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ABSTRACT
Work stress impacts people’s daily lives. Their well-being can be
improved if the stress is monitored and addressed in time. Attach-
ing physiological sensors are used for such stress monitoring and
analysis. Such approach is feasible only when the person is physi-
cally presented. Due to the transfer of the life from offline to online,
caused by the COVID-19 pandemic, remote stress measurement
is of high importance. This study investigated the feasibility of
estimating participants’ stress levels based on remote physiological
signal features (rPPG) and behavioral features (facial expression and
motion) obtained from facial videos recorded during online video
meetings. Remote physiological signal features provided higher ac-
curacy of stress estimation (78.75%) as compared to those based on
motion (70.00%) and facial expression (73.75%) features. Moreover,
the fusion of behavioral and remote physiological signal features
increased the accuracy of stress estimation up to 82.50%.
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1 INTRODUCTION
Nowadays, people are greatly affected by work stress. Early diag-
nosis and examination of stress levels can improve their well-being.
Recent years have been marked by humans’ life shift from offline
to online mode due to the COVID-19 pandemic. Therefore, remote
stress measurement is of high importance. Previous developments
in Affective Computing (AC) made it possible to perform stress
diagnostic remotely. Behavioral features (facial expression [6, 23],
head motion [15, 16], and eye gaze [18, 19]) are common tools in AC
for emotion recognition and stress estimation [6, 9, 23]. However,
physiological signal features (e.g., heart rate variability) are more
reliable than behavioral ones, as people might control or disguise
behaviors, while physiological features are difficult to alter by will
[8, 25]. Electrocardiography is the most accurate measure reflecting
cardiac activity, although not feasible for online video meetings
application. Photoplethysmography (PPG) is another measure that
is used to examine cardiac activities closely related to humans’
stress levels. There are contact PPG (cPPG) and remote PPG (rPPG).
Although stress level estimation using cPPG has been previously
studied [7], it is not a convenient tool for online video meetings.
On the other hand, rPPG is an alternative as facial videos allow for
tracking face color change induced by the blood volume variation
[22].

Only three studies [11–13] have investigated the application of
rPPG signal features for stress estimation. These articles are devoted
to stress temporally imposed by experimental tasks, which differs
from stress arising in a realistic environment. Moreover, the videos
in these works were recorded in a laboratory environment with
well-controlled light and setup. However, in realistic scenes, the
participants are in various uncontrolled environments with differ-
ent recording setups. Whether rPPG signal features (obtained from
facial videos recorded in realistic scenes) can be utilized for stress
estimation remains unknown. Moreover, in [11–13], facial expres-
sion and motion features have not been used for stress estimation.
Research has not yet determined whether fusing additional features
with rPPG signal features can impact stress estimation accuracy.
Therefore, it is of high importance to address mentioned limitations
for the further promotion of rPPG signal features application in a
realistic environment.
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Dataset of online video meetings was collected, and the obtained
facial videos were further used for the stress estimation. Experi-
ments were carried out to answer the following questions: 1) Is it
feasible to use rPPG signals measured from facial videos for stress
estimation? 2) What is the accuracy difference of stress estimation
based on rPPG and cPPG features? 3) Does fusion of behavioral
features (facial expression and motion) with physiological signal
(rPPG or cPPG) features improve stress estimation?

2 METHOD
2.1 Dataset Collection
A dataset of 1.5-hours long online video meetings was collected.
All in all, 24 online video meetings were recorded. From seven to
nine participants and one consultant took part in each online video
meeting. Totally, two consultants and 32 participants (29 females
and three males) were involved. Participants are social services
employees who work with clients with mental health problems and
substance abuse. During an online video meeting, participants were
asked to share their experiences and make reflections about their
working daily life. The consultant aimed to guide the reflection
process and help participants to find ways to reduce the strains. At
the end of each session, participants completed a questionnaire pro-
viding feedback about the meeting and their feelings. Participants
report their stress levels with a scale of 1 to 10, that 1 indicates the
lowest and 10 indicates the highest stress level. The online video
meeting is a simulation and reflection of participants’ daily work,
which can reveal their work stress levels. Therefore, self-reported
work stress levels were used as labels. More details about data
collection are shown in the auxiliary materials.

