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Abstract

Background: Cognitive load (CL) management is essential in safety-critical fields so

that professionals can monitor and control their cognitive resources efficiently to

perform and solve scenarios in a timely and safe manner, even in complex and unex-

pected circumstances. Thus, cognitive load theory (CLT) can be used to design virtual

reality (VR) training programmes for professional learning in these fields.

Objectives: We studied CL management performance through behavioural indicators

in authentic VR flight training and explored if and to what extent physiological data

was associated with CL management performance.

Methods: The expert (n = 8) and novice pilots (n = 6) performed three approach and

landing scenarios with increasing element interactivity. We used video recordings of

the training to assess CL management performance based on the behavioural indica-

tors. Then, we used the heart rate (HR) and heart rate variability (HRV) data to study

the associations between the physiological data and CL management performance.

Results and Conclusions: The pilots performed effectively in CL management. The experi-

ence of the pilots did not remarkably explain the variation in CL management performance.

The scenario with the highest element interactivity and an increase in the very low-

frequency band of HRV were associated with decreased performance in CL management.

Takeaways: Our study sheds light on the association between physiological indica-

tors and CL management performance, which has traditionally been assessed with

behavioural indicators in professional learning in safety-critical fields. Thus, physio-

logical measurements can be used to supplement the assessment of CL management

performance, as relying solely on behavioural indicators can be time consuming.
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Virtual reality (VR) training systems are educational environments in

which learners interact to mimic authentic situations that are relevant

to the development of their professional expertise (Cook et al., 2013).

Previous research has examined the kind of learning that occurs in VR

training and has shown its effectiveness, for example, in the enhancing

learners' technical performance in medicine (Chernikova et al., 2020).

Although Radianti et al. (2020) noted that the use of VR systems was

still in an experimental stage in many domains, the advantages of VR

training systems have already become clear in safety-critical fields,

where learners can face, familiarise themselves with, and solve scenar-

ios that are rare, dangerous or difficult to create in real circumstances

(Chernikova et al., 2020; Salas et al., 1998). In such complex learning,

cognitive load theory (CLT) has been applied as a framework for design-

ing training when the essential part of professional competence is cog-

nitive load (CL) management (de Jong, 2010; Sweller, 1988; Sweller

et al., 2019). When learners perform effectively in CL management,

they can monitor and control their cognitive resources efficiently to

perform and solve scenarios in a timely and safe manner, even in com-

plex and unexpected circumstances (Aldekhyl et al., 2018). While CLT

may help optimise VR training tasks design by redirecting the learners'

limited working memory capacities from unnecessary CLs to cognitive

processing of information that facilitates learning (Andersen &

Makransky, 2021), the assessment of CL management performance

may help to understand how learners succeed in redirecting these

capacities themselves by engaging in CL management behaviours.

Elaborating on how (not only what) learning occurs during VR train-

ing from the perspective of CL management may assist instructors in

providing proper guidance and developing further training for diverse

needs, for example, professional development (experts) and acquiring the

necessary professional expertise (novices). In addressing the question of

how (professional) learning (Boshuizen et al., 2006) occurs, temporal ana-

lyses of learning (Lämsä et al., 2021), together with multimodal learning

analytics (Olsen et al., 2020), have recently gained increasing attention.

Here, mobile and wearable instruments, such as physiological measure-

ment devices, have been used to provide indicators of the variation in

the learners' CL with a high level of temporal granularity during VR train-

ing (Larmuseau et al., 2020; Minkley et al., 2021). Few studies, however,

have focused on the associations between physiological indicators and

CL management performance. The current study represents an attempt

to better understand CL management in VR environments to support

complex learning in safety-critical fields. We aim to examine the CL man-

agement of expert and novice pilots in the context of authentic VR flight

training. To do this, we first use behavioural indicators to assess CL man-

agement performance, and then examine the extent to which physiologi-

cal indicators are related to CL management performance.

