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Abstract. This paper is devoted to the study of sets of finite perimeter in RCD.K;N / metric mea-
sure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within
this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tan-
gents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool,
of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this
setting. These results are new and non-trivial even in the setting of Ricci limits.
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Introduction

In the last years the theory of RCD.K; N / metric measure spaces has undergone a fast
and remarkable development. After the introduction of the so-called curvature-dimension
condition CD.K;N / in the seminal and independent works [51, 52] and [44], the notion
of RCD.K; N / space was proposed in [28] after the study of its infinite-dimensional
counterpart RCD.K;1/ in [5] (see also [4] for the case of � -finite reference measure).
In the infinite-dimensional case the equivalence with the Bochner inequality was studied
in [6], and then [26] established equivalence with the dimensional Bochner inequality for
the so-called class RCD�.K;N / (see also [10]). Equivalence between RCD�.K;N / and
RCD.K;N / has been established in [14].

We know nowadays that, apart from smooth weighted Riemannian manifolds (with
generalized Ricci tensor bounded from below), this class includes Ricci limits (see
[16–18]) and Alexandrov spaces [48].

One of the main research lines within this theory in recent times has been aimed at
understanding the structure of RCD.K;N / spaces. After [23,33,40,47] we know that they
are rectifiable as metric measure spaces. Moreover, in [12] the first and the third named
authors proved that these spaces have constant dimension, in the almost everywhere sense.

This being the state of the art, we have reached a good understanding of the structure
of RCD.K; N / spaces up to measure zero. It sounds therefore quite natural to try to
push the study further, investigating their structure, both from the analytic and from the
geometric points of view, up to sets of positive codimension. In this perspective in the last
two years there have been some independent and remarkable developments. We wish to
mention a few of them below, without the aim of being complete in this list.

� In the setting of non-collapsed Ricci limit spaces, Cheeger–Jiang–Naber have obtained
in [19] rectifiability for singular sets of any codimension. Let us also mention [20],
where the codimension-4 conjecture for non-collapsed limits of Einstein manifolds was
solved, and [11], where some estimates (actually much weaker than those in [19]) are
proved for singular strata of non-collapsed RCD spaces.

� There have been some efforts aimed at defining a notion of boundary for metric mea-
sure spaces and relating it to singular sets of codimension 1. See [38] and the very
recent [39].

� One of the main contributions of [30] was the development of the language of ten-
sor fields defined almost everywhere (with respect to the reference measure) on RCD
spaces. In [21] the notion of tensor field defined “2-capacity-almost everywhere” is
introduced and it is proved that Sobolev vector fields on RCD spaces have a represen-
tative in this class.

� In [2], the first and third named authors together with Ambrosio initiated a fine study
of sets of finite perimeter over RCD.K; N / spaces, with a view to generalizing the
Euclidean De Giorgi theorem to this framework.

One of the main results in [2] was the existence of a Euclidean half-space as tangent
space to a set of finite perimeter at almost every point (with respect to the perimeter mea-
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sure). This conclusion could be improved to a uniqueness statement (up to negligible sets)
only in the case of a non-collapsed ambient space. The state of the theory of sets of finite
perimeter was at that stage comparable to that of the structure theory after [32], where
existence of Euclidean tangent spaces almost everywhere with respect to the reference
measure was proved. Uniqueness of tangents in the possibly collapsed case and rectifia-
bility for the boundary were conjectured by analogy with the Euclidean theory, but left as
open questions in [2]. Let us point out that, up to our knowledge, no general rectifiability
criterion is known at this stage for (subsets of) metric measure spaces.

The aim of this note is to provide a positive answer to these questions, providing a
counterpart in codimension 1 of [47] and of De Giorgi’s theorem in this setting.

Together with uniqueness of tangents (Theorem 3.2) and rectifiability (Theorem 4.1)
we also establish a representation formula for the perimeter measure in terms of the codi-
mension 1 Hausdorff measure (Corollary 3.15). As an intermediate tool, which, however,
we find to have independent interest, we prove in Theorem 2.4 a Gauss–Green integration-
by-parts formula for Sobolev vector fields.

The proof of uniqueness for blow-ups of sets of finite perimeter follows a strategy
quite similar to that of the uniqueness theorem for tangents to RCD.K;N / spaces adopted
in [47]. As in that case, closeness to a rigid configuration (half-space in Euclidean space)
at a certain location and along a certain scale, which we learn from [2], can be turned
into closeness to the same configuration at almost any location and at any scale, yielding
uniqueness.

To encode the “closeness information” in analytic terms we rely on the use of har-
monic ı-splitting maps, which were introduced in [15] and turned out to be an extremely
powerful tool in the study of Ricci limits (see [16–18] and the more recent [19, 20]). To
the best of our knowledge this is the first time they are explicitly used in RCD-theory,
even though their use is implicit in [9], and we establish some of their properties within
this framework.

Propagation of regularity at almost every location and at any scale, which was a con-
sequence of a maximal function argument in [47], this time follows from a weighted
maximal function argument suitably adapted to the codimension 1 framework. This argu-
ment heavily relies on the interplay between the fact that the perimeter measure is a
codimension 1 measure (which was proved in a fairly more general context in [1]) and the
fact that harmonic functions satisfy L2 Hessian bounds on RCD.K;N / spaces.

In order to explain the strategy and the difficulties in the proof of rectifiability for the
reduced boundary, let us recall how things work on Rn. Therein a crucial role is played
by the exterior normal to the set of finite perimeter, which is an almost everywhere unit
valued vector field providing the representation D�E D �E jD�E j for the distributional
derivative of the set E of finite perimeter. Relying on the properties of the exterior normal
one can obtain a characterization of blow-ups in a much simpler way than in [2] and even
get rectifiability of the boundary, proving that sets where the unit normal is not oscillating
too much are bi-Lipschitz to subsets of Rn�1.

When trying to reproduce the Euclidean approach in the non-smooth and non-flat
realm of RCD spaces, one faces two main difficulties. The first one is due to the fact that
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the theory of tangent modules, as developed in [30], allows one to talk about vector fields
only up to negligible sets with respect to the reference measure; observe that reduced
boundaries of sets with finite perimeter are negligible with respect to the reference mea-
sure. The second one is that controlling the behaviour of the normal vector cannot be
enough to control the behaviour of the set in this framework, since the space itself might
“oscillate”. This is a common feature of geometry on metric measure spaces (see also the
introduction of [19]), which can be understood by looking at the following example: Let
.X; d;m/ be any RCD.K; N / m.m.s. and take its product with the Euclidean line. Then
consider the “generalized half-space” ¹t < 0º, where t denotes the coordinate along the
line; it is easily seen that it is a set of locally finite perimeter and one can identify its
reduced boundary with X . Moreover, whatever notion of unit normal we have in mind,
this will be non-oscillating in this case. Still, rectifiability of .X;d;m/ is highly non-trivial
and requires using [47] to be achieved.

To handle the first difficulty we mentioned above, we rely on the very recent [21],
where a notion of cotangent module with respect to 2-capacity is introduced and studied.
Building upon the fact that 2-capacity controls the perimeter measure in great generality,
we introduce the notion of tangent module over the boundary of a set of finite perimeter
(see Theorem 2.2).

Furthermore, we prove that there is a well-defined unit normal to a set of finite perime-
ter as an element of this module, that it satisfies the Gauss–Green integration-by-parts
formula and, relying on functional analysis tools, that it can be approximated by regular
vector fields (see Theorem 2.4 for a rigorous statement).

The results obtained in the study of the unit normal are then combined in a new way
with the theory of ı-splitting maps to prove rectifiability of the reduced boundary for sets
of finite perimeter.

We introduce a notion of ı-orthogonality to the unit normal for ı-splitting maps. Then
we prove on the one hand that ı-splitting maps ı-orthogonal to the unit normal control
both the geometry of the space and that of the boundary of the set of finite perimeter (and
vice versa). On the other hand, the combination of ı-orthogonality and ı-splitting is seen
to be suitable for propagation at many locations and any scale with maximal function
arguments (Propositions 4.5 and 4.7).

We wish to emphasize that, on the one hand, the coarea formula (which holds in great
generality in metric measure spaces) provides plenty of sets of finite perimeter even in
the non-smooth context; on the other hand, there is no hope to have a notion of smooth
hypersurface within this setting. Therefore we expect the range of applications to be large
in the development of the theory of spaces satisfying lower curvature bounds, both for
the techniques we develop in the paper and for our main results that, to the best of our
knowledge, are new also for Ricci limits.

A number of questions remain open and suitable for future investigation. In particular,
we point out that neither the constancy of the dimension result of [12], nor the absolute
continuity of the reference measure with respect to the Hausdorff measure [23, 33, 40],
play a role in the proofs of our results. It might be interesting to investigate whether one
can prove constancy of the dimension for tangents also in the case of sets of finite perime-
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ter and sharpen the representation formula for the perimeter measure (maybe relying on
the good understanding we have of the top-dimensional case). In this regard let us point
out that, in none of these cases, the techniques adopted to solve the analogous problems
in codimension 0 seem to work when dealing with sets of finite perimeter.

This paper is organized as follows. In Section 1 we collect all the preliminary mate-
rial to be used in the paper. We dedicate Section 2 to the construction of the tangent
module over the boundary of a set of finite perimeter and to establishing a Gauss–Green
integration-by-parts formula. Uniqueness of blow-ups is the main outcome of Section 3,
while rectifiability for the reduced boundary is obtained in Section 4.

1. Preliminaries and notations

1.1. Calculus tools

Throughout this paper a metric measure space is a triple .X; d;m/, where .X; d/ is a
complete and separable metric space and m is a non-negative Borel measure on X finite
on bounded sets. From now on when we write m.m.s. we mean metric measure space(s).

In order to simplify the notation, numerical constants depending only on the param-
eters entering into play will be denoted by the same letter C even if they vary. Often we
will make explicit their dependence on the parameters, writing for instance CN ; CN;K .

We will denote by Br .x/ D ¹d.�; x/ < rº and NBr .x/ D ¹d.�; x/ � rº the open
and closed balls respectively, by Lip.X; d/ (resp. Lipb.X; d/, Lipc.X; d/, Lipbs.X; d/,
Liploc.X; d/) the space of Lipschitz (resp. bounded Lipschitz, compactly supported Lip-
schitz, Lipschitz with bounded support, Lipschitz on bounded sets) functions and for any
f 2 Lip.X; d/ we shall denote its slope by

lipf .x/ WD lim sup
y!x

jf .x/ � f .y/j

d.x; y/
:

We shall use the standard notation Lp.X;m/ D Lp.m/ for Lp spaces, and Ln for the
n-dimensional Lebesgue measure on Rn. We shall denote by !n the Lebesgue measure
of the unit ball in Rn. If f 2 L1loc.X;m/ and U � X is such that 0 < m.U / <1, thenffl
U
f dm denotes the average of f over U .
The Cheeger energy Ch WL2.X;m/! Œ0;1� is the convex and lower semicontinuous

functional defined by

Ch.f / WD inf
²

lim inf
n!1

ˆ
X

.lipfn/2 dm

ˇ̌̌̌
fn 2 Lipb.X/ \ L

2.X;m/; kfn � f k2 ! 0

³
;

(1.1)

and its finiteness domain will be denoted byH 1;2.X;d;m/; sometimes we writeH 1;2.X/

when d and m are clear from the context. Looking at the optimal approximating sequence
in (1.1), it is possible to identify a canonical object jrf j, called the minimal relaxed
slope, providing the integral representation

Ch.f / D
ˆ
X

jrf j2 dm 8f 2 H 1;2.X; d;m/:
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Any metric measure space such that Ch is a quadratic form is said to be infinitesimally
Hilbertian. Let us recall from [5, 28] that, under this assumption, the function

rf1 � rf2 WD lim
"!0

jr.f1 C "f2/j
2 � jrf1j

2

2"

defines a symmetric bilinear form on H 1;2.X; d;m/ � H 1;2.X; d;m/ with values in
L1.X;m/.

It is possible to define a Laplacian operator � W L2.X;m/ � D.�/! L2.X;m/ in
the following way. We let D.�/ be the set of those f 2 H 1;2.X; d;m/ such that, for
some h 2 L2.X;m/, one has

ˆ
X

rf � rg dm D �

ˆ
X

hg dm 8g 2 H 1;2.X; d;m/; (1.2)

and in that case we put �f D h. It is easy to check that the definition is well-posed and
that the Laplacian is linear (because Ch is a quadratic form).

The heat flow Pt is defined as the L2.X;m/-gradient flow of 1
2

Ch. Its existence and
uniqueness follow from the Komura–Brezis theory. The heat flow can be equivalently
characterized by saying that for any u 2 L2.X;m/ the curve t 7! Ptu 2 L

2.X;m/ is
locally absolutely continuous in .0;1/ and satisfies

d
dt
Ptu D �Ptu for L1-a.e. t 2 .0;1/; lim

t#0
Ptu D u in L2.X;m/.

Under the infinitesimal Hilbertianity assumption the heat flow provides a linear, contin-
uous and self-adjoint contraction semigroup in L2.X;m/. Moreover, Pt extends to a
linear, continuous and mass preserving operator, still denoted by Pt , in all the Lp spaces
for 1 � p <1.

Definition 1.1 (Function of bounded variation). We say that f 2 L1.X;m/ belongs to
the space BV.X; d;m/ of functions of bounded variation if there exist locally Lipschitz
functions fi converging to f in L1.X;m/ such that

lim sup
i!1

ˆ
X

jrfi j dm <1:

If f 2 BV.X; d;m/ one can define

jDf j.A/ WD inf
²

lim inf
i!1

ˆ
A

jrfi j dm

ˇ̌̌̌
fi 2 Liploc.A/; fi ! f in L1.A;m/

³
for any open A � X . In [3] (see also [46] for the case of locally compact spaces) it is
proven that this set function is the restriction to open sets of a finite Borel measure that
we call the total variation of f and still denote by jDf j.

Dropping the global integrability condition on f D �E , let us now recall the analo-
gous definition of a set of finite perimeter in a metric measure space (see again [1,3,46]).
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Definition 1.2 (Perimeter and sets of finite perimeter). Given a Borel set E � X and an
open set A, the perimeter Per.E;A/ is defined by

Per.E;A/ WD inf
²

lim inf
n!1

ˆ
A

jrunj dm

ˇ̌̌̌
un 2 Liploc.A/; un ! �E in L1loc.A;m/

³
:

We say that E has finite perimeter if Per.E; X/ <1. In that case it can be proved that
the set function A 7! Per.E; A/ is the restriction to open sets of a finite Borel measure
Per.E; �/ defined by

Per.E;B/ WD inf ¹Per.E;A/ j B � A; A openº:

Let us remark for the sake of clarity that E � X with finite m-measure is a set of
finite perimeter if and only if �E 2 BV.X; d;m/ and that Per.E; �/ D jD�E j.�/. In the
following we will say that E � X is a set of locally finite perimeter if �E is a function of
locally bounded variation, that is, ��E 2 BV.X; d;m/ for any � 2 Lipbs.X; d/.

1.1.1. Total variation of BV functions via integration by parts. Let us present an equiv-
alent approach to the study of BV functions in m.m.s. introduced by Di Marino [24].
Before stating Theorem 1.7 we need to recall the notion of derivation.

Definition 1.3 (Derivation). Let .X; d;m/ be a metric measure space. Then a deriva-
tion on X is a linear map b W Lipbs.X/! L0.m/ such that the following properties are
satisfied:

(i) (Leibniz rule) b.fg/ D b.f /g C f b.g/ for all f; g 2 Lipbs.X/.

(ii) (Weak locality) There exists G 2 L0.m/ such that1

jb.f /j � G lipa.f / m-a.e. for every f 2 Lipbs.X/:

The least function G (in the m-a.e. sense) with this property is denoted by jbj.

The space of all derivations on X is denoted by Der.X/. Given any deriva-
tion b 2 Der.X/, we define its support supp.b/ � X as the essential closure of
¹jbj ¤ 0º. For any open set U � X , we write supp.b/ b U if supp.b/ is bounded
and dist.supp.b/; X n U/ > 0. Given any b 2 Der.X/ with jbj 2 L1loc.X/, we say that
div.b/ 2 Lp.m/ (for some exponent p 2 Œ1;1�) if there exists h 2 Lp.m/ such that

�

ˆ
b.f / dm D

ˆ
f h dm for every f 2 Lipbs.X/: (1.3)

The function h is uniquely determined, thus it can be unambiguously denoted by div.b/.
We set

Derp.X/ WD ¹b 2 Der.X/ j jbj 2 Lp.m/º;

Derp;p.X/ WD ¹b 2 Derp.X/ j div.b/ 2 Lp.m/º

1Here lipa.f /.x/ WD limr!0 supd.x;y/<r
jf .x/�f .y/j

d.x;y/ is the so-called asymptotic Lipschitz
constant.
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for any p 2 Œ1;1�. The set Derp.X/ is a Banach space if endowed with the norm kbkp WD
k jbj kLp.m/.

Remark 1.4. We claim that for every b 2 Derp;p.X/ (where p 2 Œ1;1�),

supp.div.b// � supp.b/: (1.4)

To prove it, fix any open bounded subsetU ofX n supp.b/. Then formula (1.3) guarantees
that

´
f div.b/dmD�

´
b.f /dmD 0 for every f 2Lipbs.U /, whence div.b/D 0m-a.e.

on U . By arbitrariness of U , (1.4) follows.

In the next proposition the notions of tangent module L2.TX/ and, more generally, of
Hilbert L2.m/-normed L1.m/-module, play a role. We will denote by rWH 1;2.X/!

L2.TX/ the gradient map. We refer to Section 1.3 below for the definition of these
objects.

