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Abstract
In a recent article published in this journal, Yuan and 
Fang (British Journal of  Mathematical and Statistical Psychol-
ogy, 2023) suggest comparing structural equation modeling 
(SEM), also known as covariance-based SEM (CB-SEM), 
estimated by normal-distribution-based maximum likelihood 
(NML), to regression analysis with (weighted) composites esti-
mated by least squares (LS) in terms of  their signal-to-noise 
ratio (SNR). They summarize their findings in the statement 
that “[c]ontrary to the common belief  that CB-SEM is the 
preferred method for the analysis of  observational data, this 
article shows that regression analysis via weighted compos-
ites yields parameter estimates with much smaller standard 
errors, and thus corresponds to greater values of  the [SNR].” 
In our commentary, we show that Yuan and Fang have made 
several incorrect assumptions and claims. Consequently, we 
recommend that empirical researchers not base their meth-
odological choice regarding CB-SEM and regression analysis 
with composites on the findings of  Yuan and Fang as these 
findings are premature and require further research.

K E Y W O R D S
composite model, covariance-based structural equation modeling, effect 
size, factor score regression, Henseler–Ogasawara specification, partial least 
squares structural equation modeling, regression analysis with weighted 
composites, sum scores
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COMMENTARY2

1 | MOTIVATION

In a recent article published in this journal, Yuan and Fang (2023) compare structural equation mode-
ling (SEM), also known as covariance-based SEM (CB-SEM), estimated by normal-distribution-based 
maximum likelihood (NML; see, e.g., Jöreskog, 1970) with various forms of  regression analysis with 
(weighted) composites estimated by least squares (LS), including partial least-squares SEM (PLS-SEM; 
Hair et al., 2011; Wold, 1975). As the criterion in comparing the two classes of  methods, they propose to 
consider the signal-to-noise ratio (SNR), which they define as the population value of  a parameter esti-
mate divided by 𝐴𝐴

√
𝑁𝑁 times its standard deviation. As Yuan and Fang (2023, p. 2) emphasize, “the SNR is 

fundamental in testing the existence of  a relationship.” Yuan and Fang (2023, abstract) summarize their 
main finding, stating that “[c]ontrary to the common belief  that CB-SEM is the preferred method for the 
analysis of  observational data, this article shows that regression analysis via weighted composites yields 
parameter estimates with much smaller standard errors, and thus corresponds to greater values of  the 
[SNR].” This implies that by using LS regression analysis with weighted composites instead of  CB-SEM, 
empirical researchers could increase the odds of  finding a significant effect.

Considering a broad preference for significant results (the so-called significosis, see Antonakis, 2017), 
many researchers may find the promise of  increasing the likelihood of  attaining significant effects appeal-
ing. If  Yuan and Fang's (2023) statement were correct, we could expect that many empirical researchers 
would prefer LS regression analysis with composites to CB-SEM estimated by NML in their analyses. 
But is the statement correct? First doubts appear to be justified, because the NML estimator is known to 
be consistent and yields asymptotically efficient estimates given that its underlying assumptions are met 
(Davidson & MacKinnon, 1993). Moreover, Yuan and Fang (2023, p. 13) themselves admit that the results 
“may seem contrary to expectations.” And not least, there is ample evidence that the bias induced by LS 
regression analysis with (weighted) composites for latent variable models can lead analysts to erroneous 
conclusions (e.g., Bollen, 1989; Devlieger et al., 2016; Dijkstra, 1985; Dijkstra & Henseler, 2015; Goodhue 
et al., 2017; McDonald, 1996; Schuberth, 2021; Schuberth et al., 2022; Skrondal & Laake, 2001). Following 
up on these doubts, we present this commentary.

In our commentary, we discuss three major problems that we believe limit the significance and contri-
bution of  Yuan and Fang's article. First, Yuan and Fang (2023) assume that the SNR is method-specific 
and overlook the fact that the SNR also depends on the model specification. Specifically, if  the latent vari-
ables in CB-SEM had been scaled differently, the conclusion of  Yuan and Fang (2023) would have been 
different. Second, the computational experiment Yuan and Fang (2023) conducted suffers from aliasing. 
In particular, their study design does not permit the disentanglement of  the estimation procedure's effect, 
that is, CB-SEM by NML versus regression analysis by LS, from the effect of  the representation of  
the theoretical constructs, that is, latent variables versus (weighted) composites. Consequently, the exact 
reason for the differences in SNR values remains unclear. Third, Yuan and Fang (2023, p. 2) build on an 
incorrect assumption that “the population values of  the model parameters under SEM are artificial.” As 
we shall explain, this is not the case. Consequently, bias enjoys a substantive interpretation and adjusting 
the scales of  latent variables and composites, respectively, to obtain the same regression coefficients under 
LS regression analysis and CB-SEM is problematic because the two sets of  parameters have different 
interpretations. In the following sections, we elaborate on these issues.

