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Abstract

Salmenkivi, Otto
Mitigation of coherent errors in the control of superconducting qubits with composite
pulse sequences
Master’s thesis
Department of Physics, University of Jyväskylä, 2023, 70 pages.

Superconducting circuits, which are used as a platform for quantum information
processing, inherently suffer from noise and errors. In addition to decoherence,
coherent errors in the quantum gate operations form a substantial error source in
current quantum computing processors. These errors are typically only addressed
with the calibration of control parameters. Fully compensating composite pulse
sequences inspired by the NMR field have been identified as a possible measure
to mitigate these errors in superconducting qubits. Here, the performance of two
sequences, SCROFULOUS and BB1, applicable to an arbitrary single-qubit gate,
is simulated and run on a 5-qubit IQM device. Both are able to correct for pulse
amplitude errors on a wide range, but perform worse in terms of the accumulation of
errors during multiple gates. It is concluded that the sequences do not offer benefits
over standard calibration procedures since the native gate is the most accurate in
the studied system.

Keywords: quantum information processing, superconducting qubit, error mitigation,
composite pulse sequence
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Tiivistelmä

Salmenkivi, Otto
Koherenttien virheiden vähentäminen suprajohtavien kubittien kontrollissa pulssisekvenssien
avulla
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2023, 70 sivua

Kvanttilaskennan alustana käytettävät suprajohtavat kubitit kärsivät kohinasta
ja virheistä. Dekoherenssin lisäksi kvanttiporttien koherentit virheet muodostavat
merkittävän virhelähteen tämänhetkisissä kvanttitietokoneissa. Usein niiden vähen-
tämisessä turvaudutaan systeemin kontolliparametrien tarkempaan kalibraatioon,
mutta NMR-sovelluksista inspiroitujen pulssisekvenssien hyödyntämistä on myös
ehdotettu. Tässä työssä tutkitaan kahden sekvenssimenetelmän, SCROFULOUS:n ja
BB1:n, kykyä korjata kontrollipulssin systemaattista amplitudivirhettä hyödyntäen
sekä simulaatioita että IQM:n viisikubittista kvanttitietokonetta. Molempien mene-
telmien todetaan korjaavan amplitudivirhettä laaja-alaisesti, mutta myös keräävän
enemmän virhettä operaatioiden määrän kasvaessa. Pulssisekvenssit eivät mahdollis-
ta normaalia kalibraatiota tarkempia portteja, sillä natiiviportin todetaan olevan
sekvenssejä tarkempi tutkitussa systeemissä.

Avainsanat: kvantti-informaatio, suprajohtava kubitti, pulssisekvenssi
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1 Introduction

Quantum computing represents a new computing paradigm with the promise of
solving selected computational tasks that are unfeasible even for the most powerful
classical computers [1]. This new way of computing was first conceptualised by
Richard Feynmann in 1982 [2]; since the natural world follows the laws of quantum
mechanics, it would also be most accurately simulated by a quantum-mechanical
system. His words are often heralded as the birth of a scientific field: quantum
information processing (QIP). In the decades since, quantum mechanical systems
especially suited for QIP have been extensively studied at an accelerating pace. More
recently, as the concept has matured theoretically and experimental demonstrations
have been successfully carried out, the field has seen a surge of efforts and funding
also in the private sector. A number of spin-offs have emerged from academia, and
the largest information technology corporations are also allocating resources. Most,
if not all, are competing to demonstrate quantum advantage, a feat of solving a
computational problem significantly faster on a quantum computer compared to the
classical counterpart. While the first may claim fortune and fame in the short term,
the true motivation to pursue quantum computing is in the value the new technology
will create during the decades to come. Scientifically and industrially attractive
applications have been reported in the fields of cryptography [3], finance [4, 5],
quantum chemistry [6, 7] and optimization related to multiple disciplines [8], among
others. The field is living in the NISQ era (noisy intermediate-scale quantum), where
devices are still subject to decoherence that limits their computational power, and
the mitigation of noise and the development of noise-tolerant small-scale quantum
algorithms are emphasized [9]. Large-scale adaptation of quantum computing would
require quantum error-correction, where multiple physical qubits are combined to
create logical units to achieve fault-tolerant quantum computation [1].

Multiple physical implementations to create a qubit, a two-level quantum system
as the computing unit of a quantum computer, exist. One of the most widely adopted
and promising candidate for large-scale quantum computation are superconducting
electric circuits, and they are also the platform of choice for IQM, an European leader
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of the technology. Superconducting qubits have proven to achieve high fidelities and
the manufacturing has benefited from the repurposing of known fabrication methods
used in the semiconductor industry [10]. Out of the many different superconducting
qubit types, the transmon (see Sec. 2.3.3) has shown great promise. Once manufac-
tured, the qubits are cooled to millikelvin temperatures using dilution refrigerators to
reveal quantum mechanical behaviour. The computation then requires precise control
over the quantum states of the system, which is a complicated engineering task
involving the understanding of circuit quantum electrodynamics (QED), electrical
engineering, cryogenics and accompanying software.

