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a b s t r a c t 

Resting-state magnetoencephalography (MEG) data show complex but structured spatiotemporal patterns. How- 

ever, the neurophysiological basis of these signal patterns is not fully known and the underlying signal sources 

are mixed in MEG measurements. Here, we developed a method based on the nonlinear independent component 

analysis (ICA), a generative model trainable with unsupervised learning, to learn representations from resting- 

state MEG data. After being trained with a large dataset from the Cam-CAN repository, the model has learned 

to represent and generate patterns of spontaneous cortical activity using latent nonlinear components, which 

reflects principal cortical patterns with specific spectral modes. When applied to the downstream classification 

task of audio-visual MEG, the nonlinear ICA model achieves competitive performance with deep neural networks 

despite limited access to labels. We further validate the generalizability of the model across different datasets 

by applying it to an independent neurofeedback dataset for decoding the subject’s attentional states, providing 

a real-time feature extraction and decoding mindfulness and thought-inducing tasks with an accuracy of around 

70% at the individual level, which is much higher than obtained by linear ICA or other baseline methods. Our 

results demonstrate that nonlinear ICA is a valuable addition to existing tools, particularly suited for unsupervised 

representation learning of spontaneous MEG activity which can then be applied to specific goals or tasks when 

labelled data are scarce. 
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. Introduction 

Over the last decades, spontaneous (or resting-state) brain activity

as attracted a great amount of interest in the neuroscience community.

t has been demonstrated to be not random but organized into compli-

ated spatiotemporal patterns, measurable for example by magnetoen-

ephalography (MEG) ( Brookes et al., 2011 ; De Pasquale et al., 2010 ;

idaurre et al., 2018 ) and electroencephalography (EEG) ( Mantini et al.,

007 ). While the origins and the electrophysiological basis of resting-

tate activity remain largely unclear ( Brookes et al., 2011 ; Mantini et al.,

007 ), from a purely data-driven perspective, they can be related to in-

ividual differences ( Becker et al., 2020 ; Sareen et al., 2021 ) or neuro-

ogical diseases ( Fox et al., 2014 ; Zhu et al., 2021 ), for example. 

In a data-driven approach, co-activation across anatomically sepa-

ated regions, manifested as temporal correlations, can be used to de-

ineate functional networks. More sophisticated methods use the non-

aussian structure of the data in the form of linear independent com-

onent analysis (ICA) or blind source separation. For resting-state MEG

ecordings, linear ICA finds a number of components, which may re-
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ect head motion, non-neuronal physiology, and unconstrained cogni-

ion. ( Hyvärinen et al., 2010 ; Vigário et al., 2000 ). This is an important

tep forward since ICA can find components in the MEG recordings that

ould otherwise be difficult to extract. However, these components ex-

lain only part of the resting-state activity and may be entangled not

nly among themselves but with further activity not found by ICA. Lin-

ar separation is, in fact, limited and it may be that we need to con-

ider, for example, correlations of the amplitudes in rhythmic activity

 Brookes et al., 2011 ). While for some known nonlinearities, such as

ower coherence, we may be able to preprocess the data so that lin-

ar ICA is enough, the field would benefit from data-driven methods

hat can uncover and disentangle any hidden spatiotemporal structures

rom spontaneous electrophysiological data themselves, without having

o assume we know the nonlinearities involved. To be effective, such

 method should also be able to infer the components or sources from

esting-state MEG data, while being able to account for complicated and

onlinear relationships. 

The aforementioned requirements point us to deep learning or repre-

entation learning with deep neural networks ( LeCun et al., 2015 ). For
. Hyvärinen) . 
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rain imaging, deep learning has been increasingly applied as a generic

lass of machine-learning tools to learn features and classifiers from neu-

oimaging data ( Acunzo et al., 2022 ; Yan et al., 2022 ; Zubarev et al.,

019 ). Most applications are within the scope of supervised learning.

ypically, a deep neural network model is trained using neuroimag-

ng data as input to give rise to an output that optimally matches the

round truth for a task, such as brain-age prediction ( Cole et al., 2017 ;

ónsson et al., 2019 ), emotion recognition ( Hsu et al., 2022 ), and pathol-

gy detection ( Aoe et al., 2019 ). However, resting-state data do not

nclude any labels or annotations needed for such supervised learning

aradigms. They may be obtained after data collection, e.g., by expert

abeling, which is often costly and the number of labels typically re-

ains several orders of magnitude smaller than the data points in the

EG data ( Banville et al., 2021 ; Schirrmeister et al., 2017 ). In addi-

ion, it is uncertain to what extent representations learned for a specific

ask would be generalizable (i.e., transferable) to other tasks. It is also

ebatable whether deep neural networks with supervised learning are

urrently superior to more conventional and simpler methods ( He et al.,

020 ). 

However, for MEG and EEG, unlabeled data are available in abun-

ance, in particular in the form of resting-state data. This opens up

he possibility of using unsupervised versions of deep learning where

o labels are needed. Such methods should uncover the underlying

onlinear sources that drive intrinsic brain activity regardless of any

ask or stimuli. The recently proposed Nonlinear ICA ( Hyvärinen and

orioka, 2016 ), a nonlinear version of ICA, can be an alternative

ethod for finding such hidden nonlinear sources that generate the data

ith the unsupervised paradigm. While nonlinear ICA is an ill-defined

roblem in general, it is identifiable and can be estimated, for exam-

le with self-supervised learning (SSL), under certain assumptions. SSL

s a particular unsupervised learning approach to learning representa-

ions from unlabeled data using some additional structure in the data

o provide an artificial supervisory signal. Thus one transforms an un-

upervised learning problem into a supervised one, called the ‘pretext’

ask. ( Jing and Tian, 2020 ). 

Finding such general-purpose features without labels also opens up

he way to semi-supervised learning. This means that we learn the fea-

ures or components from a large unlabeled data set (e.g., a resting-state

ctivity database) and then use those features for a classification task of

nterest, such as diagnosis or neurofeedback, with a dataset that has

imited labels available. Typically, in the terminology of SSL, there is

 ‘pretext’ and a ‘downstream’ task. Downstream tasks are tasks that

eople are actually interested in, but with limited or no annotations

labels). The pretext task, on the other hand, is the core of the SSL ap-

roach and it must be sufficiently associated with the downstream task

o that similar features should be used to carry it out ( Banville et al.,

021 ). Importantly, it must also be possible to generate the annotations

or this pretext task using the large unlabeled data alone. In addition to

acilitating the downstream task and/or reducing the number of labeled

amples necessary, self-supervised learning can also discover more gen-

ral and robust representations than those learned in supervised learn-

ng with specific tasks or goals ( Banville et al., 2021 ; Van den Oord, Li,

nd Vinyals, 2018 ). 

In this study, we chose to use the recently proposed nonlinear

ndependent component analysis (ICA) estimated by SSL technique

 Hyvärinen and Morioka, 2016 ; Morioka et al., 2021 ) for unsupervised

eep learning. We apply nonlinear ICA to a very large resting-state MEG

ata set ( Shafto et al., 2014 ; Taylor et al., 2017 ), without requiring any

abels or narrowly focusing on any downstream task. Nonlinear ICA is a

enerative model capable of learning the identifiable features that gen-

rate the data, and it provides a well-defined and interpretable model.

onlinear ICA is also promising based on the earlier success of linear

CA in neuroimaging data analysis. Briefly, in this study, two kinds

f nonlinear ICA models are used, both using self-supervised learning.

ne is a basic nonlinear ICA version based on time contrastive learn-

ng (TCL) building on non-stationarity ( Hyvärinen and Morioka, 2016 ).
2 
he other one is independent innovation analysis (IIA) which extends

CL for temporally correlated time series ( Morioka et al., 2021 ). To en-

ble group-level analysis, we further propose group nonlinear ICA for

esting-state MEG from multiple subjects based on a multi-task learn-

ng scheme. Specifically, nonlinear ICA is trained using a group-shared

onlinear feature extractor which outputs a set of feature values from

 morphed parcel time series of each subject, so as to optimize the self-

upervised classification performance of subject-specific multinomial lo-

istic regression (MLR) classifiers ( Fig. 1 B). We then characterize the

patiotemporal and spectral profiles of the latent components learned

rom resting-state MEG. We show how the representation enables high

erformance in a simple down-stream classification of visual/auditory

ecoding task in MEG data from the same population. Lastly, we demon-

trate the capability of transferring the representation to a different

ataset from a different subject population: we validate the use of the

eatures given by the trained nonlinear ICA model showing how they

ead to superior decoding accuracy of attentional states from ongoing

EG data ( Zhigalov et al., 2019 ). 

