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Review 

Towards modern understanding of the Achilles tendon properties in human 
movement research 

Taija Finni a,*, Benedicte Vanwanseele b 
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A B S T R A C T   

The Achilles tendon (AT) is the strongest tendon in humans, yet it often suffers from injury. The mechanical 
properties of the AT afford efficient movement, power amplification and power attenuation during locomotor 
tasks. The properties and the unique structure of the AT as a common tendon for three muscles have been studied 
frequently in humans using in vivo methods since 1990′s. As a part of the celebration of 50 years history of the 
International Society of Biomechanics, this paper reviews the history of the AT research focusing on its me
chanical properties in humans. The questions addressed are: What are the most important mechanical properties 
of the Achilles tendon, how are they studied, what is their significance to human movement, and how do they 
adapt? We foresee that the ongoing developments in experimental methods and modeling can provide ways to 
advance knowledge of the complex three-dimensional structure and properties of the Achilles tendon in vivo, and 
to enable monitoring of the loading and recovery for optimizing individual adaptations.   

1. Introduction 

The Achilles tendon (AT) is important for efficient locomotion and an 
injury can immediately impair functional capability with long term 
consequences (McAuliffe et al., 2019; Hoeffner et al., 2022). Research 
suggests that AT first appeared in our anatomy ~ 2 million years ago and 
has been crucial to our survival allowing persistence hunting (Bramble 
& Lieberman, 2004). The AT allows efficient ambulation by storing and 
returning a considerable amount of energy as we walk, run or jump 
(Alexander and Bennet-Clark, 1977; Roberts, 2002). Tendons can return 
90–95% of the stored strain energy during elastic recoil making them 
remarkably efficient. In addition, compliant tendons allow a decoupling 
of the muscle fascicle behavior from the muscle tendon complex which 
assists with power amplification during jumping and acceleration tasks, 
and with power attenuation during landing tasks (Roberts and Azizi, 
2010). As tendons elongate when the muscles contract, they can modify 
muscle function by influencing muscle length and velocity (Herbert and 
Crosbie, 1997; Lichtwark and Wilson, 2006). For example, by decreasing 
muscle strain tendons can modify the operating range and thereby the 
force producing capacity of a muscle (Lieber et al., 1992). Furthermore, 
by decreasing muscle shortening velocity tendons can reduce the 

muscle’s need for ATP (Ryschon et al., 1997). All of this is possible due 
to its remarkable structural and material properties which contribute to 
the efficiency of movement. 

The AT is a common tendon for soleus and gastrocnemius muscles 
(Fig. 1). Although the twisted structure of the AT has been described 
nearly a century ago in beaver (Bojsen-Møller and Magnusson, 2015), 
the human cadaver studies in 2000′s (Edama et al., 2015; Szaro et al., 
2009), reporting several AT structure types, have accelerated the un
derstanding and research of possible individual-specific properties that 
may be relevant for performance, injury-risk and rehabilitation. The 
biomechanical properties of tendons have been reported in classic 
studies by illustrating force–elongation and stress–strain relationships 
yielding information about tendon stiffness and Young’s modulus. Ul
timate strength of tendons provides understanding of injuries and is 
typically assessed by elongating the tendon to rupture. Consequently, 
ultimate strength cannot be assessed in humans in vivo. 

In this review, we focus on the most important and frequently 
assessed properties of the human Achilles tendons (Fig. 2). Strain is the 
measure of the longitudinal deformation due to the application of lon
gitudinal stress, and important for tendon adaptation. Stress is the ratio 
of force to the area over which the force is applied. Stiffness is a 
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measure of the resistance to deformation and it is relevant e.g. for 
storage of elastic energy. Young’s modulus reflects material properties 
independent of size of the tendon. We also review the property of hys
teresis, which tells about how much of the elastic strain energy is lost 
during tendon stretch–shortening cycle. Tendons are viscoelastic and in 
addition to hysteresis have also other time-dependent properties of 
strain rate, creep and stress relaxation (Butler et al., 1978). 

With this review, we walk you through the 50-year history of 
Achilles tendon research; how AT properties have been studied and what 
is the current state-of-the art, and place biomechanical properties of the 
AT in the context of human movement and adaptation. 

2. Evolution of knowledge on the Achilles tendon 

Why did the properties of tendons start to interest researchers of 
human movement in the first place? In the 1960′s, Cavagna and col
leagues (Cavagna, 1969; Cavagna et al., 1964) studied kinetic and po
tential energy fluctuation in human movements. They found that during 
running, efficiency was much higher than during walking or cycling 
which indicated that there must be an elastic recoil mechanism. At that 
time, Cavagna et al. concluded that the elastic energy must be stored in 
the muscles. In the same era, Goslow et al. (1973) showed in cats that the 

AT reduced the amount of shortening needed from soleus muscle fibers 
during a step, averting the focus to tendon for elastic recoil. The sub
sequent animal work by Alexander (Alexander, 1974; Alexander and 
Vernon, 1975) showed that stretching and recoil of tendons played an 
important role in reducing energy cost. Few years later Alexander and 
Bennet-Clark (Alexander and Bennet-Clark, 1977) calculated that the 
tendon have ~ 10 times the capacity of a muscle to store elastic energy. 
The importance of the AT for movement energetics was established. 

From a clinical perspective, there was a need to study the AT to 
understand its trauma, treatment and rehabilitative measures. In fact, 
research on “rupture” and “treatment” have dominated the publications 
on the AT since 1970 (Fig. 3A-E). Still today, researchers are seeking 
optimal treatment options to rupture (Fackler et al., 2022) and tendin
opathy (Silbernagel et al., 2022) that are the most common problems 
related to the AT. 