This thesis discusses the error mitigation in superconducting quantum computers,
more precisely, the use of composite pulse sequences to mitigate coherent errors
in transmon qubits. Error mitigation deals with the development of qubits and
controls that are less susceptible to the unavoidable quantum noise present in all
systems, in contrast to quantum error correction using fault-tolerant logical qubits.
Composite pulse sequences originate from nuclear magnetic resonance (NMR) field
and aim to create excitation profiles that are robust against errors and dispersion in
system parameters [11], and they have been shown to be compatible also with QIP
error mitigation [12, 13]. The error mitigation efforts here are targeted at coherent
errors in the microwave pulses creating single-qubit gates with the aim of cancelling
systematic rotation errors. The two sequencing methods, SCROFULOUS [14] and
BB1 [15], were chosen due to proven mitigation capability on a large error scale
with only a small overhead in computation length, and their compatibility with the
gate-level abstraction. Their effectiveness is investigated both with simulations and
on a 5-qubit IQM quantum processor.

Classical simulations of quantum systems can reveal valuable insights into their
inner workings. However, the simulated models are always trade-offs between the
speed of calculation and the accuracy against the real physical world. In this work, the
performance of the two composite pulses in comparison to the native gate is simulated
in two ways: a less accurate and computationally lighter gate-level simulator is used
to investigate their characteristics in a landscape of coherent and incoherent errors,
while a more sophisticated pulse-level model is used to compare their performance
in a more physically accurate way. Ideal gate-level simulation translates to simple
matrix multiplication, though a simple noise model can be included by exponential
decay functions based on the Bloch-Redfield model and their application through
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matrix exponentiation. In addition, qubits are always assumed to be true two-level
systems. On the other hand, the pulse-level simulation includes a deeper level of
physics. The quantum mechanical system is described by a Hamiltonian operator,
which can be made to include time-dependent control terms, and the computation
can be modelled by evolving the system in time. It also offers possibilities to include
higher excitation states and more advanced noise models, e.g., pulse distortions and
parasitic terms in the Hamiltonian. In a wider QIP context, the simulation of a
quantum computer can be considered as a gateway into the new computational world
for both the science community and private actors, and serve as an educational tool
and a testbed for algorithms and error mitigation methods.

The pulse-level has recently seen a rising interest also from a resource optimisation
perspective. The pulse-level physics have been a fundamental part of circuit QED
since the very first devices; however, since the creation of systems with high qubit
numbers, intrinsically long coherence times and and high gate fidelities have proven
a difficult and expensive task, other approaches to extract the potential of current
systems is being investigated. For example, known NISQ-relevant quantum algorithms
can be made more hardware efficient by leaving the gate-level abstraction of matrix
algebra and entering the lowest level of quantum control [16], and open-source tools
for this approach have also been published [17].

Since this thesis addresses only single-qubit gates, the qubit-qubit interactions,
such as two-qubit gates or unwanted crosstalk between qubits, will not be discussed.
However, the capability to couple two qubits to perform quantum operations is a
fundamental necessity in QIP, and two-qubit gates continue to be an active area
of research and improvement. IQM has recently announced it’s benchmark fidelity
of above 99.8 % for a controlled-Z gate between two superconducting transmon
qubits [18]. The approach utilises tunable coupling created by a third transmon
circuit coupled to both computational qubits, and achieves high fidelities for larger
qubit separation allowing more physical space for other components, such as readout
resonators and microwave control lines.

The outline of the thesis is as follows. The theoretical background supporting
the work is given in Sec. 2, where open quantum systems, the basics of quantum
computing and superconducting qubits, especially the transmon and its control,
are discussed. Also, details about noise in superconducting qubits, its quantitative
measurement with fidelity and inclusion in simulation is presented. The section is
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concluded with the introduction of composite pulse sequences. Sec. 3 introduces the
simulation tools and the quantum processing unit used, and Sec. 4 present the results
of various performance revealing experiments. The work is concluded in Sec. 5.
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2 Theoretical background

2.1 Open quantum systems

This section references Chapters 2 and 9 from the book by Nakahara and Ohmi [19].

A pure state in a quantum system can be completely described by |ψ〉, a normalised
vector in Hilbert space H, which is a complex space with a inner product 〈ψ|ψ〉 = 1.
Any superposition of such states, e.g. c1 |ψ1〉+ c2 |ψ2〉, is also a valid pure state. In
the Schrödinger picture of quantum mechanics the time evolution of a pure state is
governed by the Schrödinger equation

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 , (1)

where ~ is the reduced Planck constant, Ĥ a Hermitian operator called the Hamilto-
nian describing the systems energy. For a time-independent Hamiltonian it has a
solution

|ψ(t)〉 = e−iĤt/~ |ψ(0)〉 , (2)

and, if Hamiltonian is time-dependent, the solution is

|ψ(t)〉 = T exp− i
~

∫ t

0
Ĥ(t′)dt′ |ψ(0)〉 , (3)

where T is a time-ordering operator. The two equation above can both be written
in terms of a unitary time-evolution operator as |ψ(t)〉 = Û |ψ(0)〉. The unitarity
condition Û †Û = Û Û † = 1 maintains the norm of the state.

