slightly elevated 
in the early phase and frequently more than 25 IU/L in the late phase) (Harlow 
et al., 2012). Along with ovarian follicular depletion, the systemic E2, P4 and 
inhibin B levels also decrease, thereby allowing more FSH to be released from the 
pituitary. Loss of tight hormonal regulation manifests in anovulatory cycles and, 
finally, FMP and the end of the menopausal transition. After 12 months lack of 
menstrual bleeding, a woman is retrospectively considered to be 
postmenopausal and hence the perimenopausal period has also ended (Harlow 
et al., 2012). (Due to terminological variation, the term perimenopausal in the 
present data for this thesis refers only to women who are still in the menopausal 
transition). In postmenopause, E2 and P4 levels soon permanently stabilize at 
low levels and FSH and LH at high levels until older age (Hall, 2015). The 
stabilization period for E2 and FSH lasts about two years (Harlow et al., 2012). 
Although the most distinct decrease in sex hormone levels occurs in E2, women 
also experience a decrease in testosterone, androstenedione, sulfated 
dehydroepiandrosterone (DHEA-S) and E1 (C. Kim et al., 2017; Rannevik et al., 
1995). After menopause, sex hormones are produced mainly by converting 
adrenal gland-derived DHEA (Figure 1) in peripheral tissues (Labrie et al., 2017). 

Overall, the duration, timing and symptomology related to the menopausal 
transition and menopause are highly individual. In developed countries, 
menopause occurs typically between ages 48–52 (S. R. Davis et al., 2015) and in 
developing countries, such as those in African countries and Latin America, a 
few years earlier (Gold, 2011). Several factors are known to affect natural 
menopausal age. For example smoking, nulliparity and low socioeconomic status 
are associated with earlier menopause, while parity and the use of oral 
contraceptives have been associated with a later menopausal age (S. R. Davis et 
al., 2015; Gold, 2011). The effect of BMI on menopausal age has also been widely 
studied, and a meta-analysis of international studies indicated a positive 
association between menopausal age and BMI (D. Zhu et al., 2018). The 
mechanisms behind this are not clear, but it seems, for example, that adipose 
tissue-derived leptin may contribute to this by augmenting female fertility (M. 
Mitchell et al., 2005). Moreover, as much as 44–85% of the variance in natural 
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menopausal age is estimated to be heritable (Hall, 2015). Apart from natural 
menopause, women can experience secondary menopause due to surgical 
removal of ovaries or radiation- or chemotherapy. 

2.1.3 Specific actions of estrogens, progestagens and gonadotropins 

Estrogens. Estrogens are a group of steroid hormones comprising of E2, E1 and 
E3. Estrogens are produced from cholesterol via steroidogenesis mainly in the 
ovaries but also in smaller amounts in the adrenal gland, skeletal muscle, adipose 
tissue, skin and liver (Figure 1) (Gruber et al., 2002; Taylor et al., 2019). The last 
step in steroidogenesis is aromatization, where E2 is converted from testosterone 
and E1 from androstenedione. E3 is further converted from E2 and E1 mainly in 
the liver (Gruber et al., 2002). During fertile age, E2 is the most abundant estrogen, 
with high bioactivity in several tissues, whereas after menopause E1 becomes the 
main estrogen (Table 1). E3 becomes biologically active only during pregnancy 
(J. Cui et al., 2013; Kuijper et al., 2013). In blood, estrogens are reversibly bonded 
to sex hormone binding-globulin (SHBG) and albumin (Taylor et al., 2019).  

In tissues, estrogens act through estrogen receptors (ERs), of which the 
genomic actions of ERα and ERβ are the most well established. After ligand 
binding and receptor dimerization, ERα- and ERβ-ligand-complexes move to the 
nucleus and act as transcription factors in estrogen-responsive elements (EREs, 
5’-GGTCAnnnTGACC-3’) of the DNA to alter gene expression. In addition, 
ligand-receptor-complexes modulate the activity of other transcription factors 
resulting in enhanced transcription (Klinge, 2001). Genes such as ESR2, C3, PGR 
and many others are known to include EREs (Ikeda et al., 2015; Klinge, 2001).  
ERα is more widely expressed in gonadal tissues (ovaries, uterus, testes and 
breast), while ERβ is more abundant in non-gonadal tissues, such as brain, lung 
and bladder (J. Cui et al., 2013). In addition to genomic actions, expression of ERs 
has also been found in the mitochondria, where they regulate mitochondrial gene 
expression (Klinge, 2017). Of the three estrogens, E2 has the greatest binding 
potential to ERα and -β and E3 has the lowest (Kuiper et al., 1997).  

In addition to nuclear receptors, estrogens have been confirmed to act 
through the G-protein-coupled estrogen receptor (GPER) (Ding et al., 2019) and 
ER-X (Toran-Allerand et al., 2002). GPER and ER-X are localized in the cell 
membrane and exert their actions through activating a cytoplasmic signaling 
cascade by interacting with other cellular receptors and protein kinases (J. Cui et 
al., 2013). It has been proposed that non-nuclear ERs may contribute to the fine-
tuning of the beneficial effects of estrogens in metabolic health (Gourdy et al., 
2018). Estrogen signaling through nuclear interaction takes from minutes to 
hours to alter protein synthesis, while non-nuclear signaling induces immediate 
responses, such as vasodilatation of the coronary arteries (Gruber et al., 2002). In 
addition to natural estrogens, synthetic ligands can also bind to ERs. These 
include derivates of natural estrogens (e.g., ethinylestradiol and conjugated 
equine estradiol), synthetic inhibitors (e.g., fulvestrant) and selective ER 
modulators (SERMs, e.g., tamoxifen and raloxifene), which may function either 
as ER inhibitors or activators depending on the tissue (McDonnell, 1999).  
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The fact that ERs have been found in several tissues indicates that estrogens 
have an important role in several cell types. Besides reproduction and important 
roles in adipose and muscle tissue (discussed in later sections), estrogens 
promote the expression of secondary sex characteristics (Stingl, 2011), have 
neuroprotective effects (Garcia-Segura et al., 1999), improve vascular function 
(Sherwood et al., 2007), and help to maintain bone density (L. Zhu et al., 2016).  

 
Progestagens. Progestagens are early intermediate products in steroidogenesis 
and include pregnenolone, P4, 17a-hydroxypregnenolone and 17a-hydroxypro-
gesterone, of which P4 is the main end product in gonadal steroidogenesis (Miller 
& Auchus, 2011) (Table 1). While the primary site of P4 synthesis is the ovaries, 
the adrenal gland also contributes to serum levels (Taylor et al., 2019). In blood, 
P4 binds to cortisol-binding globulin and albumin (Taraborrelli, 2015) and in the 
tissues acts mainly through progesterone receptors (PRs) PR-A, and -B, which, 
like ERα and ERβ, function as transcription factors targeting the hormone re-
sponse element (HRE) of the DNA (Grimm et al., 2016). However, P4 also has a 
non-genomic mechanism of action through membrane-bound G-protein receptor 
(Taraborrelli, 2015; Taylor et al., 2019). PRs are expressed primarily in the female 
reproductive and central nervous system (Grimm et al., 2016), but are also found 
in bone, striated muscle and adipose tissue (Boivin et al., 1994; Gras et al., 2007; 
O’Brien et al., 1998). The primary target of progestagens is the endometrium, in 
order to maintain pregnancy, but major actions in the brain and nervous system, 
including sexual desire (Boozalis et al., 2016), neuroprotection (Soltani et al., 
2017), addictive behavior (Tosun et al., 2019) and myelin production (Hussain et 
al., 2011) have also been reported. Estrogens are known to promote PR expression 
(Jacobsen & Horwitz, 2012). Like in estrogens, synthetic progestagens, sometimes 
referred as progestogens or progestins, such as dihydrogesterone, norethisterone, 
medroxyprogesterone acetate, or levonorgestrel can also bind to PRs (Hapgood 
et al., 2018; Vigneswaran & Hamoda, 2022).  
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FIGURE 1  Overview of the steroidogenic pathways for synthesis of progestagens, an-
drogens and estrogens.  (Adapted from Miller & Auchus, 2011; Taylor et al., 
2019). 

 
Gonadotropins. FSH and LH belong to the group of gonadotropins, which control 
the sex steroid synthesis. FSH is released from the pituitary gland after hypotha-
lamic release of GnRH and in women has a key role in stimulating the growth of 
pre-ovulatory follicle. FSH stimulates ovarian aromatase to increase E2 produc-
tion, which in turn downregulates FSH production (Erickson & Hsueh, 1978). 
FSH also sensitizes the maturing follicle to LH receptors and prepares it for ovu-
lation (Vegetti & Alagna, 2006). FSH receptors, FSHRs, are G-protein-coupled re-
ceptors located in gonadal granulosa cells and adipose tissue (X. Liu et al., 2015; 
Simoni et al., 1997). Attachment of the ligand initiates a signaling cascade leading 
to target protein phosphorylation by protein kinase A. Nuclear phosphorylation 
and the attachment of transcription factors to FSH-responsive elements leads to 
transcription of the target genes (Simoni et al., 1997). Like FSH, LH is also re-
leased from the anterior pituitary, but only after mid-cycle high levels of E2. The 
LH surge initiates ovulation and the development of the corpus luteum. In fe-
males, LH receptors are found in the ovaries, uterus and, for example, brain (re-
viewed in Dufau, 1998). After menopause, the inhibitory effect of E2 is lost due 
not only to significantly decreased levels, but also due to an attenuated gonado-
tropin response (Shaw et al., 2010), and hence the levels of FSH and LH remain 
high (Table 1).  
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TABLE 1 Sex hormone and gonadotropin levels in blood during female life. 

Hormone Prepubertal Fertile age* Postmeno-
pausal 

Method 

Estradiol (nmol/L)     
1 <0.09 0.06–1.29 <0.04 LC-MS/MS 
2 0.04 0.08–2.38 <0.10 LC-MS/MS 

Estrone (nmol/L)     
1 0.04–0.12 0.06–0.74 0.03–0.15 LC-MS/MS 
2 - 0.14–0.91 0.13–0.36 RIA 

Estriol (nmol/L)     
1 <0.27 <0.27  <0.27 ELISA 

Progesterone 
(nmol/L) 

    

1 <1.1 2.8–76.3 <0.60 ECLIA 
2 - 0.2–75.9 <0.4 ECLIA 

Follicle-stimulating 
hormone (IU/L) 

    

1 0.3–5.8  1.4–23.2  16–157  ECLIA 
2 <1 1.7–21.5 26–135 ECLIA 

Luteinizing hormone 
(IU/L) 

    

1 <3.1 0.7–118 5.3–65.4 ECLIA 
2 <0.3 1–96 7.7–59 ECLIA 

ECLIA, electrochemiluminescent immunoassay; ELISA, enzyme-linked immunosorbent as-
say; LC-MS/MS, Liquid chromatography with tandem mass spectrometry; RIA, radioim-
munoassay; * Includes all menstrual cycle phases. 
1 Reference values from a USA/International reference laboratory (Mayo Clinic, 2022), 2 Ref-
erence values from a Finnish laboratory center (Fimlab, 2022).  

2.2 Body composition 

Body mass consists predominantly of the three main tissue types: bone, muscle, 
and adipose tissue. Measurements of body composition often focus on estimating 
the proportions of the two largest tissue types, adipose and skeletal muscle tissue, 
due to their important function in health and metabolism. While body 
composition is highly affected by lifestyle habits, such as the level of PA and 
caloric intake, genetics are also known to play a part in this (Livingstone et al., 
2021). Sex chromosomes and hormones also play a role in determining body 
composition, especially after puberty, as women tend to have higher overall and 
gluteofemoral adiposity, while men typically have more total and upper body 
muscle mass, but also higher central adiposity (Elbers et al., 1999; Heid et al., 2010; 
Wells et al., 2007). During aging, however, these differences in shape diminish 
(Kirchengast, 2010; Wells et al., 2007). Given the topic of the thesis, the following 
sections will only describe the characteristics of adipose and skeletal muscle 
tissue. 
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2.2.1 Adipose tissue and adipokines 

Adipose tissue function. Adipose tissue can be divided into subtypes based on 
function or location. The two main subtypes of adipose tissue based on function 
are white and brown, although recently beige and pink subtypes have also been 
recognized (Cypess, 2022). The main function of white adipose tissue (WAT) is 
to store energy and insulate, but it also has an important role in metabolism and 
hormonal supply (Kershaw & Flier, 2004). In fat cells, adipocytes, energy is stored 
in lipid droplets in the form of neutral lipids. Lipogenesis is controlled at the 
nutritional level by circulating fatty acids and glucose, and in hormonal levels by 
insulin (activating), growth hormone and, for example, leptin (inhibiting) 
(Kersten, 2001). At the transcriptional level, nuclear transcription factor PPARγ 
has an important role in lipogenesis induction. PPARγ is activated by free fatty 
acids and increases the transcription of, for example, IRS-2 (U. Smith et al., 2001), 
GLUT4 (Z. Wu et al., 1998) and fatty acid transporter genes (Motojima et al., 1998), 
and inhibits the expression of inflammatory cytokines, such as TNF-α (Jiang et 
al., 1998). Adipocyte lipolysis, which produces fatty acids and glycerol for 
bloodstream mobilization, is controlled by intracellular enzymes called lipases, 
of which the most well known are hormone-sensitive lipase, triacylglycerol 
hydrolase, adipose triglyceride lipase and monoglyceride lipase (Duncan et al., 
2007). Another lipase, lipoprotein lipase (LPL), which resides in the adipose 
tissue capillaries and is responsible for breakdown of chylomicrons and very-low 
density lipoprotein particles into free fatty acids, also contributes to lipogenesis 
(Eckel, 1989). Of the other adipose tissue subtypes, brown adipose tissue is 
probably the most well established. The main role of brown adipose tissue is to 
produce heat through “wasting” of the electrochemical gradient in the 
mitochondria and to take part in systemic triglyceride clearance and the 
regulation of total body metabolism in mammals (Chait & den Hartigh, 2020; 
Wibmer et al., 2021). Besides adipocytes, adipose tissue is also composed of other 
cell types, including fibroblasts, nerve cells, immune cells and vascular cells 
(Cypess, 2022).  
 
Adipose tissue depots. Subcutaneous WAT is the largest adipose tissue depot in 
lean healthy individuals and the main location of long-term energy storage 
during fasting and endurance exercise (Chait & den Hartigh, 2020). When the 
storage capacity of subcutaneous depot is exceeded, fat begins to accumulate in 
ectopic regions. Ectopic WAT can be found in various regions, including muscle, 
liver, heart, blood vessels and pancreas (Chait & den Hartigh, 2020), and several 
of them have been associated with increased risk for cardiovascular disease and 
metabolic conditions (K. A. Britton & Fox, 2011). One significant ectopic depot is 
the visceral adipose tissue (VAT) surrounding the intestines. VAT is 
metabolically highly active and responsible for the fast supply of systemic free 
fatty acids (Richelsen et al., 1991; Tchernof & Després, 2013). The reasons for this 
include higher sensitivity to catecholamine-induced lipolysis and lower 
sensitivity to insulin-induced inhibition of lipolysis compared to WAT (Meek et 
al., 1999; Richelsen et al., 1991). VAT is also a highly vascular and innervated 
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tissue, that contains a large number of inflammatory and immune cells in 
addition to adipocytes (Ibrahim, 2010). In a variety of BMI values, the adipocytes 
in VAT are, on average, smaller than the subcutaneous adipocytes. However, in 
obesity, the number of large adipocytes is increased especially in VAT 
(Reynisdottir et al., 1997; Verboven et al., 2018).  

During aging or due to disuse, ectopic fat may also begin to accumulate in 
skeletal muscle. Intermuscular adiposity includes lipid accumulation under the 
muscle fascia both inside muscle cells (intramyocellular) and around muscle 
fibers (intramuscular/intermuscular) (Addison et al., 2014). In muscle, excess 
lipid accumulation has been associated with total body adiposity (Goodpaster, 
Theriault, et al., 2000; Ryan & Nicklas, 1999), functional decrements (Straight et 
al., 2019), and, in non-athletes, also with lowered insulin sensitivity and impaired 
metabolic health (Dube et al., 2011; Goodpaster et al., 2001) due to lipotoxicity. In 
muscle, an increase in triglyceride concentration interferes with insulin-
stimulated PI3K activation and, further, with glucose transporter localization and 
glucose uptake (Roden & Shulman, 2019).   

In women, estrogens specifically impact adipose tissue location and 
accumulation. The distribution of female-type adipose tissue (gynoid obesity) is 
influenced by estrogenic actions that suppress adipocyte lipolysis and increase 
preadipocyte proliferation in SAT (Anderson et al., 2001; Gavin et al., 2013; 
Pedersen et al., 2004), and increase lipolysis and decrease the expression of 
lipogenic genes in VAT (Al-Qahtani et al., 2017; Bryzgalova et al., 2008; Pedersen 
et al., 2004). Moreover, the high level of LPL activity in women’s gynoidal 
adipocytes further contributes to regional adipose tissue accumulation (Pouliot 
et al., 1991). Among the factors contributing to the tissue specific responses of 
estrogens are ERs. In females, different adipose tissue depots express ERs at 
varying densities (Ahmed et al., 2022; Blouin et al., 2009), and recent evidence 
suggests that the ratio of ERα and -β in adipose tissue might be important in 
obesity (Shin et al., 2007). ERα activation has been proposed to promote anti-
obesity effects (K. E. Davis et al., 2013), whereas signaling through ERβ has been 
linked to impairment of metabolic health (Foryst-Ludwig et al., 2008). In women, 
aging and postmenopausal status have been associated with decreased ERα in 
subcutaneous tissue, thus potentially contributing to the enhanced signaling 
through ERβ (Ahmed et al., 2022; Y.-M. Park et al., 2017).  
 
Adipokines. The metabolic actions of adipose tissue includes the release of several 
hormones, cytokines and growth factors. The secretion pattern of these molecules 
differs across adipose tissue depots, leading to variation in systemic levels 
depending on body shape (Chait & den Hartigh, 2020). Collectively, all the 
secreted molecules originating from adipose tissue can be referred as adipokines 
(Ouchi et al., 2011). Adipokines are known to have roles in, e.g., regulating 
appetite and fertility, affecting insulin sensitivity, and promoting an either 
inflammatory or anti-inflammatory environment (Fasshauer & Blüher, 2015; M. 
Mitchell et al., 2005). To date, several adipokines have been identified, including 
adiponectin, omentin, resistin, leptin, IL-6, TNF-α and FGF-21 (Chait & den 
Hartigh, 2020; Ouchi et al., 2011). Among the most studied of these are 
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adiponectin, leptin and resistin. As they were also investigated in this 
dissertation research, the following paragraphs will focus on their functions.  

Adiponectin is mainly produced by adipocytes and plays a role in insulin-
sensitizing and increased fatty acid oxidation in several target tissues, such as 
skeletal muscle (through PPARα), pancreas, liver and immune cells. Hence, 
adiponectin is often considered to be an anti-inflammatory adipokine (Chait & 
den Hartigh, 2020). Moreover, adiponectin is also known to increase adipocyte 
hyperplasia, the less metabolically harmful type of obesity (Asterholm & Scherer, 
2010). Adiponectin expression is inversely related to total adiposity and BMI, but 
women overall tend to have higher adiponectin levels than men (Kern et al., 2003). 
Women may have higher adiponectin levels because subcutaneous adipose 
tissue, and especially gluteal fat is a greater source of adiponectin compared to 
VAT (F. M. Fisher et al., 2002; Lihn et al., 2004; Samaras et al., 2010). In fact, 
increases in VAT have been associated with decreases in adiponectin levels (Ryo 
et al., 2004). The mechanism through which central obesity decreases adiponectin 
expression is thought to comprise adipocyte dysfunction, an increase in 
proinflammatory cytokines and the inhibitory role of insulin (Möhlig et al., 2002; 
Ouchi et al., 2011). In postmenopausal healthy women, adiponectin has also been 
positively associated with lean mass (Banh et al., 2019). 

Leptin, which is also predominantly secreted from adipocytes, is a hormone 
responsible for signaling full energy reservoirs, enhancing fatty acid oxidation, 
and controlling appetite and fertility at the central nervous level (Mantzoros et 
al., 2011). Leptin levels correlate positively with total fat mass (FM) (Rosenbaum 
et al., 1996; J. Zhang et al., 2015) and leptin is more abundantly expressed in 
subcutaneous adipose tissue than in VAT (Samaras et al., 2010). E2 levels also 
associate positively with leptin levels (Chan et al., 2002; Konukoglu et al., 2000). 
Presumably, it is for these reasons that women usually have higher leptin levels 
than men (Rosenbaum et al., 1996; Yannakoulia et al., 2003). Unlike adiponectin, 
leptin has been negatively associated with muscle mass in postmenopausal 
women (Banh et al., 2019). 

Resistin is one of the more recently found adipokines secreted by the 
adipose tissue macrophages (Patel et al., 2003). Resistin has a role in preventing 
insulin actions and enforcing an inflammatory environment, and is thus an 
inflammatory adipokine (Benomar et al., 2013; Reilly et al., 2005). The 
mechanisms suggested for this are the increment in lipolysis from adipocytes and 
actions in preventing adiponectin secretion (N. Chen et al., 2014). Resistin levels 
have been associated with increasing adiposity, insulin resistance, and 
determinants of metabolic syndrome (Norata et al., 2007; Su et al., 2019). 
However, the precise role of resistin in metabolic health remains under 
investigation (Chait & den Hartigh, 2020). 

In addition to secreting adipokines, adipose tissue is also a source of 
estrogens through steroidogenesis from precursor hormones (Figure 1). This 
characteristic becomes evident after menopause specifically in E1 production 
(Blouin et al., 2009; Szymczak et al., 1998) and also translates to serum levels (Oh 
et al., 2017; Szymczak et al., 1998). SAT is the main E1 producer, while VAT may 
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contribute to increased E2 levels especially in waist obesity (Hetemäki et al., 2017). 
Studies have also reported a positive correlation between body fatness and BMI 
and E2 levels in both pre- and postmenopausal women (Oh et al., 2017; Tin Tin 
et al., 2020). However, the same direct correlation has not been repeated in all 
populations (Colleluori et al., 2018).  
 
Obesity and metabolic health. When systemic energy intake exceeds energy 
consumption, adipose tissue expands, causing obesity. Adipocytes can either 
grow in size (hypertrophy) or become more abundant (hyperplasia). These 
alternatives have different metabolic consequences (Cypess, 2022). Hypertrophic 
adipose tissue is considered to be metabolically more harmful, as it induces an 
inflammatory response in the tissue by recruiting immune cells and releasing 
pro-inflammatory cytokines, such as IL-6 and IL-8 (Skurk et al., 2007). One of the 
causes for this is suggested to be adipose tissue hypoxia (Y. S. Lee et al., 2014). 
Large adipocytes have also been found to release more leptin, but not 
adiponectin (Skurk et al., 2007). Hyperplasic adipose tissue, in turn, releases 
fewer pro-inflammatory cytokines, but more adiponectin, while also remaining 
more insulin sensitive (reviewed in Stenkula & Erlanson-Albertsson, 2018).  

Recent studies have revealed the importance of investigating obesity in 
greater detail, as phenotypes such as metabolically healthy and metabolically 
abnormal obesity have been identified (Blüher, 2020; Peppa et al., 2013). 
Metabolically healthy obese individuals have excess FM, but are typically 
characterized by a smaller trunk-to-leg FM ratio, less fluctuation in body weight 
and lower risk factor levels for developing the metabolic conditions traditionally 
associated with obesity (Peppa et al., 2013). The factors contributing to the 
metabolically healthy obese phenotype have been suggested to be less sedentary 
behavior and beneficial dietary choices, leading to a higher cardiorespiratory-
fitness level and skeletal muscle insulin sensitivity (Camhi et al., 2015; Jones et 
al., 2021). On the other hand, the metabolically obese non-obese phenotype may 
be expressed even in individuals with relatively normal BMI, but who, due to 
elevated blood pressure, central obesity, and physical inactivity are at increased 
risk for obesity related conditions (Ruderman et al., 1998).  

Different adipose tissue depots contribute to metabolic health in different 
ways. Gluteofemoral SAT has been associated with better metabolic health and 
insulin sensitivity (reviewed in Manolopoulos et al., 2010), while excess adipose 
tissue in the abdominal area has been associated with increased risk for 
cardiometabolic incidences and type II diabetes in both men and women in 
several populations (G.-C. Chen et al., 2019; Fox et al., 2007; H. Kwon et al., 2017; 
M. Zhang et al., 2015). The ratio between abdominal and gynoid or total FM 
seems to be especially important (Okosun et al., 2015; Peppa et al., 2013; Wiklund 
et al., 2008). The favourable metabolic effects of gynoid SAT are proposed to be 
linked to anti-inflammatory adipokine release, although it may also directly 
buffer against abdominal adipose tissue accumulation (Hernandez et al., 2011). 
In women, gluteofemoral and gynoid fat have been found to positively associate 
with bone mass density after menopause (Aedo et al., 2020; Namwongprom et 
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al., 2019), while excess total and trunk fat are associated with increased breast 
cancer risk also after adjusting for BMI (Arthur et al., 2020). 

As stated earlier, obesity is one of the major contributors to metabolic health. 
Metabolic health or the risk for cardiometabolic conditions can be assessed using 
the metabolic syndrome criteria pertaining to measurements of the blood lipid 
and glucose profiles, waist adiposity and blood pressure (Grundy et al., 2004), or, 
for example, using the plasma adipokine profile (Mauriège et al., 2020). 
Worsening metabolic health leads to metabolic syndrome, which is a collection 
of inflammatory conditions and increases the risk for type II diabetes and 
cardiovascular disease (P. L. Huang, 2009). For example, a woman with the co-
occurrence of at least three of the risk factors (waist circumference of 88 cm or 
more, blood pressure of ≥130/≥85 mmHg, triglycerides of ≥1.7mmol/l, high-
density cholesterol levels below 1.29 mmol/l or fasting glucose ≥5.6 mmol/l) is 
considered to have metabolic syndrome (Grundy et al., 2004). Increased waist 
adiposity, due to the release of inflammatory cytokines and free fatty acids from 
VAT, seems to be a particularly important contributory factor (Wajchenberg, 
2000). The systemic adipokine profile has also been proposed to be useful in 
estimating metabolic health. For example, in postmenopausal women, a higher 
ratio between blood adiponectin and leptin levels has been suggested as a valid 
marker for better metabolic health irrespective of the presence of obesity 
(Mauriège et al., 2020). No reference values for adiponectin or leptin levels for 
middle-aged women exist, but earlier studies suggest that an adiponectin-leptin 
ratio over one can be considered normal, while a ratio below 0.5 indicates a severe 
risk for cardiometabolic events (Frühbeck et al., 2018). Metabolic risk factors can 
be effectively managed by reducing obesity, especially in the waist area, 
increased PA and dietary modifications (Grundy et al., 2004). 

2.2.2 Skeletal muscle tissue 

In humans, skeletal muscle accounts for approximately 40% of total body weight. 
Moreover, alongside its role in movement and balance, it participates in total 
body energy metabolism and heat production and functions as an amino acid 
reserve. Muscle mass is dependent not only on the number of muscle cells 
(myofibers), but also on the balance of muscle protein synthesis and rate of 
degradation, which are responsive to hormonal and nutritional status, exercise 
and, for example, injuries (Sartori et al., 2021). After birth, human myofibers do 
not divide, and hence the expansion of muscle mass is achieved through 
hypertrophy and the inclusion of new myofibers and myonuclei from muscle 
stem cells. Muscle stem cells, or satellite cells, reside between the sarcolemma 
(muscle cell membrane) and basal lamina (lowest layer of the endomysium), and 
are responsible for the regeneration of muscle tissue (Mauro, 1961; Snijders et al., 
2015). After stimulus, quiescent satellite cells are activated and begin to 
proliferate. Depending on the need for regeneration, proliferated satellite cells 
may either differentiate into myoblasts, myotubes and further form a new 
myofiber or fuse as new myonuclei to an existing myofiber (Petrella et al., 2008; 
Webster et al., 2016). A fraction of the proliferated satellite cell population returns 
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to quiescence. In aged muscle, the muscle satellite cell pool has been found to be 
reduced (Shefer et al., 2006) and the regeneration commitment impaired, due to 
the lack of proliferation of satellite cells and their differentiation into non-
myogenic lineage (Asakura et al., 2001; Conboy et al., 2003).  

Individual myofibers are multinucleated cells that are surrounded by 
sarcolemma and composed of numerous myofibrils (Figure 2). The main 
components of myofibrils are the contractive proteins myosin in the thick 
filament, actin, troponin and tropomyosin in the thin filament, and titin as the 
elastic filament. After receiving the signal to contract, the thin and thick filaments 
of each contractile unit, i.e., sarcomere, slide over each other using adenosine 
triphosphate (ATP) as energy and causing the sarcomeres and eventually the 
whole myofiber to shorten (Frontera & Ochala, 2015). Each myofiber is also 
enveloped by a thin layer of connective tissue called the endomysium. A group 
of myofibers form larger units, muscle bundles, which are further surrounded by 
the perimysium, while on the whole muscle level, the individual muscles are 
surrounded by the epimysium. At the limb or region level, muscle groups are 
surrounded by a thicker connective tissue layer called the fascia, which separates 
the muscle tissue from subcutaneous adipose tissue. The role of these different 
connective tissue layers is to guide muscle fiber development, accommodate the 
tissue with nerves and capillaries in the tissue and to transmit contracting forces 
(Purslow, 2020).  

 

 

FIGURE 2  Basic structure and contracting unit of the muscles. Figure created with 
Biorender.com. 

 
Muscle fibers can be classified based on their myosin heavy chain (MHC) 
composition, ATPase activity or biochemical properties. Sarcomeric myosins 
comprise of two MHC molecules, each with a globular head, neck region with 
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two myosin light chains attached, and a tail, which intertwine with each other to 
form a helical coil. The head component includes both actin- and ATP-binding 
sites (Schiaffino & Reggiani, 2011). In adult human muscle, according to the 
composition of the MHC isoform, three types of fibers can be differentiated: I, 
IIA and IIX. Type I fibers are mostly composed of MHCI and can maintain 
movement for long periods owing to their efficient oxidative metabolism, for 
which high vascularity supplies oxygen. Because of the low ATPase activity 
related to MHCI, type I fibers are also called slow fibers. Of all three fiber types, 
slow fibers have the largest cross-sectional area (Gouzi et al., 2013) and typically 
contain the largest amount of lipid droplets (J. He et al., 2001). Type IIA fibers, 
mainly composed of MHCIIA, can contract more rapidly due to more active 
ATPase, but as they are simultaneously more glycolytic compared to type I fibers, 
they are unable to maintain contraction for extended periods. Lastly, type IIX 
fibers are the fastest and most glycolytic fibers, but also rarest in human muscle 
tissue, accounting for approximately only 10% of the fiber population (Vikne et 
al., 2020). Subgrouping by MHC is based on the expression of the main isoform, 
since skeletal muscles fibers are rarely “pure”, but rather mixtures of more than 
one myosin heavy chain (Pette & Staron, 2000).  

In addition, muscle fiber type composition, and overall metabolism, can be 
estimated from the fibers oxidative and glycolytic properties. In oxidative 
metabolism, energy is produced through oxidative phosphorylation from 
carbohydrates (muscle glycogen and extracellular glucose) and lipids. Oxidative 
metabolism requires oxygen, and hence highly vascular and mitochondria-rich 
type I fibers typically have high oxidative capacity (Schiaffino & Reggiani, 2011). 
Aerobic energy production yields ATP efficiently and therefore renders fibers 
more resistant to fatigue and suitable, for example, for maintaining posture. 
Oxidative fibers are also rich in lipid droplets, as lipids provide a stable source 
of energy, especially for prolonged exercise bouts (Gemmink et al., 2017). Studies 
investigating the properties of muscle fiber in relation to the whole-body 
metabolism have found, that lower oxidative metabolism and high muscle fiber 
lipid content are associated with obesity and lowered insulin sensitivity (G. 
Fisher et al., 2017; J. He et al., 2001; Sucharita et al., 2019; Tanner et al., 2002). 
However, the overall oxidative capacity of a muscle can be increased with PA (J. 
He et al., 2004), although in athletic muscle, increased oxidative capacity is 
accompanied with increased lipid content, a phenomenon known as the “athletes’ 
paradox” (Goodpaster et al., 2001). The other main route to energy production is 
through glycolysis. Glycolytic fibers (IIA and IIX) primarily produce energy, 
independent of oxygen, from phosphocreatine and muscle glycogen, which 
supplies the cell with less ATPs per cycle than oxidative metabolism (Westerblad 
et al., 2010). Although energy is produced rapidly, the fibers experience fatigue 
relatively soon. Increased glycolytic capacity in muscles has been associated with 
type II diabetes and decreased muscle density (Oberbach et al., 2006; J. A. 
Simoneau et al., 1995; J.-A. Simoneau & Kelley, 1997). Conversely, exercise, 
especially resistance exercise, has been shown to increase the total muscle 
glycolysis rate (Nitzsche et al., 2020). Additionally, the increase in the number of 
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fast fibers has been associated with a significant decline in FM in mice (Izumiya 
et al., 2008). 

At the tissue level, whole human skeletal muscles are mixtures of different 
fiber types. For example, m. vastus lateralis comprises approximately equal 
proportions of type I and II (Gouzi et al., 2013; Lexell et al., 1986), while some 
other muscles tend to contain slightly more of the oxidative type and others 
slightly more of the glycolytic type (Elder et al., 1982). The composition of fiber 
types in a muscle is thought to be determined mainly by genetics, but several 
studies propose that aging, physical activity and inactivity, and hormones might 
also affect fiber composition (reviewed in Haizlip et al., 2015; Pette & Staron, 
2001). Exercise, especially of the endurance type, and aging seem to increase the 
proportion of slower, more oxidative fibers (W.-S. Lee et al., 2006; Moreillon et 
al., 2019), while inactivity shifts the balance toward the faster forms (D’Antona et 
al., 2003). Sex has also been proposed to affect fiber distribution, as women have 
been observed to have more type I fibers compared to men (Staron et al., 2000; 
Welle et al., 2008). In addition to fiber type, also the single fiber cross-sectional 
area is affected by the same factors. Resistance exercise, young age and male sex 
have been previously associated with larger fiber size, especially of type II fibers 
(Andersen & Aagaard, 2000; Barnouin et al., 2017; Lexell et al., 1988; Lexell & 
Taylor, 1991; Martel et al., 2006). Moreover, sex also seems to affect satellite cell 
pool, as compared to men, women have more satellite cells around their type I 
fibers, but a lower total number of satellite cells (Horwath, Moberg, et al., 2021).  

2.2.3 Measuring body composition 

Depending on the required accuracy, body composition measurements can be 
conducted using several methods. One option is to use multicomponent models, 
which utilize several assumptions and theoretical equations (Heymsfield et al., 
2015). In the simplest version, a 2-component model (2C), body mass is divided 
into FM and fat-free mass (FFM). The assessment can be done with bioelectrical 
impedance analysis (BIA) or densitometric analyses, such as hydrostatic under-
water weighting (S. Y. Lee & Gallagher, 2008). As the 2C-model analysis includes 
build assumptions about body water content and FFM density, it is not ideal for 
all populations, such as children or non-healthy participants (S. Y. Lee & Gal-
lagher, 2008). The more detailed model is the three-component model (3C), 
where body mass is divided into FM, water, and fat-free dry mass (including 
proteins and minerals). 3C-measurement requires information on total body 
mass, body water (e.g., BIA) and body volume (densitometry), and therefore al-
lows a more accurate separation of the muscle hydration fraction (Wells & Few-
trell, 2006). Dual-energy X-ray absorptiometry (DXA) measurement is also some-
times considered as a 3C model, as it divides total mass into fat, lean and bone 
mass (Kuriyan, 2018; Toomey et al., 2015). The four-component model (4C), 
which is considered to be the gold standard for body composition measurements 
(Gallagher et al., 2013), divides body mass into FM, water, mineral content and 
residuals (including protein, glycogen and soft tissue mineral) (Fosbøl & Zerahn, 
2015). A 4C-measurement can be obtained by combining data from, for example, 
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densitometry (FM), BIA or isotope dilution (water) and DXA (mineral). The re-
sidual mass is then calculated by subtracting other compartments from total body 
mass (Toomey et al., 2015). However, a recent study suggests that, in healthy 
adults, results comparable to those obtained with the 4C model could also be 
obtained by simply using just DXA in combination with BIA (Ng et al., 2018). In 
addition to the theoretical compartment models, body composition can be as-
sessed using imaging technologies, such as DXA, quantitative computed tomog-
raphy (qCT) and magnetic resonance imaging (MRI), and predictive and anthro-
pometric measures, such as skin-fold measurement and waist and hip circumfer-
ence. In the following sections focus is confined to the body composition meas-
urement methods used in this thesis. 
 
Dual energy X-ray absorptiometry. Although the 4C-model is considered as the 
reference method for in-vivo assessment, it cannot separate differences in 
regional lean and fat masses. For this reason as well as easier accessibility and 
high reproducibility (Cordero-MacIntyre et al., 2002; Lohman et al., 2009), DXA 
has gained popularity in measuring body composition and is often regarded as 
the gold standard for muscle and bone mass measurement (Buckinx et al., 2018; 
Roux & Briot, 2017). DXA uses X-rays of two wavelengths that are projected onto 
body and detected from the opposite site. The attenuation in energy is then used 
to calculate bone mineral content and soft tissue density (Figure 3). The amount 
of lean mass and FM is further estimated from soft tissue using predetermined 
equations (Bazzocchi et al., 2016). The terminology used in reporting DXA results 
should be borne in mind here: fat mass (FM) includes only fat mass, fat-free mass 
(FFM) consists of non-adipose soft tissue and bone mass, and lean body mass 
(LM/LBM) consists of non-adipose soft tissue mass including muscle, skin, organs 
and connective tissues (Buckinx et al., 2018). However, the DXA lean mass 
measurement is frequently used as a surrogate variable for muscle mass and its 
correlation with especially appendicular muscle mass is high (J. Kim et al., 2002; 
Shih et al., 2000). In fact, it has been estimated that appendicular lean mass (ALM) 
forms 75% of total muscle mass and thus could be used as the most reliable proxy 
for total muscle mass (Buckinx et al., 2018). Although DXA uses ionizing 
radiation, the single dose is below or equivalent to background levels allowing 
for relatively safe measurements in longitudinal studies (Bazzocchi et al., 2016). 
The disadvantages of DXA, apart from its two-dimensional image and limited 
resolution, include its inability to separate, for example, leg intermuscular fat 
from the leg subcutaneous adipose tissue (Beaudart et al., 2016), which have 
distinct metabolic consequences. Moreover, SAT and VAT cannot be separated 
using DXA, although calculational algorithms have been developed for the 
purposes of estimation (Kelly et al., 2010). While normal variation in hydration 
status has no or only a minor effect on body composition measurements with 
DXA, in obese participants, tissue thickness could affect the estimation of body 
fat percentage (Bazzocchi et al., 2016; LaForgia et al., 2009).  

Several studies have compared the correlations between muscle and 
adipose tissue quantities in DXA and then further compared these to MRI or the 
4C-model as the gold standards. For adiposity at the total body level, DXA has 
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been shown to correlate well with other methods in adults. A small 
underestimation of the percentage of body fat obtained by DXA (2–5%), but 
otherwise high overall correlations (r ~ 0.9) of DXA measurements with those 
found using 4C-models have been reported (Bergsma–Kadijk et al., 1996; 
Gallagher et al., 2000; Prior et al., 1997; van der Ploeg et al., 2003). In the case of 
MRI, DXA estimates of total FM and VAT estimation correlated strongly (r ≥ 0.9) 
with those obtained using MRI in middle-aged men and women (Borga et al., 
2018; Maskarinec et al., 2022; Mohammad et al., 2017). For lean mass, MRI-
measured total body skeletal muscle mass correlated highly (r = 0.94) with DXA-
derived LBM in postmenopausal older women (Z. Chen et al., 2007). 
Additionally, MRI and DXA scans of thigh muscularity have also been reported 
to correlate strongly (r2 ~ 0.8–0.9) in both young and old populations (Cameron 
et al., 2020; Z. Chen et al., 2007; Maden-Wilkinson et al., 2013), although some 
studies have also reported a decrease in the accuracy of DXA when measuring 
longitudinal changes (Delmonico et al., 2008; Tavoian et al., 2019). 
 
Quantitative computed tomography. Besides 2D imaging performed with DXA, 
especially regional body composition can also be measured with sectional 
imaging methods such as qCT. qCT utilizes information from X-ray attenuation 
on a 360° platform, creating slice images and, based on density measures, 
enabling high-definition separation of bone, muscle, adipose tissue and intestines 
(Figure 3) (Fosbøl & Zerahn, 2015). Section densities are calculated in Hounsfield 
units (HU) using calibrations phantoms, where water is assigned a HU value of 
0 and air a HU value of ~ -1000. For adipose tissue, the HU value is below zero (-
190 to -30) and for muscle it is between 30–100 (Fosbøl & Zerahn, 2015). Cross-
sectional areas can be calculated from the images for each tissue type. In addition 
to MRI, CT, owing to its excellent accuracy and reproducibility, is considered as 
the reference standard for the diagnosis of, for example, sarcopenia (Y.-H. Lee et 
al., 2017; Mitsiopoulos et al., 1998). Although highly accurate, CT is not easily 
usable with large populations, owing to its delivery of a moderate radiation dose, 
limitations on patient size and the high cost of the equipment (Beaudart et al., 
2016).  

For CT, high correlations with MRI adipose tissue measurements have been 
reported in the chest (r ~ 0.90) (Faron et al., 2020), waist (r ~ 0.8-0.9) (Zaffina et 
al., 2022) and leg areas (r ~ 0.8) (Niklasson et al., 2022). Additionally, CT-
measured thigh muscle density and intermuscular fat has correlated positively 
with BMI- and DXA-measured total body adiposity in adults and in older female 
populations (Goodpaster, Kelley, et al., 2000; Straight et al., 2019). High 
correlations between skeletal muscle CT and MRI (r ~ 0.8–0.9) scans have also 
been reported in the adult population (Faron et al., 2020; Niklasson et al., 2022; 
Zaffina et al., 2022). Thus, based on the literature, both DXA and CT produce 
measures of fat and lean mass that correlate highly with those produced using 
the gold standard methods of MRI and the 4C-model. 
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FIGURE 3  Representative images of total body DXA and mid-thigh qCT scans used in 
the analysis of body composition. 

 
Anthropometric measures of adiposity. In addition to laboratory measurements, 
adiposity and body shape can be estimated using anthropometric measurements. 
Measures such as waist and hip circumference (WC and HC), and waist-to-hip-
ratio (WHR) are easily, economically and safely measured at home or in a nurse’s 
office and thus possess practical properties for large-scale population studies, but 
also for personal follow-up.  

WC is commonly used as a surrogate measure of abdominal adiposity. The 
anatomical landmarks guiding WC measurement vary to some extent between 
the studies, as WC can be measured either at the 1) approximate midpoint 
between the lower margin of the last palpable rib and the top of the iliac crest 
(recommended), 2) top of the iliac crest, 3) level of the umbilicus or navel, or 4) 
at the point of the minimal waist (World Health Organization, 2011). In several 
populations, a WC of 88 centimeters or over in women has been widely 
associated with an increased risk for metabolic syndrome and cardiovascular 
diseases (World Health Organization, 2011), as it has been associated positively 
with total FM in addition to abdominal SAT and VAT (r ~ 0.7–0.9), although the 
correlation varies across populations (Camhi et al., 2011; Fox et al., 2007). The 
measurement site also affects the correlation coefficient, as two recent studies 
have found highest correlations with the “minimal waist” measurement site 
(Pinho et al., 2018; Seimon et al., 2018). In a longitudinal study of more than 700 
middle-aged women, a 10 cm increase in WC was associated with a doubled risk 
of type II diabetes (Snijder et al., 2003). The limitation of WC measurement is, that 
it does not separate abdominal SAT from VAT. 

 Measurement of the WHR (WC divided by HC) is used to describe the fat 
accumulation pattern in regards to the mid-region and gluteal areas. As with WC, 
HC can also be measured from slightly differing locations. World Health 
Organization expert panel lists only “the widest portion of the buttocks” (World 
Health Organization, 2011), but studies report measurements also from the 
“widest level over the greater trochanters” (Snijder et al., 2003) and “maximum 
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excursion of the buttocks” (Greendale et al., 2021). A WHR of ≥ 0.85 has been 
associated with a higher risk of unhealthy metabolic conditions in women (World 
Health Organization, 2011). A cross-sectional study of mostly middle-aged 
participants similarly found a WHR cut-off limit of 0.9 in men and 0.88 in women 
to predict metabolic syndrome (Bener et al., 2013). In a longitudinal study, an 
increase in WHR of 0.07 units was associated with a 2.15 odds ratio of developing 
type II diabetes in middle-aged women (Snijder et al., 2003). In addition to 
metabolic consequences, central obesity measured with WC and WHR has been 
associated with increased breast cancer risk in both pre- and postmenopausal 
women (Houghton et al., 2021).  

2.3 Skeletal muscle RNA signaling and body composition  

2.3.1 Protein-coding and non-coding RNAs 

In mammalian cells, DNA encodes for all the proteins needed for cellular growth, 
metabolism, development and controlled death. In addition to serving as an 
instruction for protein-coding genes, DNA also functions as a template for non-
protein-coding RNAs (ncRNAs), which regulate DNA transcription and protein 
function. 