The properties of tissue dictate the framework of function. The 
knowledge of tendon properties 50 years ago was based on in-vitro ex
periments of ligaments and tendons from cadavers and animals at 
different structural levels ranging from collagen molecules to fibrils to 
fibers and whole tendon (Kastelic et al., 1978) (Fig. 1). The basic me
chanical properties of tendon, based on experiments with rat tail tendon, 
were reported already in 1950′s with keen interest on the wavy crimp 
structure and its straightening upon loading (Rigby et al., 1959). Since 
collagens (mostly type I) are abundant in tendons providing them tensile 
strength, much research has been done on the properties of collagens 
(Fig. 3F-J). The collagens, produced by tendon cells (fibroblasts, teno
cytes), lie in a cocktail of proteoglycans, glycosaminoglycans, structural 
glycoproteins and other smaller molecules (Kannus, 2000). The impor
tance of the non-collagenous matrix has been pointed out in recent 
studies investigating the interfascicular matrix in the equine energy 
storing tendon (Thorpe et al., 2012). This matrix allows for sliding be
tween fascicles, enabling the large extensions that occur in AT during 
movements. In addition, the interfascicular matrix can withstand cyclic 
loading, and is more elastic in energy storing tendons (Thorpe et al., 
2012). This composition gives the tendon its unique properties. 

Human in vivo tendon properties of stiffness and Young’s modulus 
were first assessed for tibialis anterior by Maganaris and Paul in 1999, 
and shortly after researchers focused more on the properties of plan
tarflexor muscles and the AT (Maganaris and Paul, 2002; Magnusson 
et al., 2001). In the AT, the tendons of soleus, medial and lateral 
gastrocnemius muscles are intertwined, thus the AT contains three 
subtendons with different lengths (Crouzier et al., 2022; Khair et al., 
2022a)(Fig. 1). The twisted subtendon structure is known from human 
cadaver studies (Edama et al., 2015; Pękala et al., 2017; Szaro et al., 
2020; van Gils et al., 1996) and recently, the mechanical properties of 
the subtendons have been investigated. In 2021, Ekiert et al. (Ekiert 
et al., 2021) reported in the human cadaver AT, that the soleus sub
tendon had a smaller tensile modulus and greater hysteresis than medial 
gastrocnemius subtendon, the values of lateral gastrocnemius lying in 
between. In vivo, the human AT shows differential displacements with 
the anterior tendon displacing more than posterior tendon during 
voluntary muscle contractions (Chernak Slane and Thelen, 2014) but 
currently, the movements cannot be unequivocally attributed to specific 
subtendons (Khair et al., 2022a). However, observations on internal 
tendon shear have allowed understanding that nonuniform movement is 
a sign of a healthy tendon, which is decreased in injury (Couppé et al., 
2020; Fröberg et al., 2017; Khair et al., 2022b) and in aging (Clark and 
Franz, 2021; Slane and Thelen, 2015). 

3. Towards a modern understanding of AT properties 

Assessment of tendon properties requires a measure of tendon length 
and tendon force. Regarding tendon length, the early human studies in 
vivo considered the length of the entire muscle–tendon unit based on 
joint angles (Grieve et al., 1978) before a distinction between muscle 
and tendon - or tendinous tissue - could be made. Direct assessment of 

Fig. 1. Achilles tendon is a common tendon for soleus (SOL), medial (GM) and 
lateral gastrocnemius (GL) muscles. Each muscle has its own subtendon which 
rotate about each other mediolaterally when traveling distally. Tendons have a 
distinct hierarchy which has been depicted in the figure according to Handsfield 
et al., 2016. 

T. Finni and B. Vanwanseele                                                                                                                                                                                                                 



Journal of Biomechanics 152 (2023) 111583

3

human muscle fascicles using ultrasonography led to the development of 
a model where the muscle–tendon unit contained a short muscle fiber 
that was typically represented in a pennate orientation to the line of 
action coupled with an in-series elastic element (Fukunaga et al., 2001, 
1997). Such a model considers erroneously that the tendon and 
aponeurosis would be in series which has fundamental consequences for 
estimations of tissue loading, and mechanics and energetics (Epstein 
et al., 2006), and the need to separate the length of tendon and 
aponeurosis was recognized. 

B-mode ultrasonography was introduced to tendon length and 
elongation assessments for human movement studies by the group of 
Fukunaga (Fukashiro et al., 1995; Fukunaga et al., 1996a, 1996b). Many 
ultrasonography studies, where a movement of a feature corresponding 
to fascicle insertion to aponeurosis was tracked, have reported tendinous 
tissue displacements encompassing not only the pure AT, but also 
aponeurosis tissue (Arampatzis et al., 2007; Ishikawa et al., 2005; Ros
ager et al., 2002) (Fig. 2G). As noted above, it is important to distinguish 
aponeurosis from the tendon for accurate assessment of tendon prop
erties, as was done already in some early reports (Finni et al., 2003; 
Fukunaga et al., 2001; Magnusson et al., 2003; Muramatsu et al., 2001). 
Fine-tuning of the methodological details of tendon length assessment is 
still ongoing with a recent study showing that adding only 1–3 cm of 
aponeurosis above the exact location of the muscle–tendon junction 
increases the displacement and strain of the AT (Finni et al., 2022). 