A mixed state, on the other hand, describes a probabilistic ensemble, where a
system is in a state |ψi〉 with probability pi. This randomness means that the state
is not known with certainly, but it is not to be mixed with the concept of quantum
mechanical superposition. Also, a pure state is a special case for a mixed state with
probability of one for only a single state. Mathematically a mixed state is described
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by the density matrix

ρ =
N∑
i=1

pi |ψi〉 〈ψi| , (4)

where N is the number of available states. The density matrix is positive semi-definite
Hermitian operator with Tr(ρ) = 1. Also, the state is pure if and only if ρ2 = ρ. The
density matrix evolves in time as defined by the Liouville-von Neumann equation as

i~
d

dt
ρ = [Ĥ,ρ], (5)

where the square brackets indicate the commutator. With Û(t) being a general
time-evolution operator, the density matrix can be propagated as

ρ(t) = Û(t)ρ(0)Û †(t). (6)

For a time-independent Hamiltonian H the evolution can be solved from the Liouville-
von Neumann equation as

ρ(t) = e−iĤt/~ρ(0)eiĤt/~, (7)

resembling the evolution for a state vector.

An open quantum system is formed out of quantum mechanical system coupled
to its environment. However, unlike in a closed system where the complete wave
function of the system is known, the environment is often described as a bath, the
states of which are at least partially unknown. The state of the entire system can be
expressed as a tensor product

ρ = ρS ⊗ ρE, (8)

where ρS and ρE are the density matrices of the system and the environment,
respectively. The density matrix of the system of interest can be separated by taking
the partial trace ρS = TrE(ρ).

A quantum operator L, that maps a density matrix to another linearly, is known
as a superoperator. Moreover, L is completely positive and trace preserving (CPTP).
Positivity requires that a positive operator is mapped to another positive operator
in the same Hilbert space, and it is said to be complete, if the same is satisfied for
an extension L ⊗ 1n, for an arbitrary n ∈ N. Trace preserving translates simply to
Tr(LρS) = Tr(ρS) = 1.
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Even though the Liouville-von Neumann equation in Eq. (5) holds for all systems,
the Hamiltonian of the environment is often unknown or the combined system is too
large for the equation to be used practically. Therefore a map like the one in Eq.
(6) is not obvious. A common initial assumption is that the system has no memory,
meaning that the evolution of ρ(t) is governed solely by itself at time t, and passed
events have a negligible effect in the future evolution. This assumption is known
as the Markovian approximation. Using the superoperator formalism, the master
equation describing the time evolution of a Markovian system is then

∂

∂t
ρS = LρS. (9)

Such evolution can be calculated using the Lindblad master equation

∂

∂t
ρS = − i

~
[
Ĥ,ρS

]
+

N∑
K=1

γK

(
L̂KρSL̂

†
K −

1
2 L̂
†
KL̂KρS −

1
2ρSL̂

†
KL̂K

)
, (10)

where γK is related to the probability for a Lindblad operator L̂K to manifest, or
the rate at which L̂K is applied. The Lindblad equation is used to solve non-unitary
dynamics, characteristic for open quantum systems. An operator √γKL̂K is often
referred to as a collapse operator.

2.2 Basics of quantum computing

This section aims to provide the necessary information about quantum computation
relevant in the scope of this work. Since this work discusses error mitigation on single
qubit operations, the topics of multi-qubit gates, circuits and standard algorithms,
although critical for the field, are mostly not discussed. The books by Nielsen and
Chuang [1], Nakahara and Ohmi [19], and Mermin [20] cover the field of quantum
computing extensively, are used as general reference in this section, and are referred
to for more information.

The computational unit of quantum computing is the qubit, a quantum mechanical
counterpart to the classical bit. Regardless of the physical implementation, the two
orthonormal basis states of a qubit are |0〉 and |1〉. Any linear combination, or
superposition, of these is also a valid qubit state, written as

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1, (11)
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where α and β are complex numbers satisfying the normalization condition relat-
ing to the measurement probabilities |α|2 and |β|2 of the two states. Due to the
normalization, the qubit state can be equivalently given as

|ψ(θ, ϕ)〉 = eiϕα cos θ2 |0〉+ eiϕβ sin θ2 |1〉 = cos θ2 |0〉+ eiϕ sin θ2 |1〉 , (12)

where the second equality omits the unobservable global phase and fixes the coefficient
of |0〉 real. Moreover, this gives rise to a widely used graphical representation known
as the Bloch sphere, illustrated in Fig. 1. The unit vector representing the state on
the sphere is called the Bloch vector, defined as

n̂(θ,ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)>. (13)

By defining a vector ~σ = (σx, σy, σz) with Pauli matrices

σx =
0 1

1 0

 σy =
0 −i
i 0

 σz =
1 0

0 −1

 , (14)

one can show that |ψ(θ,ϕ)〉 is an eigenstate of n̂(θ,ϕ) · ~σ with an eigenvalue +1.
When 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π, the state corresponds to a unique point on the
sphere.

A similar representation exist also for mixed states, described by the density
matrix ρ. A general form for ρ can be written as a linear combination

ρ = 1
2 (1 + uxσx + uyσy + uzσz) , (15)

where the coefficients ui form a real vector ~u, for which |~u| ≤ 1. If |~u| = 1, the vector
lies on the unit sphere as thus corresponds to a pure state. On the contrary, when
|~u| < 1, the point lies within the unit ball, called the Bloch ball, and represents
a mixed state. Therefore n̂ is a special case of ~u limited to pure states. From a
visualisation point of view, the decoherence of a quantum state can be seen as the
decrease in the lenght of ~u, i.e. the vector shrinks to the center of the Bloch ball.