Messenger RNA (mRNA) is the RNA species needed to produce proteins. 
mRNA, like all the other RNA species, is produced from template DNA during 
transcription. Here, the target DNA sequence is copied into single-stranded 
mRNA by RNA polymerase. The resulting pre-mRNA is released, spliced or 
otherwise modified, and transferred to the cytoplasm as mature mRNA. In the 
cytoplasm it attaches to ribosomes and can be translated into a functional protein 
or part of one. Several protein coding genes can produce multiple slightly 
variable mRNA transcripts and the mRNAs can also be modified before 
translation. Thus from the around 20 000 human protein-coding genes currently 
known (Salzberg, 2018), a considerable number of different mRNA transcripts 
and thereby different protein variants can be produced for the needs of different 
cell types. 

In addition to the protein-coding RNA molecules, a variety of ncRNAs act 
as regulating factors in gene expression at different levels. Based on their length, 
ncRNAs can be divided into small and long ncRNAs. One class of widely studied 
small RNAs are microRNAs (miRNAs), which are ~22 nucleotides long RNA 
molecules coded from the non-protein coding regions of the genome. miRNAs 
are produced from miRNA genes and go through specific pri- and pre-miRNA 
processing before reaching their single-stranded mature state (O’Brien et al., 
2018). Some miRNAs, such as muscle myomiRNAs and brain specific miRNAs, 
are known to be expressed in a highly tissue-specific manner (Lagos-Quintana et 
al., 2002; McCarthy, 2011). Several miRNAs are also observed in body fluids and 
suggested to have a role in the inter-tissue signaling (Boon & Vickers, 2013). 
Currently, ~ 2 600 recognized mature miRNAs have been found in humans 
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(miRBase v22.1)(Kozomara et al., 2019). miRNAs are most known for their 
function in downregulating gene expression. Interaction between target mRNAs 
and miRNAs occurs through miRNA binding first into a RNA-induced silencing 
complex (RISC), a multiprotein complex including, for example, nucleases. After 
miRNA loading, the complex attaches to target mRNA mainly through 3’ UTR 
(untranslated region) binding and, based on the level of miRNA-mRNA 
complementary, mRNA translation is either repressed or the target mRNA is 
cleaved (Bartel, 2004). However, miRNAs have also been observed to increase 
gene expression through binding to a gene promoter or mRNA 5’ UTR (Dharap 
et al., 2013; Ørom et al., 2008). 

Another large class of ncRNAs are the long non-coding RNAs (lncRNAs). 
These are defined as RNA molecules of more than 200 nucleotides in length 
which do not have protein-coding potential (Fernandes et al., 2019). lncRNAs are 
estimated to be encoded by ~15 000 genes (Salzberg, 2018), either from the 
intronic area or partially overlapping with the protein-coding exones. lncRNAs 
share many similar properties with mRNAs, as they also consist of intrones and 
exones, are spliced, and may contain a polyA-tail. lncRNAs may localize either 
in the nucleus or cytoplasm and can both activate or repress target gene 
transcription or regulate protein translation post-transcriptionally (Statello et al., 
2021). Regulation mechanisms include the opening and formation of 
heterochromatin, recruiting and decoying DNA regulation proteins, splicing 
regulation, miRNA binding and mRNA stabilization and degradation. Overall, 
although there is debate on the amount of functional lncRNAs, there is no 
question that lncRNAs are crucial regulators of the transcriptome. 

The RNA composition of a sample is comprehensively determined using 
RNA sequencing. In short, extracted RNA molecules are first fragmented, 
reverse-transcribed to complementary DNA molecules, tagged with identifiers 
and amplified with polymerase chain reaction. The samples are further loaded 
into a sequencing system, single-stranded DNA fragments are attached to an 
immobile media as a template and amplified once again. After cluster formation, 
using repetitive cycles of adding free nucleotides and detecting the attachment 
signal, the sequences of the original sample molecules are determined (Illumina, 
2022; Rizzo & Buck, 2012). Using bioinformatics, the raw sequencing reads are 
further aligned and compared to the reference genome. Due to the previously 
added identifiers, the number of RNA molecules or fragments from each gene 
can be counted per sample and this information used for, e.g., differential 
expression (DE) analysis (Pereira et al., 2020).  

2.3.2 RNA signaling and contribution to body composition and metabolic 
health 

As proteins are the basis of all cellular functions, mRNA synthesis and its 
regulation are also key determinants of total body metabolic health and body 
composition. Due to the extensive nature of the field, this and the following 
sections will mainly focus on describing the current knowledge on muscle tissue, 
although blood and adipose tissue are to some extent also covered. 
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For skeletal muscle tissue, myogenic transcription factors (e.g., MyoD, Myf5) 
and structural proteins (e.g., actin, myosin, troponin, titin), among others, are 
crucial for function and homeostasis. Muscle mass with respect to atrophy and 
hypertrophy is regulated by, for example, the PI3K/Akt-pathway, which 
involves the participation of mTOR and S6K1 for increased protein synthesis and 
the involvement of FoxO, MuRF1 and Atrogin-1 for decreased protein synthesis 
(Sandri, 2008). Muscle energy metabolism is regulated by gene products involved 
in, for example, glycolysis (e.g., HK1 and PFK1), fat oxidation (e.g., CS and 
PPARα) and oxidative phosphorylation (SDH and COX). The expression level 
changes in energy metabolism related genes have been linked to obesity and type 
II diabetes (Debard et al., 2004; Gerhart-Hines et al., 2007). For example, the 
expression of oxidative phosphorylation regulating genes has been found to 
decrease in insulin resistance (Mootha et al., 2003).  

In humans, an increasing number of miRNAs and lncRNAs have been 
associated with the regulation of muscle tissue properties, body composition and 
metabolic health. miR-222 has been shown in vitro to regulate muscle fiber type 
conversion and the biogenesis of mitochondria (Gan et al., 2020). In addition, 
insulin has been shown to regulate the expression of several miRNAs, such as 
miR-1, -95 and -133a in human skeletal muscle, thus possibly also contributing to 
metabolic health (Granjon et al., 2009). Skeletal muscle tissue is known to express 
myomiRNAs: miR-1, miR-133a/b, miR-206, miR-208a/b, miR-486 and miR-499, 
which regulate muscle proliferation, differentiation and regeneration (Horak et 
al., 2016). While for lncRNAs, similar muscle-specific species have not been 
found, the lncRNAs H19, NEAT1, RAM and Dum have been observed to 
associate with the regeneration of muscle tissue (Dey et al., 2014; Martone et al., 
2020), and the lncRNAs Chronos, MALAT1 and MAR1 have been previously 
linked with possible roles in skeletal muscle atrophy (Neppl et al., 2017; Ruan et 
al., 2022; Z.-K. Zhang et al., 2018). Little is known about the effects of skeletal 
muscle lncRNAs on total body metabolism. In rats, several hundred lncRNA 
transcripts were differentially expressed between diabetic and control 
phenotypes (W. Zhang et al., 2020), whereas in mice and human cells, only 
muscle H19 has been found to be downregulated in insulin- resistant individuals 
(Gao et al., 2014). H19 interacts with miRNA let-7 (Kallen et al., 2013), which 
further represses the insulin signaling pathway, including insulin receptor (H. 
Zhu et al., 2011). In adipose tissue, lncRNAs such as H19 and ADINR have been 
associated with increases in adipogenic differentiation (Y. Huang et al., 2016; 
Xiao et al., 2015). Circulating miR-374a-5p has also been shown to associate with 
the metabolically healthy rather than metabolically abnormal obesity phenotype 
in women (Doumatey et al., 2018) and miR-24 and -29b to associate with higher 
T2D incidence (X. Wang et al., 2014). In lncRNAs, the increased expression of 
circulating RP11-20G13.3 and the decreased expression of GYG2P1, lncRNA-
p21015 and -p5549 have previously been associated with increased adiposity (Y. 
Liu et al., 2018; Sun et al., 2016).  
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2.4 Lifestyle habits and body composition 

Lifestyle habits are known to contribute considerably to body composition. Of all 
the possible lifestyle habits, PA, diet quality and the use of exogenous hormones 
were investigated in this thesis, and hence the following sections will focus on 
exploring these.  

2.4.1 Physical activity  

PA can be defined as “any bodily movements produced by skeletal muscles that 
result in energy expenditure”, whereas exercise is a more structured form of PA 
engaged in to promote health or fitness (Caspersen et al., 1985). PA is a widely 
known contributor to the overall health, as it reduces the risk for cardiovascular 
diseases, obesity, hypertension, certain cancers, and type II diabetes, while 
improving musculoskeletal health, mental health, cognitive function and sleep 
(Warburton et al., 2006). Acutely, PA increases, for example, energy and oxygen 
consumption, heart rate and blood flow (Thyfault & Bergouignan, 2020). The 
positive long-term effects of PA on health are mediated by systemic anti-
inflammatory response, as muscle contraction increases the levels of IL-6, -10, -
1ra and soluble receptors of TNF, and inhibits the secretion of TNF-α from 
adipose tissue (A. M. W. Petersen & Pedersen, 2005). IL-6 can be considered also 
as an proinflammatory cytokine, although after acute exercise response, the 
elevation of IL-6 increases lipolysis and fat oxidation and drives the secretion of 
anti-inflammatory cytokines, such as IL-10 and IL-1ra (E. W. Petersen et al., 2005; 
Steensberg et al., 2003). Other myokines released by muscle in response to 
exercise include IL-8 (angiogenesis), IL-15 (anabolic factor), FNDC5/irisin 
(browning of AT) and myostatin (insulin sensitivity) (reviewed in Leal et al., 
2018). In addition, PA has been shown to increase mitochondrial biogenesis 
(Wright et al., 2007), insulin sensitivity (Houmard et al., 2004) and, for example, 
muscle hypertrophy (Schoenfeld, 2010). In adipose tissue, PA increases lipolysis 
and mitochondrial function, and reduces inflammatory macrophages (Y.-M. Park 
et al., 2014). The WHO’s PA recommendations for adults (aged 18–64 years) 
are >150 minutes of moderate or 75 minutes of vigorous PA and resistance 
exercise twice a week. In addition, as much light exercise as possible and 
avoiding sedentary time is also recommended (World Health Organization, 
2020). 

 PA can be separated into four dimensions: mode (activity type), frequency 
(how often), duration (how long) and intensity (rate of energy expenditure) 
(Strath et al., 2013). Energy consumption during PA can be estimated using the 
doubly labelled water method, indirect calorimetry or, for example, by heart rate 
monitoring, but due to their limitations of cost, including labor, and sensitivity, 
self-reported questionnaires or diaries, and devices such as accelerometers are 
preferred in large-scale measurements (Strath et al., 2013). Questionnaires with 
varying numbers of questions aiming to capture either leisure or all-time PA are 
inexpensive and easily distributed, but may not be robust enough to reflect the 
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amount of light activity and energy expenditure (Sylvia et al., 2014). Some of the 
widely used PA questionnaires include, for example, the International Physical 
Activity Questionnaire (Craig et al., 2003), and the Saltin and Grimby instrument 
and its derivates (Saltin & Grimby, 1968). While accelerometers do not rely on 
participant memory and can capture large amounts of data, they can be costly 
and depending on their placement on the body, may not capture all types of PA, 
such as gym exercise, to a similar extent (Sylvia et al., 2014). Accelerometers 
record PA using, for example, one- or triaxial acceleration data binned in 
“counts”, where one count can be simplified as a movement with acceleration, 
that exceeds the filter limit (Neishabouri et al., 2022). Thus, using several different 
assessment methods might be beneficial for more accurate estimation of PA level, 
as the results from questionnaires and accelerometers never fully correlate 
(Hagstromer et al., 2010; Hyvärinen et al., 2019).  

Some of the most often used measures of PA include metabolic equivalents 
of a task (METs) and the amount of moderate-to-vigorous PA (MVPA). One MET 
represents the energy expenditure required for sitting of a 70 kg person and is 
equivalent of 3.5 mL O2·kg−1·min−1. Thus an activity, which requires oxygen 
consumption of 10.5 mL O2·kg−1·min−1, such as normal pace walking, is 
equivalent to three METs (Ainsworth et al., 2011). The daily or weekly amount of 
PA in METs can be estimated as intensity, duration and frequency (intensity 
(METs) * duration (mins/h) * frequency (times per day/week)). MVPA by 
definition is an activity of consuming between 3 and 6 METs, that is, an activity 
in which the heart rate increases but only to a level that enables one to perform it 
for a longer time (World Health Organization, 2020). Like METs, daily or weekly 
MVPA in minutes or hours can also be calculated (duration * frequency). 
Recently, the measurement of mean amplitude deviations (MAD) has also 
become popular in studies of PA. MADs are produced by accelerometers, but 
instead of binning PA in counts, it captures activity volume from the whole 
intensity range without filtering (Vähä-Ypyä et al., 2015).  

2.4.2 Diet quality 

Diet and caloric intake are well known contributors to both body composition 
and metabolic health. They contribute to health through nutrients, calories, fiber, 
vitamins and antioxidants. A healthy diet consists of a suitable amount of energy, 
adequate amounts of protein, carbohydrates and soft fats, and limited amounts 
of hard fats, free sugars and salt (World Health Organization, 2003). According 
to the Nordic Nutrition Recommendations for adults, in a health-promoting diet 
fats should form 25–40 percentages of the total energy intake (E%), protein 10–
20E% and carbohydrates 45–60E%. Such a diet should predominantly be derived 
from plant-based, high-fiber and low energy-density protein and carbohydrate 
sources. More specifically, saturated fats and added sugar should not exceed 
more than 10E% (The Nordic Council of Ministers, 2014). A diet rich in fats, and 
especially saturated fats, increases the risk for cardiovascular and metabolic 
conditions and is associated with obesity (Bray & Popkin, 1998; de Souza et al., 
2015). While higher protein intake has been associated with higher LM and 
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quadriceps strength in adults (Sahni et al., 2015), very high protein diets (>1.5g 
protein/kg/day), especially those containing animal protein, may be harmful for 
kidney function in the long-term, particularly for individuals with predisposing 
conditions (reviewed in Ko et al., 2020). Diets with a very high carbohydrate 
concentration (>60E%), such as the typical Asian diet, have recently also been 
associated with increased metabolic risk (Bikman et al., 2022; Y. J. Lee et al., 2018). 
Some of the cellular mechanisms underlying how different macronutrients and 
diet affect the body and health are relatively well understood. For example, high 
fat-diet and overnutrition overall leads to accumulation of lipid molecules in the 
cells, further to inhibition of insulin receptor signaling (insulin resistance), 
adipose tissue hypoxia and inflammation, and the release of inflammatory 
cytokines (Roden & Shulman, 2019). A low protein diet may lead to a reduced 
rate of protein turnover due to deficiency of essential amino acids and an 
attenuated anabolic signal, and may, according to the ‘protein leverage’ 
hypothesis, even predispose to the overconsumption of calories (Atherton & 
Smith, 2012; Hursel et al., 2015; Simpson & Raubenheimer, 2005).  

Diet quality can be measured with food frequency questionnaires, food 
diaries and, for example, interviews. Several different indices have been created, 
including the Healthy Eating Index-2015 (Krebs-Smith et al., 2018), the various 
Mediterranean diet indices (Aoun et al., 2019) and the Dietary Approaches to 
Stop Hypertension (DASH) diet (Mellen et al., 2008) to name a few. The reason 
for the creation of these different scores are differences in food cultures between 
countries as well as constantly emerging new innovations for popular foods, such 
as different plant-based “milk” and protein products. Depending on the index, 
associations of blood lipid values with vitamins, as well as with BMI, 
cardiovascular disease and cancer risk have been found (Wirt & Collins, 2009).  

2.4.3 Exogenous hormone use 

During fertile age, hormonal preparations for contraception or treating medical 
conditions are widely used by women. Oral, injection, transdermal or 
intravaginal/uterine preparations for these purposes include either progestogen, 
or estrogen combined with progestogen as their effective agent. Progestogen is 
the main contraceptive agent as it prevents ovulation by inhibiting LH surge, 
alters the vaginal mucus composition to prevent sperm from moving into the 
uterus and induces uterine endometrium atrophy. The estrogen component 
inhibits the secretion of FSH and thus the maturation of the dominant follicle (L. 
E. Britton et al., 2020). In midlife, similar or even identical preparations can be 
used in menopausal HT. Here the purpose is no longer to prevent pregnancy, but 
to alleviate menopausal symptoms, such as sleeping difficulties, irregular 
bleeding or vasomotor symptoms caused mainly by low estrogen levels (S. R. 
Davis & Baber, 2022). Thus, menopausal HT can consist of either estrogen alone 
or, in women with a uterus, estrogen combined with progestogen to reduce 
endometrial hyperplasia (Vigneswaran & Hamoda, 2022). In addition, 
testosterone, DHEA and tibolone, which possess estro-, andro- and 
progestogenic properties can used for specific symptoms such as sexual 
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dysfunction (S. R. Davis & Baber, 2022). The different HT treatments include oral, 
transdermal, subcutaneous, and intrauterine preparations, in addition to local 
intravaginal therapy. Both synthetic and bioidentical hormones are used. In 
Finland, approximately 12% of the women ≥ 45 years in age use exogenous sex 
hormone preparations (Finnish Medicines Agency & Social Insurance Institution, 
2021). The effects of HT on the body composition of menopausal women will be 
discussed further in chapter 2.6.3. 

2.5 Changes in body composition during aging and menopause 

2.5.1 Body composition and aging 

During aging, muscle mass is lost and adipose tissue is gained in both men and 
women (Gába & Přidalová, 2014; Guo et al., 1999). Longitudinal increases in FM 
vary between 0.1 kg to 1.4 kg per year, while the decrease in muscle mass varies 
between zero and three percent per decade, corresponding to approximately 0.1 
kg per year (Guo et al., 1999; Hughes et al., 2002; Jackson et al., 2012; Kyle et al., 
2006). Age and sex both contribute to these changes. Aging-related muscle loss 
(sarcopenia), characterized by decreased muscle strength and lowered ALM, has 
a significant impact on health as it is associated with lowered physical 
functioning, cognitive impairment, metabolic health and increased risk for 
cardiac disease (Cruz-Jentoft et al., 2019; S. H. Kim et al., 2021). Age-related 
muscle atrophy is characterized by a decrease in fiber size, especially in type II 
fibers, but also by a reduction in the total number of fibers (Larsson et al., 1978; 
Lexell et al., 1988; Lexell & Taylor, 1991). Muscle quality also affects physical 
functioning and health. During aging, muscle tissue is partially replaced by non-
contractile connective and adipose tissue (Delmonico et al., 2009). Lower muscle 
density, decreased muscle cross-sectional area and increased fat infiltration 
inside muscle fascia have been associated with an increased fall risk, lower gait 
speed, and decreased muscle power and postural balance (Edmunds et al., 2018; 
Straight et al., 2019; Vitale et al., 2021), thus contributing strongly to overall 
wellbeing.  

2.5.2 Change in adiposity and adipokines during the menopausal transition 

Compared to aging, the impact of hormonal aging and menopause on 
changes on body composition and metabolic health in women is less well 
understood. The main mechanism behind menopausal tissue changes may be the 
dramatic decrease in systemic E2, as E2 has been shown to have several beneficial 
effects on both fat and muscle tissues at the cellular level. In adipose tissue, E2 is 
known to increase preadipocyte proliferation (Anderson et al., 2001), regulate 
adipose tissue browning, lipolysis and lipogenesis (Al-Qahtani et al., 2017; 
Pedersen et al., 2004) and affect glucose uptake (Ahmed et al., 2022). Estrogen 
deficiency induces adipose tissue hypertrophy, immune cell invasion and 
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fibrosis (Abildgaard et al., 2021). E2 also affects the regulatory system in the 
hypothalamus, which controls hunger and increases energy expenditure, thereby 
possibly preventing excess lipid accumulation (reviewed in Bracht et al., 2020). 
Decrease in overall energy expenditure due to hormonal changes has been 
widely suggested to be a key factor for increased adiposity in postmenopause 
(Lovejoy et al., 2008), but recently the role of age and decreased PA have also 
been introduced (Duval et al., 2013; Karppinen et al., 2023). As previously 
mentioned, PR and FSHR are also expressed in adipose tissue. In adipocytes, P4 
increases lipogenesis (Lacasa et al., 2001), mitochondrial biogenesis (Rodríguez-
Cuenca et al., 2007) and adipocyte hypertrophy, decreases IL-6 production, and 
affects the adipokine expression (Pektaş et al., 2015; Stelmanska et al., 2012).  In 
adipocytes, FSH has been observed to increase lipid droplet accumulation and to 
decrease adiponectin and increase leptin release (H. Cui et al., 2012; X. Liu et al., 
2015). In animal models, blocking the effects of FSH with an antibody resulted in 
lower adiposity and increased energy expenditure after OVX (X. Han et al., 2020; 
P. Liu et al., 2017). In humans serum FSH levels have been found to associate 
positively with body adiposity especially before 60 years of age (Gavaler & 
Rosenblum, 2003; M. Sowers et al., 2007; Veldhuis-Vlug et al., 2021). 

The associations between menopause and body composition have been 
investigated in both cross-sectional and longitudinal studies such as Melbourne 
Women’s Midlife Health Project (MWMHP, 1991–2000), Study of Women’s 
Health Across the Nation (SWAN, 1994->), Montreal-Ottawa New Emerging 
Team group study (MONET, 2004–2009), Healthy Transitions (1997–2002), and 
Women’s Healthy Lifestyle Project (WHLP, 1992–1999). Several studies 
investigating the effects of HT or ovarian suppression on body composition have 
also been conducted (e.g., Dam et al., 2021; Gavin et al., 2020; Ronkainen et al., 
2009; Sipilä et al., 2001). Studies have varied in the menopausal status assignment, 
measurement interval and methodology used in body composition 
measurements, somewhat complicating the comparisons between them. In 
addition, studies such as SWAN include participants from different ethnic 
backgrounds, whereas participant ethnicity has been more limited in other 
studies. A selection of the longitudinal results most relevant for this thesis are 
presented in Table 2, while the results of the cross-sectional studies are discussed 
only in the text. Here, the focus is on studies, in which women underwent natural 
menopause. Studies on HT use are discussed in more detail in chapter 2.6.3  

Most of the cross-sectional studies comparing the adiposity between pre- 
and postmenopausal women have reported increases in adiposity, but only in 
some of the variables. For example, in their multi-ethnic study, Sternfeld et al. 
(2005) observed increases in total fat percentage only in the Chinese group, but 
no change in total FM in any of the other ethnic groups. In a study of French 
middle-aged women, postmenopausal status was associated with higher trunk 
and leg adiposity (Panotopoulos et al., 1996), whereas another study in age-
matched Japanese women found no differences in appendicular, trunk or total 
FM between pre- and postmenopause (Douchi et al., 2007). Although significant 
increases have been reported in total and abdominal FM in groups with larger 
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age ranges (Douchi et al., 2007; Svendsen et al., 1995), two studies of age-matched 
middle-aged women with differing menopausal statuses only found trends 
(Gould et al., 2022; Svendsen et al., 1995). Increases in VAT adiposity between 
post- and premenopausal women has been reported in two cross-sectional 
studies (Abildgaard et al., 2013; Kanaley et al., 2001).  

In the majority of the longitudinal menopausal studies an increase in total 
body FM and fat percentage at the group mean level has been reported. For 
example, in a large multiethnic study of more than 1 000 participants FM 
increased by 0.45 kilograms and body fat percentage with an relative increase of 
1% per year during the menopausal transition (Greendale et al., 2019). In another 
cohort of mostly Caucasian women, similar increases were observed two years 
prior to FMP, although the group did not find statistically significant differences 
when comparing the timepoints to the FMP year (year 0) (Abdulnour et al., 2012). 
Several studies focused on the abdominal area have reported menopause-related 
increases in both subcutaneous and intra-abdominal (including VAT) adiposity 
(Franklin et al., 2009; C. G. Lee et al., 2009; Lovejoy et al., 2008; Marlatt et al., 2020), 
while one study concluded that the changes were not related to menopause, but 
to a decline in the level of PA (Kanaley et al., 2001).  

Waist adiposity and body shape around menopause have also been 
investigated using WC and WHR. In cross-sectional studies, WC and WHR have 
not been reported to differ between pre- and postmenopausal women (P. Gupta 
et al., 2008; Sternfeld et al., 2005), while several, but not all (Abdulnour et al., 2012; 
Franklin et al., 2009), longitudinal studies have reported an increase in these 
parameters in postmenopausal women (Greendale et al., 2021; Guthrie et al., 1999; 
Janssen et al., 2008; Marlatt et al., 2020; M. Sowers et al., 2007). In a recent meta-
analysis of longitudinal studies, the average annual increase in WC was 0.51 cm 
and in body fat percentage 0.41% during midlife (Ambikairajah et al., 2019).  

Besides natural menopause, the effects of artificial menopause have also 
been investigated. In a study of premenopausal women (aged ~46 years), who 
went through ovarian suppression with GnRH-agonist for 24 weeks, a significant 
increase in FM and a decrease in leg FFM was observed (Gavin et al., 2020). In 
addition, surgical menopause (oophorectomy) has also been shown to increase 
FM in a several age groups (Karia et al., 2021). 

Adipokines as indicators of adipose tissue and metabolic health have been 
rarely studied in menopausal women. For adiponectin, cross-sectional studies 
have reported both an increase (Gavrila et al., 2003; Tamakoshi et al., 2007) and 
no differences between middle-aged pre- and postmenopausal women (P. Gupta 
et al., 2008; Matsui et al., 2012). However, in longitudinal studies, adiponectin 
levels have been found both to increase during the transition from peri- to 
postmenopause (C. G. Lee et al., 2009; M. R. Sowers et al., 2008), but to correlate 
also negatively with intra-abdominal fat (C. G. Lee et al., 2009). Interestingly, the 
Michigan Bone Health and Metabolism Study reported a drop in adiponectin 
levels in perimenopause (M. R. Sowers et al., 2008). Given that menopause and 
related E2 deficiency have been associated with decreased metabolic health and 
increased risk for cardiovascular disease (El Khoudary et al., 2020) and that 
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adiponectin has been suggested to be an indicator of metabolic health, the 
previously reported increases in adiponectin levels seems counterintuitive.  

As with adiponectin, the associations of leptin with menopause and the 
menopause-related hormonal environment are mixed. In middle-aged women, 
several cross-sectional and longitudinal studies, with or without body fat 
adjustment, report no associations between menopausal status and leptin levels 
(P. Gupta et al., 2008; Hong et al., 2007; Kanaley et al., 2001; C. G. Lee et al., 2009), 
although in separate studies both E2 and FSH have been proposed to associate 
positively with leptin levels (Di Carlo et al., 2002; Fungfuang et al., 2013; Geber 
et al., 2012; X. Liu et al., 2015; M. R. Sowers et al., 2008). Due to leptin’s well-
established role in fertility (reviewed in Mitchell et al., 2005), it seems that 
interaction between leptin and sex hormones is rather bi- than one directional. 
However, although E2 and FSH seem to play a role in leptin signaling, it is widely 
suggested that adipose tissue mass and its subcutaneous location is the main 
contributor to leptin levels in several populations (Ahtiainen et al., 2012; Rissanen 
et al., 1999; Sherk et al., 2011). 

Resistin has been found to associate with menopausal status in only one 
study (M. R. Sowers et al., 2008), while others have found no association 
(Chalvatzas et al., 2009; Hong et al., 2007). In the study by Sowers et al. (2008) 
resistin levels were found to decrease between pre- and postmenopause also 
when the models were adjusted for WC. The results from in vitro and animal 
models are also conflicting as some suggest up- and some downregulation of 
resistin by E2 and P4 (Caja & Puerta, 2007; Y.-H. Chen et al., 2006). Nevertheless, 
like leptin, resistin may also be a part of the signaling loop related to sex 
hormones (Messini et al., 2019). 
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TABLE 2  Review table of the most important longitudinal studies and their results rel-
evant to this thesis. The participant column describes the main baseline char-
acteristics and follow-up time.  

Study Participants + 
follow-up time 

Adiposity WC/ WHR Adi-
pokines 

Lean and 
muscle 
mass 

MWMHP 
(Guthrie et 
al., 1999) 

Age 46–57, pre- and peri-
menopausal, Australian-
born. 5-year follow-up. 

 N = 112 

Skinfold ↑ WC and 
WHR ↑ 

- - 

SWAN  
(M. Sowers et 

al., 2007) 
 

Age 42–52, pre- or early 
perimenopausal, African-
American and Caucasian. 
6-year follow-up, annual 
measurements. N = 130 

Total FM ↑ WC ↑ - Total mus-
cle mass ↓ 

HT  
(Lovejoy et 

al., 2008) 

Age 48>, pre- or peri-
menopausal, Caucasian 

and African-American. 4-
year follow-up with an-

nual measurements.  
N = 51 

Total FM, 
SAT and 
VAT ↑ 

- - Total LBM 
↔ 

(Franklin et 
al., 2009) 

Age 49, premenopausal, 
Caucasian, 8-year follow-

up. N = 8 

Total ab-
dominal fat, 

SAT and 
VAT↑, total 

FM and 
fat% ↔ 

WC ↔ - Total LBM 
↔ 

SMWHS  
(C. G. Lee et 

al., 2009) 

Age 45–55, premenopau-
sal, mainly Caucasian, in-

dividualized follow-up 
(~ 4.1 ± 1.4 years). N = 69 

SAT, intra-
abdominal 

fat and 
trunk 

 fat% ↑, 
total  

fat% ↔ 

- Adiponec-
tin ↑, 

leptin ↔ 

- 

MONET  
(Abdulnour 
et al., 2012) 

Age 47–55, premenopau-
sal, Caucasian, 5 -year 

follow-up, annual meas-
urements. N = 61 

Total FM 
and fat%, 
trunk FM, 

VAT and to-
tal ab-

dominal fat 
area ↑ 

WC ↔ - Total 
FFM↔ 

SWAN 
(Greendale et 

al., 2019) 

Age 42–52, premenopau-
sal, White, Black, His-
panic, Chinese or Japa-
nese, 16-year follow-up 
with annual measure-

ments. N = 1246 

Total FM 
and fat%↑ 

- - Total LBM 
and lean%↓ 

     continues 
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TABLE 2 continues     
Study Participants + 

follow-up time 
Adiposity WC/ WHR Adi-

pokines 
Lean and 
muscle 
mass 

HT 
(Marlatt et al., 

2020) 

Age ≥ 43, premenopau-
sal, White and Black, 7-
year follow-up with an-

nual measurements.  
N = 94 

Total FM 
and fat%, 
SAT and 
VAT ↑ 

WC↑ - Total 
FFM↔ 

SWAN 
(Greendale et 

al., 2021) 

Age 42–52, premenopau-
sal, White, Black or Japa-
nese, 17-year follow-up 
with annual measure-

ments. N = 390 

VAT, 
android FM, 

gynoid  
FM ↑ 

WC and 
HC↑ 

- - 

Oxford Bio-
bank 

(Dehghan et 
al., 2021) 

Age 44–48, premenopau-
sal, White. Follow-up 3–7 

years after baseline.  
N = 97 

Total, abdo-
minal and 

android FM, 
VAT, leg 

FM ↑ 

- - Total LBM 
and leg 

lean mass ↓ 

N=number of participants who became postmenopausal during the study. FFM, fat-free 
mass (lean mass + bone); FM, fat mass; HC, hip circumference; HT, Healthy Transitions; 
LBM, lean body mass; MONET, Montreal-Ottawa New Emerging Team group study; 
MWMHP, Melbourne Women’s Midlife Health Project; SAT, subcutaneous abdominal fat; 
SMWHS, Seattle Midlife Women’s Health Study; SWAN, Study of Women’s Health Across 
the Nation; VAT, visceral fat; WC, waist circumference; WHR, waist-to-hip ratio. ↑ in-
creased in postmenopause, ↓ decreased in postmenopause, ↔ no change between pre- and 
postmenopause. 

2.5.3 Changes in lean and muscle mass and skeletal muscle tissue during 
the menopausal transition 

Skeletal muscle is known to express ERs and PR (Ekenros et al., 2017; Pöllänen et 
al., 2007; Wiik et al., 2009), and thus can be regulated by the change in sex 
hormones during menopause. In skeletal muscle, E2 has been found to improve 
mitochondrial function (Torres et al., 2018), protect from apoptosis (La Colla et 
al., 2017; Vasconsuelo et al., 2008), and contribute to stem cell number and 
function (Baltgalvis et al., 2010; Collins et al., 2019; Enns & Tiidus, 2008; Larson 
et al., 2020), all effects contributing to muscle tissue energy expenditure, mass 
and repair. In addition, estrogen deficiency has been observed to decrease 
myofiber size (McCormick et al., 2004), induce a shift to faster fiber type (Kitajima 
& Ono, 2016), and cause dysfunction of myosin function and contractability 
(Moran et al., 2007). In myofibers, P4 has been found to increase mitochondrial 
hydrogen peroxide release and lower glucose oxidation, possibly contributing to 
also to insulin resistance (Gras et al., 2007; Kane et al., 2011). In vivo, progestogen 
supplement after OVX did not affect muscle protein content or force (Cabelka et 
al., 2019), whereas in humans, high progestogen supplementation increased the 
protein synthesis rate (Hansen et al., 2011; G. I. Smith et al., 2014). In muscle, 
although the expression of FSHR has not been reported, FSH has also been found 
to increase lipid biosynthesis and to promote the accumulation of intramuscular 
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fat (X. Cui et al., 2016). Serum FSH levels have also been negatively associated 
with LBM (Gourlay et al., 2012; Veldhuis-Vlug et al., 2021).  

While most studies report a menopause-related increase in body adiposity, 
the results for the simultaneous decrease in lean and muscle mass are more 
controversial. In cross-sectional studies, total LBM has been reported to be ~5–
10% lower in middle-aged postmenopausal than pre- or perimenopausal women 
(Abildgaard et al., 2013; Panotopoulos et al., 1996; Y.-M. Park et al., 2020; 
Sternfeld et al., 2005; Svendsen et al., 1995). The results of studies investigating 
regional changes in lean and muscle mass indicate decreases between 3 and 9% 
in the appendicular and leg region when transitioning from pre- to 
postmenopause (Panotopoulos et al., 1996; Y.-M. Park et al., 2020; Sipilä et al., 
2020). In longitudinal studies spanning several years around menopause, an 
association between lean and muscle mass and menopause has, surprisingly, 
been less frequently reported (Dehghan et al., 2021; Greendale et al., 2019; M. 
Sowers et al., 2007). In these studies, which have observed a change, the decrease 
in LBM has been ~1% over four to six years. Most of these studies have 
investigated LBM, while only one has investigated possible regional differences, 
although the significance of, in particular, leg muscles to physical functioning is 
vital. This study reported a significant decrease in leg LM of ~1% during a 5-year 
follow-up (Dehghan et al., 2021). Similarly in a 24-week ovarian suppression 
study of middle-aged premenopausal women, leg FFM was observed to decrease 
(Gavin et al., 2020). In addition to muscle mass, muscle quality as density was 
reported to decrease during menopause in one cross-sectional study (Pöllänen et 
al., 2011), while longitudinal studies are completely lacking. 

At a deeper level, little is known about the effects of menopause on 
myofibers in human skeletal muscle tissue. On the morphological level, no 
differences were observed in capillary density, fiber cross-sectional area, fiber 
distribution or calcium-induced contractability between pre- and 
postmenopausal women (Pérez-Gómez et al., 2021).  

2.5.4 Menopause and RNA signaling in muscle and adipose tissue 

In human skeletal muscle cells, E2 has been found to regulate the expression of 
energy metabolism and cell cycle-related genes (E. K. Laakkonen, Soliymani, et 
al., 2017) and in rodents, antioxidative gene, fat oxidation and mitochondrial 
biogenesis markers (Baltgalvis et al., 2010; Barbosa et al., 2016; Campbell et al., 
2003). In human muscle, systemic E2 levels associate with the mRNA expression 
of anabolic AR and catabolic Atrogin-1 (Pöllänen et al., 2007). Between pre- and 
postmenopausal women, the mRNA levels of MyoD, follistatin and FOXO3 are 
increased in postmenopausal women, and P4 treatment, but not E2, further 
increases MyoD expression (G. I. Smith et al., 2014). In a study of middle-aged 
pre-, peri- and postmenopausal women, no differences were found in gene 
expression pertaining to muscle fat oxidation properties (e.g., PPARα, PCG-1α 
and PDH4) (Abildgaard et al., 2013). At the protein level, postmenopausal E2 
levels have been shown to associate with signaling pathways related to, for 
example, cell death (E. K. Laakkonen, Soliymani, et al., 2017). An acute E2 
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treatment was also associated with a decrease in protein breakdown markers in 
early postmenopausal women, while in late postmenopausal women the effect 
was the opposite (Y.-M. Park et al., 2019). In mice, low systemic E2 levels have 
been associated with increased ESR1 mRNA levels in muscle (Baltgalvis et al., 
2010), but the same has not been observed in humans (Pöllänen et al., 2007). In 
the case of progestagens, P4 supplement after OVX reverses PPARα and PDK4 
mRNA levels in rodent skeletal muscle (Campbell et al., 2003).  

In human adipose tissue, postmenopausal status has been associated with 
lower expression of ERs and FAS, and, with depot-specific differences, increased 
PPARγ, HIF1α, IL-6, IL-18, MCP 1 and VEGF-A (Abildgaard et al., 2021; Ahmed 
et al., 2022; Y.-M. Park et al., 2017). E2 treatment has been observed to increase 
the expression of α-adrenergic receptor, ESR2 and to reduce the expression of 
genes related to fatty acid synthesis and PPARγ in human SAT (Ahmed et al., 
2022; Lundholm et al., 2008; Pedersen et al., 2004). In turn, FSH has been observed 
to increase the expression of lipogenic genes (e.g., FAS, LPL and PPARγ) in 
adipocytes (X. Liu et al., 2015). 

Certain miRNAs and lncRNAs have also been found responsive to 
menopause-related hormone levels. Among lncRNAs, there are to date rather 
few findings linking menopause to lncRNA expression. Most have focused on 
postmenopausal osteoporosis, although some results on healthy individuals are 
also available. In the only human study found, systemic SNHG1 levels were 
found to be downregulated in postmenopause when compared to 
premenopausal participants in a cross-sectional set-up, but when the 
postmenopausal women were followed for six years, no further decrease was 
observed (S. Huang et al., 2019). In mice, the effect of OVX was found to be the 
opposite to systemic SNHG1 (X. Yu et al., 2021). SNHG1 is a well-known cell 
proliferation inducer in many cancers and contributes to bone homeostasis (Thin 
et al., 2019; X. Yu et al., 2021). In mouse muscle, 12 weeks of OVX was associated 
with upregulation of eight and downregulation of five lncRNAs, which were 
found to regulate mRNAs associated with, for example, RNA transport, p53 
signaling pathway and fatty acid biosynthesis (Chai et al., 2019). Estrogen has 
been found to induce the upregulation of HOTAIR, LncRNA152 and H19, and 
downregulation of MALAT1 and LINC-ROR, although most of these data derive 
from cancer tissues outside muscle or adipose tissue (reviewed in Sedano et al., 
2020). Similarly, while P4 has been found to regulate NEAT1 in endometrial 
cancer cells (X. Huang et al., 2019), no data is currently available on skeletal 
muscle or adipose tissue. In the case of FSH, most of the recent literature has 
investigated the effects of lncRNAs on gonadotropin secretion rather than the 
effects of gonadotropins on lncRNA expression. Yet, in humans and in vitro, 
there is emerging evidence, that FSH associates with gonadal lncRNA expression 
(Hu et al., 2021; Li et al., 2021). Whether this also applies to other tissues 
expressing FSH receptors is not yet understood. 

In the case of miRNAs, in humans, systemic E2 levels have been found to 
associate with miR-142-3p, -146a, -182 and -223 in muscle (Kangas et al., 2014; 
Olivieri et al., 2014), with miR-19a-3p in adipose tissue (Kangas et al., 2018) and 
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with e.g., miR-21, -27b-3p, -30a-5p and -146a in serum (Kangas et al., 2014, 2017). 
Several of these miRNAs have been linked to regulation of insulin, FOXO and 
TGF-β signaling pathways and substrate use (Butz et al., 2012; Chemello et al., 
2019; Olivieri et al., 2014). In animals, associations of miR-27a-5p, -122-5p, -133a-
3p, -199a-3p and -483-3p measured from muscle have been found with systemic 
E2 levels (Karvinen et al., 2021; Martignani et al., 2019). These miRNAs have been 
shown to, e.g., target the apoptotic pathway, and to regulate proliferation and 
metabolism (Chemello et al., 2019; J.-F. Chen et al., 2006; Karvinen et al., 2021). In 
human tissues other than serum, muscle or adipose tissue, P4 has been associated 
with the expression of, for example, miR-20, -21, -26a, -29, -453-3p and let-7i 
(reviewed in Cochrane et al., 2012). Recently, more miRNAs have been reported 
to participate in P4 signaling pathways (Nothnick, 2022), but no such information 
has been reported for skeletal muscle or adipose tissue. In addition, the effects of 
FSH on miRNA expression in muscle or adipose tissue remain unknown. 

2.6 Lifestyle habits as contributors to body composition during 
menopause 

2.6.1 Physical activity and menopause 

The associations between PA, body composition, skeletal muscle tissue and 
metabolic health during menopause have been explored in only in a handful of 
studies. Even fewer results based on longitudinal data have been reported. In 
animals, spontaneous PA decreases after ovariectomy (Cabelka et al., 2019; 
Gorzek et al., 2007). Results on PA changes in humans during the menopausal 
transition vary across studies. For example, a study of 51 women reported a two-
fold decrease in PA around the FMP (Lovejoy et al., 2008), while another study 
reported a small increase at around the same time (Do et al., 2000). In three other 
studies, no change was observed (Franklin et al., 2009; Gould et al., 2022; Guérin 
et al., 2019). The possible factors impacting midlife PA level have been concluded 
to include severeness and type of menopausal symptoms, possible muscle and 
joint pain, time pressures at work and possible care of grandchildren (Grindler 
& Santoro, 2015; McArthur et al., 2014).  

The effectiveness of PA on improving body composition, skeletal muscle 
tissue properties and metabolic health during the menopausal transition has 
mostly been studied in cross-sectional designs or in postmenopausal women 
only. While both the cross-sectional and few longitudinal studies existing have 
reported an association between higher PA level and leaner body composition 
(Dugan et al., 2010; Kanaley et al., 2001; Sternfeld et al., 2004, 2005), PA alone has 
not been able to completely prevent weight gain and adipose tissue accumulation 
during the menopausal transition (Abdulnour et al., 2012; Brown et al., 2005; 
Wing et al., 1991). In a large study of postmenopausal women with a six-year 
follow-up, higher PA level (+1200 MET-mins/week ~ 1h walk (3 MET) per day) 
was only associated with a lower increase in FM and BMI in women aged 50 to 
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59, whereas in the older age groups FM decreased irrespective of the amount of 
PA (Sims et al., 2013). In the same study, the researchers found no association 
with the change in LBM and PA. In another study of Brazilian postmenopausal 
women (aged 45–65 years), frequent resistance exercise ≥ 3 times per week was 
found to be beneficial for lower adiposity, but not, surprisingly, for LM variables 
(Magalhães et al., 2022). PA has, however, been found to improve blood lipid 
levels and reduce blood pressure and IL-6 levels in middle-aged women 
(Gudmundsdottir et al., 2013; Pérez-López et al., 2022; L. Wu et al., 2014). 
Intervention studies have found that weekly aerobic exercise and high intensity 
training following the MVPA recommendations are beneficial for fat loss, 
especially in total and abdominal fat, and improve cardiovascular function in 
both pre- and postmenopausal women (Cebula et al., 2020; Dupuit, Maillard, et 
al., 2020; Dupuit, Rance, et al., 2020; Friedenreich et al., 2010). Despite this, it 
seems that, overall energy expenditure rather than intensity may be more 
determining to the amount of fat loss (La New & Borer, 2022). For gaining muscle 
mass and improving the adipokine profile in mid-age, resistance exercise has 
been found especially effective (Dupuit, Rance, et al., 2020; Son et al., 2020; Ward 
et al., 2020). Thus both aerobic and resistance exercise are effective in improving 
the body composition and metabolic health of women, including those in midlife, 
although they may not be able to completely counteract the changes caused by 
hormonal aging and also naturally individual differences in responses occur 
(Orsatti et al., 2022). Moreover, results from animal studies suggest that PA is a 
much stronger contributor to metabolic health than HT (S. B. Silva et al., 2022).  

2.6.2 Diet quality and menopause 

The associations between diet quality and menopause are sparsely studied. 
Cross-sectional studies report both no change (Gould et al., 2022), and increased 
diet quality after the menopausal transition (García-Arenzana et al., 2012; Massé 
et al., 2004). Longitudinal results on the changes in total diet quality during the 
menopausal transition have not been published, although some groups have 
reported results for individual nutrient groups or in relation to metabolic health 
or physical functioning (Guthrie et al., 2000; Tomey et al., 2008; D. Wang et al., 
2020).  