Proposition 1.5. Let .X; d;m/ be an infinitesimally Hilbertian metric measure space.
Let D be the closure in Der2.X/ of the pre-Hilbert space D WD .Der2;2.X/; k � k2/.
Then D has a natural structure of Hilbert L2.m/-normed L1.m/-module and the map
AWL2.TX/! D, defined as

A.v/.f / WD v � rf for all v 2 L2.TX/ and f 2 Lipbs.X/;

is a normed module isomorphism between L2.TX/ and D. Moreover, A.D.div// D D
and

div.A.v// D div.v/ for every v 2 D.div/:

Proof. See [25, proof of Proposition 6.5].

Remark 1.6. Given an infinitesimally Hilbertian space .X; d; m/ and any f in
BV.X; d;m/,
ˆ
f div.v/dm�jDf j.X/ for all v 2D.div/ with jvj� 1m-a.e. and div.v/2L1.m/:

This readily follows from [24, Theorem 3.3] and Proposition 1.5.

Theorem 1.7 (Representation formula for jDf j). Let .X; d;m/ be an infinitesimally
Hilbertian metric measure space. Let f 2 BV.X; d;m/. Then for every open set U � X ,

jDf j.U /

D sup
²ˆ

U

f div.v/dm

ˇ̌̌̌
v 2D.div/; jvj � 1m-a.e.; div.v/ 2 L1.m/; supp.v/b U

³
:

Proof. Combine [24, Theorem 3.4] with Proposition 1.5 (recall that b 2 Der2;2.X/ for
every b 2 Der1;1.X/ such that supp.b/ is bounded, thanks to Remark 1.4).
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1.1.2. PI spaces. Let us recall that .X; d; m/ satisfies a weak local .1; 2/-Poincaré
inequality with constants CP > 0 and � � 1 if
 
Br .x/

jf � .f /x;r j dm

� CP r

� 
B�r .x/

jDf j2 dm

�1=2
for all f 2 H 1;2.X/; x 2 X; r > 0; (1.5)

where
.f /x;r WD

 
Br .x/

f dm: (1.6)

Before giving the definition of PI space we need to recall the notion of locally doubling
m.m.s. We say that .X; d;m/ is locally doubling if for any R > 0 there exists CD > 0

depending only on R such that

m.B2r .x// � CDm.Br .x// for all 0 < r < R; x 2 X: (1.7)

Definition 1.8. A PI space is a locally doubling metric measure space supporting a weak
local .1; 2/-Poincaré inequality.

1.1.3. Capacity and Hausdorff measures. We briefly recall the notion of capacity and its
main properties in this setting, referring to [21] for a detailed discussion. The capacity of
a set E � X is defined as

Cap.E/

WD inf ¹kf k2
H1;2.X/

j f 2 H 1;2.X; d;m/; f � 1m-a.e. on some neighbourhood of Eº:

It turns out that Cap is a submodular outer measure on X , finite on all bounded sets, such
that m.E/ � Cap.E/ for any Borel set E � X . Any function f W X ! Œ0;1� can be
integrated with respect to capacity via Cavalieri’s formula:

ˆ
f d Cap WD

ˆ 1
0

Cap.¹f > tº/ dt:

(The function t 7! Cap.¹f > tº/ is non-increasing, thus in particular it is Lebesgue
measurable.) The integral operator f 7!

´
f d Cap is subadditive as a consequence of

the submodularity of Cap. Given any set E � X , we shall use the shorthand notation´
E
f d Cap WD

´
�Ef d Cap.

Let us now introduce the codimension-˛ Hausdorff measure. We refer to [1] for a
more detailed discussion.

Definition 1.9. Given a locally doubling metric measure space .X; d;m/, for any ˛ > 0
we set

h˛.Br .x// WD m.Br .x//=r
˛ for any x 2 X; r 2 .0;1/:
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The codimension-˛ Hausdorff measure H h˛ is the Borel regular outer measure built
from h˛ with the Carathéodory construction. We will denote by H h˛

ı
the pre-measure

with parameter ı.

The codimension-1measure plays a crucial role in the theory of sets of finite perimeter
over PI spaces, since Per.E; �/�H h1 for any set of finite perimeter E. This result has
been proved by Ambrosio [1, Lemma 5.2].

Lemma 1.10. Let .X; d;m/ be a PI space. For any set E � X of locally finite perimeter
and any ı > 0,

H h1
ı
.B/ D 0 H) Per.E;B/ D 0 for any Borel set B � X:

To be precise, in [1, Lemma 5.2] Ambrosio proved the result above only for ı D 0.
However, it easily follows from the definitions that

H h
ı .B/ D 0 H) H h.B/ D 0:

Let us now prove two results connecting the codimension-˛ Hausdorff measure and
the capacity. Their proofs are inspired by those given for the analogous results in the
Euclidean setting in [27]. We also refer to [41,42] for other such results in the framework
of metric measure spaces.

Lemma 1.11. Let .X;d;m/ be a locally doubling m.m.s. Let f 2L1.X;m/, f � 0. Then
for any exponent ˛ > 0,

H h˛ .ƒ˛/ D 0; where ƒ˛ WD
°
x 2 X

ˇ̌̌
lim sup
r&0

r˛.f /x;r > 0
±
:

Proof. By Lebesgue’s differentiation theorem, limr&0 .f /x;r exists and is finite for
m-a.e. x 2 X , thus for any ˛ > 0 we have lim supr&0 r

˛.f /x;r D 0 for m-a.e. x 2 X .
This means that m.ƒ˛/ D 0. Setting

ƒk˛ WD
°
x 2 X

ˇ̌̌
lim sup
r&0

r˛.f /x;r � 1=k
±

for every k 2 N;

we see that ƒ˛ D
S
k ƒ

k
˛ , thus in particular m.ƒk˛/ D 0 for every k 2 N. Since

f 2 L1.X;m/, for any " > 0 there exists ı > 0 such that
´
A
f dm � " for any Borel set

A � X satisfying m.A/ < ı. Fix k 2 N and pick an open set U � X such that ƒk˛ � U
and m.U / < ı. Define

F WD

²
Br .x/

ˇ̌̌̌
x 2 ƒk˛; r 2 .0; "/; Br .x/ � U;

ˆ
Br .x/

f dm � m.Br .x//=.r
˛k/

³
:

By the Vitali covering theorem we can find a sequence .Bi /i2N � F of pairwise dis-
joint balls Bi D Bri .xi / such that ƒk˛ �

S
i B5ri .xi /. Since m is locally doubling, there

exists a constant CD � 1 such that m.B5r .x// � CD m.Br .x// for all x 2 X and r < ".
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Consequently,

H h˛
10".ƒ

k
˛/ �

1

5˛

1X
iD1

m.B5ri .xi //

r˛i
�
CD

5˛

1X
iD1

m.Bi /

r˛i
�
CDk

5˛

1X
iD1

ˆ
Bi

f dm

�
CDk

5˛

ˆ
U

f dm �
CDk

5˛
":

Letting "& 0 yields H h˛ .ƒk˛/ D 0, whence H h˛ .ƒ˛/ D limk H h˛ .ƒk˛/ D 0.

Theorem 1.12. Let .X; d;m/ be a PI space. Then H h˛ � Cap for every ˛ 2 .0; 2/.

Proof. Fix ˛ 2 .0; 2/ and a set A � X with Cap.A/ D 0. We aim to prove that
H h˛ .A/ D 0. By definition of capacity, we can find a sequence .fi /i � H 1;2.X/ such
that fi � 1 on some neighbourhood of A and kfikH1;2.X/ � 1=2

i for every i 2 N. SinceP1
iD1 kfikH1;2.X/ < 1, one sees that g WD

P1
iD1 fi is a well-defined element of the

Banach space H 1;2.X/. For any k 2 N, clearly g � k on some neighbourhood of A,
whence for any x 2 A we have .g/x;r � k for every r < dist.x; ¹g < kº/ and accordingly

lim
r&0

.g/x;r D1 for every x 2 A: (1.8)

Furthermore, we claim that

lim sup
r&0

r˛
 
Br .x/

jDgj2 dm D1 for every x 2 A: (1.9)

Indeed, suppose that this lim sup is finite for some x 2 A, so that there exists a constant
M > 0 such that

r˛
 
Br .x/

jDgj2 dm �M for every r 2 .0; 1/: (1.10)

Let CD be the doubling constant of m (for r < 1=2). Then, for every r < 1=.2�/,

j.g/x;r � .g/x;2r j D
1

m.Br .x//

ˇ̌̌̌ˆ
Br .x/

.g � .g/x;2r / dm

ˇ̌̌̌
� CD

 
B2r .x/

jg � .g/x;2r j dm

(1.5)
� 2CDCP r

� 
B2�r .x/

jDgj2 dm

�1=2
(1.10)
� .21�˛=2CDCP�

�˛=2M 1=2/r1�˛=2:

Set C WD 21�˛=2CDCP��˛=2M 1=2 and � WD 1 � ˛=2 2 .0; 1/. Then the previous com-
putation gives

P1
iD2 j.g/x;2�i � .g/x;2�iC1 j � C

P1
iD2.2

� /�i <1, contradicting (1.8).
This proves (1.9).

Finally, it immediately follows from (1.9) that A is contained in the set of all x 2 X
that satisfy lim supr&0 r

˛
ffl
Br .x/

jDgj2 dm>0, which is H h˛ -negligible by Lemma 1.11.
Therefore, H h˛ .A/ D 0, completing the proof of the statement.
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1.2. RCD metric measure spaces

The main object of our investigation is RCD.K; N / metric measure spaces, that is,
infinitesimally Hilbertian spaces satisfying a lower Ricci curvature bound and an upper
dimension bound in synthetic sense according to [44, 51, 52]. Before passing to the
description of the main properties of RCD.K; N / spaces that will be relevant for this
article, let us briefly focus on the adimensional case.

The class of RCD.K;1/ spaces was introduced in [6] (see also [4] for the extension
to the case of � -finite reference measures) adding to the CD.K;1/ condition, formulated
in terms of K-convexity properties of the logarithmic entropy over the Wasserstein space
.P2; W2/, the infinitesimal Hilbertianity assumption.

Under the RCD.K;1/ condition it was proved that the dual heat semigroup P �t W
P2.X/! P2.X/, defined by

ˆ
X

f dP �t � D
ˆ
X

Ptf d� 8� 2 P2.X/; 8f 2 Lipbs.X; d/;

isK-contractive with respect to theW2-distance and, for t > 0, maps probability measures
to probability measures absolutely continuous with respect to m. With a slight abuse of
notation we shall denote by P �t � also the density of the measure P �t � with respect to m.
Then, for any t > 0, one can define the heat kernel pt W X �X ! Œ0;1/ by

pt .x; �/m D P
�
t ıx : (1.11)

We now state a few regularization properties of RCD.K;1/ spaces, referring again
to [4, 6] for a more detailed discussion and for the proofs.

First we have the Bakry–Émery contraction estimate

jrPtf j
2
� e�2KtPt jrf j

2 m-a.e. (1.12)

for any t > 0 and any f 2 H 1;2.X; d;m/. This estimate can be generalized to the whole
range of exponents 1 < p <1. Furthermore in [31] it has been proved that on any proper
RCD.K;1/ m.m.s.,

jDPtf j � e
�KtP �t jDf j (1.13)

for any t > 0 and any f 2 BV.X; d;m/.
Next we have the so-called Sobolev-to-Lipschitz property: any f 2 H 1;2.X; d;m/

such that jrf j 2L1.X;m/ admits a representative Qf 2Lip.X;d/with Lipschitz constant
bounded from above by k jrf j kL1 .

Let us introduce the space Test.X; d;m/ of test functions following [30]:

Test.X;d;m/ WD ¹f 2D.�/\L1.X;m/ j jrf j 2L1.X;m/ and �f 2H 1;2.X;d;m/º:
(1.14)

The notion of RCD.K;N /m.m.s. was proposed and extensively studied in [10,26,28]
(see also [14] for the equivalence between the RCD and the RCD� condition when the
reference measure is finite), as a finite-dimensional counterpart to RCD.K;1/ m.m.s.
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which were introduced and first studied in [6]. Here we just recall that they can be char-
acterized by requiring the quadraticity of Ch, the volume growth condition m.Br .x// �

c1 exp.c2r2/ for some (and thus for all) x 2 X , the validity of the Sobolev-to-Lipschitz
property and of a weak form of Bochner’s inequality,

1

2
�jrf j2 � rf � r�f �

.�f /2

N
CKjrf j2 for any f 2 Test.X; d;m/.

We refer to [10,26] for a more detailed discussion and equivalent characterizations of the
RCD.K;N / condition.

Note that if .X; d;m/ is an RCD.K; N / m.m.s., then so is .supp m; d;m/, hence in
the following we will always tacitly assume supp m D X .

We recall that any RCD.K;N /m.m.s. .X;d;m/ satisfies the Bishop–Gromov inequal-
ity

m.BR.x//

vK;N .R/
�

m.Br .x//

vK;N .r/
for any 0 < r < R and x 2 X; (1.15)

where vK;N .r/ is the volume of the ball with radius r in the model space with dimen-
sion N and Ricci curvatureK. We refer to [54, Theorem 30.11] for the proof of (1.15). In
particular, .X;d;m/ is locally uniformly doubling. Furthermore, it was proved in [49] that
it satisfies a local Poincaré inequality. Therefore RCD.K;N / spaces fit in the framework
of PI spaces that we introduced above.

We assume the reader to be familiar with the notion of pointed measured Gromov–
Hausdorff convergence (pmGH-convergence for short), referring to [54, Chapter 27] for
an overview.

Remark 1.13. A fundamental property of RCD.K;N / spaces, to be used several times in
this paper, is the stability with respect to pmGH-convergence, meaning that a pmGH-limit
of a sequence of (pointed) RCD.Kn; Nn/ spaces for some Kn ! K and Nn ! N is an
RCD.K;N / m.m.s.

Let us finally recall the construction of good cut-off functions over RCD.K;N /metric
measure spaces; see [47, Lemma 3.1] for a proof.

Lemma 1.14. Let .X; d;m/ be an RCD.K; N / m.m.s. For any 0 < 2r < R and x 2 X
there exists a test function � W X ! R satisfying

(i) 0 � � � 1 on X , � D 1 on Br .x/ and � D 0 on X n B2r .x/;

(ii) r2j��j C r jr�j � CN;K;R.

1.2.1. Structure theory. Let us briefly review the main results concerning the state of the
art about the so-called structure theory of RCD.K;N / spaces.

Given a m.m.s. .X; d;m/, x 2 X and r 2 .0; 1/, we consider the rescaled and normal-
ized pointed m.m.s. .X; r�1d;mx

r ; x/, where

mx
r WD

�ˆ
Br .x/

�
1 �

d.x; y/

r

�
dm.y/

��1
m D C.x; r/�1m:
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Definition 1.15. We say that a pointed m.m.s. .Y; dY ; �; y/ is tangent to .X; d;m/ at x
if there exists a sequence ri # 0 such that .X; r�1i d;mx

ri
; x/ ! .Y; dY ; �; y/ in the

pmGH-topology. The collection of all the tangent spaces of .X; d;m/ at x is denoted
by Tanx.X; d;m/.

A compactness argument, due to Gromov, together with the rescaling and stability
properties of the RCD.K; N / condition (see Remark 1.13), shows that Tanx.X; d;m/ is
non-empty for every x 2 X and its elements are all RCD.0;N / pointed m.m.s.

Let us recall the notion of k-regular point and k-regular set.

Definition 1.16. Given any natural 1 � k � N , we say that x 2 X is a k-regular point if

Tanx.X; d;m/ D ¹.Rk ; deucl; ckLk ; 0/º:

We shall denote by Rk the set of k-regular points in X .

Observe that, by explicit computation, the constant ck in Definition 1.16 equals !k
kC1

.

Remark 1.17. Observe that if x 2 Rk , then

lim
r!0

´
Br .x/

.1 � d.x;y/
r
/ dm.y/

m.Br .x//
D

1

k C 1
: (1.16)

Moreover, it can be easily checked that x 2 Rk if and only if

lim
r!0

dpmGH

��
X; r�1d;

m

m.Br .x//
; x

�
;

�
Rk ; deucl;

1

!k
Lk ; 0k

��
D 0:

From the works [23, 32, 33, 40, 47] and [12] we have the following structure theorem
for RCD.K;N / spaces.

Theorem 1.18. Let .X; d;m/ be an RCD.K; N / m.m.s. with K 2 R and N � 1. Then
there exists a natural number 1 � n � N , called the essential dimension of X , such that
m.X nRn/D 0. Moreover, Rn is .m;n/-rectifiable and m is representable as �H n Rn

for some non-negative density � 2 L1loc.X;H
n Rn/.

Recall that X is said to be .m; n/-rectifiable if there exists a family ¹Aiºi2N of
Borel subsets of X such that each Ai is bi-Lipschitz to a Borel subset of Rn and
m.X n

S
i2N Ai / D 0.

1.2.2. Sobolev functions and Laplacian on balls. Following a standard approach let us
give a notion of Sobolev functions and Laplacian on balls; we refer to [8] for a more
detailed presentation.

We define H 1;2
0 .Br .x/; d;m/ to be the closure of Lipc.Br .x/; d/ in H 1;2.X; d;m/.

Let us also define H 1;2
loc .Br .x/; d;m/ as the space of those f W Br .x/ ! R such that

�f 2 H 1;2.X; d;m/ for any � 2 Lipc.Br .x/; d/. Exploiting the locality of the minimal
relaxed slope one can easily define jrf j for any f 2 H 1;2

loc .Br .x/; d;m/. This allows us
to introduce H 1;2.Br .x/; d;m/ as the space of f 2 H 1;2

loc .Br .x/; d;m/ such that f; jrf j
are in L2.X;m/.
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Definition 1.19. A function f 2 H 1;2.Br .x/; d;m/ belongs to D.�; Br .x// if there
exists g 2 L2.Br .x/;m/ satisfying

ˆ
Br .x/

rf � rh dm D �

ˆ
Br .x/

fg dm for all h 2 H 1;2
0 .Br .x/; d;m/:

With a slight abuse of notation we write �f D g in Br .x/.

