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1 Introduction

Classical scalar fields coupled to out-of-equilibrium quantum matter play an important
role in various settings in cosmology. Some key examples include non-perturbative particle
production processes during the reheating after inflation, via a parametric resonance [1–
5] or via spinodal instability [6–14], as well as the processes leading to the electroweak
baryogenesis [15–22] and the leptogenesis mechanism [23–32]. Finding a complete solution
of such problems often requires non-perturbative methods and non-equilibrium quantum
field theory. In particular in the case of resonant particle production the backreaction
of the newly created quanta may have significant effects on the evolution of the coupled
system [33–38].

In this work we study tachyonic dark matter production during the reheating epoch in
a setup proposed in [13, 14]. Non-minimally coupled scalar fields may undergo a tachyonic
instability, or spinodal decomposition, when an effective mass term ξRχ2 periodically takes
negative values, driven by the oscillating Ricci scalar R during reheating. In [13] it was
shown that for stable scalar fields with sufficiently weak couplings to visible matter the
tachyonic particle production induced by the curvature coupling produces adiabatic dark
matter, whose abundance can be made to agree with the observed value over a wide range
of coupling values. The results of [13] and later in [14] are based on perturbative studies
of the particle production similar to those applied to the so called tachyonic reheating
in [9–11]. In [39], the dynamics of non-minimally coupled scalars were studied using classical
lattice simulations. Here we revisit the tachyonic dark matter production of [14] applying
a fully non-perturbative 2PI-approach using methods introduced in [38] (for earlier work
see [40–44]).

The 2PI-framework is a powerful tool for studying dynamical non-equilibrium problems.
It results in evolution equations which naturally include the backreaction from out-of-
equilibrium modes on the evolution of the one-point function. We derive the renormalized
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2PI equations of motion in an on-shell scheme in terms of physical parameters in the lowest
non-trivial loop approximation. We then solve for the coupled dynamics of the one- and
two-point functions of the scalar field and investigate the momentum structure of the
two-point function. We identify the non-perturbative processes of parametric resonance
and spinodal instability taking place during the reheating stage. The efficiency of these
processes is found to sensitively depend on the parameters of the theory, such as the
spectator self-interaction strength and the inflaton decay rate. Also, the tachyonic and
subsequent parametric processes may be coupled in a very intricate way. We note that the
methods and their numerical implementation discussed here are not limited to the particular
example at hand, but similar techniques can be carried also to more general setups.

This paper is organized as follows. In section 2 we introduce the model and in section 3
we derive the renormalized 2PI equations of motion in the comoving frame in the Hartree
approximation. In section 4 we recast the equation for the two-point function into a form of
moment equations in the mixed representation. In section 5 we apply the numerical approach
introduced in [38] to the physical setup of [14], which included backreaction but assumed
adiabatic expansion for the mode functions and some further technical approximations.
Finally, section 6 contains our conclusions and outlook.

2 The model

Following [13, 14], we study a Z2-symmetric scalar singlet model where the singlet χ has no
couplings to other matter fields. The singlet action is given by

Sχ =
∫

d4x
√
−g
[1

2(∇µχ)(∇µχ)− 1
2m

2χ2 + ξ

2Rχ
2 − λ

4χ
4
]
. (2.1)

We use the particle physics convention for the metric signature: ds2 = dt2 − a2dx2. We
will assume that the singlet is energetically subdominant during inflation and reheating,
ρχ � 3H2M2

P, and treat it as a test field in a classical background space-time, whose
evolution is determined by the inflaton field φ. It should be noted that the non-minimal
coupling ξRχ2 of the field χ quantized in a classical curved space-time acquires radiative
corrections already at the one loop level in the presence of the self-interaction [45]. Therefore,
although ξ can be renormalized to zero at any given scale, it cannot be made to vanish on
all scales.

Rescaling the field χ by the scale factor,

σ ≡ a(t)χ, (2.2)

and switching to the conformal time η defined through adη ≡ dt, we can recast the action
(2.1) for the χ-field into an effectively flat space form:

Sσ =
∫

dη d3x

[1
2(∂ησ)2 − 1

2(∇σ)2 − 1
2m

2
eff(η)σ2 − λ

4σ
4
]
, (2.3)

where the time-dependent effective mass term is defined as

m2
eff(η) ≡ a2(η)

[
m2 −

(
ξ − 1

6

)
R(η)

]
. (2.4)
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This action is the starting point for our derivation of the coupled evolution equations for
the one- and two-point functions of the χ-field.

Equation of motion for the inflaton and the scale factor. We will treat the inflaton
at the classical level and assume a quadratic inflaton potential. Because we wish to study
the χ-evolution beyond the decay of the inflaton, we also add a coupling between the
inflaton and a radiation component. The radiation energy density is set to zero before the
end of inflation. Moreover, we will treat χ as a test field, so that the Hubble rate and
the evolution of the Ricci scalar are determined solely by the inflaton and the radiation
component. We then have

φ̈+ 3Hφ̇+ Γφ̇+m2
φφ = 0,

ρ̇rad + 4Hρrad = Γφ̇2,
(2.5)

where the dots denote differentiation with respect to the cosmic time t.
The above equations are solved together with the Friedmann equation ȧ/a = H , where

the Hubble rate is given by

H = 1√
6MP

(
φ̇2 +m2

φφ
2 + 2ρrad

)1/2
, (2.6)

with MP being the reduced Planck mass. The time-dependent Ricci scalar in this setup is
given by

R = 1
M2

P

(
φ̇2 − 2m2

φφ
2
)
, (2.7)

as the conformally invariant radiation component gives no contribution at the classical level.
These equations can be solved independently of the equations of motion for the spectator
field. In the latter the scale factor a and the Ricci scalar R then appear as external functions
that source the non-trivial behaviour of the χ-field.