2 | THE SNR FOR CB-SEM BY NML DEPENDS ON THE SCALING 
METHOD

The SNR is a measure commonly used in engineering to evaluate the quality of  a measurement system 
(e.g., Kieser et al., 2005; Taguchi et al., 2005). As its name suggests, it is defined as the ratio between a 
signal and its noise (Taguchi et al., 2005). In the context of  regression analysis, there are at least two 
understandings of  the SNR. On the one hand, it can be defined as the ratio of  explained variance, that 
is, 𝐴𝐴 𝐴𝐴2 , to unexplained variance, that is, 𝐴𝐴 1 − 𝑅𝑅2 (e.g., Cohen, 1988; Czanner et al., 2008). Consequently, 
the SNR considers the whole regression equation. On the other hand, the SNR can refer to a single 
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COMMENTARY 3

independent variable of  a regression equation. In this case, the signal is understood as the effect that 
an independent variable has on the dependent variable, and the noise corresponds to the uncertainty of  
this effect (Wencheko, 2000). Consequently, the SNR is the ratio of  the effect and its uncertainty, and it 
resembles effect size measures known from psychological research (Czanner et al., 2015; Gibson, 2015).

T A B L E  1  Estimates of  regression coefficients and SNR for different methods.

(a) Parameter estimates, their standard errors (SEs), and 𝑨𝑨 𝑨𝑨 -statistics for confirmatory two-factor model (Tml = 2.073, 
𝑨𝑨 𝑨𝑨𝑨𝑨  = 4, 𝑨𝑨 𝑨𝑨  = 88)

𝑨𝑨 𝑨𝑨 𝑨𝑨 𝜽𝜽 SE 𝑨𝑨 𝑨𝑨

𝐴𝐴 𝐴𝐴𝑦𝑦1 12.253 1.843 6.649

𝐴𝐴 𝐴𝐴𝑦𝑦2 10.383 1.379 7.530

𝐴𝐴 𝐴𝐴𝑥𝑥1 9.834 .929 10.588

𝐴𝐴 𝐴𝐴𝑥𝑥2 11.490 1.403 8.192

𝐴𝐴 𝐴𝐴𝑥𝑥3 12.517 1.667 7.508

𝐴𝐴 𝐴𝐴21 .818 .073 11.258

𝐴𝐴 𝐴𝐴𝑦𝑦1 155.632 31.679 4.913

𝐴𝐴 𝐴𝐴𝑦𝑦2 65.036 18.099 3.593

𝐴𝐴 𝐴𝐴𝑥𝑥1 16.186 7.261 2.229

𝐴𝐴 𝐴𝐴𝑥𝑥2 88.352 16.773 5.268

𝐴𝐴 𝐴𝐴𝑥𝑥3 141.074 24.881 5.670

(b) Estimate of  𝑨𝑨 𝑨𝑨∗ , its standard deviation, and SNR (conditional on estimated weights, except for BFS𝑨𝑨 �̂�𝒘 ) for SEM 
model with closed-book exam trait (𝑨𝑨 𝑨𝑨 ) being predicted by open-book exam trait (𝑨𝑨 𝑨𝑨  )

Method

𝑨𝑨 𝑨𝑨𝐦𝐦𝐦𝐦 = 𝟐𝟐.𝟎𝟎𝟎𝟎𝟎𝟎 𝑨𝑨 𝑨𝑨𝐦𝐦𝐦𝐦 = 𝟎𝟎

𝑨𝑨 𝑨𝑨𝑨∗ 𝑨𝑨 ̂𝐒𝐒𝐒𝐒∗ 𝑨𝑨 𝑨𝑨𝑨 𝑨𝑨 𝑨𝑨𝑨∗ 𝑨𝑨 ̂𝐒𝐒𝐒𝐒∗ 𝑨𝑨 𝑨𝑨𝑨

CB𝐴𝐴 𝑖𝑖 10.019 16.915 .592 10.019 16.915 .592

CB𝐴𝐴 𝑖𝑖𝑖𝑖 1.019 1.686 .604 1.019 1.686 .604

CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 .818 .681 1.200 .818 .681 1.200

BFS .732 .847 .865 .732 .847 .865

PLS𝐴𝐴 𝑎𝑎 .584 .821 .711 .609 .802 .759

PLS𝐴𝐴 𝑏𝑏 .663 .757 .876 .658 .761 .865

EWC .428 .587 .730 .450 .576 .782

BFS𝐴𝐴 �̂�𝑤 .732 .647 1.132 .732 .647 1.132

(c) Average and empirical standard deviation of  𝑨𝑨 𝑨𝑨𝑨∗ over 1000 bootstrap replications, and corresponding empirical 
SNR for SEM model with closed-book exam trait (𝑨𝑨 𝑨𝑨 ) being predicted by open-book exam trait (𝑨𝑨 𝑨𝑨  )