Over the years, there have been several ways to assess AT length and 
its change using ultrasonography (Finni et al., 2013; Seynnes et al., 
2015). Accuracy of length and elongation assessments improved with 
correction methods accounting for joint rotation that causes calcaneal 
displacement (Fukunaga et al., 2001; Magnusson et al., 2001) or directly 
assessing both the origin and insertion of the tendon in isometric 

(Muramatsu et al., 2001) and dynamic conditions (Lichtwark and Wil
son, 2005). Later, it was considered that the line of action of the AT is not 
fully straight, and during plantarflexion there is an increase in the cur
vature due to constraints at the ankle joint (Hodgson et al., 2006). While 
linear assumption of the tendon is frequently used (Gerus et al., 2011; 
Zellers et al., 2017), accounting for the curvature yields about 1.2% 
greater strains (Stosic and Finni, 2011) and ~ 5% smaller moment arm 
thereby influencing AT force and other derived properties during dy
namic tasks (Tecchio et al., 2022). 

In recent years the use of three-dimensional (3D) freehand ultraso
nography has become more common especially for estimating the length 
and length changes of the free AT (Barber et al. 2009). The method has 
been shown to be reliable in healthy participants (Merza et al., 2021) 
and solves some of the problems with the two-dimensional (2D) tracking 
such as out-of-plane movements, tracking of only one point and the 
restriction to a small movement as they need to stay within the image 
frame. However, this method requires static position and is not appli
cable in locomotion. 

Assessment of the AT force typically relies on dynamometer or force 
plate assessments to determine the plantar flexor moment (torque) and 
from there, tendon forces are calculated using moment arm information. 
The rare human experiments measuring directly in vivo tendon forces 
using transducers inserted in the AT were performed by the group of 
Komi (Arndt et al., 1998; Finni et al., 1998; Gregor et al., 1987; Komi, 
1996) and described AT forces during various human movements. In a 
few cases, properties of strain (Finni et al., 2002), stress (Komi et al., 
1992; Finni et al., 1998) and hysteresis (Finni, 2006) were reported from 
these in vivo AT force measurements. 

During isolated single joint movements, the plantar flexor torque is 
typically measured using a dynamometer measuring the torque directly, 

Fig. 2. Typical methods used to assess Achilles tendon properties in isometric condition (A-C, E-G) and during dynamic movements (D). (A) Forces are typically 
assessed from ankle torque measurements but some studies have used in vivo force transducers. Tendon elongation is typically assessed from ultrasound videos from 
where the myotendinous junction of SOL (E) or medial gastrocnemius (F) are tracked in order to calculate the changes in AT length during contraction. (B) The 
force–elongation or the stress–strain curves of tendon contain toe, linear and plastic regions. The slope of the force–elongation curve yields stiffness that varies with 
force level. When force is divided by the tendon cross-sectional and tendon elongation normalized to initial length of the tendon, the slope of the stress–strain curve 
yields Young’s modulus. There are several ways to assess tendon elongation and they should include measurement of displacement of calcaneal insertion and 
displacement of the muscle-tendon junction of interest. Most often medial gastrocnemius subtendon length has been measured. If the fascicle cross-point along the 
aponeurosis is tracked as in (G), the measure does not reflect true tendon property anymore since the aponeurosis has different and variable properties. Hysteresis is 
the area under the loading and unloading curves from a force–elongation assessment (C). D) During dynamic movements, motion analysis assisted ultrasonography is 
typically used to assess tendon elongation and strain, and force plate measurements to estimate AT force. Please see text for details of force and tendon length 
assessments. 
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or a force plate requiring motion capture and an inverse dynamics 
approach. During an isometric maximal voluntary contraction, some 
plantarflexion is almost unavoidable which causes a misalignment be
tween the ankle rotation axis and the axis of the dynamometer. This can 
cause an overestimation of the real plantar flexor torque of approxi
mately 6–10% (Arampatzis et al., 2005a). Furthermore, ankle joint 
rotation alters the AT and foot moment arms which has direct influence 
on AT force calculations. In addition, co-contraction of the antagonist 
muscle could potentially contribute to an underestimation of AT force 
for about 6–8% (Mademli et al., 2004) (Fig. 4). 

When estimating AT force from dynamometer or force plate assess
ments, defining AT moment arm length is essential in order to calculate 
tendon force. Methods of AT moment arm estimation include tendon 
excursion method which assumes that the tendon is inextensible (An 
et al., 1984; Maganaris et al., 1998), imaged based estimation of the 
center of rotation (Maganaris et al., 1998) and anatomical landmarks 
(Arampatzis et al., 2005a; Scholz et al., 2008a) sometimes combined 
with ultrasound (hybrid methods) (Manal et al., 2013). Some studies 
have corrected for the perpendicular distance from the skin to the 
tendon using ultrasound (Kongsgaard et al., 2011). The 2D image-based 
center of rotation methods contain the limitation that the ankle joint 
rotation might not only be happening in the sagittal plane and secondly, 
bulging of the muscle causes the muscle–tendon unit not to act in a 
straight line (Scholz et al., 2008b). 

The changes in AT moment arm due to changes in ankle joint angle 
can be accounted by regression equations (Grood and Suntay, 1983) and 
musculoskeletal modeling (Delp et al., 2007), which are able to provide 
dynamic moment arms. In contrast, many investigations used constant 
moment arms based on population-based averages which can under or 
overestimate AT force. 

Another important consideration when solving AT forces is the role 
of synergistic muscles. While the triceps surae has the largest moment 
arm and the largest physiological cross-sectional area of all plantar 
flexors, also flexor hallucis longus, flexor digitorum longus, peroneal 
muscles, tibialis posterior and plantaris contribute (Fukunaga et al., 
1996a, 1996b). In addition to the relative physiological cross-sectional 

area, the individual muscle contributions have been estimated using 
normalized EMG activity (Crouzier et al., 2020), selective stimulation of 
calf muscles (Bojsen-Møller et al., 2010; Finni et al., 2001) or muscle 
glucose uptake (Masood et al., 2016). Moreover, antagonist activity has 
been considered early on (Magnusson et al., 2001) but their activity 
level in isometric condition remains often negligible (Peltonen et al., 
2010). 