3 The renormalized 2PI equations of motion

In this section we derive the renormalized equations of motion for the mean σ-field and
its two-point function corresponding to the action (2.3), using the 2PI effective action
technique of non-equilibrium quantum field theory [46, 47]. The generic form of the 2PI
effective action of a scalar field is

Γ2PI[σ̄,∆σ] = S[σ̄]− i
2TrC

[
ln(∆σ)

]
+ i

2TrC
[
∆−1

0σ ∆σ
]

+ Γ2[σ̄,∆σ], (3.1)

where S is the classical action, σ̄(x) is the classical field and ∆σ(x, y) is the connected
two-point function of the scaled σ-field and the trace contains integration over the Keldysh
contour C [48] and summation over possible field indices. The classical, real-time inverse
propagator is

i∆−1
0σ,ab(x, y; σ̄) = −

[
�x +m2

eff(η) + 3λσ̄2
a

]
δ(4)(x− y)δab, (3.2)
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where �x = ∂2
η − ∂2

x and a, b ∈ {1, 2} are the time path indices of the Keldysh contour.
The interaction term Γ2[σ̄,∆σ] consists of all two-particle irreducible vacuum graphs with
lines corresponding to the full propagator ∆σ and interactions derived from the shifted
Lagrangian density L[σ → σ̄+σq], where σq is the quantum fluctuation around the classical
field configuration σ̄.

The equations of motion of the one- and two-point functions are then obtained as the
stationary conditions of the 2PI effective action:

δΓ2PI
δσ̄a

= 0 and δΓ2PI
δ∆ab

σ

= 0. (3.3)

We will be restricting our attention to the lowest non-trivial order in the 2PI-expansion,
called the Hartree approximation. In this case the interaction term is just

Γ2[σ̄,∆σ] ≡ −3λ
4

∫
dη d3x∆2

σ(x, x). (3.4)

The non-renormalized equations of motion then become[
�x +m2

eff(η) + λσ̄2(x) + 3λ∆σ(x, x)
]
σ̄(x) = 0, (3.5a)[

�x +m2
eff(η) + 3λσ̄2(x) + 3λ∆σ(x, x)

]
i∆ab

σ (x, y) = aδabδ(4)(x− y). (3.5b)

In particular the bare local correlation function ∆σ(x, x) is a divergent quantity and
equations (3.5) clearly need to be renormalized. We shall now show how this can be done
in the 2PI-context, generalizing the derivation of [38] to a non-static space-time.

3.1 Renormalization

A systematic renormalization in the 2PI-context was developed in [49], but we shall follow
an equivalent, more intuitive method introduced in [50] and extended to curved space-time
in [51] (see also [52, 53]). A crucial difference between the 1PI- and the 2PI-cases is that in
the latter an infinite number of counterterms and loop diagrams get resummed and mix at
high orders in the perturbative expansion. This introduces a number of sub-divergences that
may depend on finite temperature or even on the out-of-equilibrium quantum corrections
and gives rise to auxiliary n-point functions, where some or all of the external field lines
are replaced by internal propagators. Each auxiliary function needs a new renormalization
condition, but the final equations of motion are independent of the particular choices. We
shall closely follow the treatment of [38], extending it to the case of non-zero curvature.

The renormalized quantities are defined from the bare ones through

σ ≡ Z1/2
(2) σR, ∆σ ≡ Z(0)∆R,

m2
(i) ≡ m2

R(i) + δm2
(i), λ(i) ≡ λ(i)

R + δλ(i), ξ(i) ≡ ξ(i)
R + δξ(i).

(3.6)

The index enclosed in parenthesis tells how many lines in the vertex function corresponding
to the coupling or mass parameter in question are associated with external fields, as

– 4 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
3

explained in [38, 50]. Note that both the bare and the renormalized couplings in general
are different for different i, as we shall see below. We then define accordingly:

δ(0)
λ ≡ Z

2
(0)

(
λ(0)

R + δλ(0))− λ(0)
R , (3.7a)

δ(2)
λ ≡ Z(0)Z(2)

(
λ(2)

R + δλ(2))− λ(2)
R , (3.7b)

δ(4)
λ ≡ Z

2
(2)

(
λ(4)

R + δλ(4))− λ(4)
R , (3.7c)

δ(i)
m ≡ Z(i)

(
m2

R(i) + δm2
(i)

)
−m2

R(i), (3.7d)

δ(i)
ξ ≡ Z(i)

(
ξ(i)

R −
1
6 + δξ(i))− ξ(i)

R + 1
6 . (3.7e)

Given these definitions we can write the unrenormalized equations of motion in terms of
the renormalized quantities as follows:[

Z(2) �x + a2
(
m2

R(2) + δ(2)
m

)
− a2

(
ξ(2)

R −
1
6 + δ(2)

ξ

)
R

+ 3
(
λ(4)

R + 1
3δ

(4)
λ

)
σ2

R + 3
(
λ(2)

R + δ(2)
λ

)
∆R(x, x)

]
σR(x) = 2λ(4)

R σ3
R ,

(3.8a)

[
Z(0) �x + a2

(
m2

R(0) + δ(0)
m

)
− a2

(
ξ(0)

R −
1
6 + δ(0)

ξ

)
R

+ 3
(
λ(2)

R + δ(2)
λ

)
σ2

R + 3
(
λ(0)

R + δ(0)
λ

)
∆R(x, x)

]
i∆bc

R (x, y) = bδbcδ(4)(x− y).
(3.8b)

Here and in what follows we drop the bar when referring to the classical field σR.