Method

𝑨𝑨 𝑨𝑨𝐦𝐦𝐦𝐦 = 𝟐𝟐.𝟎𝟎𝟎𝟎𝟎𝟎 𝑨𝑨 𝑨𝑨𝐦𝐦𝐦𝐦 = 𝟎𝟎

𝑨𝑨 𝜸𝜸∗ 𝑨𝑨 ̂𝐒𝐒𝐒𝐒∗ 𝑨𝑨 𝑨𝑨𝑨 𝑨𝑨 𝜸𝜸∗ 𝑨𝑨 ̂𝐒𝐒𝐒𝐒∗ 𝑨𝑨 𝑨𝑨𝑨

CB𝐴𝐴 𝑖𝑖 9.955 18.845 .528 9.968 19.136 .521

CB𝐴𝐴 𝑖𝑖𝑖𝑖 1.020 1.740 .586 1.023 1.841 .556

CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 .819 .859 .954 .820 .871 .941

BFS𝐴𝐴 �̂�𝑤 .740 .812 .911 .739 .786 .941

PLS𝐴𝐴 𝑎𝑎�̂�𝑤 .592 .739 .801 .616 .717 .858

PLS𝐴𝐴 𝑏𝑏�̂�𝑤 .678 .632 1.073 .674 .652 1.033

EWC .429 .629 .681 .450 .609 .739

Note: CB𝐴𝐴 𝑖𝑖  : Var(𝐴𝐴 𝐴𝐴  ) and 𝐴𝐴 𝐴𝐴𝑦𝑦1 are fixed to 1; CB𝐴𝐴 𝑖𝑖𝑖𝑖  : 𝐴𝐴 𝐴𝐴𝑦𝑦1 and 𝐴𝐴 𝐴𝐴𝑥𝑥1 are fixed to 1; CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 : Var(𝐴𝐴 𝐴𝐴  ) is fixed to 1, and the variance of  the error term of  𝐴𝐴 𝐴𝐴 is 
constrained to ensure that Var(𝐴𝐴 𝐴𝐴 ) equals 1.
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COMMENTARY4

In their article, Yuan and Fang follow the second understanding, highlighting that “[t]his ratio also 
plays a key role in determining the power of  a statistical test for the null hypothesis of  the correspond-
ing parameter” (p. 25) as the empirical SNR equals the 𝐴𝐴 𝐴𝐴 -statistic of  that parameter divided by 𝐴𝐴

√
𝑁𝑁 . As 

is known in the CB-SEM literature, the value of  the 𝐴𝐴 𝐴𝐴 -statistic, which is a special case of  the Wald test 
statistic (Greene, 2012, chapter 14), depends on the method used to fix the latent variables' scales (e.g., 
Gonzalez & Griffin, 2001; Klopp & Klößner, 2021). Consequently, the SNR for CB-SEM using NML 
also depends on the scaling method. To demonstrate this issue, we rerun Yuan and Fang's empirical 
example and parts of  their Monte Carlo simulation. In doing so, we perform all the estimations and calcu-
lations in the statistical programming environment R (R Core Team, 2021, Version 4.2.2). Specifically, we 
use the lavaan package (Rosseel, 2012, Version 0.6-12) for the NML estimation of  CB-SEM and the 
matrixpls package (Rönkkö, 2022, Version 1.0.15) to conduct PLS-SEM.1

The empirical example is based on the open- and closed-book test dataset presented by Mardia 
et al. (1979), which consists of  88 observations. The specified model contains one independent latent 
variable, that is, the trait for open-book tests (𝐴𝐴 𝐴𝐴 ), and one dependent latent variable, that is, the trait 
for closed-book tests (𝐴𝐴 𝐴𝐴 ). While 𝐴𝐴 𝐴𝐴 is measured by three indicators, 𝐴𝐴 𝐴𝐴 is measured by two. As Yuan and 
Fang (2023) did and as is shown in Table 1, we compare the following methods: (1) CB-SEM estimated 
by NML (CB), (2) Bartlett factor score regression (BFS), (3) regression analysis with equally weighted 
composites (EWC), (4) PLS-SEM using mode A (PLS𝐴𝐴 𝑎𝑎 ), and (5) PLS-SEM using mode B (PLS𝐴𝐴 𝑏𝑏 ). 
Considering CB-SEM, we used three different scaling methods. First, we used the scaling method 
employed by Yuan and Fang (2023), that is, the variance of  the independent latent variable and the 
first loading of  the dependent latent variable are fixed  to 1 (CB𝐴𝐴 𝑖𝑖  ). Second, we fix the first loading of  
the independent and dependent latent variable to 1, that is, fixed marker scaling (CB𝐴𝐴 𝑖𝑖𝑖𝑖 ). Third, we fix 
the variances of  the independent and dependent latent variables to 1 (CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 ). Additionally, the Bart-
lett factor scores are based on the confirmatory factor analysis (CFA) results as reported in Table 1a, 
which are identical to the CFA results reported by Yuan and Fang (2023) in Table 3(a). Finally, for 
the LS regression analysis with weighted composites, a 𝐴𝐴 �̂�𝑤 in the index of  a method indicates that the 
sampling error in the estimated weights has been accounted for in calculating the standard error of  the 
parameter estimate; otherwise, the standard error is conditional on the estimated weights. For a more 
detailed description of  the empirical example and the studied situations, we refer the reader to Yuan 
and Fang (2023).