When investigating AT force in more complex movements, several 
methodologies have been used such as fiber optics (Finni et al., 1998), 
ultrasound tracking of the muscle tendon junction in combination with 
tendon stiffness (Lichtwark & Wilson, 2006; Kharazi et al., 2021) or a 
combination of motion analysis and biomechanical modelling (Baxter 
et al., 2021). During walking, the reported peak AT forces have varied 
from 1.8 − 2.1 body weights (BW) based on optic fiber force transducer 
(Finni et al. 1998) to 2.5 BW (Lichtwark & Wilson, 2006) and 2.7 BW 
(Kharazi et al., 2021), when using AT stiffness in combination with 
tracking medial gastrocnemius muscle–tendon junction, to 3.3 BW using 
inverse dynamics and a constant moment arm (Baxter et al., 2021). 
Furthermore, using neuromusculoskeletal modeling AT peak force of 1.9 
BW has been reported (Devaprakash et al., 2022) while 3.9 BW was 
reached based on reaction forces, kinematic data and a contact-coupled 
finite element model (Giddings et al., 2000). Thus, there are differences 
in the range of forces depending on the methodological choices and 
continuing efforts are needed to evaluate the validity of the approaches. 

Currently, state-of-the art tendon force assessments during dynamic 
movements include a combination of torque or ground reaction force 
assessments combined with modeling (Lai et al., 2014). This combina
tion allows distinguishing between the gastrocnemii and the soleus 
muscle force during dynamic activities (Delp et al., 2007). Several 
optimization techniques are used to determine the contribution of the 
different muscles to the joint torque in dynamic movement such as static 
optimization, dynamic optimization, EMG-informed and EMG-driven 
techniques. As non-invasive direct measurement of these muscle forces 
remains impossible, validation of these techniques continues to be a 
challenge. Recently developed non-invasive shear wave method to 
assess tendon forces during human movement (Martin et al., 2018) 

Fig. 3. Word cloud compiled of titles of research articles that have been retrieved from PubMed using search term [Achilles tendon] (A-E, 600 words shown) and 
[Achilles tendon propert*] (F-J, 300 words shown) in different decades. For A-E, titles of the articles were cleared from special characters and the words: achilles, 
tendon, “tendo achillis”, transl. and author’s. The following words were combined into terms before creating the clouds: “anterior cruciate ligament”, “flexor hallucis 
longus”, “magnetic resonance”, “randomised controlled trial”, “comparative study”, “experimental study”, “pilot study”, “cross-sectional study”, “preliminary study”. 
For F-J, titles of the articles were cleared from special characters and the words: achilles, tendon, properties, mechanical, biomechanical. 
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shows promise and, perhaps in the future, may be used to validate other 
estimation methods. 

4. Strain as a trigger for tendon adaptations 

Tendon strain is the trigger for tendon adaptations (Magnusson et al., 
2010) and important for storing and returning energy. It is therefore 
crucial to get better insights on how the tendon strains during dynamic 
activities. Several techniques are available for strain assessments, 
ranging from tracking the musculotendinous junctions manually or with 
speckle-based techniques (Magnusson et al., 2003; Werkhausen et al., 
2018), to ultrasound-assisted 3D motion capture (Barber et al., 2009) to 
finite element modeling (Shim et al., 2018). Some invasive approaches 
have also been used in strain measurements. Magnusson et al. (Mag
nusson et al., 2003) inserted a needle into the tendon and tracked its 
displacement to get the free tendon strain. In another study, small 
tantalum beads – visualized with X-rays – were inserted into both ends of 
the tendon in a surgical procedure to validate ultrasound-based speckle- 
tracking of tendon tissue movement (Beyer et al., 2018). 

An important methodological aspect is the joint angle at which the 
tendon resting length is determined, since the strain is defined as the 
length in a given condition relative to the resting length, divided by the 
resting length (ε = l− lo

lo ). Tendon is considered to be at rest below so- 
called slack length which is defined as the length at which the tendon 
starts to elongate when loaded. This slack length and the corresponding 
joint angle can be assessed by observing displacement of the muscu
lotendinous junction when the ankle joint is passively rotated (Aeles 

et al., 2017a) or with elastography (Hug et al., 2013). Differences in 
slack length reflect the length of the toe region, which may also be 
estimated by extrapolating the linear region of the force–elongation 
curve to x-axis as done by Shin et al. (Shin et al., 2008a). Some studies 
use a specific ankle angle such as 90 degrees flexion as the reference or 
initial length used in strain calculations. However, at this joint angle the 
AT is already under tension (Aeles et al., 2017b) and the amount of 
tension might be very different between individuals affecting strain 
values. Consideration of tendon slack length takes these inter-individual 
differences into account. 

During walking AT strains have been reported to vary between 4.0% 
and 4.6% (Kharazi et al., 2021; Lichtwark & Wilson 2006). Recently, 
free AT strains have been estimated based on neuromusculoskeletal 
modeling. Devaprakash et al. (Devaprakash et al., 2022) estimated peak 
strains of the whole free tendon of trained runners to range from 7% 
during walking to nearly 14% during running at 5 m s− 1. The latter value 
is close to failure strain of 15% in vitro (Schechtman and Bader, 1997). 
The nearly two-fold difference in these strain values may be related to 
methods of calculation but also the fact that the latter represents the 
strain in the free tendon and the previous (Kharazi et al., 2021; Licht
wark & Wilson 2006) are based on tracking of the muscle–tendon 
junction of the medial gastrocnemius relative to the calcaneus insertion, 
therefore representing medial gastrocnemius subtendon. As discussed 
below, the subtendons appear to have different properties. 