The qubit can also be thought as a vector in C2, in which the basis states
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~x

~y

~z

|ψ〉

ϕ

θ

|0〉

|1〉

Figure 1. The Bloch sphere representing the quantum state |ψ〉 of a two-level
system, described by the Bloch vector n̂(θ, ϕ), where θ and ϕ are the polar and
azimuthal angles, respectively.

corresponding to basis vectors as

|0〉 ⇔
1

0

 |1〉 ⇔
0

1

 . (16)

Quantum operators acting on this two-level system are described 2× 2 matrices, that
are also known as gates within the abstraction of gate based quantum computing.
Such operators U preserve the norm of the vector, resulting in the unitarity conditions
UU † = U †U = 1. Universal quantum computing requires, at least in theory, exact
control of the state vector over the Bloch sphere. This can be achieved with rotation
operators defined with Pauli matrices as Ri(θ) = exp(−iθσi/2), with i ∈ {x,y,x}.
The Pauli gates are often denoted by X, Y and Z, with a subscript to indicate a
parametrized rotation, e.g. Xπ

2
for a π/2 rotation around the x-axis.

A gate set is said to be universal for quantum computation, if any unitary
operation can be executed to an arbitrary accuracy with a circuit involving only
those gates. For a multi-qubit system a universal gate set is formed out of the
CNOT gate, i.e. a controlled X gate, and arbitrary control over the single qubit
state. The latter can be achieved by the three Pauli rotation matrices. One solution
is to combine the x and y rotations to a rotation around an arbitrary axis along the
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xy-plane of the Bloch sphere. This is referred here as a PRX gate defined as

PRX(θ, ϕ) = exp
(
−iθ2(σx cosϕ+ σy sinϕ)

)
=
 cos θ

2 −ie−iϕ sin θ
2

−ieiϕ sin θ
2 cos θ

2

 . (17)

The rotation angles can be related to the Bloch sphere by noting that

PRX
(
θ, ϕ+ π

2

)
|0〉 = cos θ2 |0〉+ eiϕ sin θ2 |1〉 . (18)

With the added knowledge that σxσy = iσz, the z rotations could be decomposed as
x and y. However, other more efficient methods exist.

Rotations around the z-axis can be implemented in multiple ways. In the physical
devices one can tune the frequency of the qubit away from the operating point for
some time period, which effectively rotates the qubit. The tuning can be achieved,
for example, by introducing a strongly detuned microwave control pulse, which
induces an ac-Stark shift in the frequency, or simply by changing the magnetic field
in flux-tunable qubits [21, 22]. However, a simpler mathematical method is provided
by virtual Z gates, where the original rotation angle around the z-axis is subsumed
into the x and y rotations of the following gates. It can also be thought as rotating
the axes during the circuit and re-evaluating the parameters of the following gates.
Following the example by McKay et al. [23], the effect of a virtual Z gate can be
highlighted by starting with a sequence of two gates: Xθ as a parameterized rotation
around the x-axis followed by a Xϕ

θ rotation, where the superscript notes that the
rotation axis is offset by ϕ. Using time ordering from right to left, the sequence is
then

Xϕ
θXθ = exp

(
−iθ2(σx cosϕ+ σy sinϕ)

)
Xθ (19)

= exp
(
i
ϕ

2 σz
)

exp
(
−iθ2σx

)
exp

(
−iϕ2 σz

)
Xθ (20)

=Z−ϕXθZϕXθ, (21)

where the Euler’s formula and few other trigonometric identities were used. Assuming
no gates are performed afterwards, the final rotation has no measurable effect since the
qubit is measured along the z-axis. Thus, it is shown that a Zϕ rotation is effectively
equal to changing the rotation axis of the following gate by ϕ. Furthermore, any
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single qubit circuit containing arbitrary gates Ui and Z gates can be analytically
modified to remove all Z gates. A circuit of form

Ui Zθ0 Ui+1 Zθ1 Ui+2

is equivalently transformed to

Ui U
(θ0)
i+1 U

(θ0+θ1)
i+2

.

As seen above, quantum gates are often visualised using the circuit model, first
introduced by Deutsch [24]. Qubits are represented as horizontal wires, and operations
as boxes operated from left to right, contrary to the mathematical ordering of
operations. The model is convenient for representing larger circuits and small
algorithms, where multiqubit gates can be represented vertically, and measurement
and classical bits can be included.