. Materials and methods 

.1. Overview of the methods 

Typically, a generalizable system for representation learning of brain

maging data such as MEG consists of a base module and additional pro-

ection modules ( Banville et al., 2021 ; Kim et al., 2021 ). The base mod-

le is trained with unsupervised or self-supervised learning from task-

ree resting-state (spontaneous) MEG. Therefore, the base module is not

ailored to any specific purpose, such as brain age prediction or patho-

ogical detection, or any specific task related to cognitive activity. After

raining, the base module is supposed to be capable of generalization to

EG data in different cognitive task conditions or downstream (classifi-

ation) tasks, in particular through additional projection modules. The

epresentation learned by the base model can be used by the projection

odules which are trained to meet a specific task by supervised learn-

ng. It is expected that the base module is designed and trained with a

eep architecture to leverage a large number of unannotated (unlabeled)

ata, whereas the projection modules can be shallow and trained with

imited labeled data. Such a semi-supervised scheme makes the learn-

ng more efficient since unannotated data are much more abundant than

nnotated data. 

In such a scheme, nonlinear ICA ( Hyvärinen and Morioka, 2016 ,

017 ; Morioka et al., 2021 ) offers a suitable model for the initial part of

he base module, which is composed of feature extractor or additional

inear unmixing matrix as Fig. 1 shows. The feature extractor is learnable

ith self-supervised learning and the linear unmixing matrix is learn-

ble with unsupervised learning without any label data ( Fig. 1 B). Unsu-

ervised learning with nonlinear ICA can leverage the ever-increasing

mount of resting-state MEG data ( Larson-Prior et al., 2013 ; Nisoet al.,

016 ; Shafto et al., 2014 ). The latent components or representations ex-

racted from nonlinear ICA can be input to specific projection modules

e.g., linear SVM) to facilitate downstream tasks such as classification

f cognitive task and decoding the mental state ( Fig. 1 C). 

.2. Nonlinear independent component analysis 

Nonlinear ICA is a recently proposed unsupervised learning frame-

ork based on a nonlinear generalization of the well-known basic ICA

 Hyvärinen and Morioka, 2016 ). It promises a principled approach to

epresentation learning, for example using deep neural network, and at-

empts to find nonlinear components, in multidimensional data. In the

ollowing, we briefly explain the basic principles of nonlinear ICA, but

e emphasize that we use algorithms that have been previously pub-

ished by Hyvärinen and Morioka (2016) , Morioka et al. (2021) and

efer the reader to those publications for a detailed description. 
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Fig. 1. The proposed approach. A. The generative model is basically a nonlinear version of ICA. The observed time series are given by a nonlinear transformation 

of the components, which are mutually independent, and have segment-wise stationarity, which is a simple form of non-stationarity. B. In TCL, we attempt to train 

a feature extractor 𝐡 ( 𝒙 , 𝜽) to be sensitive to the nonstationarity of the data by using a multinomial logistic regression which attempts to discriminate between the 

segments, labelling each data point with the segment label 1,…,T (as pretext task) for each subject (e.g. 𝜏 = 1 𝑖 , … , 𝑇 𝑖 with subject 𝑖 ). The segments from all subjects 

are fed into the feature extractor. Note that different subjects are likely to show uninteresting technical differences in group-level analysis. Therefore, we apply a 

multi-task (multi-subject) learning scheme, which includes a separate top-layer MLR classifier for each subject, but a shared feature extractor (here, a multilayer 

perceptron, MLP). After training, feature extractor was followed by a linear ICA to resolve the linear indeterminacy and finally obtain components up to point-wise 

nonlinearities such as squaring. C. The feature extractor 𝐡 ( 𝒙 , 𝜽∗ ) trained on big unlabeled data and the linear unmixing matrix, as a base module, are applied to 

downstream tasks with label-limited data. 
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In general, nonlinear ICA assumes a generative model ( Fig. 1 A): 

 ( 𝑡 ) = 𝐟 ( 𝐬 ( 𝑡 ) ) (1)

here 𝐱( 𝑡 ) is the observed n -dimensional data point at time t , 𝐟 is an in-

ertible and smooth mixing function to be learned from the data, 𝐬 ( 𝑡 ) is
he m -dimensional vector of independent components 𝑠 𝑖 ( 𝑡 ) , and m being

he number of components. 1 The time series 𝑠 𝑖 are presumed to be mutu-

lly independent. While nonlinear ICA is an ill-defined problem in gen-

ral ( Hyvärinen and Pajunen, 1999 ), recent work has proposed an iden-

ifiable solution using some additional auxiliary information about the

ata, such as their temporal structure ( Hyvärinen and Morioka, 2016 ,

017 ). 

The estimation of nonlinear ICA is to find out the underlying sources

components) 𝒔 ( 𝑡 ) in Eq. (1) by learning an unmixing function 𝐠 (i.e.,

 = 𝐟 −1 ) such that 

 ( 𝑡 ) = 𝐠 ( 𝒙 ( 𝑡 ) ) , (2)

hich can be solved (learned) by time-contrastive learning (TCL)

ethod based on the assumption that the sources are independent and

emporally non-stationary (see Section 2.2.1 ). 
1 While the basic form of nonlinear ICA based on time-contrastive learning 

TCL) considers m = n , it is also possible to have m < n in TCL, as pointed out at 

he end of Supplementary Material ("Dimension Reduction") of Hyvärinen and 

orioka (2016) . In practice, this is simply accomplished by having a smaller 

umber of features in the neural network (feature extractor), and no other 

hanges to the procedure are needed ( Fig. 1 B). 

c
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s

w
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3 
.2.1. Time-contrastive learning 

Time-contrastive learning (TCL) is a novel self-supervised learning

echnique capable of estimating the nonlinear ICA model based on a

on-stationarity assumption ( Hyvärinen and Morioka, 2016 ). The start-

ng point in TCL is to assume that each component is non-stationary,

hich makes the problem well-defined and the model identifiable. The

ntuitive rationale is that if the components are non-stationary, forcing

hem to be independent at every segment gives many more constraints

han just a single, global constraint of independence as in ordinary linear

CA based on non-Gaussianity. That justifies to some extent why we ob-

ain identifiability. We also note that the definition of the model imposes

on-stationarity on the components, but this necessarily implies that the

ata are non-stationary as well, since the mixing is purely spatial. The

on-stationarity is assumed to be much slower than the sampling rate;

n other words, the time-series can be divided into segments in each of

hich the distributions are approximately constant; but crucially, the

istribution is different across segments because of the non-stationarity.

ccordingly, TCL assumes conditional (segment-wise) independence of

he components, instead of marginal independence assumed in ordinary

CA. It was proven that such temporal structure, called time-segment-

ise stationarity, enables the estimation of the source signals up to

omponent-wise nonlinearities ( Hyvärinen and Morioka, 2016 ). 

Assume the data has been segmented, by a method to be specified.

enote the segment index by 𝜏 = 1 , … , 𝑇 , where T is the number of

egments, the statistical distribution of each underlying component 𝑠 𝑖 
ithin each segment can be modelled as an exponential family: 

og 𝑝 𝜏
(
𝑠 𝑖 
)
= log 𝑞 𝑖, 0 

(
𝑠 𝑖 
)
+ 

𝑘 ∑
𝑗=1 

𝜆𝑖,𝑗 ( 𝜏) 𝑞 𝑖,𝑗 
(
𝑠 𝑖 
)
− log 𝑍 𝑖 

(
𝜆𝑖, 1 ( 𝜏) , … , 𝜆𝑖,𝑘 ( 𝜏) 

)
, (3)
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2 Similar to TCL on nonlinear ICA, the basic form of IIA based on TCL considers 

m = n , it is also possible to have m < n , and this is simply accomplished by having 

a smaller number of features in the feature extractor (Fig. S1B). 
here 𝑝 𝜏 is the probability density function (pdf) of segment 𝜏, 𝑞 𝑖, 0 is

 stationary base density and 𝑞 𝑖,𝑗 with 𝑗 ≥ 1 are the sufficient statistics

or the exponential family of the component 𝑠 𝑖 (the index 𝑡 is dropped

or simplicity), and 𝑍 𝑖 is the normalization constant. Note that the pa-

ameters 𝜆𝑖,𝑗 ( 𝜏) of source 𝑠 𝑖 depend on the segment index 𝜏,which cre-

tes the nonstationary sources. TCL learns the inverse transformation

 = 𝐟 −1 (in Eq. (2) ) with SSL paradigm. The pre-text task in such SSL

s to classify original data points with the corresponding segment in-

ices used as class label, using multinomial logistic regression (MLR).

or this reason, TCL adopts a deep neural network including a feature

xtractor 𝐡 ( 𝒙 ( 𝑡 ) , 𝜽) followed by MLR for label prediction, where 𝜽 is the

eural network weights. Thus, it seems intuitively clear that in order

o optimally classify observations 𝒙 ( 𝑡 ) into their corresponding segment

abels 𝜏, the feature extractor 𝐡 ( 𝒙 ( 𝑡 ) , 𝜽) needs to learn a useful represen-

ation of the temporal structure in the underlying distribution of latent

ources. 