Renormalization conditions. To proceed, we must now define the renormalization
conditions. We start by setting on-shell conditions for the auxiliary two-point function ∆11

R
at a vanishing external vacuum expectation value, σR = vR = 0, and some finite R = R0,
along with the requirement that the quantum corrections vanish at the minimum of the
effective action:

i
(
∆11

R
)−1

∣∣∣∣σR=0
R=R0

≡ k2 − a2m2
∆,

d
dk2 i

(
∆11

R
)−1

∣∣∣∣σR=0
R=R0

≡ 1 and δΓ2PI
δσR

∣∣∣∣σR=0
R=R0

≡ 0. (3.9)

Note that we are using the comoving units, so k is also the comoving 4-momentum.
These conditions imply that Z(0) = 1. Furthermore, one finds Z(2) = 1 in the Hartree
approximation, when the renormalization is performed at σR = 0 [38]. As a result, one can
set also m2

∆ = m2
ph, where mph refers to the usual mass parameter defined at the off-shell

momentum p2 = 0. The renormalization conditions (3.9), together with the equation of
motion (3.8b), then give

m2
R(0) + δ(0)

m −
(
ξ(0)

R −
1
6 + δ(0)

ξ

)
R0 + 3

(
λ(0)

R + δ(0)
λ

)
a−2∆R = m2

ph. (3.10)

Here ∆R is computed at the renormalization point. The a−2-factor multiplying ∆R arises
from the scaling of the field σ. In physical units it is absorbed to the correlation function.

In the Hartree approximation we can renormalize λ(0)
R and λ(2)

R similarly, by setting

δ(0)
λ ≡ δ

(2)
λ . (3.11)
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From Z(0,2) = 1 it then follows that λ(0)
R = λ(2)

R . So, both bare and renormalized couplings
can be chosen equal for these vertex functions. Next we set the bare mass parameters m2

(i)

and the ξ(i)-parameters equal for i ∈ {0, 2}, which gives

m2
R(0) + δ(0)

m = m2
R(2) + δ(2)

m and ξ(0)
R + δ(0)

ξ = ξ(2)
R + δ(2)

ξ , (3.12)

and we finally define
λ(4)

R + 1
3δ

(4)
λ ≡ λ

(0)
R + δ(0)

λ . (3.13)

This condition ensures that the renormalized effective potential has the same first derivative
as the tree level potential for a finite σR (for more details, see [38]). Note that the bare
coupling λ(4) is then different from λ(0,2), but this has no consequence for the renormalized
low-energy theory. Finally, we could relate ξ(0)

R to a physical mass measured in a background
with a non-zero R, but we simply define it as an MS-parameter instead.

Cancellation of the sub-divergences. Next we impose the conditions on the cancella-
tion of the sub-divergences [50]. To this end we must work out the primitive divergence
in the local correlation function, which in the Hartree approximation is given just by the
momentum integral over the renormalized correlator i∆11

R defined in the conditions (3.9):

∆R = Qε
∫ ddp

(2π)d ∆11
R (p) = −

a2m2
ph

16π2

[2
ε

+ 1− ln
(
a2m2

ph
Q2

)]
≡ a2m2

ph∆ε + ∆F0
(
amph, Q

)
, (3.14)

where ∆ε ≡ −1/
(
8π2ε

)
and Q is the comoving momentum scale used for the MS-renormali-

zation. Substituting this expression back into equation (3.10) and requiring that the finite
and divergent parts cancel separately, we find the following two equations:

m2
ph ≡ m2

R(0) −
(
ξ(0)

R −
1
6

)
R0 + 3λ(0)

R a
−2∆F0, (3.15)

0 = δ(0)
m −R0δ

(0)
ξ + 3δ(0)

λ a−2∆F0 + 3
(
λ(0)

R + δ(0)
λ

)
m2

ph∆ε. (3.16)

Using equation (3.15) one can rewrite equation (3.16) as

δ(0)
m + 3m2

R(0)

(
λ(0)

R + δ(0)
λ

)
∆ε + 3

[
δ(0)
λ + 3

(
λ(0)

R + δ(0)
λ

)
λ(0)

R ∆ε

]
a−2∆F0

−
[
δ(0)
ξ + 3

(
ξ(0)

R −
1
6

)(
λ(0)

R + δ(0)
λ

)
∆ε

]
R0 = 0.

(3.17)

This equation can hold for arbitrary R0 and ∆F0 only if the coefficients multiplying each of
these terms vanish separately. This gives us three constraints between the counterterms:

δ(0)
m + 3m2

R(0)

(
λ(0)

R + δ(0)
λ

)
∆ε = 0, (3.18a)

δ(0)
λ + 3

(
λ(0)

R + δ(0)
λ

)
λ(0)

R ∆ε = 0, (3.18b)

δ(0)
ξ + 3

(
ξ(0)

R −
1
6

)(
λ(0)

R + δ(0)
λ

)
∆ε = 0. (3.18c)
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From these we find the explicit expressions for the counterterms δ(0)
λ , δ(0)

m and δ(0)
ξ :

δ(0)
λ = −

3
(
λ(0)

R
)2∆ε

1 + 3λ(0)
R ∆ε

, δ(0)
m = −

3m2
R(0)λ

(0)
R ∆ε

1 + 3λ(0)
R ∆ε

, δ(0)
ξ = −

3
(
ξ(0)

R −
1
6
)
λ(0)

R ∆ε

1 + 3λ(0)
R ∆ε

. (3.19)

The running of the renormalized parameters now follows from requiring that the corre-
sponding bare parameters are constants: ∂Q

[
Qε
(
λ(0)