The soleus subtendon (i.e. free tendon) strain has been reported to be 
smaller than gastrocnemius subtendon strains. In submaximal isometric 
contractions, free tendon/soleus subtendon strains have been reported 
to reach values of 3.2% at 30%MVC (Obst et al., 2016), 4.7% at 40% 
MVC (Finni et al., 2003), ~4% (Lichtwark et al., 2013) − 5.2% at 50% 
MVC (Farris et al., 2013), 6.4–6.6% at 70%MVC (Obst et al., 2016, 
2014) and 8% at 100%MVC (Magnusson et al., 2003), while medial 
gastrocnemius strains 1.3% at 30%MVC (Obst et al., 2016), ~2.5% at 
50%MVC (Lichtwark et al., 2013), 2.6% at 70%MVC (Obst et al., 2016) 
and 4.7% (Arampatzis et al., 2005b) - ~5% at 100%MVC (Muramatsu 
et al., 2001). These observations concur with an animal study (Finni 
et al., 2018) supporting cadaver studies showing that soleus subtendon 
is more compliant than gastrocnemius also in humans (Ekiert et al., 
2021). 

Finite element (FE) modeling with a 3D reconstruction of the free AT 
can be used to compute local 3D tendon strains. These tendon models 
provide insight into the role of tendon geometry, material properties and 
tendon twist on the tendon strains. The first FE model of the free AT 
(Shim et al., 2014) characterized the influence of geometry and material 
properties and demonstrated that changes in 3D tendon geometry 
contributed more to local stresses in the tendon than the material 
properties (Hansen et al., 2017). Recently Funaro et al. showed the in
fluence of tendon twist and rehabilitation exercises on AT strains 
(Funaro et al., 2022). Results of the simulation demonstrated that the 
progression in rehabilitation exercises based on the average tendon 
strain was the same for the three types of twist. The location of the peak 
strain does vary, and the least twisted tendon has the highest strains. 
Average strain values during one-legged heel drop exercises were 
approximately 6% and peak strains were located in the medial 
gastrocnemius subtendon. Although these models allow investigating 
the role of isolated contributing factors on tendon strain, they are still 
simplified models of the complexity of the human body and validation of 
these models is very difficult due to limitations in experimental methods 
to assess subtendon strains. 

Above, we have discussed tensile strains but the AT experiences also 
transverse strains. The distally thick AT forms a broad tendon sheet 
proximally that is influenced by adjacent muscle contractions (Finni 
et al., 2003). The width of the tendon sheet changes with contraction 
(Barber et al., 2009) and transverse strain at the level of gastrocnemius 
myotendinous junction can reach 5% at 50%MVC reflecting widening of 
the aponeurosis which is attached to a bulging muscle (Farris et al., 
2013). Furthermore, while most often a single value for strain is 

Fig. 4. Achilles tendon force assessments are influenced by several factors. 
Measurement of the AT and foot moment arm lengths require determination of 
the point of force application under the ball of the foot, the ankle joint axis of 
rotation that moves during ankle joint movements, and identification of 
perpendicular distance from AT to the axis of rotation. Changes in ankle joint 
angle influences the moment arms not only in dynamic movements, but often 
also in isometric contractions if the fixation to the dynamometer is not rigid 
enough. Activation of muscles other than the triceps surae can change the point 
of force application; the activation of smaller synergistic muscles increasing and 
antagonist muscle activity decreasing the force. These factors can cause errors 
in AT force up to 10% if they are not carefully considered during the 
assessments. 
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measured, it represents a global strain but it is important to note that 
there can be heterogeneous strains within the tendon (Chernak Slane 
and Thelen, 2014; DeFrate et al., 2006; Finni et al., 2003; Svensson et al., 
2021). 

5. Stress for strength 

Tendon stress is determined by dividing the tendon force by the 
cross-sectional area of the tendon (σ = F

A). As the AT has an asymmet
rical structure with changing geometry going from proximal to distal, 
the location where the cross-sectional area is measured can influence the 
magnitude of tendon stress. Typically, researchers aim for the smallest 
area, identifying the midportion of the free tendon (Lindemann et al., 
2020), while other studies have used an average area (Bohm et al., 2014) 
or a specific distance from the calcaneus (Magnusson et al., 2001; 
Stenroth et al., 2012)). 

In natural movements also transversal and rotational forces, contu
sions and compression may exist but they are more difficult to assess and 
here we focus on the assessments in the longitudinal direction, i.e. 
tensile stress. Human cadaver studies have reported ultimate tensile 
stress to be 80 MPa at which the tendon breaks (Wren et al., 2003). This 
is a somewhat lower value than in specimens tested in fresh state or from 
young donors (Butler et al. 1978) and is likely an underestimation due to 
problems in clamping the Achilles tendon in cadaver specimens. Using 
in vivo force transducers, the AT stress has been reported to reach 59 
MPa during walking and 111 MPa during running (Komi et al., 1992). 
Comparison of these values may reflect the low safety margin that the 
AT has and be one potential explanation for its susceptibility for 
ruptures. 