The theory of TCL indicates that the method can learn the latent com-

onents 𝒔 ( 𝑡 ) up to pointwise nonlinearities given by the 𝑞 in Eq. (3) ( 𝑞 is

ypically squaring or absolute values function) and a linear transforma-

ion 𝐀 ; that is, for example, 𝒔 ( 𝑡 ) 2 = 𝐀𝐡 ( 𝒙 ( 𝑡 ) ) , where 𝐡 ( 𝒙 ( 𝑡 ) ) is the feature

xtractor to be learned by TCL just like de-mixing the nonlinear part of

q. (1) and 𝐀 is the linear mixing part left in the model (see Fig. 1 B). In

ther words, we can obtain the 𝒔 ( 𝑡 ) up to point-wise squaring by learn-

ng the nonlinear unmixing function 𝐠 via TCL training (the nonlinear

art, 𝐡 ( 𝒙 ( 𝑡 ) ) ) and a further linear ICA (the linear part, 𝐀 ). This is quite

urprising since the self-supervised method makes no reference to inde-

endent components. A further linear ICA can estimate the remaining

inear mixing 𝐀 if the number of segments increases to infinity and the

ata distributions of segments are random in a certain sense. Therefore,

he theory proves that TCL (with a further linear ICA) is consistent in

he sense of estimation theory: when the amount of data points grows

nfinitely, the method finds out the right independent components up to

he point-wise nonlinearities. This statistical theory assumes that the op-

imization does not fail by getting trapped in a local optimum; however,

his is a typical practical problem in deep learning which is addressed

urther in our discussion. 

In more detail, the self-supervised TCL algorithm proceeds as fol-

ows: (1). Divide a multivariate time series 𝐱( 𝑡 ) into segments, i.e. time

indows, indexed by 𝜏 = 1 , … , 𝑇 . Any temporal segmentation method

an be used, e.g. simple equal-sized bins. For multi-subject learning,

ime series are labeled separately for each subject, e.g. 𝜏 = 1 𝑖 , … , 𝑇 𝑖 with

ubject 𝑖 ; (2). Associate each data point with the corresponding segment

ndex 𝜏 in which the data point is contained; i.e. the data points in the

egment 𝜏 are all given the same segment label 𝜏; (3). Learn a feature

xtractor 𝐡 ( 𝒙 ; 𝜽) together with MLRs to classify all data points with the

orresponding segment labels 𝜏 used as class labels, as defined above.

hese procedures are demonstrated in the Fig. 1 B. The purpose of the

eature extractor is to extract a feature vector that enables the MLRs to

iscriminate the segments. Therefore, it seems intuitively clear that the

eature extractor needs to learn a useful representation of the temporal

tructure of the data, in particular the differences of the distributions

cross segments. Note that different subjects are likely to show unin-

eresting technical differences for group-level analysis. We thus apply

 multi-task (multi-subject) learning scheme, which includes a separate

op-layer MLR classifier for each subject, but a shared feature extractor

 Fig. 1 B). After TCL training is finished, the extracted components are

ollowed by linear ICA, which is applied to disentangle the linear in-

eterminacy left by the feature extractor part of TCL, finally giving the

stimates of the independent components 𝐬 ( 𝑡 ) up to point-wise nonlin-

arities such as squaring. In other words, the inverse of function 𝐟 (i.e.,

 in Eq. (2) ) is learned via TCL with further linear ICA, corresponding

o feature extractor 𝐡 ( 𝒙 ; 𝜽) and additional linear unmixing matrix. Such

asic nonlinear ICA with TCL estimation is called NICA(TCL) in the cur-

ent study. 
4 
.2.2. Independent innovation analysis 

Independent innovation analysis (IIA) can be considered an exten-

ion of the nonlinear ICA framework for a nonlinear vector autore-

ressive process where instead of the actual times series, their inno-

ations at each time point are decomposed to independent components

 Morioka et al., 2021 ). This general model (a first-order autoregressive

rocess is assumed here merely for simplicity of exposition) can be writ-

en as: 

 ( 𝑡 ) = 𝐟 ( 𝐱 ( 𝑡 − 1 ) , 𝐬 ( 𝑡 ) ) (4)

here 𝐱( 𝑡 − 1 ) is the time-delayed time series of 𝐱( 𝑡 ) , and 𝐬 ( 𝑡 ) repre-

ents the independent innovations (components). 2 The IIA model in

q. (4) can be transformed into a form similar to Eq. (1) as: 

 

𝒙 ( 𝑡 ) 
𝐱 ( 𝑡 − 1 ) 

] 
= ̃𝐟 

( [ 
𝐬 ( 𝑡 ) 

𝐱 ( 𝑡 − 1 ) 

] ) 

(5) 

here 𝐟 is the augmented model, which includes the original model 𝐟
n the half of the space, and an identity mapping of 𝐱( 𝑡 − 1 ) in the re-

aining subspace. Importantly, this augmentation does not impose any

articular constraint on the original model. Thus, this augmented model

an then be solved using nonlinear ICA theory. The nonlinear vector au-

oregressive model provides an appealing framework to analyze multi-

ariate time series obtained from a nonlinear dynamical system. In this

tudy, we use a TCL-based version of IIA ( Morioka et al., 2021 ), which

e call NICA(IIA). It can guarantee the identifiability of the innovations

ith arbitrary nonlinearities, up to a permutation and component-wise

nvertible nonlinearities under certain assumptions. Note that there is

o linear indeterminacy left after TCL for IIA and no further linear ICA

s thus required after IIA has been performed (Fig. S1). 

.3. Datasets 

We use a large MEG data set from the Cam-CAN repository to train

onlinear ICA models, which can learn an optimal representation of

ata. We then explore and visualize the latent representation. Next, in

n investigation of the transfer of the features to other data sets, we val-

date the generalization of the representations on an independent neu-

ofeedback dataset. 

.3.1. Cam-CAN dataset 

We primarily analyzed data from the open-access Cambridge Center

or Aging Neuroscience (Cam-CAN) repository (see Shafto et al. (2014) ,

aylor et al. (2017) ) for details of the dataset and acquisition proto-

ols). Specifically, we used the resting-state and passive audio-visual

ask MEG data from 652 healthy subjects (male/female = 322/330,

ean age = 54.3 ± 18.6, age-range 18–88 years), and their structural

T1-weighted MRI) neuroimaging data for source reconstruction. The

RI images were acquired with a 3T Siemens of scanner with a 32-

hannel head coil. The MEG data were recorded using a 306-channel

lekta Neuromag Vectorview (102 magnetometers and 204 planar gra-

iometers; MEGIN Oy, Helsinki, Finland) at a sampling rate of 1 kHz.

or the 9-min resting-state measurement, subjects were asked to lie still

nd remain awake with their eyes closed. We discarded the initial and

nal 30 s and used the remaining 8 min of data from each subject for

urther analysis and model training. 

In the task MEG, subjects were presented with 120 trials of unimodal

timuli (60 visual stimuli: bilateral/full-field circular checkerboards; 60

uditory stimuli: binaural tones at one of three equiprobable frequen-

ies) at a rate of approximately 1 per second. Following exclusions (e.g.,
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ubjects that did not have both MRI and MEG data, unsatisfactory pre-

rocessing results such as failure to remove cardiac and ocular artifacts,

nd/or failure to extract the cortical surface for source reconstruction),

 final dataset of 610 subjects was retained for further analysis. 