R + δ(0)
λ

)]
= 0, ∂Q

[
Qε
(
m2

R(0) + δ(0)
m

)]
= 0

and ∂Q
[
Qε
(
ξ(0)

R −
1
6 + δ(0)

ξ

)]
= 0. For the running of λ(0)

R and ξ(0)
R one then finds

λ(0)
R (Q) = λ(0)

R0

1 + 3λ(0)
R0

8π2 ln
(
Q0
Q

) and ξ(0)
R (Q)− 1

6 =
ξ(0)

R0 −
1
6

1 + 3λ(0)
R0

8π2 ln
(
Q0
Q

) , (3.20)

where λ(0)
R0 ≡ λ(0)

R (Q0) and ξ(0)
R0 ≡ ξ(0)

R (Q0) and our previous choices imply that λ(2)
R = λ(0)

R .
The running of the mass terms is analogous to the running of the couplings [38]. On the
other hand, the coupling λ(4)

R does not run at all. Indeed, λ(4)
R remains finite because of the

condition δ(4)
λ = 3δ(0)

λ up to finite terms, which implies that ∂Qλ(4)
R = 0.

Renormalized equations of motion. Next we show that the full evolution equa-
tions (3.8) get renormalized by the counterterms we have defined. We begin by defining a
finite effective mass term, which includes general corrections from R, σR and ∆F, as follows:

M2
eff(σR,∆F) ≡ a2

[
m2

R(0) −
(
ξ(0)

R −
1
6

)
R
]

+ 3λ(0)
R

(
σ2

R + ∆F
)
. (3.21)

The finite part ∆F of the local correlation function ∆R is defined similarly to equation (3.14):

∆R ≡M2
eff(σR,∆F)∆ε + ∆F. (3.22)

We furthermore split ∆F ≡ ∆F0(Meff , Q) + δ∆F, where ∆F0 was defined in equation (3.14)
and δ∆F represents the remaining non-equilibrium fluctuations. Using this expression, the
equation of motion for the two-point function becomes[

�x +M2
eff + a2

(
δ(0)
m −Rδ

(0)
ξ

)
+ 3δ(0)

λ

(
σ2

R + ∆F
)

+ 3
(
λ(0)

R + δ(0)
λ

)
M2

eff∆ε

]
i∆bc

R (x, y) = bδbcδ(4)(x− y).
(3.23)

Using the definition (3.21) again in the term proportional to ∆ε, we can write equa-
tion (3.23) as{

�x +M2
eff − a2

[
δ(0)
ξ + 3

(
ξ(0)

R −
1
6

)(
λ(0)

R + δ(0)
λ

)
∆ε

]
R

+ 3
[
δ(0)
λ + 3

(
λ(0)

R + δ(0)
λ

)
λ(0)

R ∆ε

](
σ2

R + ∆F
)

+ a2
[
δ(0)
m + 3m2

R(0)

(
λ(0)

R + δ(0)
λ

)
∆ε

]}
i∆bc

R (x, y) = bδbcδ(4)(x− y).

(3.24)

The renormalization conditions (3.18) set all the terms in the square brackets to zero
leaving behind only the finite mass term M2

eff . It should be appreciated how the constant
counterterms cancel infinities that depend on the dynamical variables σR, R and ∆F.
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Similar manipulations can be done, crucially dependent on the definition (3.13), in the
equation (3.8a) for the one-point function. Our final equations then become[

�x +M2
eff(σR,∆F)

]
σR = 2λ(4)

R σ
3
R, (3.25a)[

�x +M2
eff(σR,∆F)

]
i∆ab

R (x, y) = bδbcδ(4)(x− y). (3.25b)

Let us finally point out that these equations are independent of the renormalization scale
for the auxiliary renormalization conditions: one can show that ∂Q(M2

eff) = 0 using the gap
equation (3.21) together with the running equations (3.20).

Physical parameters. We have now renormalized our equations of motion, but we still
have not related our parameters to observable quantities. We now address this problem for
completeness, even though none of the parameters in the problem are directly observable.
We start by specifying the Hartree-corrected effective potential in the limit of constant
curvature, consistent with our renormalization conditions. The calculation is identical to
the one given in [38] and we only quote the final result, first found in [54]:

VH(σR) = −λ
(4)
R
2 σ4

R + m4(σR)
12λ(0)

R
− m4(σR)

64π2

[
ln
(
m2(σR)
Q2

)
− 1

2

]
, (3.26)

where m2 is the solution to equation (3.21) for R = R0 and ∆F = ∆F0
(
m2). Now,

differentiating the effective potential twice, we find

Γ(2)
1PI
(
p2 = 0, σR

)
= ∂2VH(σR)

∂σ2
R

= m2(σR) + 6
[
λ(0)

R
(
m(σR)

)
− λ(4)

R

]
σ2

R. (3.27)

Because m2(0) ≡ a2m2
ph, we see that the mass parameter mph of the auxiliary propagator

equals the value of the full two-point function Γ(2)
1PI
(
p2 = 0, σR = 0

)
. Equation (3.27) also

suggests that it is natural to define λ(0)
R (mph) ≡ λ(4)

R .
Finally, one can easily show that λ(4)

R coincides with the four-point function measured
at zero momentum:

λR ≡ Γ(4)
1PI(pi = 0, σR = 0) = 1

6
∂4VH(σR)
∂σ4

R

∣∣∣∣
σR=0

= λ(4)
R . (3.28)

The mass mph and the coupling λR can be related to an on-shell mass and a four-point
function in the physical region without further reference to the 2PI-methods. Finally,
we define the parameter ξ(0)

R as the MS-parameter at scale mph: ξ̄R ≡ ξ(0)
R (mph). These

considerations now uniquely define all the parameters in our model.