1 | THEORETICAL FRAMEWORK

1.1 | Cognitive load theory

Since the 1980s, CLT has been widely used in attempts to design opti-

mal learning and instruction situations (Sweller, 1988; see a recent

example in Chen et al., 2021). CLT aims to ‘explain how the

information-processing load induced by learning tasks can affect stu-

dents’ ability to process new information and to construct knowledge

in the long-term memory’ (Sweller et al., 2019, pp. 261–262). Diverse

sources can induce this information-processing load. The first source

is intrinsic CL, which relates to element interactivity (Sweller

et al., 2019). Element interactivity refers to the connections among

the elements in a learning task that need to be perceived and per-

formed (Sweller, 2010). Variation in element interactivity by task

design can, therefore, also trigger variation in the learners' intrinsic

CL. In the context of VR flight training, both the flying and monitoring

pilots are required to collaborate to solve flight scenarios. This collab-

oration involves the sharing of subtasks and responsibilities, which

helps to free up cognitive resources for both pilots to more efficiently

solve the scenarios at hand (Janssen & Kirschner, 2020). As a result,

effective collaboration can be used as an indicator of CL management

performance in this type of professional learning context.

The second source is extraneous CL, which has traditionally been

associated with the unfavourable design of instruction and activities that

the instructional procedure requires learners to do, but that may not be

necessary for learning (Kalyuga, 2011; Sweller et al., 2019). In immersive

technology-enhanced settings, such as in VR training, researchers have

seen extraneous CL as a multidimensional construct (e.g., Andersen &

Makransky, 2021; Makransky et al., 2019): in addition to the instruc-

tions, the complex learning environment contributes to extraneous

CL. For example, in authentic VR flight training systems that have a vari-

ety of instruments, the pilots must identify those instruments that pro-

vide relevant information in the given scenario (see Figure 1b in Section

2.1 as an example) to plan tasks effectively and manage time efficiently;

that is, to perform well in CL management. Finally, although the interac-

tion between the flying and monitoring pilots can decrease the intrinsic

CL required for performing the task per pilot (see above), it also induces

extraneous CL (Janssen & Kirschner, 2020) because of the coordination

and communication processes between the pilots required for achieving

and maintaining a shared understanding of the ongoing situation. The

extent to which the interaction between the pilots decreases intrinsic

CL and increases extraneous CL is associated with the pilots' CL man-

agement: for example, if the available cognitive resources are limited,

the pilot can avoid the further increase of extraneous CL by ignoring the

coordination and communication processes between the pilots and only

delegating the tasks to the monitoring pilot.

In contrast to intrinsic and extraneous CL, germane CL does not

induce overall CL, instead it relates to the internal cognitive proces-

sing of information by the learner (Sweller et al., 2019). For that rea-

son, germane CL is not always distinguished as a separate source of

CL, as are intrinsic and extraneous CL (Sweller, 2010), but is associ-

ated with intrinsic load (Kalyuga, 2011). Here, germane CL refers to

the learner's ability to redistribute their cognitive resources from the

extraneous to intrinsic aspects of the task, fostering their CL manage-

ment and allowing them to use more resources for beneficial learning

activities (Sweller et al., 2019).

Multiple studies have shown an association between CL and

expertise (Kalyuga et al., 2003; 2010; Sweller, 1994). Because novices

2 LÄMSÄ ET AL.

 13652729, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12817 by U

niversity O
f Jyväskylä L

ibrary, W
iley O

nline L
ibrary on [08/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



must usually process several separate pieces of information (high ele-

ment interactivity) and experts may only need to process a single or

few elements (low element interactivity; Billett, 2001), the intrinsic CL

of a learner with a high level of expertise (e.g. a pilot with long work

experience) may be, on average, lower than that of a learner with less

expertise (e.g. a pilot who has just acquired the necessary expertise

for the pilot profession; Aldekhyl et al., 2018). Such differences

between experts and novices can emerge as differences in their CL

management performance, that is, how they monitor and control their

cognitive resources to perform and solve scenarios in a timely and

safe manner. In the following section, we elaborate on the behavioural

indicators that are used to assess the CL management performance of

pilots. After that, we justify how the physiological indicators could

indicate CL management performance.