2.3 Superconducting qubits

2.3.1 Superconductivity and Josephson junctions

The circuit based quantum computing relies heavily on the quantum mechanical
phenomenon of superconductivity. It was first discovered by Heike Kamerlingh Onnes
in 1911, when indentifying the zero-resistance of mercury at temperatures of few
Kelvins [25], and theoretically formulated to the BCS theory more than forty years
later by Baarden, Cooper and Schrieffer [26] in 1957. The most noticeable effects of
superconductivity are the capability to carry electrical current without dissipation
and the Meissner effect. In the latter, magnetic flux created by a constant external
magnetic field is expelled from the material as it transitions to the superconducting
state. This is facilitated by persistent supercurrent loops on superconductor’s surface,
which in turn create an opposing magnetic field leading to repulsion. This leads
to a superconductors being perfect diamagnets. The characteristic length during
which the magnetic field exponentially decays in the superconductor is called the
London penetration depth. Both of these effects have upper limits after which they
disappear; the superconducting state breaks if current exceeds the critical current Ic
or if the magnetic field exceeds the critical field Hc. In general, superconductivity is
a phase transformation that happens for many metals below a critical temperature
Tc. [27]
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The BCS theory is based on the assumption that in the superconducting state
electrons exhibit attractive interactions due to electron-phonon coupling and be-
come correlated. These correlated electron pairs are referred to as Cooper pairs.
Phenomenologically the phonon-mediated attraction can be though of in terms of
Coulombic interactions as follows: 1) A moving electron disturbs the fixed lattice
ions as it passes by, but the distortion in the ion positions lags behind due to their
larger mass. 2) Meanwhile the electron moves away from the lattice site. 3) A second
electron enters the proximity of the disturbed ions and experiences an attractive
force towards the perturbed ion without a major repulsion from the first electron.
These steps can result in an effective electron-electron attraction between distant
electrons.

When two metals in superconducting state are weakly connected, typically with a
thin non-conducting layer, Cooper pairs may tunnel quantum mechanically through
the barrier resulting in the Josephson effect. The phenomenon can be captured in
two equations. The dc Josephson relation reads

I = Ic sinφ, (22)

where Ic is the structure-dependent critical current and φ the phase difference of
the superconducting order parameter over the junction. Physically it describes that,
even in the absence of a voltage drop, a current of a maximum amplitude Ic can
form over the junction. Furthermore, the ac Josephson relation is defined as

φ̇ = 2eV
~
, (23)

with 2e capturing the charge of a Cooper pair and V being the voltage over the
junction. Solving the previous for φ and substituting to the dc relation gives

I = Ic sin
(2eV

~
t+ φ(0)

)
, (24)

showing that a constant voltage over the junction generates an oscillating current.

The Josephson dynamics are leveraged in mesoscopic stuctures called Josephson
junctions, typically created between two metallic nanoscale leads separated by a metal
oxide, e.g. Al−AlOx−Al. The prevalence of the quantum mechanical Josephson
effects make them useful in many fields, such as quantum sensing and quantum
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I

φ1

φ2

Φ

Figure 2. The lumped element circuit diagram of a dc-SQUID, where φi indicate
the phase differences over the junctions and Φ the magnetic flux through the
superconducting loop.

information processing.

The potential energy stored in a Josephson junction can be derived by integrating
the instantaneous power P = IV over the junction over time. Using the Josephson
relations in Eqs. (22) and (23) it is

U(φ) =
∫
IV dt =

∫
Ic sin(φ) ~2eφ̇dt = − ~Ic

2e︸︷︷︸
=EJ

cos(φ) + const., (25)

where the Josephson energy EJ is identified, and the constant term represents an
arbitrary energy shift, that can be neglected.

Superconducting quantum interference devices, or SQUIDs, have proven useful
in many applications. A dc-SQUID, most relevant here, is formed from a conducting
loop containing two Josephson junctions, with each junction forming a possible path
for an external current to pass through, schematically presented in Fig. 2. SQUIDs
are highly sensitivity in the magnetic flux through the loop and the current within
it, one always being affected by the other.

The dependency of the current on the magnetic flux can be investigated via the
superconducting order parameter. The gauge-invariant phase between points A and
B on opposite sides of the junction is

φ = φAB −
2π
Φ0

∫ B

A

~A · ~dl, (26)

where φAB is the junction specific phase difference, Φ0 = h/(2e) is the flux quantum
of the Cooper pair and the vector potential ~A is integrated over the superconductor
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[27]. In the structure of Fig. 2, the total phase in a cycle over the loop is

φtot = φ1 −
2π
Φ0

∫ 2

1
~A · ~dl − φ2 −

2π
Φ0

∫ 2

1
~A · ~dl

= φ1 − φ2 −
2π
Φ0

∮
~A · ~dl = φ1 − φ2 −

2πΦ
Φ0

. (27)

The total phase acquired over a single loop needs to be a multiple of 2π and therefore

φ1 − φ2 = 2πΦ
Φ0

mod 2π. (28)

In the dc-SQUID the current can flow through either of the paths, each with an
Josephson junction with critical current IC,i and phase difference φi, thus the total
current is

I = IC,1 sin (φ1) + IC,2 sin
(
φ1 −

πΦ
Φ0

)
. (29)

The current that can flow through a dc-SQUID is seen to be a function of the
magnetic flux. Assuming identical junctions with IC,1 = IC,2 ≡ Ic, the current
simplifies to

I = 2Ic sin
(
φ1 −

πΦ
Φ0

)
cos

(
πΦ
Φ0

)
. (30)

The critical current of a Josephson junction, or a dc-SQUID for that matter, describes
the maximum current that can flow without a potential drop over the structure. The
maximum current of the dc-SQUID can be investigated by setting the derivative
with respect to φ1 to zero,

dIc
dφ1

= 0 ⇔ 2Ic cos
(
φ1 −

πΦ
Φ0

)
cos

(
πΦ
Φ0

)
= 0, (31)

from which one can identify that cos (φ1 − πΦ/Φ0) = 0 is required. This translates
to sin (φ1 − πΦ/Φ0) = ±1. The maximum current determined from Eq. (30) is
therefore