It is easily seen that if f 2 D.�;Br .x// and if � 2 Lipc.Br .x/; d/ \D.�/ satisfies
�� 2 L1.X;m/ then �f 2 D.�/.

1.2.3. Stability and convergence results. Let us fix a pointed measured Gromov–
Hausdorff convergent sequence

.Xi ; di ;mi ; xi /! .Y; %; �; y/

of RCD.K;N /m.m.s. Recall that, in the setting of uniformly locally doubling spaces, the
pointed measured Gromov–Hausdorff convergence can be equivalently characterized by
requiring the existence of a proper metric space .Z; dZ/ in which .Xi ; di / and .Y; %/ are
isometrically embedded, and xi ! y and mi * � in duality with Cbs.Z/ (the space of
continuous functions with bounded supports inZ). This is the so-called extrinsic approach
and it is convenient when formulating various notions of convergence.

Definition 1.20. Let .Xi ; di ;mi ; xi /, .Y; %; �; y/, .Z; dZ/ be as above and fi W Xi ! R,
f W Y ! R. We say that fi ! f pointwise if fi .zi / ! f .z/ for every sequence of
points zi 2 Xi such that zi ! z in Z. If for every " > 0 there exists ı > 0 such that
jfi .zi / � f .z/j � " for all i � ı�1 and zi 2 Xi , z 2 Y with dZ.zi ; z/ � ı, then we say
that fi ! f uniformly.

The next proposition is a version of the Ascoli–Arzelà compactness theorem for
sequences of functions defined on varying spaces. We omit the proof, which can be
obtained by arguing as in the case of a fixed space.

Proposition 1.21. Let .Xi ;di ;mi ; xi / and .Y;�;�;y/ be as above and letR;L> 0. Then
for any sequence of L-Lipschitz functions fi W BR.xi /! R such that supi jfi .xi /j <1
there exists a subsequence that converges uniformly to some L-Lipschitz function f W
BR.y/! R.

We recall below the notions of convergence in Lp and Sobolev spaces for functions
defined over converging sequences of metric measure spaces. We will be concerned only
with the cases p D 2 and p D 1 in the rest of the article. We refer again to [7, 8] for a
more general treatment and the proofs of the results we state below.

Definition 1.22. We say that fi 2 L2.Xi ;mi / converges L2-weakly to f 2 L2.Y; �/ if
fimi * f� in duality with Cbs.Z/ and supikfikL2.Xi ;mi / <1.

We say that fi 2 L2.Xi ;mi / converges L2-strongly to f 2 L2.Y; �/ if fimi * f�

in duality with Cbs.Z/ and limikfikL2.Xi ;mi / D kf kL2.Y;�/.
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Definition 1.23. We say that a sequence .fi / � L1.Xi ;mi / converges L1-strongly to
f 2 L1.Y; �/ if

� ı fimi * � ı f� and
ˆ
Xi

jfi j dmi !

ˆ
Y

jf j d�;

where �.z/ WD sign.z/
p
jzj and the weak convergence is in duality with Cbs.Z/, or equiv-

alently, if � ı fi converges L2-strongly to � ı f .

Dealing with characteristic functions one has the following equivalent notion of L1-
convergence.

Definition 1.24. We say that a sequence of Borel setsEi �Xi such that mi .Ei / <1 for
any i 2N convergesL1-strongly to a Borel set F � Y with �.F / <1 if �Eimi *�F�

in duality with Cbs.Z/ and mi .Ei /! �.F /.
We also say that a sequence of Borel sets Ei � Xi converges in L1loc to a Borel set

F � Y if Ei \ BR.xi /! F \ BR.y/ L
1-strongly for any R > 0.

Remark 1.25. It follows from the very definition of L1-strong convergence that if a
sequence of sets Ei converges to F in L1, then �Ei ! �F L

2-strongly.

Definition 1.26. We say that a sequence of sets Ei � Xi with locally finite perimeter
converges locally strongly in BV to a set F � Y of locally finite perimeter if Ei ! F

strongly in L1loc and jD�Ei j* jD�F j in duality with Cbs.Z/.

A proof of the technical result below can be found in [7].

Proposition 1.27. Let us fix p D 1; 2.

(i) For any fi ; gi 2 Lp.Xi ;mi / such that fi ! f 2 Lp.Y;�/ and gi ! g 2 Lp.Y;�/

Lp-strongly one has fi C gi ! f C g Lp-strongly.

(ii) If fi ! f and gi ! g L2-strongly then figi ! fg L1-strongly.

(iii) If fi ! f L1-strongly and supi2NkfikL1.Xi ;mi / < 1 then kfikL2.Xi ;mi / !
kf kL2.Y;�/. In particular fi ! f L2-strongly.

Let us present a compactness result for sets with finite perimeter that is partially taken
from [2].

Proposition 1.28. Let Ei � Xi be sets of finite perimeter satisfying

sup
i2N

Per.Ei ; B1.xi // <1:

Then there existsF � Y of finite perimeter such that, up to a subsequence,Ei \B1.xi /!
F \ B1.y/ L

1-strongly and

lim inf
i!1

ˆ
g djD�Ei j �

ˆ
g djD�F j for any 0 � g 2 C.Z/ with supp.g/ � NB1=2.y/:

(1.17)



Rectifiability of the reduced boundary over RCD spaces 429

If we further assume that

lim
i!1
jD�Ei j.B1=2.xi // D jD�F j.B1=2.y//; (1.18)

then (1.17) improves to

lim
i!1

ˆ
g djD�Ei j D

ˆ
g djD�F j for any g2C.Z/ with supp.g/�B1=2.y/: (1.19)

Proof. The L1-strong convergence Ei \B1.xi /! F \B1.y/ up to subsequence can be
obtained by arguing as in [2, proof of Corollary 3.4].

Inequality (1.17) follows from [2, Proposition 3.6] along with a localization argument
that we sketch briefly. For any i 2 N, using Lemma 1.14 we build a good cut-off function
�i 2 Lip.Xi ; di / satisfying �i D 1 in B1=2.xi / and �i D 0 in Xi n B3=4.xi /. By Proposi-
tion 1.21, up to a subsequence, we can assume that �i ! �1 2 Lip.Y; �/ uniformly and
L2-strongly. It is easily seen that �1 D 1 in B1=2.y/ and �1 D 0 in Y n B1.y/. The
sequence .�i�Ei /i satisfies

�i�Ei ! �1�F L
1-strongly and sup

i2N
jD.�i�Ei /j.Xi / <1;

thanks to Proposition 1.27(ii) and standard calculus rules. Applying [2, Proposition 3.6]
to the sequence .�i�Ei /i we get (1.17).

Inequality (1.19) is a weak convergence result in the ball B1=2.y/ � Z, which can be
proved as in [2, proof of Corollary 3.7] taking into account (1.17) and (1.18).

Let us now introduce a notion of H 1;2-convergence along with its local counterpart.

Definition 1.29. We say that fi 2H 1;2.Xi ;di ;mi /weakly converges to f 2H 1;2.Y;%;�/

if it converges L2-weakly and supi Chi .fi / <1. StrongH 1;2-convergence is defined by
asking that fi converges to f L2-strongly and limi Chi .fi / D Ch.f /.

Definition 1.30. We say that fi 2 H 1;2.BR.xi /; di ;mi / converges in H 1;2 to f 2

H 1;2.BR.y/; %; �/ on BR.y/ if fi converges L2-weakly .or L2-strongly, equivalently/
to f on BR.y/ with supi2NkfikH1;2 < 1. Strong convergence in H 1;2 on BR.y/ is
defined by requiring

lim
i!1

ˆ
BR.xi /

jrfi j
2 dmi D

ˆ
BR.y/

jrf j2 d�:

Let us now collect those results from [8] that will play a role in this paper.

Lemma 1.31 ([8, Lemma 2.10]). For any f 2 Lipc.BR.y/; %/ there exist functions fi 2
Lipc.BR.xi /; di / satisfying

sup
i2N
k jrfi j kL1.Xi ;mi / <1

and strongly converging to f in H 1;2.
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Theorem 1.32 ([8, Theorem 4.4]). Let fi 2 D.�;BR.xi // with

sup
i2N

ˆ
BR.xi /

.jfi j
2
C jrfi j

2
C .�fi /

2/ dmi <1;

and let f be an L2-strong limit of fi on BR.y/. Then:

(i) f 2 D.�;BR.y//;

(ii) �fi ! �f on BR.y/ weakly in L2;

(iii) jrfi j2 ! jrf j2 strongly in L1 on BR.y/.

Proposition 1.33 ([8, Corollary 4.12]). Let f 2 H 1;2.BR.y/; %; �/ be a harmonic func-
tion .i.e., f 2 D.�; BR.y// with �f D 0/. Then, for any 0 < r < R there exist fi 2
H 1;2.Br .xi /; di ;mi / harmonic such that fi ! f strongly in H 1;2 on Br .y/.

1.3. Normed modules

Let .X; d;m/ be a metric measure space. We begin by briefly recalling the definitions
of normed module over .X; d;m/, which have been introduced in [30] and are in turn
inspired by the theory developed in [55].

Let R be either L1.m/ or L0.m/. Let M be a module over the commutative ring R.
Then an Lp-pointwise norm on M , for some p 2 ¹0º [ Œ1;1/, is any mapping j � j W
M ! Lp.m/ such that

jvj � 0 for every v 2M ; with equality if and only if v D 0;

jv C wj � jvj C jwj for all v;w 2M ;

jf vj D jf j jvj for all f 2 R and v 2M ; (1.20)

where all (in)equalities are in the m-a.e. sense. We shall consider two classes of normed
modules:

� Lp.m/-normed L1.m/-modules, with p 2 Œ1;1/: A module M p over L1.m/
endowed with anLp-pointwise norm j � j such that kvkMp WD kjvjkLp.m/ is a complete
norm on M p .

� L0.m/-normed L0.m/-modules: A module M 0 over L0.m/ endowed with an L0-
pointwise norm j � j such that dM0.v; w/ WD

´
min ¹jv � wj; 1º dm0 (where m0 is any

probability measure that is mutually absolutely continuous with m) is a complete dis-
tance on M 0.

We refer to [29] for an account of the abstract normed modules theory on metric measure
spaces.

Assume .X; d;m/ is infinitesimally Hilbertian, i.e., its Sobolev space H 1;2.X; d;m/
is Hilbert. Then a key example of normed module on X is the tangent module L0.TX/,
which is characterized as follows: there is a unique couple .L0.TX/;r/, where L0.TX/
is an L0.m/-normed L0.m/-module and r W H 1;2.X/! L0.TX/ is a linear gradient
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map, such that the following hold:

jrf j coincides with the minimal relaxed slope of f for every f 2 H 1;2.X/;° nX
iD1

�Eirfi

ˇ̌̌̌
.Ei /

n
iD1 Borel partition of X; .fi /niD1 � H

1;2.X/
±

is dense in L0.TX/:

For any p 2 Œ1;1�, we set Lp.TX/ WD ¹v 2 L0.TX/ j jvj 2 Lp.m/º. It can be readily
checked that the space Lp.TX/ has a natural Lp.m/-normed L1.m/-module structure
(for p <1).

1.3.1. Second order calculus over RCD spaces. Gigli [30] has developed a second order
calculus for RCD.K;1/ metric measure spaces. The notions of Hessian and covariant
derivative have been introduced as bilinear forms on L2.TX/, along with the spaces
H 2;2.X; d;m/ � H 1;2.X; d;m/ and H 1;2

C .TX/ � L2.TX/ [30, Definitions 3.3.1, 3.4.1,
3.3.17, 3.4.3].

Let us recall that, as proved in [30, Proposition 3.3.18], we have the inclusion

D.�/ � H 2;2.X; d;m/: (1.21)

Moreover, assuming .X; d;m/ to be RCD.K;N / m.m.s. one has the local estimate
ˆ
B1.x/

jHessf j2 dm � CN;K

�ˆ
B2.x/

j�f j2 dmC inf
m2R

ˆ
B2.x/

ˇ̌
jrf j2 �m

ˇ̌
dm

�
�K

ˆ
B2.x/

jrf j2 dm; (1.22)

which can be checked by integrating the improved Bochner inequality proved in [35]
against a good cut-off function (see Lemma 1.14 above).

Let us recall that the Hessian enjoys the following locality property that has been
proved in [30, Proposition 3.3.24].

Proposition 1.34. If f1; f2 2 H 2;2.X; d;m/ then

jHessf1j D jHessf2j m-a.e. in ¹f1 D f2º:

In addition we shall use the following inequality that has been proved in [30, Propo-
sition 3.3.22]:

jr.rf � rg/j � jHessf j jrgj C jHessgj jrf j for all f; g 2 H 2;2.X; d;m/: (1.23)

1.3.2. Module with respect to the capacity measure. We recall a variant of the notion
of L0-normed L0-module, where the Borel measure m is replaced by capacity, which
has been proposed in [21]. Fix a metric measure space .X; d;m/. The space of all Borel
functions on X , considered up to Cap-a.e. equality, is denoted by L0.Cap/. If contin-
uous functions are strongly dense in H 1;2.X/ (this holds, for instance, if the space is
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infinitesimally Hilbertian), then there exists a unique “quasi-continuous representative”
map QCR W H 1;2.X/! L0.Cap/ that is characterized as follows: QCR is a continuous
map, and for any f 2 H 1;2.X/, QCR.f / is (the equivalence class of) a quasi-continuous
function that m-a.e. coincides with f itself. Recall that a function f W X ! R is said to
be quasi-continuous if for any " > 0 there exists a set E � X with Cap.E/ < " such that
f W X nE ! R is continuous. We refer to [21, Theorem 1.20] for a proof of this result.

Given a module MCap over the ring L0.Cap/, we say that a mapping j � j WMCap !

L0.Cap/ is a pointwise norm if it satisfies the (in)equalities in (1.20) in the Cap-a.e. sense
for any v; w 2MCap and f 2 L0.Cap/. Then the space MCap is said to be an L0.Cap/-
normed L0.Cap/-module if it is complete when endowed with the distance

dMCap.v; w/ WD
X
k2N

1

2k max ¹Cap.Ak/; 1º

ˆ
Ak

min ¹jv � wj; 1º d Cap;

where .Ak/k is any increasing sequence of open subsets of X with finite capacity such
that any bounded set B � X is contained in Ak for some k 2 N sufficiently large.

Since this fact plays a crucial role below, we recall that jrf j2 2 H 1;2.X/ for any
f 2 Test.X/ (see [50]), and thus jrf j 2 H 1;2.X/ as well (see [21]). In particular, for
any f 2 Test.X/, jrf j admits a quasi-continuous representative.

Theorem 1.35 (Tangent L0.Cap/-module [21]). Let .X; d;m/ be an RCD.K;1/ space.
Then there exists a unique couple .L0Cap.TX/;

Qr/, where L0Cap.TX/ is an L0.Cap/-
normed L0.Cap/-module and Qr W Test.X/! L0Cap.TX/ is a linear operator, such that

j Qrf j D QCR.jrf j/ Cap-a.e. for every f 2 Test.X/;°X
n2N

�En
Qrfn

ˇ̌̌
.En/n Borel partition of X; .fn/n � Test.X/

±
is dense in L0Cap.TX/:

The space L0Cap.TX/ is called the capacitary tangent module on X , while Qr is the capac-
itary gradient.

Fix any Radon measure � on a m.m.s. .X; d;m/ and suppose that �� Cap. Then
there is a natural projection �� WL0.Cap/!L0.�/. Given anL0.Cap/-normedL0.Cap/-
module MCap, we define an equivalence relation�� on MCap as follows: for v;w 2MCap,
we declare that

v �� w ” jv � wj D 0 �-a.e. on X:

Then the quotient M 0
� WDMCap=�� inherits a natural structure ofL0.�/-normedL0.�/-

module. Let N�� WMCap!M 0
� be the canonical projection. Moreover, for any p 2 Œ1;1/

define
M p
� WD ¹v 2M 0

� j jvj 2 L
p.�/º: (1.24)

It turns out that M p
� is an Lp.�/-normed L1.�/-module. Notice that j N��.v/j D ��.jvj/

�-a.e. for every v 2MCap.
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Lemma 1.36. Let .X; d;m/ be a m.m.s., and MCap an L0.Cap/-normed L0.Cap/-mod-
ule. Fix a finite Borel measure �� 0 onX such that �� Cap. Let V be a linear subspace
of MCap such that jvj admits a bounded Cap-a.e. representative for every v 2 V and

V WD
°X
n2N

�Envn

ˇ̌̌
.En/n2N Borel partition of X; .vn/n2N � V

±
is dense in MCap:

Then for any p 2 Œ1;1/,

W WD° nX
iD1

�Ei N��.vi /
ˇ̌̌
n 2 N; .Ei /

n
iD1 Borel partition of X; .vi /niD1 � V

±
is dense in M p

� :

Proof. Fix v2M p
� and ">0. Since jvjp 2L1.�/, there is ı >0 such that .