1.2 | Assessing CL management performance

Based on the recent pilot training framework (European Union Avia-

tion Safety Agency, 2020, p. 77–81), CL management is one of the

nine professional competencies that are to be targeted and assessed

in the pilots' initial and continuous professional learning. The aim is

for pilots to learn to control and monitor their cognitive resources to

avoid cognitive overload that could hinder decision making and

reduce safety margins during flight. The assessment of CL manage-

ment performance consists of nine different overt behaviours

(European Union Aviation Safety Agency, 2020, p. 81): (i) exercising

self-control in all situations; (ii) planning, prioritising, and scheduling

tasks effectively; (iii) managing time efficiently when carrying out

tasks; (iv) offering and providing assistance; (v) delegating tasks when

necessary; (vi) seeking and accepting assistance when necessary;

(vii) reviewing, monitoring, and cross-checking actions; (viii) verifying

that tasks are completed to the expected outcome; and (ix) managing

and recovering from interruptions, distractions, variations, and failures

effectively.

While these behavioural indicators provide a context-specific and

detailed method to assess CL management performance, the monitor-

ing of various indicators in real time or in a retrospective manner

requires much time and resources and is vulnerable to subjective

interpretations. To address the advantages of behavioural indicators,

complementary—instead of compensatory—approaches are needed

(Williges & Wierwille, 1979). With physiological measurement devices,

researchers can capture components of the physical response of the

human body to situations with varying CL (Naismith &

Cavalcanti, 2015). For example, when a learner performs a complex

task that represents a challenge to them, their bodily functions may

change in response (Minkley et al., 2021). Changes in physiological

parameters have been illustrated by previous research as being associ-

ated with varying CL (Ayres et al., 2021) in safety-critical fields, among

others (Solhjoo et al., 2019).

Researchers have used various measurement devices to exam-

ine the associations between the variation in the CL and various

physiological indicators (see Veltman & Gaillard, 1996), such as elec-

trodermal activity (EDA; Johannessen et al., 2020), electroencepha-

lography (EEG; Makransky et al., 2019; Parong & Mayer, 2021),

heart rate (HR) and heart rate variability (HRV; Couceiro

et al., 2019; Larmuseau et al., 2020) and pupil size (Szulewski

et al., 2017). Usui and Nishida (2017) found that the decrease in

very low-frequency (VLF) and high-frequency (HF) bands and

increase in low-frequency (LF)/HF ratio of the HRV co-occurred

during the increase in the intrinsic CL. Minkley et al. (2018) found

that variations in HR and HRV were related to the complexity of the

tasks that the participants were undertaking, with more complex

tasks resulting in higher HR, a higher LF/HF ratio (see also Usui &

Nishida, 2017) and lower root mean square of the successive differ-

ences between normal heartbeats (RMSSD); however, the differ-

ences in HR and RMSSD were not statistically significant. They also

indicated that the physical response to task complexity might reveal

a lack of resources regarding the demands of the task (Minkley

et al., 2018), which indicates the potential for studying HR and HRV

in expert–novice settings. Similarly, Kim and Jo (2019) found that

prior knowledge was associated with variations in HRV during the

learning process. Larmuseau et al. (2020) showed that HR variations

seemed to indicate variations in the CL, and HR might indicate task

difficulty more reliably than HRV, even though the authors could

not explain much variance in the CL through the physiological data.

Although the increase in HR and decrease in HRV have usually been

assumed to indicate an increase in CL, there are individual differ-

ences in the humans' physiological responses (Tervonen

et al., 2021). Solhjoo et al. (2019), for example, found that VLF and

RMSSD increased with increasing intrinsic CL. An advantage of

measuring HR/HRV is that participants do not typically feel that the

HR/HRV measurements are intrusive and obtrusive (Mangaroska

et al., 2021), and these measurements are less susceptible to

motion, making them a flexible option for many settings (Zhou

et al., 2020).