The highest peak stress during walking of 59 MPa was measured with 
a buckle force-transducer while 43 MPa was assessed using tendon 
tapping device (Keuler et al., 2019), 24 MPa using modeling (Devap
rakash et al., 2022) and 21 MPa using optic fiber force transducer (Finni 
et al., 1998). The large variability may be related to methodological 
differences in assessing AT force or to a smaller extend to methods to 
measure the cross-sectional area. 

6. Stiffness for storing elastic energy and effective force 
transmission 

Stiffness is calculated from the linear portion of the force–elongation 
curve (Fig. 2). When considering the full curve, starting from the resting 
length, stiffness increases monotonically with initial stiffness being very 
low in the so-called toe region. Because tissue stiffness is inversely 
proportional to its length (Butler et al., 1978), long tendons tend to be 
more compliant, influencing the speed of force transmission. Higher AT 
stiffness is associated with greater rate of torque development in both 
children and adults - the influence being greater in the early rise of force 
in adults while the greatest effect was on the later force rise in children 
(Waugh et al., 2013). On the other hand, compliant AT is associated with 
better utilization of pre-stretch in jumps (Kubo et al., 2007) with a sweet 
spot allowing maximal efficiency during walking and running (Licht
wark and Wilson, 2008). 

A large variation in AT stiffness values has been reported (184 N 
mm− 1 to 2622 N mm− 1) (see Ekiert et al., 2021). This reported vari
ability could be due to differences in methodology and regarding which 
part of the tendon (or aponeurosis) was tracked, and the population 
examined. Using a model, Lichtwark and Wilson (2008) estimated that 
AT with stiffness of about 150 N mm− 1 optimizes efficiency of walking 
while running requires a stiffer tendon of about 250 N mm− 1. Individual 
factors such as muscle volume, muscle fascicle length and length of the 
toe-region modify the optimal stiffness. 

When values of stiffness are reported in the literature, they mostly 
consider only the linear portion of the force elongation curve, beyond 
the toe region. The force–elongation curve has been measured using 

separate assessments with different levels of force or using synchronized 
measures between force and length which allows to select the linear part 
of the force–length relationship of the tendon. Using the synchronized 
data, researchers select the region of the force–length curve which can 
vary a lot between studies (10–80% (Dick et al., 2016; Maganaris and 
Paul, 2002; Peltonen et al., 2013); 50–60% (Theis et al., 2012); 
50–100% (Bohm et al., 2014; Kubo et al., 2007); 90–100% (Magnusson 
et al., 2001). In injured condition, also tangent at 50%MVC was used to 
avoid the influence from synergistic muscles (Khair et al., 2022b). In 
addition to muscle synergism, stiffness values can be influenced by pre- 
conditioning of the tendon (Maganaris, 2003), the rate of force devel
opment, electromechanical delay (Morse et al., 2005) and strain rate 
(Theis et al., 2012). In addition, assessments at different plantar flexion 
angles provide stiffness values at different regions of the force–length 
relationship (Fig. 2). Furthermore, all limitations previously mentioned 
for the calculation of force and tendon elongation should be considered. 

In addition to extracting tendon stiffness from the conventional 
measures of tendon force and length, ultrasound imaging method called 
shear wave elastography has gained popularity in stiffness assessments. 
Using acoustic radiation force induced by ultrasound beams to perturb 
the tissue, the method is non-invasive without external compression or 
vibration (Bercoff et al., 2004). While the method is at its best for 
isotropic tissues, it can be used to assess muscle (Bernabei et al., 2020) 
and more recently also tendon stiffness. The first paper to use this 
technique for tendons was purely descriptive (Arda et al., 2011). After 
several further investigators refining the technique, shear wave elas
tography was used to measure elastic properties of the ruptured Achilles 
tendon (Frankewycz et al., 2018) but also to improve the knowledge of 
the material properties of the tendon such as slack length (Hug et al., 
2013). However, more methodological studies with shear wave elas
tography are warranted. While reliability measures have been reported, 
a recent review calls for more thorough establishment of reliability 
when assessing elasticity of tendons using elastography (Schneebeli 
et al., 2021). More importantly, validation reports are scarce. A vali
dation study using pig patellar tendons showed high correlations be
tween shear modulus and traction modulus within each specimen when 
measured with supersonic shear imaging (Zhang & Fu, 2013). However, 
each specimen had an individual slope referring that shear modulus 
values cannot be compared directly between individuals or at a group 
level, the correlation is much lower. In humans, construct validity has 
been examined by assuming association between force and stiffness of 
AT. Using continuous shear wave imaging the validity was evaluated to 
be sufficient (Corrigan et al., 2019). 

7. Young’s modulus - properties independent of shape 

Using the linear portion of the stress–strain curves the material 
properties of the Achilles have been determined using a combination of 
dynamic ultrasound and torque measures. Young’s modulus allows in
sights into the influence of material properties independent from 
changes in cross-sectional area. Majority of the studies report tendon 
morphological, material as well as mechanical properties. Young’s 
modulus (E = σ

ε ), based on the strain of the medial gastrocnemius 
displacement in male human subjects, was 1200 MPa (Maganaris and 
Paul, 2002) while Magnusson et al. (2003) found a somewhat lower 
values (788 MPa) for the free tendon (Magnusson et al., 2003). In 
addition, large variation in the local strains on the surface of AT have 
been reported in specimens resulting in variability in Young’s modulus 
between 217 and 897 MPa (DeFrate et al., 2006). 