I = 2Ic
∣∣∣∣∣cos

(
πΦ
Φ0

)∣∣∣∣∣ . (32)
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2.3.2 LC circuit as a quantum harmonic oscillator

The physical characterization of a superconducting qubit usually starts as a simple
classical LC resonator circuit. The derivation and the relevant system coordinates are
then quantized to yield a quantum harmonic oscillator (QHO). However, a standard
QHO has evenly spaced energy states, a fact that poses considerable issues for
quantum computation, where an isolated two-level quantum system is needed. The
two lowest states can however be separated from the rest by introducing non-linearity
into the system. [28]

The classical Hamiltonian describing the energy of an LC circuit is

H = Q2

2C + Φ2

2L, (33)

where Q is the charge on the capacitor and Φ is the flux through the inductor.
The same circuit can be treated quantum mechanically by promoting Q and Φ to
quantum operators Q̂ and Φ̂, which satisfy a commutation relation

[Φ̂, Q̂] = Φ̂Q̂− Q̂Φ̂ = i~. (34)

The operators also satisfy

Φ̂ = Φzpf(â† + â), Q̂ = iQzpf(â† − â), (35)

where â† and â are the creation and annihilation operators, respectively, and the
zero-point fluctuations are Φzpf =

√
~Z/2 and Qzpf =

√
~/(2Z), in which Z =

√
L/C

is the characteristic impedance of the oscillator [21].
Omitting the hats on the operators and using the reduced quantities n = Q/(2e)

and φ = 2πΦ/Φ0 for charge and flux operators respectively, the quantum mechanical
Hamiltonian can then be defined as

H = 4ECn2 + 1
2ELφ

2, (36)

where a charging energy EC = e2/2C and an inductive energy EL = (Φ0/2π)2/L are
introduced. The system has an infinite number of eigenstates |k〉 , k ∈ {0,1,2, . . .}
with evenly spaced eigenvalues Ek. The spacing is Ek+1 − Ek = ~ωr, where
ωr =

√
8ELEC/~ = 1/

√
LC is the resonant frequency of the circuit. The discus-
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sion can be simplified by using the second quantization of the QHO, transforming
the Hamiltonian into [28]

H = ~ωr
(
a†a+ 1

2

)
. (37)

For the eigenstates |k〉 of the QHO these ladder operators give a† |k〉 =
√
k + 1 |k + 1〉

and a |k〉 =
√
k |k − 1〉.

2.3.3 The superconducting transmon qubit

The non-linearity can be introduced to the LC circuit by replacing the inductor with
a Josephson junction, a key element in the creation of superconducting circuits (see
Sec. 2.3.1). The inductive energy term in the system Hamiltonian changes to the one
for a Josephson junction from Eq. (25), and thus the Hamiltonian of this non-linear
oscillator is

H = 4ECn2 − EJ cosφ. (38)

The capacitive energy now includes the self-capacitance of the Josephson structure
CJ , caused by finite leads connecting the junction. In this structure the Josephson
junction is said to be shunted by the parallel capacitor, the capacitance of which is
called the shunt capacitance Cs. Therefore the total charging energy EC = e2/2CΣ,
where CΣ = Cs + CJ . The Josephson energy is defined as EJ = IcΦ0/2π = Ic~/(2e).
The physical non-linear spacing of the energy spectrum is mathematically captured
by the cosinusoidal term, and is key in creating the non-degenerate transition energies.
[28]

Using the second quantization, the Hamiltonian of Eq. (38) can be approximated
as a Duffing oscillator in the ladder operator notation as

H = ωqa
†a+ α

2 a
†a†aa, (39)

where ωq is now the qubit frequency and α is the anharmonicity defined as the
difference in excitation between ground to first and from first to second excited
state, i.e. α = ω1→2

q − ω0→1
q [28]. The Hamiltonian also omits the reduced Planck’s

constants, since it is equivalent to discuss the dynamics in terms of eigenfrequencies.
For a two-level system, the second term in Eq. (39) vanishes and a constant term
can be omitted to give H = −ωqσz/2. For a three dimensional system it offsets the
second excitation by α.
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Figure 3. (a) The circuit diagram of a Cooper pair box, where the dashed
box represents the superconducting island. (b) A reduced circuit of a tunable
transmon qubit with an effective gate capacitance Cg, a shunt capacitance CB
and a dc-SQUID, the characteristics of which can be tuned with the magnetic
environment, represented with the coil. The circuit omits the superconducting
transmission line resonator for readout, which could be modeled as a LC oscillator
parallel to CB. [30]

A hallmark of superconducting qubits is that even as macroscopic systems they
exhibit quantum mechanical behaviour, that can be engineered and exploited. In a
Cooper pair box, illustrated in Fig 3a, from which all of the different qubit circuits
have been derived, this happens in multiple ways. Firstly, in the superconducting
state all electrons in the island form Cooper pairs and condense into a lower energy
macroscopic ground state, which is separated from higher energy states by the
superconducting gap ∆. As long as the charging energy EC is lower than the
superconducting gap ∆, the lowest available energy excitation in the system is the
tunneling of a Cooper pair through the Josephson junction to the island. In addition,
by increasing the capacitively controlled charging energy EC over the Josephson
energy EJ and the average thermal energy kbT , fluctuations in the number of Cooper
pairs in the island can be suppressed. An effective two level system can be created
by taking account only the two lowest charge states. The energies of these states
can further be tuned by introducing a voltage Vg to the gate electrode.[29] The gate
charge Qg = CgVg, where Cg and Vg are the gate capacitance and voltage, respectively,
in addition to an environment-induced charge Qr, transform the number operator of
Cooper pairs in the Hamiltonian of Eq. (38) into n− ng, where ng = (Qg +Qr)/(2e)
[30].