Table 1b presents the estimates of  𝐴𝐴 𝐴𝐴∗ , the corresponding standard deviation SD𝐴𝐴 ∗ , and the empirical 
SNR 𝐴𝐴 �̂�𝜏 . Note that, except for CB𝐴𝐴 𝑖𝑖  , CB𝐴𝐴 𝑖𝑖𝑖𝑖 , CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 , and BFS𝐴𝐴 �̂�𝑤 , the SD𝐴𝐴 ∗ and, thus, the SNR are calculated 
conditional on the estimated weights. Our results are almost identical to those Yuan and Fang (2023) 
reported in tab. 3(b). The only difference is observed for CB𝐴𝐴 𝑖𝑖  , that is, CB-SEM with the scaling method 
as employed by Yuan and Fang (2023). Although we get the same point estimate, our standard deviation 
and, thus, the resulting SNR are slightly different. It seems that Yuan and Fang (2023) used in this case 

𝐴𝐴
√
88 − 1 instead of  𝐴𝐴

√
88 times the standard error to obtain the standard deviation.

As can be seen in Table 1b, regardless of  whether the original dataset (𝐴𝐴 𝐴𝐴ml = 2.097 ) or the transformed 
dataset (𝐴𝐴 𝐴𝐴ml = 0 ) is used, among the three scaling methods the one Yuan and Fang (2023) employed, that 
is, CB𝐴𝐴 𝑖𝑖  , leads to the smallest SNR for CB-SEM. However, using a different scaling method, that is, CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 , 
CB-SEM leads to the largest SNR of  the considered methods. Similar outcomes are observed for the 
SNR calculated based on bootstrap resampling as shown in Table 1c, namely, that CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 produces the larg-
est SNR of  the considered scaling methods for CB-SEM. In addition, CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 outperforms most of  the  LS 
regression analyses with (weighted) composites. Note that, due to resampling, our results are slightly 
different to those Yuan and Fang (2023) reported in tab. 3(c).

Besides the empirical example, we reran the Monte Carlo simulation presented in section 3.3 of  Yuan 
and Fang (2023), which compares the empirical SNR between CB-SEM by NML and LS regression anal-

1 The complete R code can be downloaded here: https://osf.io/tcnxy/.
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COMMENTARY 5

ysis with composites. Specifically, we considered the methods Yuan and Fang (2023) studied, that is, CB𝐴𝐴 𝑖𝑖  , 
EWC, BFS, PLS𝐴𝐴 𝑎𝑎 , and PLS𝐴𝐴 𝑏𝑏 , and in addition also CB-SEM using the two other scaling methods described 
previously, that is, CB𝐴𝐴 𝑖𝑖𝑖𝑖 and CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 . Note that for regression analysis with composites the weights are esti-
mated.2 To generate the datasets, we used the 1000 sets of  population parameters Yuan and Fang (2023) 
reported.3 For each set of  population parameters, 1000 samples with 200 observations were drawn from 
the multivariate normal distribution with mean zero and the corresponding variance-covariance matrix 
using the mvrnorm() function of  the R package MASS (Venables & Ripley, 2002, Version 7.3.58.1). 
Subsequently, we applied each method to the 1000 samples corresponding to a set of  population parame-
ters and obtained the SNR as the average parameter estimate divided by the empirical standard deviation 
of  𝐴𝐴

√
200 times the parameter estimate.4 For more details on the simulation study, we refer the reader to 

section 3 of  Yuan and Fang (2023). Figure 1 illustrates our results.

2 Yuan and Fang (2023) additionally considered the performance of  BFS and PLS𝐴𝐴 𝑎𝑎  using the population weights.
3 https://www3.nd.edu/~kyuan/PLS-SEM/SNR/.
4 Estimations that did not converge were removed before calculating the SNR. Very similar to Yuan and Fang (2023, tab. 1) we obtained the following 
convergence rates per method: CB𝐴𝐴 𝑖𝑖  : 99.16%; CB𝐴𝐴 𝑖𝑖𝑖𝑖  : 99.78%; CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 : 100%; PLS𝐴𝐴 𝑎𝑎  : 99.99%; PLS𝐴𝐴 𝑏𝑏  : 99.71%, and BFS: 99.93%.