8. Hysteresis produces heat 

Hysteresis describes the percentage of elastic strain energy lost due 
to viscosity during a stretch–shortening cycle (Fig. 2C). In a perfectly 
elastic material, there would not be hysteresis; an example of such a case 
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could be a forever bouncing elastic ball that does not lose energy in any 
rebound. Low hysteresis in the AT is advantageous; it allows most of the 
stored elastic energy to be reused during propulsion of locomotion. 
Hysteresis in various tendons in vitro ranges from 5 to 10% (Bennett 
et al., 1986; Pollock and Shadwick, 1994) and it is to be assumed that 
similar values would be found in vivo. However, when researchers 
started to assess hysteresis of the human AT by combining dynamometer 
and ultrasonographic techniques, they reported notably greater values 
such as 17% (Farris et al., 2011; Kubo et al., 2006), 22% (Kubo et al., 
2022) or 26% (Lichtwark and Wilson, 2005). 

More notable was the high interindividual variation within these 
studies where the reported hysteresis could range from 2 to 45% (Farris 
et al., 2011). High hysteresis generates heat raising temperature and, if 
exercise is sustained long enough, it may ultimately lead to heat damage 
and degeneration of the tendon (Wilson and Goodship, 1994). There
fore, it is likely that the high hysteresis values are measurement artifacts 
rather than of physiological origin (Finni et al., 2013). The large vari
ability and extremely high values of in vivo hysteresis may be related to 
uncertainties when assessing tendon force as described above (Fig. 4). 
Other factors contributing to possible errors in hysteresis measurements 
that have been discussed are lack of preconditioning, inaccuracies in 
length measurement, challenges in motor control in the unloading phase 
of the test leading to non-symmetrical loading–unloading phases and 
data synchronization issues (Finni et al., 2013). Thus, due to the high 
number of possible sources of variability, future studies should pay 
careful attention to assessment of hysteresis in the human AT (Lichtwark 
and Cresswell, 2013; Nordez et al., 2013). 

9. Adaptation of AT properties in relation to human movement 

Already in the 1970′s it was recognized that tendons can be influ
enced by immobilization, acute exercise, chronic physical activity, age- 
related effects, medication, and trauma (Butler et al., 1978). Mechanical 
load (stress and primarily strain), converted into cellular responses 
causes alterations in tendon structure and gene expression leading to 
adaptations (Khan and Scott, 2009). The mechanisms of adaptation in 
intact human tendons started to unravel with measurements of peri
tendinous blood flow and tendon metabolism using microdialysis 
(Langberg et al., 1999). The AT is supplied with small blood vessels 
throughout its cross-section with lowest vascular density at mid-length 
along the tendon (Zantop et al., 2003), but the life-long turnover of 
the mid core of AT tissue is shown to be limited (Heinemeier et al., 
2013). It is now known that the AT is metabolically active with collagen 
synthesis and degradation enzymes both increasing with mechanical 
loading reflecting a delegate balance between positive adaptation and 
potential for overloading without sufficient recovery (Kjær, 2004). 
There are numerous reviews on tendon adaptation (Lazarczuk et al., 
2022; Maganaris et al., 2017; Magnusson & Kjaer 2019) and in the 
following brief sections we keep the focus on the adaptability of AT 
mechanical properties. 

Aging tendon properties 

During maturation, tendon stiffness and Young’s modulus increase, 
which was shown already in the early 1970′s in rat tail tendon (Diamant 
et al., 1972). It is logical to think that when the body mass and muscle’s 
force producing capacity increases during maturation, it creates need 
also for bigger and stronger tendons. Indeed, in human gastrocnemius 
tendon, stiffness has positive association with body mass, and Young’s 
modulus associates with peak stress (Waugh et al., 2012). Although 
participants of the study by Waugh et al. ranged from 5 years to adults, 
the age itself did not explain these associations. Therefore, it is no sur
prise, that stiffness and Young’s modulus associate with muscle strength 
across wide range of ages (Stenroth et al., 2012) and sex (Muraoka et al., 
2005). 

Studies comparing older individuals to young adults have frequently 

reported lower AT stiffness and Young’s modulus (Csapo et al., 2014; 
Delabastita et al., 2018; Onambele et al., 2006; Stenroth et al., 2016, 
2012; Lindemann et al., 2020). However, there may not be differences in 
properties if the muscle strength is similar between young and old 
(Stenroth et al., 2012). On the other hand, it has been suggested that in 
older adults – who do have altered connective tissue properties (Couppé 
et al., 2014) – increased tendon cross-sectional area can compensate for 
the lower tendon material properties (Stenroth et al., 2012). The age- 
related changes in the AT properties have functional consequences to 
gait (Krupenevich et al., 2022; Stenroth et al., 2017), mobility (Stenroth 
et al., 2015) and balance (Onambele et al., 2006). 

Physical activity and inactivity influence tendon properties 

An appropriate physical training stimulates tendon fibroblasts to 
produce collagens resulting in increased cross-sectional area and tensile 
strength (Wang, 2006; Wang et al., 2018). Majority of the studies 
investigating the effect of physical activity and inactivity on the AT 
properties have used stiffness or Young’s modulus of the tendon as a 
primary outcome and only a few included hysteresis. 

A recent systematic review and meta-analysis performed by Laz
arczuk (Lazarczuk et al., 2022) concluded that mechanical loading was 
associated with a large increase in Young’s modulus, a moderate in
crease in tendon stiffness, and a small increase in tendon cross-sectional 
area. Even if hormonal milieu is altered, such as examined in female 
twins discordant for the use of hormonal replacement therapy, the AT 
cross-sectional area seems to be tightly genetically controlled and only a 
sufficient amount of physical activity can bring about morphological 
differences (Finni et al., 2009)). 