The dietary needs for optimal health in menopause-aged women have 
recently been reviewed (T. R. Silva et al., 2021). While the conclusions drawn do 
not greatly differ from the WHO recommendations, they highlight certain 
aspects. For aging women, protein intake is especially crucial for muscle mass. In 
observational studies, daily intakes between 1.2 and 1.6 grams of protein/kg of 
body weight were found to associate with a lower risk of frailty, higher skeletal 
muscle mass index and better physical function (T. R. Silva et al., 2021). However, 
in a randomized controlled weight loss study, no additional benefit for the 
maintenance of FFM was observed with a high protein diet (1.5g/kg weight) 
compared to recommendations (0.8g/kg weight) (Englert et al., 2021). Besides 
protein intake, the Mediterranean diet, consisting of whole-grain cereals, pulses, 
soft vegetable oils and nuts, fruits, fish and lesser amounts of red meat and 
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sweetened beverages has been found to be beneficial for BMI, WC and total and 
waist adiposity in menopausal women (Flor-Alemany et al., 2020). The 
Mediterranean diet includes plenty of dietary antioxidants such as beta-carotene, 
magnesium and vitamins C, D and E, which may protect cells from oxidative 
stress and improve energy metabolism (T. R. Silva et al., 2021). The 
Mediterranean diet with modest caloric reduction and even without exercise has 
been shown to beneficial for decreasing adiposity and metabolic health indicators 
around menopause (Lombardo et al., 2020). Studies investigating separate food 
groups have also found that fruit, rich chocolate and high calcium intake and 
coffee consumption are beneficial for lean and bone mass and lower adiposity in 
middle-aged women (Bae, 2020; Bredariol et al., 2020; Garcia-Yu et al., 2021; 
Yonekura et al., 2020). Overall, a low-energy, low-fat diet with fiber-rich 
carbohydrates and adequate amounts of protein, calcium, vitamin D and 
antioxidants seem to offer middle-aged women the greatest health benefits (T. R. 
Silva et al., 2021).  In addition, a 12-month intervention study in which the study 
group received both diet and PA guidance showed clear benefits for body 
composition and cardiovascular risk factors during menopause (L. Wu et al., 
2014).  

2.6.3 Menopausal hormone therapy 

In observational studies, the long term use of estrogen- or tibolone-based HT has 
been associated with a lower body fat percentage and WC (Ahtiainen et al., 2012; 
Perrone et al., 1999), whereas intervention studies of at least 12 months in 
duration have found HT to reduce, but not to completely prevent, adipose tissue 
accumulation on both the total body and thigh level compared to controls (S. R. 
Davis et al., 2000; Kristensen et al., 1999; Sipilä et al., 2001). In an earlier meta-
analysis, HT use was found to be associated with reduced WC and abdominal fat 
percentage (Salpeter et al., 2006). In a more recent meta-analysis, subgroup 
analysis revealed that although HT use was associated with a higher body fat 
percentage, it was also associated with a lower trunk fat percentage, possibly 
indicating a protective role of HT, especially for the harmful waist adiposity 
(Ambikairajah et al., 2019). Thus, it seems that while estrogen-containing HT use 
does not completely prevent FM gain, it attenuates it, especially in the waist 
region. These observations suggest that, in addition to ovarian hormone loss, 
increasing adiposity is also related to aging changes and lifestyle habits, such as 
diet and the level of PA. Studies investigating the use of progestogen-only 
preparations during the menopausal transition are scarce, although the few that 
exist indicate that, depending on the administration method, progestogen use 
may also have an effect on body adiposity. In perimenopausal women, 12 months 
of cyclical progestogen use was associated with a decrease in body FM, whereas 
continuous progestogen use was seen to increase FM and WC compared to 
controls (Cagnacci et al., 2006; Napolitano et al., 2016). Therefore, as estrogen and 
progestogen alone may affect body composition on opposite ways, the choice of 
specific HT preparation may have a critical effect on changes in the user’s 
adiposity. 
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For muscle mass, the effects of exogenous hormone use are also conflicting. 
Long term HT use has been associated with higher relative thigh muscle area 
(Ronkainen et al., 2009) and in a randomized placebo-controlled study, the use of 
estrogen-containing HT for 12 months was associated with an increase in 
quadriceps muscle area in postmenopausal women (Sipilä et al., 2001). Another 
study comparing E2 and E2 + T found, that in postmenopausal women only E2 
+ T treatment for two years was beneficial for increasing FFM (S. R. Davis et al., 
2000). Two large meta-analyses have been conducted on the effects of HT on 
muscle mass. The earlier analysis found HT use to increase LBM, while the more 
recent one, by Javed et al. (2019), found estrogen-containing HT to slightly 
decrease the amount of lost LBM compared to non-users, but the association 
failed to reach significance (Javed et al., 2019; Salpeter et al., 2006). Thus, while 
estrogen alone might not have especially strong effects on muscle mass during 
menopause, its anabolic effects seem to be highlighted when combined with PA 
(Dam et al., 2020; Sipilä et al., 2001). In addition, although a recent meta-analysis 
reported that HT does not further improve muscle strength when compared to 
non-HT users in controlled trials (Xu et al., 2020), an earlier larger meta-analysis 
(Greising et al., 2009) and studies outside these meta-analyses have reported a 
connection between HT use and improved strength and functional capacity 
(Dam et al., 2020; Ronkainen et al., 2009). In turn, the use of estrogen-based HT 
has been found to associate with higher muscle attenuation (Taaffe et al., 2005), 
maximum voluntary contraction per unit (Onambele-Pearson et al., 2021) and 
involuntary force-generation (Finni et al., 2011). One study found that tibolone, 
but not estrogen, was associated with muscle attenuation (Ronkainen et al., 2009). 
On the cellular level, in a study of postmenopausal twins, while HT use was not 
associated with fiber size or composition, it was associated with more beneficial 
contractability properties and myonuclei organization (Qaisar et al., 2013; 
Widrick et al., 2003).  

In addition to body composition, cardiovascular health and systemic 
metabolic health indicators are also affected by HT use. The use of both estrogen-
only and combined HT use has previously been associated with lower 
adiponectin levels (Im et al., 2006; Kunnari et al., 2008). HT use has also been 
associated with lower leptin levels, but only before adjusting for FM (Gower et 
al., 2000; Kristensen et al., 1999). In a study of HT-discordant twins, no difference 
was observed in adiponectin and leptin levels between the sisters, even before 
adjusting for FM (Ahtiainen et al., 2012). Interestingly, in another study, six 
months of HT use was reported to increase leptin levels, although the results 
were not adjusted for FM (Konukoglu et al., 2000). For resistin, in turn, no effect 
of HT use has been reported (Kunnari et al., 2008). Postmenopausal HT has been 
shown to be associated with lower levels of total and non-HDL cholesterol, 
higher HDL levels, better blood glucose management and lower risk for type II 
diabetes (Crespo et al., 2002; Pentti et al., 2009; Salpeter et al., 2006). Overall, the 
initiation of HT, after menopause, especially in the early stage, decreases the 
mortality risk of cardiovascular diseases (Savolainen-Peltonen et al., 2016).  
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Although HT seems to possess several beneficial health outcomes it also 
presents risks. For example, increased breast cancer risk was associated with all 
HT use in the Million Women Study (Beral & Million Women Study 
Collaborators, 2003). The risk-increasing agent has since been pinpointed to 
synthetic progestogens (Vinogradova et al., 2020). In fact, a recent follow-up 
study from Women’s Health Initiative, with nearly 30 000 women found that 
conjugated estrogen use was associated with a lower incidence of breast cancer 
and related mortality (Chlebowski et al., 2020). Similar results on overall HT use 
have also been observed in other cohorts (Mikkola et al., 2016). Furthermore, it 
seems that the route of administration affects the observed responses and risks. 
For example, transdermal preparations are associated with a lower risk for 
thrombosis, whereas oral preparations have been associated with a higher risk 
for thromboembolic events and increases in systemic HDL and triglyceride levels. 
The use of synthetic progestogens and >10 years of HT use in women over 60 has 
also been associated with increased risks (S. R. Davis & Baber, 2022; Vigneswaran 
& Hamoda, 2022). 
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3 AIMS OF THE STUDY 

The aim of this study was to determine the associations between the menopausal 
transition and changes in body adiposity, metabolic health parameters, lean and 
muscle mass, skeletal muscle cellular properties and gene expression. In addition, 
the associations of physical activity, diet quality and exogenous hormone use 
with the abovementioned parameters were evaluated. The associations were in-
vestigated by using longitudinal data from a Finnish cohort of middle-aged 
women. 

 
The specific aims of this thesis were:  

1. To investigate the changes in body adiposity measures, systemic 
adipokines and lean and muscle mass during the menopausal 
transition (Papers I, II and III) 

 
Hypothesis: Body adiposity will increase, particularly in the android 
region. Waist circumference and waist-to-hip-ratio will increase. 
Serum adiponectin will decrease and leptin and resistin levels will 
increase. Lean and muscle mass will decrease during the 
menopausal transition.  
 

2. To investigate structural changes and changes in RNA expression in 
skeletal muscle fibers during the menopausal transition (Papers I, III 
and IV) 

 
Hypothesis: During menopausal transition, muscle fiber cross-
sectional area will decrease, and more lipid droplets will be 
accumulated inside the fibers. Oxidative and glycolytic enzyme 
activities will decrease. Changes in skeletal muscle RNA expression 
will be associated with the hypothesized increase in body adiposity 
and decrease in lean and muscle mass.  
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3. To investigate the associations between lifestyle habits (physical 
activity, diet quality and exogenous hormone use) and body 
adiposity, lean and muscle mass and RNA expression during the 
menopausal transition (Papers I-IV) 

 
Hypothesis: Higher physical activity, healthier diet quality and 
exogenous hormone use will be associated with lower adiposity and 
higher lean and muscle mass. Waist circumference and waist-to-hip-
ratio will be negatively associated with higher physical activity. 
Serum leptin and resistin levels will be negatively and adiponectin 
levels positively associated with physical activity. Physical activity 
will be associated with muscle RNA transcriptome.  
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4 METHODS 

4.1 Study design and participants 

This doctoral thesis includes four sub-studies (Papers I-IV), resulting in four 
original publications (listed on page 8). Data for all four substudies were drawn 
from the ERMA (Estrogenic Regulation of Muscle Apoptosis) and EsmiRs 
(Estrogen, MicroRNAs and the Risk of Metabolic Dysfunction)-studies (Figure 4) 
(E. Laakkonen et al., 2022). In 2015, a total of 6 878 women aged 47 to 55 years 
and resident in the Jyväskylä area were invited by letter to take part in the ERMA-
baseline assessments. The women were reached using contact information from 
the Population Register Center (82% of the whole cohort). In total 3 229 women 
responded and 3 064 women returned the prequestionnaires. An invitation to the 
first laboratory visit for menopausal assignment was sent to 1 627 women. 
Exclusion criteria for the first measurements included conditions or medications 
affecting ovarian function, muscle function, obesity or systemic inflammation 
status, and thus potentially also the molecular mechanisms of interest, such as 
use of estrogen-containing medication during the previous three months, 
pregnancy or lactation, self-reported BMI > 35 kg/m2 and musculoskeletal 
conditions affecting everyday physical functioning (Kovanen et al., 2018). 
Altogether, the menopausal statuses of 1 393 women were assigned for baseline 
measurements using the modified STRAW +10 guidelines (Harlow et al., 2012). 
Based on their FSH levels and self-reported menstrual data for the preceding six 
to twelve months, 389 women were categorized as premenopausal, 323 as early 
perimenopausal, 242 as late perimenopausal and 530 as postmenopausal. After 
menopausal status assignment, participants with conditions potentially affecting 
their daily mental or physical function or systemic hormone or inflammatory 
status, such as insulin-treated diabetes, cortisone-medicated conditions, cancer 
diagnosed less than five years previously or severe gastrointestinal disease or 
mental illness, were excluded. After exclusions, a laboratory visit with 
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physiological measurements and a thorough medical examination was 
conducted for 1 158 participants. Based on the exclusion criteria, to ensure safe 
participation in the physiological measurements and willingness to participate in 
all the measurements, another 235 participants were excluded, and nine 
participants withdrew, yielding a baseline sample of N = 914. Of them, 234 were 
premenopausal, 183 were early perimenopausal, 198 were late perimenopausal 
and 299 were postmenopausal. 

Altogether 381 participants in the perimenopausal group entered the 
ERMA longitudinal study, during which the women’s menopausal transition 
was followed individually with a laboratory visit every three to six months. 
Three premenopausal women, whose menopausal status had originally been 
assigned as perimenopausal, but later recategorized as premenopausal, were also 
included. During each laboratory visit, serum FSH levels and menstrual diary 
markings were checked. After two consecutively risen FSH values and 
approximately six months without menstrual bleeding, the woman was deemed 
early postmenopausal and was invited to the final follow-up measurements. 
Women who started using HT during the follow-up, were invited to the final 
follow-up measurements six months after hormone use had started. Six months 
was considered a sufficient time for HT to manifest its potential effects on body 
composition and skeletal muscle properties. During the follow-up, three 
participants were excluded due to inconsistent HT use, 29 discontinued, 69 did 
not reach postmenopause, 48 had unclear menopausal status at study end and 
one person died. Altogether 234 participants transitioned to early 
postmenopause before the end of 2018 when the data collection was ended. This 
study is from now on referred as the short-term follow-up (Figure 4). 

EsmiRs longitudinal study was a 4-year follow-up study from the ERMA 
baseline. Data for EsmiRs was collected between 2018 and 2020. Invitations to 
participate in the EsmiRs study were sent to 811 women who had consented to 
be contacted with new research participation invitations at the ERMA baseline. 
Altogether 494 participants returned the 4-year follow-up questionnaires. Of 
these, 46 were excluded due to being more than seven years since menopause, 
two due to insulin-treated diabetes, and eight due to cancer or severe cardiac 
dysfunction. A further 41 participants were not willing to continue to 
physiological measurements or did not consent, and 99 participants could not be 
measured owing to COVID-19 restrictions. Thus, a final of 298 women visited the 
laboratory for a repeat of all the ERMA baseline physiological measurements. 
This study is henceforth referred as the long-term follow-up (Figure 4).  

Participant inclusions for Papers I–IV of this thesis are presented in Figure 
4. Paper I included participants from both the short-term (n = 230) and those from 
the long-term follow-up, who transitioned from pre- or perimenopause to 
postmenopause (n = 148). From the total short-term population (n = 234), four 
participants were afterwards excluded due to reported cancer. Of the short-term 
follow-up participants, 62 were re-measured in the long-term follow-up 
measurements (n = 60 for body composition). Thus, for these women three 
measurement points around menopause (peri-, early postmenopause and later 
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postmenopause) were available. Paper II comprised participants from the long-
term follow-up. These women are the same individuals as those in the long-term 
follow-up in Paper I with the addition of one participant with reassigned 
menopausal status. Participants in Paper III were from the short-term follow-up 
and included all the participants from Paper I and four additional participants 
who were not excluded from this substudy. In Paper IV, all participants were 
from the short-term follow-up and, based on their baseline menopausal status, 
divided into two groups: early menopausal transition (EarlyMT, n = 8) and late 
menopausal transition (LateMT, n = 17). 

 

 

FIGURE 4  Study flow of the short- and long-term follow-up studies and descriptions of 
the designs of Papers I-IV. ERMA, Estrogenic Regulation of Muscle Apopto-
sis; EsmiRs, Estrogen, MicroRNAs and the Risk of Metabolic Dysfunction.  
# Participants who continued from the short-term to long-term follow-up. Fig-
ure created with Biorender.com. 
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4.2 Ethics 

The studies were approved by the ethical committee of the Central Finland 
Health Care District (ERMA 8U/2014 and EsmiRs 9U/2018). All participants 
gave their written informed consent and were informed on the potential risks 
and personal benefits of the study. Risks presented included minor pain from 
venepuncture, radiation dose from DXA and CT, and pain and discomfort from 
muscle biopsy. Participants were not offered any financial benefits outside 
possible traveling costs, and they were informed that withdrawing from the 
measurements and discontinuation was possible at any stage of the study. The 
study was conducted in accordance with the Declaration of Helsinki.  

4.3 Measurements 

Summary of the used variables and statistics in Papers I-IV are presented in Table 
3.  

TABLE 3 Summary table of the methods used in the main analyses. 

Method Paper I 
“Adiposity” 

Paper II 
“Metabolic health 
indicators” 

Paper III 
“Lean and muscle 
mass” 

Paper IV 
“Muscle RNA 
signaling” 

Body 
anthropometrics 
and composition 

• Total FM 
• Total fat% 
• Trunk FM 
• Android FM 
• Gynoid FM 
• Gluteofemoral FM 
• Gluteofemoral fat% 
• Leg FM 
• Android-to-gynoid 

ratio 
• Mid-thigh SAT area 
• Muscle compartment 

AT area 
• Muscle density 

• Total FM 
• Android FM 
• Waist 

circumference 
• Waist-to-hip ratio 

• LBM 
• LBMI 
• ALM 
• ALMI 
• Leg LM 
• Absolute muscle 

area 
• Relative muscle 

area 

• LBM 
• ALM 
• Total FM 
• Android FM 
• Gynoid FM 
• Gluteofemoral FM 
• Leg FM 
• Absolute muscle 

area 
• Mid-thigh SAT 
• Muscle density 

Serum analysis • Adiponectin 
• Leptin 
• Resistin  

- - - 

Muscle biopsy 
analysis 

• Fiber type 
• Lipid accumulation 

index 
• Lipid droplet area 
• Oxidative and 

glycolytic capacity 

- • Fiber type 
• Fiber area  
 

• DE-, over-
representation and 
interaction analysis 
of mRNA, lncRNA 
and miRNA 

    continues 
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TABLE 3 continues    
Method Paper I 

“Adiposity” 
Paper II 
“Metabolic health 
indicators” 

Paper III 
“Lean and muscle 
mass” 

Paper IV 
“Muscle RNA 
signaling” 

Lifestyle habits Physical activity 
• SR-PA 
• ACC-PA 
DQS 
Exogenous  
hormone use: 
• 4-class variable at all 

measurement points 

Physical activity 
• ACC-PA 
•  SR-PA 
Exogenous 
hormone use: 
• 4-class variable at 

both measurement 
points 

Physical activity  
• SR-PA 
• ACC-PA 
Exogenous 
hormone use: 
• Baseline 

progestogen use 
• Duration of HT 

use 

Physical activity  
• ACC-PA 
• SR-PA 
No exogenous 
hormone users 
included 
 

Main statistics • Linear mixed model 
• Spearman 

correlations 

• Linear mixed 
model 

• Paired t-test and 
Wilcoxon rank 
test 

• Generalized 
estimating 
equations  

• Spearman 
correlations 

• DESeq2 
 

ACC-PA, accelerometer-measured physical activity; ALM, appendicular lean mass; ALMI, 
appendicular lean mass index; AT, adipose tissue; DE, differential expression; DQS, diet 
quality score; FM, fat mass; HT, menopausal hormone therapy; LBM, lean body mass; 
LBMI, lean body mass index; LM, lean mass; SAT, subcutaneous adipose tissue; SR-PA, 
self-reported physical activity 

4.3.1 Body anthropometrics (I-IV) 

Body mass was measured with a digital scale and body height with a stadiometer. 
WC was measured midway between the superior iliac spine and the lower rib 
margin, and HC at the level of the greater trochanters (Snijder et al., 2003). WHR 
was calculated by dividing WC by HC. All measurements were done in a fasted 
state and in light underwear. 

4.3.2 Body composition (I-IV) 

Fat mass. For the total and regional FM analyses, total, trunk, gynoid, android, 
gluteofemoral and right leg FM, and total and gluteofemoral fat percentages were 
measured with DXA (LUNAR Prodigy, GE Healthcare, Chicago, IL, USA). The 
gluteofemoral area was outlined manually using the iliac crest line as the upper 
limit and the knee joint as the lower limit of a rectangle (Peppa et al., 2013). The 
android-to-gynoid-ratio was calculated by dividing android FM (kg) by gynoid 
FM (kg). All measurements were done after overnight fasting. To accompany the 
leg DXA scans, the right mid-thigh was scanned at the level of the muscle biopsy 
with a qCT (Siemens Somatom Emotion scanner, Siemens, Erlangen, Germany) 
from those women, who at baseline did not use progestogen preparations or had 
conditions affecting natural menstrual bleeding pattern. From the cross-sectional 
image, the muscle and adipose tissue areas were separated from the femur using 
a machine learning algorithm or manually if needed. For the mid-thigh fat area, 
the areas of subcutaneous and muscle compartment adipose tissue were 
measured using appropriate thresholds in Python Software (version 3.6). Muscle 
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density was calculated and expressed using Hounsfield Units (HU). Images were 
analyzed using ImageJ software (v.1.52, NIH, USA) and Python. 
 
Lean and muscle mass. For the total and regional lean mass and muscle area 
analysis, the variables of LBM, ALM (summed lean mass of arms and legs) and 
LM of the right leg were measured with DXA. The LBM index (LBMI) was 
calculated by dividing LBM (kg) by height squared (m2). The ALM index (ALMI) 
was calculated by dividing ALM (kg) by height squared (m2). Mid-thigh muscle 
area was measured using the same CT scans as for the adipose tissue area 
analysis and the muscle area inside the muscle fascia was measured.  

4.3.3 Lifestyle habits (I-IV) 

Physical activity. PA was evaluated with a structured questionnaire (Kujala et al., 
1998) and hip-worn accelerometer (E. K. Laakkonen, Kulmala, et al., 2017). The 
questionnaire included four questions on the frequency, intensity and duration 
of leisure time PA bouts and the average time spent in active commuting in a 
normal everyday life. Based on the answers, metabolic equivalent of a task (MET) 
hours per day for leisure-time PA were calculated. These values were used for 
analysis in Papers I, III and IV, and for reporting participant characteristics also 
in Paper II. Device-measured PA was assessed with seven consecutive days of 
accelerometer wear (ActiGraph GT3X+ or wGT3X+, Pensacola, FL, USA). The 
amount of time spent at different PA intensities was evaluated using triaxial 
vector magnitude cutoff points for light, moderate and vigorous PA (E. K. 
Laakkonen, Kulmala, et al., 2017; Sasaki et al., 2011) in Papers I, III and IV and for 
reporting participant characteristics also in Paper II. Average minutes of summed 
MVPA were adjusted to 16 hours of daily wear time, including both work and 
leisure time. For Papers II and IV, PA level was also assessed using mean 
amplitude deviations (MAD) from the accelerometer data. MAD reflects the 
directly measured acceleration in the X, Y and Z directions and captures activity 
volume across the whole intensity range. MAD values have been validated 
against oxygen consumption (Vähä-Ypyä et al., 2015). For analysis, mean MAD 
values for five second epochs per measurement period were calculated. 
 
Diet quality. Diet quality was assessed using a food frequency questionnaire and 
quantified using a diet quality score (DQS). The food-frequency questionnaire 
listed 45 typical food items of the Finnish food culture and 6 response options. 
The DQS was calculated based on 11 components that are characteristic of a 
healthy diet, as described in the Nordic Nutrition Recommendations 2012 (The 
Nordic Council of Ministers, 2014). Regular use of vegetables, fruits, berries, dark 
or crispbread, low-fat dairy, fish, nuts, and seeds was considered beneficial. 
Moreover, limited intake of refined baked products, processed meats and grain 
products, sugar-sweetened beverages, fast food, and sweet or salty snacks was 
also favored. Each component was scored 0 or 1, and the maximum possible score 
was 11 points. A higher DQS score indicated a healthier diet. DQS used was 
based on previously validated DQS (Masip et al., 2019).  
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Use of exogenous hormones. Exogenous hormone use was evaluated based on self-
reports and when necessary, complemented with nurse’s interview. Participants 
were categorized as non-users, progestogen-only users, estrogen-only users or 
progestogen and estrogen users. Hormone preparations including estrogen or 
progestogen for contraceptive and HT use, such as pills, intra-uterine device, 
patches, and transdermal gels were included. Intravaginal estrogen therapies, 
such as creams or tablets, were not considered as HT due to their mainly local 
effects. Participant bleeding status was evaluated using data from questionnaires 
and nurse’s interviews. After hysterectomy, and often during the use of 
progestogen preparations, menstrual bleeding does not occur and thus 
determination of the length and regularity of the normal menstrual cycle is 
complicated, which also affects the exact determination of menopausal status. 
Women with an intact uterus and no regular use of progestogen-based 
preparations, including an intra-uterine device, were regarded as having natural 
bleeding status. At the follow-up measurements, all participants reporting the 
use of estrogen and/or progestogen irrespective of hysterectomy status were 
regarded as hormone users. 

4.3.4 Background variables (I-IV) 

The background lifestyle habits of smoking and use of alcohol were assessed with 
questionnaires. Smoking was categorized as current smoker or non-smoker. 
Weekly alcohol use was reported as units per week, in which one unit 
corresponds to one 33cl bottle of regular beer or cider, 12cl of wine or 4cl of strong 
spirits (12 grams of alcohol). Educational level was obtained from questionnaires 
and categorized as primary (primary school classes from 1–10), secondary (upper 
secondary school or post-secondary vocational college diploma) and tertiary 
(polytechnic or university degree).  

4.3.5 Acquisition of biological samples (I-IV) 

Blood. Fasted blood samples were taken from an antecubital vein in the supine 
position between 7–10 a.m. At baseline, participants were asked to visit the 
laboratory during menstrual cycle days 1–5 if the cycle was predictable. Serum 
was incubated for 15–30 minutes and centrifuged for 10 minutes at 2700 x g. 
Samples for E2 and FSH were stored at -20°C before analysis. Samples for 
adipokine analysis were stored at -80 °C before analysis.  
 
Muscle biopsy. Muscle biopsies were collected from a subpopulation of women 
who did not use any type of hormonal contraception or HT and had natural 
bleeding status at baseline. Biopsies were taken from the middle portion of the 
m. vastus lateralis using a modified Bergström needle technique under local 
anesthesia. All visible connective and adipose tissue was removed, and the 
sample was quickly divided into three parts. The parts for protein and RNA 
analysis were snap-frozen in liquid nitrogen. The third part was embedded 
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transversely on a cork with TissueTek on the base and frozen in isopentane 
cooled in liquid nitrogen. All samples were stored at -150 °C until analysis. 

4.3.6 Hormone assessments (I-IV) 

Hormones. Serum E2 and FSH were measured with IMMULITE 2000 XPi (Siemens 
Healthineers, Erlangen, Germany). E2 analysis kit’s lower limit of quantification 
(LLQ) was 0.073 nmol/L and intra-assay coefficient of variation (%CV) 6.7 and 
inter-assay %CV 9.7. For FSH kit, LLQ was 0.1 IU/L, intra-assay %CV was 3.4 
and inter-assay %CV 5.4. For the serum adipokine analysis (Paper I) leptin, 
adiponectin and resistin levels were measured with a Quansys Multiplex-kit 
(custom kits HCUM190820-ID and HA2M200303-ID, Quansys Biosciences, Utah, 
US) according to the manufacturer’s instructions. Each sample was measured in 
singlets. LLQ was custom kit lot specific and varied for adiponectin between 44–
140 ng/ml, for leptin 0.25–0.65 ng/ml and for resistin 33.4–44.8 pg/ml. Measured 
mean intra- and inter-assay %CV for adiponectin were 5.6 and 15.8, for leptin 3.5 
and 24.6, and for resistin 3.8 and 18.0, respectively. Inter-assay variation was 
taken into consideration using normalization based on three reference samples 
in all plates. 

4.3.7 Muscle tissue histology (I, III) 

Immunohistochemistry and lipid droplet staining (Paper I). Reagents used for staining 
are listed in detail in Supplemental Table 1 and referred in the text as 
superscripted numbers. In Paper I, the aim was to investigate fiber type-specific 
characteristics in lipid accumulation and enzyme content. Transverse, 10 µm 
sections were cut with a cryostat, airdried and fixed in 4% paraformaldehyde 
(PFA). The samples were then incubated with 100 mM glycine and blocked in 5% 
goat serum (GS). Primary and secondary antibodies were added in 5% GS. MHC 
distribution was analyzed with primary antibodies against type I1 (2 µg/ml) and 
type IIX2 (5 µg/ml). Anti-laminin3 (1:250) was used to detect myofiber plasma 
membrane. Primary antibodies were incubated at +4 °C overnight and 
attachment was visualized with fluorescent secondary antibodies 4, 5, 6 (all 1:500). 
To stain neutral lipids, LD5407 (0.1 µg/ml) was incubated on sections for 20 
minutes at room temperature. After thorough washing with phosphate-buffered 
saline (PBS), sections were mounted with Mowiol-Dabco and imaged with 
confocal microscopy. For image analysis, the laminin signal was enhanced, and 
broken cells were excluded in ImageJ with the Trainable Weka Segmentation 
plugin and later by human inspection. Cell segmentation and the measurement 
of the lipid droplet (LD) area, number and area fraction were performed as 
previously reported (Fachada et al., 2022). A lipid accumulation index (LAI) for 
each fiber type was calculated as 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑑𝑑𝑡𝑡𝑙𝑙𝑡𝑡𝑚𝑚𝑡𝑡 𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 𝑙𝑙𝑚𝑚 𝑓𝑓𝑙𝑙𝑓𝑓𝑚𝑚𝑑𝑑𝑓𝑓

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑙𝑙𝑓𝑓𝑚𝑚𝑑𝑑 𝑓𝑓𝑙𝑙𝑠𝑠𝑚𝑚 
𝑥𝑥 100 

(Goodpaster, Theriault, et al., 2000). 
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Enzyme histology (Paper I). For the m. vastus lateralis enzyme quantification 
analysis, serial 12 µm transverse sections were cut. Enzyme activities of SDH and 
GPD were measured with histological staining. The SDH incubation medium 
consisted of 1mg/ml NBT8 and 27mg/ml sodium succinate9 in 0.2M phosphate 
buffer, pH 7.4. Sections were incubated in prewarmed solution for 90 minutes at 
+37.2 °C, washed with MQ-water and mounted with Mowiol. The GPD medium 
consisted of 1.2mM NBT8, 2.3mM menadione10 and 9.3mM alfa-
glycerophosphate11 in 0.05M Tris-Buffer, pH 7.4. Sections were incubated in 
prewarmed solution for 40 minutes at +37.2°C, rinsed with tap water and cleared 
with acetone series. Lastly, sections were rinsed with MQ-H2O and mounted 
with Mowiol. Samples were imaged with an Olympus BX50 (10x/0.30) (Olympus, 
Tokyo, Japan). In ImageJ (v. 1.53c), images were transformed into an 8-bit 
greyscale format. A minimum of 55 cells per sample was manually cropped, and 
mean grey value was calculated. Enzyme staining was paired with MHC-
staining with serial sections. First, sections were airdried and blocked in 10% GS. 
Primary and secondary antibodies were added in 10% GS. The fiber types were 
analyzed with antibodies against type I1 (2 µg/ml) and type II12 (2 µg/ml) fibers. 
Anti-laminin3 was used to detect fiber borders. Sections were incubated in 
primary antibodies at room temperature for 1 hour, washed with PBS and 
incubated with secondary antibodies 6,13 (both 1:500) at room temperature for 1 
hour. After PBS washing, sections were mounted with Mowiol-Dabco. Images 
were analyzed with ImageJ. Corresponding fibers were localized manually 
between histological and immunohistological images. 
 
Myofiber type distribution and area measurement (Paper III). To study skeletal muscle 
fiber distribution and single fiber area, 10 µm serial transverse sections were cut, 
air dried and fixed in 4% PFA in PBS (pH 7.4) for 15 minutes. The samples were 
incubated in 100mM glycine for 10 minutes (aldehyde group-binding) and 
treated with 0.2% Triton X-100 for 10 minutes (permeabilization). Samples were 
blocked with 5% GS and primary antibodies were added in 1% GS. MHC 
antibodies against type I1 and type II12 fibers in 5 µg/ml and 6 µg/ml, respectively, 
were used to investigate fiber distribution. Antibody for laminin3 was used in 
1:250 to detect myofiber plasma membrane for area quantification. Primary 
antibodies were incubated at +4 °C overnight. The next morning, after thorough 
washing, fluorescent secondary antibodies 13, 14 were added 1:500 in 1% GS and 
samples incubated for 1 hour in room temperature. After washing steps, sections 
were mounted and counterstained15 and imaged with confocal microscopy (LSM 
700, Axio Observer, Zeiss, Oberkochen, Germany). Images were analyzed 
manually with ImageJ software (v.1.52, NIH).  

4.3.8 Myosin heavy chain isoform separations with SDS-PAGE (III) 

Reagents used for staining are listed in detail in Supplemental Table 1 and 
referred in the text as superscripted numbers. Muscle samples assigned for 
protein analysis (weight ~ 4–12 mg) were homogenized in 1:100 myosin 
extraction buffer, which consisted of 0.1 M KCl16, 0.1 M KH2PO417, 0.05 M 
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K2HPO4·3H2O18, 0.01 M EDTA19, 0.02 M NaPPi 20, BME21, Pepstatin A22 and 
inhibitor 23. Ingredients were diluted in MQ-water and pH was set to 6.5 with 
potassium hydroxide. Working solution was prepared 1:1 to 10% Triton-X. 
Homogenization was performed with TissueLyser II (Qiagen, Hilden, Germany) 
and continued with 24-h shaking at +4 °C. After that, samples were centrifugated 
for 10 minutes at 10 000 × g at +4 °C (Eppendorf 5424, FA-45-24-11, Hamburg, 
Germany). 20 µL of obtained supernatant was mixed with 80 µl working Laemmli 
sample buffer (95% Laemmli buffer, 5% BME) and 30 µl glycerol. Samples were 
heated for 4 minutes at +100 °C and then frozen to -20 °C. 200–300 ng of total 
protein was loaded into the sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) system, consisting of 3% stacking gel and 6.7% 
separating gel with 30% glycerol. Electrophoresis was run in Bio-Rad Protean II 
Xi Cell (Bio-Rad, Hercules, CA, US) for 42–44 h at 70–90 V at +4 °C. After the run, 
gels were fixed in ethanol-acetic-acid-solution for one hour and washed with 
water. A sensitizer (0.02% sodiumthiosulphate-5-hydrate 24 in water) was applied 
to gels for 1 minute. Gels were washed and incubated in cold 0.1% silver nitrate 
solution with formaldehyde. After staining, the gels were again washed and 
developed with 3% sodiumcarbonate solution with formaldehyde, until the 
staining was visible. Development was terminated in 5% acetic acid solution. 
Gels were imaged with ChemiDoc MP (v.2.2.0.08, Bio-Rad Laboratories, Inc., 
Hercules, CA, USA) and images analyzed with Image Lab (v.6.0.1, Bio-Rad 
Laboratories, Inc.). 

4.3.9 RNA extraction and sequencing (IV) 

RNA extraction. Total RNA extraction was performed using the Qiagen 
miRNeasy Mini Kit (217004, Qiagen, Hilden, Germany). Muscle biopsy samples 
(weight ~ 10–60 mg) were placed in Qiazol Lysis Reagent and homogenized with 
a metal bead in TissueLyser II (2 min, 25hz). After 5 minutes tabletop incubation, 
chloroform was added, and the sample was shaken manually. The solution was 
centrifuged for 15 minutes at 12 000xg in +4 °C. Upper layer containing total RNA 
was separated and mixed with 100% ethanol. The mixture was then transferred 
to a spin-column and centrifuged. Column and attached RNA were rinsed and 
finally eluated into RNAse-free water. Samples were stored at -80 °C.  
 
Sequencing. 15 µl of RNA-samples were sent in dry ice to Novogene’s UK 
laboratory for next-generation sequencing (NGS) of mRNAs, small RNAs (sRNA) 
and lncRNAs. First, sample RNA integrity, concentration and sample purity 
were assessed with Agilent Bioanalyzer 2100 (Agilent Technologies, CA, USA) 
and agarose gel electrophoresis. Despite lower quality results in one sample, all 
samples were qualified for library preparation.  

To construct the mRNA and lncRNA libraries, ribosomal RNA was 
removed, and remaining RNA was fragmentated. Via reverse transcription, 
single complementary DNA strands were synthesized. A mixture of dNTPs, 
RNAse H and DNA polymerase I was further added to initiate second-strand 
synthesis. After series of end repair, A-tailing and use of U-adaptor, PCR 
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amplification was performed resulting in final double stranded cDNA library. 
Correct size libraries analyzed with agarose gel were selected for sequencing.  

For sRNA sequencing, 3 μg of total RNA per sample was used as input 
material. Sequencing libraries were generated using NEBNext® Multiplex Small 
RNA Library Prep Set for Illumina® (NEB, USA) following manufacturer’s 
recommendations and index codes were added to attribute sequences to each 
sample. After adapter ligation, first-strand cDNA was synthesized. PCR 
amplification was performed and the products were purified on an 8% 
polyacrylamide gel. DNA fragments corresponding to 140~160 bp (the length of 
sRNA plus the 3' and 5' adaptors) were recovered and dissolved in 8 μl elution 
buffer. Library quality was assessed on the Agilent Bioanalyzer 2100 system. 
Sequencing for all samples was done with Illumina NovaSeq 6000 in Novogene’s 
laboratory (Cambridge, UK). For small RNA, 50bp single-end reads were 
generated and for longer RNAs, paired-end reads of 150bp were generated. 

4.3.10 Bioinformatics (IV) 

For mRNA and lncRNA bioinformatic analysis, raw data were first processed 
through Novogene in-house scripts. Reads containing adapter, poly-N sequences 
or reads of low quality were removed. Q20, Q30 and GC content of the clean data 
were calculated. Reference genome (Hg38) and gene model annotation files were 
downloaded from genome website browser (NCBI/UCSC/Ensembl) directly. 
Clean paired-end reads were mapped to the reference genome using HISAT2 
software. To identify lncRNA, the mapped reads of each sample were assembled 
by StringTie and merged through cuffmerge. To identify lncRNAs, low 
expression level transcripts were filtered out, the exon number was set to >2 and 
the transcript length set to >200nt. To identify novel lncRNAs (TCONS), the 
transcripts were analyzed for their protein-coding potential. Coding-Non-
Coding-Index, Coding Potential Calculator and Pfam were used predict the 
coding potential of the transcripts. Transcripts predicted with coding potential 
by at least one of the three tools were filtered out. Novel genes were predicted by 
using StringTie and Cuffcompare.  

For sRNA (18–35bp) analysis, raw data was cleaned by removing reads with 
poly-N, 5’ adapter contaminants, without 3’ adapter or the insert tag, containing 
poly-A/-T/-G or -C and low-quality reads. Remaining reads were mapped to 
reference sequence by Bowtie. miRBase20.0 was used as reference, modified 
mirdeep2 and srna-tools-cli were used to obtain the potential miRNAs. 
Novogene custom scripts were used to obtain the miRNA counts.  

Before DE analysis, a filter to exclude biologically non-significant sequences 
was applied. To be included in the analysis, the mRNA, lncRNA and miRNA 
transcript had to have more than 1 count per million library counts (CPM>1), to 
be expressed in at least 21% of the samples (in three samples in the EarlyMT and 
in seven in the LateMT group). Additionally, for mRNA to be accepted, the 
transcript needed to have an Ensembl ID and to be recognized as “protein coding” 
by Ensembl database. For lncRNA, the additional requirements for transcript 
acceptation were Ensembl ID, Ensembl gene ID and Ensembl biotype “lncRNA”. 
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Accepted mRNA and lncRNA transcripts were collected to gene-level using R 
package tximport (Soneson et al., 2016). mRNA, lncRNA and miRNA 
normalization and DE analysis were performed with paired-samples DESeq2. 
 
Over-representation analysis. Over-representation analyses were conducted with 
gprofiler (Raudvere et al., 2019) and databases of GO (Gene Ontology) and KEGG 
(Kyoto Encyclopedia of Genes and Genomes) were used as sources. The main 
transcripts (highest expression level) of all the prefiltered genes were imported 
into GSEA (Gene Set Enrichment analysis). Analysis was performed with the 
fgsea R package (Korotkevich et al., 2021) using t-test statistic as the ranking 
metric and GO Biological Processes and Reactome as databases (MSigDB) 
(Liberzon et al., 2011). For the GO and KEGG analyses, a DE threshold of padj < 
0.1 was used.  
 
Interactions between RNA species. Interactions between mRNA and lncRNA genes 
and miRNAs were investigated using the QIAGEN Ingenuity Pathway Analysis 
(IPA) (Krämer et al., 2014). Canonical pathways analysis identified the pathways 
from the IPA library that were most significant in the data set. Molecules from 
the data set that met the inclusion criteria (log2 fold change (LFC) > ± 1.5 and p < 
0.05) were included for the analysis. The significance of the association between 
the data set and the canonical pathway was measured in two ways: 1) the ratio 
of the number of molecules from the data set that map to the pathway divided 
by the total number of molecules that map to the canonical pathway was 
calculated; and 2) a right-tailed Fisher’s Exact Test was used to calculate a p-value 
determining the probability that the association between the genes in the dataset 
and the canonical pathway is explained by chance alone. 

For My Pathway analysis DE mRNA genes (LFC > ± 1.5 and padj<0.05) and 
the top 20 expressed miRNAs and lncRNAs in both groups were included. 
Molecules were represented as nodes, and the biological relationship between 
two nodes was represented as a line. All the connections were supported by at 
least one reference from the QIAGEN Knowledge Base. Dashed lines represent 
an indirect connection, while a solid line represents direct connections. Molecules 
without interactions to menopausal hormones or downstream functions were 
removed from the final representation of the results.  

4.3.11 Statistics (I-IV) 

In Papers I and III, statistical analyses were performed with IBM SPSS Statistics 
versions 24 or 26 (Chicago, IL, USA). In Paper II, analyses were carried out in R, 
whereas in Paper IV both R and SPSS (v.28) were used. All data were checked for 
normality and parametric tests were used whenever data fulfilled the criteria. 
Model assumptions were tested with residual plots, Q–Q plots, and correlation 
analysis. Statistical significance was set to p ≤ 0.05. For Paper IV, p ≤ 0.1 and 
multiple testing corrections were also used, whenever appropriate. All data are 
presented as mean ± SD, unless otherwise stated.  
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Paper I. The independent samples t-test, chi-squared test and Mann-Whitney U 
tests were used to compare baseline characteristics between the pre- and 
perimenopausal groups. The paired t-test, Wilcoxon signed-rank test and 
marginal homogeneity tests were used to test for differences in baseline 
characteristics, adipokines and the adiposity variables between baseline and 
follow-ups. The Wilcoxon signed-rank test was used to test for differences in 
annual changes within participants at three body composition measurement 
points. The Friedman test was used to compare lipid droplet size and the lipid 
accumulation index between the three fiber types. The Wilcoxon signed-rank test 
was used to assess the difference in relative changes during follow-up in the cell 
variables. Spearman correlations were calculated and visualized with GraphPad 
Prism (v.9.1.1) to examine associations between cell and selected adipose tissue 
variables. Linear mixed-effect models were created to examine the associations 
between the adiposity measurements and covariates during the follow-ups. 
Duration of follow-up in years was selected to represent time owing to variation 
in follow-up times and menopausal status. Therefore the results of the models 
are annual changes. Models were controlled for education, baseline mean-
centered age, mean-centered PA (either self-reported or accelerometer measured), 
mean-centered DQS, the use of exogenous hormones and the interaction between 
time and PA (fixed effects). The models were constructed using an unstructured 
longitudinal correlation matrix, and intercept and time were used as random 
effects. Longitudinal associations between adipokines and adiposity variables 
were investigated with similar linear mixed-effect models but without the 
interaction between time and PA. All variables and covariates were evaluated for 
outliers (above 3rd quartile + 3*interquartile range or 1st quartile – 3*interquartile 
range). Based on their extreme values in body adiposity (n = 3), SR-PA (n = 5), 
ACC-PA (n = 3) and adipokines (n = 3), participants were removed from the 
analyses. Multicollinearity between covariates was assessed with Variance 
Inflation Factor analyses. Due to the observational nature of this study with 
predetermined associations of interest, the results are presented without multiple 
comparison corrections.  
 
Paper II. The main analyses were conducted using linear mixed-effect models 
with random intercept. For the outcome variables, the fixed effects were time, 
menopausal group, ACC-MAD, and interactions between time and menopausal 
group as well as time and ACC-MAD. The interactions were included in the 
models to study how the change in PA was associated with the change in the 
outcome variables during the follow-up. Covariates included as fixed effects 
were mean-centered baseline age and the use of exogenous sex hormones. Only 
the use of exogenous sex hormones was controlled for as potentially confounding 
variable in the models as it could affect menopausal status assignment. Missing 
data (total amount 741/13 708, equaling 5%) occurred due to invalid or missing 
measurements, or unclear or incomplete questionnaire responses and was 
assumed to occur at random. Multiple imputation was used to improve the data 
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analysis with the “mice” package in R. After complete case analysis, no notable 
difference was observed in the results. 
 
Paper III. Paired t-test and Wilcoxon rank test were used to test for differences in 
lean and muscle mass variables between baseline and final follow-up. 
Generalized estimating equations (GEE) modelling was used to examine 
associations between the change in lean and muscle mass measurements and 
covariates in more detail during the follow-up. Models were controlled for 
baseline progestogen use, duration of HT use, and follow-up time. To further 
investigate whether PA and age were also significant predictors, they were 
individually included in the model.  
 