2.2 Feature Extraction
rPPG and behavioral (facial expression and motion) features were
extracted from the recorded facial videos. cPPG features were ex-
tracted from pulse oximeter signals and used as a reference. Various
combinations of the mentioned features were used for the work
stress estimation. The method workflow is shown Fig. 1.

rPPG Features. The facial videos were processed by OpenFace
library [2] for the face landmark detection. It allows to tackle head
motion problems and track facial landmarks accurately, thus, solv-
ing the issue of uncontrolled environment recordings and partici-
pants’ movements. Facial landmarks were used to define regions of
interest (ROI) of bare skin areas (forehead, cheeks, and chin) and
to average the pixel values in the ROI for each color channel for
the raw RGB signals acquisition. Then, the Plane-Orthogonal-to-
Skin (POS) algorithm [24] was used to extract the rPPG waveform
from the raw RGB signals. Each facial video was divided into non-
overlapped 5-min clips [17] to obtain 5-min rPPG segments. Then,
the signal to noise ratio (SNR) [5] was calculated for each rPPG
segment. The rPPG segments with SNR below 0.5 were removed
to ensure that only high-quality rPPG segments were kept. Sub-
sequently, heart rate variability (HRV) features were extracted by
Neurokit2 library [10] from the rPPG segments by locating the
systolic peaks and deriving the inter-beat interval (IBI) curves. 20
widely used HRV features (described in the auxiliary materials) in
time, spectral and geometrical domains were utilized [17]. HRV
feature vectors were calculated for 5-min rPPG segments. Finally,

the obtained vectors were averaged to get a 20-dimensional HRV
feature vector for each facial video.

Facial Expression Features. Action units (AUs) were used to
compute facial expression features [21]. The OpenFace library [2]
was utilized to detect and track 16 key types of AUs (mentioned
in the auxiliary materials) on each video frame. The chosen list
covers the most frequently occurring AUs related to emotions as per
Facial Action Coding System (FACS) Investigator’s Guide [1]. The
intensity of AUs, measured from 0 and 5, was used as an output (Fig.
1). The mean, median, standard deviation, minimum, maximum,
and range along the time dimension of the AUs were computed
[3]. Finally, a 96-dimensional facial expression feature vector was
obtained for each facial video.

Motion Features. The eye gaze and head pose were extracted us-
ing OpenFace library [2]. Pitch and yaw of eye gaze as well as pitch,
yaw, and roll of head pose, were extracted (Fig. 1). The mean value
of each feature along the time dimension was subtracted from the
original feature signal to offset the different camera positions. Then,
the median, standard deviation, minimum, maximum, and range
of each motion feature along the time dimension were calculated
to yield the final statistical features [3]. Finally, a 25-dimensional
motion feature vector was obtained for each facial video.

cPPG Features. Like rPPG, each cPPG signal was divided into
non-overlapped 5-min cPPG segments. Then, the SNR was calcu-
lated for each 5-min cPPG segment. The cPPG segments with SNR
below 0.5 were removed to ensure that only high-quality cPPG seg-
ments were kept [5]. All in all, 20 HRV features, the same as used
for rPPG, were extracted from 5-min cPPG segments and averaged.
Finally, a 20-dimensional cPPG feature vector was obtained for each
cPPG signal.

2.3 Stress Classification
Stress classification was based on logistic regression which suits
better for tasks with small amount of training data. A threshold
value, separating the reported values of stress levels into low-stress
and high-stress groups, was used to get the binary stress labels [13].
The threshold value of 7 was utilized, which is the median of the
obtained stress levels among the participants. The classification
scores from different classifiers were averaged via decision-level
fusion to get the final classification results (Fig. 1).

3 RESULTS AND DISCUSSION
rPPG Measurement Results. The average HR was computed for
each 30-sec rPPG clip and compared with the corresponding HR
obtained from cPPG. The Mean Absolute Error (MAE) between HR
from rPPG and cPPG was the evaluation metric [4, 20, 26]. MAE of
5.13 bpm for the entire dataset was obtained, which is very promis-
ing considering the uncontrolled facial video recordings during
online video meetings. A single example of HR curves computed
from both rPPG and cPPG signals is shown in Fig. 2(b). For the
sake of comparison, the SOTA performance [13] on data recorded
in controlled labs achieved similar MAE values of 3.55, 9.26, and
5.99 bpm for three different settings.