4 Wigner-space and moment equations

The direct numerical implementation of equations (3.25) would be very difficult and we
shall use the phase space picture instead. To this end we define the Wigner transform of a
generic function of two variables O(u, v) as follows:

O(k,X) ≡
∫

d4r eik·rO
(
X + r

2 , X −
r

2

)
, (4.1)
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where r = u− v and X = 1
2(u+ v) are the relative and average coordinates, respectively.

For a homogeneous and isotropic system relevant here, the transformation with respect
to spatial coordinates reduces to the ordinary Fourier transformation. In this case the
equation (3.25b) for the two-point function in Wigner-space becomes just[1

4∂
2
η − k2 − ik0∂η +M2

eff
(
η − i

2∂k0

)]
i∆bc

k (k0, η) = bδbc, (4.2)

where we denoted M2
eff(σR,∆F) ≡M2

eff(η).
To study the dynamics of the coupled system of the one- and two-point functions it

suffices to concentrate on any of the four components of the propagator ∆ab. We choose to
work with ∆+− = ∆< and define its nth moment as

ρnk ≡
∫ dk0

2π kn0 ∆<
k (k0, η). (4.3)

Integrating equation (4.2) over k0, weighted by 1 and by k0, and taking real and imaginary
parts of the resulting equations one finds a closed set of equations for the three lowest
moments with n ∈ {0, 1, 2} [38, 43]. The equation for ρ1k is simple: ∂ηρ1k = 0, which
implies that ρ1k is a constant. In addition we observe that the quantity

Xk ≡ 2ρ0kρ2k −
(
|k|2 +M2

eff

)
ρ2

0k − 1
4 (∂ηρ0k)2 (4.4)

is conserved in our setup: ∂ηXk = 0. This is no longer true in an interacting system [38, 43],
but even then using Xk as a variable instead of ρ2k leads to numerically more stable
equations.

In the end we then have the following equations for the homogeneous field σR and the
moments ρnk: (

∂2
η +M2

eff

)
σR = 2λRσ

3
R,(

1
4∂

2
η + |k|2 +M2

eff

)
ρ0k = ρ2k,

(4.5)

where ρ2k is evaluated using equation (4.4). The non-trivial nature of the evolution equations
is hidden in the gap equation (3.21), which couples all the variables. Using the moments
and the fact that M2

eff is actually Q-independent, we can write the gap equation directly in
terms of our chosen physical parameters, choosing Q = amph:

M2
eff = a2m2

ph − a2
(
ξ̄R − 1

6

)
(R−R0) + 3λRσ

2
R + 3λR

∫
k

(
ρ0k −

Θk

2ωk

)

+ 3λR
16π2

[
M2

eff ln
(
M2

eff
a2m2

ph

)
−M2

eff + a2m2
ph

]
,

(4.6)

where we defined
∫
k ≡

1
2π2

∫∞
0 d|k||k|2, Θk ≡ θ

(
ω2
k(t)

)
, ω2

k ≡ |k|2 + M2
eff , ξ̄R ≡ ξ(0)

R (mph)
and R0 is the background Ricci scalar at the renormalization point.1 We assume that
renormalization is performed in a background with no curvature and set R0 = 0 here.

1To get to equation (4.6) one uses for example the relation m2
R(0) = m2

ph
(
1 + 3λR

16π2

)
+
(
ξ̄R − 1

6

)
R0, which

can be derived from equation (3.15) and the running equations for the mass and the couplings.
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Finally, we define the particle number density and the quantum coherence functions in
terms of the moments as follows [38, 43]:

nk ≡
1
ωk
ρ2k + ρ1k, (4.7a)

nk ≡
1
ωk
ρ2k − ρ1k − 1, (4.7b)

f c±k ≡ ωkρ0k −
1
ωk
ρ2k ±

i
2∂tρ0k. (4.7c)

We will denote the momentum-integrated versions of these functions by n ≡
∫
k nk and

f c ≡
∫
k |f

c±
k |. In our case of a real field with no collisions ρ1k = −1/2 throughout, so that

nk and nk actually coincide. The functions f c±k in turn measure the degree of quantum
coherence, or squeezing, between particle-antiparticle pairs with opposite 3-momenta [44],
and particle production can only take place when f c±k 6= 0. The unique vacuum which
corresponds to a state with no particles nor any coherence can then be defined as

ρvac
0k ≡

Θk

2ωk
, ∂tρ

vac
0k ≡ 0, ρvac

1k ≡ −
1
2 and ρvac

2k ≡
ωk
2 Θk. (4.8)

The Heaviside theta function Θk ensures that no spinodal modes are included in the vacuum.
Finally, we define the non-equilibrium fluctuations in the moments as δρnk ≡ ρnk − ρvac

nk .

5 Results

We numerically solve the equations (4.5) and (4.6), following the methods of [38]. We focus
on a setup where the energy density of σ stays negligible compared to the total energy
density, ρσ � 3H2M2

P, during the entire simulation time. The scale factor a and the Ricci
scalar R are therefore entirely set by the inflaton and its decay products via equations (2.5),
and they appear as externally given functions in equations (4.5) and (4.6). We choose
mφ = 1.5× 1013 GeV and set slow roll initial conditions with φin = 15MP on the inflaton
sector. On the spectator sector we set mph = 150GeV, initialize the two-point function
∆R,in by giving the Minkowski vacuum values (4.8) for the moments, and give a small
non-zero initial value for the one-point function σR,in. In the following, we denote by η0 the
moment when εH ≡ −Ḣ/H2 = 1 for the first time. Our main results are summarized in the
figures of this section.