Paper IV. DE analysis was conducted by an experienced bioinformatist using R-
package DESeq2 (Love et al., 2014). Spearman correlations were used to 
investigate the associations of changes in RNA transcript/gene expression with 
body composition and PA. The changes were calculated for the most abundantly 
expressed transcript of the studied gene. 
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5 RESULTS 

5.1 Participant characteristics (I-IV) 

At baseline in the short-term follow-up study, the participants’ mean age was 
51.6 ± 1.9 years, mean height 1.65 ± 0.06 m, and on average they were slightly 
overweight (BMI 25.6 ± 3.9 kg/m2). About half were normal weight at both base-
line and follow-up (Table 4). At baseline, 63% had natural bleeding status, 5% 
had had hysterectomy and the rest were exogenous hormone users (only proges-
terone at baseline). The bleeding status proportions remained relatively un-
changed. Nearly all had at least secondary level education. As expected, the 
women experienced a decrease in E2 levels and an increase in FSH levels during 
the study. Mean follow-up time was 1.3 ± 0.7 years. 

At baseline in the long-term follow-up the participants’ mean age was 51.4 
± 1.7 years, mean height 1.66 ± 0.05 m, and they were also slightly overweight 
(BMI of 25.4 ± 3.9 kg/m2). Approximately half of them were overweight or obese 
at baseline and at follow-up (Table 4). About 60% of the participants had natural 
bleeding status, 10% had had hysterectomy and 30% were using progesterone at 
baseline. The bleeding status proportions remained relatively unchanged. Of the 
participants, nearly all had at least secondary level education. The decrease in E2 
and increase in FSH levels was even more apparent in the long-term than in the 
short-term follow-up. The mean follow-up time in the long-term follow-up was 
3.9 ± 0.2 years. 

Both cohorts were a representative sample of middle-aged Finnish women 
(Kekäläinen et al., 2021). 
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TABLE 4  Participant characteristics in the short- and long-term follow-up studies. 

 Short-term follow-up Long-term follow-up 

 Baseline Follow-up Change Baseline Follow-up Change 
 n = 230  n = 148  

Body mass,  
kg a 

69.7±11.1 70.3±11.5 0.7±2.7 
*** 

69.6±10.7 71.8±12.1 2.2±3.6 
*** 

BMI, kg/m2 a 

Underweight 
(<18.5) 
Normal (18.5–
24.9) 
Overweight 
(25–29.9) 
Obese (30->) 

25.6±3.9 
0% (0) 

 
52% (119) 

 
34% (77) 

 
15% (34) 

25.8±4.1 
0% (0) 

 
47% (109) 

 
37% (86) 

 
15% (35) 

0.3±1.0 
*** 

 

25.4±3.9 
0% (0) 

 
52% (72) 

 
36% (50) 

 
12% (17) 

26.2±4.4 
1% (1) 

 
42% (59) 

 
37% (52) 

 
19% (27) 

0.8±1.4 
*** 

 
 
 

Bleeding status 
Natural status 
Hysterectomy 
Hormone  
userb 

 
63% (144) 
5% (12) 
32% (74) 

 
60% (137) 
5% (11) 
36% (82) 

  
59% (87) 
10% (14) 
32% (47) 

 
57% (85) 
12% (17)# 
31% (46) 

 

Education 
Primary 
Secondary 
Tertiary  

 
3% (6) 

52% (120) 
45% (104) 

   
1% (1) 

55% (82) 
44% (65) 

  

Sex hormones       

E2, nmol/L 0.34±0.27 0.24±0.18 -0.10±0.33 
*** 

0.48±0.50 0.20±0.21 -0.28±0.54 
*** 

FSH, IU/L 36.1±21.7 66.7±28.1 30.5±31.7 
*** 

24.1±21.8 80.4±32.0 56.3±36.4 
*** 

Values presented as mean ± SD. (n) = number of participants. BMI, body mass index; E2, 
estradiol; FSH, follicle-stimulating hormone. a n = 9 missing from long-term follow-up, b in-
cludes progestogen use at baseline and both estrogen or/and progestogen use at follow-up, 
#includes n = 1 with surgical menopause. *p < 0.05, **p < 0.01, ***p < 0.001. 
 
Biopsied sub-populations. Altogether 25 participants in the short-term and seven in 
the long-term follow-up consented to baseline and follow-up muscle biopsies. 
Five participants consented to muscle biopsies at both the short- and long-term 
follow-ups, i.e., at three time points in total. In the short-term follow-up study 
baseline, the biopsied subgroup were on average 52.2 ± 2.1 years old and did not 
differ from the non-biopsied follow-up participants in any of the studied 
variables, except for bleeding status and use of exogenous hormones as only 
participants with natural bleeding status and no estrogen or progesterone use 
were recruited for biopsies (Supplemental Table 2). Among the long-term follow-
up participants (age at baseline 51.3 ± 2.5 years), the biopsied subgroup at 
baseline had higher FSH levels (p < 0.05) than the non-biopsied group but did 
not differ in any other variables. During both follow-up studies, the changes in 
background characteristics and sex hormone levels in the biopsied participants 
did not differ from those of the others in their group (Supplemental Table 2).  



 
 

76 
 

5.2 Changes in body composition and metabolic health indicators 
(I-III) 

5.2.1 Adiposity and indicators of metabolic health (I, II) 

During the short-term follow-up, the relative increases in DXA FM variables 
varied between ~2 and 4%, the most significant relative increase occurring in 
android and trunk FM (4.3 and 3.8%, respectively) (Table 5). In the mid-thigh, a 
significant increase in subcutaneous fat area (2.3%) was observed. During the 
long-term follow-up, the relative increases in the DXA variables varied between 
~7 and 14% with the largest in trunk and android FM (both 13.6%) (Table 5). A 
significant increase in subcutaneous and muscle compartment fat area was also 
observed in mid-thigh in the long-term follow-up measurement (6.6 and 16%). 
Muscle density decreased by 7% during the long-term follow-up.  

The change in adiposity was also investigated with adjusted models for self-
reported and accelerometer PA, separately. The results of Paper I analyses are 
presented in Table 6. The annual increases in total and android FM were ~0.65 
and 0.09 kg respectively. These results corresponded well to the results obtained 
from Paper II analyses using a slightly different model (change in total FM during 
~ four years +2.87 kg (SR-PA model) and +1.72 kg (ACC-MAD model; change in 
android FM during ~ four years +0.39 kg (SR-PA model) and +0.26 kg (ACC-
MAD model)). The annual increase in android FM was higher than in gynoid 
area (0.09kg vs. ~0.065 kg, respectively). The increase in trunk FM was also more 
pronounced than the increase in gluteofemoral area (~0.44 kg/year vs. ~0.26 
kg/year). Also leg FM and subcutaneous fat area were found to increase and 
muscle density decrease around FMP also after adjustment. The results on annual 
changes in the models with different PA measures were relatively similar.  
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TABLE 5  Unadjusted changes in fat mass variables during the short- and long-term 
follow-ups.  Relative changes (%) shown in brackets. 

 
 Short-term follow-up Long-term follow-up 

 Baseline Follow-
up 

Change  
(%) Baseline Follow-

up 
Change 

 (%) 
Total and         
regional fat n = 219  n = 132  

Total FM, kg 25.7±8.8 26.4±9.0 0.8±2.5*** 
(3.1) 

24.4±8.8 27.1±9.6 2.6±2.8*** 
(10.7) 

Total fat  
percentage 

35.8±7.8 36.6±7.5 0.8±2.4*** 34.2±8.0 36.7±7.9 2.5±2.3*** 

Trunk FM, kg 13.1±5.4 13.6±5.7 0.5±1.7*** 
(3.8) 

12.5±5.3 14.2±6.0 1.7±2.0*** 
(13.6) 

Gynoid FM, kg 5.0±1.4 5.1±1.4 0.1±0.5** 
(2.0) 

4.7±1.4 5.0±1.5 0.3±0.5*** 
(6.4) 

Android  
FM, kg 

2.3±1.0 2.4±1.0 0.1±0.3*** 
(4.3) 

2.2±1.0 2.5±1.1 0.3±0.4*** 
(13.6) 

Leg FM, kg 4.5±1.5 4.6±1.5 0.1±0.5** 
(2.2) 

4.2±1.5 4.5±1.6 0.3±0.5*** 
(7.1) 

Gluteofemoral 
FM, kg 

10.5±3.5 10.9±3.5 0.3±1.0*** 
(2.9) 

10.0±3.4 11.0±3.8 1.0±1.2*** 
(10.0) 

Gluteofemoral 
fat percentage 

36.7±6.8 37.7±6.6 0.9±2.1*** 
(2.5) 

35.1±7.0 37.5±6.7 2.4±2.2*** 
(6.8) 

Android-to- 
gynoid-ratio 

0.45±0.14 0.46±0.14 0.01±0.04*** 
(2.2) 

0.45±0.15 0.50±0.15 0.05±0.05*** 
(11.1) 

Mid-thigh fat n = 76  n = 17  

Subcutaneous 
fat area, cm2 a 

64.2±15.8 65.7±17.0 1.5±3.8** 
(2.3) 

65.0±17.5 69.3±18.7 4.3±4.1** 
(6.6) 

Muscle com-
partment AT 
area, cm2 

9.4±3.0 9.6±3.1 0.1±1.1 
(1.1) 

8.1±2.2 9.5±1.4 1.3±1.9* 
(16) 

Muscle density, 
HU 

53.1±3.7 53.4±3.9 0.3±1.7 
(0.6) 

53.7±4.0 50.0±3.1 -3.7±3.7** 
(-6.9) 

Values presented as mean ± SD. AT, adipose tissue; FM, fat mass; HU, Hounsfield units. a n 
= 1 missing from short-term follow-up. *p < 0.05, **p < 0.01, ***p < 0.001. 
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TABLE 6  Linear model results for the annual changes in adiposity around menopause. 

FM measure 
Annual change 

around menopausea 
(SR-PA) 

Annual change 
around menopausea 

(ACC-MVPA) 
Total FM, kg 0.68*** 0.63*** 
Android FM, kg 0.09*** 0.09*** 
Trunk FM, kg  0.45*** 0.42*** 
Gynoid FM, kg  0.07*** 0.06*** 
Gluteofemoral FM, kg  0.27*** 0.25*** 
Leg FM, kg  0.07*** 0.06*** 
Android-to-gynoid-ratio  0.01*** 0.01*** 
Subcutaneous fat area, cm2  1.05*** 1.28*** 
Muscle compartment fat area, cm2  -0.14 0.11 
Muscle density, HU  -0.23 -0.65*** 

ACC-MVPA, accelerometer-measured moderate-to-vigorous physical activity; FM, fat 
mass; HU, Hounsfield unit; SR-PA, self-reported physical activity. aVariable estimate asso-
ciated with the progression of menopausal status during one year. Models adjusted for cen-
tered baseline age, education level, follow-up time, hormone use, diet quality, physical ac-
tivity (SR-PA/ACC-MVPA) and interaction of time and physical activity. ***p < 0.001. 
 
Unadjusted changes in the metabolic health indicators were investigated in the 
short- and long-term follow-ups (Table 7). In both follow-ups, a small, but 
significant increase in WC and WHR was observed. In adipokines, in both follow-
ups an increase was observed in serum leptin and adiponectin and a decrease in 
resistin levels.  

TABLE 7  Unadjusted changes in indicators of metabolic health in short- and long-term 
follow-ups. 

 Short-term follow-up Long-term follow-up 
 Baseline Follow-up Change Baseline Follow-up Change 
Anthropo-
metrics 

n = 228  n = 137  

WC, cm 83.8±10.6 84.5±10.9 0.8±4.0 
** 

82.9±10.3 84.2±11.2 1.3±3.9 
*** 

WHR 0.83±0.07 0.84±0.06 0.01±0.03 
*** 

0.82±0.07 0.84±0.05 0.01±0.04 
*** 

Adipokines n = 110  n = 68  

Leptin, 
ng/ml 

42.4±30.5 50.4±38.2 8.0±18.2 
*** 

40.8±30.2 54.3±39.6 13.5±23.2 
*** 

Adiponec-
tin, ng/ml 

16644±6232 18475±7730 1831±4285 
*** 

16510±6908 19669±8979 3159±6241 
*** 

Resistin, 
pg/ml 

18842±7958 17243±7556 -1599±5723 
** 

20481±9053 17946±7575 -2536±7353 
* 

Values presented as mean ± SD. WC, waist circumference; WHR, waist-to-hip ratio. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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The results of the adjusted linear-mixed models for WC, WHR and adipokines 
are presented in Table 8. WC increased on average by 1.49 cm during transition 
from pre- or perimenopause to postmenopause, when the model was adjusted 
with SR-PA. For WHR, after adjusting for confounders, postmenopausal status 
was no longer a significant contributor. For leptin, the menopausal progression 
was positively associated with an annual increase of 1.4 ng/ml in serum levels 
also when adjusted for total, gynoid and gluteofemoral FM, but not android FM 
(in Table 8 results shown only for models adjusted with total FM). For 
adiponectin, the progression of menopausal status was associated with an 
increase in adiponectin levels in all the FM-adjusted models, and in total FM 
adjusted model the annual increase was 623 ng/ml. In contrast, resistin levels 
were negatively associated with the menopausal progression in all the FM 
adjusted models and the annual decrease was on average 628 pg/ml, when the 
linear model was adjusted with total FM.  

TABLE 8  Adjusted results for changes in metabolic health indicators in women 
transitioning from pre/perimenopause to postmenopause. 

Metabolic health 
indicator 

Annual change 
around meno-

pausea 

Change due to 
pre/peri- to 

postmenopause 
transitionb 

(SR-PA) 

Change due to 
pre/peri- to 

postmenopause 
transitionb 

(ACC-MAD) 
Waist circumference, cm  - 1.49** 0.44 
Waist-to-hip ratio  - 0.60 -0.75 
Leptin, ng/ml  1.4* - - 
Adiponectin, ng/ml  623*** - - 
Resistin, pg/ml -628*** - - 

ACC-MAD, accelerometer-measured mean amplitude deviations; SR-PA, self-reported 
physical activity. a Models adjusted for total fat mass, centered baseline age, education 
level, follow-up time (in years), exogenous hormone use, diet quality, and SR-PA. b Models 
adjusted for menopausal group, physical activity (SR-PA/ACC-MAD), age at baseline, ex-
ogenous hormone use, time (measurement point), time x group, and time x physical activ-
ity interactions. - not studied. *p < 0.05, **p < 0.01, ***p < 0.001. 
 
The body composition of altogether 60 women was measured in the both in short- 
and long-term follow-up. Of them, one was later excluded as outlier, while CT 
data was available from only 14 participants. Figure 5 presents the mean values 
of the adiposity variables in the three timepoints (B, F1 and F2) and the calculated 
median annual change between the transition from perimenopause to early 
postmenopause (FU1) and from early postmenopause to later menopause (FU2). 
The rate of change was similar between FU1 and FU2 in all other adiposity 
variables except for muscle density, where the decrease (lipid accumulation to 
the muscle) was significantly higher during FU2.  
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FIGURE 5  Body adiposity variables of participants assessed at three measurement 
points (n = 59 for the three upper row and n = 14 for the bottom row varia-
bles). Box plots show the mean (vertical line), interquartile ranges and max- 
and min-values (upper and lower limits). Annual changes are presented as 
median ± SD. AT, adipose tissue; B, baseline measurement; F1, short-term fi-
nal follow-up measurement; F2, long-term follow-up measurement; FM, fat 
mass; FU1, follow-up from perimenopause to early postmenopause (time be-
tween B and F1); FU2, follow-up from early postmenopause to later postmen-
opause (time between F1 and F2); HU, Hounsfield unit. Significant p-values 
(p < 0.05) between annual changes are highlighted.  
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5.2.2 Lean and muscle mass (III) 

During both follow-ups, a significant decline was observed in all the DXA-
measured LM variables (unpublished data from long-term follow-up) as 
presented in Table 9. The largest decrease was observed in the appendicular 
region, where ALM, ALMI and leg LM decreased by 1.1%, 1.1% and 1.5% during 
the short-term follow-up and 2.7%, 3.0% and 2.9% during the long-term follow-
up, respectively. In the mid-thigh muscle measures, a decrease was also observed 
in both absolute and relative muscle area, the most significant of which was in 
the absolute muscle area (-4.3%) during the long-term follow-up.  

TABLE 9  Unadjusted changes in lean and muscle mass measures during the short- and 
long-term follow-ups.  Relative changes (%) shown in brackets. 

 
 Short-term follow-up Long-term follow-up 

 Baseline  
Follow-

up 
Change 

 (%) 
Baseline 

 
Follow-

up 
Change 

(%) 
Total and re-
gional lean 
mass 

n = 219  n = 132  

LBM, kg  41.7±4.4 41.5±4.4 -0.2±1.3* 
(-0.5) 

42.5±4.1 42.1±4.3 -0.4±1.6** 
(-1.0) 

LBMI, kg/m2  15.3±1.3 15.2±1.3 -0.1±0.5* 
(-0.7) 

15.5±1.3 15.3±1.4 -0.2±0.6** 
(-1.3) 

ALM, kg  18.0±2.2 17.8±2.2 -0.2±0.8*** 
(-1.1) 

18.4±2.1 17.9±2.1 -0.5±0.9*** 
(-2.7) 

ALMI, kg/m2  6.6±0.6 6.5±0.6 -0.1±0.3*** 
(-1.1) 

6.7±0.7 6.5±0.6 -0.2±0.3*** 
(-3.0) 

Gluteofemo-
ral LM, kg 

17.5±2.1 17.4±2.1 -0.2±0.5*** 
(-1.1) 

17.7±2.0 17.6±2.0 -0.2±0.7** 
(-1.1) 

Leg LM, kg  6.8±0.9 6.7±0.8 -0.1±0.4** 
(-1.5) 

6.9±0.8 6.8±0.8 -0.2±0.4*** 
(-2.9) 

Mid-thigh 
muscle 

n = 76  n = 17  

Absolute 
muscle area, 
cm2  

166.8±9.5 165.1±10.0 -1.6±3.9*** 
(-1.0) 

168.0±11.4 160.8±8.5 -7.2±5.8*** 
(-4.3) 

Relative mus-
cle area (%) a 

69.6±5.6 68.9±6.1 -0.7±1.5*** 
(-1.0) 

69.8±6.1 67.4±6.2 -2.3±1.7*** 
(-3.3) 

Values presented as mean ± SD. ALM, appendicular lean mass; ALMI, appendicular lean 
mass index; LBM, total lean body mass; LBMI, total lean body mass index; LM, lean mass.  
 a n = 1 missing participant in short-term follow-up. *p < 0.05, **p < 0.01, ***p < 0.001. 
 
In the short-term follow-up, the longitudinal change in LM measures was studied 
using a GEE model. Table 10 presents the results of adjusted models, with either 
self-reported or accelerometer-measured PA as the PA measure. The progression 
of menopausal transition from peri- to postmenopause was a significant negative 
contributor to all the studied LM variables. For example, the progression from 
peri- to postmenopause was associated with 0.20 kg decrease in LBM and more 
than 1 cm2 decrease in absolute muscle area.  
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TABLE 10  Adjusted generalized estimating equation model variable estimates for the 
change in menopausal status in models investigating associations with lean 
and muscle mass measures in the short-term follow-up study. 

Lean and muscle 
mass measure 

Change due to peri- 
to postmenopause 

transition 

(SR-PA) 

Change due to peri- 
to postmenopause 

transition 

(ACC-MVPA) 
LBM, kg -0.203* -0.231* 
LBMI, kg/m2 -0.073* -0.086* 
ALM, kg -0.238*** -0.292*** 
ALMI, kg/m2 -0.088*** -0.108*** 
Leg LM, kg -0.091** -0.114*** 
Absolute muscle area, cm2 -1.6** -1.8** 
Relative muscle area (%) -0.7*** -0.7** 

ALM, appendicular lean mass; ALMI, appendicular lean mass index; LBM, total lean body 
mass; LBMI, lean body mass; LM; lean mass. Models adjusted for menopausal status, estro-
gen therapy use time, baseline use of progestogen (except for absolute and relative muscle 
areas), follow-up time, age at baseline and either self-reported (SR-PA) or accelerometer-
measured moderate-to-vigorous physical activity (ACC-MVPA). *p < 0.05, **p < 0.01, ***p < 
0.001. 
 
Biopsied sub-populations. The baseline values of the body composition and 
metabolic health indicators did not differ between the non-biopsied and biopsied 
subgroups in the short-term follow-up. In the long-term follow-up, only the 
absolute muscle area was observed to differ between the biopsied subgroup and 
the non-biopsied subgroups (non-biopsied subgroup: 168.0 ± 11.4 cm2; biopsied 
subgroup: 183.8 ± 3.8 cm2, p < 0.05). During the follow-ups, the changes in the 
adiposity variables in the biopsied and non-biopsied study groups did not differ 
from each other in either of the studies. The relative changes in the LM variables 
in the short-term follow-up did not differ between the whole and biopsied 
population. In the long-term follow-up, a larger decrease in absolute muscle area 
was observed in the biopsied subgroup (non-biopsied group: -7.2 ± 5.8 cm2; 
biopsied subgroup: -14.8 ± 3.3 cm2, p < 0.05). The changes in adipokines, WC, and 
WHR were similar in the biopsied and non-biopsied subgroups.  

5.3 Skeletal muscle tissue analysis (I, III, IV) 

5.3.1 Morphological changes (I, III) 

5.3.1.1 Histological analysis of fiber size and type (I, III) 

Skeletal muscle fiber distribution was investigated in the short- and long-term 
follow-ups. Table 11 presents the results of the short-term follow-up, where the 
fiber types were classified into two subtypes (type I and type II) based on 
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immunohistochemical staining. At both in baseline and follow-up, the ratio was 
approximately 50:50 and no change was found in type-specific fiber size during 
the follow-up. However, at both baseline and follow-up, type I fibers were larger 
than type II fibers (p < 0.001). 

TABLE 11  Distribution and size of type I and II muscle fibers in the short-term follow-
up. 

 Short-term follow-up 
 Baseline Follow-up Change 
 n = 7  

Type I (µm2) 3526±1334 3525±1618 -1±1297 (NS) 
% of all fibers 53.3±10.9 51.1±14.4 -2.2±7.7 (NS) 

Type II (µm2) 2098±948 2399±1218 301±469 (NS) 
% of all fibers 46.7±10.9 48.9±14.4 2.2±7.7 (NS) 

P-value for difference in size 
between cell types <0.001 <0.001  

Values presented as mean ± SD. NS, difference not significant. 
 
Fiber type distribution was also investigated using a immunohistochemical 
staining to separate all three main fiber types (type I, type IIA and type IIX) at 
the short-term follow-up study baseline (n = 10), short-term follow-up study 
follow-up measurements (n = 8) and long-term follow-up study follow-up 
measurements (n = 7) (unpublished data). In these samples, type I fibers 
constituted ~70% of all fibers, type IIA ~24% and type IIX ~6% of all fibers. No 
change between baseline and follow-up was observed in this distribution during 
the two follow-ups. 

5.3.1.2 Electrophoretic analysis of fiber type (III) 

In the short-term follow-up, myosin isoform distribution was also studied in 
muscle homogenates with SDS-PAGE (n = 25 sample pairs for baseline and 
follow-up). At both baseline and at follow-up, the main isoform was found to be 
type I MHC (~52%), with 41% type IIA and ~7% MHC IIX. No change was 
observed in the distributions during the follow-up. 

5.3.1.3 Metabolic capacity and lipid droplet accumulation (I) 

Muscle fiber oxidative and glycolytic capacities were investigated in muscle tis-
sue sections in both follow-up studies. The enzymatic staining results were 
paired with serial sections stained against type I or II fibers. At all time points (n 
= 10 for baseline, n = 8 for short-term follow-up study follow-up measurement 
and n = 7 for long-term follow-up study follow-up measurement), a significant 
difference was observed between the fiber types in their metabolic capacities. 
Type I fibers, as expected, had higher oxidative capacity, whereas type II fibers 
had higher glycolytic capacity (p < 0.05). When the longitudinal changes in met-
abolic capacities were investigated (n = 8 for the short-term and n = 7 for the long-
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term follow-up), no change was observed in the relative oxidative capacity of the 
two fiber types (Figure 6A), whereas type II fibers showed a small increase in 
glycolytic capacity at the long-term follow-up (Figure 6B). 

LD area and LAI were investigated in sections also stained for fiber type 
(types I, IIA and IIX). Stainings were conducted for samples from the short- and 
long-term follow-ups. At baseline, the lipid droplets were significantly larger in 
type I fibers than in type IIA and IIX fibers (I: 0.79 ± 0.35; IIA: 0.69 ± 0.19; IIX 0.60 
± 0.34 µm2, p < 0.05), but in other timepoints no difference was observed. At all 
individual time points, LAI was always largest (approximately two to three times 
larger than in type IIX with the lowest LAI) in type I fibers (p < 0.01). When the 
relative changes during the follow-ups were investigated, fiber type-specific LD 
area (Figure 6C) and LAI (Figure 6D) remained unchanged. 

 

 

FIGURE 6  Relative oxidative and glycolytic capacities and lipid measures of different 
muscle fiber types and muscle tissue overall during the short- and long-term 
follow-ups.  Baseline value is set to one and the follow-up values are com-
pared to that. *p<0.05.  

5.3.1.4 Correlations between muscle fiber characteristics and total body 
composition (I) 

Correlations between tissue-level body composition variables with cellular 
metabolic and lipid accumulation variables were compared at different 
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timepoints: at the short-term follow-up baseline (Baseline), short-term follow-up 
study follow-up (F1), and at long-term follow-up study follow-up (F2). At 
baseline, significant positive correlations were found for all the fiber adiposity 
variables with at least one studied DXA variable (Figure 7). At F1 and F2, 
correlations with the body composition variables were found only for LD area in 
type I fibers, LAI I and LAI IIA. Significant correlations with metabolic capacities 
were found at single time points (data not shown). At F1, leg FM correlated 
positively with the glycolytic capacity of type II cells and total tissue (for both rs 

~ 0.8, p < 0.05).  
 

FIGURE 7  Correlations between cell and body adiposity variables in perimenopause, 
early postmenopause and postmenopause.  FM, fat mass; LAI, lipid accumu-
lation index; LD, lipid droplet. Orange color indicates high positive correla-
tion, whereas blue color indicates smaller positive correlation. * p< 0.05,  
** p<0.01, ***p<0.001 (image originally published in Paper I). 

5.3.2 Muscle transcriptome (IV) 

5.3.2.1 Sample quality 

Before sequencing, RNA sample quality was assessed by using integrity value. 
After sequencing, the sample quality was estimated using the mean Q30-value. 
Both of these measures indicated good or high-quality data. The sequence length 
distribution of sRNA was checked for each sample to ensure enrichment of 
miRNAs. Due to its distorted sequence length distribution and lowest integrity 
value, one sample pair was excluded from both the sRNA and long-RNA analysis. 
Thus, the final n of the samples for further analysis was 48, comprising 24 
longitudinal sample pairs. 

5.3.2.2 Characteristics of transcriptome data 

mRNA and lncRNA. Altogether 88 966 different transcripts were regarded as 
mRNAs. After filtering, 12 503 different mRNA genes were observed in the data. 
Of these, 314 were only expressed in the EarlyMT and 174 only in the LateMT 
groups. The majority of the exclusive genes were relatively low-expression level 
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genes (basemean per PERI or POST group < 100). Of the most abundantly 
expressed mRNA genes, the top 20 included, for example, MYH7, ACTA1, MT-
CO1, CKM and DES. Additionally, the normalized expression level of hormone 
receptors and steroidogenic enzymes were investigated, and mRNA for ESR1, 
ESR2, GPER1, AR, PGR, HSD17B1, HSD17B4, HSD17B5 and SRD5A1 were 
observed. In addition, very low-expression level (CPM < 1 and/or present only 
in few samples) reads for FSHR and steroidogenic enzymes HSD3B2, HSD17B2, 
CYP19A1 were found. 

Of all the long RNA reads, ~27 500 reads were assigned to be lncRNAs. 
After filtering, altogether 8 279 genes were left for further analysis. Of these, 710 
were only expressed in EarlyMT, while 452 genes were unique to LateMT. As in 
the mRNAs, the uniquely expressed genes were low expression. The 20 most 
abundantly expressed lncRNAs in both groups included, for example, NORAD, 
MALAT1, XIST, NEAT1, MIR1-1HG, H19, SNHG14, KCNQ1OT1, SNHG5, 
SNHG16, MIR133A1HG, MIR193BHG, and five genes (e.g., AC093010.2 and 
AC087190.3), whose function is yet not well understood.  
 
sRNA. Altogether 1 599 miRNAs were found from the data. After filtering, 397 
miRNAs were left for further analysis. Of these, 28 miRNAs were only expressed 
in EarlyMT and seven exclusively in LateMT. The 20 most abundant miRNAs in 
both groups constituted 97% of all miRNA reads and included, for example, 
several let-7-family members, miR-21-5p, -26a-5, -30d-5p, -99a-5p, -126-3p, -148a-
3p, -378a-3p, -378c, -378d and four myo- or muscle enriched miRNAs (miR-1-3-
p, -133a-3p, -206 and -486-5p).

5.3.2.3 Differential expression analysis 

In total, 49 DE mRNA genes were found, 30 in EarlyMT and 19 in LateMT (for all 
padj <0.05 and LFC ≥ ± 1.5) (Table 12). The DE genes in EarlyMT included, for 
example, ELN, PRKCA, steroidogenic enzyme SRD5A1, and apoptosis-linked 
PIDD1. The DE genes in LateMT included molecular switch regulator NUDT4, 
ECM1, and the negative regulators of apoptosis NAA35 and BIRC6, among others. 
In addition, many transcription regulators were also observed, including 
GTFG2F2, E2F3, SLFN11, MAFK, ZEB1 and zinc fingers ZNF84 and ZNF611. The 
DE genes also included MKNK1, JAK2 MYD88, which are components of the 
important signaling pathways related to growth and protein synthesis in muscle.  
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TABLE 12  Differentially expressed mRNA genes (post vs. peri) in the EarlyMT and 
LateMT groups. 

EarlyMT 

Upregulated Downregulated 
Gene LFC PERI POST padj Gene LFC PERI POST padj 

ELN 12.4 11 ± 27 121 ± 179 0.012 EXTL3 -9.6 1123 ± 760 282 ± 458 0.004 
GTF2F2 11.9 61 ± 149 122 ± 193 0.024 KIAA0355 -9.2 756 ± 182 361 ± 421 0.002 
PRKCA 8.5 167 ± 256 276 ± 175 0.035 VPS28 -7.7 49 ± 31 21 ± 36 0.004 
PYCR1 8.5 31 ± 54 70 ± 64 0.018 ZNF84 -6.6 133 ± 72 47 ± 65 0.005 
SESN2 8.4 24 ± 38 63 ± 47 0.019 PIDD1 -5.7 44 ± 43 1 ± 1 0.005 
INTU 6.7 57 ± 68 120 ± 67 0.041 NLRC5 -5.0 93 ± 91 3 ± 5 0.024 
TMEM39B 6.3 22 ± 35 77 ± 39 0.034 AC093512.2 -4.9 455 ± 867 38 ± 59 0.004 
SRD5A1 6.3 46 ± 58 126 ± 20 0.004 ALMS1 -4.2 474 ± 377 173 ± 374 0.004 
CHPF2 6.0 63 ± 102 146 ± 129 0.047 C1QTNF9 -3.9 71 ± 38 20 ± 30 0.035 
MTHFSD 5.5 29 ± 47 143 ± 60 0.004 SGSH -2.9 54 ± 26 10 ± 10 0.024 
MYD88 5.4 2 ± 4 23 ± 14 0.007 MGLL -2.8 884 ± 994 31 ± 12 0.037 
APC 4.7 1 ± 1 662 ± 771 0.010 GBP5 -2.6 76 ± 81 59 ± 130 0.037 
TOM1L2 4.5 37 ± 34 586 ± 588 0.043 MAFK -2.3 677 ± 303 218 ± 305 0.009 
TMEM120B 4.0 178 ± 261 643 ± 364 0.008 RBMS1 -1.8 349 ± 101 145 ± 134 0.038 
ATP5MC2 1.9 325 ± 209 890 ± 450 0.007      
JAK2 1.7 307 ± 183 1104 ± 716 0.024      

LateMT 

Upregulated Downregulated 
Gene LFC PERI POST padj Gene LFC PERI POST padj 

NUDT4 14.6 430 ± 984 639 ± 1278 0.002 E2F3 -12.2 82 ± 108 32 ± 94 0.022 
SLFN11 11.1 103 ± 180 160 ± 167 0.005 NAA35 -9.6 260 ± 228 216 ± 324 <0.001 
AL136295.3 11.0 53 ± 116 115 ± 125 0.005 ZNF611 -6.9 79 ± 76 32 ± 54 <0.001 
MKNK1 8.9 80 ± 111 173 ± 122 <0.001 SLC22A17 -4.4 19 ± 16 5 ± 13 0.005 
ARHGAP19 8.6 48 ± 77 117 ± 115 0.033 TLK2 -3.1 126 ± 157 51 ± 116 0.017 
ZNF761 6.2 44 ± 56 86 ± 39 <0.001 BIRC6 -2.9 300 ± 249 77 ± 131 0.003 
LYPLA1 5.4 53 ± 107 130 ± 177 0.016 ZEB1 -2.7 1271 ± 938 550 ± 719 0.005 
KANK3 5.0 29 ± 71 75 ± 113 0.036 GORASP1 -1.7 160 ± 117 48 ± 45 0.004 
PTPN20 4.8 27 ± 48 41 ± 48 0.002      
ECM1 2.4 12 ± 16 34 ± 22 0.019      
ULK3 1.7 74 ± 84 173 ± 117 0.012      
Expression presented as group basemean ± standard deviation. EarlyMT, participants in 
the early menopausal transition at baseline; LateMT, participants in the late menopausal 
transition at baseline; LFC, log2 fold change; PERI, perimenopause; POST, postmenopause. 

 
No DE genes were found for lncRNAs and miRNAs. However, at the transcript 
level, ten DE lncRNA transcripts were observed (padj < 0.05 and LFC ≥ ± 1.5). In 
EarlyMT, transcripts from OSER1-DT, MALAT1 and AC025171.1 were 
downregulated. In LateMT, transcripts from BAIAP2-DT and LINC02541 were 
upregulated and AC083798.2, AL050309.1, LINC00667, IQCH-AS1 and ENTPD1-
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AS1 were downregulated when comparing postmenopausal samples to 
perimenopausal samples. 

5.3.2.4 Overrepresentation analysis of differentially expressed mRNAs 

The potential functions of the DE mRNAs were investigated using GO, KEGG, 
GSEA and IPA analyses. Since the number of DE genes was relatively small, to 
describe the potential functions more widely, a less stringent p-value was used 
for these analyses. This resulted in including 96 genes for EarlyMT and 39 genes 
for LateMT for GO and KEGG-analyses. Genes imported from EarlyMT were 
enriched (padj < 0.1) in GO-terms “protein binding”, “macromolecule catabolic 
process”, “catalytic complex”, “cytosol”, “cytoplasm” and “transferase complex”. 
Genes imported from LateMT were enriched in the terms “prostaglandin 
receptor activity”, “prostanoid receptor activity” and “cytosol”.  

In GSEA analysis, EarlyMT genes were enriched (padj < 0.1) in GO terms 
“external encapsulating structure organization”, “cell substrate adhesion”, 
“receptor mediated endocytosis”, “collagen biosynthetic process” and 
“regulation of cell substrate adhesion” and in Reactome in terms “ECM 
organization”, “interferon signaling”, “degradation of the ECM” and “regulation 
of insulin like growth factor transport and uptake by insulin like growth factor 
binding proteins”. In LateMT, genes were enriched in GO terms “cell substrate 
adhesion” and “external encapsulating structure organization”, whereas in 
Reactome results, genes belonging to terms “ECM organization”, “syndecan 
interactions” and “ECM proteoglycans” were enriched (padj < 0.1). 

IPA was conducted to predict possible associations between menopausal 
hormones, DE genes, the top 20 regulatory RNAs and muscle downstream 
functions. To explore the potential pathways more widely, all the RNA molecules 
with unadjusted p < 0.05 and LFC ± 1.5 were imported for the core analysis. Thus, 
267 RNA molecules for EarlyMT and 133 for LateMT were included. In EarlyMT, 
the top 15 significant and relevant canonical pathways included, e.g., oxidative 
phosphorylation, renin-angiotensin signaling, androgen signaling, estrogen 
receptor signaling, mitochondrial dysfunction and sirtuin signaling pathways 
(Figure 8A). Renin-angiotensin signaling, IL-13 signaling, estrogen receptor 
signaling and, for example, white adipose tissue browning were found to be 
activated, whereas sirtuin signaling was predicted to be downregulated. For 
LateMT (Figure 8B), the pathways of e.g., lipoate salvage and modification, 
asparagine biosynthesis, apoptosis signaling, and D-myo-inositol-5-phosphate 
metabolism were enriched (p < 0.05).  

For the My Pathway analysis, the 49 DE genes from Table 12 were the target 
of interest. Regarding the upstream regulation of these genes, E2 was predicted 
to regulate E2F3, APC, PRKCA, JAK2 and MGLL, while P4 was predicted to 
regulate E2F3 and MYD88. E2- and P4-regulated genes were found to be 
associated with, for example, muscle cell apoptosis, cell death and proliferation, 
muscle hypertrophy and glucose metabolism. When the top 20 expressed 
regulatory RNAs were included in the analysis, miR -21 and -26 were found to 
be downstream targets of estrogenic regulation and had known causal effects on 
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muscular hypertrophy, muscle cell death and apoptosis. miR-21 was found to 
regulate MYD88, while miR-26 was downstream regulated by E2F3 in the IPA 
analysis. While miR-1, -133 and -378 and lncRNAs MALAT1, SNHG14 and 
KCNQ1OT1 did not have previously known associations with the upstream 
regulator hormones, they were connected to muscle cell proliferation, muscle 
apoptosis, muscle cell death and muscular hypertrophy. In EarlyMT, muscle cell 
apoptosis and cell death were predicted to be activated, while glucose 
metabolism disorder and muscle cell proliferation were predicted to be inhibited 
(Figure 8C). The measured data from LateMT predicted that muscle cell 
proliferation, cell death and glucose metabolism disorder were inhibited, while 
muscle cell apoptosis was expected to be activated (Figure 8D).  

 

 

FIGURE 8  Results of the Ingenuity Pathway Analysis. Top 15 enriched canonical path-
ways in EarlyMT (A) and LateMT (B) and results of My Pathway analysis for 
predicted upstream regulatory hormones, differentially expressed genes, top 
20 regulatory miRNAs and lncRNAs and their downstream functions using 
EarlyMT (C) and LateMT (D) measured data. 
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5.3.2.5 Correlation analysis of RNAs with adiposity and lean and muscle 
mass variables 

mRNAs. Several correlations were found for the changes (Δ= POST - PERI) in 
mRNA expression and the body composition variables (Table 13). In EarlyMT, 
ΔPIDD1, ΔINTU, and ΔC1QTNF9 were found to correlate positively with 
ΔAndroidFM and ΔLegFM, whereas ΔGTF2F2 and ΔC1QTNF9 correlated 
positively with the changes in LBM, LegLM and ALM. ΔMAFK and ΔALMS1 
were found to correlate negatively with the changes in at least two adiposity 
variables. In LateMT, the change in ZEB1 was found to correlate positively with 
the change in android and gynoid FM. The change in KANK3 correlated 
positively with muscle area and negatively with gynoid FM, while the change in 
SLFN11 correlated positively with ΔSAT and negatively with ΔMuscle density. 

TABLE 13  Associations between the changes in differentially expressed mRNA gene 
expression levels and body composition variables in EarlyMT and LateMT. 

 EarlyMT LateMT 

Variable Positive 
association 

Negative 
association 

Positive 
association 

Negative 
association 

Total FM - MAFK -  

Android FM PIDD1 ALMS1 ZEB1 - 

Gynoid FM - EXTL3 ZEB1 KANK3 

Gluteofemoral 
FM 

- MAFK - - 

Leg FM C1QTNF9 
INTU 

ALMS1 - - 

Mid-thigh SAT 
area 

- MAFK SLFN11 - 

Muscle density - - - SLFN11 

Total LBM GTF2F2 - - - 

ALM 
 

GTF2F2 
C1QTNF9 

TMEM39B - - 

Leg LM GTF2F2 
C1QTNF9 

TMEM39B - - 

Mid-thigh 
muscle area 

- - KANK3 - 

ALM, appendicular lean mass; EarlyMT, participants in the early menopausal transition at 
baseline; FM, fat mass; LateMT, participants in the late menopausal transition at baseline; 
LBM, lean body mass; LM, lean mass; SAT, subcutaneous adipose tissue. In all shown asso-
ciations p < 0.05 and rs <-0.49 or > 0.49. 
 
lncRNAs. Although no DE lncRNA genes were found, the associations between 
the change in top 20 lncRNA gene main transcript expression and body 
composition variables were still investigated (Table 14). In EarlyMT, increased 
adiposity was associated with increases in ΔMIR1-1HG, ΔNORAD and 
ΔAC006064.5, whereas negative correlations with increased adiposity were 
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observed with ΔAC087190.3, ΔMIR193BHG and ΔSNHG14. Decreased lean and 
muscle mass was associated with decreases in AC068700.1 and MALAT1 and 
with an increase in AC093010.2. In LateMT, increased adiposity was associated 
with increased expression of AC068700.1, AC069360.1 and MALAT1. The 
decrease in lean and muscle mass variables was associated with decreases in 
AC087190.3, KCNQ1OT1, MIR133A1HG and NUTM2A-AS1. SNHG5 was the 
only lncRNA gene correlating negatively with body composition variables in 
LateMT (ΔLM and ΔALM). 
 
miRNAs. The correlations between the changes in the top 20 expressed miRNAs 
and body composition variables were also investigated (Table 14). In EarlyMT, 
increased adiposity was associated with decreased expression of miR-21-5p, -
26a-5p, -99a-5p, -126-3p, let-7a-5p, let-7g-5p and let-7i-5p. Decreased lean and 
muscle mass was associated with decreased expression of miR-1-3p, -21-5p, -30d-
5p, -206 and -378a-3p, and with increased expression of miR-26a-5p. In LateMT, 
all the correlations found were positive for both fat and lean mass variables. 
Increased adiposity correlated with changes in miR-1-3p, -26a-5p, -30d-5p, -99a-
5p, let-7g-5p and let-7a-5p. ΔmiR-148a-3p correlated positively with ΔLBM. 
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TABLE 14  Associations between the changes in the long non-coding and microRNA 
expression levels and body composition variables in EarlyMT and LateMT. 

 EarlyMT LateMT 

Variable Positive 
association 

Negative 
association 

Positive 
association 

Negative 
association 

Total FM 
 

MIR1-1HG AC087190.3 
miR-126-3p 

MALAT1 
AC069360.1 
AC068700.1 
miR-26a-5p 
miR-30d-5p 

- 

Android FM 
 
 

- miR-26a-5p 
miR-126-3p 

AC069360.1 
miR-1-3p 
miR-26a-5p 

- 

Gynoid FM 
 
 

NORAD let-7a-5p 
miR-99a-5p 
let-7g-5p 
let-7i-5p 
miR-21-5p 

AC068700.1 
AC069360.1 
miR-30d-5p 

- 

Gluteofemoral 
FM 
 

MIR1-1HG AC087190.3 
miR-21-5p 

MALAT1 
miR-1-3p 
miR-99a-5p 

- 

Leg FM AC006064.5 SNHG14 MALAT1 - 

Mid-thigh SAT 
area  

MIR1-1HG AC087190.3 
MIR193BHG 
miR-99a-5p 

let-7a-5p 
let-7g-5p 

- 

Total LBM 
 
 

miR-1-3p 
miR-378a-3p 
miR-206 
miR-30d-5p 
miR-21-5p 

- miR-148a-3p - 

ALM 
 

AC093010.2  
miR-378a-3p 
miR-206 

- AC087190.3
  

SNHG5 

Leg LM 
 
 

AC093010.2 
miR-378a-3p 
miR-206 
miR-30d-5p 

AC068700.1 KCNQ1OT1 
NUTM2A-AS1 

SNHG5 

Mid-thigh muscle 
area 

- MALAT1 
miR-26a-5p  

MIR1331HG - 

ALM, appendicular lean mass; EarlyMT, participants in the early menopausal transition at 
baseline; FM, fat mass; LateMT, participants in the late menopausal transition at baseline; 
LBM, total lean body mass; LM, lean mass; SAT, subcutaneous adipose tissue. In all shown 
associations p < 0.05 and Rs <-0.49 and >0.49. Bolded microRNAs are myomiRNAs. 
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5.4 Associations of lifestyle habits with body composition, 
metabolic health indicators and muscle RNA signaling (I-IV) 

The participants in both longitudinal studies were relatively active, as at group 
mean level they fulfilled the national recommendations for weekly MVPA (150 
minutes of moderate or 75 minutes of vigorous PA) (Table 15). While no change 
was observed in the level of self-reported PA, a modest decrease in ACC-MVPA 
was observed during the long-term follow-up. Diet quality score remained un-
changed in both studies. Thirty-seven of the participants in the short-term follow-
up and 27 participants in the long-term follow-up started using estrogen contain-
ing HT during the follow-up period. None of the biopsied participants in the fol-
low-ups started using HT. 

TABLE 15  Physical activity, diet quality and the use of exogenous hormones 
characteristics of the participants in the short- and long-term follow-ups. 