.3.2. Mental-states dataset 

As an example of the utility of the nonlinear ICA performed, we ana-

yzed a dataset (also recorded by a similar MEG device) from our earlier

tudy ( Zhigalov et al., 2019 ), where we attempted to decode attentional

tates – mindfulness or wandering thoughts – from ongoing MEG brain

ctivity. Briefly, we used MEG data from 24 healthy subjects (9 females,

5 males, 27 ± 5.5 years (mean ± SD)), previously recorded in the fol-

owing experimental paradigm. After a 2-min rest period, participants

ere instructed to perform one of the tasks while undergoing MEG. The

asks were organized into 2-min blocks in a counterbalanced order and

he participants performed each task four times in a single session. The

ession ended with a 2-min rest block. Two sessions per participant were

onducted with a 5-min break between the sessions. 

Due to the great difficulty of experimentally inducing mind wan-

ering, the experimental data we used here was based on "simulated

ind wandering", which means tasks that create brain activity that is

ot very different from mind wandering. The tasks were mindfulness

editation (MF), reflection on future planning (FP) and reflection on

nxiousness-inducing emotional pictures (EP). In particular, the condi-

ions of reflection on future planning (FP) and reflection on anxiousness-

nducing emotional pictures (EP) are simulating mind wandering. In all

asks, subjects were instructed to sit still, fix the gaze on the crosshair,

nd perform a task after a short (7 s) visual instruction. The visual in-

truction was shown at the beginning and at the middle of each task to

eep subjects’ attention. Based on these responses, the subjects’ focus

as considered reasonably good by ( Zhigalov et al., 2019 ), but we do

ot analyze them any further. 

For the mindfulness meditation task, the participant was instructed

o focus attention on the sensations of breathing and move the focus of

ttention back to the task if mind-wandering occurs. For future planning

nd anxiety-inducing tasks, the participant individually selected 16 (out

f 40) relevant pictures prior to the experiment. In the future planning

ask, the participant was asked to perform planning related to the pic-

ure, presumably following the ensuing chains of thought and keeping

is/her mind busy. The anxiety-inducing task was similar to the future

lanning, but instead of neutral pictures, disturbing, scary, disgusting,

r other unpleasant pictures were presented to the participant. 

.4. Preprocessing 

Since the Cam-CAN and our mental-states MEG data were both

ecorded by 306-channel Elekta Neuromag Vectorview, the preprocess-

ng was similar. The MaxFilter software (MEGIN Oy, Helsinki, Finland)

ith temporal signal space separation (tSSS) was applied to suppress

xternal magnetic interference and compensate for head movements

 Taulu and Simola, 2006 ). Thereafter, the MEG data were processed us-

ng the open-source software MNE-Python ( Gramfort et al., 2014 ). MEG

ata were band-pass filtered to 0.1–40 Hz, and resampled at 256 Hz,

s a wider band and higher sampling rate did not significantly improve

he performance while increasing computational time. Cardiac and eye

ovement artifacts were identified using the FastICA algorithm im-

lemented in MNE-Python and automatically classified by comparing

he ICA components with the simultaneously recorded electrocardiogra-

hy (ECG) and electrooculography (EOG) signals ( Jas et al., 2018 ). The

reeSurfer software ( http://surfer.nmr.mgh.harvard.edu/ ) was used for

olumetric segmentation of MRI data, cortical surface reconstruction

nd flattening, cortical parcellation, and neuroanatomical labeling with

he Schaefer atlas ( Schaefer et al., 2018 ). 

The MNE software was used to create head conductor models and

ortically constrained source space based on the anatomical informa-

ion provided by FreeSurfer, for the MEG-MRI co-registration, and for
5 
he preparation of the forward and inverse operators. The sources were

onstrained within the cortex and assumed to be perpendicular to the

ocal cortical surface. The reconstructed cortical surface was decimated

o 4098 evenly distributed vertices per hemisphere with 4.9 mm spac-

ng. Depth-weighted L2-minimum-norm estimate was computed for all

urrent dipoles with a loose orientation of 0.2. The noise covariance

atrix was estimated from the empty-room recordings and the inverse

olution was noise-normalized. The cortex and thus the source space

as divided into 400 Schaefer-parcels for each subject. For each par-

el, we performed a principal component analysis to extract spatially

rthogonal components that describe the activity, ordered by amount

f variance explained. We selected the first principal component as a

epresentation of the parcel’s time course of activity. For group-level

nalysis, the subjects’ parcel time series were morphed into a standard

tlas, and then temporally concatenated across subjects. For the neuro-

eedback dataset, the cortical sources were reconstructed using a similar

ipeline but with an averaged MRI template since we did not obtain the

ndividual structural MRI of these subjects. 

.5. Feature extractor and nonlinear ICA training 

We used a multilayer perceptron (MLP) as the feature extractor that

akes a single point in the parcel time-series as input and nonlinearly

xtracts component activity, for both NICA(TCL) and NICA(IIA). The

etwork consists of concatenated (stacked) hidden layers each followed

y nonlinear activation units. 

NICA(TCL) settings: We set the number of layers as L = 3 since our

reliminary study showed that a three-layer network gives optimal clas-

ification accuracies during the training. We fixed the number of nodes

s 80 in the first hidden layer, and 40 in the second hidden layer. The

umber of nodes in the output layer was equal to the number of compo-

ents. We tried different values for the number of nodes in the output

ayer to examine the effect of the number of components. We used rec-

ified linear unit (ReLU) as the activation function in the middle layers,

nd an adaptive Maxout unit exclusively for the output layer. Maxout

nit was constructed by taking the maximum across two affine fully-

onnected weight groups. To prevent overfitting, we applied dropout

nd batch normalization to hidden layers. The MLRs follow the feature

xtractor. Its goal is to predict segment labels from the activities of com-

onents extracted by the feature extractor. 

NICA(IIA) settings: In addition to MLP for feature extractor

 featur e − MLP ), we used another MLP that took the time delayed

 𝑥 𝑡 −1∶ 𝑡 −3 ) of the parcel time series as the input, which was called 𝜙− MLP ,
ince IIA included a recurrent structure of the observations in the model

 Morioka et al., 2021 ). Here, a third-order autoregression model was

ssumed based on our preliminary experiments (Fig. S7). Regarding the

igh temporal resolution of M/EEG signals (fs = 256), we fixed the time

ag between two consecutive samples to 8 (31 ms), which means 𝑥 ( 𝑡 − 1 )
ook the value by shifting 8 samples of 𝑥 (e.g., 𝑥 ( 𝑡 − 8 ) ). The architectures

f the featur e − MLP and 𝜙− MLP were the same as that in NICA(TCL) ex-

ept that the point-wise square nonlinearity was applied in the last layer.

n IIA model, the MLRs took the inputs that were the weighted squared

ums of the output units of the featur e − MLP and 𝜙− MLP , respectively

see Fig. S1 for demonstration). 

To perform the time-contrastive learning, we segmented the parcel

ime series (data size: 400 parcels × number of time points) into equal

ize of 3 s (768 data points) for each subject. We first tested the effect

f the segment length on the downstream task and 3-s segment length

eemed to provide a relatively optimal classification accuracy in the

udio-visual MEG data. (Fig. S2). The feature extractor took 400 × 1
alues at single time points as one sample, and was followed MLRs that

ave the segment label. Since different subjects were likely to have un-

nteresting technical differences in terms of the group-level training, we

pplied a multi-task (multi-subject) learning scheme, which included a

eparate top-layer MLR classifier (subject-specific) for each subject, but

 shared feature extractor ( Fig. 1 B). 

http://surfer.nmr.mgh.harvard.edu/
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Fig. 2. Illustration of the occlusion sensitivity analysis. The p-th parcel signal was set to zero and the time series were feed into well-trained feature extractor 𝐡 ( 𝒙 , 𝜽∗ ) 
(followed by an unmixing matrix from linear ICA if the model was NICA(TCL)) and obtained the components with occlusion. The true components were obtained by 

the original time series. The maps were computed according to Eq. (6) . 
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The networks (feature extractor and the MLRs) were trained by

tochastic gradient descent (SGD) based on back-propagation, which is

ommonly used in deep learning studies. The other training parameters

ere set as follows: Initial learning rate of 0.01, learning rate decay of

.1, momentum of SGD of 0.9, and mini-batch size of 256. The initial

eights of each layer were randomly drawn from a uniform distribu-

ion. The loss function is the cross entropy between the predicted and

rue segment label. After TCL training is finished, fastICA with the de-

ault setting in scikit-learn ( Pedregosa et al., 2011 ) is applied to the

utputs of the feature extractor in the NICA(TCL) model, but not used

n the NICA(IIA) model. The training was performed only from resting-

tate MEG data in the Cam-CAN repository; the audio-visual MEG data

ere later used to evaluate the generalizability of the trained network.

urthermore, the neurofeedback data were used to test the ability to

ransfer the nonlinear ICA models to a new dataset, as an example of

he potential applications. 