Altogether, HR and HRV, together with other listed physiological

indicators, have shown preliminary potential for capturing variations

in CL. In this study, we assume that variation in CL prompts adjust-

ments in CL management behaviours. CL management performance is

assessed using the behavioural indicators of the Evidence Based

Training regulation (European Union Aviation Safety Agency, 2020,

p. 81) in the context of authentic VR flight training. Thus, our aim is to

study to what extent physiological indicators are associated with CL

management performance. To address this aim, we propose the fol-

lowing research questions:

RQ1. How do the pilots perform in CL management in

the VR flight training with increasing element

interactivity?

RQ2. To what extent can CL management performance

be explained in terms of physiological data in the VR

flight training with increasing element interactivity?

LÄMSÄ ET AL. 3
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2 | METHODS

2.1 | Participants and context

The participants were expert (n = 8) and novice pilots (n = 6), who

were all male. The difference between the experts and novices was

the amount of piloting experience. The experts had years of experi-

ence in piloting (at least 10 years). They were pilot trainers, and they

practised in the simulator yearly. On the other hand, novices had just

completed their simulator-based training and acquired the necessary

professional expertise (Billett, 2001, section 1.1). On average, the par-

ticipants performed a 47-min (SD = 9 minutes) VR flight training ses-

sion in the Airbus A320 Full Flight simulator (Figure 1) that has been

certified in the highest category (level D) of regulated flight training

devices (European Union Aviation Safety Agency, 2012) providing full

physical resemblance with a real aircraft including visual and motion

systems. All the participants acted as flying pilots in the session, and

as always, they had a monitoring pilot with them. All the participants

were trained with the same experienced monitoring pilot. Participa-

tion was voluntary, and informed consent was obtained from all par-

ticipants before participation.

The session had high authenticity in terms of both the VR training

system and the structure of the training, during which the participants

performed authentic scenarios that followed simple-to-complex

whole-task sequencing (Van Merrienboer et al., 2003). In the present

study, we focused on three approach and landing scenarios: on aver-

age, after 11, 31 and 42 minutes of flight (SD = 2, 9 and 9 min,

respectively), the participants approached and landed with (i) a light

wind, (ii) a heavy crosswind, and (iii) a heavy crosswind preceded by a

fault situation. The professional trainers designed the scenarios so

that in each scenario, the element interactivity was higher than in the

previous scenario. We provide a detailed description of the VR flight

training and how the element interactivity increased between the sce-

narios in supplementary online material. Between the scenarios, there

was a 1- to 3-min pause, during which the simulator calculated the

parameters and the pilots oriented for the next scenario. The training

scenarios followed the typical structure of a VR flight training session

for the pilots.

2.2 | Data

To address RQ1, we used the video recordings of the VR flight train-

ing sessions, and an experienced pilot trainer assessed the pilots' CL

management performance in the three flight scenarios based on the

overt behavioural indicators (European Union Aviation Safety

Agency, 2020, p. 81, section 2.2). In this recent pilot training

framework by the European Union Aviation Safety Agency (2020,

pp. 77–81), CL management performance is one of the nine profes-

sional competencies that are assessed in the pilots' training. The CL

management performance was determined based on how well and

how often the relevant behavioural indicators were demonstrated by

the participant when it was required. The relevant indicators were

assessed on a 1─5 scale so that the higher scores demonstrated more

effective and regular emergence of the behavioural indicators with

safer outcome. A score of 5 refers to an outcome that significantly

enhances safety; 4 refers to one that enhances safety; 3 refers to safe

operation; 2 refers to an outcome that did not result in an unsafe situ-

ation; and 1 refers to an outcome that results in an unsafe situation.

Not all the indicators were relevant in each scenario: when the

F IGURE 1 (a) Airbus A320 full flight simulator and (b) its cockpit.

4 LÄMSÄ ET AL.
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participants approached and landed with (i) a light wind and (ii) a

heavy crosswind, three indicators were observed (i.e., planning, priori-

tising and scheduling tasks effectively; reviewing, monitoring, and

cross-checking actions; verifying that tasks are completed to the

expected outcome; the subscale of these three indicators was reliable,

Cronbach's α =0.92, 95% confidence interval= [0.85, 0.96]); in the

case of (iii) a heavy crosswind preceded by a fault situation, seven

indicators were observed (i.e., planning, prioritising and scheduling

tasks effectively; managing time efficiently when carrying out tasks;

delegating tasks when necessary; seeking and accepting assistance

when necessary; reviewing, monitoring and cross-checking actions;

verifying that tasks are completed to the expected outcome; and man-

aging and recovering from interruptions, distractions, variations, and

failures effectively; the subscale of these seven indicators was reliable,

Cronbach's α=0.85, 95% confidence interval= [0.69, 0.94]).