 Short-term follow-up Long-term follow-up 
 Baseline Follow-

up 
Change Baseline Follow-

up 
Change 

Lifestyle habits n = 230  n = 148  
SR-PA,  
MET-h/daya 

4.5±4.0 4.7±3.7 0.2±3.0 5.3±4.6 4.9±3.8 -0.4±3.7 

ACC-MVPA, 
min/dayb 

51.9±29.6 49.8±23.9 -2.1±24.7 54.4±32.6 48.4±28.9 -6.0±28.2 
* 

ACC-MAD, mg c 28.6±10.2 27.9±8.6 -0.7±8.4 29.7±11.2 27.8±8.2 -1.9±7.9 
Diet quality  
scored 

6.0±2.2 5.9±2.2 -0.1±1.6 5.8±2.5 5.8±2.3 -0.01±1.9 

Use of exoge-
nous hormones 

None 
E 
P 
E + P 

 
 

68% (156) 
0% (0) 

32% (74) 
0% (0) 

 
 

64% (148) 
1% (2) 

20% (45) 
15% (35) 

  
 

68% (100) 
0% (0) 

32% (48) 
0% (0) 

 
 

66% (98) 
3% (4) 

16% (23) 
16% (23) 

 

Values presented as mean ± SD. (n) = number of participants. ACC-MAD, accelerometer 
measured physical activity in mean amplitude deviations; ACC-MVPA, accelerometer-
measured moderate-to-vigorous physical activity; E; estrogen; MET, metabolic equivalent 
of a task; mg, milligravity (0.001g); P, progestogen; SR-PA, self-reported physical activity in 
MET-hours per day. a n = 3 participants missing from the short-term and 7 from the long-
term follow-up, b n = 61 missing from the short-term and 21 from the long-term follow-up, 
c n = 71 missing from the short-term and 23 from the long-term follow-up, d n = 6 missing 
from the short-term and 8 from the long-term follow-up. *p < 0.05, **p < 0.01, ***p < 0.001.  
 
The associations of PA with body composition, metabolic health and mRNA 
expression were studied using both self-reported and accelerometer-measured 
PA. For body composition and metabolic health variables, associations were 
obtained using linear or GEE models. For mRNA, associations were calculated 
using correlation analyses between the changes in the variables. The main 
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findings are presented in Table 16 (for all p ≤ 0.05). SR-PA was positively 
associated with both the total body and appendicular LM variables and muscle 
density, and negatively with most of the studied adiposity measures. WC and 
WHR were also negatively associated with SR-PA. ACC-MVPA and ACC-MAD 
were positively associated with the LM measures and negatively with the FM 
and metabolic health indicators, as also found for SR-PA. At the RNA level, the 
results were more variable, as all of the observed associations were unique 
between the different PA parameters. Interestingly, however, four associations 
among the mRNAs were found, where the association of higher PA level was 
opposite to the association of menopause. Genes APC, MYD88 and ATP5MC2 
were upregulated in postmenopause (Table 12), but correlated negatively with 
increased SR-PA, ACC-MADs or ACC-MVPA, respectively. Similarly, GORASP1 
was downregulated in postmenopause (Table 12), whereas increased SR-PA was 
associated with increased GORASP1 expression.  

TABLE 16  Associations between the changes in physical activity and adiposity 
variables, metabolic health indicators, lean and muscle mass variables and 
messenger RNA molecules.  

Physical 
activity 
measure 

Paper I  
“Adiposity” 

Paper II 
 “Metabolic 
health indica-
tors” 

Paper III 
“Lean and mus-
cle mass” 

Paper IV 
“Muscle RNA  
signaling” 

SR-PA All fat variables, 
except muscle 
compartment AT 
area ↓, 
muscle density↑ 

Total FM, an-
droid FM, WC 
and WHR ↓ 

LBM, ALM, 
ALMI, leg LM, 
relative muscle 
area ↑  

GORASP ↑ 
APC ↓ 

ACC-
MVPA 

Trunk and an-
droid FM ↓ 

Not studied LBM, ALM, leg 
LM ↑ 

ATP5MC2, MAFK, 
ALMS1 and  
MGLL ↓ 

ACC-
MAD 

Not studied Total FM, an-
droid FM, WC 
and WHR ↓ 

Not studied INTU ↑ 
MYD88 ↓ 

ACC-MAD, accelerometer-measured mean amplitude deviation; ACC-MVPA, accelerome-
ter-measured moderate-to-vigorous physical activity; ALM, appendicular lean mass; 
ALMI, appendicular lean mass index; AT; adipose tissue; FM, fat mass; LBM; total lean 
body mass; LM, lean mass; SR-PA, self-reported physical activity; WC, waist circumfer-
ence; WHR, waist-to-hip ratio. ↑ Positive association, ↓ negative association between the 
variables. 
 
The associations between muscle mass, adipose tissue mass and metabolic health 
indicators with diet quality and exogenous hormone use were investigated in 
adjusted models. The main findings (p ≤ 0.05) are presented in Table 17. Healthier 
diet quality was associated with less adiposity in total, and in the trunk, android, 
gynoid and gluteofemoral regions and with higher muscle density. 
Perimenopausal progestogen use was associated higher LBM, ALM and leg LM. 
The combined use of estrogen and progestogen during the menopausal transition 
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was associated with lower android FM and higher gynoid FM. In addition, leptin 
levels were positively associated with combined HT use. 

TABLE 17  Associations of diet quality and exogenous hormone use with adiposity, 
metabolic health indicators and lean and muscle mass variables. 

Variable Paper I 
“Adiposity” 

Paper II 
 “Metabolic 
health indica-
tors” 

Paper III 
“Lean and 
muscle mass” 

Paper IV 
“Muscle RNA 
signaling” 

Diet  
quality 
score 

Total, trunk, an-
droid, gynoid, 
leg and glu-
teofemoral FM ↓ 
muscle density ↑ 
(SR-PA model) 
 
Total, trunk, an-
droid, gynoid, 
leg and glu-
teofemoral FM ↓ 
(ACC-MVPA 
model) 

Not studied Not studied Not studied 

Exogenous 
hormone 
use 
 
 
 

Progestogen +  
estrogen:  
Gynoid FM ↑, an-
droid-to-gynoid-
ratio ↓ (ACC-
MVPA model)  
 
Leptin ↑ (SR-PA 
model) 

Progestogen + 
estrogen: 
Android FM ↓ 
(SR-PA model) 

Progestogen:  
LBM, LBMI 
and ALMI ↑ 
(SR-PA model) 
LBM, LBMI, 
ALM, ALMI, 
leg LM↑  
(ACC-MVPA-
model)  

Not studied 

ACC-MVPA, accelerometer-measured moderate-to-vigorous physical activity; ALM, ap-
pendicular lean mass; ALMI, appendicular lean mass index; FM, fat mass; LBM, total lean 
body mass; LBMI, lean body mass index; LM, lean mass; SR-PA, self-reported physical ac-
tivity. ↑ Positive association, ↓ negative association between the variables. 
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6 DISCUSSION 

This dissertation research conducted among two longitudinal cohorts of middle-
aged Finnish women showed that the menopausal transition and menopause are 
associated with changes in body composition, metabolic health indicators and 
muscle RNA signaling. More specifically, body adiposity was found to increase 
at the total body level and especially in the metabolically harmful abdominal area. 
LM decreased at the total body level and especially in the appendicular area. Of 
the metabolic health parameters, WC, WHR, and systemic adiponectin and leptin 
levels increased and resistin levels decreased during the transition to 
postmenopause. The changing hormonal environment was associated with 49 
DE mRNA genes, but not with regulatory lncRNA genes or miRNAs in muscle. 
The affected transcriptome was linked to, e.g., extracellular matrix remodeling, 
energy metabolism, and muscle cell apoptosis, all processes which contribute to 
body and muscle composition. A higher PA level and healthier diet quality were 
associated with lower adiposity,  more beneficial fat distribution, and higher lean 
and muscle mass. Associations between changes in PA and changes in muscle 
RNA expression were also found. The use of exogenous hormones was 
associated with higher muscle mass and a metabolically healthier body fat 
distribution. 

6.1 Menopause, adiposity and metabolic health indicators 

In this study, the annual increase in total FM was on average 0.6 kg during the 
four years around menopause. Previous longitudinal studies of middle-aged 
women have reported increases between 0 and 0.9 kg per year (Abdulnour et al., 
2012; Greendale et al., 2019; Guo et al., 1999; Lovejoy et al., 2008; Marlatt et al., 
2020), whereas an older study, which also included younger women, reported a 
higher annual increase of total FM 1.4 kg in women approaching midlife (M.-F. 
Sowers et al., 1996). Some studies have also compared different menopausal 
groups, and found the highest increment in body adiposity in women who 
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became postmenopausal during the study period (Greendale et al., 2019; Lovejoy 
et al., 2008). Moreover, the same is not observed by all groups (Abdulnour et al., 
2012). The findings of this thesis are largely consistent with those of previous 
research, although it seems clear that the characteristics of the study population, 
such as genetic background (Greendale et al., 2019, 2021; Marlatt et al., 2020), play 
a part in the final results. In the current study, when the changes in adiposity 
between the menopausal transition and further progress in menopause were 
compared in a smaller subgroup of 60 women, the only difference observed was 
in muscle density, which showed a significantly higher decrease right after than 
before menopause. The two years prior to and after FMP have especially been 
reported to be a time of accelerated increase in adiposity (Abdulnour et al., 2012; 
Greendale et al., 2019; Lovejoy et al., 2008; Marlatt et al., 2020). It is possible that 
the time interval between the three samples in the current study was too short to 
observe measurable changes or to detect clearer trends. The finding of a 
decrement in muscle quality, especially after menopause, is logical, as loss of E2 
has also previously been associated with reduced muscle quality (Pöllänen et al., 
2011). 

The results of this thesis also indicated that relatively more (approximately 
twice as much) adipose tissue was accumulated in the android region compared 
to the gynoid or gluteofemoral region. An increase was also observed in the 
unadjusted measures of WC and WHR. Mid-region adiposity has been associated 
with higher risks for cardiometabolic conditions (H. Kwon et al., 2017; M. Zhang 
et al., 2015) and is thus of concern. To my best knowledge, only one previous 
study has compared increases on the regional body level (Greendale et al., 2021), 
although several studies have reported significant increases in different 
abdominal variables (e.g.,Franklin et al., 2009; Lee et al., 2009; Lovejoy et al., 2008; 
Marlatt et al., 2020). In line with the current result, Greendale and colleagues also 
reported a higher increase in the android than gynoid area. Unfortunately, the 
change in VAT specifically could not be confirmed in the current study. In fact, 
although the measurement of WC correlates relatively well with VAT adiposity 
(Camhi et al., 2011), two longitudinal studies have reported a significant increase 
in VAT but no change in WC (Abdulnour et al., 2012; Franklin et al., 2009). This 
highlights the need for further inspection of the different adipose tissue depots.  

Increased adiposity, and especially an increase in the WHR has been 
previously linked to decreases in metabolic health, in which the adipose tissue- 
secreted adipokines play a part (Fasshauer & Blüher, 2015). In both of the 
longitudinal studies reported in this thesis, an increase was observed in leptin 
and adiponectin levels, and a decrease in resistin levels. All these changes 
remained significant even when the models were adjusted for FM, indicating that 
menopause per se contributed to the changes. Similar increases in leptin have not 
been reported previously in longitudinal designs (Kanaley et al., 2001; C. G. Lee 
et al., 2009), although both E2 and FSH levels have been found to associate 
positively with leptin levels in various study designs (Di Carlo et al., 2002; 
Fungfuang et al., 2013; Geber et al., 2012; Kristensen et al., 1999; M. R. Sowers et 
al., 2008). However, the associations in middle-aged women using estrogen-
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based HT vary (Gower et al., 2000; Konukoglu et al., 2000). These two 
longitudinal studies reported that the change in leptin was associated more 
closely with the increase in FM rather than change in the hormonal milieu. 
Interestingly, Lee et al. reported that the change in leptin correlated specifically 
with the change in intra-abdominal fat (C. G. Lee et al., 2009). However, in the 
current study, when the leptin values were adjusted for android FM, the 
significance of the association with menopausal status was no longer significant. 
Thus it is possible, that in contrast with earlier studies (Rissanen et al., 1999; 
Samaras et al., 2010), VAT and also overall mid-region fat play a large role in 
leptin production. Leptin has been shown to have tissue-dependent effects on 
insulin sensitivity, as in muscle it may increase glucose uptake, while in adipose 
tissue both increases and decreases in insulin sensitivity have been observed 
(Barzilai et al., 1997; J. Wang et al., 1999). As leptin is also known to positively 
control appetite and increase metabolism (Mantzoros et al., 2011), the overall 
effect of its increase in menopausal women requires further investigation.  

The results of this thesis on adiponectin are in line with those of previous 
studies, which have also reported an increase in adiponectin levels in 
postmenopause (C. G. Lee et al., 2009; M. R. Sowers et al., 2008). Moreover, in 
postmenopausal women, higher E2 levels have been associated with lower 
adiponectin levels (Im et al., 2006; Kunnari et al., 2008). Interestingly, Sowers et 
al. observed a significant decrease in serum adiponectin in perimenopause when 
compared to pre- and postmenopause (M. R. Sowers et al., 2008). Adiponectin is 
regarded as an anti-inflammatory adipokine, one major source of which is 
thought to be gluteal fat. Although an increase in gluteal adiposity was observed 
in the present data, an increase in adiposity also occurred in the waist area. The 
increase in VAT, especially, which has previously shown a negative association 
with adiponectin levels (C. G. Lee et al., 2009), seems to conflict with finding of 
an increase in adiponectin in the estrogen-deficient state. One factor that may 
help to explain this apparent contradiction is that although the women in the 
current study gained fat in the waist region, they also gained fat in the gluteal 
region, and hence their WHR or android-to-gynoid ratio remained relatively 
unchanged. This simultaneous increase in HC may thus suggest that overall their 
adipose tissue remained healthy despite the increase in FM. The participants in 
this study also had relatively healthy lifestyle habits, which may have 
contributed to a metabolically healthier phenotype. In rodents, the loss of 
estrogens has been associated with a decrease in adiponectin receptors, thus 
possibly contributing to hyperadiponectinemia (Chattopadhyay et al., 2022). 
Whether a similar mechanism explaining the increased adiponectin occurs in 
menopausal women remains to be determined. 

Adipose tissue macrophage-secreted resistin (Patel et al., 2003), which was 
observed to decrease in this study, is considered to be an inflammatory adipokine 
due to its insulin-desensitizing properties and lipolytic actions (N. Chen et al., 
2014). Only three previous studies have investigated the effects of menopausal 
status on resistin, and while two reported no associations (Chalvatzas et al., 2009; 
Hong et al., 2007), the third (M. R. Sowers et al., 2008), which was the only 



 
 

99 
 

longitudinal study, reported an decrease in postmenopause similar to the present 
results. Resistin levels have been associated previously with increasing 
metabolically harmful adiposity (Norata et al., 2007), and higher expression 
levels have been observed in the abdominal region in both the subcutaneous and 
visceral areas (McTernan et al., 2002). Thus, again, the decrease in resistin in 
postmenopause seems counterintuitive, as postmenopause has been widely 
associated with increased inflammation and decreased metabolic health (Janssen 
et al., 2008; Q. Wang et al., 2018). Whether the characteristics of resistin change 
or healthy lifestyle habits also contribute to lowered resistin levels in menopause 
warrant further experimental studies.  

Overall, the results of this thesis on adiposity are in line with that of the 
previous longitudinal studies (e.g., Greendale et al., 2019; Lovejoy et al., 2008), 
that the menopausal transition increases adiposity independently of aging. 
Surprisingly, although adiposity also increased in the waist area and worsened 
systemic metabolic health indicators have been reported in the same cohort 
earlier (Hyvärinen et al., 2021; Karppinen, Törmäkangas, et al., 2022), the present 
adipokine profile indicates a lower inflammatory profile in the body that might 
have been expected. Healthier lifestyle habits, or enhanced adipose tissue 
steroidogenesis in postmenopause contributing to local hormone levels, and 
hence adipokine secretion (Paatela et al., 2016), may contribute to these results 
(Camhi et al., 2015; Steiner & Berry, 2022). 

6.2 Menopausal changes in skeletal muscle 

In this thesis, small but significant decreases were observed in lean and muscle 
mass during both the short-term (-0.5 to -1.5% in ~1.3 years) and long-term (-1.0 
to -4.3% in ~3.9 years) follow-ups. More specifically, during both follow-ups LBM 
decreased on average by 0.10–0.15 kg/year. Several earlier studies on 
menopausal-related hormonal changes have reported decreases of ~0.2% (-0.04 
to -0.08 kg) per year in LBM in several cohorts (Dehghan et al., 2021; Greendale 
et al., 2019; M. Sowers et al., 2007), whereas other studies have reported no 
changes, even during longer follow-ups (Abdulnour et al., 2012; Franklin et al., 
2009; Marlatt et al., 2020). In contrast, longer studies on aging have reported an 
average annual loss of 0 to 0.5 kg of FFM in women, and the largest decrease 
owing to muscle loss during and after midlife (Gába & Přidalová, 2014; Janssen 
et al., 2000; Kyle et al., 2006). Thus, the results of this thesis are relatively well in 
line especially with the previous studies, highlighting a rapid lean and muscle 
mass loss in midlife. One reason for the slightly varying results between cohorts 
may lie in the different methodologies used. Lean or muscle mass is most often 
estimated using BIA, DXA, CT or MRI. Moreover, LM, FFM, ALM or muscle area 
all vary slightly in their surrogacy potential for muscle mass estimation. For 
example, DXA LBM comprises not only skeletal muscle, but also organs, skin and 
tendons (Buckinx et al., 2018). Thus small changes in skeletal muscle mass may 
be masked by small increases in organ or intestine size, which may, at least partly, 
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correlate with increasing weight (Q. He et al., 2009). ALM or individual limb 
measurement on the other hand is often considered a more accurate muscle mass 
surrogate, as this area excludes organs. In fact, in this study the largest relative 
decreases were observed in ALM and single leg-level and with using CT imaging, 
which to my knowledge has not been used earlier in longitudinal menopause 
studies. Thus, the confirmed limb-level decreases in LM strengthen the observed 
validity of the decrease in LBM. 

The results of this thesis on the longitudinal effects of the menopausal 
transition on skeletal muscle morphology are also first of their kind, whereas in 
earlier studies only middle-aged HT users and non-users (Qaisar et al., 2013; 
Widrick et al., 2003), and middle-aged pre- and postmenopausal women have 
been compared (Pérez-Gómez et al., 2021). On the topic of fiber size, in the 
current study type I fibers were found to have the largest cross-sectional area, 
whereas no change was observed in the cross-sectional area of either type I or 
type II fibers between the peri- and postmenopausal states, a finding which is in 
line with the results of the corresponding cross-sectional studies (Pérez-Gómez 
et al., 2021; Qaisar et al., 2013; Widrick et al., 2003). In the current study, decreases 
were observed in leg muscle mass and area, thus the lack of size change in fiber 
level was an unexpected finding. However, the small sample size and large 
intraindividual variation in fiber size most probably contribute to this result. At 
all time points, histological staining showed the present participants to have a 
slightly higher proportion of type I fibers (~52% and ~70%) compared to type II 
fibers, as similarly reported previously in pre- and postmenopausal women and 
in HT-discordant twins (Pérez-Gómez et al., 2021; Qaisar et al., 2013), although 
Widrick et al. (2003) reported a higher proportion of type II than type I fibers. In 
addition to methodological variation, biopsy depth and large interindividual 
variance, especially in small scale studies, affect the results, and thus may explain 
the difference observed in this study. When the MHC isoform proportions 
obtained from the electrophoretic analyses were compared, no change was 
observed in the current study in the fiber-type ratios between estrogen- 
discordant stages, as similarly reported in a HT-discordant population (Widrick 
et al., 2003). 

The investigation of muscle metabolic capabilities and lipid accumulation 
in menopausal women is, to my best knowledge, the first of its kind. This thesis 
confirmed that type I fibers are more oxidative and accumulate more lipids than 
type II fibers also in a cohort of middle-aged women. A novel finding was that 
these properties did not change in any of the fiber types, despite increased 
adiposity, during the menopausal transition. This was of interest, as muscle 
oxidative capacity has been found to decrease in individuals with reduced 
muscle density and obesity (J. He et al., 2001; J. A. Simoneau et al., 1995). 
However, as exercise has been shown to increase oxidative metabolism 
(Goodpaster et al., 2001; Pileggi et al., 2022), it is possible that since the women 
in our study were fairly active, they did not experience a deterioration at the 
muscle metabolism level despite their increased adiposity. Interestingly, several 
significant correlations between the cell variables and total body composition 
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were found, which have not been reported from menopausal women before. For 
example, single lipid droplet area and the lipid accumulation index positively 
correlated with several total body adiposity variables. Similar correlations for 
adiposity have also been observed in other populations (Goodpaster, Theriault, 
et al., 2000; J. He et al., 2004; Malenfant et al., 2001). These studies have also 
reported associations between fiber lipid content and deteriorated insulin 
sensitivity. Unfortunately, this study was not able to further investigate the 
participants’ insulin sensitivity, but slightly higher blood glucose and insulin 
levels in postmenopause from the same cohort have been reported earlier 
(Hyvärinen et al., 2021; Karppinen, Juppi, et al., 2022). Nevertheless, in both 
studies the values remained non-pathological, and could not be used to diagnose 
decreased insulin sensitivity. Overall, decreased insulin sensitivity during 
midlife may be related to aging rather than menopause (Thurston et al., 2018).  

One recently established theory on menopause-related muscle loss relates 
to the increase in FSH rather than decrease in E2. While FSH has been found to 
increase lipid biosynthesis in muscle (X. Cui et al., 2016), increased ectopic fat has 
been shown to increase inflammation and thus potentially contribute to cellular 
damage (K. A. Britton & Fox, 2011; Sachs et al., 2019). Thus, the rapid increase in 
FSH during the menopausal transition could, in addition to aging, contribute to 
the accelerated muscle loss.  

Overall, the results of this thesis support earlier observations that 
menopause and related hormonal changes are associated with muscle loss at the 
whole muscle level, but not necessarily at the muscle fiber cross-sectional level 
also in relatively healthy and active women. 

6.3 Menopause associated findings of muscle RNA signaling  

DE mRNAs. The current study found 49 DE mRNA genes, only one of which has, 
to my knowledge, earlier been reported to be regulated by menopause. ZNF84 
has previously been linked in human muscle to postmenopause progression 
(Pöllänen et al., 2007). However, whereas Pöllänen and group (2007) reported 
upregulation of ZNF84 in later postmenopause, the opposite was observed in the 
current study. ZNF84 is predicted to function in transcriptional regulation and 
has also been found to upregulate the expression of p21, a regulator of the 
senescence process in vitro (Strzeszewska-Potyrała et al., 2021). In breast cancer 
cells, E2 has been found to decrease ZNF84 mRNA expression (Dip et al., 2009). 
These mechanisms in the muscle require detailed investigation. 

In the current study, the DE genes were associated with regulation of the 
extracellular matrix (e.g., ECM1 and ELN), cell-cell-interactions (e.g., APC, JAK2 
and PRKCA), energy metabolism (e.g., SESN2), apoptosis signaling (PIDD1 and 
BIRC6), muscle hypertrophy (e.g., JAK2 and MKNK1) and, for example, 
mitochondrial dysfunction (e.g., ATP5MC2). Similar over-represented functions 
have also been reported by others. In postmenopausal twins discordant for HT, 
genes related to cellular and environmental interactions and anatomical structure 
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were found to be differentially expressed (Ronkainen et al., 2010). Another study 
found that postmenopausal HT use affected the expression of genes related to 
the post-translational modifications of proteins, proteo- and peptidolysis and, for 
example, cell proliferation, whereas postmenopausal aging was associated with 
genes related to RNA splicing, protein folding and, for example, proteolysis 
(Pöllänen et al., 2007). In animal studies, ovariectomy has been associated with 
the upregulation of atrophy- and apoptosis-linked genes and downregulation of 
antioxidant genes in muscle (Baltgalvis et al., 2010; E.-J. Cho et al., 2021; Karvinen 
et al., 2021). Owing to the similarity between the results of this study and others 
in the pathways affected by the loss of ovarian hormones, the finding of only one 
common gene was unexpected. Possible factors contributing to the differences in 
results may include more dramatic hormone-level differences in previous study 
set-ups, the dynamic nature of transcriptome (Baudrimont et al., 2017), and also 
the simultaneous effect of aging (Pöllänen et al., 2007). In addition, the DE genes 
identified in the current study were found to be linked to mitochondrial function, 
one of the main regulators of skeletal muscle metabolism. Pathways of oxidative 
phosphorylation and mitochondrial dysfunction were found to be over-
represented and renin-angiotensin signaling was also found to be activated.  
Earlier animal studies have reported a reduction in muscle oxidative capacity, 
mitochondrial biogenesis and respiratory function due to loss of estrogens 
(Barbosa et al., 2016; Campbell et al., 2003; Torres et al., 2018). Additionally, 
increased renin-angiogenin signaling has been found to promote mitochondrial 
reactive oxygen species production and thus contribute to muscle wasting 
(Powers et al., 2018). Thus, the findings of this thesis can be considered to add to 
and confirm the previous findings on the potential signaling mechanisms 
affecting muscle mass loss and metabolism in menopause.  

At the individual gene level, several of the identified DE genes have 
previously been associated with muscle properties. For example, E2F3, ZEB1, 
APC, JAK2, and MYD88 have been found to regulate muscle cell and tissue 
regeneration, proliferation and cellular death (Gallot et al., 2018; H.-R. Kim et al., 
2019; Parisi et al., 2015; Siles et al., 2019; Song et al., 2015; K. Wang et al., 2008). 
E2F3 and ZEB1 are known to have specifically positive effects on muscle mass, 
and E2 and P4 are known to upregulate their expression in other tissues than 
muscle (R. Liu et al., 2011; Mazur et al., 2015; Qiao et al., 2011; R.-F. Wu et al., 
2018). The findings of this study on the downregulation of E2F3 and ZEB1 in 
postmenopause may indicate that similar regulation also occurs in skeletal 
muscle. Surprisingly, in contrast to earlier findings on a reduction in the satellite 
cell pool (Collins et al., 2019), APC, JAK2 and MYD88, which have important 
roles in satellite cell differentiation, proliferation and tissue repair were found in 
the current study to be upregulated in postmenopause. However, since the 
satellite cell pool is also regulated by several other factors, such as Wnt7a and 
collagen (Dumont et al., 2015), the predicted dysregulation of genes in this study 
at the mRNA level may be only part of the whole entity. In tumor and animal 
models, APC, JAK2 and MYD88 have been found to be upregulated by E2 and P4 
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(N. L. Cho et al., 2007; N. Gupta et al., 2012; Jeong et al., 2005; Monroe et al., 2005), 
which is the opposite of what was observed in this study.  

PRKCA and MGLL, which have previously been associated with adiposity 
and metabolic health, were among the observed DE genes. In the current study, 
PRKCA was upregulated in postmenopause. As PRKCA phosphorylates several 
protein targets and has been observed to induce hypertrophy in cardiac muscle 
(Braz et al., 2002), but to inhibit glucose uptake in skeletal muscle (Letiges et al., 
2002), the observed upregulation may contribute to muscle insulin sensitivity. In 
cancer cells, E2 has been found to upregulate PRCKA (Boyan et al., 2003), whereas 
our results in muscle suggest the opposite. MGLL is responsible for the last step 
of cellular lipolysis, converting monoacylglycerides into free fatty acids and 
glycerol. In addition, MGLL plays a role in the endocannabinoid system and 
inflammation (Gil-Ordóñez et al., 2018). Surprisingly, total body knockout of 
MGLL protects from obesity and insulin resistance, whereas overexpression in 
the small intestine leads to fat accumulation (Chon et al., 2012; Yoshida et al., 
2019). MGLL expression has been observed to be upregulated by E2 in tumor cells 
(Ariazi et al., 2011), but no previous data on skeletal muscle were found. In the 
current study, MGLL was downregulated in postmenopause, which may indicate 
decreased lipolysis in the muscle tissue.  

In addition to the abovementioned genes, the correlation analysis also 
revealed some new potential contributors to skeletal muscle mass and adiposity. 
For LM especially, the changes in GTF2F2, C1QTNF9 and TMEM39B were found 
to have multiple correlations. GTF2F2 is a transcription factor, which in the 
current study was positively associated with several LM variables. In humans, 
GTF2F2 has not been studied in regards to body composition, but in pig muscle 
it has been found to participate in the regulation of feed efficiency traits, 
including the percentage of LM and intramuscular fatness (Ramayo-Caldas et al., 
2019). However, the details of this regulation are not clear. Additionally, GTF2F2 
has been found to be upregulated by E2 and P4 in vitro and in vivo (Boverhof et 
al., 2008; Tamm et al., 2009), whereas in the current study the opposite was 
observed. Very little previous data on skeletal muscle is found for C1QTNF9 and 
TMEM39B. C1QTNF9 is a likely new adipokine, which has been found to 
improve insulin signaling, mitochondrial content and to reduce apoptosis, but 
also proliferation in cardiac and smooth muscle cells (Kambara et al., 2012; 
Uemura et al., 2013; Wei et al., 2014). In the current study, C1QTNF9 was found 
to be downregulated in postmenopause and to correlate positively with LM. The 
detailed effects of CIQTNF9 in skeletal muscle remain unknown, but the present 
results suggest that it could potentially have a positive effect on muscle mass. 
Lastly, TMEM39B has interestingly been found to be upregulated in the muscles 
of older men and women (Thalacker-Mercer et al., 2010), as also in the present 
data. The increase in TMEM39B in the current study was associated with a 
decrease in regional LM, indicating that it may be a negative regulator of muscle 
mass. Based on target gene prediction, TMEM39B is a target of ERα (Mathelier et 
al., 2014), and thus subject to estrogenic regulation. 
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In the adiposity correlation analyses, the changes in ALMS1, MAFK and 
ZEB1, especially, were found to have significant correlations. For ALMS1 and 
MAFK, no previous data exist on muscle tissue. ALMS1 has a function in 
maintaining cellular shape and intracellular transport, while defects in ALMS1 
have been associated with young-onset obesity syndrome (Collin et al., 2002; L. 
Yu et al., 2021). In the current study, downregulation of ALMS1 was similarly 
associated to increased adiposity. In epithelial cells, E2 has been observed to 
decrease ALMS1 expression (Winuthayanon et al., 2014), while in this study a 
downregulation was observed in the estrogen-deprived state. MAFK, which 
correlated negatively with FM, gluteofemoral FM and thigh SAT, has been 
associated earlier with, for example, neuronal degeneration (Katsuoka & 
Yamamoto, 2016). In vivo, progestogens have been shown to upregulate MAFK 
expression (Vallejo et al., 2014), as also observed in present skeletal muscle 
samples. ZEB1, which had positive correlations with android FM and gynoid FM, 
is required in muscle for regeneration (Siles et al., 2019), whereas its functions in 
adiposity are unknown. Overall, the generalizability of the previous literature to 
the findings of the current study regarding muscle mass and adiposity are very 
speculative, but may nevertheless encourage further in-depth research.  

Unexpectedly, it was found the DE mRNA genes in women followed from 
early perimenopause to early postmenopause were different from those in the 
women followed from late perimenopause to early postmenopause. The 
EarlyMT women showed a larger decrease in E2 and increase in FSH than the 
LateMT women. The EarlyMT women were followed on average for slightly 
longer than the LateMT women (1.5 ± 0.9 years vs. 1.0 ± 0.6 years), and when the 
effect of time was investigated using repeated samples correlations or in a 
DESeq2 model, the two groups were not found to be differentiated by the interval 
between their biopsies. Thus, these results suggest that differences in hormonal 
changes, or in crossing the threshold levels for E2, may underlie the differences 
in the DE mRNA genes. Perimenopause has been found to be a time of many 
non-linear changes that may not become visible if comparisons are limited solely 
to pre- and postmenopausal women (Abdulnour et al., 2012; Matthews et al., 2009; 
M. R. Sowers et al., 2008).  
 
Regulatory RNAs. In the current study, no DE lncRNA genes were observed. The 
results of this thesis thus conflict somewhat with the previous animal studies, in 
which several DE lncRNAs in the rodent OVX model and in fish after E2 
supplementation have been observed (Chai et al., 2019; J. Wang et al., 2017). The 
DE lncRNAs found in these studies were related to pathways regulating the 
citrate cycle, p53 signaling, adipocytokine signaling, estrogen signaling and, for 
example, fatty acid synthesis, indicating important regulatory roles for the 
ovarian hormones in cellular lncRNA signaling. Additionally, in human cell 
studies E2 has been found to regulate the expression of, for example, H19 and 
MALAT1 (Sedano et al., 2020). Although no DE lncRNA genes were found in the 
present study, ten DE lncRNA transcripts were observed, of which one was a 
downregulated transcript of MALAT1. In skeletal muscle, MALAT1 promotes 
myoblast proliferation (Watts et al., 2013) and decreases during aging (Ruan et 
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al., 2022), and hence the observed downregulation may contribute to the 
regenerative capacity of the muscle. The roles of the other DE lncRNA transcripts 
in relation to menopause-related hormones or muscle tissue properties remains 
to be discovered. 

During the current study, the expression levels of miRNAs also remained 
unchanged during natural menopause. Previous in vitro studies have reported 
E2 and P4 to regulate the expression of, for example, miR-21, -26, -133, -148a and 
-let-7a (Bhat-Nakshatri et al., 2009; Klinge et al., 2010; Pan et al., 2017; Tan et al., 
2014; Tao et al., 2014; Xie et al., 2014), whereas previous in vivo and human 
studies have observed changes in miRNAs after E2 treatment in cattle, in mouse 
OVX and ER KO models and in HT-discordant twins and (Collins et al., 2019; 
Karvinen et al., 2021; Martignani et al., 2019; Olivieri et al., 2014). Although the 
current study is the first longitudinal study to be conducted on menopausal 
humans, the findings are somewhat unexpected when compared to earlier ones. 
It is possible, that due the continuing fluctuation of hormones during 
perimenopause and early postmenopause, miRNA signaling also fluctuates, 
unlike in the OVX or HT models, where hormone levels are kept relatively stable 
by exogenous preparations and thus differences are not observed.  

Since to date only a few studies have reported on associations between 
muscle ncRNA expression and body composition variables, correlation analyses 
between changes in RNA expression and in FM and LM variables were 
conducted. Among the top 20 expressed lncRNA genes and DE lncRNA 
transcripts, MALAT1, LINC02541 and MIR1-1HG, for example, were found to 
correlate positively with several FM variables. Similar positive correlations have 
been previously reported between adipose tissue and MALAT1 (J. Han et al., 
2021; Piórkowska et al., 2022), while downregulation of LINC02541 has 
previously been associated with metabolically unhealthy obesity (Prashanth et 
al., 2021). MIR1-1HG, which serves as a host gene for myomiRNA miR-1, was 
also found to be positively associated with the FM variables in this study but has 
not previously been investigated in muscle or other tissues. For the lean mass 
variables, all the reported correlations in this thesis are, to my best knowledge, 
novel. Only KCNQ1OT1 has previously been investigated in skeletal muscle cells, 
where it was shown to reduce the expression of cell-cycle inhibitor p57 
(Andresini et al., 2019). In the current study it was also associated positively with 
the lean mass variables.  

The miRNA results of the current study showed that miR-30d-5p, -206 and 
-378a-3p were especially found to correlate positively with the LM variables. 
Similar results have been found in humans for miR-30d-5p, while miR-206 has 
been observed to attenuate muscle atrophy in mice and miR-378a-3p to promote 
myoblast proliferation (Gagan et al., 2011; Q.-K. Huang et al., 2016; C. J. Mitchell 
et al., 2018). For adiposity variables, several correlations were observed, 
especially in the changes in miR-1, miR-21-5p, -26a, -30d, -99a and -126-3p. In 
humans, serum miR-1 has been linked to increased risk for type 2 diabetes 
(Al‑Κafaji et al., 2021), whereas in rodents, miR-1 expression is increased in 
obesity (D. E. Lee et al., 2016), although, conversely, increased muscular miR-1 
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levels have also been associated with improved insulin sensitivity (Rodrigues et 
al., 2021). miR-21 has also been proposed to be an inflammatory marker and to 
contribute to muscle atrophy (Borja-Gonzalez et al., 2020; W. A. He et al., 2014). 
In adipose tissue, miR-26 and -30 have been found to promote adipogenesis, and 
miR-99a to associate negatively with inflammation (Jaiswal et al., 2019; Karbiener 
et al., 2014; Zaragosi et al., 2011). In vivo, muscle miR-126 levels have been 
observed to be decreased in obesity (Gomes et al., 2017). Although several of the 
earlier results are not specifically from skeletal muscle, the findings for muscle 
miRNAs of this thesis can be considered relatively consistent with those of 
previous studies.  

As with to the differences in DE mRNAs between EarlyMT and LateMT, 
several of the correlations of the miRNAs and lncRNAs with the body 
composition variables also differed between the groups. Possible reasons for this 
include the effect of the relatively small sample size, especially of the EarlyMT 
group. Additionally, since several of the adiposity and muscle mass variables 
correlated with each other, correlation patterns may emerge. Third, since the 
groups differed from each other in mRNAs, it seems reasonable to assume that 
the same regulators that affect mRNA transcription, may also regulate non-
coding RNA transcription.  

Several of the observed DE RNAs in the muscle of this study have been 
found to be regulated by especially E2 and P4, but data from muscle tissue is rare. 
Although DE mRNA genes were observed, due to the observational nature of the 
study, it cannot be concluded completely that the changes are solely due to 
menopause. Observations of the current study may function as a start for further 
studies, as skeletal muscle has been studied somewhat little in this context. 

6.4 Lifestyle habits, body composition, metabolic health 
indicators and muscle transcriptome  

Physical activity. Hormonal aging and its consequences cannot be completely 
prevented, but several aging-related changes can be attenuated through lifestyle 
habits (Cartee et al., 2016; Galland, 2010). In the current study, PA was 
investigated using three different variables, and it was found, that a higher PA 
level in midlife was associated with lower adiposity and metabolic health 
indicators WC and WHR, and higher LM and muscle density. Similar results 
have also been reported from observational studies by other groups (Kanaley et 
al., 2001; Sternfeld et al., 2004, 2005). In addition, several intervention studies 
have confirmed that PA in the recommended weekly amounts during midlife 
continues to be effective in improving body composition, and increasing muscle 
power and physical performance (e.g., Coll-Risco et al., 2019; Dam et al., 2020; 
Sipilä et al., 2001). In the current study, no associations were observed between 
adipokines and PA. No previous studies have investigated these associations in 
a similar context. Earlier controlled PA studies on middle-aged women have 
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shown that while resistance exercise can decrease leptin and resistin levels, the 
effects on adiponectin levels are mixed (K. M. Park et al., 2019; Ward et al., 2020). 
In the current study, the results between the different PA variables regarding 
body composition and metabolic health indicators were aligned with each other, 
thereby supporting the observed associations on the positive effects of PA. 

The associations between changes in the muscular transcriptome and PA 
variables were also investigated. Only a few previous studies could be found 
reporting associations for the same RNAs as those observed in this study. In the 
current study, negative associations were observed between the changes in APC, 
ATP5MC2, MYD88, MAFK and MGLL, and PA levels. Of two of these, APC and 
MYD88, the present results contrast with previous findings. Previous research 
has found that PA increases APC expression (Coyle et al., 2007), whereas for 
MYD88 the results vary across species. In humans, MYD88 expression in skeletal 
muscle decreased after physical inactivity (O. S. Kwon et al., 2015), whereas in 
rats it decreased after PA (Shirvani et al., 2021). As both APC and MYD88 are also 
targets of ovarian hormone regulation (N. L. Cho et al., 2007; El Sabeh et al., 2021; 
Matias et al., 2021), the simultaneous change in hormone levels may contribute 
to these changes. The present findings for MGLL resemble earlier observations 
(Schönke et al., 2020). For ATP5MC2 and MAFK, previous studies have reported 
more ambiguous results. ATP5MC2 encodes a subunit of mitochondrial ATP 
synthase (complex V). In this study ATP5MC2 was found to be upregulated in 
postmenopause, while one previous study suggests that estrogen deprivation is 
not associated with protein levels of complex V (Nyberg et al., 2017). Overall, 
long term PA increases mitochondrial density (reviewed in Nilsson & 
Tarnopolsky, 2019), and thus exercise could also be linked with increased 
complex V expression. However, two studies on menopausal women reported a 
blunted response to exercise of mitochondrial properties (Abildgaard et al., 2013; 
Nyberg et al., 2017). MAFK is a co-activator of Nrf2, which is known to have 
antioxidative properties and to be induced by exercise, but it is also known that 
this response is diminished during aging (Mallard et al., 2020). Perhaps, owing 
to aging, exercise either fails to promote or begins to downregulate MAFK 
expression, which further leads to reduced Nrf2 response.  
 
Diet quality. The results of this thesis suggest that healthier diet quality is 
associated with lower adiposity and higher muscle quality in middle-aged 
women. These observations resemble those of previous studies, in which a 
Mediterranean diet, especially, has been found to be beneficial for maintaining 
or improving middle-aged women’s body composition (Flor-Alemany et al., 2020; 
Lombardo et al., 2020; L. Wu et al., 2014). Our study was not designed to measure 
aspects of Mediterranean diets but instead reflected the Nordic Nutrition 
Recommendations (The Nordic Council of Ministers, 2014). Since menopause-
related hormones alone not only have wide-ranging effects on appetite control 
(Buffenstein et al., 1995), but also affect, for example, leptin response (Clegg et al., 
2006), it could be beneficial for women to receive nutritional guidance in midlife 
to ensure optimal dietary choices.    
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Exogenous hormones. Previous studies investigating the effects of HT on body 
composition and metabolic health have reported both beneficial (e.g., Ahtiainen 
et al., 2012; Kristensen et al., 1999; Salpeter et al., 2006; Sipilä et al., 2001) and 
mixed results (e.g., Ambikairajah et al., 2019; Javed et al., 2019; Kunnari et al., 
2008). In the current study, combined estrogen and progestogen use was 
associated with higher gynoid FM and leptin levels, and lower android FM and 
a lower android-to-gynoid ratio during mid-life. In line with the results in the 
current study, also a large meta-analysis found HT to be protective against mid-
region adiposity, although HT was also found to increase total body fat 
percentage (Ambikairajah et al., 2019). Possibly due to increased SAT, increases 
in leptin have also been reported earlier (Konukoglu et al., 2000), whereas 
contradictory results have been reported in non-FM-adjusted studies (Gower et 
al., 2000; Kristensen et al., 1999). Due to leptin’s high link to adiposity, 
interpretation of further studies would benefit from consistent FM adjustments 
before final conclusions on the relationship between leptin and HT. Additionally, 
in the current study, baseline progestogen use was associated with higher LM on 
both the total body and regional body level. In premenopausal women, the use 
of a progestogen containing intrauterine device has been associated with slightly 
larger relative muscle mass compared to non-users, but also with an increase in 
body fatness (Suuronen et al., 2019). In postmenopausal women, P4 supplement 
has been associated with an increased protein fractional synthesis rate, although 
whether this translated to total body level was not reported (G. I. Smith et al., 
2014). The results of this study are thus in line with those of the earlier studies, 
although the current study was not originally designed to investigate the effects 
of HT and thus the use of different HT preparations was not controlled.  

6.5 Methodological considerations 

This study utilized data from two longitudinal cohorts of middle-aged women 
undergoing menopause. The invited population consisted of 82% of the whole 
age cohort of 47- to 55-year-old women living in the Jyväskylä region. Of the 
responders, only those with relatively good health, without severe inflammatory 
or metabolic conditions and BMI < 35 kg/m2 were included in the laboratory 
measurements. Although the selection process limits generalization of the results 
mainly to women in good physical health and with no conditions affecting daily 
functioning, the sample represented the Finnish middle-aged female population 
relatively well (Kekäläinen et al., 2021).  

The study design of short- and long-term follow-ups with two (three for a 
smaller subpopulation) measurement points allowed the monitoring of body 
composition around the FMP but did not allow the exact measurement of annual 
changes or observation of potentially non-linear change rates in earlier 
premenopause or at later postmenopause. From the 60 women, whose body 
composition were measured in perimenopause, early postmenopause and at 
later postmenopause, estimation of the annual changes before and after 



 
 

109 
 

menopause was possible, but this analysis revealed differences only in one 
variable.  

Menopausal status at all time points was assigned using data from both self-
reported menstrual cycle and the measurement of systemic FSH. Due to the 
pulsative nature of FSH, especially during the menopausal transition and early 
menopause, the FSH measurements were repeated after a short interval and 
averaged to ensure better accuracy and to avoid the effect of daily fluctuation. A 
longer menstrual data collection period before the baseline and end 
measurements might have increased the precision the assignment of menopausal 
status; however, due to the retrospective nature of this study, a period of at least 
six months was considered sufficient. With respect to menopausal hormones, E2 
was measured using immunoassays, the sensitivity of which may be lower at 
lower serum concentrations (Rosner et al., 2013). However, E2 measurement was 
only measured to describe the participants, and not used to characterize 
menopausal status or used in the statistical models. Additionally, due to high 
material cost, serum adipokine measurements were conducted in singlets instead 
of duplicates. This may have had a slight effect on accuracy. However, as the 
results of this thesis were relatively in line with the previous results, the results 
can be considered reliable. 

The amount of fat and lean mass and muscle area was measured using DXA 
and CT. These methods are considered to be gold standards for measuring body 
composition and to have high reproducibility (Cordero-MacIntyre et al., 2002; 
Lohman et al., 2009; Strandberg et al., 2010), although the ability of DXA to detect 
the smallest changes in regional muscle mass in longitudinal designs has been 
debated (Delmonico et al., 2008; Tavoian et al., 2019). However, I consider that 
this limitation has been addressed in this thesis by using both total body and 
regional LM variables, complementary CT imaging and a relatively large sample 
population. Unfortunately, I was unable to differentiate waist area SAT from 
VAT as I did not have access to a newer version of the DXA analysis program or 
MRI. This additional measure would have benefited the study greatly. All the 
body composition measurements were done by trained and experienced 
personnel.  