´
E
jvjp d�/1=p

� "=3 for any Borel setE �X with�.E/< ı. Choose any Nv 2MCap such that N��. Nv/D v.
We can find . Nvk/k � V with j Nvk � Nvj ! 0 in L0.Cap/. Hence j N��. Nvk/ � N��. Nv/j D
��.j Nvk � Nvj/! 0 in L0.�/. Thanks to the Egorov theorem, there exists a compact set
K � X with �.X n K/ < ı such that (possibly taking a non-relabelled subsequence)
j N��. Nvk/� vj! 0 uniformly onK. Consequently, by the dominated convergence theorem,
�K N��. Nvk/! �Kv in M p

� . Thus we can pick k 2 N so that the element Nw WD Nvk satis-
fies k�K N��. Nw/ � �KvkMp

�
� "=3. If Nw is written as

P
n2N �En Nwn, then �K N��. Nw/ DP

n2N �K\En N��. Nwn/. By the dominated convergence theorem, for N 2 N sufficiently
large the element z WD

PN
nD1 �K\En N��. Nwn/ 2 W satisfies kz � �K N��. Nw/kMp

�
� "=3.

Therefore,

kz � vkMp
�
� kz � �K N��. Nw/kMp

�
C k�K N��. Nw/ � �KvkMp

�
C k�XnKvkMp

�
� ";

proving the statement.

1.4. Hodge Laplacian of vector fields on RCD spaces

Let .X; d;m/ be an RCD.K;1/ space. Consider the space H 1;2
H .TX/ and the Hodge

Laplacian �H W H
1;2
H .TX/ � D.�H/! L2.TX/, which have been defined in [30, Def-

inition 3.5.13] and [30, Definition 3.5.15], respectively (see [29, first paragraph of Sec-
tion 2.6] for the identification between vector and covector fields).

It follows from its definition that the Hodge Laplacian is self-adjoint,
ˆ
h�Hv;wi dm D

ˆ
hv;�Hwi dm for all v;w 2 D.�H/: (1.25)

Let us consider the augmented Hodge energy functional QEH W L
2.TX/! Œ0;1� which

is defined in [30, (3.5.16)] (up to identifying L2.T �X/ with L2.TX/ via the musical
isomorphism). Then we denote by .hH;t /t�0 the gradient flow in L2.TX/ of the func-
tional QEH. This means that for any vector field v 2 L2.TX/, t 7! hH;t .v/ 2 L

2.TX/ is
the unique continuous curve on Œ0;1/ with hH;0.v/ D v which is locally absolutely con-
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tinuous on .0;1/ and satisfies

hH;t .v/ 2 D.�H/ and
d
dt

hH;t .v/ D ��HhH;t .v/ for every t > 0

(see [30, discussion that precedes Proposition 3.6.10]). Furthermore,

hH;t .rf / D rPtf for all f 2 H 1;2.X/ and t � 0 (1.26)

Finally, we recall that vector fields satisfy the following Bakry–Émery contraction esti-
mate (see [30, Proposition 3.6.10]):

jhH;t .v/j
2
� e�2KtPt .jvj

2/ m-a.e. for all v 2 L2.TX/ and t � 0: (1.27)

Lemma 1.37 (hH;t is self-adjoint). Let .X; d;m/ be an RCD.K;1/ space. Thenˆ
hhH;t .v/; wi dm D

ˆ
hv; hH;t .w/i dm for all v;w 2 L2.TX/ and t � 0: (1.28)

Proof. Fix v;w 2 L2.TX/ and t > 0. We define ' W Œ0; t �! R by

'.s/ WD

ˆ
hhH;s.v/; hH;t�s.w/i dm for every s 2 Œ0; t �:

Then ' is absolutely continuous and

'0.s/ D �

ˆ
h�HhH;s.v/; hH;t�s.w/i dmC

ˆ
hhH;s.v/;�HhH;t�s.w/i dm

(1.25)
D 0

for a.e. t > 0. Thus ' is constant, thus in particular
´
hhH;t .v/; wi dm D '.t/ D '.0/ D´

hv; hH;t .w/i dm.

Proposition 1.38. Let .X; d;m/ be an RCD.K;1/ space. Then for any v 2 D.div/,

hH;t .v/ 2 H
1;2
C .TX/ \D.div/ and div.hH;t .v// D Pt .div.v// for every t > 0:

Proof. First of all, observe that hH;t .v/ 2 H
1;2
H .TX/ � H

1;2
C .TX/ by [30, Corollary

3.6.4]. Moreover, let f 2 H 1;2.X/. Thenˆ
hrf; hH;t .v/i dm

(1.28)
D

ˆ
hhH;t .rf /; vi dm

(1.26)
D

ˆ
hrPtf; vi dm

D �

ˆ
Ptf div.v/ dm D �

ˆ
fPt .div.v// dm:

By arbitrariness of f , we conclude that hH;t .v/ 2 D.div/ and div.hH;t .v// D Pt .div.v//.

2. A Gauss–Green formula on RCD spaces

Let .X; d;m/ be an RCD.K; N / m.m.s. and E � X a set of finite perimeter. We recall
that, by Lemma 1.10, jD�E j �H h1 , so jD�E j � Cap by Theorem 1.12. It thus makes
sense to consider the projection �jD�E j W L

0.Cap/! L0.jD�E j/. Recall also that QCR W
H 1;2.X/ ! L0.Cap/ stands for the “quasi-continuous representative” operator. Then
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define
trE W H 1;2.X/! L0.jD�E j/; trE WD �jD�E j ı QCR;

the trace operator over the boundary of E. Observe that trE .f / 2 L1.jD�E j/ for every
f 2 Test.X/.

Remark 2.1. When .X;d;m/ is the Euclidean space of dimension n and E � Rn is open
and smooth, trE W H 1.Rn/ ! L0.jD�E j/ coincides with the canonical trace operator.
Indeed, the two operators coincide on smooth functions and they are continuous. In the
case of the canonical trace this is a standard result, while for trE it is a consequence of
[21, Proposition 1.19] and the continuity of �jD�E j W L

0.Cap/! L0.jD�E j/.

This being said, let us state the two main results of this section. The first one gives exis-
tence and uniqueness of the tangent module over the boundary of a set of finite perimeter.
The second theorem provides a Gauss–Green formula tailored to finite-dimensional RCD
spaces along with a strong approximation result for the exterior normal of sets with finite
perimeter. This approximation result, whose proof heavily relies on the abstract machin-
ery of normed modules and on functional-analytic tools, plays a key role in the study of
rectifiability properties for boundaries of sets with finite perimeter that we are going to
perform in the last section of this paper.

Let us point out that in the very recent [13] the problem of obtaining a Gauss–
Green formula on RCD.K;1/ spaces has been treated and in [53] an integration-by-parts
formula is considered under stronger assumptions. A comparison between our stronger
result, heavily relying on finite-dimensionality, and those in [13, 53] is outside the scope
of this paper.

Theorem 2.2 (Tangent module over @E). Let .X; d;m/ be an RCD.K; N / space. Let
E �X be a set of finite perimeter. Then there exists a unique couple .L2E .TX/; Nr/, where
L2E .TX/ is an L2.jD�E j/-normed L1.jD�E j/-module and Nr W Test.X/! L2E .TX/ is
linear, such that:

.i/ j Nrf j D trE .jrf j/ jD�E j-a.e. for every f 2 Test.X/.

.ii/ ¹
Pn
iD1 �Ei

Nrfi j .Ei /
n
iD1 Borel partition of X; .fi /niD1 � Test.X/º is dense in

L2E .TX/.

Uniqueness is understood up to unique isomorphism: given another couple .M ; Nr 0/ satis-
fying .i/–.ii/ above, there exists a unique normed module isomorphismˆ WL2E .TX/!M

such thatˆ ı Nr D Nr 0. The spaceL2E .TX/ is called the tangent module over the boundary
of E and Nr is the gradient.

We denote by NQCR W H 1;2
C .TX/! L0Cap.TX/ the “quasi-continuous representative”

map for Sobolev vector fields, whose existence has been proven in [21, Theorem 2.14]
(see [21, Definition 2.12] for a notion of “quasi-continuous vector field” suitable for this
context). Moreover, with a slight abuse of notation we define

trE W H
1;2
C .TX/ \ L1.TX/! L2E .TX/; trE WD N�jD�E j ı NQCR:

Notice that jtrE .v/j D trE .jvj/ jD�E j-a.e. for every v 2 H 1;2
C .TX/ \ L1.TX/.
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Remark 2.3. Arguing as in Remark 2.1 one can prove that trE coincides with the canon-
ical trace in the case of smooth domains in Rn.

Theorem 2.4 (Gauss–Green formula on RCD spaces). Let .X; d;m/ be an RCD.K;N /
space and E � X be a set of finite perimeter such that m.E/ <1. Then there exists a
unique vector field �E 2 L2E .TX/ such that j�E j D 1 jD�E j-a.e. and

ˆ
E

div.v/ dm D �

ˆ
htrE .v/; �E i djD�E j

for all v 2 H 1;2
C .TX/ \D.div/ with jvj 2 L1.m/: (2.1)

Moreover, there exists a sequence .vn/n � TestVE .X/ of test vector fields over the bound-
ary of E .see Lemma 2.9 below for the precise definition of this class/ such that vn! �E
in the strong topology of L2E .TX/.

Remark 2.5. IfX is a Riemannian manifold andE �X is a domain with smooth bound-
ary, then L2E .TX/ is the space of all Borel vector fields overX which are concentrated on
the boundary of E and 2-integrable with respect to the surface measure, and in this case
Nr is the classical gradient for smooth functions.

Remark 2.6. The tangent L0.Cap/-module L0Cap.TX/ is a Hilbert module [21, Proposi-
tion 2.8]. Therefore, it is immediate to see by passing to the quotient that L2E .TX/ is a
Hilbert module as well.

The remaining part of this section is dedicated to the proofs of Theorems 2.2 and 2.4.

Proof of Theorem 2.2. Uniqueness. Denote by W the family of elements of L2E .TX/
considered in (ii). Given any ! D

Pn
iD1 �Ei

Nrfi 2 W , we are forced to set ˆ.!/ WDPn
iD1 �Ei

Nr 0fi . Well-posedness of this definition stems from the jD�E j-a.e. identityˇ̌̌ nX
iD1

�Ei
Nr
0fi

ˇ̌̌
D

nX
iD1

�Ei j
Nr
0fi j D

nX
iD1

�Ei trE .jrfi j/ D
nX
iD1

�Ei j
Nrfi j D j!j;

which also shows that ˆ preserves the pointwise norm. Then ˆ is linear continuous, thus
it can be uniquely extended to a continuous linear map ˆ W L2E .TX/!M by density
of W in L2E .TX/. By an approximation argument, it is easy to see that the extended ˆ
preserves the pointwise norm and is an L1.jD�E j/-module morphism. Finally, the map
ˆ is surjective, because its image is dense (as M satisfies (ii)) and closed (as ˆ is an
isometry). Consequently, we have proved that there exists a unique normed module iso-
morphism ˆ W L2E .TX/!M such that ˆ ı Nr D Nr 0.

Existence. Let us consider the tangent L0.Cap/-module L0Cap.TX/ and the relative
capacitary gradient operator Qr W Test.X/! L0Cap.TX/ associated to the space .X; d;m/
(see Theorem 1.35). We define L0E .TX/ as L0Cap.TX/=�jD�E j and the L2.jD�E j/-
normed L1.jD�E j/-module L2E .TX/ as in (1.24). Moreover, we define the differential
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Nr W Test.X/!L2E .TX/ as Nr WD N�jD�E j ı Qr. Clearly, the map Nr is linear by construction.
Given any function f 2 Test.X/, it follows that jD�E j-a.e. we have

j Nrf j D j N�jD�E j.
Qrf /j D �jD�E j.j

Qrf j/ D �jD�E j.QCR.jrf j// D trE .jrf j/;

which shows that (i) is satisfied. We also set V WD Test.X/ and consider the associated
space V � L0Cap.TX/ as in the statement of Lemma 1.36. By the defining property of
the cotangent Cap-module we know that V is dense in L0Cap.TX/, whence Lemma 1.36
ensures that W is dense in L2E .TX/. This means that property (ii) holds. Therefore, the
existence part of the statement is proven.

To prove Theorem 2.4 we need some auxiliary results. Let us begin with the following
one, which was obtained as an intermediate step in [2, proof of Theorem 4.2].

Lemma 2.7. Let .X;d;m/ be an RCD.K;N / space. Let E � X be a set of finite perime-
ter. Then

lim
t&0

ˆ ˇ̌̌̌
1 � eKt

jrPt�E j

P �t jD�E j

ˇ̌̌̌
P �t jD�E j dm D 0: (2.2)

Lemma 2.8. Let .X;d;m/ be an RCD.K;N / space. Let E � X be a set of finite perime-
ter. Thenˆ
fP �t jD�E j dm D

ˆ
trE .Ptf / djD�E j for all f 2 H 1;2.X/ \ L1.m/ and t > 0:

(2.3)
Moreover,

lim
t&0

ˆ
trE .Ptf /djD�E j D

ˆ
trE .f /djD�E j for all f 2H 1;2.X/\L1.m/: (2.4)

Proof. To prove (2.3), fix any f 2 H 1;2.X/ \ L1.m/ and t > 0. We claim that

9.fn/n � Lipbs.X; d/ bounded in L1.m/ W

fn ! f strongly in H 1;2.X/; weakly� in L1.m/: (2.5)

We argue as follows. Given any s > 0, the function Psf has a Lipschitz representa-
tive (still denoted by Psf ) thanks to the L1-Lip regularization of the heat flow. Since
¹Psf ºs>0 is bounded in L1.m/ by the weak maximum principle and Psjrf j

2 !

jrf j2 strongly in L1.m/, we can find G 2 L1.m/ and a sequence sn & 0 such that
Psn jrf j

2 � G m-a.e. for all n and Psnf ! f weakly� in L1.m/. Fix Nx 2 X and
for any n 2 N choose a compactly supported 1-Lipschitz function �n W X ! Œ0; 1� such
that �n D 1 on Bn. Nx/. Standard computations (based on the Leibniz rule r.�nPsnf / D
�nrPsnf C Psnf r�n, the dominated convergence theorem, and the Bakry–Émery con-
traction estimate) show that fn WD �nPsnf 2 Lipbs.X; d/ satisfy (2.5). Now observe
that Pt W H 1;2.X/ ! H 1;2.X/ is continuous, as a consequence of the Bakry–Émery
contraction estimate and the continuity of Pt W L2.m/ ! L2.m/. This ensures that
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Ptfn ! Ptf strongly in H 1;2.X/ as n ! 1, whence we know from [21, Propo-
sitions 1.12, 1.17 and 1.19] that (possibly passing to a non-relabelled subsequence)
QCR.Ptfn/ ! QCR.Ptf / Cap-a.e., and accordingly trE .Ptfn/ ! trE .Ptf / jD�E j-
a.e. Moreover, since jPtfnj � supk kfkkL1.m/ DW C in the m-a.e. sense for all n 2 N,
we deduce that jQCR.Ptfn/j �C Cap-a.e. for all n2N, and thus trE .Ptfn/�C jD�E j-
a.e. for all n 2 N. All in all, we obtain (2.3) by letting n!1 in

´
fnP

�
t jD�E j dm D´

trE .Ptfn/djD�E j, which is satisfied thanks to the defining property of P �t jD�E j; here
we use the dominated convergence theorem and the L1-weak� convergence fn ! f .

Let us now pass to the proof of (2.4). Fix f 2 H 1;2.X/ \ L1.m/. By argu-
ing as above, we see that jtrE .Ptf /j � kf kL1.m/ jD�E j-a.e. for all t > 0, and
any given sequence tn & 0 admits a subsequence tni & 0 such that trE .Ptni f / !
trE .f / jD�E j-a.e. Therefore, by the dominated convergence theorem we conclude that
limi

´
trE .Ptni f / djD�E j D

´
trE .f / djD�E j, which yields (2.4).

Lemma 2.9 (Test vector fields over @E). Let .X; d;m/ be an RCD.K; N / space. Let
E �X be a set of finite perimeter and finite mass. Define the class TestVE .X/�L2E .TX/
of test vector fields over the boundary of E as

TestVE .X/ WD trE .TestV.X//D
° nX
iD1

trE .gi / Nrfi
ˇ̌̌
n 2N; .fi /

n
iD1; .gi /

n
iD1 � Test.X/

±
:

Then TestVE .X/ is dense in L2E .TX/.

Proof. By Theorem 2.2 (ii), it suffices to show that each v 2 L2E .TX/ of the form v D

�E Nrf , where E � X is a Borel set and f 2 Test.X/, can be approximated by elements
of TestVE .X/ in the strong topology ofL2E .TX/. Fix " > 0 and choose h 2 Lipc.X/ such
that kh� �EkL2.jD�E j/ � "=.2Lip.f //. By [30, (3.2.3)] we can find a sequence .gn/n �
Test.X/ such that supn kgnkL1.m/ <1 and gn ! h in H 1;2.X/. Hence, by using [22,
Propositions 2.13 and 2.20] we see that (up to a non-relabelled subsequence) we have
trE .gn/.x/! h.x/ for jD�E j-a.e. x 2 X . Accordingly, by the dominated convergence
theorem, j.trE .gn/� h/ Nrf j ! 0 inL2.jD�E j/. Now choose n 2N so large that g WD gn
satisfies k.trE .g/ � h/ Nrf kL2

E
.TX/ < "=2. Hence,

ktrE .g/ Nrf � vkL2
E
.TX/ � k.trE .g/ � h/ Nrf kL2

E
.TX/ C k.h � �E /

Nrf kL2
E
.TX/

� "=2C kh � �EkL2.jD�E j/ Lip.f / < ":

Since trE .g/ Nrf 2 TestVE .X/, the statement is proved.