Case I: ξ̄R = 50,Γ = 0. We will first discuss a case with a non-minimal coupling
ξ̄R = 50 and a non-interacting inflaton, Γ = 0, where the results can be directly compared
with those obtained in [14]. The left panel in figure 1 shows the time evolution of the
fluctuation in the contact limit for the comoving two-point function 〈σ2

R〉: δ∆F ≡ ∆F−∆F0.
The right panel shows the effective mass function M2

eff given by equation (4.6). In both
panels the self-coupling is given the values λR = 10−7 (blue lines), 10−4 (red lines) and 10−1

(orange lines). There are three components of different origin contributing to the effective
mass function M2

eff :

M2
R ≡ −a2(ξ̄R − 1

6
)
R (curvature), (5.1a)

M2
∆ ≡ 3λRδ∆F = 3λR

∫
k
δρ0k (fluctuations), (5.1b)
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Figure 1. The two-point function δ∆F (left panel) and the effective mass function M2
eff (right

panel). The results are shown for λR ∈ {10−7, 10−4, 10−1}, ξ̄R = 50 and Γ = 0.

Figure 2. The effective mass function M2
eff (blue) and its component functions M2

R (red), M2
∆

(violet) and M2
σ (yellow), defined in equations (5.1), for λR ∈ {10−7, 10−4, 10−1}, ξ̄R = 50 and Γ = 0.

M2
σ ≡M2

eff −M2
R −M2

∆ (field and background). (5.1c)

The evolution and magnitudes of these components are displayed in figure 2.
For all three values of λR shown in the figures, the field-dependent mass term M2

σ is
very small compared to the curvature and fluctuation corrections. In all cases the initial
evolution is characterized by a rapid growth of the fluctuation contribution to the two-point
function δ∆F, which is driven by periodic tachyonic instabilities that occur when M2

eff < 0.
The growing two-point function gives a positive definite contribution to the fluctuation
part M2

∆ in the effective mass function, which is known to eventually terminate the strong
tachyonic growth [9].
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As seen in figure 2, for λR = 10−7 the growth of δ∆F stops while the effective mass
is still dominated by the curvature term, 〈M2

∆ + M2
σ〉osc≈〈M2

∆〉osc�〈M2
R〉osc, where the

brackets 〈. . . 〉osc denote averaging over an oscillation cycle of the mean field σR. The reason
for this ending of the tachyonic growth is that the windows with M2

eff < 0 become too narrow
to generate a coherent net particle production. This effect is controlled by the evolution
of R, whose oscillation period is a constant in physical time, proportional to the inverse
inflaton mass m−1

φ , but whose magnitude decreases rapidly, R ∝ a−3. The time available
for tachyonic evolution per oscillation period then shrinks, while the oscillatory evolution
between pulses grows, mixing growing and decaying modes. Eventually the tachyonic pulses
lose all coherence and no net growth is registered. As a result our final value of δ∆F is about
an order of magnitude smaller than in [14],2 where the tachyonic growth was observed to
continue up to 〈M2

∆〉osc ∼ 〈M2
R〉osc. This effect is spurious however, following from the use

in [14] of the adiabatic expansion in the regions where the adiabaticity condition |ω̇/ω2| � 1
for the mode function frequencies no longer holds between the tachyonic windows.

The case with larger couplings λR = 10−4 and 10−1 is markedly different. Here the
(mostly) tachyonic growth does continue until 〈M2

∆〉osc ∼ 〈M2
R〉osc, after which δ∆F starts to

backreact into the dynamics of the system. The evolution of R is exactly the same as in the
previous case but the larger coupling λR makes 〈M2

∆〉osc bigger, and the backreaction limit
〈M2

∆〉osc ∼ 〈M2
R〉osc is reached before the tachyonic windows become too narrow to support

coherent particle production. After the tachyonic growth stops, the strongly non-linear
system still undergoes a transient period of resonant particle production driven by the
two-point function δ∆F itself, during which M2

eff remains positive. The resonant nature of
the particle production can be seen in figure 3, which will be discussed further below. At
the onset of the resonance, M2

eff receives roughly equal contributions from the fluctuation
term M2

∆ = 3λRδ∆F and from the curvature term M2
R = a2(ξ̄R − 1/6

)
R, but as the latter

redshifts as a−1, it eventually becomes smaller than the fluctuation term. The resonance
turns off after the effective mass becomes fully dominated by M2

∆, and δ∆F on average
settles to a constant value. For λR = 10−4 and 10−1, we find that δ∆F at the end of the
tachyonic stage agrees relatively well with the adiabatic expansion results of [14]. However,
the subsequent strongly non-linear resonant stage is not at all captured in the treatment
of [14] and, as seen in figures 1 and 2, this stage gives the dominant contribution to δ∆F
for λR = 10−4 and 10−1.

The momentum space structure of δρ0k is shown in figure 3. For all three coupling
values λR ∈ {10−7, 10−4, 10−1}, the leftmost continuous vertical structures, extending from
|k| = 0 to a finite cutoff set by the effective mass (and of the order of the Hubble scale),
are states populated by the tachyonic instability.

For λR = 10−7 the ultraviolet region develops, around a/a0 ' 3, discrete bands which
reach to higher |k|-modes than the initial structures, while the evolution is still dominated
by M2

R (see figure 2). These bands appear to signal a resonant particle production sourced
by the ξRχ2-term, which can coexist with the tachyonic production [9, 12, 55]. We note

2Note that our results are expressed in terms of the comoving field σ = aχ while [14] uses the physical
field χ. We have normalized the scale factor to a0 = 12.6.
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Figure 3. The zeroth moment δρ0k of the two point function for λR ∈ {10−7, 10−4, 10−1} with
ξ̄R = 50 and Γ = 0.

that δρ0k continues to be strongly dominated by the lowest band but its peak shifts from
|k| ≈ 0 towards the middle of the band.