F I G U R E  1  Comparison of  the empirical signal-to-noise ratio across different methods.
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COMMENTARY6

The first column of  Figure 1 compares the empirical SNR for the four methods of  regression analy-
sis with (weighted) composites to CB𝐴𝐴 𝑖𝑖  , that is, CB-SEM using the scaling method Yuan and Fang (2023) 
proposed. This represents the situation Yuan and Fang (2023) studied, and, as expected, our results are 
very similar to those reported in fig. 2 of  Yuan and Fang (2023). Specifically, in most of  the 1000 cases, 
regression analysis with (weighted) composites outperforms CB-SEM in terms of  the empirical SNR 
(𝐴𝐴 �̂�𝜏 ): 𝐴𝐴 #�̂�𝜏

CB𝑖𝑖
> �̂�𝜏EWC : 148; 𝐴𝐴 #�̂�𝜏

CB𝑖𝑖
> �̂�𝜏BFS : 102; 𝐴𝐴 #�̂�𝜏

CB𝑖𝑖
> �̂�𝜏PLS𝑏𝑏 : 40; and 𝐴𝐴 #�̂�𝜏

CB𝑖𝑖
> �̂�𝜏PLS𝑎𝑎 : 2; for Yuan and 

Fang's (2023) results, see Table 2 in their article. In contrast, the third column of  Figure 1 shows the 
results for CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 , that is, CB-SEM where the variance of  the dependent and independent latent variables 
is fixed to 1. As can be seen, for the majority of  population models CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 produces a larger empirical 
SNR value than EWC (𝐴𝐴 #�̂�𝜏

CB𝑖𝑖𝑖𝑖𝑖𝑖
> �̂�𝜏EWC : 891) and BFS (𝐴𝐴 #�̂�𝜏

CB𝑖𝑖𝑖𝑖𝑖𝑖
> �̂�𝜏BFS : 941). Considering the comparison 

between CB𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 and PLS-SEM, the SNR values are closer to the 45 degree line than in the comparison 
between CB𝐴𝐴 𝑖𝑖  and PLS-SEM. Hence, CB-SEM by NML performs more like PLS-SEM in terms of  the 
empirical SNR using this scaling method (𝐴𝐴 #�̂�𝜏

CB𝑖𝑖𝑖𝑖𝑖𝑖
> �̂�𝜏PLS𝑏𝑏 : 218; 𝐴𝐴 #�̂�𝜏

CB𝑖𝑖𝑖𝑖𝑖𝑖
> �̂�𝜏PLS𝑎𝑎 : 403).

Conclusion: The empirical SNR for CB-SEM estimated by NML depends on the scaling method. 
Consequently, Yuan and Fang's findings are limited and only apply to the scaling method they used.

3 | COMPARING CB-SEM WITH LATENT VARIABLES TO 
REGRESSION ANALYSIS WITH COMPOSITES IS LIKE COMPARING 
APPLES AND ORANGES

The focus of  Yuan and Fang (2023, p. 24) “is to compare CB-SEM against regression analysis with 
weighted composites.” Between the two methods, they would like to determine “[w]hich method delivers 
greater [SNR]?” Later in their article, Yuan and Fang (2023, p. 24) mention that the focus of  their “paper 
is on the SNRs of  the estimates of  the regression coefficients when the underlying populations are gener-
ated by CB-SEM models, and the constructs are represented by either the latent variables or weighted 
composites in operation.”

These two different perspectives on the same comparison reveal that what at first glance looks like 
two methods is actually a conflation of  two methodological choices: on the one hand, the issue is an esti-
mation procedure – CB-SEM estimated by NML versus regression analysis estimated by LS – and on the 
other hand, the issue is how to represent the theoretical constructs – as latent variables or as (weighted) 
composites.5 As long as the two methodological choices are not disentangled, it is impossible to know 
whether the different levels of  SNR are attributable to the estimation procedure or to how the theoretical 
constructs are represented. Hence, we see a clear case of  unintended aliasing.

Figure 2 visualizes three research designs: the alleged research design of  Yuan and Fang (2023), their 
actually employed research design, and an option for an appropriate (full-factorial) research design.

Yuan and Fang (2023) focus on comparing two methods: CB-SEM with latent variables estimated by 
NML and regression analysis with (weighted) composites estimated by LS. Both the title of  their article 
(“Which method…”) and later elaborations (“CB-SEM and the other four methods”) indicate their interest 
in the differences between methods. This coincides with a research design as depicted in Figure 2a. In fact, 
Yuan and Fang's (2023) research design consists of  two factors with two levels each: the factor estimation 
procedure with the levels (1) CB-SEM estimated by NML and (2) regression analysis estimated by LS, and the 
factor representation of  theoretical constructs with the levels (1) latent variable and (2) composite. As Figure 2b 
shows, this research design contains two blank cells. Since one factor is never varied in isolation but only in 
combination with the other factor, the research design suffers from aliasing. This means that one cannot say 
which of  the two factors is responsible for the variation in the SNR. Hence, Yuan and Fang's (2023) study 