To address RQ2, we averaged the assessments of the relevant

behavioural indicators separately for each scenario and used these

averaged assessments as the CL management performance in the sub-

sequent analyses (14 pilots and each performed three scenarios, lead-

ing to the 42 assessments of CL management performance).

Moreover, we collected the participants' physiological data using

Firstbeat Bodyguard 2 measurement devices (Firstbeat, 2021), which

have been suggested to achieve near medical-grade accuracy (Liu

et al., 2022; Umair et al., 2021). We used the participants' artefact-

corrected RR-interval data provided by the Firstbeat (Saalasti

et al., 2005), from which we analysed their HR and HRV by relying on

time- and frequency-domain parameters. For these calculations, we

used the RHRV package in R (García Martínez et al., 2017).

2.3 | Analysis

To address RQ1, we visualised the participants' average CL management

performance based on the relevant behavioural indicators for each sce-

nario (see Section 2.2). We also conducted an analysis using generalised

estimating equations (GEE, Liang & Zeger, 1986), which are extensions of

generalised linear models for analysing clustered data (Liang &

Zeger, 1986). In our study, we focused on three approach and landing

scenarios, so we had three measurements from each participant (14 clus-

ters, three measurements in each cluster). When using GEE, CL manage-

ment performance in each scenario acted as the dependent variable while

the scenario and the work experience of the pilot (expert or novice) acted

as the independent variables. Since we had repeated measurements

(three scenarios and measurements from each participant), we had to pro-

vide a correlation matrix to the model. We used the quasi-likelihood

under the independence model criterion (QIC) for GEE (Pan, 2001) to

select the most appropriate correlation matrix; we decided to use the

auto-regressive correlation matrix because the QIC had the lowest value

when applied, meaning that consecutive observations had a higher corre-

lation than the correlation between the first and third observations. Next,

we utilised bias-corrected GEE estimators for the regression parameters,

which exhibit improved properties compared to standard GEE estimates,

particularly when working with a small sample size (N ≈ 15) (Lunardon

& Scharfstein, 2017; Paul & Zhang, 2014). We conducted GEE and

calculated the confidence intervals for the bias-corrected estimates

using the BCgee R package (Lunardon & Scharfstein, 2017).

To study RQ2, we first conducted a baseline calculation based on

our artefact-corrected RR-interval data. As a baseline, we used basic

flying after the first take-off but before the beginning of the first sce-

nario (Solovey et al., 2014). Second, we calculated the average of the

following parameters over the baseline and three approach and land-

ing scenarios:

1. HR

2. standard deviation of normal-to-normal intervals [SDNN, in milli-

seconds (ms)]

3. RMSSD (in ms), and

power of the following frequency bands of the HRV:

4. VLF in ms2 (0.03–0.05 Hz),

5. LF in ms2 (0.05–0.15 Hz),

6. HF in ms2 (0.14–0.40 Hz), and

7. LF/HF.

We calculated the frequency-domain parameters using the wave-

let transform (García Martínez et al., 2017). The duration of the base-

line and each of the scenarios was 5 min. To facilitate the comparison

among the pilots, we then normalised the averaged HR and HRV

parameters using the following equation (Novak et al., 2015):

indicatornormalised ¼ indicatorscenario� indicatorbaseline
indicatorbaseline

:

Thus, the normalised value of the indicator shows how many per-

centages higher (indicatornormalised >0) or lower (indicatornormalised <0)

the value of the indicator is compared with the baseline value. For fur-

ther analyses, we transformed the HR and HRV parameters by taking

the natural logarithm due to their skewed distributions. To examine

the associations between CL management performance and physio-

logical indicators, we used GEE. Again, CL management performance

in each scenario acted as the dependent variable while the scenario,

the work experience of the pilot (expert or novice), and HR and HRV

parameters acted as the independent variables. We checked for multi-

collinearity among the HR and HRV parameters and found that a

time-domain parameter (RMSSD) and two frequency-domain parame-

ters (LF, HF) were highly correlated with other HR and HRV parame-

ters. Therefore, these three parameters were excluded from further

analysis. We used the auto-regressive correlation matrix and calcu-

lated confidence intervals for the bias-corrected estimates as in the

analysis for RQ1. We also calculated the Wald test statistic to deter-

mine whether the full model with HR and HRV parameters improved

the model (RQ2) compared to the model that only included the sce-

nario and work experience of the pilot (RQ1).

LÄMSÄ ET AL. 5
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3 | RESULTS

The findings for RQ1 (How do the pilots perform in CL management

in the VR flight training with increasing element interactivity?) showed

that the pilots performed effectively in CL management. Figure 2 pro-

vides a visualisation of the performance of the experts and novices in

the three approach and landing scenarios with increasing element

interactivity. When interpreting the results, it should be noted that

scores 1 or 2 in the CL management performance were below or at

the minimum acceptable level, respectively, which would have endan-

gered the safe flying situation. Thus, these scores are rare in authentic

pilot training. On average, the performance was 4.6 (SD = 0.5) in the

first scenario with a light wind, 4.8 (SD = 0.4) in the second scenario

with a crosswind, and 4.2 (SD = 0.5) in the third scenario with a cross-

wind preceded by a fault situation. The results of GEE shows that the

work experience of the pilots did not significantly explain variation in

CL management performance (β¼�0:03, 95% confidence interval of

β¼ (�0.51, 0.45), see Table 1). The model indicates that the pilots

performed slightly worse in CL management in the third scenario

(β¼�0:39,95% confidence interval of β¼ (� 0.64, �0.13), see

Table 1) compared to the first scenario.

Figure 3 presents the variation in the selected HR and HRV

parameters across different approach and landing scenarios. The

results indicate that, on average, there were no significant differences

observed among the three scenarios, nor between the expert and

novice pilots regarding these parameters. In terms of RQ2 (To what

F IGURE 2 The CL
management performance of the
experts (n = 8) and novices
(n = 6) in the three different
approach and landing scenarios
with increasing element
interactivity.

TABLE 1 The results of the generalised estimation equations: (1) a reduced model in which the scenario and pilots' experience were used to
explain the CL management performance (RQ1) and (2) a full model in which physiological data (heart rate [HR] and heart rate variability [HRV])
were added to explain the CL management performance (RQ2).

Independent variable Reduced model: CL management Full model: CL management

Intercept 4.7 (4.2, 5.1) 4.5 (4.1, 4.9)

Scenario

A crosswind 0.12 (�0.04, 0.28) 0.06 (�0.08, 0.20)

A crosswind preceded

by a fault situation

�0.39 (�0.64, �0.13) �0.36 (�0.65, �0.07)

Experience

Expert �0.03 (�0.51, 0.45) 0.13 (�0.26, 0.52)

HR

HR �2.29 (�4.83, 0.25)

HRV

SDNN 0.40 (�0.18, 0.98)

VLF �0.43 (�0.79, �0.08)

LF/HF 0.20 (�0.01, 0.42)

Correlation parameter 0.65 0.60

Note: The correlation parameter is a measure of the correlation between the repeated measurements. We present the regression coefficients (β) along with

their corresponding estimates and 95% confidence intervals.
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extent can CL management performance be explained in terms of

physiological data in the VR flight training with increasing element

interactivity?), we found that the HR and HRV parameters improved

our model: We calculated Wald test statistic to compare

the reduced model (RQ1) and full model (RQ2) and found that the

full model was significantly better than the reduced model

(χ df¼4ð Þ¼25:9,p<0:001). In the full model, the VLF band of the

HRV was associated with CL management performance (β¼�0:43,

95% confidence interval of β¼ (� 0.79, � 0.08), see Table 1). When

the VLF increased, CL management performance declined.