In the current study muscle biopsies of m. vastus lateralis were used. The 
biopsies were both taken and handled by an experienced physician and 
laboratory staff. The location of the biopsy was measured, and the successive 
biopsies were taken in close proximity to the first. Muscle biopsies are susceptible 
to various sources of error. For example, it has been stated that myosin isoform 
expression varies between the different muscle layers as well as along the 
longitudinal axis (Horwath, Envall, et al., 2021; Lexell & Taylor, 1991). Thus, if 
repeat biopsies are taken from slightly varying layers, this can affect the analysis 
of fiber type and size. In addition to the sampling location, the orientation of the 
fibers in the section (cross-sectional or longitudinal) as well as freezing artefacts 
may affect the results. I addressed this possibility by manually pre-examining all 
the sections before the image analysis. Due to the time-consuming nature of the 
staining protocols, I was able to handle only a limited number of samples per 
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analysis. This affected the power of statistical analysis and may contribute to the 
current results. Although the stainings of the muscle samples were conducted 
using recognized protocols drawn from earlier publications and from the 
database of our own laboratory, I sought to optimize them further whenever 
needed.  

For the RNA analysis, all the possible biopsies available were used. The pre- 
and after-sequencing quality of the samples was estimated using, for example, 
RNA integrity values and Q30 values. The data were also inspected visually in 
several ways, and thus these results can be considered trustworthy. In the 
absence of universal guidelines for handling sequencing data with bioinformatics, 
decisions on this were made based on the existing literature and after consulting 
experts in the field. It was observed that even small changes in setting a filter 
affected the results, and thus the final parameters used are reported as in precise 
detail. With regards to the over-enrichment and IPA analyses, both included 
manual decision making and thus the results are subject to alteration after 
different imported settings. The results of the correlation analyses in Paper IV 
were reported without correcting for multiple comparisons. I am aware that this 
increases the risk of false-positive results, but due to the novelty value and 
exploratory nature of the study, the current way of reporting was selected.  

For the measurement of lifestyle habits, PA, especially, was 
comprehensively estimated using two different methods and three variables. As 
it is widely recognized that self-reported and accelerometer-measured PA 
measure somewhat differing aspects of PA, using both in the study improves the 
reliability of the conclusions. The DQS used has been shown to correlate with 
negatively with body fat percentage in our own studies (data not published); 
however, due to its discrete nature, it does not capture small changes in diet or 
food quantity. Unfortunately, it also does not offer information on the dietary 
caloric content, which would have been especially interesting in this study. The 
use of exogenous hormones during the study was investigated using 
questionnaires and nurse interviews. As only a small fraction of the women 
reported using either progestogens at baseline or started using HT during the 
study, and since some of the reporting was done retrospectively and without 
details on dosages, prevents the drawing of very strong conclusions from this 
subpopulation. Nevertheless, the observations of the HT users in this study are 
still in line with those reported in previous studies. 

6.6 Future perspectives 

The findings presented in this dissertation, along with previous research, suggest 
that the hormonal changes that occur during the menopausal transition impact 
body composition, metabolic health indicators and skeletal muscle RNA 
signaling. Further study is needed to understand in detail why it is that not all 
women experience similar changes during menopause. This dissertation could 
be a useful starting point for research on this important issue.  
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Despite the progress made in understanding the hormonal regulation of fat 
and muscle tissue, many questions remain unresolved, such as ascertaining the 
precise molecular mechanisms that impact muscle mass and metabolic health 
during menopause. The results obtained from muscle biopsies in the present 
study provide initial insights into the intramuscular factors that influence muscle 
homeostasis and contribute to metabolic health. The DE genes identified in this 
thesis should be further validated through protein-level analysis. If changes are 
observed at the protein level, knockout models, overexpression, or inhibitors 
could be used to further investigate the role of these molecules. As skeletal 
muscle tissue is known to secrete signaling molecules that impact several other 
tissues (Leal et al., 2018), it would be interesting to confirm whether the identified 
functional proteins also function as measurable myokines. More research is also 
needed to understand the specific roles played by P4 and FSH in regulating body 
composition and muscle function, as the levels of these hormones also change 
dramatically during menopause. 3D or multi-tissue models later accompanied 
with a suitable in vivo model could potentially provide more knowledge.  

This thesis examined the associations between lifestyle habits and health 
parameters through observational data. Currently, the amount of research on the 
specific effects of PA, diet quality and the use of exogenous hormones on health 
during menopause is limited, and the extent to which the negative changes due 
to menopause can be mitigated by lifestyle changes remains unclear. Perhaps the 
most reliable way to study the effects of lifestyle on menopausal health would be 
through randomized controlled trials. In these studies the intervention period 
should be long enough (at least one to two years), and focus could be on different 
PA patterns (such as resistance vs. resistance + endurance exercise, moderate or 
high-intensity etc.), structured diet (e.g., Mediterranean or high protein diet) or 
on investigating more carefully the metabolic pathways of different HT 
preparations. Previous studies have been successfully conducted (Simkin-
Silverman et al., 2003; Sipilä et al., 2001), but more research among different 
populations and with multiple intervention groups is needed. The menopausal 
transition and postmenopause are times of varying symptoms that can impair a 
woman’s ability to maintain healthy lifestyle habits, and hence more research 
should focus on addressing these symptoms, such as poor sleep, hot flashes, and 
lack of energy, to better support healthy lifestyle choices. In addition, more 
specific and sustainable instructions based on scientific evidence should be 
developed for menopausal women to assist them maintain motivation. 

While human physiology during menopause is most suitably investigated 
using human models, the effects of chronological aging are simultaneously 
present. Studies on gonadotropin antagonists can be, and have been, used to 
investigate non-permanent ovarian suppression (Gavin et al., 2020; Shea et al., 
2015). However, this treatment also lowers systemic FSH levels, which may have 
an impact on the results. Middle-aged women, who go through prophylactic 
ovary removal to reduce cancer risk, as in Karia et al. (2021), are one interesting 
study group for modeling hormonal changes. These women experience a rapid 
drop in ovarian hormone levels but maintain normal pituitary response. 
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Investigating this group of women in more detail in a longitudinal design could 
provide more information on the effects of hormonal changes. 

In conclusion, based on the results of this thesis, further research on the 
reasons behind menopausal changes in health could enable more targeted 
interventions that help women to maintain optimal health during and after mid-
life. While aging cannot be fully prevented at present or in the near future, 
delaying its effects would likely lead to healthier and more enjoyable later years. 
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7 MAIN FINDINGS AND CONCLUSIONS  

The main findings of this thesis are: 
 

1. Increases in body adiposity, especially in the waist area, and decreases in 
lean and muscle mass during midlife are associated with menopause and 
related hormonal changes. However, while in our cohort the total and central 
body adiposity were increased and lean and muscle mass was lost, the 
changes in women’s serum adipokines were somewhat opposite to what was 
expected and did not indicate clear decrement of metabolic health, possibly 
due to the women’s overall healthy lifestyle habits.  
 

2. During the menopausal transition, muscle mRNA expression changes and 
this change is specific to the baseline menopausal transition stage. The genes 
that were found to respond to hormonal changes have the potential to 
contribute to several aspects of skeletal muscle tissue homeostasis and 
metabolism, but also total body composition. In the current study, the muscle 
lncRNA gene or miRNA expression did not change during the menopausal 
transition, possibly indicating that mRNA expression may be more sensitive 
to changes in ovarian and gonadotropin hormones than miRNA or lncRNA 
gene expression. Moreover, muscle fiber type, size, lipid accumulation or 
enzymatic capacity did not change significantly. 
 

3. Higher PA, measured with both self-reports and accelerometer data is 
associated with lower adiposity and higher lean and muscle mass in middle-
aged women. Healthier diet quality is also associated with lower adiposity 
at both the total body and regional levels. In the current study, exogenous 
hormone use, including both progestogen only or in combination with 
estrogen, was associated with a more beneficial body fat distribution and 
higher lean mass. Moreover, correlations were found with changes in PA and 
muscle mRNA levels. Thus, especially PA and healthier diet quality, and 
possibly also the use of exogenous hormones, are efficient for maintaining a 
healthier body composition in middle-aged women. 
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YHTEENVETO (SUMMARY IN FINNISH) 

Vaihdevuosien siirtymävaiheen vaikutukset kehonkoostumukseen: 
hormonaalisten muutosten, lihaksen RNA signaloinnin ja 
elintapamuuttujien yhteydet. 
 
Moni nainen alkaa keski-ikää lähestyessään kokea erilaisia oireita, kuten epä-
säännöllisiä kuukautisia, heikentynyttä unenlaatua, kuumia aaltoja ja esimer-
kiksi kehonkoostumuksen muutoksia. Tämä ajanjakso eli vaihdevuosien siirty-
mävaihe ennen menopaussia johtuu pääasiassa munasarjojen toiminnan heikke-
nemisestä hormonaalisen ikääntymisen myötä. Menopaussin eli viimeisten kuu-
kautisten jälkeen nainen ei enää voi tulla raskaaksi. Vaihdevuosien siirtymävai-
heen hormonimuutosten ajankohta, muutosten mukanaan tuomat oireet ja nii-
den kesto vaihtelevat yksilöllisesti.  Hormonimuutoksista merkittävimpiä ovat 
naishormoni estradiolin määrän väheneminen ja aivolisäkkeen erittämän follik-
kelia stimuloivan hormonin määrän kasvaminen verenkierrossa. Erityisesti est-
radiolilla tiedetään olevan vaikutuksia useisiin elimistön kudoksiin, kuten rasva-, 
luurankolihas-, luu- ja hermokudokseen. Menopaussin ohittamisen jälkeen nais-
ten riski osteoporoosiin, sydän- ja verisuonitauteihin ja tyypin II diabetekseen 
sairastumiseen kasvaa selvästi ja jää koholle loppuelämäksi. Vaikka aihetta on 
tutkittu paljon, yksityiskohdat hormonimuutosten merkityksestä ovat vielä sel-
vittämättä. 

Tämän tutkimuksen tarkoituksena oli selvittää pitkittäisaineistossa, vaikut-
taako vaihdevuosien siirtymävaiheen ja menopaussin läpikäyminen naisten ke-
hon rasvoittumiseen, aineenvaihdunnallisen terveyden markkereihin, lihasmas-
san määrään sekä lihaskudoksen ominaisuuksiin. Lisäksi selvitettiin, ovatko 
keski-iän fyysinen aktiivisuus, ruokavalion laatu ja ehkäisy- ja hormonikorvaus-
hoitovalmisteiden käyttö yhteydessä kehonkoostumukseen, aineenvaihdunnal-
lisen terveyden markkereihin ja lihaksen RNA-molekyylien ilmentymiseen.  

Tässä väitöskirjassa käytettiin aineistona kahta pitkittäistutkimusta, jotka 
käsittivät yhteensä yli kolmesataa Jyväskylän seudulla asuvaa keski-ikäistä 
naista. Estrogeeni, vaihdevuodet ja toimintakyky (ERMA) -tutkimus koostui 
234:stä tutkimuksen alussa vaihdevuosien siirtymävaiheessa (perimenopaus-
sissa) olevasta naisesta, joita seurattiin yksilöllisesti yli menopaussin varhaiseen 
postmenopaussiin asti. Estrogeeni, mikro-RNA:t ja metabolisten toimintahäiriöi-
den riski (EsmiRs) -tutkimus oli neli-vuotisseurantamittaus ERMA-tutkimuksen 
alkumittauksille, jossa tutkittiin 149 naista, jotka siirtyivät joko vaihdevuosien 
siirtymävaihetta edeltävästä vaiheesta eli premenopaussista tai perimenopaussi-
vaiheesta postmenopaussiin. Vaihdevuosivaihe määritettiin tutkimuksen eri vai-
heissa käyttäen STRAW+10 kategorisointia, joka perustuu kuukautisten säännöl-
lisyyden ja follikkelia stimuloivan hormonin pitoisuuksien määrittämiseen. 

Väitöskirjassa hyödynnettiin tutkimuksista kerättyjä kehonkoostumus-mit-
tausten tuloksia, veri- ja lihasnäytteitä sekä kyselylomakkeilla ja aktiivisuus-mit-
tarilla kerättyä tietoa naisten kuukautisista, ruokavaliosta, hormoni-valmistei-
den käytöstä sekä fyysisestä aktiivisuudesta. Kehon rasvan ja lihaksen määrä 
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mitattiin kaksienergiaisella röntgenabsorptiometrialla sekä oikean reiden koos-
tumus kvantitatiivisella tietokonetomografiakuvantamisella. Verinäytteistä mi-
tattiin estradiolin, follikkelia stimuloivan hormonin, sekä rasvakudoksen erittä-
mien adipokiinien (adiponektiini, leptiini ja resistiini) pitoisuudet. Reidestä ote-
tusta lihasnäytteestä määritettiin lihassolujen koko, tyyppi, aineenvaihdun-nalli-
nen aktiivisuus ja solun sisäisen rasvan määrä. Lisäksi lihasnäytteistä tutkittiin 
eri proteiineja koodaavien ja koodaamattomien RNA-molekyylien pitoisuuksia 
sekvensoinnin ja bioinformatiikan avulla. Kyselylomakkeilla kerättyjen tietojen 
perusteella laskettiin ruokavalion laatu, vapaa-ajalla ja työmatkalla harrastetun 
fyysisen aktiivisuuden määrä sekä määritettiin mahdollinen ehkäisy- tai hormo-
nikorvaushoitovalmisteiden käyttö. Lantiolle sijoitetulla aktiivisuusmittarilla ke-
rättiin tietoa koko hereilläoloajan fyysisen aktiivisuuden määrästä.  

Tämä tutkimus osoitti, että vaihdevuosien aikainen kehon rasvan kertymi-
nen on yhteydessä elimistön hormonimuutoksiin ja että rasvaa kertyy erityisesti 
keskivartalon alueelle. Vaihdevuosien siirtymävaiheen läpikäyminen oli yhtey-
dessä myös muuttuneisiin adipokiinitasoihin, mutta joiden perusteella naisten 
aineenvaihdunnallinen terveys ei heikentynyt merkittävästi. Lisäksi vaihdevuo-
sien siirtymävaiheen läpikäyminen oli yhteydessä lihasmassan vähenemiseen ja 
tiettyjen lihaskudoksessa esiintyvien lähetti-RNA-molekyylien määrien muutok-
siin. Geenitason muutoksilla havaittiin yhteyksiä myös kehonkoostumuksen 
muutoksiin. Tutkittaessa elintapamuuttujia havaittiin, että korkeampi fyysisen 
aktiivisuuden määrä, korkeampi ruokavalion laatu ja sukupuolihormonivalmis-
teiden käyttö keski-iässä olivat yhteydessä pienempään rasvamassan määrään, 
aineenvaihdunnallisesti suotuisampaan rasvanjakautumiseen sekä korkeam-
paan lihasmassan määrään. Fyysisen aktiivisuuden määrän muutoksissa ja gee-
nien ilmentymisessä havaittiin myös yhteyksiä. 

Koska naiset voivat eliniänodotteen kasvettua elää jopa kolmasosan elä-
mästään postmenopaussissa, on tärkeää ymmärtää paremmin tekijöitä, jotka al-
tistavat terveyden heikkenemiselle. Väitöskirjani tulokset vahvistavat aiemmin 
tehtyjä havaintoja vaihdevuosien merkityksestä keskivartalolihavuuden syn-
nylle ja lihasmassan vähenemiselle sekä tarjoavat uusia molekyylitason kohteita 
tarkempien mekanismien selvittämiseen. Tulokset korostavat erityisesti fyysisen 
aktiivisuuden ja terveellisen ruokavalion, sekä mahdollisesti myös ehkäisy- ja 
hormonikorvaushoitovalmisteiden käytön merkitystä terveyden ylläpidossa 
keski-iässä ja sen jälkeen. 
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APPENDICES 

SUPPLEMENTAL TABLE 1 Reagents used in muscle tissue staining and in the 
myosin heavy-chain separation and identification protocol (Papers I and III) 

 Reagent  Source Catalog 
number 

1  A4.951, mouse Developmental Studies Hybrid-
oma Bank (DSHB), University of 
Iowa, IA, USA 

 

2 6H1, mouse DSHB  
3 Anti-laminin, rabbit Sigma-Aldrich, St. Louis, MO, USA #L9393 

4 Alexa Fluor 405, goat anti-mouse  Invitrogen, Carlsbad, CA, USA #A31553 

5 Alexa Fluor 647, goat anti-mouse,   Invitrogen #A21238 
6 Alexa Fluor 488, goat anti-rabbit Invitrogen #A11034 

7 LD540 Department of Chemistry, Univer-
sity of Jyväskylä 

 

8 Nitrotetrazolium blue chloride Sigma #N-6876 

9 Sodium succinate  Sigma #S-2378 

10 Menadione Sigma #47775 
11 Alfa-glycerophosphate Sigma #G6501 

12 A4.74, mouse DSHB  
13 Alexa Fluor 546, goat anti-mouse Invitrogen #A11003 

14 Alexa Fluor 488, goat anti-rabbit Invitrogen #A11008 
15 Prolong Gold with Dapi Invitrogen #P36931 

16 Potassium chloride Merck, Darmstadt, Germany #4936  

17 Potassium phosphate monobasic Fluka, Charlotte, NC, US #60218 
18 Di-potassiumhydrogenphospate 

trihydrate  
Aldrich, St. Louis, MO, US #22,131-7 

19 EDTA  WVR, Radnor, PA, US #20301.186 
20 Sodium pyrophosphate decahy-

drate 
Sigma-Aldrich #221368 

21 Beta-mercaptoethanol Sigma #M3148 

22 Pepstatin A Sigma #P5318 
23 Halt Proteinase and Phosphatase 

Inhibitor 
ThermoFisher Scientific, Waltham, 
MA, USA 

#1861281 

24 Sodiumthiosulphate-5-hydrate Riedel–de Haen, Charlotte, NC, 
US) 

#31459  
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SUPPLEMENTAL TABLE 2 Longitudinal characteristics of the biopsied partici-
pants 

 Short-term follow-up (n = 25) Long-term follow-up (n = 7) 
 Baseline Follow-up Baseline Follow-up 
Background characteristics 
Height, m 1.65 ± 0.1  1.66 ± 0.04  
Body mass, kg 70.0 ± 12.8 70.4 ± 13.2 70.9 ± 15.1 72.0 ± 11.6 
Body mass index, kg/m2 

Normal (18.5–24.99) 
Overweight (25–29.99) 
Obese (> 30) 

25.8 ± 4.5 
52% (13) 
28% (7) 
20% (5) 

26.0 ± 4.6 
56% (14) 
24% (6) 
20% (5) 

25.8 ± 5.1 
57% (4) 
29% (2) 
14% (1) 

26.2 ± 3.9 
43% (3) 
43% (3) 
14% (1) 

Natural bleeding status 
Hysterectomy 

100% (25) 
0% (0) 

100% (25) 
0% (0) 

100% (7) 
0% (0) 

86% (6) 
14% (1) 

Sex hormones 
E2, nmol/L 0.32 ± 0.24 0.21 ± 0.14 0.33 ± 0.27 0.12 ± 0.05 
FSH, IU/L 42.6 ± 24.0 73.2 ± 21.7*** 41.0 ± 30.7 94.6 ± 35.6* 

Lifestyle habits 
SR-PA, MET-h/day 4.8 ± 3.3 4.5 ± 2.9 8.7 ± 8.8 7.0 ± 3.2 
ACC-PA, min/day 50.2 ± 27.4 48.3 ± 24.1 78.1 ± 55.6 71.2 ± 43.6 
ACC-MAD, mg a 28.2 ± 8.2 27.2 ± 7.2 37.6 ± 21.8 31.3 ± 15.4 
Diet quality score, points 6.4 ± 2.4 6.1 ± 2.3 8.3 ± 1.6 7.6 ± 0.8 
Current smoker 
Non-smoker 

4% (1) 
96% (24) 

4% (1) 
96% (24) 

0% (0) 
100% (7) 

0% (0) 
100% (7) 

Alcohol use, portions/week 5.2 ± 5.9 4.9 ± 4.9 4.7 ± 4.4 3.4 ± 3.3 
Total and regional fat and lean mass 
Total FM, kg 25.6 ± 8.8 26.4 ± 9.3 24.4 ± 9.5 26.5 ± 7.7 
Total fat percent 35.9 ± 7.1 36.8 ± 7.0* 33.7 ± 5.3 36.6 ± 4.5* 
Gynoid FM, kg 4.8 ± 1.3 5.0 ± 1.3 4.6 ± 1.3 4.9 ± 0.8 
Android FM, kg 2.4 ± 1.0 2.5 ± 1.1 2.3 ± 1.1 2.6 ± 0.9 
Leg FM, kg 4.3 ± 1.3 4.4 ± 1.3 4.1 ± 1.2 4.4 ± 1.0 
Gluteofemoral FM, kg 10.3 ± 3.3 10.6 ± 3.4 9.9 ± 4.1 10.8 ± 3.3 
Gluteofemoral fat percent 36.6 ± 6.0 37.6 ± 5.7* 34.2 ± 5.0 37.1 ± 4.4* 
Total body lean mass, kg 41.5 ± 5.1 41.2 ± 5.3 43.3 ± 4.7 42.4 ± 4.3 
LBMI, kg/m2 15.3 ± 1.5 15.2 ± 1.5 15.8 ± 1.5 14.5 ± 1.2 
Appendicular lean mass, kg 17.8 ± 2.6 17.6 ± 2.8 19.2 ± 2.5 18.6 ± 2.1 
ALMI, kg/m2 6.57 ± 0.74 6.48 ± 0.81 6.99 ± 0.79 6.76 ± 0.57 
Leg lean mass, kg 6.7 ± 1.0 6.6 ± 1.1 7.3 ± 0.9 7.0 ± 0.9* 
Mid-thigh fat and muscle 
SAT area, cm2 b 59.9 ± 15.2 60.4 ± 15.4 47.6 ± 5.0 51.6 ± 7.5 
Muscle comp. AT area, cm2 c 9.6 ± 3.6 9.8 ± 3.8 9.1 ± 1.4 9.5 ± 1.1 
Muscle density, HU c 53.6 ± 3.3 54.3 ± 3.6* 55.3 ± 1.9 51.5 ± 3.0 
Abs. muscle area, cm2 c 168.9 ± 11.4 167.1 ± 11.7 183.8 ± 3.8 169.1 ± 2.3 
Metabolic health indicators 
Waist circumference, cm 84.9 ± 12.0 86.4 ± 13.2 85.3 ± 18.2 85.3 ± 12.8 
Waist-to-hip-ratio 0.84 ± 0.07 0.85 ± 0.08 0.84 ± 0.09 0.85 ± 0.04 
Leptin, ng/ml 35.5 ± 16.8 41.1 ± 17.8* 29.4 ± 18.5 41.1 ± 16.4 
Adiponectin, ng/ml 15271 ± 6429 16171 ± 6656 16819 ± 7109 19431 ± 7340* 
Resistin, pg/ml 17229 ± 6842 15340 ± 5713 19288 ± 11097 16842 ± 6277 

Values presented as mean ± SD. ACC-MAD, accelerometer measured physical activity in 
mean amplitude deviations; ACC-PA, accelerometer-measured moderate-to-vigorous 
physical activity; ALMI; appendicular lean mass index; AT; adipose tissue; E2, estradiol;  
FM; fat mass; FSH, follicle-stimulating hormone; HU, Hounsfield unit; LBMI; lean body 
mass index; MET, metabolic equivalent of a task; mg, milligravity (0.001g); SAT, subcutane-
ous adipose tissue; SR-PA, self-reported physical activity in MET-hours per day;  
a n = 1 missing from the short-term follow-up, b n = 4 missing from the short-term follow-
up, n = 4 missing from the long-term follow-up, c n = 3 missing from the short-term and n = 
4 missing from the long-term follow-up. *p<0.05, **p<0.01, ***p<0.001. 
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Abstract

may contribute to altered body composition and regional adipose tissue accumula

region, increases women's risk of cardiovascular and metabolic conditions and affects 

ometry and computed tomography in two longitudinal cohort studies of women aged 
n = ± 0.7 and 3.9 ± 0.2 years, mean 

2

capacities and intracellular adiposity were not affected by menopause, but were dif
ferentially correlated with total and regional body adiposity at different menopausal 

associated with serum adiponectin and leptin, and negatively associated with resistin 

with several body adiposity measures. Therefore, healthy lifestyle habits before and 
during menopause might delay the onset of severe metabolic conditions in women.

K E Y W O R D S
adipokine, body fat distribution, longitudinal studies, obesity, perimenopause, physical activity
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|

2020
tors determine adipose tissue mass and distribution by modulating 

2020
the mass and the location of adipose tissue are important at the sys
temic level, as higher gluteofemoral adipose tissue mass has been 
linked with a better metabolic profile and higher insulin sensitivity, 
while increased waist adiposity may increase cardiovascular and 

2010 2013
chromosomes and hormones are known to be important mediators 

2009 2007

2017).
In addition to supplying energy, adipose tissue secretes hor

some of the most studied adipokines, and their roles in adipose tis
sue originated signaling and as indicators of metabolic health have 

2020

2015). The gluteofemoral adipose depot is a possible source 
of adiponectin, while lower adiponectin levels are associated with 

2010). Leptin 
has a role in signaling full energy stores and decreasing appetite, and 
leptin concentration correlates positively, similar to resistin levels, 

2020). 

tional capacity. Lower muscle density, reflecting increased adipose 
tissue infiltration into the muscle compartment, is associated with 

2000) and can lead to de
2019).

creased proportion of type I fibers have all been found to positively 

2001; Tanner et al., 2002). Type I muscle fibers are typically rich in 

contain fewer lipid droplets and have a higher glycolytic capacity 
2011

2021).

in women, this seems to accelerate during menopause. Yet, due to 
2020), weight does not 

2019

2009
been linked to the promotion of lipid biosynthesis and is positively 
associated with leptin and negatively with adiponectin levels in cel

2015
roles of aging and menopause in increasing adiposity have reported 

is the main contributor to increased overall adiposity, while meno
pause contributes to adipose tissue accumulation in the waist area 

2019
more protected from cardiovascular conditions compared with men, 
menopause seems to remove this advantage concomitantly with the 

). In addition to 

ment in midlife.

menopausal transition and the accumulation of total and regional 
body adiposity, as well as changes in systemic and muscle tissue ad

pausal transition would be positively associated with several body 
adiposity variables from whole body to cellular level, and that the 
highest relative increase in adiposity would occur in the android re

and a decrease in adiponectin levels would occur during menopausal 
transition.

|

|
characteristics

2021  1
Caucasian women. To be included in the current study, a partici
pant needed to have undergone menopausal transition either from 

n = 316). The 
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short term follow up sample included 230 perimenopausal women 

time 1.3 ± 0.7 years). The long term follow up

± 0.2 years). This sample also included a 
n =

The baseline characteristics and body composition are described 

Table 1
± 3.9), half of them 

|
long- term follow- ups over the menopause

in Table 1
p < 0.001 for all). Of the 

F I G U R E  1
n =
n =

Not included:
Postmenopausal n = 530
Premenopausal n = 386
Lost:
Baseline or inconsistent 
HT use n = 6
Health related exclusion   
n = 85
Discon�nued n = 38
Died n = 1
Unclear menopausal 
status at end n = 48
Did not reach 
postmenopause n = 69

SHORT-TERM FOLLOW-UP 
SAMPLE for the current study

n = 230

PERI → EARLY POST transi�on

LONG-TERM FOLLOW-UP SAMPLE for the current study
n = 148;

PRE → POST transi�on n = 54

PERI → POST transi�on n = 94 (includes n = 62 women with also 

short-term follow-up measurement)

Lost:
Did not visit laboratory 
in EsmiRs n = 168

Not included:
Postmenopausal n = 264
Par�cipants belonging to 
the short-term follow-up 
sample n = 62
Lost:
Not responding n = 201
Not willing to par�cipate 
n = 36
Excluded n = 9
Discon�nued n = 9
Did not visit laboratory 
due to COVID-19 n = 86

Not included:
Did not reach 
postmenopause in 
EsmiRs n = 58 Con�nued to the 

long-term follow-up
n = 86

EsmiRs-longitudinal study 
laboratory measurements

n = 62

EsmiRs-longitudinal study 
laboratory measurements

n = 144

ERMA BASELINE
Menopausal status assigned (PRE, PERI and POST)

n = 1393

Contacted for long-
term follow-up

n = 811
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creased and serum resistin concentrations decreased.
p < 0.01 for all) 

p < 0.001 for all). Computed 

Short- term follow- up Long- term follow- up

Follow- up
Change from 
baseline Follow- up

Change from 
baseline

n = 230 n =

2, nmol/L ± 0.27 ± ± ***
± 0.50 0.20 ± 0.21 ± ***

36.1 ± 21.7 66.7 ± ± ***
± ± 32.0 ± ***

a 69.7 ± 11.1 70.3 ± 11.5 ± ***
± 72.0 ± 12.1 ± ***

2 a 25.6 ± 3.9 ± ± *** 25.5 ± 3.9 26.3 ± ± ***

Lifestyle habits n = 230 n =
b

± ± ± 5.27 ± ± ±
c 51.9 ± 29.6 ± 23.9 ± ± 32.6 ± ± *

d 6.01 ± ± 2.16 ± ± 2.50 ± 2.29 ±

Use of external hormones

None *** ***

Estrogen

Progestogen

Estrogen +Progestogen

Adipokines n = 110 n =

Leptin, ng/ml ± 30.5 ± ± ***
± 30.2 ± 39.6 ± ***

± 6232 ± 7730 ± *** 16510 ± 19669 ± ± ***

Resistin, pg/ml ± ± 7556 ± **
± 9053 ± 7575 ± *

Total and regional fat n = 219 n = 132

Total fat mass, kg 25.7 ± ± 9.0** ± ***
± 27.1 ± 9.6 ± ***

± 36.6 ± 7.5** ± ***
± 36.7 ± 7.9 ± ***

Trunk fat mass, kg 13.1 ± 13.6 ± 5.7** ± *** 12.5 ± 5.3 ± 6.0 ± ***

5.0 ± 5.1 ± ** ± **
± 5.0 ± 1.5 ± ***

2.3 ± 1.0 ± 1.0** ± *** 2.2 ± 1.0 2.5 ± 1.1 ± ***

Right leg fat mass, kg ± 1.5 ± 1.5** ± **
± 1.5 ± 1.6 ± ***

10.5 ± 3.5 10.9 ± 3.5 ± *** 10.0 ± 11.0 ± ± ***

36.7 ± 37.7 ± 6.6 ± *** 35.1 ± 7.0 37.5 ± 6.7 ± ***

± ± ± ***
± 0.15 0.50 ± 0.15 ± ***

Mid- thigh fat n = 76 n = 17

area, cm2e
± 65.7 ± 17.0 ± ** 65.0 ± 17.5 69.3 ± ± **

tissue area, cm2
± 3.0 9.6 ± 3.1 ± ± 2.2 9.5 ± ± *

53.1 ± 3.7 ± 3.9 ± 53.7 ± 50.0 ± 3.1 ± **

Note: ± SD.

aData missing, n =
bData missing, n = n =
cData missing, n = n =
dData missing, n = n =
eData missing, n =
***p < 0.001; **p < 0.01; *p < 0.05.
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p < 0.01 for both). 
p < p < 0.05) during 

F I G U R E  2 n = 59 for three upper rows 
and n =

± SD

p < 0.05) between annual changes are highlighted
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|
measurement points

 2 presents adiposity characteristics for the women who were 
n = 59; CT, n =

to compare the rate of change between the transition from perimeno

± ± p = 0.016). Changes in 

|
lifestyle are associated with adipose tissue 
accumulation in opposite ways

Table 2

the larger number of valid measurements. Nonetheless, models using 

p < 0.001 for 

p <
p < 

p <
activity was associated with lower subcutaneous adipose tissue area 

p < 0.05 for both).

|
transition, and adiponectin and leptin are 
concomitantly associated with total and regional fat 
mass variables

To study the associations between adipokines and selected adipos
 3). 

p < 0.001 for 

p < 0.05). Leptin was positively associated with menopause in 
p < 0.05 for 

all). Combined estrogen and progestogen use and the total and regional 

p < 0.01 for all). Resistin concentration was 
p < 0.05 

n = n =

Total fat mass  
(kg)

Trunk fat mass  
(kg)

Android fat mass  
(kg)

Gynoid fat mass  
(kg)

Right leg fat mass  
(kg)

95% CI 95% CI 95% CI 95% CI 95% CI

Univariable model

Time 0.69*** 0.57 0.46*** 0.55 0.09*** 0.07 0.11 0.08*** 0.05 0.10 0.07*** 0.05 0.09

Multivariable modela

Time 0.68*** 0.55 0.45*** 0.37 0.09*** 0.07 0.11 0.07*** 0.05 0.09 0.07*** 0.09

+ ×10 0.05 0.22 2×10 0.15

2.09 0.02 1.55 0.27 0.29 0.36

0.52 0.07 0.12
** ** ** ** *

*** *** *** *** **

×10 ×10 0.02 1×10 ×10 0.01 3×10 ×10 0.01 2×10 ×10 0.01

a p <
***p < 0.001; **p < 0.01; *p < 0.05.
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|
content and oxidative and glycolytic capacities, 
but menopause is not associated with changes 
in these parameters

hydrogenase and glycolytic capacity with α

 )

type II fibers, whereas glycolytic capacity was higher in type II than 
p <

 
p < 0.05). No difference was 

p < 0.01 for all).
Thirdly, to study the change in metabolic capacity and lipid ac

erence value and paired relative changes between timepoints were 
n = n =

 ). Only glycolytic capacity in type II fibers 
p = 

 
were calculated using the information from fiber type distribution 
as the overall metabolic capacity of a tissue depends on the ratio of 

 
 ).

 5). In type 

rs = p < 0.05 for all). In type I fibers, lipid 

rs = p < 0.05 for all). In 

rs = p <

rs =0.76, p = 0.037) 
rs = p =

dative capacity in type II cells and at the total tissue level correlated 
rs = 

p = rs = p =

|

In this longitudinal study over the menopausal transition, changes 
were observed in multiple adiposity measures, from circulating adi
pokines to regional body fat. Our results show that menopause con

Gluteofemoral fat  
mass (kg)

Android- to- gynoid  
ratio

Subcutaneous  
adipose tissue area (cm2)

Muscle  
compartment adipose tissue 
area (cm2)

Mean muscle  
density (HU)

95% CI 95% CI 95% CI 95% CI 95% CI

0.27*** 0.22 0.32 0.01*** 0.01 0.01 1.24*** 0.77 1.72 0.15 0.30 **

0.27*** 0.21 0.32 0.01*** 0.01 0.01 1.05*** 1.60 0.32 0.12

2×10 2.22 ×10 0.62

0.76 0.01 0.05

0.12 1×10 0.01 0.37 6.90 0.15
**

×10 ×10 1×10 0.27 ×10 0.15 0.05 0.30
*** ×10 ×10 ×10 * 0.06 0.25*

×10 0.01 3×10 ×10 1×10 0.02 3×10 0.07 0.10 0.22
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F I G U R E  3 n =

education. ***p < 0.001 **p < 0.01, *p < 0.05
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accumulation at multiple adipose depots from the total body to the 

large compared with total body or other regional depots. Leptin and 

an increment in type II fiber glycolytic capacity. Lipid droplet area 

tively correlated with total and regional body adiposity measure
ments during menopause.

During the reproductive years, women typically have higher 

2007). Increasing 
evidence from longitudinal studies suggests that the loss of female 

2009; 
Lovejoy et al., ). This observation is supported by our data— 

ratio also increased, indicating higher fat accumulation in the central 

areas compared with increments of 6% and 10% in the gynoid and 
gluteofemoral areas respectively. The link between menopause and 
total body fatness is still inconclusive. The main contributor to in
creased total body fat has been suggested to be either menopause 

2019; Lovejoy et al., 
et al., 2019

postmenopausal women had more total body fat than similar aged 
1999

of four years around menopause. This, and similar results from other 
2019; Lovejoy et al., ), suggests that 

the increase in adiposity is accelerated around menopause, and that 
2020). 

tiating them in an observational study is difficult, yet it seems that 
menopause could have an accelerating effect on adiposity.

2015). In our study, we investigated associations 

2005), we also found that higher phys

associations between physical activity and body composition have 

sectional or conducted in postmenopausal women. To the best of 

our knowledge, only one study in addition to ours has reported lon
gitudinal associations between voluntary physical activity level and 

). 

). 

2019

patterns for the management of body adiposity during middle age.

broadly associated with different metabolic health parameters, such 

 3
pause has previously been shown to be associated with declines in 

2021
), and adiponectin as an indicator of good metabolic health 

2020), the observed increase in adiponectin levels 

2009
had fairly healthy lifestyles, it is possible that they were more pro

Table 1). 
Longitudinal associations between leptin and menopause progres

2009 ), which suggested that body adiposity 

were positively associated with several body adiposity variables, but 
 3

et al., 2012

more research is clearly needed to clarify its associations with fe

2020; Zhang et al., 2015), but not all studies 
2006

2007

observed a negative association with menopausal progression when 

2007
2019), which is an 

emerging risk for postmenopausal women, more longitudinal studies 
are warranted.
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Cellular changes in skeletal muscle adiposity during menopause 
are understudied, and to the best of our knowledge, our study is 
the first to address this issue. Intracellular lipid droplets are dy
namic in nature, but their concentration seems to correlate with 

2001
2001), we also found that lipid accumulation differs be

tween the three muscle fiber types, but we did not detect a change 

 

m. vastus lateralis biopsy adiposity 
variables, suggesting that the correlations between cell and tissue 

tudinal samples. Nonetheless, the clear differences observed in 

types might play a role in individual metabolic maintenance in mid

a high rate of energy consumption, more research in menopausal 
women is warranted.

The current study has several strengths and limitations. The 

a comprehensive set of adiposity measurements supplemented with 
measures of systemic adipokines and cellular muscle adiposity anal

+

et al., 2012), which is widely considered the gold standard for char

not able to separate visceral adipose fat from the other adipose 
depots of the central body. Thus, our analysis of android adiposity 
includes both subcutaneous and visceral depots. The small number 
of available muscle biopsy samples also prevents us from drawing 
stronger conclusions about cellular modifications.

creasing regional and total body adiposity, particularly in central 

ated with lower adiposity at baseline, and may therefore delay the 

hormones and adipose tissue, yet the implications remain unclear. 

fected by the menopausal transition. Information from the current 

F I G U R E  4 n =
 

mean values.  
=

as mean ± SD. ***p < 0.001, **p < 0.01, *p < 0.05.

F I G U R E  5 n =
and direction are illustrated by correlation coefficient and background color. Red indicates a strong positive correlation and white indicates 

p < 0.001, **p < 0.01, *p < 0.05.
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the importance of physical activity and a healthy diet in maintaining 
beneficial body composition.

|

|

 1). In total, 1393 women were assigned to baseline meno

rimenopausal, late perimenopausal, and postmenopausal, based 
+

subgroup of the perimenopausal women was invited to take part 
in the ERMA longitudinal study, in which women were followed 

measurements were repeated. These data form the “short term 
follow up

current study.

were included in the “long term follow up.”

provided written informed consent, and the study was approved by 

|

cycle were asked to visit the laboratory between cycle days 1 to 

also measured at baseline.

|

the iliac crest line as the upper limit and the knee joint as the lower 
2013

muscle fascia) adipose tissue area was measured using appropri

sectional image, the muscle portion including the femur was first 

|

m. vastus lateralis 
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the sample was divided into three parts. Two parts were assigned to 

|
droplet staining

μ

μg/μ

μg/μ

+

μ

human inspection. Cell segmentation and the measurement of lipid 

2022
lated as the combined area of lipid droplets divided by mean fiber 

2000).

|

μ

α

2

2O, and cleared with acetone. 

2

×

ally cropped, and mean gray value was calculated, where 0 indi
cated black and 255 indicated white. To describe staining intensity 
more intuitively, mean cell gray values were subtracted from the 

μ

μg/μ μg/μ

histological images.

|

2017

lated. Objective physical activity was assessed with an accelerome
+ +, 

2019

tor magnitude cutoff point of 2690 counts per minute and the daily 

2017).

|

2020
ponents that are characteristic of a healthy diet, as described in the 
Nordic Nutrition Recommendations 2012. Regular intake of foods 

beverages, fast food, and sweet or salty snacks was also favored. 
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|

Information about medical conditions and prescription medicine 

n = 2) and new thyroid medication 
n = 7) for analysis was investigated, but since sensitivity 

analysis revealed no major difference in the results, they were in
cluded in the analysis.

intravaginal estrogen therapy was not. The use of estrogen and 

menopause, progestogen use was not associated with altered hor
mone levels.

|

2

n 
= n = 6 in premenopausal and n =

the perimenopausal group.

|

used whenever possible. Independent samples t
U

t
were used to test for differences in baseline characteristics, adi

changes within participants whose body composition was measured 

between cell and selected adipose tissue variables.

tions between the adiposity measurements and covariates during 

ciations between time and each of the adipose tissue mass variables, 

were used as random effects. Longitudinal associations between ad
ipokines and adiposity variables were investigated with similar linear 

physical activity. The possible effect of smoking was tested, but be
cause we did not see associations in any of the variables, it was left 

+

n =
n = n = 3), and adipokines (n = 3), participants were re

assessed with variance inflation factor analyses. The model assump

p < 0.05 was considered statistically 
significant. Due to the observational nature of the study with prede
termined associations of interest, the results are presented without 

comparisons in the study, this may increase the risk of type I error.

|
MATERIAL FROM OTHER SOURCES

granted.
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BACKGROUND: In women, metabolic health deteriorates after menopause, and the role of physical activity (PA) in mitigating the
change is not completely understood. This study investigates the changes in indicators of metabolic health around menopause and
evaluates whether PA modulates these changes.
METHODS: Longitudinal data of 298 women aged 48–55 years at baseline participating in the ERMA and EsmiRs studies was used.
Mean follow-up time was 3.8 (SD 0.1) years. Studied indicators of metabolic health were total and android fat mass, waist
circumference, waist-to-hip ratio (WHR), systolic (SBP) and diastolic (DBP) blood pressure, blood glucose, triglycerides, serum total
cholesterol, and high- (HDL-C) and low-density (LDL-C) lipoprotein cholesterol. PA was assessed by accelerometers and
questionnaires. The participants were categorized into three menopausal groups: PRE-PRE (pre- or perimenopausal at both
timepoints, n= 56), PRE-POST (pre- or perimenopausal at baseline, postmenopausal at follow-up, n= 149), and POST-POST
(postmenopausal at both timepoints, n= 93). Analyses were carried out using linear and Poisson mixed-effect models.
RESULTS: At baseline, PA associated directly with HDL-C and inversely with LDL-C and all body adiposity variables. An increase was
observed in total (B= 1.72, 95% CI [0.16, 3.28]) and android fat mass (0.26, [0.06, 0.46]), SBP (9.37, [3.34, 15.39]), and in all blood-
based biomarkers in the PRE-POST group during the follow-up. The increase tended to be smaller in the PRE-PRE and POST-POST
groups compared to the PRE-POST group, except for SBP. The change in PA associated inversely with the change in SBP (−2.40,
[−4.34, −0.46]) and directly with the change in WHR (0.72, [0.05, 1.38]).
CONCLUSIONS: In middle-aged women, menopause may accelerate the changes in multiple indicators of metabolic health. PA
associates with healthier blood lipid profile and body composition in middle-aged women but does not seem to modulate the
changes in most of the studied metabolic health indicators during the menopausal transition.

International Journal of Obesity; https://doi.org/10.1038/s41366-021-01022-x

INTRODUCTION
Metabolic health is an umbrella term for factors that combine
several aspects of cellular, cardiovascular, and cardiorespiratory
health and well-being. Body adiposity, anthropometrics, blood
pressure, and blood-based biomarkers, such as serum lipids and
blood glucose, can be clinically used to evaluate metabolic health.
One established method is to use the diagnostic criteria of
metabolic syndrome (MetS) [1], a multifaceted disorder predis-
posing individuals to severe health concerns, such as athero-
sclerotic heart disease [2] and type II diabetes [3]. Although there
is a significant genetic component in the individual variance of
metabolic health and emergence of MetS risk factors [4],
unhealthy lifestyle habits, such as physical inactivity, are proposed
to be a major contributor.
The effect of menopause on metabolic health and the

development of MetS has been an increasing area of interest, as

nowadays women in Western countries are expected to live in the
postmenopausal state for more than one third of their lives [5–7].
Menopausal transition and the accompanying changes in the
hormonal milieu (e.g., decrease in the systemic estradiol (E2)
levels) have been associated with unfavorable changes in several
indicators of metabolic health [8, 9]. For instance, increased blood
glucose [10], accumulation of abdominal adiposity [11] as well as
unhealthy changes in serum lipids [12] have been reported during
menopausal transition. Additionally, menopause-related increase
in inflammation marker levels [13] and decrease in muscle mass
[14] have an additive negative impact on metabolic health.
Therefore, it is not surprising that in women the incidence of MetS
and cardiovascular disease increases after menopause [8, 15].
Physical activity (PA) has been widely proposed to improve the

metabolic risk factor profile and cardiovascular health. Literature
suggests that regular PA decreases total and visceral fat mass,
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improves insulin sensitivity, prevents dyslipidemia, and decreases
systolic (SBP) and diastolic (DBP) blood pressure [16–18]. Thus, it
can be used for the prevention and treatment of MetS. However,
the associations between PA and changes in indicators of
metabolic health around menopause are understudied as only
few longitudinal studies have been conducted using device-
measured PA [12, 19]. Moreover, these studies included only
women transitioning from pre- or perimenopause to postmeno-
pause and therefore could not address the contemporaneous
aging-related changes.
The objective of this study was to investigate the changes

around menopause in serum lipids and glucose, blood pressure,
and body adiposity as indicators of metabolic health. Additionally,
the aim was to evaluate whether PA modulates these changes
using unique longitudinal data from the study of middle-aged
women with different menopausal status.