5 One could even argue that such a comparison involves three methodological choices. First, the choice concerns how the model is estimated, that is, 
in one step or two. For instance, in regression analysis with weighted composites, the composites are formed in a first step, and in a second step the 
structural model is estimated; in contrast, in CB-SEM with latent variables, the model is estimated in one step. Second, the choice concerns which 
estimator to use, that is, NML or LS.
 For instance, a regression analysis can also be estimated by NML. Third, the choice concerns how to represent the theoretical constructs.
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COMMENTARY 7

lacks internal validity. Their study is certainly not the first to suffer from aliasing in comparing CB-SEM 
with latent variables estimated by NML to regression analysis with (weighted) composites estimated by LS. 
The same things happened in many other studies, including, for example, Astrachan et al. (2014), Barroso 
et al. (2010), Chin and Newsted (1999), Dash and Paul (2021), Goodhue et al. (2011); (2012), Lu et al. (2011), 
Hwang et al. (2010), Reinartz et al. (2009), Sharma and Kim (2013), and Vilares et al. (2010). However, at 
the time when these studies were conducted, it was not yet clear how to fill the blank cells. In the meantime, 
methodological research has developed to the point where the literature now offers numerous possibilities 
for filling the blank cells. Consequently, there is no longer any reason to accept unintended aliasing. Figure 2c 
provides a suggestion for how to fill the blank cells and, hence, dissolve the aliasing in the research design: LS 
regression analysis combined with latent variables as representations of  theoretical constructs (top right cell) 
and CB-SEM by NML relying on composites as representations of  theoretical constructs (bottom left cell).

Several methods exist for combining LS regression analysis with latent variables as representations 
of  theoretical constructs (e.g., Takane & Hwang, 2018). One way to obtain estimates for a latent variable 
model on the basis of  weighted composites is to apply a correction for attenuation. Such a correction 

F I G U R E  2  Alleged, actual, and appropriate research design.

(a) Alleged research design

Experimental Factor: Method

Level 1: 
CB-SEM with Latent Variables 

by NML

Level 2:
Regression Analysis with (Weighted) 

Composites by LS

SNR of CB-SEM with
latent variables by NML

SNR of regression analysis with 
(weighted) composites by LS

(b) Actual research design

Experimental Factor 1: Estimation Procedure

Level 1:
CB-SEM by NML

Level 2:
Regression Analysis by LS

Experimental
Factor 2:
Representation
of the
Theoretical
Constructs

Level 1:
Latent
Variable

SNR of CB-SEM with
latent variables by NML

Level 2:
Composite

SNR of regression analysis with 
(weighted) composites by LS

(c) Appropriate research design

Experimental Factor 1: Estimation Procedure

Level 1: 
CB-SEM by NML

Level 2:
Regression Analysis by LS

Experimental
Factor 2:
Representation
of the
Theoretical
Constructs

Level 1:
Latent
Variable

SNR of CB-SEM with
latent variables by NML

SNR of regression analysis with 
weighted composites by LS and 
correction for attenuation

Level 2:
Composite

SNR of CB-SEM with
(weighted) composites by
NML

SNR of regression analysis
with (weighted) composites
by LS
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COMMENTARY8

requires reliability estimates of  the weighted composites. As reliability estimates, analysts can employ 
McDonald's 𝐴𝐴 𝐴𝐴 (McDonald, 1999) for equally weighted composites, Dijkstra–Henseler's 𝐴𝐴 𝐴𝐴𝐴𝐴 (Dijkstra & 
Henseler, 2015) for composites obtained with PLS-SEM using Mode A,6 or Raykov's 𝐴𝐴 𝐴𝐴2 (Raykov, 1997) 
for weighted composites in general. Use of  this new cell in the research design would make it possible 
to investigate how the estimation procedure (CB-SEM by NML vs. regression analysis by LS) affects the 
SNR if  theoretical constructs are represented by latent variables.

Although CB-SEM has mainly been used for latent variables, researchers have also frequently inves-
tigated its use for modeling composites (e.g., Fan, 1997; Grace & Bollen, 2008; Hancock et al., 2013; 
Rose et al., 2019). The recently introduced Henseler–Ogasawara (H–O) specification (Henseler, 2021; 
Schuberth, 2023; Yu et al., 2023) offers a way of  modeling composites in CB-SEM with the same ease 
as modeling latent variables. An example H–O specification is shown in Figure 3b, where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 depict 
the composites of  interest. Note that the H–O specification models a composite in such a way that it 
accounts for the covariances between its components and other variables of  the model. An alternative 
that specifies composites without that characteristic is the pseudo-indicator model (Rose et al., 2019).

As Figure 3 shows, the two contrasting ways of  representing theoretical constructs are simply two 
different models. In light of  the two different models depicted in Figure 3, a question that naturally arises 
is this: If  the model in Figure 3a is the true model (as in Yuan & Fang, 2023) and a researcher would like to 
make a statistical inference about the coefficient 𝐴𝐴 𝐴𝐴 in this model, why should he or she use the coefficient 

𝐴𝐴 𝐴𝐴 of  the model displayed in Figure 3b for this purpose, while the latter coefficient typically deviates from 
the original coefficient in terms of  meaning and magnitude?

Conclusion: The study by Yuan and Fang (2023) suffers from aliasing because the effect of  the 
representation of  theoretical constructs (latent variables vs. composites) cannot be disentangled from the 
effect of  the estimation procedure (CB-SEM by NML vs. regression analysis by LS).