.6. Visualizing the spatial, spectral and temporal profiles of 

epresentations 

For examining the resulting components (i.e., after linear ICA on the

utput of feature extractor for NICA(TCL) and output of feature extrac-

or for NICA(IIA)), we extracted components from the dataset by apply-

ng the trained feature extractor to resting-state sessions. We then per-

ormed spectral analysis on the components across the segments to see

heir spectral profiles. The power spectral density (PSD) was estimated

or each segment by a discrete Fourier transform, after standardizing

he signal within the segment to have zero-mean and unit variance. To

xamine the spatial characteristics of the components, spatial profiles

ere obtained by examining the sensitivity of feature extractor outputs

o the occlusion parcel signals. This method is commonly used in deep

earning studies for computer vision to visualize the input specificities

f the neural network by systematically occluding different regions of

he input image with a grey square, and monitoring the output of the

eural networks ( Zeiler and Fergus, 2014 ). The idea is that the prob-

bility of the correct class would drop significantly when the actual

bject was occluded, in an image classification task. One could visu-

lize the heatmap of the probability of the correct label as a function

f the occluded position in the image space. Different from the image

lassification context, however, we here attempted to examine the ef-

ect of each parcel signal on the components of the time series, and

hus computed the correlation between the ‘true’ components (outputs

ithout occlusion) and the components with occlusion, instead of the

lassification probability with occlusion. Specifically, for each compo-
6 
ent, we obtained the cortical heatmap of the correlation as a function

f the parcel position. The correlation with the ‘true’ components would

rop significantly when the occluded parcel was important for the dis-

ntanglement of the corresponding component. Intuitively, the cortical

eatmaps of the contribution were calculated as: 

 𝑖 ( 𝑝 ) = 1 − 

|||𝑐𝑜𝑟𝑟 (𝒔 𝑖 , 𝒔 𝑝 𝑖 )||| (6)

here 𝒔 𝑖 is the 𝑖 -th component without occlusion, and 𝒔 
𝑝 

𝑖 
is the occluded

omponent by occluding the 𝑝 -th parcel input (set to zero). 𝑐𝑜𝑟𝑟 () indi-

ates the Pearson correlation, and |() | is the absolute value ( Fig. 2 ). 𝒄 𝑖 
resents the spatial pattern of 𝑖 -th component, which might be consid-

red as a nonlinear version of co-activation patterns for linear ICA. 

We also visualized the segment-wise band-limited power (variances)

o see the temporal non-stationarities. 

.7. Downstream task of classification from audio-visual MEG 

We used the trained model for classification of the stimulus modality

n the audio-visual task MEG data to evaluate the performance of the

eneralizability to the downstream task. Specifically, the audio-visual

EG data were cropped into epochs from − 300 ms to 500 ms after each

timulus onset. After source reconstruction, the parcel time series were

ed into the feature extractor to obtain the components ( Fig. 1 C). There-

fter, the classification was performed using a linear support vector ma-

hine (SVM) classifier as implemented in scikit-learn ( Pedregosa et al.,

011 ), which was trained on the stimulus labels and sliding-window-

veraged components (width = 20 and stride = 8 samples) obtained for

ach epoch. Note that the features input to the classifier are obtained by

liding-window-averaged components. We here perform epoch-wise de-

oding (not sample-wise decoding), which is not sensitive to the length

f the pre-stimulus period and can significantly improve the accuracy of

he classification for event-related data ( Schirrmeister et al., 2017 ). The

erformance was evaluated by the generalizability of a classifier across

ubjects, i.e., one-subject-out cross-validation (OSO–CV). 

.8. Comparison with fully supervised and other self-supervised learning 

Nonlinear ICA models were compared to baseline approaches on the

ownstream tasks including other self-supervised learning (SSL) and

urely supervised learning methods. For the baseline SSL, we adopted

he temporal context prediction tasks Relative Positioning (RP) for fea-

ure learning in the pretext task ( Banville et al., 2021 ), which is closely

elated to nonlinear ICA. We adopted StagerNet, a four-layer convo-

utional neural network, as the feature extractor (embedder) in SSL
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t  
 Banville et al., 2021 ). For the purely supervised learning, we used the

EGNet as the deep learning architecture ( Lawhern et al., 2018 ), as it

as shown to perform well for epoch-wise classification across partici-

ants. SSL(RP) was trained on resting-state data like nonlinear ICA. For

he main hyperparameters of SSL(RP), window length, 𝜏𝑝𝑜𝑠 and 𝜏𝑛𝑒𝑔 (con-

rolling the size of the “positive ” and “negative ” contexts, respectively),

e first tested the performance of the downstream task by setting differ-

nt parameter values and chose the values with close-to-optimal classi-

cation accuracies based on the instructions in the original paper with

lain cross-validation. We finally set window length to 2 s, 𝜏𝑝𝑜𝑠 = 5 s

nd 𝜏𝑛𝑒𝑔 = 120 s. The purely supervised case was directly trained on the

udio-visual task data, i.e., it had access to the labeled data. 

.9. Generalization to mental-states dataset 

We validated the generalization or transfer of the nonlinear ICA

omponents using neurofeedback data as an independent dataset

 Zhigalov et al., 2019 ), where we attempted to decode attentional states

mindfulness or wandering thoughts) from ongoing brain activity mea-

ured by MEG. Similar to the downstream task on audio-visual data,

e extracted the nonlinear components by applying the feature extrac-

or trained on resting-state data from Cam-CAN repository on neuro-

eedback signals ( Fig. 1 C). For classification, we performed epoch-wise

ecoding, which means the averaged squared activities of components

uring each non-overlapping 2 s epoch were used as feature vectors for

he linear SVM classifier. We further used linear feature extraction meth-

ds (linear ICA and PCA) and fully supervised deep learning for com-

arison. The FastICA and PCA methods were adopted as the traditional

inear baseline feature extractor, and 15 components were also extracted

or a fair comparison of the nonlinear ICA. The linear components were

ivided into 4-s epochs with 75% overlap and the epochs were Fourier-

ransformed and the spectra divided into four frequency bands: delta

1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), and low-beta (13–24 Hz).

he amplitude spectra averaged (across frequencies) inside these four

requency bands were then used as features for classification, which is a

aseline method provided by our prior study ( Zhigalov et al., 2019 ). For

he fully supervised method, we adopted the StagerNet as the supervised

eep learning architecture, which was shown to suit well for window-

ise classification of ongoing data in sleep staging ( Banville et al., 2021 ;

hambon et al., 2018 ). Different from the 30 s window-wise decoding

n sleep staging, we here set a 4-s window as one sample since we had

 relatively short data duration. 

.9.1. Classification methods: individual vs. group classification 

We used two scenarios to train and test the SVM classifiers. In the

rst scenario of “individual classifier ”, we trained the classifier using

ndividual data from the first session and tested the classifier using

ata from the second session. In the second scenario of “group clas-

ifier ”, we trained the classifier using data from both sessions and all

ubjects except one “testing ” subject and tested the classifier using the

esting subject’s data from the second session. The second scenario is

ore challenging, essentially providing information on the generaliz-

bility of the classifier across subjects. We applied the features extracted

rom all methods to investigate whether and how it is possible to dis-

riminate (decode) between mindfulness meditation (MF), future plan-

ing (FP), and reflection on anxious-inducing emotional pictures (EP)

asks. 