The system characteristics of a superconducting qubit is in large part dependent
on the balance between the two terms in Eq. (38), meaning the ratio between
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the Josephson and the charging energies. [28]. The first functional realization of
superconducting qubits, the charge qubit in 1999 [29], was designed to work in the
EJ ≤ EC regime, where in general the system is more susceptible to fluctations in the
charge, i.e. charge noise. The EJ/EC ratio also dictates the charge dispersion and
the anharmonicity. Charge dispersion captures the variation in the energy levels as a
function of charge on the island, that can be due to unintended environmental effects
or an applied gate voltage. A small dispersion, where the qubit frequency is less
sensitive to changes in charge and fluctuations in it, is often aimed for. Higher EJ/EC
does decrease charge dispersion, but it simultaneously lowers the anharmonicity.
However, the charge dispersion is reduced exponentially as the ratio is increased,
while the anharmonicity decreases only by weak power law. [30]

One of the qubit schemes within the family of superconducting qubits that has
shown the most promise and gained the most attraction is the transmon, presented
by Koch et al. [30] in 2007. It shunts the junction by a large capacitance which
decreases the charging energy of the island. This places transmon to the large EJ/EC
regime, values ranging from tens to a few hundreds. This has great operational
benefits, as mentionded above. In the transmon architecture the charge dispersion
is suppressed leading to more frequency stable qubits at a small cost in the qubit
anharmonicity. Instead of using the number of Cooper pairs on the island as the
discrete quantum number, transmon type qubits use the superconducting phase,
which in the relevant energy limit has small quantum fluctuations and resembles a
QHO solution to a local potential well. This is seen by expanding the cosine term in
the Hamiltonian of Eq. (38) up to the fourth order as

EJ cosφ = 1
2EJφ

2 − 1
24EJφ

4 +O(φ6). (40)

Cutting to the first term would reveal a linear system, but the non-linearity is
captured by the higher order terms. A noticeable remark is the negative coefficient
for the second term, which leads to ω1→2

q < ω0→1
q , i.e. negative anharmonicity, and

in general to decreasing transition frequencies for higher excitations. For transmons
anharmonicity α ≈ −EC and is typically around 100-300 MHz and the qubit
frequencies, given by ωq = (

√
8EJEC − EC)/~, are around 3 - 6 GHz. The lumped

element transmon circuit diagram is presented in Fig. 3b.

The qubits can be made frequency tunable, which is useful for adjusting the
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coupling between neighbouring qubits by bringing them into and out of resonance.
This is facilitated by replacing the single Josephson junction of early Cooper pair
boxes by a dc-SQUID, presented in Sec. 2.3.1. This was included already in the first
transmon qubit, but can also be referred to as an split transmon [30]. Assuming
symmetric Josephson junctions each with a Josephson energy EJ , though not a trivial
task for modern fabrication methods [31], the circuit Hamiltonian is transformed to

H = 4ECn2 − 2EJ | cosϕe| cosφ, (41)

where the ϕe = πΦext/Φ0. Thus the total Josephson energy 2EJ | cosϕe| is periodic
in the external magnetic field, while getting values between zero and 2EJ . [30] The
dc-SQUID therefore creates a frequency controllable qubit. Again, the system can
be approximated as a Duffing oscillator (Eq. (39), now with the added knowledge
that the qubit frequency is tunable.

2.3.4 Single-qubit gates with capacitive control

In order to compute with qubits, their states need to be controllable through quantum
operations. Single-qubit gates are applied to transmons by capacitively coupled
superconducting microwave drivelines routed to the proximity of the transmon circuit.
Starting from a LC oscillator point of view, the drive can be incorporated to the
circuit Hamiltonian. For that, the driving voltage Vd(t), the total capacitance to
the ground CΣ = C + Cd, where Cd is drive capacitance, and the time-dependent,
renormalized charge variable Q̃(t) = CΣΦ̇−CdVd(t) are introduced. The Hamiltonian
is then defined as

H = Q̃(t)2

2CΣ
+ Φ2

2L + Cd
CΣ

Vd(t)Q̃ ≈ HLC + Cd
CΣ

Vd(t)Q, (42)

where the approximation is valid in the weak coupling limit, i.e. when Q̃ ≈ Q and
HLC is the LC oscillator Hamiltonian from Eq. (36). The charge variable is quantized,
Q = −iQzpf(a− a†), as per Eq. (35). [28]

The control dynamics of a nonlinear superconducting qubit can be presented
by replacing the HLC with the one of a Josephson junction. Within the second
quantization then, HLC is replaced by the Hamiltonian of a Duffing oscillator of Eq.