4 | PARAMETER VALUES IN SEM ARE NOT ARTIFICIAL

In their article, Yuan and Fang compare the SNR for an individual independent variable across CB-SEM 
estimated by NML and various forms of  LS regression analysis with composites. To justify their compar-
ison, they explain that the parameter values in CB-SEM depend on an arbitrarily chosen method to fix 
the scale of  the latent variables. The same holds for the parameter values in LS regression analysis with 
(weighted) composites. This leads Yuan and Fang (2023, p. 2) to conclude that “the population values of  

6 Something similar can be done for Mode B; see Dijkstra (1985, chapter 2).

F I G U R E  3  Different ways of  representing theoretical concepts.

(a)

(b)
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COMMENTARY 9

the model parameters under SEM are artificial” and that “bias in parameter estimates with latent variable 
models does not enjoy a clear substantive interpretation.”

That the choice of  the method to set the scale of  a latent variable is arbitrary is true. However, the 
same is true of  any other measured variable, such as length, whose scale is also arbitrary. As Markus and 
Borsboom (2013, p. 23) explain, “[n]ormally, the estimation of  ratios happens by choosing an arbitrary 
level of  the quantitative attribute as a unit (for instance, the meter), and estimating the ratio in which other 
levels of  the attribute stand to that unit.” Consequently, following Yuan and Fang (2023), the population 
parameter values among variables measured on a ratio scale would also be artificial because a research-
er's choice to measure length, for example, in meters is arbitrary; thus, the population parameter values 
depend on arbitrarily chosen metrics of  the measured variables.

In contrast, we argue that once the scale of  a latent variable has been fixed, the arbitrariness of  its scale 
disappears and the involved parameter values can be interpreted in terms of  the latent variable's scale. To 
fix the scale of  a latent variable, various approaches have been proposed, such as fixed marker  scaling or 
effects coding scaling (e.g., Little et al., 2006). As Klopp and Klößner (2021, p. 192) explain, given that 
the model is correctly specified, “population and estimated parameter vectors are related by a change of  
scale, entailing that specific estimated parameters such as loadings and regression coefficients constitute 
algebraic transformations of  certain population parameters”; see also tab. 9 in Klößner and Klopp (2018). 
Hence, although the values of  the parameter estimates typically differ across scaling methods, the popu-
lation parameters under SEM are not artificial. It is just that the interpretation of  the parameter estimates 
and their relationship with the population parameters depends on the method used to fix the scale of  the 
latent variables (see, e.g., tab. 4 in Klopp and Klößner (2021) for the interpretation of  the limit estimates 
in CB-SEM given that the model is correctly specified). The same applies to variables measured on a ratio 
scale and their associated parameters. Once the metric of  a measured variable has been chosen, for exam-
ple, meter for length, its involved parameters can be interpreted in terms of  that metric. If  a different 
metric is chosen, the values of  involved parameters will change, as the interpretation of  the parameters 
has changed. Consequently, it is problematic to compare parameters between CB-SEM and regression 
analysis with composites, even if  they are identical in magnitude, as they are differently interpreted.

Conclusion: The parameter values in SEM are no more artificial than the parameter values in regression 
analysis with measured variables. Once the latent variables have been scaled, the involved parameters can 
be interpreted substantively and bias in parameter estimates enjoys a substantial interpretation.

5 | DISCUSSION

According to their title, Yuan and Fang (2023) pose the question “[w]hich method delivers greater SNR: 
Structural equation modelling or regression analysis with weighted composites?” In the abstract, they 
seem to give the following answer: “Contrary to the common belief  that CB-SEM is the preferred method 
for the analysis of  observational data, this article shows that regression analysis via weighted composites 
yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of  
the SNR.” Based on the information they provide, those readers who only get to see the parts of  the arti-
cle that are not behind a paywall or who only read Yuan and Fang's (2023) introduction would conclude 
that regression analysis with (weighted) composites is preferable to CB-SEM. Only in the last section of  
their paper do Yuan and Fang emphasize the limitation of  their study, namely, that they “only studied the 
regression relationship for a model with two constructs” (p. 25), that is, a simple regression model. In fact, 
this is a very strong limitation, because findings of  simple regression models can often not be transferred 
to a multiple regression context (e.g., Goodhue et al., 2017). Given that models with only two constructs 
are very rare in empirical research (e.g., Henseler et al., 2014, found that in some disciplines <0.2% of  the 
models consist of  only two constructs), readers should realize that Yuan and Fang's findings are applica-
ble only to a very few research situations – if  at all.

Yuan and Fang (2023) proposed a comparison of  CB-SEM with latent variables estimated by NML 
and regression analysis with (weighted) composites estimated by LS in terms of  the SNR. They present 
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COMMENTARY10

empirical results that support the notion that LS regression analysis with (weighted) composites performs 
as well as or better than CB-SEM estimated by NML. In conducting such a comparison, Yuan and 
Fang make two assumptions. First, they claim that parameter values under CB-SEM (and LS regression 
with (weighted) composites) are artificial and that they do not enjoy a substantive interpretation. Conse-
quently, bias in the parameter estimates would not have substantive meaning, either. Second, Yuan and 
Fang (2023, p. 2) claim that “one can always adjust the scales of  either the composites or those of  the 
latent variables to make the two sets of  regression coefficients mathematically equal.”