The last ingredient we need is an improvement of Theorem 1.7 in the special case
of RCD.K;1/ spaces. As we are going to see in the ensuing result, to obtain the total
variation of a BV function it is sufficient to restrict attention to those competitors that are
Sobolev regular. The proof is based on a parabolic approximation argument that builds
upon the technical results developed in Section 1.4.
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Theorem 2.10 (Representation formula for jDf j on RCD spaces). Let .X; d;m/ be an
RCD.K;1/ space and f 2 BV.X/. Then

jDf j.X/

D sup
²ˆ

f div.v/ dm

ˇ̌̌̌
v 2 H

1;2
C .TX/ \D.div/; jvj � 1 m-a.e.; div.v/ 2 L1.m/

³
:

Proof. Denote by S the right hand side of the above formula. We know by Remark 1.6 that
jDf j.X/� S . To prove the converse inequality, fix any " > 0. Theorem 1.7 guarantees the
existence of a vector field v 2D.div/, with jvj � 1m-a.e. and div.v/ 2L1.m/, such that´
f div.v/ dm > jDf j.X/ � "=2. Now define vt WD eKthH;t .v/ for every t > 0. Notice

that vt 2H
1;2
C .TX/\D.div/ by Proposition 1.38. Since div.v/ 2 L1.m/ and div.vt /D

eKtPt .div.v//, we deduce from the weak maximum principle that div.vt / 2 L1.m/ as
well. More precisely, kdiv.vt /kL1.m/ � eKtkdiv.v/kL1.m/ for all t > 0. Moreover, the
weak maximum principle also guarantees that

jvt j D e
Kt
jhH;t .v/j

(1.27)
�

p
Pt .jvj2/ � 1 in the m-a.e. sense.

Since limt&0 div.vt / D div.v/ in L2.m/, we can find tn & 0 such that div.vtn/.x/!
div.v/.x/ for m-a.e. x 2 X . As .div.vtn//n is a bounded sequence in L1.m/, we can
finally conclude that limn

´
f div.vtn/ dm D

´
f div.v/ dm by the dominated conver-

gence theorem. Therefore, there exists n 2 N such that w WD vtn satisfies
ˆ
f div.w/ dm >

ˆ
f div.v/ dm � "=2 > jDf j.X/ � ":

This shows that jDf j.X/ < S C ", whence jDf j.X/� S by arbitrariness of ", as desired.

Proof of Theorem 2.4. First of all, define �t WD P �t jD�E jm for every t > 0. Recall that
�t * jD�E j in duality with Cb.X/ as t & 0. Set

�t WD �¹P�t jD�E j>0º
rPt�E

P �t jD�E j
2 L0.TX/ for every t > 0:

It follows from the 1-Bakry–Émery estimate (1.13) that jDPt�E j � e�KtP �t jD�E j
m-a.e., thus �t 2 L1.TX/ and j�t j � e�Kt m-a.e. Set

V WD ¹v 2 H
1;2
C .TX/ \D.div/ j jvj 2 L1.m/º

and fix v 2 V . The Leibniz rule for divergence ensures that 'v 2 D.div/ for any ' 2
Lipb.X/, so the usual integration-by-parts formula yields
ˆ
Pt�E div.'v/dmD�

ˆ
'hrPt�E ; vidmD�

ˆ
'hv;�t id�t for all ' 2 Lipb.X/:

(2.6)
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Moreover, hv;�t i 2L1.�t / and khv;�t ikL1.�t / � e
�Ktk jvj kL1.m/ for every t > 0. Let

�t WD hv;�t i�t for all t > 0. Fix any sequence tn& 0. Since�tn* jD�E j in duality with
Cb.X/, we know that .�tn/n is tight by the Prokhorov theorem. As supn khv;�tnikL1.�tn /
is finite, we deduce that .�tn/n is tight as well. By using the Prokhorov theorem again,
we can thus take a subsequence .tni /i such that �tni * � in duality with Cb.X/ for some
finite (signed) Borel measure � on X . Since Lipb.X/ is dense in Cb.X/ and the identity
in (2.6) gives

ˆ
' d� D lim

i!1

ˆ
' d�tni D �

ˆ
E

div.'v/ dm for every ' 2 Lipb.X/;

we see that � is independent of the chosen sequence .tni /i . Hence, �t *� in duality with
Cb.X/ as t & 0. Thus, for any non-negative function ' 2 Cb.X/,ˇ̌̌̌ˆ

' d�
ˇ̌̌̌
� lim
t&0

ˆ
'jhv; �t ij d�t � ejKjk jvj kL1.m/ lim

t&0

ˆ
' d�t

D ejKjk jvj kL1.m/

ˆ
' djD�E j;

whence � � jD�E j and the Radon–Nikodým derivative L.v/ WD d�
djD�E j

belongs to
L1.jD�E j/. Consequently, taking into account (2.6) we deduce that

ˆ
E

div.'v/ dm D �

ˆ
'L.v/ djD�E j for all v 2 V and ' 2 Lipb.X/: (2.7)

Furthermore,

lim
t&0

ˆ
'hv; �t i d�t D

ˆ
'L.v/ djD�E j for all v 2 V and ' 2 Lipb.X/: (2.8)

Observe that for any v 2 V and ' 2 Lipb.X/, ' � 0,ˇ̌̌̌ˆ
'L.v/ djD�E j

ˇ̌̌̌
(2.8)
D lim

t&0

ˇ̌̌̌
eKt

ˆ
'hv; �t i d�t

ˇ̌̌̌
� lim

t&0

�
k'kL1.m/k jvj kL1.m/

ˆ ˇ̌
1 � eKt j�t j

ˇ̌
d�t C

ˆ
'

�
v;
�t

j�t j

�
d�t

�
(2.2)
� lim

t&0

ˆ
'jvj d�t

(2.3)
D lim

t&0

ˆ
trE .Pt .'jvj// djD�E j

(2.4)
D

ˆ
' trE .jvj/ djD�E j:

In the last two equalities we have used the fact that jvj 2 H 1;2.X/. By arbitrariness of
', we find that jL.v/j � trE .jvj/ jD�E j-a.e. for all v 2 V . Now define ! W trE .V/!
L1.jD�E j/ by

!.trE .v// WD L.v/ for every v 2 V : (2.9)
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The operator L W V ! L1.jD�E j/ is linear by its very construction, and the inequality
jL.v/j � trE .jvj/ shows that ! is well-posed, linear and satisfies

j!.v/j � jvj jD�E j-a.e. for every v 2 trE .V/:

Since TestVE .X/ � V and TestVE .X/ is dense in L2E .TX/, we infer from Lemma 2.9
that trE .V/ is a dense linear subspace of L2E .TX/. Therefore, by [30, Proposition 1.4.8],
! can be uniquely extended to an element ! 2L2E .T

�X/ WDL2E .TX/
� satisfying j!j � 1

jD�E j-a.e. We denote by �E 2 L2E .TX/ the vector field corresponding to ! via the
Riesz isomorphism. By combining (2.7) (with ' � 1) and (2.9), we conclude that (2.1)
is satisfied. It only remains to show that j�E j � 1 jD�E j-a.e. To do so, just observe that
Theorem 2.10 yields

jD�E j.X/ � sup
v2V

jvj�1m-a.e.

ˆ
E

div.v/ dm
(2.1)
D sup

v2V
jvj�1 m-a.e.

�

ˆ
htrE .v/; �E i djD�E j

�

ˆ
j�E j djD�E j � jD�E j.X/;

whence each inequality must be an equality. This clearly forces the jD�E j-a.e. equal-
ity j�E j D 1. The element �E is uniquely determined by (2.1) as the space trE .V/ is
dense in L2E .TX/. Finally, the last part of the statement is an immediate consequence of
Lemma 2.9.

3. Uniqueness of tangents for sets of finite perimeter

In this section we prove a uniqueness theorem (up to negligible sets) for blow-ups of
sets with finite perimeter over RCD.K;N / metric measure spaces. This is a further step
towards generalizing De Giorgi’s theorem to the framework of RCD spaces.

We recall the notion of tangent to a set of finite perimeter, introduced in [2].

Definition 3.1 (Tangents to a set of finite perimeter). Let .X; d;m/ be an RCD.K; N /
m.m.s., x 2 X and let E � X be a set of locally finite perimeter. We denote by
Tanx.X; d;m; E/ the collection of quintuples .Y; %;�; y; F / satisfying the following two
properties:

(a) .Y; %; �; y/ 2 Tanx.X; d;m/ and there are ri # 0 are such that the rescaled spaces
.X;r�1i d;mri

x ;x/ converge to .Y;%;�;y/ in the pointed measured Gromov–Hausdorff
topology;

(b) F is a set of locally finite perimeter in Y with �.F / > 0, and if ri are as in .a/, then
the sequence fi D �E converges in L1loc to �F according to Definition 1.24.

We identify .Y1; �1;�1; y/; .Y2; �2;�2; y/ 2 Tanx.X;d;m/ if there exists an isometry‰ W
.Y1; �1/! .Y2; �2/ such that‰.y1/D y2,‰�m1 Dm2 and

´
j�F2 ı‰ � �F1 jdm1 D 0.
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Let us point out that, up to a jD�E j-negligible set, the perimeter measures jDi�E j on
the rescaled spaces weakly converge to jD�F j in duality with Cbs. This statement, which
is part of [2, Corollary 4.10], plays a role in the rest of this paper.

We are ready to state the main theorem of this section.

Theorem 3.2. Let .X; d;m/ be an RCD.K; N / m.m.s. with essential dimension 1 �
n � N and E � X be a set of finite perimeter. Then, for jD�E j-a.e. x 2 X , there exists
k D 1; : : : ; n such that

Tanx.X; d;m; E/ D
®
.Rk ; deucl; ckLk ; 0k ; ¹xk > 0º/

¯
:

Let us explain the strategy of the proof. The starting point is [2, Theorem 4.3], which
we recall below.

Theorem 3.3. Let .X; d;m/ be an RCD.K; N / m.m.s. and E � X be a set of locally
finite perimeter. Then E admits a Euclidean half-space as tangent at x for jD�E j-a.e.
x 2 X , that is,

.Rk ; deucl; ckLk ; 0k ; ¹xk > 0º/ 2 Tanx.X; d;m; E/ for some k 2 Œ1; N �.

Let us point out that if n denotes again the essential dimension of .X; d;m/, then we
can sharpen the conclusion above to 1 � k � n. Indeed, by the lower semicontinuity of
the essential dimension with respect to pmGH convergence (see [9, 43]) one can prove
that all the tangent spaces to an RCD.K;N / space of essential dimension n have essential
dimension no greater than n. In particular, no Euclidean space of dimension k > n can be
a tangent space.

After establishing Theorem 3.3 the state of the art in the theory of sets of finite perime-
ter was similar to that of the structure theory of RCD spaces after [32], where the authors
proved the existence of a Euclidean tangent space up to negligible sets. The content of
this and of the next section instead can be seen as a counterpart in codimension 1 of the
main results obtained by Mondino–Naber [47].

Also the main ideas underlying the proofs of the uniqueness of tangents and the rectifi-
ability result are quite similar to those in [47]. As in that case, the existence of a Euclidean
tangent along a fixed scale is a regularity information which can be propagated at any
location and scale up to a set which is small with respect to the relevant measure, yielding
uniqueness of tangents.

From a technical point of view, our construction heavily relies on the use of the so-
called harmonic ı-splitting maps, a kind of good replacement for coordinate functions
within the theory of lower Ricci bounds, which played a crucial role in the development
of the theory of Ricci limits (see [16–18] and the more recent [19, 20]). Since, up to
our knowledge, this is the first time they are explicitly used in the RCD framework, we
dedicate Section 3.1 below to establishing some of their properties. With this tool at our
disposal, the propagation of regularity step is a consequence of a weighted maximal argu-
ment which was suggested in [20]. Let us point out that, in order for the whole procedure
to work, the fact that perimeter measures have codimension 1 (see Lemma 1.10) and
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the fact that harmonic functions satisfy L2 Hessian bounds play a key role. The strategy
would completely fail if perimeter measures had codimension greater than or equal to 2.

3.1. Splitting maps and propagation of regularity

This subsection is devoted to the study of ı-splitting maps. Their introduction in the study
of spaces with lower Ricci curvature bounds dates back to [15].

Definition 3.4. Let .X;d;m/ be an RCD.�1;N /metric measure space, and let x 2X and
ı > 0. We say that u WD .u1; : : : ; uk/ W Br .x/! Rk is a ı-splitting map if it is harmonic
.meaning that ua 2 D.�;Br .x// with �ua D 0 for any a D 1; : : : ; k/ and satisfies:

(i) ua is CN -Lipschitz for any a D 1; : : : ; k;

(ii) r2
ffl
Br .x/

jHessuaj2 dm < ı for any a D 1; : : : ; k;

(iii)
ffl
Br .x/

jrua � rub � ıa;bj dm < ı for any a; b D 1; : : : ; k.

Remark 3.5. Let us clarify the meaning of jHess uj when u W Br .x/! R is harmonic
and not necessarily globally defined. For any ball B2s.y/ � Br .x/ we take a good cut-
off function � according to Lemma 1.14 that satisfies � D 1 in Bs.y/ and � D 0 in
X n B2s.y/. As we already remarked in Section 1.2.2, one has �u 2 D.�/, therefore
�u 2 H 2;2.X; d;m/ as a consequence of (1.21). We can now set jHessuj WD jHess.�u/j
in Bs.y/. Observe that this is a good definition thanks to the locality of the Hessian (see
Proposition 1.34).

Remark 3.6. Compared to the definition of ı-splitting map which is nowadays adopted
within the theory of Ricci limits (see for instance [20, Definition 1.20]) the main differ-
ence is condition (i). In [20] the sharper bound jruj � 1C ı is imposed, though, as the
authors observe, it can be obtained as a consequence of the bound jruj � CN and of the
other defining properties (when working in the smooth framework).

3.1.1. ı-splitting maps and "-closeness. The power of ı-splitting maps in the theory of
lower Ricci bounds is that, roughly speaking, they allow one to pass from analysis to
geometry and vice versa. Namely, the existence of a ı-splitting map with k components
on a Riemannian manifold with Ricci curvature bounded below by �ı can be turned into
"-GH closeness (in the scale invariant sense) to a space which splits a factor Rk and vice
versa (see [15] and [20, Lemma 1.21]).

Below we provide rigorous statements of the above-mentioned results in the frame-
work of RCD spaces. The convergence and stability results of [7, 8] allow us to argue
by compactness avoiding the explicit constructions of [15]. The price we have to pay is
that the results become less local in nature compared to [20, Lemma 1.21]. Still, they are
sufficient for our purposes.

The first result presented below, Proposition 3.7, corresponds to the rough statement
“the existence of a ı-splitting map with k components implies that the m.m.s. is "-close to
a product Rk � Z”. The second one, Proposition 3.9, ensures that, over an RCD.�"; N /
space "-close to a product Rk �Z, one can build a ı-splitting map with k components.
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In order to shorten the notation for the rest of the paper we write .Rk �Z; .0k ; z// to
denote the p.m.m.s. (pointed m.m.s.) .Rk �Z; deucl � dZ ;Lk �mZ ; .0

k ; z//.

Proposition 3.7. Fix N > 1. Then, for any " > 0, there exists ı D ıN;" > 0 such that,
for any RCD.�ı; N / m.m.s. .X; d;m/ and for any x 2 X , if there exists a map u W
Bı�1.x/! Rk such that u is a ı-splitting map over Bs.x/ for any 0 < s < ı�1, then

dpmGH
�
.X; d;m; x/; .Rk �Z; .0k ; z//

�
< "

for some pointed RCD.0;N � k/ metric measure space .Z; dZ ;mZ ; z/.

Proof. We argue by contradiction. Suppose that, for any n � 1, there exist an
RCD.�1=n; N / m.m.s. .Xn; dn;mn/, a point xn 2 Xn and a map un W Bn.xn/ ! Rk

which is a 1=n-splitting map when restricted to Bs.xn/ for any 0 < s < n. We assume
without loss of generality that mn.B1.x// D 1. Up to extracting a subsequence, which
we do not relabel, we can assume that .Xn; dn;mn; xn/ converges in the pmGH-topology
to an RCD.0;N / p.m.m.s. .X1;d1;m1; x1/. Here we have used the stability and com-
pactness property of RCD.K;N / spaces (see Remark 1.13). We claim that X1 splits off
a factor Rk . Observe that if this is the case, then we reach the sought contradiction. The
rest of this proof is dedicated to establishing the claim.

We wish to prove that there exists a function v W X1 ! Rk such that, letting v WD
.v1; : : : ; vk/, vi is Lipschitz, harmonic and with vanishing Hessian for any i D 1; : : : ; k
and rvi � rvj D ıij m1-a.e. for any i; j D 1; : : : ; k. The function v will be obtained
as a limit of 1=n-splitting maps un W Bn.xn/! Rk . Indeed, since by the definition of a
ı-splitting map the un are CN -Lipschitz for any n 2 N and we can assume without loss
of generality that un.xn/ D 0k for any n 2 N, by a generalized version of the Ascoli–
Arzelà theorem (Proposition 1.21) we can infer the existence of v W X1 ! Rk such that
un converges to v locally uniformly on BR.xn/ for any R > 0. As a consequence, it is
easy to check that un converges strongly in L2 (see Definition 1.22) to v on BR.xn/ for
any R > 0. Since the functions un are harmonic on B2R.xn/, at least for n sufficiently
large, by Theorem 1.32 and Proposition 1.27 it follows that v is harmonic and that, for
any R > 0 and i; j D 1; : : : ; k, 

BR.x1/

jrvi � rvj � ıij j dm1 D lim
n!1

 
BR.xn/

jruin � ru
j
n � ıij j dmn D 0:

Hence rvi � rvj D ıij m1-a.e. on X1.
Since .X1; d1;m1/ is an RCD.0; N / m.m.s., from �vi D 0 and jrvi j2 D 1 we

infer by (1.22) that Hess vi D 0 for any i D 1; : : : ; k. All in all we find by a standard
argument (see [11, proof of Lemma 1.21]) that X1 splits a factor Rk , as claimed.