For λR = 10−4 and 10−1 the momentum space evolution looks quantitatively similar as
above until the moment when the effective mass gets dominated by the two-point function,
〈M2

∆〉osc > 〈M2
R〉osc, and δ∆F starts to grow rapidly (see figures 2 and 1). At this point,

pronounced band structures emerge in figure 3, which we interpret to signal the onset of
resonant particle production driven by the coherent condensate δ∆F itself. These resonance
bands carry significant power and extend considerably above the |k|-region populated
during the M2

R-dominated stage. Furthermore, it can be seen that the moment at which the
resonant growth effectively stops in figure 1 corresponds to a further splitting and narrowing
down of the resonance bands in figure 3. After this band splitting the resonant particle
production loses efficiency and the average value of δ∆F becomes essentially a constant.
While the δ∆F-driven resonance is qualitatively similar to resonances driven by coherently
oscillating classical fields, its origin from highly non-linear dynamics makes it difficult to
develop a parametric understanding of its efficiency or time scale.

The evolution of the comoving particle number density n and the coherence function
f c are shown in figure 4. For λR = 10−7 both n and f c settle to constant values after the
end of the tachyonic growth. Comparing with [14], we find an order of magnitude smaller
final number density for λR = 10−7, the reason being the same as for the difference in δ∆F
discussed above. On the other hand, for λR ∈ {10−4, 10−1} the tachyonic stage is followed
by a transient resonance, during which n and f c grow further, and the resonant contribution
actually dominates their final values. In these cases our results for the net particle number
density exceed the corresponding results of [14] by an order of magnitude. Note that the
particle production is necessarily associated with a growing coherence function [44]. The
fact that coherence remains constant after particle production ends shows that the final
state is highly squeezed. This is a special feature of our non-interacting system. In an
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Figure 4. The integrated comoving particle number density n (left panel) and the integrated
absolute value of the coherence functions f c (right panel) for λR ∈ {10−7, 10−4, 10−1} with ξ̄R = 50
and Γ = 0.

Figure 5. A contour plot of the comoving particle number density nk for λR = 10−4 (left
panel), and the final comoving particle number density nk(ηend) as a function of momentum for
λR ∈ {10−7, 10−4, 10−1} (right panel). Both plots have ξ̄R = 50 and Γ = 0.

interacting system the coherence function would eventually tend to zero, reducing the
quantum system to a non-coherent statistical state, even if the interactions were conserving
the particle number. Such behaviour was indeed observed and studied in detailed in a toy
model in [38].

In figure 5 we show the comoving particle number density per momentum nk. The
right panel shows the final spectrum nk at the final time of our numerical simulation for all
couplings considered: λR ∈ {10−7, 10−4, 10−1}. The left panel shows the full time evolution
of nk for the coupling λR = 10−4. Apart from the oscillatory features, the structure of nk
is qualitatively in agreement with the results of [14], which, we recall, are obtained using a
semianalytical adiabatic expansion approximation for the tachyonic particle production [9]
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Figure 6. The two-point function δ∆F (left panel) and the effective mass function M2
eff (right

panel). The results are shown for λR ∈ {10−7, 10−4, 10−1}, ξ̄R = 50 and Γ ' 0.1H0.

and neglecting all resonant particle production (see also [55] for an analysis of resonant
production through the ξRχ2-term in the absence of self-couplings). The oscillatory features
in nk seen in our results arise from the transient resonance after the first tachyonic stage.
As seen in the left panel of figure 5, nk displays strong peaks coinciding with the onset of
the resonance, located at the resonance bands and with the peak heights varying from band
to band. Interestingly, the peaks begin to flatten out while the resonance is still ongoing.
This effect is caused by non-linear processes mediated by the self-coupling which, combined
with the redshifting, can efficiently redistribute the momenta.

Case II: ξ̄R = 50,Γ ' 0.1H0. For comparison, we also present results for the case
with ξ̄R = 50 and a non-zero inflaton decay rate Γ ' 0.1H(η0) ≡ 0.1H0. As explained in
section 2, inflaton decays into radiation, as a result of which the universe evolves from
effective matter domination to radiation domination where R = 0. The evolution of δ∆F
and M2

eff , and the components of M2
eff defined in equations (5.1), are shown in figures 6 and

7 for this case. As is seen in figure 7, the initial scaling 〈R〉osc ∝ a−3 is now followed by an
exponential decay of 〈R〉osc once the inflaton decay becomes efficient. This decreases the
efficiency of tachyonic particle production compared to case I.

The evolution of δ∆F seen in figure 6 is now almost identical for the couplings λR = 10−7

and 10−4. This is due to the fast decrease of R resulting from the inflaton decay, which ends
the tachyonic growth before the two-point function starts to backreact into the dynamics
also for λR = 10−4. This can also be seen from figure 7, which shows that in both these
cases δ∆F stops growing before the two-point function backreacts into the dynamics. The
evolution of δ∆F for λR = 10−7 is qualitatively similar to case I, but the final value of δ∆F
is about two orders of magnitude smaller. For λR = 10−4, the evolution of δ∆F substantially
differs from case I as the resonant stage that dominated the final value of δ∆F in case I
is absent in case II. For the largest coupling λR = 10−1 the difference compared to case I
is smallest as the tachyonic growth in this case still terminates via the backreaction when
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Figure 7. The effective mass function M2
eff (blue) and its component functions M2

R (red), M2
∆

(violet) and M2
σ (yellow), defined in equations (5.1), for λR ∈ {10−7, 10−4, 10−1} in the case ξ̄R = 50

and Γ ' 0.1H0.