In our commentary, we show that Yuan and Fang (2023) are mistaken on several points, which limits 
the contribution of  their findings. First, we have shown that the empirical SNR of  CB-SEM estimated 
by NML depends on which method is used to fix the latent variables' scales, that is, the scaling method. 
Hence, Yuan and Fang (2023, p. 25) are wrong in that the “SNR does not depend on the scale of  the 
variables being chosen.” Second, in their design, Yuan and Fang (2023) vary two factors simultaneously: 
how theoretical constructs are represented, that is, as latent variables or as composites, and the estima-
tion procedure, that is, CB-SEM by NML or regression analysis by LS. Therefore, it is not clear whether 
the difference in the SNR between CB-SEM with latent variables estimated by NML and regression 
analysis with (weighted) composites estimated by LS is due to a difference in the estimation procedure 
or to the construct representation. Third, we explain that Yuan and Fang's assumption about the param-
eter values in CB-SEM, which is necessary to properly compare CB-SEM and regression analysis with 
composites in terms of  the SNR, is incorrect. Specifically, Yuan and Fang claim that parameter values 
under CB-SEM [and regression analysis with (weighted) composites] are artificial, and consequently 
parameter estimates and potential bias do not enjoy a clear substantive meaning. As we explained, once 
the scales of  the latent variables are fixed, the involved parameters enjoy a substantive interpretation and 
are not artificial. However, the exact interpretation of  the parameters depends on which scaling method 
is chosen.

Yuan and Fang's second assumption, made to compare CB-SEM and regression analysis with 
(weighted) composites, that is, “one can always adjust the scales of  either the composites or those of  
the latent variables to make the two sets of  regression coefficients mathematically equal” referring to 
Skrondal and Laake (2001), Yuan and Deng (2021), and Devlieger et al. (2016), should be considered with 
extreme caution. Although it is true that for models with one independent and one dependent latent vari-
able, the scales of  the latent variables can be adjusted to obtain the same coefficient as in regression analy-
sis with composites, this is not necessarily the case for models involving more than one independent latent 
variable. Yuan and Fang (2023, p. 25) also implicitly admit this in stating that “[f]or a model with more 
latent variables, a single parameter [footnote omitted] 𝐴𝐴 𝐴𝐴𝑗𝑗 = 0 under CB-SEM may not imply 𝐴𝐴 𝐴𝐴𝑤𝑤𝑤𝑤 = 0 
under regression analysis with weighted composites, due to correlations among the latent constructs.” If  
a single parameter is zero under CB-SEM but different to zero under regression analysis with (weighted) 
composites, the scales of  the latent variables cannot be adjusted to obtain a value different to zero under 
CB-SEM. In the PLS-SEM context, Schuberth et al. (2022) show that it is only possible under very special 
circumstances, for example, if  the independent latent variables are uncorrelated, to obtain a path coeffi-
cient of  zero under PLS-SEM if  the corresponding coefficient is equal to zero under CB-SEM and vice 
versa. Hence, in situations in which a path coefficient equals zero under CB-SEM while it is different to 
zero under PLS-SEM, neither the scale of  the composites nor the scale of  the latent variables can be 
adjusted to obtain a value of  zero for this path coefficient under PLS-SEM or a value different to zero 
under CB-SEM, respectively. Similarly, the same holds for regression analysis with other types of  factor-
wise composites, that is, only the indicators belonging to a latent variable are used for calculating the 
corresponding composite (Skrondal & Laake, 2001, p. 572). We find an exception where composites are 
created block-wise, that is, all the indicators belonging to the independent latent variables and dependent 
latent variables, respectively, are used to calculate their composites. In particular, this happens if  block-
wise Bartlett factor scores are used for the dependent latent variables and regression factor scores are 
used for the independent latent variables (Skrondal & Laake, 2001). In this case, regression analysis with 
weighted composites can lead asymptotically to the same results as CB-SEM if  the model is correctly 
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COMMENTARY 11

specified. This is also acknowledged by Devlieger et al. (2016), who refer to this approach as a bias avoiding 
method and highlight its limitations.

Against this background, researchers should not rely on the SNR only to make a grounded choice 
between CB-SEM by NML and LS regression analysis with (weighted) composites. Even if  they did so 
and accepted the drawbacks of  regression analysis with composites such as inconsistency and the risk of  
incorrect inference, the results provided by Yuan and Fang (2023) do not allow the conclusion that LS 
regression analysis with (weighted) composites is preferable to CB-SEM with latent variables estimated 
by NML in terms of  the SNR. Consequently, empirical researchers should not let their methodological 
choices be guided by Yuan and Fang's (2023) findings. Additionally, if  analysts are interested in obtaining 
a high SNR value, they should consider methods that are specially designed for that purpose, such as 
ridge regression (Hoerl & Kennard, 1970) or the lasso (Tibshirani, 1996), which trade variance for bias. 
However, such an investigation has not been done and therefore awaits future research.
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