Corollary 3.8. LetN > 1 andK 2 R . For any " > 0 there exists ı > 0 such that, for any
r > 0, any RCD.K;N / m.m.s. .X; d;m/ and any x 2 X , if there exists u W Br .x/! Rk

such that u WBs.x/!Rk is a ı-splitting map for any 0 < s < r , then for any .Y;%;�;y/ 2
Tanx.X; d;m/ there exists an RCD.0;N � k/ p.m.m.s. .Z; dZ ;mZ ; z/ such that

dpmGH
�
.Y; %; �; y/; .Z �Rk ; .z; 0k//

�
< ":
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Proof. Choose ı D ı.K;N; "=2/ given by Proposition 3.7. If .Y;%;�;y/ 2 Tanx.X;d;m/
then there exists t > 0 such that t�1r > ı�1, t2jKj � ı and

dpmGH
�
.X; t�1d;mt

x ; x/; .Y; %; �; y/
�
< "=2: (3.1)

Thanks to Proposition 3.7 applied to .X; t�1d;mt
x ; x/, there exists an RCD.0; N � k/

p.m.m.s. .Z; dZ ;mZ ; z/ such that

dpmGH
�
.X; t�1d;mt

x ; x/; .Z �Rk ; .z; 0k//
�
< "=2: (3.2)

The conclusion follows from (3.1) and (3.2) by the triangle inequality.

Proposition 3.9. LetN > 1. For any ı > 0 there exists "D "N;ı > 0 such that if .X;d;m/
is an RCD.�";N / m.m.s., x 2 X and

dpmGH
�
.X; d;m; x/; .Rk �Z; .0k ; z//

�
< "

for some pointed RCD.0;N � k/ metric measure space .Z; dZ ;mZ ; z/, then there exists
a ı-splitting map u W B5.x/! Rk .

Proof. We are going to build upon the local convergence and stability results that we
recalled in Section 1.2.3, arguing by contradiction.

Suppose the conclusion is false. Then we can find a sequence of pointed
RCD.�1=n; N / m.m.s. .Xn; dn;mn; xn/ such that, for some RCD.0; N � k/ p.m.m.s.
.Z; dZ ;mZ ; z/,

dpmGH
�
.Xn; dn;mn; xn/; .R

k
�Z; .0k ; z//

�
< 1=n

for any n � 1. Furthermore, there should be ı0 > 0 such that there is no ı0-splitting map
over B5.xn/ for any n � 1.

Let v W Z �Rk ! Rk be defined by v.p; x/ D x and denote by v1; : : : ; vk its com-
ponents (they are the coordinate functions of the split factor). Observe that �vi D 0 for
any i D 1; : : : ; k and rvi � rvj D ıij for any i; j D 1; : : : ; k. In particular, vi is har-
monic on B10..z; 0k//. Hence we can apply Proposition 1.33 to get harmonic functions
vin W B9.xn/! R that converge strongly in H 1;2 to vi on B9..z; 0k//.

Observe that, thanks to [36, Theorem 1.1], we can assume that vin is CN -Lipschitz for
any n 2N and any i D 1; : : : ; k. We wish to prove that vn D .v1n; : : : ; v

k
n/ is a ı0-splitting

map on B5.xn/ for n sufficiently large.
To this end, recall that Theorem 1.32 yields strong L1-convergence of rvin � rv

j
n

to ıij on B9..z; 0k// and on B5..z; 0k// for any i; j D 1; : : : ; k (as a consequence of the
L1-convergence of rvin � rv

i
n and of r.vin C v

j
n/ � r.v

i
n C v

j
n/). In particular, due to the

uniform boundedness of the gradients we obtained above, we get

lim
n!1

 
BR.xn/

jrvin � rv
j
n � ıij j dmn D 0
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for any i; j D 1; : : : ; k and R D 5; 9. The choice R D 5 gives that the third defining
condition of ı-splitting map is satisfied for n sufficiently large and it remains to verify the
second one. We wish to prove that

lim
n!1

ˆ
B5.xn/

jHess vinj
2 dmn D 0

for any i D 1; : : : ; k. To this end we choose cut-off functions �n for the pairs B5.xn/ �
B9.xn/ as in Lemma 1.14 and, taking into account (1.22), we get

ˆ
B9.xn/

��n.jrv
i
nj
2
� 1/ dmn C CN

mn.B9.xn//

n
�

ˆ
B5.xn/

jHess vinj
2 dmn (3.3)

for any i D 1; : : : ; k and any n� 1. Since j��nj � CN by construction, and as we already
observed, jrvinj

2 � 1 converges to 0 in L1.B9/ and is uniformly bounded, we find that
the left-hand side in (3.3) converges to 0 as n!1. Hence

lim
n!1

ˆ
B5.xn/

jHess vinj
2 dmn D 0;

as claimed.

Arguing by scaling starting from Proposition 3.9, one can obtain the following state-
ment.

Corollary 3.10. If .X; d;m/ is an RCD.K;N / m.m.s., r2jKj � " and

dpmGH
�
.X; r�1d;mr

x ; x/; .R
k
�Z; .0k ; z//

�
< "

for some pointed RCD.0;N � k/ metric measure space .Z; dZ ;mZ ; z/, then there exists
a ı-splitting map u W B5r .x/! Rk .

3.1.2. Propagation of ı-splitting. In the next result we are concerned with the propaga-
tion of the property of being a ı-splitting map. We are going to prove that if ˛ 2 .0; 2/,
outside a set of small codimension-˛ content any ı-splitting map at a given scale is a
CN;˛ı

1=4-splitting map at any scale. The proof is based on a weighted maximal function
argument; see [37] for a similar argument.

Proposition 3.11. Let ˛ 2 .0; 2/ and N > 1. There exist constants CN ; CN;˛ > 0 such
that, for any 0 < ı < 1, any RCD.�1; N / m.m.s. .X; d;m/, any p 2 X and any ı-
splitting map u WD .u1; : : : ; uk/ W B2.p/! Rk , there exists a Borel set G � B1.p/ with
H h˛
5 .B1.p/ nG/ < CN

p
ım.B2.p// such that for any x 2 G,

sup
0<r<1

r˛
 
Br .x/

jHessuaj2 dm �
p
ı for any a D 1; : : : ; k; (3.4)

and
u W Br .x/! Rk is CN;˛ı1=4-splitting for any 0 < r < 1=2. (3.5)
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Proof. To prove (3.4), fix any aD 1; : : : ; k and denote byCP andCD the Poincaré and the
doubling constants over balls of radius 10 of .X; d;m/. More precisely, CP is a constant
in the .1; 2/-Poincaré inequality with � D 2 as in (1.5). This inequality is available on
RCD.K;N / m.m.s. (see for instance [54, Theorem 30.26]) with constant depending only
on K and N . In particular, since .X; d;m/ is an RCD.�1; N /, CP depends only on N .
The same conclusion holds for CD thanks to the Bishop–Gromov inequality (1.15).

Set

G WD

²
x 2 B1.p/

ˇ̌̌̌
sup
0<r<1

r˛
 
Br .x/

jHessuaj2 dm �
p
ı

³
:

We claim that H h˛
5 .B1.p/ nG/ < CN

p
ım.B2.p//. For any x 2 B1.p/ nG we choose

�x 2 .0; 1/ satisfying

�˛x

 
B�x .x/

jHessuaj2 dm >
p
ı: (3.6)

Then the family ¹B�x .x/ºx2B1.p/nG coversB1.p/ nG. Using Vitali’s covering lemma we
can find a subfamily ¹B�i .xi /ºi2N of disjoint balls such thatB1.p/ nG�

S
i2NB5�i .xi /.

This gives the sought conclusion:

H h˛
5 .B1.p/ nG/ �

X
i2N

h˛.B5�i .xi // D
X
i2N

m.B5�i .xi //

.5�i /˛

� CN
X
i2N

m.B�i .xi //

�˛i
� CN

X
i2N

1
p
ı

ˆ
B�i .xi /

jHessuaj2 dm

� CN
1
p
ı

ˆ
B2.p/

jHessuaj2 dm � CN
p
ım.B2.p//;

where we have used the definition of H h˛
5 , the Bishop–Gromov inequality, (3.6) and the

fact that u is a ı-splitting map.
In order to verify (3.5) we just need to check that, for a; b D 1; : : : ; k,

 
Br .x/

jrua � rub � ıa;bj dm < CN;˛ı
1=4 for any x 2 G; 0 < r < 1:

To see this set fa;b WD jrua � rub � ıa;bj and note that jrfa;bj � CN .jHess uaj C
jHessubj/ as a consequence of Definition 3.4 (i) and (1.23). Hence, the Poincaré inequal-
ity and (3.4) yieldˇ̌̌̌ 
Br .x/

fa;b dm �

 
Br=2.x/

fa;b dm

ˇ̌̌̌
� CP r

� 
B2r .x/

jrfa;bj
2 dm

�1=2
�CNCP

�
r2
 
B2r .x/

jHessuaj2 dmC r2
 
B2r .x/

jHessubj2 dm

�1=2
�CNCP ı

1=4r1�˛=2

for any 0 < r < 1=2. Applying a telescopic argument it is easy to see thatˇ̌̌̌ 
B
2�1

.x/

fa;b dm �

 
B
2�k

.x/

fa;b dm

ˇ̌̌̌
� C˛CNCP ı

1=4 for any k > 1:
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Therefore, for any 0 < r < 1=2 we take k 2 N such that 2�k�1 < r � 2�k and using the
fact that u W B2.p/! Rk is a ı-splitting map we get 
Br .x/

fa;b dm � CD2
N

 
B
2�k

.x/

fa;b dm

� CD2
N

ˇ̌̌̌ 
B1=2.x/

fa;b dm �

 
Br .x/

fa;b dm

ˇ̌̌̌
C CD2

N

 
B1=2.x/

fa;b dm

� 2NCDC˛CNCP ı
1=4
C 8NC 2D

 
B2.p/

fa;b dm � CN;˛ı
1=4:

For the purposes of this paper we just need to consider the case ˛ D 1 in Propo-
sition 3.11. This is related to the fact that boundaries of sets with finite perimeter are
codimension-1 objects. For simplicity we will write h for h1 below.

We are going to use the following scale invariant version of Proposition 3.11 several
times.

Corollary 3.12. Let .X; d;m; p/ be an RCD.K; N / p.m.m.s. and u W B4r .p/! Rk a
ı-splitting map for some r > 0 such that K�r2 � 4, where K� WD �min ¹K; 0º and
r < 1=2. Then there exists G � B2r .p/ with

H h
5 .B2r .p/ nG/ �H h

10r .B2r .p/ nG/ � CN
p
ı

m.B2r .p//

2r

such that u W Bs.x/! Rk is a CN ı1=4-splitting map for any x 2 G and any 0 < s < r .

Proof. Apply Proposition 3.11 to the rescaled space .X;.2r/�1d;m.B2r .p//�1m;p/.

3.2. Uniqueness of tangents and consequences

Let .X; d;m/ be an RCD.K; N / metric measure space with essential dimension n � N
(see Theorem 1.18) and letE �X be a set of locally finite perimeter. For any kD 1; : : : ;n
we set

Ak WD ¹x 2 X j .R
k ; deucl; ckLk ; 0k ; ¹xk > 0º/ 2 Tanx.X; d;m; E/; but

.Y �Rk ; % � deucl; � �Lk ; .y; 0k/; ¹xk > 0º/ 2 Tanx.X; d;m; E/

for any .Y; %; �; y/ with diam.Y / > 0º:

Let us point out that with arguments analogous to those in [47, Lemma 6.1] one can show
that Ak is a jD�E j-measurable set for any k D 1; : : : ; n.

Aiming at proving that the family ¹AkºnkD1 covers X up to a jD�E j-negligible set we
need to use the following result that has been proven in [2, appendix].

Theorem 3.13. Let .X; d;m/ be an RCD.K;N / m.m.s. and let E � X be a set of locally
finite perimeter. Then for jD�E j-a.e. x 2 X and all .Y; %; �; y; F / 2 Tanx.X; d;m; E/
one has

Tany0.Y; %; �; F / � Tanx.X; d;m; E/ for every y0 2 supp jD�F j.
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Lemma 3.14. Under the assumptions above,

jD�E j
�
X n

n[
kD1

Ak

�
D 0:

Proof. As a consequence of Theorem 3.3, together with the lower semicontinuity of the
essential dimension with respect to pmGH convergence, we have

jD�E j
�
X n

n[
kD1

A0k

�
D 0;

where

A0k WD
®
x 2 X j .Rk ; deucl; ckLk ; 0k ; ¹xk > 0º/ 2 Tanx.X; d;m; E/; but

.Rm; deucl; cmLm; 0m; ¹xm > 0º/ … Tanx.X; d;m; E/ for any m > k
¯
:

The measurability of the A0
k

’s can be verified as in the case of the Ak’s.
It is clear thatAk �A0k ; let us prove jD�E j.A0k nAk/D 0. We argue by contradiction.

If the claim is false we can find x 2 A0
k
n Ak such that the iterated tangent property of

Theorem 3.13 holds true. Since x 2 A0
k
n Ak we can find .Y; %; �; y/ 2 RCD.0; N � k/

with diam.Y / > 0 such that

.Y �Rk ; % � deucl; � �Lk ; .y; 0k/; ¹xk > 0º/ 2 Tanx.X; d;m; E/:

Moreover, Tan.y0;x;0/.Y �Rk ; % � deucl; � �Lk ; ¹xk > 0º/ � Tan.E; x/ for any .y0; x/
in Y �Rk�1, thanks to Theorem 3.13. Thus, choosing .y0; x; 0/ 2 Y �Rk such that The-
orem 3.3 holds and y0 is regular in Y we get the sought contradiction, since the essential
dimension of Y is at least 1 (otherwise diam.Y / D 0).

We are now in a position to conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. In light of Lemma 3.14 it is enough to prove that Ak coincides up
to a jD�E j-negligible set with®

x 2 X
ˇ̌

Tanx.X; d;m; E/ D ¹.Rk ; deucl; ckLk ; 0k ; ¹xk > 0º/º
¯
:

Assume without loss of generality that Ak � B2.p/ for some p 2 X . We claim that, for
any � > 0, there exists G� � Ak with

H h
5 .Ak nG

�/ � CN�Per.E;B2.p// (3.7)

such that, for any x 2 G� and any .Y; %; �; y/ 2 Tanx.X; d;m/, there exists a pointed
RCD.0;N � k/ m.m.s. .Z; dZ ;mZ ; z/ satisfying

dpmGH
�
.Y; %; �; y/; .Rk �Z; .0; z//

�
� �: (3.8)

Observe that the claim implies our conclusion. Indeed, if we fix � > 0 and set �i WD �2�i

then G� WD
S
i2N G

�i satisfies H h
5 .Ak nG�/D 0 and thus Per.E;Ak nG�/D 0 thanks
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to Lemma 1.10. Moreover, for any x 2 G� , (3.8) holds. We conclude by observing that
G WD

T
k2N G2�k still satisfies Per.E;Ak nG/D 0 and any tangent cone at x 2 G splits

off a factor Rk . By definition of Ak we deduce that the only tangent at x 2 G is the
Euclidean space of dimension k.

Let us pass to the verification of the claim. Fix ı 2 .0; 1=2/ and take " > 0 as in
Proposition 3.9. Of course we can assume " � ı. We wish to prove that there exists a
disjoint family ¹Bri .xi /ºi2N of balls such that r2i jKj � " for any i 2 N and

(i) Ak \ B1.p/ �
[
i2N

B5ri .xi /;

(ii) dpmGH
�
.X; r�1i d;mri

x ; xi /; .R
k ; deucl; ckLk ; 0k/

�
� ";

(iii)
!k�1

!k
.1 � "/

m.Bri .xi //

ri
� Per.E;Bri .xi // �

!k�1

!k
.1C "/

m.Bri .xi //

ri
.

Indeed, for any x 2 Ak there exists a sequence of radii ri ! 0 such that

lim
i!1

dpmGH
�
.X; r�1i d;mri

x ; x/; .R
k ; deucl;L

k ; 0k/
�
D 0;

lim
i!1

ri Per.E;Bri .x//
m.Bri .x//

D
!k�1

!k
;

as a consequence of Theorem 3.3; see also (1.16). Therefore, for any x 2 Ak we can
choose r2x jKj � " such that the pair .x; rx/ satisfies (ii) and (iii). In order to get a disjoint
family of balls satisfying (i) we have just to apply Vitali’s Lemma to ¹Brx .x/ºx2Ak\B1.p/.

Let us now focus on a single ball B20ri .xi / � X . Corollary 3.10 yields the existence
of a ı-splitting map

ui W B5ri .xi /! Rk :

Thanks to Corollary 3.12 we can find Gi � B5ri .xi / with

H h
5 .B5ri .xi / nGi / � CN

p
ı

m.B5ri .xi //

5ri
(3.9)

and such that ui W Bs.x/! Rk is CN ı1=4-splitting for any x 2 Gi and any 0 < s < 5ri .
Applying Corollary 3.8, up to assuming ı small enough, we deduce that at any x 2 Gi ,
(3.8) holds true.