MATERIALS AND METHODS
Study design and population
This study utilized the data from the observational Estrogenic Regulation
of Muscle Apoptosis (ERMA) and Estrogen, MicroRNAs and the Risk of
Metabolic Dysfunction (EsmiRs) studies. The participant selection for the
ERMA study has been described in detail elsewhere [20]. Briefly, out of the
6 878 randomly selected women aged 47–55 years living in Central
Finland, 1393 consented and met the inclusion criteria for the baseline
measurements (Fig. 1). Exclusion criteria included conditions and the use
of medications affecting ovarian function and systemic hormone or
inflammatory status, such as bilateral oophorectomy, pregnancy, lactating,
severe obesity (self-reported body mass index (BMI) ≥ 35 kg/m2), or the use
of estrogen-containing medications and continuous cortisone or inflam-
matory drug treatment [20].

The 4-year follow-up measurements were carried out in the EsmiRs
study. Out of the 811 participants measured in the ERMA baseline who
consented to be contacted, 494 were willing to participate in the EsmiRs
questionnaire. Of these participants, 56 were excluded, 25 did not consent,
and 16 were not willing to continue to physiological measurements. The
participants were excluded due to having more than 7 years from
menopause based on the self-reports (n= 46), diabetes requiring regular
insulin therapy (n= 2), severe cardiovascular dysfunction (n= 2), or
diagnosed with cancer during the follow-up (n= 6). Furthermore, 99
participants could not be measured because of the COVID-19 lockdown.
Consequently, the final study sample included 298 white women (Fig. 1).
To estimate potential selection bias, sensitivity analyses comparing the
included sample to the rest of the measured participants (n= 1095) at the
ERMA baseline for all outcome variables and accelerometer-measured PA
were conducted.
The recruiting for the ERMA study was conducted in 2014. The baseline

measurements were initiated at the beginning of 2015, and they lasted
until the end of 2016. The recruiting for the EsmiRs study started in
November 2018 and laboratory measurements were initiated in January
2019. They were discontinued on March 16, 2020 due to the COVID-19
pandemic. The study was performed in accordance with the Declaration of
Helsinki. All participants provided written informed consent, and the study
was approved by the ethical committee of the Central Finland Health Care
District (ERMA 8U/2014 and EsmiRs 9U/2018).

Menopausal status assignments
Blood sampling after overnight fasting was performed in a supine position
from the antecubital vein during days 1–5 of menstrual cycle if the cycle
was predictable. Serum was separated from whole blood and stored at
−80 °C before analysis. Serum concentrations of E2 and follicle-stimulating
hormone (FSH) were determined using IMMULITE® 2000 XPi (Siemens
Healthineers, Erlangen, Germany) according to the manufacturer’s
instructions.
Participants were categorized as pre-, peri-, or postmenopausal in both

measurements based on the FSH concentrations and self-reported
menstrual bleeding diaries using the adapted Stages of Reproductive
Aging Workshop (STRAW+ 10) guidelines [20]. The participants were
divided into three groups based on how their menopausal status changed
during the study. PRE-POST group (n= 149) consisted of women who
experienced menopause during the follow-up period. That is, they were
categorized as pre- or perimenopausal in the baseline and postmenopau-
sal in the follow-up measurement. Furthermore, women that were pre- or
perimenopausal (PRE-PRE, n= 56) or postmenopausal (POST-POST, n= 93)
in both measurements were designated to their respective groups.

Indicators of metabolic health
Blood pressure and anthropometrics were measured after overnight
fasting. SBP and DBP was measured twice in a sitting position after 10min
rest using Omron M6 Comfort (Omron Healthcare, Kioto, Japan) with a
standard size cuff and the mean values of the measurements were used.
Waist circumference was measured in light underwear midway between
the superior iliac spine and the lower rib margin, and hip circumference at
the level of the greater trochanters [21]. Body mass and height were
measured with standard procedures and BMI was computed by dividing
the body mass with squared body height. Total body fat mass and
percentage, android fat mass, and fat free mass were assessed with dual-
energy X-ray absorptiometry (DXA; LUNAR, GE Healthcare, Chicago,
IL, USA).
Serum samples collected during menopausal status assignment were

also used for outcome variable analysis. Serum glucose, high- (HDL-C), low-
density lipoprotein cholesterol (LDL-C), total cholesterol, and triglycerides
were measured with KONELAB 20 XTi analyzer (Thermo Fischer Scientific,
Vantaa, Finland).
The updated ATP III criteria for MetS risk factors was used [1]. The

defining levels for risk factors were ≥88 cm for waist circumference, ≥130/
≥85mmHg for blood pressure, ≥1.69mmol/l for serum triglycerides,
≥5.6 mmol/l for blood glucose, and <1.29mmol/l for HDL-C.

Physical activity
Accelerometry-measured PA was assessed in both timepoints by triaxial
ActiGraph GT3X and wGT3X accelerometers (ActiGraph LLC, Pensacola, FL,
USA) with an accompanied diary. Participants were instructed to wear the
accelerometers for seven consecutive days on their right hip during

Baseline measurement and menopausal 
group assignments (n=1 393)

4-year follow-up physiological measures 
and menopausal group assignments

(n=298)

Not responding (n=289) 
Not willing (n=28)

Invited to 4-year follow-up
(n=811)

4-year follow-up questionnaires (n=494)

Did not consent (n=25)
Excluded (n=56)
Not willing (n=16)
Laboratory visits 

discontinued due to the 
COVID-19 (n=99)

Cohort of 47−55-year-old women (n=6 878)

Not responding (n=3 649) 
Not willing (n=165)

Prequestionnaires (n=3 064)

Did not consent (n=445) 
Excluded (n=997)

Discontinued (n=229)

Did not consent to be 
contacted (n=582)

Fig. 1 Flow chart of the study. The flow chart describes the
participant enrollment and selection procedure of the ERMA and
EsmiRs studies with detailed information about the exclusions and
discontinuations during each phase of the study.
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waking hours, except during water-based activities. The data were
collected at 60 Hz and the Euclidian norm of the resultant acceleration
was computed for each timepoint. Consequently, the mean amplitude
deviations (MAD) were computed for non-overlapping 5 s epochs, and the
mean MAD value for 1 min epochs were determined based on the 5 s MAD
values [22]. The accelerometer-measured MAD (ACC-MAD) reflects the
directly measured acceleration and captures the volume of the activity in
the entire intensity profile [23] and has been validated against oxygen
consumption [24]. Non-wear time was identified as any epoch of at least
60min with 1 min MAD continuously less than 0.001 g (g denotes the
gravitational acceleration on Earth).1 A minimum of 3 days with a wear
time of 10 h or more was regarded as a valid measurement.2 Finally, the
ACC-MAD was determined for wear time for each measurement. For
supplementary information, we defined activity with intensity higher or
equal to 0.091 g as moderate-to-vigorous physical activity (MVPA) [24]. The
ACC-MAD was strongly associated (r= 0.88 and r= 0.79) with the amount
of MVPA and ActiGraph counts [25], respectively.
Additionally, PA was assessed by a self-reported questionnaire (SR-PA)

[26]. Briefly, the questionnaire included four questions about the average
frequency, intensity, and duration of leisure time PA bouts as well as the
average duration of the commuting activity. Based on the responses, the
metabolic equivalent (MET) hours per day for leisure time PA was
calculated.

Covariates
The use of medications and lifestyle habits were assessed by a structured
questionnaire at baseline and follow-up measurements. Responses were
used to assess alcohol consumption in portions per week and current
smoking status (nonsmoker/smoker). Participants also reported their use of
regular prescription medications that were categorized using the
Anatomical Therapeutic Chemical (ATC) classification [27]. The use of
medications was assessed (non-user/user) separately in preparations
affecting blood pressure (ATC C02–05 and C07–09), serum lipids (ATC
C10), and thyroid function (ATC H03).
Based on self-reports, participants were classified as being either non-

user, only estrogen, only progestogen or combined estrogen and
progestogen users. Exogenous sex hormone preparations for contra-
ceptive and hormone replacement therapy use, such as pills, intra-uterine
device, patches, and transdermal gels but not intravaginal local estrogen
therapy were included. Diet quality score (DQS) was computed based on a
food-frequency questionnaire as reported previously [14]. Shortly, DQS
consisted of 11 elements characteristic to a healthy diet by the Nordic
Nutrition Recommendations 2012. A higher intake of whole-grains,
vegetables, fruits and berries, low-fat dairy, fish, and nuts and seeds, and
a lower intake of processed grains, processed meats, sugary beverages, fast
foods, and sweet or salty snacks were regarded as beneficial. Each
component accounted for was worth of 1 point, and the maximum score
available was therefore 11 points. A higher DQS score was regarded to
reflect a healthier diet. The DQS was partly adapted from Masip et al. [28].

Missing data
The percentage of missing values across the variables separately for each
timepoint varied from 0 to 21%. The number of valid measurements for
298 participants in each variable is presented in Table 1. The total number
of missing data values was 741 out of 13,708 (5%). Missing data occurred
due to invalid or missing measurements as well as unclear or incomplete
questionnaire responses. Missing data were assumed to occur at random
and multiple imputation was used to create and analyse 50 multiply
imputed data sets. Multiple imputation was carried out in R [29] using the
“mice” package [30]. All variables measured at the same timepoint and the
target variable measurement from the other timepoint were used for
imputation of each variable. The number of iterations was set to 50 and
passive imputation was used for the derived waist-to-hip ratio (WHR)
variable. The model parameters were estimated in each imputed dataset
separately and pooled using Rubin’s rules [31]. For comparison, we also

performed the complete case analysis and there was no notable difference
in the results that would have led to different conclusions.

Statistical analysis
The main analyses were carried out using linear and Poisson mixed-effect
models with random intercept [32]. For each outcome variable, the fixed
effects were time (0= baseline, 1= follow-up), menopausal group, ACC-
MAD, and interactions between time and group as well as time and ACC-
MAD. The interactions were included in the models to study how the
change in PA associate with the change in outcome variables during the
follow-up. Furthermore, the covariates included as fixed effects were mean
centered age at baseline and the use of hormonal preparations. Residual
plots, Q–Q plots, and correlation analysis were used for testing the model
assumptions. The analyses were carried out in R using the “nlme” [33] and
“lme4” [34] packages.
Based on the literature, we identified candidate covariates related to

lifestyle habits and the use of medications that may be associated with
the outcome variables. Their distributions in the study population are
presented in detail in Supplementary Table 1. However, to our
consideration, lifestyle habits and the use of antihypertensives, lipid-
modifying agents or thyroid therapy do not significantly affect the
progression of menopausal transition, and the use may even be caused
by the menopause-induced changes in the outcome variables. Thus,
only the use of sex hormone therapy was controlled for confounding.
Nonetheless, we also performed the analysis including the relevant
variables and their interaction with time as covariates, but it did not
have a notable effect on the results. Furthermore, we conducted
sensitivity analyses for blood lipids and blood pressure by excluding the
participants who used lipid-modifying agents and antihypertensives,
respectively.

RESULTS
Characteristics of the study population
The average follow-up-time was 3.8 years in all groups (Table 1). At
baseline, the participants were slightly overweight with mean BMI
of 25.3 ± SD 3.7 and had slightly elevated SBP (132.0 ± 3.7), DBP
(84.1 ± 9.2), total cholesterol (5.23 ± 0.91), and LDL-C (3.05 ± 0.80).
Other outcome variable means were within the normal range
[35, 36]. Participants in the PRE-PRE group were the youngest and
had the lowest FSH and highest E2 levels at baseline. Respectively,
the participants in the POST-POST group were the oldest and had
the highest FSH and lowest E2 levels. The most notable changes in
E2 and FSH levels occurred in the PRE-POST group during the
follow-up. The percentage of the participants with three or more
MetS risk factors was 16% at baseline and at follow-up. The
sensitivity analyses using unpaired T-test indicated the study
sample to have slightly lower blood glucose (5.15 ± 0.45 and
5.28 ± 0.63, t (1387)= 3.319, p= 0.001) and higher ACC-MAD
(30.2 ± 10.0 and 28.8 ± 8.8, t (782)=−2.044, p= 0.041) compared
to participants that did not participate in the follow-up. No
differences were observed for other outcome variables (data not
shown).

Blood-based biomarkers
The PRE-POST group had lower total cholesterol and HDL-C
compared to the POST-POST group (Table 2). In the full sample,
ACC-MAD was directly associated with HDL-C (B= 0.06, 95% CI
[0.01, 0.11]) and inversely with LDL-C (B=−0.11, 95% CI [−0.21,
−0.01]). The levels of all blood-based biomarkers increased
during the follow-up in the PRE-POST group and the increase
tended to be smaller in the PRE-PRE and, especially, in the POST-
POST group. The change in ACC-MAD was not associated with
the change in any of the outcome variables measured from
blood. The use of progestogen was associated with lower HDL-C,
while the combined progestogen and estrogen use was
associated with a lower blood glucose. The results did not differ
notably when using SR-PA as a PA measure (Supplementary
Table 2) or excluding participants using lipid-modifying agents
(Supplementary Table 3).

1The threshold of 0.001 g was determined based on the
correspondence with the self-reported wear time in this population
(r= 0.70). Self-reported wear time was not used in the analysis due to
the invalid and missing entries in the diaries.
2Seven valid days were recorded in 89% (462/528) of the
measurements.
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Table 1. Characteristics of the study population in full sample and separately for each group.

Full sample PRE-POST PRE-PRE POST-POST

BL FU Changea BL FU Changea BL FU Changea BL FU Changea

Age and blood-based biomarkers [n] 298 298 298 149 149 149 56 56 56 93 93 93

Age [year] 51.3 ± 1.8 55.1 ± 1.8 3.8 ± 0.1 51.3 ± 1.7 55.2 ± 1.7 3.8 ± 0.2 50.0 ± 1.4 53.8 ± 1.4 3.8 ± 0.1 52.1 ± 1.8 55.9 ± 1.8 3.8 ± 0.1

Estradiol [nmol/l] 0.38 ±
0.53

0.26 ±
0.28

−0.12 ±
0.62

0.47 ±
0.49

0.20 ±
0.21

−0.27 ±
0.54

0.52 ±
0.98

0.58 ±
0.39

0.06 ± 1.09 0.15 ±
0.10

0.17 ±
0.13

0.02 ± 0.10

Follicle-stimulating hormone [IU/l] 39.9 ±
37.1

69.5 ±
37.5

29.5 ± 40.5 24.2 ±
21.8

80.3
31.9

56.0 ± 36.3 11.7 ±
16.6

18.9 ±
12.3

7.1 ± 21.5 82.0 ±
29.1

82.6 ±
29.6

0.6 ± 24.7

Total cholesterol [mmol/l] 5.23 ±
0.91

5.67 ±
1.00

0.43 ± 0.88 5.14 ±
0.90

5.75 ±
1.02

0.61 ± 0.75 5.07 ±
0.78

5.41 ±
0.99

0.34 ± 0.92 5.50 ±
0.95

5.69 ±
0.94

0.20 ± 0.98

HDL-C [mmol/l] 1.72 ±
0.47

1.91 ±
0.50

0.19 ± 0.39 1.68 ±
0.42

1.93 ±
0.48

0.25 ± 0.39 1.61 ±
0.38

1.78 ±
0.41

0.17 ± 0.29 1.86 ±
0.55

1.97 ±
0.56

0.11 ± 0.42

LDL-C [mmol/l] 3.05 ±
0.80

3.41 ±
0.88

0.37 ± 0.76 2.98 ±
0.75

3.49 ±
0.91

0.51 ± 0.67 2.97 ±
0.75

3.27 ±
0.86

0.30 ± 0.80 3.20 ±
0.89

3.37 ±
0.85

0.17 ± 0.82

Glucose [mmol/l] 5.15 ±
0.45

5.16 ±
0.62

0.02 ± 0.55 5.12 ±
0.43

5.22 ±
0.70

0.10 ± 0.64 5.18 ±
0.42

5.20 ±
0.45

0.03 ± 0.36 5.18 ±
0.48

5.05 ±
0.55

−0.13 ±
0.45

Triglycerides [mmol/l] 1.08 ±
0.61

1.27 ±
0.73

0.19 ± 0.53 1.06 ±
0.53

1.31 ±
0.70

0.25 ± 0.52 1.03 ±
0.49

1.12±0.54 0.10 ± 0.41 1.13 ±
0.76

1.29 ±
0.88

0.16 ± 0.60

Blood pressure and
anthropometrics [n]

249 298 249 139 149 139 46 56 46 64 93 64

Systolic blood pressure [mmHg] 132.0 ±
16.3

133.2 ±
18.3

2.0 ± 13.4 132.2 ±
17.4

133.6 ±
18.0

2.0 ± 13.4 132.0 ±
15.8

133.6 ±
19.1

2.2 ± 13.6 131.4 ±
14.6

132.2 ±
18.4

1.8 ± 13.4

Diastolic blood pressure [mmHg] 84.1 ± 9.2 81.9 ±
10.0

−2.1 ± 6.5 83.9 ± 9.7 82.2 ±
10.4

−1.5 ± 7.1 84.3 ± 8.6 81.5 ± 9.3 −3.1 ± 5.9 84.3 ± 8.8 81.7 ±
10.0

−2.8 ± 5.3

Waist circumference [cm] 82.9 ± 9.7 83.7 ±
10.4

1.2 ± 4.2 83.0 ±
10.3

83.8 ±
11.1

1.3 ± 3.9 83.2 ± 8.8 84.6 ± 9.6 0.9 ± 4.8 82.3 ± 9.0 83.1 ± 9.8 1.1 ± 4.4

Waist-to-hip ratio × 100 82.5 ± 6.4 84.2 ± 5.5 1.7 ± 3.7 82.4 ± 6.7 83.8 ± 5.4 1.4 ± 4.1 82.8 ± 6.0 85.1 ± 5.8 2.1 ± 3.7 82.7 ± 6.0 84.4 ± 5.4 2.2 ± 2.5

Weight [kg] 69.5 ±
10.8

70.9 ±
11.5

1.8 ± 3.9 69.8 ±
11.0

71.7 ±
12.3

2.3 ± 3.6 70.0 ±
10.3

72.0 ±
10.4

1.5 ± 3.3 68.3 ±
10.8

69.1 ±
10.6

1.0 ± 4.5

Body mass index [kg/m2] 25.3 ± 3.7 25.8 ± 4.1 0.7 ± 1.4 25.5 ± 3.9 26.2 ± 4.4 0.9 ± 1.4 25.1 ± 3.1 25.9 ± 3.3 0.5 ± 1.2 24.9 ± 3.6 25.3 ± 3.8 0.4 ± 1.6

Body mass index [kg/m2]b

<18.5 0 (1) 1 (3) 0 (0) 1 (1) 0 (0) 0 (0) 2 (1) 2 (2)

18.5–24.9 53 (131) 44 (131) 51 (71) 44 (66) 52 (24) 38 (21) 56 (36) 47 (44)

25–29.9 36 (90) 39 (117) 36 (50) 36 (54) 39 (18) 48 (27) 34 (22) 39 (36)

≥30 11 (27) 16 (47) 13 (18 19 (28) 9 (4) 14 (8) 8 (5) 12 (11)

Body composition [n] 244 292 240 137 145 134 44 55 44 63 92 62

Total fat mass [kg] 24.2 ± 8.4 25.9 ± 9.1 2.0 ± 3.3 24.7 ± 8.9 26.7 ± 9.8 2.6 ± 2.8 23.5 ± 7.3 25.1 ± 7.9 1.2 ± 3.3 23.7 ± 7.9 25.1 ± 8.4 1.3 ± 4.0

Android fat mass [kg] 2.14 ±
0.91

2.39 ±
1.01

0.27 ± 0.42 2.18 ±
0.96

2.47 ±
1.09

0.35 ± 0.38 2.06 ±
0.81

2.26 ±
0.87

0.15 ± 0.35 2.11 ±
0.88

2.34 ±
0.96

0.17 ± 0.50

Total fat percentage [%] 34.0 ± 7.4 35.7 ± 7.6 2.0 ± 2.8 34.3 ± 8.0 36.4 ± 8.0 2.5 ± 2.3 32.9 ± 5.9 34.2 ± 6.6 1.1 ± 3.0 34.1 ± 7.0 35.5 ± 7.4 1.4 ± 3.3

Fat free mass [kg] 45.2 ± 4.3 44.8 ± 4.4 −0.4 ± 1.5 45.2 ± 4.3 44.6 ± 4.5 −0.5 ± 1.6 46.6 ± 4.5 46.8 ± 4.0 0.1 ± 1.3 44.2 ± 4.0 44.0 ± 4.2 −0.5 ± 1.5

249 298 139 149 46 56 64 93
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Table 1 continued

Full sample PRE-POST PRE-PRE POST-POST

BL FU Changea BL FU Changea BL FU Changea BL FU Changea

Metabolic syndrome risk factorsb

[n]

0 31 (77) 29 (87) 31 (43) 28 (42) 28 (13) 29 (16) 33 (21) 31 (29)

1 32 (79) 35 (103) 30 (42) 35 (52) 37 (17) 39 (22) 31 (20) 31 (29)

2 22 (54) 21 (61) 24 (33) 20 (29) 15 (7) 18 (10) 22 (14) 24 (22)

3 10 (25) 8 (25) 10 (14) 8 (12) 9 (4) 11 (6) 11 (7) 8 (7)

4 4 (11) 5 (15) 4 (6) 6 (9) 7 (3) 4 (2) 3 (2) 4 (4)

5 1 (3) 2 (7) 1 (1) 3 (5) 4 (2) 0 (0) 0 (0) 2 (2)

Accelerometer-measured PA [n] 235 283 222 134 141 126 43 55 43 58 87 53

ACC-MAD [mg] 30.2 ±
10.0

28.3±8.6 −1.9 ± 7.2 29.7 ±
11.1

28.0 ± 8.3 −1.8 ± 7.8 31.7 ± 7.8 29.1 ± 8.8 −3.3 ± 5.8 30.3 ± 8.6 28.4 ± 9.0 −0.9 ± 6.7

Use of hormonal preparationsb [n] 298 298 149 149 56 56 93 93

Non-user 62 (186) 60 (180) 62 (101) 66 (99) 39 (22) 34 (19) 68 (63) 67 (62)

Progestogen 38 (112) 19 (56) 32 (48) 15 (23) 61 (34) 41 (23) 32 (30) 11 (10)

Estrogen 0 (0) 3 (10) 0 (0) 3 (4) 0 (0) 4 (2) 0 (0) 4 (4)

Progestogen+ Estrogen 0 (0) 18 (52) 0 (0) 15 (23) 0 (0) 21 (12) 0 (0) 18 (17)

Lifestyle habits [n] 276 298 276 144 149 144 53 56 53 79 93 79

Alcohol consumption [portions/
wk]

3.73 ±
3.92

3.24 ±
3.43

−0.53 ±
2.63

3.93 ±
3.32

3.68 ±
3.69

−0.26 ±
2.32

3.00 ±
2.43

2.54 ±
1.94

−0.58 ±
1.91

3.86 ±
5.43

2.98 ±
3.62

−0.99 ±
3.45

Diet quality score 5.87 ±
2.45

5.85 ±
2.26

−0.02 ±
1.90

5.84 ±
2.52

5.70 ±
2.33

−0.04 ±
1.90

5.77 ±
2.28

6.20 ±
2.34

0.38 ± 1.91 5.99 ±
2.46

5.88 ±
2.08

−0.27 ±
1.89

Smokingb

Non-smoker 95 (262) 94 (280) 95 (136) 94 (140) 96 (51) 96 (54) 95 (75) 92 (86) 95 (262)

Smoker 5 (13) 6 (18) 5 (7) 6 (9) 4 (2) 4 (2) 5 (4) 8 (7) 5 (13)

Data are mean ± SD unless otherwise specified.
PRE-POST participants who were pre- or perimenopausal at baseline and postmenopausal at follow-up, PRE-PRE participants who were pre- or perimenopausal in both measurements, POST-POST participants who
were postmenopausal already at baseline, BL baseline measurement, FU follow-up measurement, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, PA physical activity, ACC-
MAD accelerometer-measured mean amplitude deviation, mg milligravity (0.00981 m/s2).
aFor participants with baseline and follow-up measurement.
bData are % (n).
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Table 2. Pooled fixed effect estimates for blood-based biomarkers (n= 298).

Total cholesterol [mmol/l] HDL-C
[mmol/l]

LDL-C
[mmol/l]

Glucose
[mmol/l]

Triglycerides
[mmol/l]

B 95% CI B 95% CI B 95% CI B 95% CI B 95% CI

Intercept (PRE-POST) 5.48*** [5.12, 5.83] 1.54*** [1.38, 1.72] 3.33*** [3.02, 3.62] 5.17*** [4.97, 5.38] 1.24*** [0.99, 1.48]

Main effects

Group

PRE-POST (ref.) – – – – –

PRE-PRE 0.03 [−0.27, 0.33] −0.05 [−0.20, 0.10] 0.05 [−0.22, 0.32] 0.04 [−0.13, 0.22] 0.02 [−0.19, 0.24]

POST-POST 0.33* [0.09, 0.59] 0.18** [0.05, 0.31] 0.21 [−0.02, 0.43] 0.06 [−0.08, 0.20] 0.05 [−0.13, 0.22]

ACC-MAD [10mg] −0.10 [−0.21, 0,01] 0.06* [0.01, 0.11] −0.11* [−0.21, −0.01] −0.02 [−0.08, 0.04] −0.06 [−0.13, 0.01]

Age at baseline [year] 0.03 [−0.03, 0.09] −0.00 [−0.03, 0.03] 0.02 [−0.03, 0.07] −0.00 [−0.03, 0.03] 0.03 [−0.01, 0.07]

Use of hormonal preparations

Non-user (ref.) – – – – –

Progestogen −0.14 [−0.32, 0.04] −0.11** [−0.20, −0.03] −0.05 [−0.21, 0.10] 0.06 [−0.05, 0.16] −0.03 [−0.15, 0.09]

Estrogen −0.19 [−0.68, 0.30] 0.16 [−0.07, 0.38] −0.16 [−0.59, 0.27] 0.12 [−0.18, 0.42] −0.13 [−0.45, 0.18]

Progestogen+ Estrogen −0.17 [−0.42, 0.07] −0.08 [−0.19, 0.03] −0.15 [−0.37, 0.06] −0.19* [−0.33, −0.04] −0.02 [−0.17, 0.14]

Time (PRE-POST) 0.45* [0.07, 0.84] 0.35*** [0.18, 0.52] 0.40* [0.06, 0.74] 0.32** [0.08, 0.55] 0.28* [0.03, 0.52]

Interactions

Time × Group

Time × PRE-POST (ref.) – – – – –

Time × PRE-PRE −0.28* [−0.54, −0.01] −0.07 [−0.18, 0.05] −0.21 [−0.44, 0.02] −0.06 [−0.22, 0.11] −0.15 [−0.32, 0.01]

Time × POST-POST −0.42*** [−0.65, −0.20] −0.15* [−0.24, −0.05] −0.34** [−0.53, −0.14] −0.22* [−0.36, −0.08] −0.09 [−0.23, 0.05]

Time × ACC-MAD 0.05 [−0.07, 0.18] −0.04 [−0.09, 0.02] 0.04 [−0.07, 0.15] −0.07 [−0.14, 0.01] −0.01 [−0.09, 0.07]

HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, CI Confidence interval, PRE-POST participants who were pre- or perimenopausal at baseline and postmenopausal at follow-
up (reference group), PRE-PRE participants who were pre- or perimenopausal in both measurements, POST-POST participants who were postmenopausal already at baseline, ACC-MAD accelerometer-measured
mean amplitude deviation, mg milligravity (0.00981 m/s2), Time from baseline to follow-up.
*p ≤ 0.05; **p ≤ 0.01; ***p < 0.001.
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Body composition and anthropometrics
ACC-MAD was inversely associated with total fat mass (B=−0.77,
95% CI [−1.27, −0.26]) and android fat mass (B=−0.12, 95% CI
[−0.18, −0.03]), waist circumference (B=−0.92, 95% CI [−1.60,
−0.24]), and WHR (B=−0.89, 95% CI [−1.51, −0.27]) in the full
sample (Table 3). Total (B= 1.72, 95% CI [0.16, 3.28]) and android
fat mass (B= 0.26, 95% CI [0.06, 0.46]) increased during the follow-
up in the PRE-POST group and the change was smaller in the PRE-
PRE and POST-POST groups compared to the PRE-POST group. The
change in ACC-MAD was directly associated with the change in
WHR (B= 0.72, 95% CI [0.05, 1.38]). Combined progestogen and
estrogen use was associated with lower android fat mass when
compared to non-hormone users. The results were relatively
similar when using SR-PA, however, SR-PA was not associated with
the change in WHR (Supplementary Table 4).

Blood pressure
ACC-MAD was not associated with SBP and DBP in the full sample
(Table 4). SBP increased during the follow-up in the PRE-POST
group (B= 9.37, 95% CI [3.34, 15.39]) and the change did not differ
between the groups. Additionally, the change in ACC-MAD was
inversely associated with the change in SBP (B=−2.40, 95% CI
[−4.34, −0.46]), but this association was not observed with SR-PA
(Supplementary Table 5). The combined progestogen and
estrogen use was associated with lower SBP and DBP. The results
did not differ notably when excluding participants using
antihypertensives (Supplementary Table 6).

Number of MetS risk factors
In the Poisson mixed-effect models (Table 5), age at baseline was
directly associated with the number of MetS risk factors at

baseline (exp(B)= 1.07, 95% CI [1.00, 1.14]) in the full sample. The
number of risk factors at baseline and the change in the number
of risk factors during the follow-up did not differ between the
groups. Furthermore, ACC-MAD was not associated with the
number of risk factors at baseline nor with the change in the
number. The results did not differ notably when using SR-PA
(Supplementary Table 7) or excluding participants using lipid-
modifying agents or antihypertensives (Supplementary Table 8).

DISCUSSION
In this longitudinal study of middle-aged women, an increase in
several indicators of metabolic health, ranging from blood-based
biomarkers and SBP to body adiposity, were observed during the
follow-up. The increase was greater during menopausal transition,
and the rate of change decelerated after menopause, especially in
blood-based biomarkers. Higher PA was associated with favorable
levels in metabolic health indicators; however, the change in PA
did not associate with the rate of change during the follow-up in
most of the studied metabolic health indicators. Nonetheless,
associations of higher PA with a greater increase in WHR and a
smaller increase in SBP were observed. PA was not associated with
the number of MetS risk factors.
We observed a significant increase in total cholesterol, HDL-C,

LDL-C, triglycerides, and blood glucose in women going through
menopause during the follow-up. Several other longitudinal
studies have also reported an increase in serum total cholesterol,
LDL-C, and triglycerides during the menopausal transition [37–40].
However, the literature on the associations of menopause and
HDL-C is more inconsistent. Previous studies have reported HDL-C
to increase [12, 19, 39, 41], peak right before menopause [40], as

Table 3. Pooled fixed effect estimates for body composition and anthropometrics (n= 298).

Fat mass [kg] Android fat mass [kg] Waist circumference [cm] Waist-to-hip ratio × 100

B 95% CI B 95% CI B 95% CI B 95% CI

Intercept (PRE-POST) 26.66*** [24.59, 28.73] 2.46*** [2.19, 2.73] 85.41*** [82.81, 88.00] 84.95*** [82.85, 87.04]

Main effects

Group

PRE-POST (ref.) – – – –

PRE-PRE 0.46 [−2.33, 3.26] 0.04 [−0.27, 0.35] 1.96 [−1.30, 5.22] 1.10 [−0.92, 3.12]

POST-POST −0.74 [−3.05, 1.57] −0.04 [−0.30, 0.21] −0.75 [−3.48, 1.97] −0.05 [−1.78, 1.68]

ACC-MAD [10mg] −0.77** [−1.27, −0.26] −0.11** [−0.18, −0.03] −0.92** [−1.60, −0.24] −0.89** [−1.51, −0.27]

Age at baseline [year] 0.40 [−0.18, 0.98] 0.04 [−0.02, 0.11] 0.61 [−0.07, 1.29] 0.32 [−0.08, 0.72]

Use of hormonal
preparations

Non-user (ref.) – – – –

Progestogen −0.61 [−1.55, 0.34] −0.06 [−0.18, 0.05] −0.28 [−1.48, 0.92] −0.12 [−1.19, 0.94]

Estrogen 1.02 [−1.08, 3.13] 0.09 [−0.17, 0.36] 1.14 [−1.58, 3.86] 0.19 [−2.37, 2.75]

Progestogen+ Estrogen −0.60 [−1.81, 0.62] −0.14 [−0.29, 0.01] −0.47 [−1.94, 0.99] 0.58 [−0.76, 1.92]

Time (PRE-POST) 1.72* [0.16, 3.28] 0.26** [0.06, 0.46] 0.44 [−1.64, 2.51] −0.75 [−2.77, 1.26]

Interactions

Time × Group

Time × PRE-POST (ref.) – – – –

Time × PRE-PRE −1.33* [−2.41, −0.26] −0.15* [−0.29, −0.02] −0.19 [−1.61, 1.22] 0.61 [−0.81, 2.03]

Time × POST-POST −1.20* [−2.12, −0.28] −0.12 [−0.24, 0.00] −0.47 [−1.76, 0.81] 0.36 [−0.92, 1.64]

Time × ACC-MAD 0.24 [−0.28, 0.75] 0.03 [−0.04, 0.09] 0.23 [−0.46, 0.91] 0.72* [0.05, 1.38]

CI Confidence interval, PRE-POST participants who were pre- or perimenopausal at baseline and postmenopausal at follow-up (reference group), PRE-PRE
participants who were pre- or perimenopausal in both measurements, POST-POST participants who were postmenopausal already at baseline, ACC-MAD
accelerometer-measured mean amplitude deviation, mg milligravity (0.00981 m/s2), Time from baseline to follow-up.
*p ≤ 0.05; **p ≤ 0.01; ***p < 0.001.

M. Hyvärinen et al.

7

International Journal of Obesity



well as continuously decline during menopausal transition [42]. In
addition to increase in HDL-C in the PRE-POST group, higher
baseline HDL-C levels and lower increase rate in the postmeno-
pausal group were also observed. These conflicting results suggest
that the change in HDL-C during menopausal transition is a
complicated process related to, e.g., aging and genetic back-
ground. As HDL-C and its antiatherogenic functionality have a
major role in promoting cardiovascular health, it is obvious that
more detailed longitudinal studies are needed to clarify this
process.
Previous findings on associations of menopausal transition and

blood glucose are also contradictory. Some longitudinal studies
have reported a decrease [15, 19] during the menopausal
transition, but in cross-sectional design postmenopausal women
have been reported to have higher blood glucose compared to
pre- and perimenopausal women [10, 43]. We observed an
increase in fasting blood glucose in women going through
menopause and the increase was attenuated in the POST-POST
group. Our findings indicate that in addition to aging, the increase
in blood glucose may be explained by the decreasing E2 levels
during menopausal transition, since E2 is known to enhance
insulin sensitivity and glucose disposal in women [44].
The observed increase in total and android fat masses in this

study are consistent with previous literature [45–47]. The decrease
in female sex hormone levels during menopausal transition is
proposed to lead to increased accumulation of adipose tissue
especially in the waist and visceral area [11, 48], yet the association
of menopause to total adipose tissue accumulation is somewhat
debated [9]. Although android fat mass increased during the
follow-up, we did not observe a change in waist circumference.
Similar results have also been reported by others [19, 49]. This

indicates a change in the ratio between android lean and fat
masses during the follow-up. A comparable change in muscle-to-
fat ratio is also observed in total body level during the
menopausal transition [11, 47]. Furthermore, we observed an
increase in SBP that did not differ between the groups. This
finding is supported by the previous review by Taddei [50] that
suggested the changes in SBP to be more dependent on age than
menopausal status in middle-aged women.
Regular PA is a well-established contributor to a healthier

blood lipid profile and body composition also in menopausal
women [12, 51]. With both accelerometry-measured and self-
reported measures, higher PA was associated with lower levels in
blood-based biomarkers and body composition variables but,
surprisingly [52], not in blood pressure. When exploring the
combined effect of PA and follow-up time, increased PA was
associated with an accelerated increase in WHR. This result
suggests accelerated decrease in hip circumference in more
active women, since the change in PA was not associated with
the change in waist circumference. While estradiol levels are
associated with both gluteal adipose [53] and muscle mass
[14, 54], we suspect that the pronounced decrease in more
physically active women is caused especially by the loss of
muscle mass due to the potentially higher muscle mass on their
gluteal area at baseline. However, in the current study, we were
not able to accurately identify the lost tissue type at the hip area.
We also observed higher PA to be associated with a smaller
increase in SBP during the follow-up. As discussed earlier, the
observed changes in SBP may have been related to aging rather
than menopausal transition [50], but our results indicate that
regular PA may be efficient for controlling SBP in menopausal
women similar to other populations [55, 56].

Table 4. Pooled fixed effect estimates for blood pressure (n= 298).

Systolic blood pressure [mmHg] Diastolic blood pressure
[mmHg]

B 95% CI B 95% CI

Intercept (PRE-POST) 130.91*** [125.01, 136.80] 84.90*** [81.83, 87.96]

Main effects

Group

PRE-POST (ref.) – –

PRE-PRE 1.31 [−4.41, 7.03] 1.10 [−2.07, 4.27]

POST-POST −1.97 [−6.79, 2.85] 0.01 [−2.66, 2.68]

ACC-MAD [10mg] 0.28 [−1.42, 2.00] −0.36 [−1.24, 0.51]

Age at baseline [year] 1.10 [−0.03, 2.23] 0.42 [−0.22, 1.06]

Use of hormonal preparations

Non-user (ref.) – –

Progestogen 0.46 [−2.66, 3.59] −0.18 [−1.80, 1.43]

Estrogen 1.76 [−6.24, 9.76] −0.95 [−4.91, 3.01]

Progestogen+ Estrogen −5.55** [−9.61, −1.49] −4.33*** [−6.36, −2.30]

Time (PRE-POST) 9.37** [3.34, 15.39] −0.16 [−3.11, 2.79]

Interactions

Time × Group

Time × PRE-POST (ref.) – –

Time × PRE-PRE 0.62 [−3.67, 4.91] −0.81 [−2.88, 1.26]

Time × POST-POST −0.03 [−3.80, 3.73] −0.73 [−2.57, 1.12]

Time × ACC-MAD −2.40* [−4.34, −0.46] −0.28 [−1.24, 0.68]

CI Confidence interval, PRE-POST participants who were pre- or perimenopausal at baseline and postmenopausal at follow-up (reference group), PRE-PRE
participants who were pre- or perimenopausal in both measurements, POST-POST participants who were postmenopausal already at baseline, ACC-MAD
accelerometer-measured mean amplitude deviation, mg milligravity (0.00981 m/s2), Time from baseline to follow-up.
*p ≤ 0.05; **p ≤ 0.01, ***p < 0.001.
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Although PA was associated with individual indicators of
metabolic health, no associations with PA and the number of
MetS risk factors or change in the number were observed. This
may be caused by the strict cutoff points used in the clinical
identification of MetS that does not capture the change unless the
cutoff point is reached. Our findings are somewhat contradictory
to a recent longitudinal study [57] in which higher PA was
associated with lower incidence and better recovery from MetS in
middle-aged women. Nonetheless, also in our study, the number
of MetS factors tended to be smaller and the increase in the
number was slightly lower in more active participants. Thus, PA
might be beneficial for preventing the unwanted changes in
individual MetS risk factors, but more studies on the associations
of PA and number of MetS risk factors during menopause are
required.
An interesting additional finding of the study was the observed

associations of external hormone use with multiple indicators of
metabolic health, highlighted by the distinctive association
between the combined use of estrogen and progestogen and
lower SBP. The use of hormone replacement therapy has been
previously shown to reduce abdominal fat, blood glucose, LDL-to-
HDL ratio and blood pressure [58], similar to our results. The
individual effects of progestogen use on body composition and
metabolic health are less studied, but estrogen is recognized to
associate directly with gynoid adipose tissue volume [48, 59],
better insulin sensitivity [44], and beneficial effects on vasodilata-
tion and LDL-C concentration [60]. Although our results from
exogenous hormone use are mostly in agreement with previous

results, the results need to be interpreted with caution, since we
did not consider the dosage, the duration of use, or form of the
exogenous hormones.
One of the limitations was that the measurements were

repeated only once. The homogenous sample of white, middle-
aged women with exclusion of women with severe obesity and
different medical disorders may limit the generalizability of the
results for more heterogeneous populations including participants
with disabling conditions. Furthermore, based on the sensitivity
analysis, dropouts during the study have caused healthy selection
bias particularly towards slightly better glucose control and higher
PA which also limits the generalizability of the results. However,
this is unlikely to have caused overestimation of the observed
unhealthy menopause-related changes in outcome variables. The
strengths of the study included the use of accelerometers for PA
and DXA for body composition measurements. Additionally, the
study design in which women of similar age but different
menopausal status were followed for the same amount of time
allowed to study the menopause-related changes in outcome
variables while taking into account the simultaneous aging.
In conclusion, the results indicate that undesirable changes in

blood lipids, body adiposity, and blood pressure occur in middle-
aged women, and the rate of change accelerates near menopause,
especially in blood lipids. Although habitual PA associated with a
healthier blood lipid profile and lower body adiposity in middle-
aged women in this study, it did not significantly modulate the
menopause-related changes in most of the studied metabolic
health indicators. However, higher PA may attenuate the increase
in SBP and associate with an accelerated increase in WHR. These
results indicate that significant increases in PA around menopause
may be needed to counteract the menopause-related changes in
blood-based biomarkers and body adiposity. Nonetheless, our
findings could encourage professionals working with menopausal
women to highlight the importance of PA in the early prevention
of hypertension and cardiovascular disease. Further longitudinal
studies on the role of PA on the metabolic health during the
menopausal transition are needed.
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Abstract: In midlife, women experience hormonal changes due to menopausal transition. A decrease
especially in estradiol has been hypothesized to cause loss of muscle mass. This study investigated
the effect of menopausal transition on changes in lean and muscle mass, from the total body to the
muscle fiber level, among 47–55-year-old women. Data were used from the Estrogenic Regulation of
Muscle Apoptosis (ERMA) study, where 234 women were followed from perimenopause to early
postmenopause. Hormone levels (estradiol and follicle stimulating hormone), total and regional
body composition (dual-energy X-ray absorptiometry (DXA) and computed tomography (CT) scans),
physical activity level (self-reported and accelerometer-measured) and muscle fiber properties (muscle
biopsy) were assessed at baseline and at early postmenopause. Significant decreases were seen in
lean body mass (LBM), lean body mass index (LBMI), appendicular lean mass (ALM), appendicular
lean mass index (ALMI), leg lean mass and thigh muscle cross-sectional area (CSA). Menopausal
status was a significant predictor for all tested muscle mass variables, while physical activity was
an additional significant contributor for LBM, ALM, ALMI, leg lean mass and relative muscle CSA.
Menopausal transition was associated with loss of muscle mass at multiple anatomical levels, while
physical activity was beneficial for the maintenance of skeletal muscle mass.

Keywords: menopause; female aging; skeletal muscle; sarcopenia; estradiol; physical activity

1. Introduction

Skeletal muscle is responsible for movements under voluntary control, but it also has an important
role in metabolism [1,2]. During aging, muscle mass decreases due to an imbalance in muscle protein
turnover and cell atrophy [3]. In women, aging-related hormonal changes accelerate especially during
menopause, which women face in middle age [4,5]. Estradiol, the main female sex steroid hormone
lost due to menopause, has been proposed to be among the molecular regulators of female skeletal
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muscle properties [6]. Menopausal transition starts when the hypothalamus begins to show signs of
aging and the release of gonadotropin-releasing hormone becomes unsynchronized [7]. This leads to
an imbalance between the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH),
and when combined with simultaneous ovarian aging, estradiol levels decrease [7]. When menopause
occurs, i.e., when the menstrual cycle ceases completely, systemic FSH levels are set high and estradiol
levels low. These hormonal changes, particularly the loss of systemic estradiol from the ovaries,
have been suggested to have an impact on whole body and skeletal muscle composition, whereby
more adipose tissue is accumulated and total muscle mass decreases [8–10]. To date, the majority of
human studies regarding menopause and muscle mass have been based on cross-sectional studies
(e.g., [11,12]), and to our knowledge, the number of longitudinal studies [8,13,14] is limited.