4 | DISCUSSION

In this article, first, we used behavioural indicators to assess CL man-

agement performance in the authentic VR flight training with increas-

ing element interactivity. Second, we investigated to what extent HR

and HRV parameters were associated with the CL management per-

formance in the training. We found that the pilots performed effec-

tively in CL management during three approach and landing scenarios,

but the performance was slightly lower in the third scenario with the

highest element interactivity (RQ1, Table 1). The lower performance

in the scenario with the highest element interactivity related to lower

scores in one or a few behavioural indicators of CL management

performance (Section 2.2). For example, lower scores in the indicators

related to the collaboration between the pilots occurred when pilots

managed their CL by avoiding coordination and communication pro-

cesses with the co-pilot that would have produced momentary extra-

neous CL (Janssen & Kirschner, 2020). Even though the collaboration

between the pilots can distribute both pilots' cognitive resources to

solve the scenarios at hand more efficiently, the pilots may have dif-

ferent dispositions towards the ‘distribution advantage’ (see

Janssen & Kirschner, 2020, p. 787) and collaboration in general.

We found no significant differences between the experts and

novices in CL management performance (RQ1, Table 1). Although

the intrinsic CL was, on average, likely higher among the novices

than the experts, the overall CL of the novices was not necessarily

remarkably higher. Namely, the extraneous CL also depends on the

situation in which the task is presented (Beckmann, 2010): Even

though novices must usually process several separate pieces of

information (high element interactivity and intrinsic CL), they might

be even more familiar with the activities performed in the VR train-

ing than experts (cf. Paas et al., 2004), who suffered from a lack of

set routines since they had had temporary layoffs because of

COVID-19. Due to the complex VR flight training environment, both

the experts and novices might also experience decreasing extrane-

ous CL from the learning environment over time (e.g., it became eas-

ier to pay attention to the relevant parameters and instruments; see

F IGURE 3 The normalised values of (a) heart rate (HR) and three HRV parameters for experts (n = 8) and novices (n = 6) in three different
approaches and landing scenarios with increasing element interactivity. The HRV parameters include (b) the standard deviation of normal-to-
normal intervals (SDNN), (c) very low-frequency band (VLF), and (d) low-frequency—high-frequency band ratio (LF/HF). The normalised values
indicate the percentage increase or decrease in the parameter value compared to the baseline.
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Figure 1b), which illustrates the importance of following simple-to-

complex task sequencing (Van Merrienboer et al., 2003) when the

pilots can warm up and get used to the basic pilot procedures. In our

study, we found that CL management performance remained stable

or even slightly increased from the first to the second scenario

(Table 1), even though element interactivity also increased from the

first to the second scenario.

We also found that HR and HRV parameters improved the model

that aimed to explain variation in the CL management performance

(RQ2). Specifically, we found that better CL management performance

was associated with a decrease in the VLF band of HRV (Table 1, see

also Figure 3c). Decreasing VLF values (Solhjoo et al., 2019) have been

linked to decreasing CL. However, it should be noted that the physio-

logical basis of the VLF band is not fully understood (Kleiger

et al., 2005; Shaffer & Ginsberg, 2017), and decreasing values of the

VLF band have also been associated with increasing CL (Usui &

Nishida, 2017). Therefore, it is possible that pilots who experienced

more CL might place more emphasis on CL management behaviours

and performed better in CL management. Usui and Nishida (2017)

also found that the VLF band may recover slowly after an increase in

intrinsic CL. In our study, the significance of the VLF band could also

relate to the nature of the VR flight training: for example, the fault sit-

uation in the third approach and landing scenario only caused a

momentary increase in the intrinsic CL that is challenging to capture

with parameters that stabilise quickly after the fault has been solved.