Figure 8. The zeroth moment δρ0k of the two point function for λR ∈ {10−7, 10−4, 10−1} with
ξ̄R = 50 and Γ ' 0.1H0.

〈M2
∆〉osc ∼ 〈M2

R〉, and this happens before the exponential decrease of R sets in. In this
case, the tachyonic stage is followed by resonant amplification of δ∆F driven by δ∆F itself,
but the resonance is somewhat less efficient than in case I, leading to a factor of two smaller
final value for δ∆F.

Finally, the momentum structure of δρ0k is shown in figure 8. For λR = 10−7 the
result looks qualitatively similar to case I but the band structures generated during the
M2
R-dominated epoch are more pronounced in case II. In particular, in case II the tachyonic

region splits into two discrete bands at a/a0 ' 3. The results for λR = 10−4 look almost
identical to those for λR = 10−7, and the δ∆F-driven resonance that dominated the final
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δρ0k in case I is now completely absent. For λR = 10−1 the structure looks qualitatively
similar to case I but it can be seen that the δ∆F-driven resonance is less efficient and does
not extend to as high momenta as in case II.

All in all, the results of cases I and II manifest the presence of complicated non-linear
dynamics after the initial tachyonic particle production which can substantially affect the
final value of δ∆F. In particular, our results indicate that when the two-point function
grows large enough to backreact into the dynamics, the tachyonic instability is followed by
resonant particle production driven by the two-point function itself. In all cases studied
here, we find that if the resonance takes place it also gives a dominant contribution to the
final value of δ∆F. However, the amount by which δ∆F grows during the resonance after
the tachyonic stage appears to depend quite sensitively on the non-linear evolution of the
two-point function coupled to R.

Finally, we note that in [39] classical lattice simulations were used to study a related non-
minimally coupled spectator setup. They investigate a self-interacting massless spectator
with λ = 10−5 and ξ = 100, which remains energetically subdominant like in our case, but
their results do not seem to show the resonant growth phase driven by δ∆F. However, the
inflaton potential in [39] differs from the quadratic form we use, which leads to different
evolution of the curvature scalar R. A direct comparison of our respective results is therefore
not possible, because the existence and efficiency of the resonant growth depends sensitively
on the detailed interplay between R and the two-point function. It would be very interesting
to make a detailed comparison between the 2PI-approach and classical lattice simulations in
exactly the same setup, also going beyond the Hartree approximation, as it is not clear to
what extent the quantum dynamics can be approximated by a classical system. Investigation
of this topic however lies beyond the scope of our current work.

6 Conclusions

We have studied particle production at the end of inflation with a non-minimally coupled
spectator scalar field that contributes to dark matter. We first introduced consistently
renormalized coupled equations for the one- and two-point functions of the spectator field
in the Hartree approximation using 2PI-methods. These equations correctly account for the
backreaction of the out-of-equilibrium quantum modes created by the spinodal instability
triggered by the oscillating Ricci scalar as well as for the subsequent parametric resonances.
This model was studied earlier in [14] with an adiabatic treatment of the spinodal effects.
Our results show that the interplay between the backreacting two-point function and the
oscillating curvature sector lead to highly non-trivial dynamics which can have a significant
effect on the net particle number density.

We solved numerically the coupled equations for the one- and two-point functions of
the spectator field (the latter expressed as moment equations in the Wigner representation)
together with the dynamical evolution of the inflaton sector for different values of the
spectator field self-coupling λR and for the minimal coupling ξ̄R = 50. We studied first the
case of a non-interacting inflaton field and found that for a small coupling λR = 10−7 the
generated particle number density is an order of magnitude smaller than that found in [14],
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whereas for λR = 10−4 and 10−1 it becomes and order of magnitude larger. For λR = 10−7

this is due to the tachyonic particle production shutting off already before the competing
mass contributions from the curvature and the two-point function become comparable,
while for the larger couplings the difference is due to efficient resonant particle production
occurring after the tachyonic stage. In particular the resonant production, which actually
dominates the contribution to the particle number density for larger couplings, is completely
absent in the adiabatic approach of [14].

We also included a coupling between the inflaton and a radiation component to study
the evolution under the transition from effective matter domination to radiation domination
with R = 0. We found that the exponential decay of R induced by the radiation coupling
renders both the spinodal and the resonant particle production processes much less efficient
compared to the case with a non-interacting inflaton. For the tachyonic processes this is
easy to understand as the oscillating curvature term, which is responsible for the tachyonic
bursts in the particle number density, is rapidly driven to zero. Our results suggest the
presence of an R-assisted resonance enhancement, where the resonant particle production
driven by the two-point function is boosted by the decaying ξRχ2-term after the tachyonic
stage has come to an end. This is a highly non-linear phenomenon which, when present,
appears to dominate the net particle production. It cannot be properly captured without a
full treatment of the backreaction effects.

The final momentum distribution of the dark relics generated by the non-perturbative
processes is highly non-thermal. This could lead to characteristic and potentially observable
imprints in the structure formation, as pointed out in [14]. The evolution of the relic
distribution after the epoch of reheating depends on dark sector interactions, possibly
including new types not considered here. Although this would be an interesting problem in
itself, we do not investigate it further here.

It would obviously be interesting to extend our setup to the case of a spectator field
coupled to other matter fields. This could be done rather easily by combining the current
results with the quantum transport formalism for interacting fermions introduced in [56].
Also, it would be interesting to extend our classical treatment of the inflaton to quantum
level. It would then be particularly interesting to study the gravitational wave production
during the reheating stage in the most general computational framework described above.
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