.9.2. Statistical analysis of classification accuracies between methods 

To assess the statistical differences between the classification accu-

acies for different tasks or for different decoding methods, we applied

he Wilcoxon signed-rank test with FDR correction. Specifically, for each

ubject, we have one classification accuracy value for each method since

e use leave one out cross-validation for the SVM classifiers. All the sub-

ects’ accuracies were fed into the Wilcoxon rank sum test. 
7 
. Results 

.1. Nonlinear ICA learns representations that show spectra-specific brain 

atterns 

The feature extractors learned component-specific, spatiotemporal

lements, so as to disentangle the MEG data into latent nonlinear

omponents. The learning was based on logistic regression in a “self-

upervised ” scheme where class labels of time series fragments were

efined based on temporal segments. To understand what kind of repre-

entation was captured from data by NICA(IIA), we visualized the spa-

iotemporal and spectral patterns for each component ( Fig. 3 ). The spa-

ial patterns were computed by occlusion sensitivity analysis ( Fig. 3 A),

hich quantified the contribution to the disentanglement of the corre-

ponding component. The obtained spatial patterns could be considered

s co-activation patterns in the nonlinear case. We also computed rep-

esentative frequency spectra by taking the average of the spectra of

he segment-wise components ( Fig. 3 B). The temporal profiles were ob-

ained by taking the segment-wise band-limited power (variances), ex-

osing the temporal non-stationarities ( Fig. 3 C). Here, we just show 5

f the 15 components for simplicity; the others are shown in the sup-

lementary material (Fig. S3) and the components extracted by linear

CA are also shown in the supplementary material (Fig. S9) for com-

arison. These representative patterns, learned from resting-state data,

eem to exhibit frequency-specific co-activation patterns similar to pre-

iously reported brain networks ( Brookes et al., 2011 ; Vidaurre et al.,

018 ). Components I, II and IV had similar spectral modes that peaks

n around 25 Hz. The brain activities of I and II have similar but dis-

inct spatial distributions, especially around primary somatosensory and

otor cortices, which represented the beta-specific motor networks re-

orted earlier ( O’Neill et al., 2017 ; Ramkumar et al., 2014 ). Component

V shows a distribution spanning frontal, parietal and right temporal cor-

ices exhibiting a beta-dominated spectrum, which may be related to the

eta-dependent fronto-parietal networks ( Brookes et al., 2011 ). Compo-

ents III and V have a spectrum peaking at approximately 10 Hz. Com-

onent III exhibits local maxima in the primary and secondary frontal

reas, and posterior parietal cortices, similar to IV but different spec-

ral mode. Component V shows a strong visual-cortex pattern with an

lpha-dominated spectral features. Additionally, the temporal profiles

f the components demonstrate fluctuations in time ( Fig 3 C), which is

onsistent with the non-stationarity assumption of the time-contrastive

earning. 

.2. Nonlinear ICA facilitates downstream task with limited labeled data 

To examine whether nonlinear ICA trained on resting-state session

ata reduces the need for labeled task-session MEG data, we applied

he trained feature extractors to audio-visual task MEG data. We com-

ared their performance on this downstream task to one of the various

stablished approaches such as fully supervised learning, while varying

he number of labeled samples available. Downstream task performance

as evaluated by training linear SVM models on labeled samples, where

he training set contained at least one and up to all existing labeled ex-

mples. Additionally, fully supervised models were trained directly on

abeled data only. We also included traditional linear methods, linear

CA and Principal Component Analysis (PCA), as feature extractors for

omparison. The same number of components as nonlinear ICA was set

nd the linear unmixing and loading matrix were trained on unlabeled

esting-state data. One can see that the linear ICA and PCA as feature

xtractors underperformed the deep-learning methods. Fig. 4 A demon-

trates the impact of the number of labeled data on downstream perfor-

ance. First, when using well-trained feature extractor in nonlinear ICA

or the downstream tasks, we observed important above-chance perfor-

ance, 88.3% and 85.5% test accuracy (2-class, chance level = 50%) for

ICA(IIA) and NICA(TCL), separately. Additionally, we observed that

he performance of nonlinear ICA outperformed alternative approaches
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Fig. 3. Representations learned by nonlinear ICA, which seem to represent frequency-specific spatial patterns. Here, we show five components (the remaining 

components are given in the supplementary material Fig. S3). A: Spatial patterns similar to the RSNs obtained by fMRI or MEG. Such spatial profiles were obtained 

by examining the contribution of each parcel to the components (see Section 2.6 ). B: Averaged segment-wise spectra of the components. C: Segment-wise band-limited 

power (or variances), showing the temporal non-stationarity, (we just show 500 s length for demonstration). 

Fig. 4. Downstream tasks on visual-auditory session data with limited labels. A. Impact of the number of labeled samples per class on downstream performance 

and comparison with a self-supervised paradigm based on relative positioning task (SSL-RP) and a full supervised deep model as well as linear ICA and PCA. B. The 

effects of component numbers in NICA(IIA). C-D. The spatial and temporal profiles of the top components contributing the classification. The temporal profiles of 

the components averaged separately for auditory (orange) and visual trials (blue). 0 s is the onset of the stimulus. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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ncluding the fully supervised model in low-labeled data regimes. The

erformance gap between nonlinear ICA and full supervision was as high

s 16.8 percentage points when the number of labeled examples was less

han 100. It remained in favor of nonlinear ICA models up to around

000 examples per class, at which point full supervision finally began to

xceed the performance of nonlinear ICA. These results show that non-

inear ICA with training on unlabeled data was general-purpose enough

o facilitate classification problems based on stimuli-induced data; it sys-

ematically outperformed or equaled other methods in low-to-medium
8 
abeled data regimes and remained competitive in a high labeled data

egime. Note that all the analysis that follows is based on NICA(IIA),

ince it outperformed NICA(TCL) here. 

As with many other ICA algorithms, it was also challenging for non-

inear ICA to determine the number of components, and choosing dif-

erent number of components might affect the results to some extent.

e here examined the impact of different numbers of extracted compo-

ents in NICA(IIA) on the downstream classification task. As can be seen

n Fig. 4 B, the performance starts to reach the optimal level when the
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Fig. 5. Decoding attentional states using the trained NICA (IIA) model from resting-state MEG of the Cam-CAN. A. Classification accuracies averaged across subjects 

for individual classification. B. And group classification. MF_FP denotes mindfulness meditation vs. future planning task, MF_EP denotes mindfulness meditation vs. 

reflection of anxious-inducing emotional pictures task, and FP_EP denotes future planning task vs. reflection of anxious-inducing emotional pictures task. Error bars 

represent standard error of mean ( p < 0.01 ∗ , p < 0.001 ∗ ∗ ). 

Fig. 6. Spatial patterns of components extracted from neurofeedback data with largest 4 contributions to the SVM classifier. 
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omponent number is set to 15, and after that no significant increase in

he classification accuracy is observed. Therefore, we set the number of

omponents to 15 in all the experiments. 

We also present two components that showed top contributions in

he SVM classification in Fig. 4 C-D and the spatiotemporal patterns im-

ly that they were related to the stimulus-specific dynamics of the brain.

e visualize the temporal dynamics of the components by averaging

rials separately for auditory and visual stimuli. We observe that one of

he spatial patterns was strongly activated in the visual cortex and aver-

ged visual trials had an obvious peak emerging 150 ms after the stim-

li while no peaks for auditory trails ( Fig. 4 C). The other one demon-

trates a strong activation around temporal cortices and the averaged

uditory epochs exhibited stimuli-related peaks ( Fig. 4 D). These results

uggest that nonlinear ICA of resting-state data could capture meaning-

ul stimulus-related features which are useful for the downstream tasks.

.3. Nonlinear ICA model generalizes to new data set 

To further investigate the transfer, or generalization of nonlinear ICA

odel trained with big data on Cam-CAN repository to an indepen-

ent dataset, we applied the well-trained NICA(IIA) to the neurofeed-

ack dataset presented in our previous study ( Zhigalov et al., 2019 ),

o decode attentional states from the MEG data ( Fig 4 ). Specifically, we

pplied the features or components extracted from NICA(IIA) to discrim-

nate between mindfulness meditation (MF), future planning (FP) and

eflection on anxious-inducing emotional pictures (EP) tasks. We also

ompared with the linear approaches including linear ICA and principal

omponent analysis (PCA), and full supervised learning trained directly

n the data itself ( Fig. 5 ). 

The NICA(IIA) with individual classifier provided accuracies well

bove chance-level, 0.68 ± 0.016 (MF vs. FP), 0.71 ± 0.011 (MF vs.

P) and 0.59 ± 0.013 (FP vs. EP), significantly larger than the full su-
9 
ervision and linear methods ( p < 0.001). The accuracies MF vs. FP and

F vs. EP were significantly larger ( p < 0.001, individual classifier; p <

.001, group classifier) than the accuracy FP vs. EP, suggesting that FP

nd EP have similar neuronal correlates. The accuracies for the fully su-

ervised learning-based individual classifier were relatively low, 0.582

 0.005 (MF vs. FP), 0.573 ± 0.004 (MF vs. EP) and 0.51 ± 0.006 (FP

s. EP), even lower than the linear-based classifier due to the limited

umber of labels. 

The NICA(IIA) with group classifier offered the accuracies, 0.62 ±
.012 (MF vs. FP), 0.65 ± 0.01 (MF vs. EP) and 0.55 ± 0.007 (FP vs.