Total muscle mass is dependent on the number and size of muscle cells. Human skeletal
muscle consists of three major muscle fiber types, which differ in functional and metabolic properties.
This distinction is based on the content of the dominant myosin heavy chain (MHC) type, the main
determinant of muscle cell contractile properties. Type I myofibers (MHC-I) or “slow fibers” are
myofibers with high mitochondrial and capillary density, and they provide power for long-term
contractions, e.g., during postural maintenance and endurance sports. Type IIA (MHC-IIA) and type
IIX (MHC-IIX) fibers or “fast fibers” are more glycolytic in nature, and contribute to short-duration
high-intensity activities [15]. While the proportion of different fiber types in muscles is mostly
attributable to genetics, it seems that age, level and type of physical activity, inactivity and body weight
also have an effect [16,17]. Only a few studies have focused specifically on the role of estradiol in
fiber type distribution [18–20], so the role of the main female sex hormone in this process remains
largely unknown.

The aim of this longitudinal study was to investigate how menopause affects lean and skeletal
muscle mass in women. We were also interested in the possible association between physical activity
level and skeletal muscle tissue properties during the menopausal transition. To gain a comprehensive
insight into the menopausal transition, we used whole body, limb and cellular variables to estimate
lean body mass (LBM), appendicular lean mass (ALM), thigh muscle cross-sectional area and m. vastus
lateralis muscle fiber composition before and after menopause, as presented in Figure 1.

Figure 1. Anatomical levels of lean and muscle mass measurements and the number of the same
participants measured at baseline and final follow-up time-points. ALM, appendicular lean mass;
ALMI, appendicular lean mass index; CSA, cross-sectional area; CT, computed tomography; DXA,
dual-energy X-ray absorptiometry; IHC, immunohistochemistry; LBM, lean body mass; LBMI, lean
body mass index; MHC, myosin heavy chain.
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2. Materials and Methods

2.1. Study Design and Participants

This study utilized data and samples from the Estrogenic Regulation of Muscle Apoptosis (ERMA)
study [21]. The flow chart of the study is presented in Figure 2. Postal invitations to participate
were sent to 6878 randomly selected 47–55-year-old women from the Finnish National Registry
who were living in the city of Jyväskylä or neighboring regions. Of these 6878, 3064 returned the
pre-questionnaire. After applying the exclusion criteria of self-reported body mass index (BMI) over
35 kg/m2, use of estrogen-containing contraceptives or other medications and conditions affecting
ovarian function, altered systemic inflammatory status and health concerns or conditions jeopardizing
ordinary physical function, 1627 participants were invited to the laboratory for further assessment.
Of these, 1393 came to the first blood sampling session and were assigned to menopausal groups
(premenopausal, early perimenopausal, late perimenopausal and postmenopausal), based on their
FSH levels and menstrual bleeding reported in a diary. The ERMA follow-up study (core-ERMA)
invited 381 women assigned to the early or late perimenopausal groups to participate in a follow-up
study over the menopausal transition (Figure 2). These core-ERMA participants were followed from
perimenopause to early postmenopause (mean follow-up time 15.3 ± 8.6 months), with regular
laboratory visits every 3–6 months. Follow-up visits were continued until FSH level was above
30 IU/mL and no menstrual bleeding was reported during the last five to six months. Within a few days
of the detection of high FSH concomitant with lack of menstruation, the participant was asked to come
to the laboratory for a control visit to re-test the FSH levels and re-check the bleeding diary. If in the
control visit FSH levels were still high and there was still no menstrual bleeding, the participant was
considered to be early postmenopausal and she was asked to come to the laboratory for final follow-up
measurements. During the follow-up period, 234 women became postmenopausal and the final
follow-up measurements repeating the baseline measurement protocol were performed. The number
of participants who took part in the lean mass measurements used in the current study is presented
in Figure 1. Eleven women did not participate in the dual-energy X-ray absorptiometry (DXA)
measurements, therefore the final number of participants for total body composition measurements
was 223. For the quantitative computed tomography (CT) scans and biopsies, all participants who
at baseline did not use progestogen-containing contraceptives and had not had a hysterectomy were
invited for measurements. The only exclusion criterion for DXA and CT was a previous history of
cancer. Exclusion criteria for muscle biopsy were the use of blood thinning medications or hemophilia.
During the follow-up, 37 women started using hormone replacement therapy (HT). The average
follow-up time for these participants was 16.6 (6.4–35.6) months. At baseline, 21 participants in the
HT-group were early perimenopausal and 16 were late perimenopausal. The most commonly used
product was tablet form estradiol hemihydrate combined with dydrogesterone (Femoston, n = 15) and
estradiol valeriate-containing tablets (Progynova, n = 7). Because HT use masks the progression of
menopausal transition, HT users were invited to the final follow-up measurements approximately
six months after their HT use was informed to the laboratory. This time period was considered to be
sufficient to allow HT to have exerted its phenotypic effects. The duration of HT use varied from 2 to
337 days. During final follow-up measurements, one participant informed us that she had started using
HT just two days prior to the laboratory visit. As she was already regarded to be postmenopausal,
the final follow-up measurements were done as planned, but she was classified as an HT user. In the
statistical analysis, the duration of HT use was controlled for all participants. All participants provided
written informed consent prior to inclusion. The study was approved by the ethical committee of the
Central Finland Health Care District (Dnro 8U/2014).
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Figure 2. Flow chart of the longitudinal Estrogenic Regulation of Muscle Apoptosis (ERMA) study.
FSH, follicle stimulating hormone; HT, hormone replacement therapy; IUC, intra-uterine hormonal
contraceptive. * One former IUC user did not inform us if her IUC-status had changed during follow-up,
so she was still counted as an IUC user at final follow-up measurements. IUC-group also includes
women using progestogen pills.

2.2. Hormone Measurements

Fasting serum samples were taken from an antecubital vein between 7–10 a.m. At baseline,
women with a menstrual cycle were asked to come to the laboratory between cycle days 1 to 5. Serum
estradiol (E2), follicle stimulating hormone (FSH), sulfated dehydroepiandrosterone (DHEAS) and
sex hormone binding globulin (SHBG) levels were measured with IMMULITE 2000 XPi (Siemens
Healthcare Diagnostics, UK).

After baseline measurements, participants started the follow-up. During follow-up, elevated FSH
levels were checked with FSH control blood samples and after two similarly elevated levels combined
with a lack of menstruation for at least 6 months, the participant was considered postmenopausal.
The participant was then invited to the final follow-up visit for physiological measurements, during
which the E2 and FSH levels were again measured. For the final analysis, the E2 and FSH values of the
most recent follow-up visit and final follow-up visits were averaged to minimize the effect of daily
fluctuations. Hormone levels for participants who started using HT were only obtained from the final
follow-up visit.
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2.3. Lean and Muscle Mass Measurements

Lean and muscle mass measurements were done after overnight fasting. Total LBM, appendicular
lean mass (summed lean mass of arms and legs, ALM) and lean mass of the right leg were analyzed
from DXA scans (LUNAR Prodigy; GE Healthcare, Chicago, IL). DXA measurement of right leg lean
mass was chosen to accompany the quantitative computed tomography scans (CT) that were taken
from the right thigh. LBM index (LBMI) was calculated by dividing LBM (kg) by height squared (m2).
ALM index (ALMI) was calculated similarly with ALM and height squared. An ALMI cut off-limit of
5.67 kg/m2 [22] was used to detect sarcopenia. The right mid-thigh was scanned at the level of the
muscle biopsy with CT (Siemens Somatom Emotion scanner, Siemens, Erlangen, Germany) (Figure 1).
Total thigh cross-sectional area (CSA) and absolute and relative muscle areas were measured using
appropriate thresholds in Python Software (version 3.6). From the cross-sectional image, the muscle
portion including the femur was first separated using a machine learning algorithm called U-net [23] or
manually if needed. Muscle cross-sectional area was separated from adipose tissue and bone by using
Hounsfield unit (HU) limits for muscle. Relative muscle area was calculated by dividing absolute
muscle area by total CSA. All images were analyzed using ImageJ Software (v.1.52, NIH) and Python.

2.4. Muscle Biopsies

Muscle biopsies were collected from the subpopulation of women at baseline and final follow-up
who did not use progestogen at baseline and did not start using HT during the follow-up, i.e., those
who went through the menopausal transition naturally. Biopsies were taken from the middle portion
of the m. vastus lateralis by percutaneous needle biopsy under local anesthesia. All visible connective
and adipose tissue was removed, and the sample was quickly divided into three parts. Two parts
were assigned to biochemical and molecular biology analyses and were snap frozen in liquid nitrogen.
The third part was embedded transversely on a cork with TissueTek and frozen in isopentane cooled in
liquid nitrogen. All samples were stored at −150 ◦C until analysis.

2.5. Myosin Heavy Chain Isoform Separation with SDS-PAGE

Muscle samples assigned for protein analysis (weight ~ 4–12 mg) were homogenized in 1:100
myosin extraction buffer (0.1 M KCL, 0.1 M KH2PO4, 0.05 M K2HPO4·3H2O, 0.01 M EDTA, 0.02 M
NaPPi, BME, Pepstatin A, Halt Proteinase and Phosphatase Inhibitor (ThermoFisher Scientific, Waltham,
MA, USA)) with TissueLyser II (Qiagen, Germany). Homogenization was extended with 24-h shaking
at +4 ◦C, followed by centrifugation for 10 min at 10,000× g at +4 ◦C (Eppendorf 5424, FA-45-24-11,
Hamburg, Germany). Then, 20 μL of obtained supernatant was mixed with working Laemmli sample
buffer and glycerol. Samples were heated for 4 min at +100 ◦C and then frozen to −20 ◦C. 200–300 ng
of total protein was loaded into the SDS-PAGE gel system, consisting of 3% stacking gel and 6.7%
separating gel with 30% glycerol. Electrophoresis was run in Bio-Rad Protean II Xi Cell for 42–44 h at
70–90 V at +4 ◦C. After the run, gels were fixed for one hour (40% ethanol, 10% acetic acid and 50%
H2O) and washed with water. A sensitizer (0.02% sodiumthiosulphate in water) was applied to gels
for 1 min. Gels were washed and incubated in cold 0.1% silvernitrate solution with formaldehyde.
After staining, the gels were again washed and developed with 3% sodiumcarbonate solution, until
the staining was visible. Developing was terminated in 5% acetic acid solution. Gels were imaged
with ChemiDoc MP (v.2.2.0.08, Bio-Rad Laboratories, Inc., Hercules, CA, USA) and images analyzed
with Image Lab (v.6.0.1, Bio-Rad Laboratories, Inc.).

2.6. Myofiber Type Distribution and Size Measurement

Serial transverse sections of 10 μm in thickness were cut on a cryostat at −20 ◦C and attached
to glass slides. Slides were air dried and fixed in 4% paraformaldehyde in PBS (pH 7.4). Samples
were blocked with 5% goat serum and primary antibodies were added in 1% goat serum. Myosin
heavy chain distribution was analyzed with mouse antibodies against type I or type II fibers (A4.74
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(1:35) for type II and A4.951 (1:40) for type I, Developmental Studies Hybridoma Bank, University
of Iowa, IA, USA). Rabbit antibody for laminin (L9393, 1:250, Sigma-Aldrich, St. Louis, MO, USA)
was used to mark cell borders. Primary antibodies were incubated at +4 ◦C overnight and the next
morning, the attachment of primary antibodies was visualized with fluorescent secondary antibodies
(Alexa Fluor 546 for goat anti-mouse (A11003, 1:500) and Alexa Fluor 488 for goat anti-rabbit (A11008,
1:500), Invitrogen, Carlsbad, CA, USA). Sections were mounted with Prolong Gold with Dapi (P36931,
Invitrogen) and imaged with confocal microscopy (LSM 700, Axio Observer, Zeiss, Oberkochen,
Germany). Images were analyzed manually with ImageJ software (v.1.52, NIH).

2.7. Physical Activity

The intensity and volume of physical activity were evaluated using a structured physical activity
questionnaire [24] and ActiGraph hip-worn accelerometers (GT3X+ or wGT3X+, Pensacola, FL, USA),
as reported earlier [25]. The physical activity questionnaire was used to calculate metabolic equivalent
(MET) index as the product of intensity*duration*frequency of activity to give a score of MET-hours per
day [24]. The data analysis process for accelerometer measurements has been reported previously [26].
Briefly, the amount of time spent at different physical activity intensities was evaluated using triaxial
vector magnitude cutoff points for light, moderate and vigorous physical activity intensities: 450, 2690
and 6166 counts per minute, respectively [25,27]. Moderate-to-vigorous physical activity (MVPA)
was defined by computing the sum of moderate and vigorous physical activity. The participants
wore the accelerometers for seven consecutive days during waking hours, leading to some variation
in accelerometer wearing times between participants. Therefore, MVPA was normalized to 16-hour
wearing time per day [28]. Longitudinal accelerometer data were obtained from 173 participants,
because not all participants were willing to wear accelerometers, some devices were lost in return
transit and some data were lost due to technical errors.

2.8. Dietary Analysis

Diet quality score (DQS) was calculated based on a food-frequency questionnaire, which the
participants completed at baseline and final follow-up measurements. The food-frequency questionnaire
included 45 typical Finnish food items and 6 answer options. The DQS consisted of 11 elements
characteristic of a healthy diet according to the Nordic Nutrition Recommendations 2012 (http:
//dx.doi.org/10.6027/Nord2014-002). The regular consumption of vegetables, fruits, and berries, dark
or crispbread, low-fat dairy and fish, as well as nuts and seeds, was classified as beneficial. In contrast,
a healthy diet was considered to only rarely include refined baked products, processed meats, sugary
beverages, fast food, and sweet or salty snacks. Each component was worth 1 point, and the maximum
score available was 11 points. A higher DQS score was considered to reflect a healthier diet. The DQS
was partly adapted from [29]. Reconstruction of the original DQS was necessary, as our food-frequency
questionnaire included some different food items and different wording of answers.

2.9. Background Variables

Anthropometrics were measured after overnight fasting. Body mass was measured with a digital
scale and height with a stadiometer. Body mass index (BMI) was calculated as body mass divided by
height squared (kg/m2). Level of education was determined with a questionnaire and categorized as
primary, secondary and tertiary. Data about smoking and alcohol consumption were collected with a
structured questionnaire.

2.10. Statistical Analysis

Descriptive characteristics are reported as means and standard deviations (SD). All variables were
evaluated for normality and parametric tests were used whenever possible. Independent samples t-test,
chi-squared test and Mann–Whitney U-tests were used to compare baseline characteristics between
early and late perimenopausal groups. Generalized estimating equations (GEE) tests of model effects
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was also used to study the possible differences between the menopausal groups in the longitudinal
set-up. For longitudinal analyses, differences in lean and muscle mass variables between early and late
perimenopausal groups, between baseline progestogen users and non-users, and between participants
who did and did not start to use HT, were tested. Because no differences were found between the
groups, they were combined for analysis. Paired t-test and Wilcoxon rank test were used to test for
differences in lean and muscle mass variables between baseline and final follow-up. Pearson and
Spearman correlations were calculated to examine associations between changes in physical activity
level and lean mass measures, and variables from muscle biopsies. GEE-modelling was performed to
examine more detailed associations between the change in lean and muscle mass measurements and
covariates during the follow-up. To investigate associations between menopausal status and each of
the lean and muscle mass variables, models were controlled for baseline progestogen use, differences
in the duration of HT use, and follow-up time. Education was also tested as a possible predictor, but it
failed to reach significance for all variables, so it was not included as a covariate. To further investigate
whether physical activity and age were also significant predictors of some or all of the muscle mass
variables, they were included in the model step by step. Statistical data analysis was carried out using
IBM SPSS Statistics Software version 24 (Chicago, IL, USA), and a P-value ≤ 0.05 was considered
statistically significant.

3. Results

3.1. Characteristics of the Population at Baseline

Age, demographics and systemic hormone levels are shown in Table 1. As expected, early
perimenopausal women were younger than late perimenopausal women (P = 0.013). The early
perimenopausal group had higher serum E2 levels than the late perimenopausal group (P < 0.001).
Serum FSH levels were higher in the late perimenopausal group (P < 0.001). DHEAS and SHBG did
not differ between the groups. Education level, smoking habits and alcohol consumption were similar
in both menopausal groups. At baseline, more than half of the participants had natural bleeding
status, meaning that they did not have conditions that could confound the detection of menstrual cycle,
such as the use of intrauterine or other hormonal contraception, or hysterectomy. Notably, 94% of
subjects in the early and 89% in the late perimenopausal group fulfilled the national recommendations
of moderate-to-vigorous physical activity (at least 150 min of MVPA per week, ≈21 min per day)
and can therefore be considered to be active. No differences were observed between the groups in
accelerometer-measured or self-reported physical activity.

Table 2 shows that the early and late perimenopausal groups did not differ in anthropometry or
any of the lean and muscle mass variables at baseline. Approximately 50% of the participants were
normal weight according to BMI, and LBM was on average more than 50% of the total body mass.
LBMI was similar in both groups. ALMI was similar in both groups, and of the whole perimenopausal
group, 4.5% (four participants in the early and six in the late perimenopausal group) were sarcopenic
at baseline based on the previously reported cut-off values [22]. Right leg lean mass was similar in the
early and late perimenopausal groups. No differences were observed in relative or absolute muscle
area between the groups at baseline.
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Table 1. Characteristics of the perimenopausal ERMA baseline population (n = 234).

Early Perimenopausal
(n = 89) #

Late Perimenopausal
(n = 145) ¤ P

Age, y 51.2 ± 2.0 51.8 ± 1.8 0.013 a

E2, nmol/L 0.46 ± 0.34 0.26 ± 0.18 <0.001 b

FSH, IU/L 18.3 ± 5.0 46.9 ± 20.6 <0.001 b

DHEAS, μmol/L 2.64 ± 1.42 2.91 ± 1.36 0.135 b

SHBG, nmol/L 58.5 ± 24.3 53.1 ± 22.3 0.140 b

Education level
Primary

Secondary
Tertiary

1.1%
59.1%
39.8%

3.4%
47.6%
49.0%

0.261 b

Smoking
Never
Quitter

Current smoker

74.2%
23.6%
2.2%

66.9%
24.1%
9.0%

0.159 b

Alcohol use, units/week 4.5 ± 4.5 3.9 ± 3.2 0.528 b

Bleeding status
Natural

IUC
Hysterectomy

56.2%
34.8%
9.0%

66.9%
29%
4.1%

0.151 c

Physical activity
MVPA, min/day X 53.6 ± 22.8 52.0 ± 32.9 0.195 b

MET-hours/day XX 4.6 ± 4.2 4.3 ± 3.8 0.743 b

Values are given as mean ± SD or as percentage. DHEAS, sulfated dehydroepiandrosterone; E2, estradiol; FSH,
follicle stimulating hormone; IUC, intra-uterine contraception/progestogen use; MET, metabolic equivalent; MVPA,
moderate-to-vigorous physical activity; SHBG, sex hormone binding globulin.# In the early perimenopausal group,
there are missing data regarding education, alcohol use and MET-h/day (n = 1) and regarding MVPA (n = 21).
¤ In the late perimenopausal group, there are missing data regarding DHEAS and SHBG (n = 1) and MVPA
(n = 21). a Independent samples t-test, b Mann–Whitney U-test, c Chi-squared test, X accelerometer-measured,
XX self-reported. Significant results (P ≤ 0.050) are shown in bold.

Table 2. Anthropometry and lean and muscle mass variables of perimenopausal women in the ERMA
baseline population (n = 234).

Early Perimenopausal
(n = 89) #

Late Perimenopausal
(n = 145) ¤ P

Body mass, kg 69.2 ± 11.9 70.2 ± 10.8 0.534 a

Body height, cm 165.2 ± 5.6 165.0 ± 5.8 0.771 a

BMI, kg/m2

Underweight (<18.5)
Normal weight (18.5–24.99)

Overweight (25.0–29.99)
Obese (>30)

25.4 ± 4.2
0%

57.3%
28.1%
14.6%

25.8 ± 3.8
0%

47.6%
36.6%
15.9%

0.287 b

DXA-measurements
LBM, kg 42.3 ± 4.8 41.4 ± 4.1 0.141 a

LBMI, kg/m2 15.4 ± 1.4 15.2 ± 1.2 0.204 a

ALM, kg 18.2 ± 2.4 17.9 ± 2.1 0.416 a

ALMI, kg/m2 6.6 ± 0.7 6.6 ± 0.6 0.553 a

Right leg lean mass, kg 6.8 ± 0.9 6.8 ± 0.8 0.494 a

Computed tomography (n = 24) (n = 53)
Absolute muscle area, cm2 166.1 ± 8.1 167.3 ± 10.3 0.636 a

Relative muscle area, % 69.3 ± 4.2 69.8 ± 6.1 * 0.722 a

Values are given as mean ± SD. ALM, appendicular lean mass; ALMI, appendicular lean mass index; BMI, body
mass index; LBM, lean body mass; LBMI, lean body mass index. # In the early perimenopausal group there are
missing data regarding DXA-measurements (n = 5). ¤ In the late perimenopausal group, there are missing data
regarding DXA-measurements (n = 6). * Because of a technical failure in one CT scan, relative muscle area could not
be calculated for n = 1 participant. a Independent samples t-test, b Mann–Whitney U-test.
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3.2. Changes in Characteristics and Lean and Muscle Mass Variables during the Follow-Up

Because there were no differences in lean and muscle mass variables between the early and late
perimenopausal groups at baseline, the groups were combined for the longitudinal analysis. Table 3
presents the characteristics and lean and muscle mass results from the whole group at baseline and
final follow-up measurements. The duration from baseline to final follow-up was on average 465
(133–1323) days. Both total body mass and BMI significantly increased during the transition (P < 0.001
for both). Due to the pulsatile nature of estradiol and FSH during menopausal transition, the differences
in these variables were analyzed with non-parametric tests. A significant change was observed for
both hormones during the follow-up (P < 0.001), even when the HT-users were included. Significant
decreases were seen in LBM (P = 0.019), LBMI (P = 0.018), ALM (P < 0.001), ALMI (P < 0.001), right
leg lean mass (P = 0.002) and absolute (P < 0.001) and relative muscle CSA (P < 0.001), during the
menopausal transition. No change was observed in DQS between baseline and final follow-up.

Table 3. Characteristics and lean and muscle mass at baseline and final follow-up (n = 234).

Baseline
(Perimenopausal)

n = 234

Final Follow-Up
(Postmenopausal)

n = 234
Difference % P

Age, y 51.6 ± 1.9 53.0 ± 1.9 +2.7 <0.001 a

Body mass, kg 69.8 ± 11.2 70.4 ± 11.6 +0.9 <0.001 b

BMI, kg/m2 25.6 ± 4.0 25.8 ± 4.1 +0.8 <0.001 b

E2, nmol/L 0.34 ± 0.27 0.24 ± 0.19 −30 <0.001 b

FSH, IU/L 36.0 ± 21.6 66.9 ± 28.1 +86 <0.001 b

DQS, points 5.7 ± 2.3 5.5 ± 2.2 0.207 a

Physical activity
MVPA, min/day X (n = 173) 51.8 ± 29.3 49.7 ± 23.6 0.567 b

MET-hours/day XX (n = 231) 4.5 ± 3.9 4.7 ± 3.6 0.057 b

DXA-measurements
LBM, kg (n = 223) 41.7 ± 4.4 41.5 ± 4.4 −0.5 0.019 a

LBMI, kg/m2 (n = 223) 15.3 ± 1.3 15.2 ± 1.3 −0.7 0.018 a

ALM, kg (n = 223) 18.0 ± 2.2 17.8 ± 2.2 −1.1 <0.001 a

ALMI, kg/m2 (n = 223) 6.6 ± 0.6 6.5 ± 0.6 −1.1 <0.001 a

Right leg lean mass, kg (n = 223) 6.8 ± 0.9 6.7 ± 0.8 −1.5 0.002 a

Computed tomography
Absolute muscle area, cm2 (n = 77) 166.9 ± 9.6 165.3 ± 10.1 −1.0 <0.001 a

Relative muscle area (%) (n = 76) * 69.6 ± 5.6 68.9 ± 6.0 −1.0 <0.001 a

Values are given as mean ± SD. ALM, appendicular lean mass; ALMI, appendicular lean mass index; BMI, body
mass index; DQS, diet quality score; E2, estradiol; FSH, follicle stimulating hormone; LBM, lean body mass; LBMI,
lean body mass index; MET, metabolic equivalent; MVPA, moderate-to-vigorous physical activity. * n = 76: because
of a technical failure in one CT scan, relative muscle area could not be calculated. a paired t-test, b Wilcoxon Signed
rank test, X accelerometer-measured, XX self-reported. Significant results (P ≤ 0.050) are shown in bold.

Progesterone has been suggested to affect female muscle function [30,31]. Therefore, to increase
the robustness of our analysis, we separately investigated changes in lean and muscle mass measures
among women who used progestogen-containing contraceptives at baseline (Table S1) and women
who did not (Table S2). A similar analysis was also performed for non-HT users (Table S3) and those
who started using HT during follow-up (Table S4). At baseline, progestogen users and non-users
did not differ from each other regarding estradiol and FSH levels, physical activity or lean mass
measurements. Only age statistically differed at baseline (P = 0.004), whereby non-progestogen users
were 0.8 years older than users. Of the 73 participants who used progestogen-based medication
at baseline, 44 reported still using only progestogen containing medication (IUC or tablets) at final
follow-up, and 15 reported using estradiol + progestogen containing hormone replacement therapy
at final follow-up. Thirteen participants reported not using any hormone contraception or hormone
replacement therapy at final follow-up, one of whom had undergone hysterectomy. One participant
did not answer this question at final follow-up, but she was regarded as a current progestogen-user
at final follow-up measurements. During follow-up, no significant changes were seen in any of the
lean or muscle mass variables in the baseline-progestogen users. A decrease was observed in estradiol
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(−37%, P = 0.002) and an increase in FSH (+82%, P < 0.001). Non-progestogen users at baseline had
very similar results to those presented in Table 3 for the whole follow-up group.

In the HT using subgroup, due to HT-use, the serum level of estradiol was higher at final follow-up
when compared to baseline, but just failed to reach significance. FSH levels were also higher at final
follow-up (P = 0.047). A significant decrease was only observed in absolute muscle area (P = 0.021),
while LBM, LBMI, ALM, ALMI, right leg lean mass and relative muscle area remained unchanged
during the transition. The lean and muscle mass results obtained from the sub-group of non-HT users
did not differ from the results presented in Table 3, except for self-reported physical activity, which
was significantly higher at final follow-up in the non-HT users (4.3 ± 4.0 vs. 4.6 ± 3.7 MET-hours/day,
P = 0.043).

3.3. Longitudinal Associations Between Menopausal Status, Covariates and Lean and Muscle Mass Variables

A correlation analysis was performed between the change in physical activity measures and
important lean mass measures. Variables were formed by subtracting the baseline value from the
final follow-up value (Δvariable). The change in the level of accelerometer-measured physical activity
(ΔMVPA) was weakly, yet significantly positively, associated with ΔLBM (r = 0.182, P = 0.027), ΔLBMI
(r = 0.182, P = 0.027), ΔALM (r = 0.235, P = 0.004), ΔALMI (r = 0.238, P = 0.004) and Δright leg lean
mass (r = 0.241, P = 0.003).

Longitudinal associations between menopausal status and different lean and muscle mass variables
during the menopausal transition were also tested with GEE-model (Table 4). As GEE tests of model
analysis did not reveal any categorical differences between groups discordant for HT or progestogen
use, the whole perimenopausal group was combined and possible hormone use was added to the
model. Calculated self-reported MET-hours/day values were used as a measure of physical activity,
because data were available from a higher number of participants than for MVPA. However, the same
analyses were also performed using accelerometer-measured MVPA and the results, which were very
similar to those for self-reported MET-hours/day, are presented in Table S5. For LBM and ALMI
menopausal status, baseline use of progestogen and physical activity level measured in MET-hours/day
were significant predictors (for all P ≤ 0.050). For LBMI, menopausal status, baseline use of progestogen
and age were significant predictors (P ≤ 0.037 for all). For ALM, right leg lean mass and relative muscle
area menopausal status and physical activity remained significant in the adjusted model (P ≤ 0.011 for
all). For absolute muscle area, only menopausal status remained significant (P < 0.001) when the same
explanatory models were used.

Table 4. GEE-model with self-reported MET-hours per day as a measure of physical activity.

Model 1 Adjusted Model

B P B P

LBM
Menopausal status

Use of HT
Use of progestogen

Follow-up time
MET-hours/day

Age

−0.193
0.000
1.193
0.001

-
-

0.026
0.833
0.057
0.503

-
-

−0.203
0.000
1.263
0.001
0.053
0.109

0.019
0.836
0.050
0.420
0.036
0.506

LBMI
Menopausal status

Use of HT
Use of progestogen

Follow-up time
MET-hours/day

Age

−0.069
0.000
0.290
0.000

-
-

0.029
0.696
0.110
0.426

-
-

−0.073
0.000
0.386
0.000
0.017
0.122

0.020
0.753
0.037
0.183
0.054
0.009
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Table 4. Cont.

Model 1 Adjusted Model

B P B P

ALM
Menopausal status

Use of HT
Use of progestogen

Follow-up time
MET-hours/day

Age

−0.231
0.001
0.555
0.001

-
-

<0.001
0.362
0.061
0.304

-
-

−0.238
0.001
0.557
0.001
0.038
0.025

<0.001
0.354
0.069
0.278
0.009
0.766

ALMI
Menopausal status

Use of HT
Use of progestogen

Follow-up time
MET-hours/day

Age

−0.085
0.000
0.143
0.000

-
-

<0.001
0.386
0.083
0.200

-
-

−0.088
0.000
0.175
0.000
0.014
0.046

<0.001
0.326
0.039
0.082
0.005
0.055

Right leg lean mass
Menopausal status

Use of HT
Use of progestogen

Follow-up time
MET-hours/day

Age

−0.088
0.000
0.214
0.000

-
-

0.001
0.398
0.054
0.224

-
-

−0.091
0.000
0.209
0.000
0.017
0.005

0.001
0.395
0.066
0.217
0.011
0.870

Absolute muscle area *
Menopausal status

Use of HT
Follow-up time
MET-hours/day

Age

−1.597
−0.001
−0.001

-
-

<0.001
0.811
0.833

-
-

−1.586
−0.001
0.000
0.047
0.236

0.001
0.797
0.938
0.801
0.748

Relative muscle area *
Menopausal status

Use of HT
Follow-up time
MET-hours/day

Age

−0.007
−1.5 × 10−5

−7.5 × 10−6

-
-

<0.001
0.488
0.716

-
-

−0.007
−6.7 × 10−6

−6.9 × 10−6

0.002
−0.002

<0.001
0.721
0.747
0.011
0.667

Model 1: adjusted for menopausal status, HT use in days, baseline use of progestogen and follow-up time in days.
Adjusted model: adjusted for menopausal status, HT use in days, baseline use of progestogen, follow-up time in
days, MET-hours/day and age at baseline. * Absolute and relative muscle areas were not adjusted for baseline
progestogen use, as all participants were non-users at baseline. ALM, appendicular lean mass; ALMI, appendicular
lean mass index; HT, hormone replacement therapy; LBM, lean body mass; LBMI, lean body mass index; MET,
metabolic equivalent. Significant results (P ≤ 0.050) are shown in bold.

3.4. Changes at The Cellular Level

A subpopulation of participants gave biopsies at baseline and final follow-up (n = 25). They all
underwent menopause naturally, as they did not use progestogen-containing contraception, nor did
they start HT use during follow-up. Mean time between biopsy samples was 385 days (115–999 days).
More specific information about the characteristics of these women is provided in Table S6. Changes
in lean and muscle mass variables during the follow-up did not differ between participants in the
biopsied and non-biopsied groups (Table S6).

Muscle biopsy samples assigned for protein analysis were used for myosin protein extraction.
Relative myosin heavy chain proportion was analyzed with SDS-PAGE and silver-staining (Figure 3).
Table 5 presents the proportion of different myosin isoforms, as percentages at baseline and
final follow-up.
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Figure 3. Representative silver-stained myosin heavy chain (MHC) SDS-PAGE results from six
participants (1–6, B, baseline; F, final follow-up).

Table 5. Relative proportions of different myosin isoforms in SDS-PAGE at perimenopause and
early postmenopause.

Myosin Isoform
Baseline

n = 25
Final Follow-Up

n = 25
P

Type I (%) 50.6 ± 11.2 52.9 ± 8.5 0.619
Type IIA (%) 40.6 ± 9.6 41.4 ± 6.0 0.563
Type IIX (%) 8.8 ± 10.8 5.7 ± 9.8 0.116

Values are presented as mean ± SD. Wilcoxon Rank test was used for statistical analysis.

No statistically significant differences were seen in the myosin isoform proportions when advancing
through menopause. At baseline, type I myosin proportion was positively associated with the level of
MVPA (r = 0.424, P = 0.035). At final follow-up, the proportion of type IIA myosin was negatively
associated with ALM (r = −0.465, P = 0.019) and absolute muscle area (r = −0.521, P = 0.013).
The proportion of type IIX myosin was positively associated with ALMI (r = 0.434, P = 0.030) and
LBMI (r = 0.409, P = 0.042) at final follow-up.

Biopsies collected for immunohistological staining were used to analyze mean cross-sectional
area and proportions of type I and II fibers. Figure 4 and Table 6 show the results of these analyses.

Counted cell number per participant varied from 940 to 6300 cells. The size of individual muscle
fibers was unchanged between baseline and final follow-up. On average, type II fibers were smaller
than type I fibers at baseline and final follow-up (for both P < 0.001). No changes were seen in the fiber
type ratios from baseline to final follow-up.

Figure 4. Representative cross-sectional area and fast myosin-based fiber typing of a muscle biopsy with
Dapi (blue), laminin (green) and A4.74 (red, type II)-staining. Row (a) baseline, row (b) final follow-up.
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Table 6. Mean cross-sectional area and proportions of type I and II fibers measured with
immunohistological stainings.

Baseline
n = 7

Final Follow-Up
n = 7

P

Slow (type I) cells, μm2 3526 ± 1334 3525 ± 1618 0.735 a

Percentage 53.3 ± 10.9 51.1 ± 14.4 0.398 a

Fast (type II) cells, μm2 2098 ± 948 2399 ± 1218 0.128 a

Percentage 46.7 ± 10.9 48.9 ± 14.4 0.398 a

P-value for difference between cell types <0.001 b <0.001 b

Values are presented as mean ± SD. a Wilcoxon rank test, b Mann–Whitney U-test. Significant results (P ≤ 0.050) are
shown in bold.

At baseline, a positive correlation was observed between type II fiber size and age (r = 0.786,
P = 0.036). A higher proportion of slow fibers was also associated with higher single leg lean mass
(r = 0.857, P = 0.014), appendicular lean mass (r = 0.964, P < 0.001) and body mass (r = 0.893, P = 0.007).
At final follow-up, larger type II fiber size correlated with higher ALMI (r = 0.786, P = 0.036). Positive
correlations were also found at postmenopause between type I fiber proportion and total lean mass
(r = 0.893, P = 0.007) and body mass (r = 0.929, P = 0.003). No significant correlations were found
between the amount of physical activity and muscle fiber size or fiber type proportion.

4. Discussion

This study showed significant declines in several lean and muscle mass parameters in a longitudinal
study design spanning the menopausal transition. We were able to show decreases in total lean mass,
appendicular lean mass and thigh muscle cross-sectional area at a range of anatomical levels that,
to our knowledge, has not been studied and showed before. This study examined the amount of
skeletal muscle in relation to menopausal status, as well as possible associations between physical
activity level and skeletal muscle tissue during menopausal transition. The results highlight the
importance of menopause-related hormonal changes in the loss of lean and muscle mass that appears
to be independent of the effects of aging. Our results also highlight the moderate yet significant
importance of physical activity in maintaining lean mass during middle age.

4.1. Menopausal Transition Decreases Lean and Muscle Mass

Studies of the association between menopausal status and muscle mass have mostly used
cross-sectional study designs and compared different menopausal groups [11,12,32,33]. Together with
a limited number of longitudinal studies [8,13,14], they have found menopause to be associated with a
decrease in skeletal muscle mass. Our results are in line with these previous studies, and here we also
show changes in skeletal muscle at more anatomical levels and by using a shorter timespan over the
menopausal transition than has been used before. We found that the decrease in lean mass occurs
between peri- and early postmenopause, which was reflected in total body and appendicular measures.
The results obtained by DXA and CT imaging collectively indicated a 0.5%–1.5% reduction in muscle
mass due to menopausal transition, regardless of whether muscle mass was assessed at the anatomical
level of the whole body, the limbs or the thigh.

In this study, participating women were not allowed to use any estradiol-containing medication
at baseline, but we did not exclude those who began using HT during the follow-up. HT use was
controlled in the main analysis and the inclusion of HT users did not affect the results of this study.
However, when examining HT users and non-users separately, we did not find a similar, significant
decrease in lean mass measures during the transition as with the non-HT-using subpopulation. This is
in line with previous literature presenting data about the protective role of HT in muscle loss [34,35].
Our study was not designed to investigate the effects of HT, so our results in this respect need to be
interpreted with caution. In our study, the participants were heterogenous in their HT supplementation
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methods, dosages and usage times, as we did not control their hormone use. Furthermore, the number
of HT-participants was relatively low (n = 37), which may have left our study underpowered to detect
the effects of HT use. Since recent literature, as reviewed by Javed et al. [36], also presents conflicting
results about the protective role of HT on muscle mass even after long-term use, clearly more studies
are needed to resolve this issue.

The systemic levels of another abundant female sex hormone- progesterone- also decrease
during menopause, but the role of progesterone in lean and muscle mass maintenance is less
studied. Progesterone has been shown to increase protein synthesis in postmenopausal women [31],
and beneficial neuronal properties of progesterone are well established, especially when combined
with estradiol [30,37]. Here, we included women who used progestogen contraception at baseline and
the use was controlled as “yes” or “no” in the main analysis. CT scans and muscle biopsies were taken
from women who did not use progestogen at baseline. In our analysis, in the GEE-model progestogen
use remained significant for multiple lean mass variables, and we did not observe a similar decrease
in lean mass variables during the menopausal transition for the progestogen-using subgroup as for
the non-users. Unfortunately, we did not have information about the exact duration of progestogen
use for all participants, so assessing the specific role of progesterone in lean mass maintenance is
difficult. That being said, progesterone might have beneficial effects on muscle mass maintenance
during menopause, possibly due to increased muscle protein synthesis.

4.2. Associations of Menopausal Transition at the Single Cell Level

Aging has been shown to decrease muscle fiber area and there is evidence, albeit conflicting, of a
shift in the muscle fiber type ratio towards a slower or more hybrid phenotype [38–40]. Most studies
have reported that aging causes more visible changes in the size of type II fibers, while the size of slow
type I fibers stays relatively unchanged in both sexes [41–44]. The role of aging in muscle tissue myosin
expression has been previously studied in women in one cross-sectional study that compared 30- and
68-year old women, and the results also suggested a shift toward a slower phenotype in the older
group [40]. Studies of the associations between menopause and skeletal muscle fiber size, type and
myosin isoform expression are scarce. A few studies have examined the role of estrogen in animals,
but the results are conflicting [19,45,46]. According to animal studies, a loss of ovarian function leads
to a decline in myosin function in mature female mice [47], suggesting that myosin isoform availability
may be functionally relevant. In humans, only a few studies have examined the response of skeletal
muscle fibers to HT and revealed no difference between users and non-users [18,48]. To our knowledge,
prior to the present study, no longitudinal studies have examined the myosin isoform distribution and
muscle fiber size of perimenopausal and early postmenopausal women without HT use.

During the menopausal transition, we did not observe a change in the cross-sectional area of
either type I or type II fibers, but the two fiber types did differ from each other in size both at baseline
and at final follow-up. The cross-sectional area of type I fibers was larger at both time points and
remained rather unchanged, similarly to what has been reported cross-sectionally in a similar age
group with differing hormonal statuses [18]. The aging-related reduction in the CSA of type II fibers
that has been found in earlier studies [39,49,50] was not phenocopied in our study. This suggests
that muscle fiber size is not influenced by menopause, although it is also possible that changes in cell
size were not detected, due to the short follow-up duration or the limited number of participants.
Participants in this study had about a 50/50 ratio of type I and II fibers, which is more evenly distributed
than has been previously observed in women in the same age range [18]. Widrick et al. reported
that 49–57-year-old postmenopausal women had a fiber ratio of 38/62, with no difference between
HT users and non-users. In our longitudinal study, it may be that type II fibers were lost early in the
menopausal transition and thus that reductions were no longer detectable during the transition from
perimenopause to postmenopause. However, we consider it more likely that changes in fiber type ratio
occur later during aging than immediately concomitant to menopause. A higher proportion of type II
fibers in muscles might have more drastic effects on muscle mass, if type II fibers are more affected by
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aging. Studies of the relationship between fiber types and muscle mass have in fact reported a positive
correlation between type II fiber proportion and skeletal muscle mass, in both men and women [39,40].
These results differ from our results, most likely because our study population was smaller and only
included women.

4.3. Physical Activity Helps to Maintain Lean and Muscle Mass during Menopause

Here, we showed that while menopausal transition was a strong predictor of decreased lean
and muscle mass, physical activity was positively associated with lean mass. Previous studies have
shown that staying physically active during aging could potentially slow down the changes in skeletal
muscle tissue caused by aging [51]. Physical activity has also been shown to be associated with
female reproductive factors and menopausal symptoms [25], and together with estradiol, it seems
to preserve favorable skeletal muscle properties [11,35,52]. We measured physical activity in two
different ways; self-reports via a questionnaire, which measures mostly commute and leisure time
activity, and 7-days of hip-worn accelerometer data, which included all wear-time activity, especially
activities including steps. The results regarding the role of physical activity were similar with both
measurements, which highlights the reliability of the results.

The combined effects of muscle fiber size/type and physical activity have not been widely studied
in women, but it seems that older women are as capable of responding to both endurance and resistance
exercise as males of the same age [43,53,54]. Subjects in our study remained physically relatively
active and healthy during the transition, which might have positively affected their muscle fiber
maintenance, and could therefore explain why no obvious decrease was seen in fiber size. No differences
in physical activity levels were observed between the participants whose biopsies were used for fiber
cross-sectional area analysis and non-biopsied subjects. In a recent study, the use of estradiol and
progestogen-containing oral contraceptives combined with training was associated with larger type
I CSA [20]. Moreover, after the training period, the fiber type shift from IIX to IIA was larger in
women who used oral contraceptives, which, in contrast to our study, points to the role of estradiol in
muscle cell modifications. We only analyzed muscle biopsies from women who went through natural
menopause, without exposure to female hormones via oral contraceptives or HT, so they experienced
fluctuating estradiol levels during the transition. We did not find associations between the level of
physical activity and single muscle fiber size.

4.4. Strengths and Limitations

One of the limitations of this study is the relatively short follow-up time, especially after menopause.
Although we carefully monitored the menopausal transition with sequential hormone measurements
and menstrual bleeding diaries, we might have classified some women as still being perimenopausal
at baseline or as postmenopausal too early, due to the relatively short follow-up time and typical
fluctuations in hormone levels during the transition. Furthermore, although the study was intended to
be observational, some of the participants might have increased their physical activity level during
the follow-up, due to participation in this study and increased self-consciousness, which might have
affected the outcomes when comparing only two timepoints. Whether or not this was the case, we were
still able to see a clear decrease in lean mass at multiple body levels, which emphasizes the essential
role of menopausal transition in the decline of lean and muscle mass.

This study also has several strengths. One of the main strengths is the longitudinal design,
which was conducted based on a personalized timetable. As well as being a limitation, the relatively
short follow-up time may be considered as a considerable strength, as we were able to show significant
changes already on this time scale, emphasizing the role of menopause over purely aging-related
effects. The number of participants remained relatively high throughout the study, even though the
follow-up period was not long enough for all of the original core-ERMA participants to reach early
postmenopause before the end of the study. It may also be considered as a strength that we utilized
several parameters from different anatomical levels to examine possible changes in muscle mass.
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We used DXA and CT imaging, which are highly accurate and repeatable and thus recommended
methods for lean and muscle mass assessment at the whole body and limb levels. We also took muscle
biopsies to examine potential cellular level changes. We had a reasonable number of repeated samples
(n = 25) for myosin isoform expression analysis, but we were only able to do immunohistological
staining for seven peri- and early postmenopausal women. Therefore, we cannot totally exclude the
possibility that small sample size may have affected our results. When interpreting the results, it is also
important to note that both muscle fiber CSA and fiber/myosin isoform proportions are known to be
affected by the site of biopsy [41,44], and this might also have affected our results. Although we were
obviously not able to obtain the follow-up biopsy from the exact same location as at baseline, an effort
was made to take it from the closest proximity (~1 cm apart). Furthermore, multiple sections and all
intact cells in them were counted to gain more data from the immunohistological samples. In addition,
we took care that the CT scans were taken from the same location as the biopsies, to maximize the
representativeness of these two completely different measurements.

5. Conclusions

This longitudinal study showed a significant decline in total body lean mass, appendicular
lean mass and absolute and relative muscle cross-sectional area during the menopausal transition,
suggesting an important role of female sex hormones in loss of muscle mass in women. Menopausal
transition seems to have a role in loss of muscle mass that is independent of aging. Physical activity
was associated with the maintenance of muscle mass during middle age, suggesting that women
should stay physically active in order to reduce the risk of muscle mass loss-related symptoms, such as
sarcopenia. Because muscle tissue is important not only for locomotion, but also for thermoregulation
and whole-body metabolism, the menopause-related reductions in muscle mass demonstrated here
may represent the onset of widespread negative effects on women’s health.
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