To conclude let us verify that G WD
S
i2N Gi satisfies (3.7). Using (iii), (3.9) and the

Bishop–Gromov inequality (1.15) we get

H h
5 .Ak nG/ �

X
i2N

H h1
5 .B5ri .xi / nGi / �

X
i2N

CN
p
ı

m.B5ri .xi //

5ri

� CN
p
ı
X
i2N

m.Bri .xi //

ri
� CN

p
ı
X
i2N

Per.E;Bri .xi //

� CN
p
ı Per.E;B2.p//:

Since we can assume ı < �2 we get the sought estimate.
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Let .X; d;m/ be an RCD.K; N / metric measure space and E � X a set of locally
finite perimeter. For any k D 1; : : : ; n, where n is the essential dimension of .X; d;m/,
we set

FkE WD
®
x 2 X

ˇ̌
Tanx.X; d;m; E/ D ¹.Rk ; deucl; ckLk ; 0k ; ¹xk > 0º/º

¯
:

We know thanks to Theorem 3.2 that Per.E; �/ is concentrated on F E WD
Sn
kD1 FkE

and, from now on, we shall call F E the reduced boundary of E.
The result about uniqueness of tangents that we have just proved allows us to obtain a

representation formula for the perimeter measure in terms of the codimension-1Hausdorff
measure.

Corollary 3.15. Let .X; d;m/ be an RCD.K;N / m.m.s. with essential dimension n. Let
E � X be a set of locally finite perimeter. Then

jD�E j D

nX
kD1

!k�1

!k
H h FkE: (3.10)

Proof. The proof can be obtained as in the case of the representation formula for the
perimeter on non-collapsed spaces obtained in [2, Corollary 4.7], relying on [45, Theo-
rem 3] in place of [45, Theorem 5]. We just report here the key computation.

If x 2 FkE, then we can compute

lim
r!0

r jD�E j.Br .x//

m.Br .x//
D lim

r!0

r jD�E j.Br .x//

C.x; r/
�
C.x; r/

m.Br .x//
D lim
r!0

jDr�E j.B1.x//

mr
x.B1.x//

D
H k�1.B1.0//

H k.B1.0//
D
!k�1

!k
;

where the regularity of the point and the weak convergence of the rescaled perimeter
measures to the perimeter measure of a half-space play a role.

This computation, together with the rigid structure of the tangent, allows us then to
infer, arguing as in the non-collapsed case, that

lim
r!0

sup
x2Bs.y/; s�r

sjD�E j.Bs.y//

m.Bs.y//
D
!k�1

!k
;

which is the density estimate needed to obtain the representation formula (3.10).

4. Rectifiability of the reduced boundary

The main achievement of this section is a rectifiability result for the reduced boundary of
sets with finite perimeter. With this theorem we complete the picture of the generalization
of De Giorgi’s theorem to the framework of RCD.K;N / spaces.

Theorem 4.1. Let .X; d;m/ be an RCD.K; N / m.m.s. and E � X be a set of locally
finite perimeter. Then, for any k D 1; : : : ; n, FkE is .jD�E j; .k � 1//-rectifiable.



E. Bruè, E. Pasqualetto, D. Semola 452

Recall that a set is .jD�E j; `/-rectifiable if up to a jD�E j-negligible set it can be
covered by

S
i2N Ai where any Ai is bi-Lipschitz equivalent to a Borel subset of R`.

When specialized to the non-collapsed case (see [22]), where the only non-empty
regular set is the top-dimensional one, Theorem 4.1 turns into

Corollary 4.2. Let .X; d;m/ be a non-collapsed RCD.K; N / m.m.s. and E � X a set
of locally finite perimeter. Then F EDFNE is .jD�E j; N� 1/-rectifiable .equivalently,
.HN�1; N� 1/-rectifiable, where HN�1 denotes the .N � 1/-dimensional Hausdorff
measure/. Furthermore,2

jD�E j D HN�1 F E: (4.1)

Remark 4.3. We point out that, given any " > 0, the maps providing rectifiability of the
reduced boundary in Theorem 4.1 and Corollary 4.2 can be taken .1 C "/-bi-Lipschitz
(compare with the analogous statement in [47]).

In particular, if .X;d;m/ is non-collapsed, then .X;d; jD�E j/ is a strongly jD�E j-rec-
tifiable m.m.s. according to [34].

Remark 4.4. It is worth mentioning that Theorem 4.1 is stronger than [47, Theorem 1.1].
Indeed, given an RCD.K;N /m.m.s. .Z;dZ ;mZ/we can considerX WDZ �R endowed
with the product structure, and the set E WD ¹.z; t/ 2 Z �R j t > 0º of finite perimeter.
Applying Theorem 4.1 to E � X we get the rectifiability result for Z.

Let us outline the strategy of the proof of Theorem 4.1. First of all, up to intersecting
with a ball and thanks to the locality of perimeter and tangents, we can assume that E
has finite measure and perimeter. The bi-Lipschitz maps from subsets of FkE to Rk�1

providing rectifiability are going to be suitable approximations of the k � 1 coordinate
maps over the hyperplane where the perimeter concentrates after the blow-up; or, in better
terms, they will be the first k � 1 components of a .k; ı/-splitting map “ı-orthogonal to
the exterior normal �E to the boundary of E”.

Proving existence of such maps requires some technical work which builds upon the
Gauss–Green formula of Theorem 2.4. The rigorous statement is as follows.

Proposition 4.5. Let .X; d;m/ be an RCD.K; N / m.m.s. and E � X a set of finite
perimeter and measure. For any ı > 0, r0 > 0 and jD�E j-a.e. x 2 FkE there exist
r D rx;ı < r0 and a ı-splitting map u D .u1; : : : ; uk�1/ W Br .x/! Rk�1 such that

r

m.Br .x//

ˆ
Br .x/

j� � ru˛j djD�E j < ı for ˛ D 1; : : : ; k � 1:

The second step in the proof of Theorem 4.1 is to show that the map built in Propo-
sition 4.5 is indeed bi-Lipschitz onto its image if restricted to suitable subsets of FkE

(see Proposition 4.7 below for the rigorous statement). These subsets are obtained by col-
lecting points x 2 FkE such that Bs.x/ \ E is "-close, in a suitable sense, to Bs.0k/ \
¹xk > 0º for any s � r0, where r0 > 0 is a fixed radius.

2In [2] it was proved that jD�E j D �N�1 F E, where � denotes the spherical Hausdorff
measure. Coincidence with the Hausdorff measure H is a consequence of rectifiability.
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Definition 4.6. Given " > 0 and r0 > 0, we define .FkE/r0;" as the set of points x 2FkE

satisfying

(i) dpmGH..X; s
�1d; m

m.Bs.x//
; x/; .Rk ; deucl;

1
!k

Lk ; 0k// < " for any s � r0;

(ii) ˇ̌̌̌
m.Bs.x/ \E/

m.Bs.x//
�
1

2

ˇ̌̌̌
C

ˇ̌̌̌
sjD�E j.Bs.x//

m.Bs.x//
�
!k�1

!k

ˇ̌̌̌
< " for any s � r0: (4.2)

Observe that, as a consequence of Theorem 3.2 and Remark 1.17, for any " > 0 we
have

FkE D
[

0<r<1

.FkE/r;" and .FkE/r;" � .FkE/r 0;" for r 0 < r:

Hence for any � > 0 there exists r D r.�/ > 0 such that

jD�E j.FkE n .FkE/s;"/ < � for any 0 < s < r: (4.3)

Proposition 4.7. Let N > 1, K 2 R and k 2 Œ1; N �. For any � > 0 there exists " D
".�; N / < � such that if .X; d;m/ is an RCD.K; N / m.m.s., E � X is a set of finite
perimeter and finite measure, p 2 .FkE/2s;" for some s 2 .0; jKj�1=2/ and there exists
an "-splitting map u W B2s.p/! Rk�1 such that

s

m.B2s.x//

ˆ
B2s.p/

j� � ruaj djD�E j < " for any a D 1; : : : ; k � 1, (4.4)

then there exists G � Bs.p/ such that

(i) G \ .FkE/2s;" is bi-Lipschitz to a Borel subset of Rk�1, more precisely,ˇ̌
ju.x/ � u.y/j � d.x; y/

ˇ̌
� CN�d.x; y/; 8x; y 2 .FkE/2s;" \GI (4.5)

(ii) H h
5 .Bs.p/ nG/ < CN�m.Bs.p//=s.

Let us now prove Theorem 4.1 assuming Propositions 4.5 and 4.7.

Proof of Theorem 4.1. Assume without loss of generality that E has finite perimeter and
measure, and that FkE � B2.p/ for some p 2 X . We claim that, for any � > 0, we can
decompose FkE D G

� [ B� [R� , where G� is .k � 1/-rectifiable and

H h
5 .B

�/C jD�E j.R
�/ � CN;K jD�E j.B2.p//�C �: (4.6)

Observe that the claim easily gives the sought conclusion. Indeed, setting �i WD �2�i ,
G� WD

S
i G

�i and R� WD
S
i2N R

�i , G� is still .k � 1/-rectifiable and

H h
5 ..FkE nG�/ nR�/ D 0I

hence, as a consequence of Lemma 1.10, jD�E j.FkE nG�/ nR�/ D 0. Therefore

jD�E j.FkE nG�/ � jD�E j.R�/ � CN jD�E j.B2.p//�C �:
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Setting G WD
S
i2N G2�i , we find that G is still .k � 1/-rectifiable and coincides with

FkE up to a jD�E j-negligible set.
Let us now prove the claim. To this end, fix r > 0 and " > 0. We cover .FkE/r;"

with balls of radius smaller than r=5 with centre in .FkE/r;" such that the assumptions of
Proposition 4.7 are satisfied. The possibility of building such a covering is a consequence
of Theorem 3.2 and of Proposition 4.5. By Vitali’s lemma, we can extract a disjoint family
¹Bri=5.xi /ºi2N such that .FkE/r;" �

S
i Bri .xi /. Applying Proposition 4.7 above, for

any i 2 N we can find Gi � Bri .xi / such that Gi \ .FkE/r;" is .k � 1/-rectifiable and
H h
5 .Bri .xi / nGi / < CN�m.Bri .xi //=ri . SetG�r WD .FkE/r;" \

S
i Gi and observe that

H h
5 ..FkE/r;" nG

�
r / �

X
i2N

H h
5 .Bri .xi / nGi / �

X
i2N

CN�
m.Bri .xi //

ri

� CN�
X
i2N

m.Bri=5.xi //

ri=5
� CN;K�

X
i2N

jD�E j.Bri=5.xi //

� CN;K�jD�E j.B2.p//;

where we have used the Bishop–Gromov inequality (1.15) and

m.Bri=5.xi //

ri=5
� C.k/jD�E j.Bri=5.xi //;

which holds true provided " is small enough.
Setting B�r WD .FkE/r;" nG

�
r , the argument above gives the decomposition

.FkE/r;" D G
�
r [ B

�
r ;

whereG�r is .k � 1/-rectifiable and H h
5 .B

�
r /�CN;K�jD�E j.B2.p//. Let us now choose

r > 0 small enough to have (4.3). This allows us to write

FkE D G
�
r [ B

�
r [ .FkE n .FkE/r;"/ DW G

�
[ B� [R�

and to conclude the proof.

4.1. Proof of Proposition 4.5

Let us start by recalling that one of the main results of the previous part of the paper
was that the exterior normal is indeed an element of L2E .TX/ (see Theorem 2.4). In
the following, to simplify the notation, we shall write v in place of trE .v/ for any v in
H
1;2
C .TX/ \D.div/.

Definition 4.8. Let .X; d;m/ be an RCD.K;N / m.m.s. and let E � X be a set of finite
perimeter. Given x 2 X and a sequence ri # 0 we say that ¹uri WD .u

ri
1 ; : : : ; u

ri
k�1

/ W

Bri .x/! Rk�1ºi2N is a good approximation of the boundary of E at x if the following
conditions hold true:

(i) there exists a sequence ıi ! 0 such that uri W Bri .x/! Rk�1 is a ıi -splitting map
with uri .x/ D 0;
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(ii) there exists .Z; dZ/ that realizes the convergences

.X; r�1i d;mri
x ; x/!.Rk ;deucl; ckLk ; 0k/ andEri!¹xk>0º locally strongly in BV;

r�1i u
ri
˛ ! x˛ H

1;2-strongly on B1.0k/ along the sequence

.X; r�1i d;mri
x ; x/! .Rk ; deucl; ckLk ; 0k/

for any ˛ D 1; : : : ; k � 1.

Lemma 4.9. Let .X; d;m/ be an RCD.K;N / m.m.s. and E � X a set of finite perimeter
and finite measure. Then for any p 2 X and any " > 0 there exists V 2 TestVE .X/ such
that ˆ

B2.p/

j� � V j2 djD�E j � ";

where � is the exterior normal of E. Moreover, there exists a set G � B1.p/ with
H h.B1.p/ nG/ � CK;N

p
" such that, for any x 2 G,

lim sup
r!0

r

m.Br .x//

ˆ
Br .x/

j� � V j2 djD�E j �
p
":

Proof. The first conclusion follows from Theorem 2.4, where we proved that the nor-
mal is an element of L2E .TX/, and Lemma 2.9, yielding density of trE .TestVE .X// in
L2E .TX/.

To prove the second part of the statement we set

G WD

²
x 2 B1.p/

ˇ̌̌̌
lim sup
r#0

r

m.Br .x//

ˆ
Br .x/

j� � V j2 djD�E j �
p
"

³
:

Then, for any r0 > 0 and any x 2 B1.p/ nG, there exists rx < r0 such that

rx

m.Brx .x//

ˆ
Brx .x/

j� � V j2 djD�E j >
p
":

Hence, applying Vitali’s covering theorem we can find a disjoint set ¹Bri .xi /º of balls
such that ¹B5ri .xi /º is a covering of B1.p/ nG. Now we can estimate, for any r0 > 0,

H h
5r0
.B1.p/ nG/ �

1X
iD0

m.B5ri .xi //

5ri
� CK;N

1X
iD0

m.Bri .xi //

ri

�
CK;N
p
"

1X
iD0

ˆ
Bri .xi /

j� � V j2 djD�E j �
CK;N
p
"

ˆ
B2.p/

j� � V j2 djD�E j � CK;N
p
":

The conclusion follows by letting r0 # 0.

Proof of Proposition 4.5. The proof is divided into three steps. The aim of the first one is
to prove that good approximations of the boundary are regular enough to guarantee that
the scalar product between their gradient and the gradient of any given test function leaves
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a well-defined trace over the reduced boundary of E. In the second step we combine the
outcome of the first one, the approximation result of Lemma 4.9 and orthogonality in the
weak sense between the normal vector and the coordinates of its orthogonal hyperplane
guaranteed by the Gauss–Green formula, to deduce that the gradients of good approxima-
tions of the boundary leave a trace even when coupled with the normal to the boundary,
and that this trace is 0. In the last step we prove existence of good approximations of the
boundary and combine it with Steps 1 and 2 to get the sought conclusion.

Step 1. Observe that it suffices to restrict attention to the ball B1.p/ � X for any p 2 X .
We claim that for any function � 2 Test.X; d;m/ there exists a jD�E j-negligible

set N � FkE \ B1.p/ such that, for any x 2 FkE \ B1.p/ n N and any good
approximation of the boundary of E at x with radii ri # 0 and maps ¹uri WD
.u
ri
1 ; : : : ; u

ri
k�1

/ j Bri .x/ ! Rk�1ºi2N , there exist a subsequence rij and c.x/ D

.c1.x/; : : : ; ck�1.x// 2 Rk�1 such that

lim
j!1

rij

m.Brij .x//

ˆ
Brij

.x/

jru
rij
˛ � r� � c˛.x/j

2 djD�E j D 0

for any ˛ D 1; : : : ; k � 1. (4.7)

Assume without loss of generality that jr�j � 1. Let us also fix ˛ 2 ¹1; : : : ; k � 1º
and set gi WD ru

ri
˛ � r�. We have

(i) kgikL1.Bri .x// � CN ;

(ii) r2i
ffl
Bri .x/

jrgi j
2 dm � 2ıi C CN r

2
i

ffl
Bri .x/

jHess �j2 dm, where ıi is as in Defini-
tion 4.8.

Since jHess�j 2 L2.B2.p/;m/, by Lemmas 1.10 and 1.11 we deduce that

lim
r!0

r2
 
Br .x/

jHess�j2 dm D 0

for any x 2 X outside a jD�E j-negligible set depending only on �. Therefore we can
assume that x does not belong to this set, obtaining

lim
i!1

r2i

 
Bri .x/

jrgi j
2 dm D 0: (4.8)

This gives that, up to a subsequence, gi ! c˛.x/ H
1;2-strongly on B1.0k/ along the

sequence in Definition 4.8 (ii). Here we have used (1.16). Taking into account Proposi-
tion 1.27, it follows that gi � c˛.x/! 0 H 1;2-strongly on B1.0k/ and thus, reading the
convergence in the starting space,

 
Brij

.x/

jgij � c˛.x/j
2 dm C r2ij

 
Brij

.x/

jrgij j
2 dm DW "j ! 0 as j !1: (4.9)

We wish to prove that, up to excluding another jD�E j-negligible set depending only
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on E, (4.9) gives (4.7). More precisely, we are going to prove that (4.9) implies (4.7) at
any x 2 X such that x 2 Er0;C for some r0 > 0 and C > 1, where

Er0;C WD

²
y 2 X

ˇ̌̌̌
C�1 �

r jD�E j.Br .y//

m.Br .y//
� C 8r < r0

³
; (4.10)

and

lim
r!0

jD�E j.Er0;C \ Br .x//

jD�E j.Br .x//
D 1: (4.11)

Observe that (4.10) and (4.11) are satisfied at jD�E j-a.e. point in F E thanks to Theo-
rem 3.2, the asymptotic doubling property of jD�E j and elementary considerations. In
order to keep notations short, from now on we set rj WD rij and gj WD gij .

We claim that, for any j such that rj � r0=5,

jD�E j
�
Er0;C \Brj .x/\ ¹jgj � c˛.x/j

2
�
p
"j º
�
� CCN;K

p
"j

m.Brj .x//

rj
; (4.12)

where "j is as in (4.9) and r0 and C are as in (4.10).
Notice that (4.12), together with the Chebyshev inequality, (i) and (4.11), gives (4.7).