P), also significantly larger that the full supervision and linear meth-

ds ( p < 0.01). In addition, the fully supervised deep learning scored

.604 + 0.003 (MF vs. FP), 0.61 ± 0.004 (MF vs. EP) and 0.53 ± 0.005

FP vs. EP); this exceeded the linear-based methods. The slightly in-

reased number of labels did not make the fully supervised method

omparable in performance with NICA(IIA). The group-level classifiers

ctually provided slightly lower accuracies compared to the individual

lassifier for all the approaches, including nonlinear ICA, showing that

t is difficult to generalize the classifier for decoding attentional states

rom different subjects. 

.4. Brain activity patterns during mindfulness 

To demonstrate the brain patterns during mindfulness, we here

resent four components ( Fig. 6 ) with greatest contributions to the

lassification based on the SVM classification coefficients in the group

lassifier (Fig. S4). These components’ spatial patterns were associated

ith both mindfulness and wandering thought tasks, showing spatial

rofiles ( Fig. 6 ) related to brain areas of default mode networks (DMN),

orsal attention (DAN) and cingulo-opercular networks (CON). The spa-

ial profile of component 6 exhibits brain distribution similar to CON.

he spatial pattern of component 9 shows a rhythmic activity in supe-
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ior parietal, intraparietal and visual areas overlapping with DAN. The

ub-region of DMN, reported with activation during mind wandering

 Groot et al., 2021 ), was also observed in spatial patterns of component

2 and 15. The spatial pattern of component 12 had a high rhythmic

ctivity in posterior DMN areas, while component 15 presented spatial

ctivation in sub-areas of lateral DMN. These results show that the

onlinear ICA pre-trained on large resting-state data can transfer to

 different dataset recorded with a different experiment design from

ifferent subjects, and uncover specific task-related brain patterns. 

. Discussion 

We presented a group nonlinear ICA framework for unsupervised

epresentation learning from big spontaneous MEG data which facili-

ates analysis of downstream tasks with limited labeled data. Experimen-

al results demonstrated that nonlinear ICA can uncover and disentangle

he nonlinear components underlying spontaneous electrophysiological

rain activity. Those feature extractors successfully generalize to down-

tream classification tasks even from an independent dataset. We expect

hat the proposed approach will provide new insight into resting-state

rain networks and their temporal dynamics, in addition to its utility

or brain decoding. 

We observed that features extracted by nonlinear ICA outperformed

ully supervised learning on audio-visual task MEG when the number

f labeled samples were less than 100 per class ( Fig. 4 A). Specifically,

ICA(IIA) retained the outperformance until up to 10,000 samples per

lass, where full supervision finally began to exceed it, however by

 1.8–3.2% margin only. These results demonstrate that unsupervised

earning based on nonlinear ICA has the potential to be an effective

ool for improving classification accuracy when annotations are time-

onsuming or expensive, which is very common in practice. For in-

tance, annotating sleep bio-signal recordings requires a trained techni-

ian to visually look through hours of data and to label short epochs one-

y-one. Clinical recordings, such as for epilepsy diagnosis or detection of

rain lesions, must likewise be reviewed by neurologists ( Banville et al.,

021 ). Moreover, in some cases, knowing exactly what the participants

ere thinking or doing in cognitive neuroscience experiments (e.g.,

ovie-watching or music listening) can be challenging, making it hard

o obtain accurate labels. In tasks related to mental imagery or atten-

ion, for instance, the subjects might not be following instructions or the

rocess under study might be difficult to quantify objectively (e.g., med-

tation, emotions). Meanwhile, a huge amount of resting-state (sponta-

eous or task-free) data has been made public. Thus, nonlinear ICA can

e applied to such semi-supervised scenarios by well leveraging those

nlabeled data. 

Our results showed that nonlinear ICA methods outperformed

SL(RP) method ( Fig. 4 A), which was applied to EEG data of a few

hannels as self-supervised learning based on temporal context predic-

ion tasks inspired by the autocorrelations (temporal dependencies) of

ime series ( Banville et al., 2021 ). We speculate this is because the

onlinear ICA with time-contrastive learning is based on the temporal

on-stationarity of the time series, which might be more in line with

he properties of the MEG/EEG data than the temporal dependencies

ssumption. We further observed that NICA(IIA) always outperformed

ICA(TCL) in the downstream tasks, since the temporal dependences

nd non-stationarity of multivariate time series were both considered

n the NICA(IIA) model. A model with such a combination of tempo-

al structures could be a better fit for the data, thus providing better

erformance. 

Since the nonlinear mixing function in nonlinear ICA was typically

pproximated by a neural network such as multi-layer perception (MLP),

t is very difficult to understand the spatial patterns of the relevant neu-

al activity, especially when compared to linear ICA (where the columns

f the mixing matrix give the spatial or co-activation patterns). We

ere adopted a visualization technique from deep learning studies for

omputer vision, called occlusion sensitivity ( Zeiler and Fergus, 2014 ).
10 
nstead of the corrected label probability used on image classification

asks, we here computed the effect (weight) of the channel (parcel) of

he input time series on each component. This procedure enables a vi-

ualization analogous to the linear ICA. The obtained spatial patterns

ould be considered as nonlinear co-activation patterns. However, other

isualization methods for neural networks exist and we consider them

n interesting topic for future research. 

Based on the spatial visualization method, we demonstrated that

he representations learned with nonlinear ICA capture and disentan-

le oscillatory brain patterns related to the frequency-specific resting-

tate functional networks ( Fig. 3 ). Such networks have been reported

lsewhere by using other approaches, such as Hidden Markov models

 Baker et al., 2014 ; Vidaurre et al., 2018a , b ; Vidaurre et al., 2016 ) and

ourier-ICA ( Ramkumar et al., 2014 ). In the nonlinear ICA model, the

eature extractor models inverse inference of the sources from the brain

ctivity in a data-driven manner. For example, we observed the beta

scillatory activities in the bilateral somatosensory and motor cortices,

nd alpha-dominated rhythmic activities in visual areas ( Fig. 3 ). Early

EG studies indicate that the around 20 Hz oscillation is generated pre-

entrally and appears more related to motor than somatosensory pro-

essing whereas the 10 Hz oscillation is post-central and associated with

he processing of tactile information, although both rhythms are mod-

lated by movement and tactile stimulation ( Hari and Salmelin, 1997 ;

amkumar et al., 2014 ). Interestingly, when the trained nonlinear ICA

odel was applied to task MEG data, task/stimulus-related co-activation

atterns were uncovered: For audio-visual data, a bilateral auditory

omponent and a visual component had high contributions to the classi-

cation, but with different latencies of the temporal courses ( Fig. 4 C-D).

Our results further demonstrated that latent space of the nonlinear

CA can be transferred to a mental-states MEG dataset for decoding the

ttentional states. It outperformed the baseline methods including lin-

ar decomposition methods such as PCA and linear ICA (as used in our

revious study Zhigalov et al. (2019) ), as well as conventional super-

ised deep learning ( Fig. 5 ). In contrast to linear features, the nonlinear

CA features provide complementary information that is made accessi-

le to purely linear classification methods, resulting in more accurate

lassification. Compared to fully supervised deep learning, the advan-

age of nonlinear ICA is that it was trained from a big task-free database,

hile supervised deep learning suffered from the limited number of la-

els. This point is further demonstrated by comparing the accuracies of

ndividual classifiers and group classifiers: the accuracies of the individ-

al classifiers (training on individual subjects) based on full supervision

ere even lower than those of the linear methods, presumably due to

he catastrophically low number of data points used by each classifier. 

We observed a variety of components with specific spatial patterns

hat contribute to decoding mindfulness meditation, implicating that

everal neuronal mechanisms may underlie mindfulness state ( Fig. 6 ).

ost spatial patterns were related to sub-regions of DMN, DAN and

ON, which is consistent with an fMRI study on mindfulness medi-

ation that suggests that mind wandering may evoke multiple high-

rder cognitive networks such as default and executive network regions

 Christoff et al., 2009 ). For example, the spatial patterns of compo-

ent 6 spanned the inferior frontal gyrus and the precuneus overlapping

ith CON regions, which have been shown to be consistently activated

hen individuals engaged in demanding mental activity ( Christoff et al.,

009 ). Component 9 demonstrated high rhythmic activity in superior

arietal, intraparietal, and visual areas overlapping with DAN, which

as been shown to be more active during task-free states than dur-

ng a wide range of states involving goal-directed task performance

 Kucyi, 2018 ). It should be noted that the connection between these

lassifier weights and the neural correlates is not straight-forward. In-

erpretation of the weights can lead to wrong conclusions regarding the

rigin of neural signals of interest, since significant nonzero weights may

lso be associated with task-irrelevant signals ( Haufe et al., 2014 ). We

lso visualized the four largest coefficients for individual subjects. The

esults showed that the components associated with the largest coeffi-
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ients were highly individual (Fig. S5), which makes the generalization

f the classifier coefficients over subjects impractical. We found rela-

ively low classification accuracies in decoding between future plan-

ing (FP) and reflection on anxiousness-inducing emotional pictures

EP) tasks ( Fig. 5 ), which suggests similarity of the brain activities dur-

ng these tasks. Although these tasks are behaviorally quite distinct and

ight be different regarding the amplitudes of the evoked responses

 Olofsson et al., 2008 ; Zhigalov et al., 2019 ), they may be similar with

egard to task-nonspecific cortical processes associated with attentional

tates. Consequently, the neurofeedback paradigm that focuses on on-

oing neuronal activity may be insensitive to this difference. 