In general, all contraction modes of resistance training induce a 
significant increase in tendon stiffness and Young’s modulus while ex
ercise protocols that also include aerobic training do show an effect on 
tendon properties (Lazarczuk et al., 2022). High strain resistance 
training induces the largest increases in tendon stiffness compared to 
low strain protocols (Arampatzis et al., 2010). Returning to normal 
physical activities after a resistance training rapidly decrease the AT 
stiffness back to the control values (Kubo et al., 2012). Reeves et al. 
showed that resistance exercise can decrease hysteresis thereby 
improving potential for elastic recoil (Reeves et al., 2005). 

Different unloading protocols such as limb suspension (Shin et al., 
2008b) and bedrest (Reeves et al., 2005) demonstrate a decrease in the 
AT mechanical properties when unloaded. Shin et al. found a decrease in 
the Young’s modulus of 17% while the transition point (as a measure of 
the toe region) increased by 55%. Ninety days of bedrest decreased 
Young’s modulus by 57% and stiffness by 58%. This effect was dimin
ished to 37% and 38% respectively when the subjects were allowed to 
perform some resistance exercises every third day. Consequently, 
physical activity is vitally important for the health and function of 
tendons. 

Injury and recovery 

Much of the research on AT has been driven by the practical need to 
understand mechanisms of injury and rehabilitation. While AT rupture 
emerges in titles of journal articles at all examined decades, tendinop
athy, which is a common complaint (de Jonge et al., 2011) is visible 
from 2000′s onwards mostly due to variability in preceding terminology 
(Fig. 3). (Crouzier et al., 2020; Dias et al., 2019; Finni et al., 2006; 
Heikkinen et al., 2017; Kannus and Jozsa, 1991; Masood et al., 2014; 
Zhao et al., 2009). The ruptured tendon, regardless of the treatment 
method, shows an increased thickness and is typically 6–14% longer 
than contralateral uninjured tendon influencing strains experienced by 
the tendon. Tendon elongation causes concurrent adaptations in the 
muscle tissue (Heikkinen et al., 2017; Khair et al., 2022b) with persisting 
functional deficits (Hoeffner et al., 2022) and much research is ongoing 
seeking optimal rehabilitation schemes. 
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In general, stiffness and Young’s modulus are lower in the tendino
pathic limb (Arya and Kulig, 2010; Helland et al., 2013) and the 
ruptured limb (Geremia et al., 2015) although not all studies show dif
ferences (Khair et al., 2022b). In this respect, it is important to note not 
only the methodology used to assess the mechanical parameters but also 
the type of treatment and rehabilitation, and time course of recovery 
when comparing the studies. Furthermore, synergistic muscles 
compensate for the deficiency in plantarflexion after AT rupture (Finni 
et al., 2006; Heikkinen et al., 2017) and tendinopathy may change the 
relative contribution of the triceps surae muscles (Crouzier et al., 2020; 
Masood et al., 2014). These studies highlight the importance of 
considering altered muscle activation patterns when adaptation of me
chanical properties due to pathology are examined (Fig. 4). 

Time course of recovery of biomechanical properties from rupture 
have been examined in few studies using tantalum beads within the AT 
to measure changes in local tendon length. These studies showed that 
the greatest elongations of tendon resting length occurred after initial 
rehabilitation between 6 and 26 weeks after injury (Eliasson et al., 
2018). Functional recovery, assessed using heel-rise test at 18 or 52 
weeks, associated positively with Young’s modulus assessed at 7 weeks 
(Schepull et al., 2012) or with the AT cross-sectional area assessed at 19 
weeks (Rendek et al., 2022), respectively. Thus, biomechanical param
eters at early rehabilitation phases may be relevant predictors of good 
recovery (Funaro et al., 2022; Pękala et al., 2017; Shim et al., 2018; van 
Gils et al., 1996). 

10. Avenues for future research 

The complex structure of the AT is currently being examined in 
humans in vivo using different approaches utilizing MRI or ultraso
nography combined with electrical stimulation (Cone et al., 2022; Khair 
et al., 2022a), and together with modeling, efforts can provide insight 
into the functional significance of the twisted, individually differing 
structure of the AT (Funaro et al., 2022; Obrezkov et al., 2022). Inter
action of the subtendons with their corresponding muscles warrants for 
future studies since the muscles have distinct anatomy, physiology, and 
possibly differential role in AT pathologies. Means to monitor optimal 
adaptation of tendon would enhance training and rehabilitation prac
tices. For example, monitoring of in vivo strains in subtendons can help 
to understand functional consequences of loading. Efforts are needed to 
find biomarkers or parameters that can be reliably assessed to confirm 
optimal loading and recovery. 

It is presently understood that the aponeurosis and tendon, and the 
three subtendons of Achilles are to be considered and assessed sepa
rately since their mechanical properties and behavior are different. 
However, they cannot be considered as isolated structures but are bound 
by a three-dimensional connective network which influences tissue 
behavior and provides future challenges for modeling, demonstrating 
the need of investigating the AT at the different hierarchical levels and in 
interaction with adjacent connective and contractile tissues. In the 
future, we may see attempts to estimate not only the overall forces in the 
AT, but force distributions and strain rates across the subtendons. The 
cutting-edge developments and integration of experimental methodol
ogies and modeling should allow future research to consider viscoelas
ticity, slack length and individual variability in structure and material 
properties. These advances can provide novel hypothesis and pave the 
way for designing individual-specific training and rehabilitation 
avenues. 
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Stenroth, L., Peltonen, J., Cronin, N.J., Sipilä, S., Finni, T., 2012. Age-related differences 
in Achilles tendon properties and triceps surae muscle architecture in vivo. J. Appl. 
Physiol. 113, 1537–1544. https://doi.org/10.1152/japplphysiol.00782.2012. 
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