To establish (4.12), fix any j such that rj � r0=5 and set

.Xj ; dj ;mj ; x/ WD

�
X; r�1j d;

m

m.Brj .x//
; x

�
:

With a slight abuse of notation we use the notations Er0;C and gj also in Xj . Observe
that, when read in Xj , (4.9) turns into

 
B
j
1
.x/

jgj � c˛.x/j
2 dmj C

 
B
j
1
.x/

jrgj j
2 dmj � "j :

Moreover, a telescopic argument as in the proof of Proposition 3.11 gives

B
j
1 .x/ \Er0;C \ ¹jgj � c˛.x/j

2
� CN;K

p
"j º

� B
j
1 .x/ \Er0;C \

²
z

ˇ̌̌̌
sup
0<s<1

s

 
B
j
s .z/

jrgj j
2 dmj >

p
"j

³
:

Using Vitali’s lemma we can find a disjoint family ¹Bjsi .zi /ºi2N with si � 1 and zi 2
B
j
1 .x/ \Er0;C \ ¹z j sup0<s<1 s

ffl
B
j
s .z/
jrgj j

2 dmj >
p
"j º for any i 2 N such that

B
j
1 .x/ \Er0;C \

²
z

ˇ̌̌̌
sup
0<s<1

s

 
B
j
s .z/

jrgj j
2 dmj >

p
"j

³
�

[
i2N

B
j
5si
.zi /:

Taking into account (4.10) and the defining identities

Bjsi .zi / D Brj si .zi /; mj D
m

m.Brj .x//
;
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we get

rj

m.Brj .x//
jD�E j.Er0;C \ Brj .x/ \ ¹jgj � c˛.x/j

2
�
p
"j º/

�
rj

m.Brj .x//

X
i2N

jD�E j.B5rj si .zi // �
CCN;Krj

m.Brj .x//

X
i2N

m.Brj si .zi //

rj si

D CCN;K
X
i2N

mj .B
j
si .zi //

si
�
CCN;K
p
"j

ˆ
B
j
1
.x/

jrgj j
2 dmj � CCN;K

p
"j :

Step 2. We wish to prove that, for jD�E j-a.e. x 2 FkE and any good approxima-
tion of the boundary of E at x with radii ri # 0 and maps ¹uri WD .u

ri
1 ; : : : ; u

ri
k�1

/ j

Bri .x/! Rk�1ºi2N , there exists a subsequence rij ! 0 such that

lim
j!1

rij

m.Brij .x//

ˆ
Brij

.x/

j� � ru
rij
˛ j djD�E j D 0 for any ˛ D 1; : : : ; k � 1: (4.13)

Let us restrict attention as above to FkE \ B1.p/.
We claim that for any " > 0 there isG" �B1.p/\FkE with H h.B1.p/\FkE nG"/

� CN;K
p
" and such that, for any x 2 G" and any good approximation ¹uri WD

.u
ri
1 ; : : : ; u

ri
k�1

/ j Bri .x/ ! Rk�1ºi2N of the boundary of E at x, there exists a sub-
sequence rij ! 0 satisfying

lim sup
j!1

rij

m.Brij .x//

ˆ
Brij

.x/

j� � ru
rij
˛ j djD�E j � CN;K"1=4 for any ˛ D 1; : : : ; k � 1:

(4.14)

Before proving the claim let us see how it implies (4.13). Fix " > 0, set "i WD "2�i

and take G" WD
S
i2N G"i . Then we have jD�E j.B1.p/ \ FkE n G

"/ D 0, thanks to
Lemma 1.10, and (4.14) holds for any x 2 G". Therefore

T
i2N G"i has full jD�E j-

measure in B1.p/ \ FkE and has the sought property.
The remaining part of this step is the proof of (4.14). Fix " > 0, and take G and V as

in Lemma 4.9. Recalling that any test vector field can be represented as
Pm
iD1 �ir�i with

�i ; �i 2 Test.X; d;m/ for some m 2 N and using Step 1, we conclude that there exists
G" � G \ FkE with jD�E j.G \ FkE nG"/ D 0 and such that, for any x 2 G" and any
good approximation ¹uri WD .uri1 ; : : : ; u

ri
k�1

/ W Bri .x/! Rk�1ºi2N of the boundary of E
at x, there exists c.x/ WD .c1.x/; : : : ; ck�1.x// 2 Rk�1 and a subsequence rij ! 0 such
that

lim
j!1

rij

m.Brij .x//

ˆ
Brij

.x/

jru
rij
˛ � V � c˛.x/j

2 djD�E j D 0 for ˛ D 1; : : : ; k � 1:

(4.15)
In order to conclude the proof it suffices to show that

jc.x/j � CK;N "
1=4: (4.16)
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Indeed, in that case,

lim sup
j!1

rij

m.Brij .x//

ˆ
Brij

.x/

j� � ru
rij
˛ j djD�E j

� CN lim sup
j!1

�
rij

m.Brij .x//

ˆ
Brij

.x/

j� � V j2 djD�E j
�1=2

C lim sup
j!1

CN rij

m.Brij .x//

ˆ
Brij

.x/

jru
rij
˛ � V j djD�E j

� CN "
1=4
C lim
j!1

CN

�
rij

m.Brij .x//

ˆ
Brij

.x/

jru
rij
˛ � V � c˛.x/j

2 djD�E j
�1=2

C jc˛.x/j
rij jD�E j.Brij

.x//

m.Brij .x//

� CK;N "
1=4;

where we have used (4.15), (4.16) and the fact that x 2 FkE.
To prove (4.16) we simplify the notation setting rij DW rj . Choose a smooth function

 1 W Rk ! R with compact support in B1.0k/ and such that
´
¹xkD0º

 1 dLk�1 DW

Ck > 0. Then we consider a sequence  j 2 Lip.X; d/ with supp. j / � Brj .x/,
k j kL1 � 2 and  j !  1 strongly in H 1;2 along the sequence in Definition 4.8 (ii),
whose existence is proved in Lemma 1.31. Observe now that for ˛ D 1; : : : ; k � 1,

lim
j!1

rj

m.Brj .x//

ˆ
E

r j � ru
rj
˛ dm D ck

ˆ
¹xk>0º

r 1 � e˛ dLk
D 0; (4.17)

lim
j!1

rj

m.Brj .x//

ˆ
 jV � ru

rj
˛ djD�E j D Ckc˛.x/; (4.18)

where the last equality in (4.17) is obtained by integrating by parts, and to prove (4.18)
we use (4.15). Building upon (4.17), (4.18), Theorem 2.4 and Lemma 4.9, we get (4.15):

Ckjc˛.x/j D

ˇ̌̌̌
lim
j!1

rj

m.Brj .x//

�ˆ
E

r j � ru
rj
˛ dmC

ˆ
 jV � ru

rj
˛ djD�E j

�ˇ̌̌̌
D

ˇ̌̌̌
lim
j!1

rj

m.Brj .x//

�
�

ˆ
 j � � ru

rj
˛ djD�E j C

ˆ
 jV � ru

rj
˛ djD�E j

�ˇ̌̌̌
� lim sup

j!1

CN rj

m.Brj .x//

ˆ
Brj .x/

j� � V j djD�E j � CN;K"1=4:

Note that in order to apply the Gauss–Green formula in the previous estimate, the fact that
u
rj
˛ is locally the restriction of an H 2;2.X; d;m/ function (see Remark 3.5) plays a role.

Step 3. In order to conclude the proof we just observe that, since

dpmGH
�
.X; r�1d;mr

x ; x/; .R
k ; deucl; ckLk ; 0k/

�
! 0
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as r # 0 and the blow-up of the set of finite perimeter is a half-space (in the sense of
BVloc convergence, as pointed out after Definition 3.1), a slight modification of Proposi-
tion 3.93 provides, for any sequence ri # 0, a good approximation of the boundary of E at
x with maps ¹uri WD .uri1 ; : : : ; u

ri
k�1

/ W Bri .x/! Rk�1ºi2N (observe that Proposition 3.9
gives ıi -splitting maps defined on balls of radius 1 of the rescaled spaces for a sequence
ıi # 0, and then rescale these functions). The sought conclusion follows now from what
we obtained in the previous step.

4.2. Proof of Proposition 4.7

The proof is divided into three steps.
The aim of the first one is to provide a bridge between analysis and geometry suitable

for this context. We prove that whenever at a certain location and scale the set of finite
perimeter is quantitatively close to a half-space in a Euclidean space and there exists
a .k � 1; ı/-splitting map which is also ı-orthogonal to the normal vector in the sense
of (4.4), then the .k � 1; ı/-splitting map is an �-isometry (in the scale invariant sense)
when restricted to the support of the perimeter.

The second step is analytic and dedicated to the propagation of the ı-orthogonality
condition.

In the last one we get the bi-Lipschitz property, since a map which is an �-isometry
(in the scale invariant sense) at any location and scale is bi-Lipschitz.

Step 1. Let N > 0, K 2 R and k 2 Œ1; N �, k 2 N. We claim that, for any � > 0, there
exists ı D ı�;N � � such that the following holds. For any pointed RCD.K; N / m.m.s.
.X; d;m; x/ and for any set of finite perimeter and finite measure E � X such that, for
some 0 < r < jKj�1=2,

(i) dpmGH..X; .2r/
�1d; m

m.B2r .x//
; x/; .Rk ; deucl;

1
!k

Lk ; 0k// < ı;

(ii) ˇ̌̌̌
m.Bt .x/ \E/

m.Bt .x//
�
1

2

ˇ̌̌̌
C

ˇ̌̌̌
t jD�E j.Bt .x//

m.Bt .x//
�
!k�1

!k

ˇ̌̌̌
< ı for any t � 2r I (4.19)

(iii) there exists a ı-splitting map u WD .u1; : : : ; uk�1/ W B2r .x/! Rk�1 satisfying

r

m.B2r .x//

ˆ
B2r .x/

j� � ruaj djD�E j < ı for any a D 1; : : : ; k � 1, (4.20)

the map u W suppjD�E j \ Br .x/! BRk�1
r .u.x// is an �r-GH isometry.

By scaling it is enough to prove the claim when r D 1=2 and jKj � 4. Let us argue
by contradiction. Then we could find � > 0, a sequence .Xn; dn;mn; En; xn/, points
zn1 ; z

n
2 2 supp jD�En j \B1=2.xn/, and 1=n-splitting maps un WB1.xn/!Rk�1 satisfying

3With the splitting functions defined on balls of radius 1 in place of 5.
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(i)–(iii) with ı D 1=n, un.xn/ D 0 andˇ̌
jun.zn1 / � u

n.zn2 /j � dn.z
n
1 ; z

n
2 /
ˇ̌
� �; 8n 2 N: (4.21)

Notice that dn.zn1 ; z
n
2 / � min ¹�=.CN � 1/; �º since un is CN -Lipschitz.

Observe that, by (i), .Xn; dn; mn; xn/ converges in the pmGH topology to
.Rk ; deucl;

1
!k

Lk ; 0k/. We can assume the existence of a metric space .Z; dZ/ realizing
this convergence (see Section 1.2.3). Since En satisfies the boundˇ̌̌̌
mn.En\Bt .xn//

mn.Bt .xn//
�
1

2

ˇ̌̌̌
C

ˇ̌̌̌
t jD�En j.Bt .xn//

mn.Bt .xn//
�
!k�1

!k

ˇ̌̌̌
< 1=n for any t � 1; (4.22)

up to extracting a subsequence, En \ B1.xn/! F \ B1.0
k/ L1-strongly, where F is of

locally finite perimeter in B1.0k/ thanks to Proposition 1.28.
Up to extracting again a subsequence we can assume un ! u1 strongly in H 1;2 on

B1.0
k/, where u1 W BRk

1 .0/! Rk�1 is the restriction of an orthogonal projection, as a
consequence of Proposition 1.21 and Theorem 1.32. Without loss of generality we assume
that u1.x/ D .x1; : : : ; xk�1/ for any x 2 B1.0k/.

We claim that Lk..F \ B1.0
k//4 .¹xk > 0º \ B1.0

k/// D 0 and
ˆ
g djD�En j !

ˆ
g djD�¹xk>0ºj for any g 2 C.Z/ with supp.g/ � B1=2.0k/:

(4.23)

This would imply that z11 ; z
1
2 2 ¹xk D 0º, and therefore ju1.z11 / � u

1.z12 /j D

deucl.z
1
1 ; z

1
2 /, which contradicts (4.21).

In order to verify the claim we argue as in the proof of the second step of Proposi-
tion 4.5. We choose a smooth function  1 W Rk ! R with compact support in B1.0k/.
Then we consider a sequence  n 2 Lip.Xn; dn/ with supp. n/ � B1.xn/, k nkL1 C
k jr nj kL1 � 4 and  n !  1 strongly in H 1;2 along the sequence .Xn; dn;mn; xn/,
whose existence is proved in Lemma 1.31. Observe now that

r n � ru
n
a ! r 1 � ea D

@ 1

@xa
L2-strongly, for any a D 1; : : : ; k � 1;

by Proposition 1.27 (i, iii). This observation, along with Proposition 1.27 (ii) and
Remark 1.25, gives

ˆ
F

@ 1

@xa
d

Lk

!k
D lim
n!1

ˆ
En

r n � ru
n
a dmn: (4.24)

We can now use (4.24), Theorem 2.4 and (iii) to conclude thatˇ̌̌̌
ˇˆF @ 1@xa d

Lk

!k

ˇ̌̌̌
ˇ D lim

n!1

ˇ̌̌̌ˆ
En

r n � ru
n
a dmn

ˇ̌̌̌
D lim

n!1

ˇ̌̌̌ˆ
 nru

n
a � �En djD�En j

ˇ̌̌̌
� lim

n!1

ˆ
j nj jru

n
a � �En j djD�En j D 0
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for a D 1; : : : ; k � 1. Since  1 2 C1c .B1.0
k// is arbitrary we obtain

Lk
�
.F \ B1.0

k//4 .¹xk > �º \ B1.0
k//
�
D 0 for some � 2 R.

Using again (4.22) we get Lk.F \ B1.0
k// D !k=2 which forces � D 0.

Let us finally prove (4.23). To this end we use again (4.22) with t D 1=2, obtaining

lim
n!1
jD�En j.B1=2.xn// D

!k�1

2k�1
D jD�¹xk>0ºj.B1=2.0

k//:

We can now apply the third conclusion of Proposition 1.28 to conclude.

Step 2. By assumption there exists an "-splitting map u W B2s.p/!Rk�1 such that (4.4)
holds true. We wish to propagate now both the "-splitting condition and the orthogonality
condition (4.4) at any scale and point outside a set of small H h

5 -measure. More pre-
cisely, we are going to prove that there exists a set G � Bs.p/ with H h

5 .Bs.p/ n G/ �

CN
p
"m.Bs.p//=s such that

(i) for any x 2 G and 0 < r < s, u W Br .x/! Rk�1 is CN "1=4-splitting;

(ii) for any x 2 G and 0 < r < s,

r

m.Br .x//

ˆ
Br .x/

j� � ruaj djD�E j <
p
" for a D 1; : : : ; k � 1: (4.25)

We can find a set G0 satisfying the measure estimate and (i) by applying Corollary 3.12.
Hence it is enough to find a set G00 satisfying the measure estimate and (ii) and to take
G WD G0 \G00.

To do so we apply a standard maximal argument. Fix a D 1; : : : ; k � 1 and set

M.x/ WD sup
0<r<s

r

m.Br .x//

ˆ
Br .x/

j� � ruaj djD�E j:

We claim that G00 WD ¹x 2 Bs.p/ jM.x/ <
p
"º has the sought properties.

Indeed, for any x 2 Bs.p/ nG00, there exists �x 2 .0; s/ such that

�x

m.B�x .x//

ˆ
B�x .x/

j� � ruaj djD�E j �
p
": (4.26)

Applying the Vitali lemma to the family ¹B�x .x/ºx2Bs.p/nG00 we find a disjoint subfamily
¹Bri .xi /ºi2N such thatBs.p/ nG00�

S
i B5ri .xi /. Taking into account the disjointedness

of the covering, (4.26), (4.4) and the Bishop–Gromov inequality, we can compute

H h
5 .Bs.p/ nG

00/ �
X
i2N

h.B5ri .xi // D
X
i2N

m.B5ri .xi //

5ri

� CN
X
i2N

m.Bri .xi //

ri
� CN

X
i2N

"�1=2
ˆ
Bri .xi /

j� � ruaj djD�E j

� CN "
�1=2

ˆ
B2s.p/

j� � ruaj djD�E j � CN
p
"

m.B2s.p//

s
:
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Step 3. We claim now that for any � > 0 there exists " D "�;N > 0 small enough such
that for any 0 < r < s and x 2 G \ .FkE/2s;" the map

u D .u1; : : : ; uk�1/ W supp jD�E j \ Br .x/! Rk�1 is an r�-GH isometry. (4.27)

The claim is a consequence of Step 1. Indeed, for any x 2 G \ .FkE/2s;" and any r 2
.0; s/, conditions (i) and (ii) of Step 1 are satisfied by definition of .FkE/2s;". Moreover,
u is a CN "1=4-splitting map on Br .x/ satisfying (4.25), hence also assumption (iii) of
Step 1 is satisfied for " small enough.

To conclude the proof we have just to check conclusion (i) of Proposition 4.7, since
conclusion (ii) follows from Step 2 by choosing " so small that

p
" < �. To this end, take

x; y 2 G \ .FkE/2s;" and choose r WD d.x; y/. Our claim (4.27) ensures thatˇ̌
ju.x/ � u.z/j � d.x; z/

ˇ̌
� r� for any z 2 supp jD�E j \ Br .x/;

therefore we can take z D y and conclude.
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