The overall individual-level classification accuracy for attentional

tates was around 70%, which might be relatively low to be useful in a

eurofeedback system. However, for a few subjects, the accuracies were

round 80% or more, which might constitute sufficient improvements in

ecoding attentional states in mindfulness meditation to be practically

seful. Furthermore, this relatively low decoding accuracies might result

rom the fact that many of the participants did not have previous expe-

iences in mindfulness meditation: The neurofeedback might perform

uch better after the participants gained more experience. Generaliza-

ion across participants was even more difficult, presumably due to the

arge individual differences already noted by ( Zhigalov et al., 2019 ). 

Transfer learning is a topic of great interest in applications of ma-

hine learning on brain imaging. From that viewpoint, we here explored

he performance of the nonlinear ICA model transferred both across dif-

erent paradigms (experimental design) and different subjects (from a

ifferent dataset) ( Zhang et al., 2018 ). For the audio-visual classifica-

ion, the task data were recorded from the same population as the train-

ng data, but under different experimental paradigms. For the mindful-

ess classification, the neurofeedback data were collected for a different

urpose, at a different site, and from different subjects, but using the

ame type of device. In this case, the Cam-CAN dataset can be thought

f as a “secondary ” dataset to assist in the analysis of a small “pri-

ary ” dataset (i.e., the neurofeedback dataset). Usually, it is quite chal-

enging to transfer models across subjects due to individual differences

 Zhang et al., 2018 ). It might seem even more challenging to transfer the

odels to different tasks; nevertheless, the ability to use the same im-

ge features in different tasks has been one of the main success stories in

eep learning for computer vision ( Simonyan and Zisserman, 2014 ). In

he brain imaging case, a further point is whether the transfer is between

easurements with similar devices or not: The same type of measuring

quipment might have similar nonlinear mixing systems. In future re-

earch, we would like to examine the possibility to transfer nonlinear

CA across datasets measured by different devices. 

Regarding the methodological considerations, three core hyperpa-

ameters require setting: the window length, the number of independent

omponents, and the network architecture. A judicious selection of win-

ow length is important, and represents a trade-off between temporal

esolution and the stability of the model training. In principle, TCL could

e performed on different time scales depending on the length of the

indow chosen; but in practice, each window must also contain enough

ata points, which makes analysis of very short time scales challenging.

he selection of the number of independent components is a fundamen-

al question for all ICA methodologies. In the absence of theoretically

otivated methods to hyperparameter selection, we opted instead to

epeat the analysis for different values, and cross-validate. Specifically,

he models were trained within the whole resting-state MEG data, and

e tuned those two hyperparameters of models (the number of com-

onents and window length) in the whole audio-visual MEG data with

lain cross-validation. The value of 15 components were finally cho-

en and seemed to give a good trade-off between the dimension of the

odel and downstream classification accuracy. Finally, the neural net-

ork (NN) architectures are related to the degree of nonlinearity of the

ransform. In the present work, we selected 3-layer MLP components

ased on our previous experience, which gives a relatively reasonable

egree of nonlinearity. However, how the degree of nonlinearity and
11 
he NN structures (e.g., convolutional NN) affect the results are still in-

eresting questions and we leave them for future work. 

As with many other ICA algorithms, the determination of the model

rder, i.e., the selection of the number of components, is indeed a crucial

ssue in TCL for the estimation of nonlinear ICA. In our preliminary ex-

eriments, the repetition analysis for different values demonstrated that

n the one hand, if we decreased the number of components, the classifi-

ation accuracies of the downstream task get lower, suggesting that the

ransferability of the model to a new dataset gets weakened; and on the

ther hand, if we increase the number of components, no significant in-

rease in classification accuracy after 15 components is observed, imply-

ng the number of underlying nonlinear independent components may

o longer increase. The experiments suggest that the setting m = 15 was

easonable in the current study, considering that the components were

roperly demixed and the transferability of models to a new dataset.

owever, the best setting may vary across datasets due to different ex-

erimental paradigms. 

For very high-dimensional data, an obvious problem is that the num-

er of parameters in the model escalates rapidly if we aim to analyze

 big number of latent sources (high model order) simultaneously. This

ay hinder the estimation in practice even with reasonable sample sizes

nd computational capabilities. Although, in theory, the identifiability

f nonlinear ICA is not an issue in high dimensions, empirically we don’t

ave much evidence beyond the model order of the current study. Thus,

his might be a possible issue for practical applications, where a large

umber of latent components (high model order) needs to be estimated.

Regarding the model order of the autoregressive model in IIA, deter-

ining the order for a nonlinear autoregressive model is a challenging

ask compared to linear models because the nonlinear relationships be-

ween the dependent variable and its lagged values are not as straight-

orward to identify. In the current study, without standard methods

vailable, we tried some values to look at the impact on the performance

f downstream tasks (Fig. S7). This preliminary test implies that a third-

rder model gives relatively optimal performance for classification. It

hould be noted that this experiment just provides a basic reference but

t is not able to accurately estimate the underlying model order. In ad-

ition, the order may also vary across the different data modalities. For

xample, the fMRI data with slowly varying features may have different

odel orders from the M/EEG dataset with highly varying rates. Future

ork should therefore seek other approaches to determine the validity

f the autoregressive model order, particularly if the present method

as to be used for fMRI data. 

In addition, the model here is supposed to be noise-free. We point out

hat the most commonly used linear ICA methods assume a noise-free

ixing; Probabilistic ICA by ( Beckmann and Smith, 2004 ) does start by

ssuming a noisy mixing, but in the end the ICA algorithm used (after

CA) assumes that the mixing is noise-free. The estimation of noisy ver-

ion of NICA is very complicated ( Hälvä et al., 2021 ), which we will

eave the analysis for future work. 

The training for NICA models just like any deep learning approach

eeds a lot of computational sources. For example, training of the fea-

ure extractor by TCL took about 8 h (64 GB Memory, NVIDIA Tesla

100 GPU). Although such computational cost is not very expensive by

eep learning standards, it is still more costly compared to traditional

ethods (e.g., linear ICA). Also, unlike linear ICA in neuroimaging com-

unity, training NICA models needs massive data, which makes its ap-

lication mainly focus on relatively big data. In addition, it is rather

omplicated and difficult to interpret and visualize spatial patterns of

he nonlinear components due to the nonlinear mixing function. Al-

hough we here adopted an occlusion sensitivity analysis method for

isualization, more attention to such interpretation would be still war-

anted. 

Like any deep learning method, nonlinear ICA suffers from the prob-

em of local minima: any run of the learning algorithm is not guar-

nteed to find the best solution. While in theory, this problem seems

nsurmountable, typical deep learning practice is to simply accept the
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inimum obtained after using the largest reasonable amount of compu-

ational capacity. This is what we did in this paper, and thus there is a

ossibility that better results might be obtained by another run. To ex-

mine the run-to-run variability, we performed the experiment with dif-

erent random seeds and computed the similarity (correlation) between

he spatial maps and the component time series. The results demonstrate

he similarities are more than 0.8 for most components, suggesting the

ecomposition is stable (Figs. S6&8). 

To conclude, we present nonlinear ICA for unsupervised representa-

ion learning of cortical resting-state MEG activity in a data-driven man-

er. Our results suggest that nonlinear ICA model is able to capture and

isentangle the generative components underlying resting-state activity,

haracterizing the spontaneous oscillatory patterns. Features extracted

y nonlinear ICA outperformed fully supervised learning on audio-visual

ask MEG when the number of labeled samples were limited. As an ini-

ial example of a neurofeedback application, nonlinear ICA trained on

arge open access dataset was successfully transferred to a new data set

or an attentional state classification task. 
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