Stress Classification Results. A 10-fold subject-independent
cross-validation protocol was used. The participants were divided
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Figure 2: Stress classification results: (a) Histogram of reported stress levels (the red dotted line corresponds to the threshold);
(b) HR curves computed from rPPG and cPPG signals.

into ten groups, each including about an equal number of partici-
pants. Nine groups were used for training and one group for testing
and rotation. The accuracy and the area under the curve (AUC)
were used as evaluation metrics. The performance of the stress
classification algorithm was first evaluated based on single rPPG,
cPPG, motion, and facial expression features, then the fusion of the
features was performed. All in all, 36 high-stress and 44 low-stress
samples were obtained during this experiment (Fig. 2a). The results

of a stress classification task based on a single set of features are
presented in the first column of Table 1. It shows that stress levels
predicted with cPPG had the highest accuracy (81.25%) and AUC
(0.80). The performance of the stress classification task based on
rPPG features was slightly lower and achieved 78.75% accuracy and
0.78 AUC. The facial expression features provided 73.75% accuracy
and 0.71 AUC. Finally, motion features resulted in the worst perfor-
mance and led to 70.00% accuracy and 0.70 AUC. The feature fusion
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Table 1: Stress classification results for a single set of features (left), fusion of rPPG with facial expression and motion features
(center), and fusion of cPPG with facial expression and motion features (right).

Features Acc (%) AUC

Motion 70.00 0.70

Facial
Expression

73.75 0.71

cPPG 81.25 0.80

rPPG 78.75 0.78

Features Acc (%) AUC
rPPG 78.75 0.78
rPPG+Motion 78.75 0.78
rPPG+
Facial Expression

81.25 0.81

rPPG+Motion
+Facial Expression

82.50 0.81

Features Acc (%) AUC
cPPG 81.25 0.80
cPPG+Motion 81.25 0.80
cPPG+
Facial Expression

83.75 0.82

cPPG+Motion
+Facial Expression

85.00 0.83

results are shown in the second and the third columns of Table
1. Fusion of rPPG, motion, and facial expression features resulted
in slightly increased accuracy and AUC. The same phenomenon
was observed when fusing cPPG with motion and facial expression
features.

Is it feasible to use rPPG signals measured from facial
videos for stress estimation? The accuracy of stress estimation
based on rPPG (78.75%) features surpasses those based on motion
(70.00%) and facial expression (73.75%) features. Stress estimation
based on motion and facial expression features is less accurate for
two reasons. Firstly, participants show neutral facial expressions
and small motions during the online video meeting, which makes
the facial expressions and motions subtle, short, and sparse [14].
Secondly, the facial expressions and motions in the stress state can
be self-controlled while the physiological signals cannot [8, 25]

What is the accuracy difference of stress estimation based
on rPPG and cPPG features? The accuracy of stress estimation
based on rPPG (78.75%) features is close to those based on cPPG
(81.25%) features. However, rPPG signals are more convenient for
stress estimation as only facial videos are typically available in
online video meetings. Using of cPPG signals for stress estimation
requires pulse oximeters, which is hard to implement in practice.

Does fusion of behavioral features (facial expression and
motion) with physiological signal (rPPG or cPPG) features
improve stress estimation? The accuracy of stress estimation
can be slightly improved by fusing behavioral features with physio-
logical signal features (Table 1 center and right columns). Although
the behavioral features are less effective for stress estimation if
used separately, it is still beneficial to perform fusion as different
features might complement each other for the stress estimation.

4 CONCLUSION
Stress estimation has been performed based on remote physiologi-
cal signal features (rPPG) and behavioral features (facial expression
and motion) obtained from facial videos recorded during online
video meetings. The accuracy of stress estimation based on remote
physiological signal features was higher than those based on be-
havioral features. The fusion of remote physiological signal and
behavioral features increases the accuracy of stress estimation.
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