When interpreting our findings, the following limitations should

be considered: First, since we conducted our study in an authentic

setting, we did not control all the variables. For example, VR flight

training typically follows simple-to-complex task sequencing, so we

did not counterbalance the order in which the scenarios were pre-

sented. Second, because of the unique context of our study (pilot

training in Airbus A320 Full Flight simulator; see Figure 1), our sample

size was small. In the future, with a larger sample size, the models

explaining CL management performance could be developed and

tested by splitting the data into training and test sets. Due to the small

sample size and between-person variation in the physiological

responses, the results and coefficients of the GEE in the full model

(Table 1) should be interpreted cautiously (see Thomas et al., 2019). In

the estimation, we took the small sample size into consideration by

utilising the bias-corrected estimator that has proven to provide less

biased estimates compared to the standard GEE estimates when the

sample size is small (Paul & Zhang, 2014). Instead of providing evi-

dence of the superiority of a specific HR or HRV parameter (such as

VLF band), our results indicate that the physiological data, in general,

has potential when assessing CL management performance during

complex learning in VR environments. In the future, other physiologi-

cal indicators (e.g. eye-tracking parameters; Johannessen et al., 2020)

could be used to examine CL management performance in fields

where an essential part of professional competence is to monitor and

control one's own cognitive resources efficiently.

Despite these limitations, this study has several implications that

can inform the development of VR training in safety-critical fields.

First, our findings indicate that the VR training sessions (approxi-

mately 1–2 h) can be used for intensive practising because the CL

management performance remained high throughout the session

(RQ1). Second, it is important to practise basic procedures at the

beginning of VR training and to avoid increasing unnecessary CL:

namely because the CL management performance seemed to remain

stable (or even improve slightly) from the first scenario to the second

even though the element interactivity increased (Table 1). Third,

besides monitoring CL with physiological measures in safety-critical

fields, it is also essential to capture how learners monitor and control

their cognitive resources efficiently to perform and solve scenarios in

a timely and safe manner even in complex and unexpected circum-

stances, that is, how they perform in CL management. In doing this,

context-specific and detailed assessment frameworks that utilise the

expertise of trainers in the field are required. This study indicates that

the HR and HRV measurements could be used to complement such

assessment frameworks to inform learners and trainers on CL man-

agement performance.

Methodologically, we captured CL management performance

with behavioural and physiological indicators in authentic VR training.

One current challenge in CL research is the lack of reliable, unobtru-

sive measures for assessing CL in authentic and complex tasks, even

though there are established sensitive measures of CL for simple and

structured tasks (Ayres et al., 2021). This study contributes to this

research gap, and despite its small sample size, provides preliminary

evidence that the VLF band of HRV is related to CL management per-

formance during complex learning. This finding is consistent with the

previous research on the VLF band of the HRV (Solhjoo et al., 2019),

even though Ayres et al. (2021) and Larmuseau et al. (2020) did not

find HRV to be sensitive to variation in the CL. Our results can be use-

ful in the development of instruments to capture CL management per-

formance in professional learning. However, as the set of behavioural

indicators (see Section 2.2) shows, CL management performance is a

multidimensional construct. This multidimensional nature poses meth-

odological challenges in capturing the temporal variation of CL man-

agement performance. For example, some behavioural indicators

might be more sensitive to the variations in the different HR and HRV

parameters, while variations in some of the HR or HRV parameters

may not be sensitive enough to indicate CL management performance

if caused by a sudden and quick event (e.g. the fault in the third sce-

nario), although these types of events may cause a sudden increase in

the need for information processing and even cognitive overload

(Larmuseau et al., 2020), potentially leading to dramatic consequences

in safety-critical fields.

5 | CONCLUSIONS

In the present study, we used a set of behavioural indicators to assess

CL management performance in authentic VR flight training. Even

though the work experience (expert–novice) of the pilots did not

explain the variation in CL management performance, the scenario

8 LÄMSÄ ET AL.
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with the highest element interactivity and increasing values of VLF

band of the HRV related to lower performance. In the future, the

models in which physiological data is used to predict CL management

performance could be developed in two phases. First, a model with an

adequate explanatory level should be developed with a training set.

Second, the reliability and validity of the model should be studied with

a test set. Capturing CL management performance is the first step to

supporting learners so that they can monitor and control their cogni-

tive resources efficiently to perform and solve scenarios in a timely

and safe manner, even in complex and unexpected circumstances.
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