30

(39), giving
H = ωqa

†a+ α

2 a
†a†aa− iΩVd(t)(a− a†), (43)

where Ω = (Cd/CΣ)Qzpf. For a two-level system, the previous simplifies to

H = −ωq2 σz + ΩVd(t)σy. (44)

From the two-level Hamiltonian one can derive that, at zero control voltage, the qubit
rotates around the z-axis of the Bloch sphere at a constant frequency ωq. In order
to simplify the description, the rotating frame is introduced to cancel the leading
terms in Eqs. (43) and (44). In the two-level Bloch sphere picture, the rotation of
the Bloch vector around the sphere is transformed into a frame rotating together
with the vector, effectively creating a stationary state. In Appendix A it is shown
that the rotating frame Hamiltonian is

Hrf = α

2 a
†a†aa+ ΩVd(t)

[
cosωt(−i(a− a†))− sinωt(a+ a†)

]
, (45)

which again simplifies in the two lowest levels to

Hrf = ΩVd(t) [σy cosωt− σx sinωt] . (46)

The external driving voltage typically has a form

Vd(t) = V0v(t) = V0s(t) sin (ωdt+ φ) (47)

= V0s(t)(cos (φ)︸ ︷︷ ︸
= I

sin (ωdt) + sin (φ)︸ ︷︷ ︸
= Q

cos (ωdt)), (48)

where V0 is the amplitude of the signal, and the in-phase and out-of-phase components
I and Q are identified. By substituting this into the rotating frame Hamiltonian in
Eq. (45), it becomes

Hrf = α

2 a
†a†aa− ΩV0s(t)

2
[
I(a+ a†) +Q(−i(a− a†))

]
, (49)

where on-resonant driving is assumed. The change of frame also creates terms
oscillating at twice the qubit or drive frequency, and these fast-rotating terms have
been neglected. This is referred to as the rotating wave approximation. The second
term still describes the control and is investigated next. For simplicity the constants
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Ω and V0 are subsumed into the envelope function s(t).

The time-dependent effect of the driving Hamiltonian Hd can be expressed as
the unitary operator

U(t) = exp
(
−i
∫ t

0
Hd(t′)dt′

)
. (50)

By substituting the Hamiltonian term the propagator reads

U(t) = exp
(
i

2
(
I(a+ a†) +Q(−i(a− a†))

) ∫ t

0
s(t′)dt′

)
. (51)

Assuming an in-phase signal with φ = 0 and remembering that a general rotation
operator can be expressed with exponentiated Pauli matrices, the integral above can
be interpreted as rotation around x-axis by the angle

θ(t) = −
∫ t

0
s(t′)dt′. (52)

With an out-of-phase signal with φ = π/2, the same rotation would be achieved
with respect to the y-axis. Therefore, by tuning the signal’s phase and the envelope
function, one can achieve arbitrary control over the two axes, making all single qubit
operations possible.

The form of the envelope function has not yet been specified. In order to minimize
the critical execution time and thus the effects of decoherence, a square pulse with
constant amplitude would be the most effective. However, such an abrupt pulse
shape is more prone to deformation in the control electronics, and moreover, the
high frequency components can drive unwanted excitations. [21] Thus smoother
pulse shapes are commonly used, such as a Gaussian waveform, but they do pose
another issue. Depending on the width of the pulse, i.e. the standard deviation in
the Gaussian case, the spectral composition can have a substantial amplitude spread
around the intended drive frequency. In weakly anharmonic qubits, the amplitude
can also be significant at the anharmonicity point, driving the second excitation.
This leads to both leakage and phase errors. [28] A popular method to mitigate
such errors is the DRAG (derivative reduction by adiabatic gate) scheme [32, 33].
The key is to modify the envelope function acting on the out-of-phase component Q:
s(t) is replaced by λṡ(t)/α, where λ is a dimensionless scaling parameter and α is
the qubit anharmonicity. In order to minimize leakage errors λ is set to 1, but the
compromise between phase errors (minimized at λ = 0.5) and leakage can by tuned
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specifically for the device in question.

2.3.5 Initialization and measurement

The qubit control discussed in the previous section demonstrated the importance of
qubit addressability. In addition to state manipulation, the qubit systems need to be
addressed in two other ways, mentioned also in DiVincenzo’s five criteria [34]: qubits
need to reliably initialised and measured with high fidelity. Most often quantum
algorithms starts with the assumption of qubits being in the state |0〉 that is mapped
to the qubit’s ground state. This is convenient, because in the absence of excitations,
the physical apparatus can be thermally driven to the ground state.

The conventional method for initializing the qubits to the ground state relies
on thermalization due to uncontrolled dissipative processes to the environment. In
other words, the initialization takes advantage of the unavoidable energy decay of
the circuit, which during the computation is considered a major issue. [35] This
decoherence is one of the hurdles of superconducting qubits in general, and poses
a dilemma: as decoherence times are increased to allow for more computational
power, how to reset reliably and fast to keep the computation cycles fast. One
solution, as presented in [35], is to engineer a highly dissipative element, such as a
low-temperature resistive bath, that can be tunably coupled to the qubit through
resonators. By detuning the resonator sufficiently from the qubits natural frequency,
the coupling to the bath is turned off and intrinsic decoherence times are reached.
However, tuning the resonator to the qubit frequency, the decoherence time can be
greatly reduced and the decay to the ground state accelerated. Alternatively, one
could measure the qubit, collapsing it to either of the computational states, and
rotate the qubit the ground state if the excited state was measured. However, this
method is subject to measurement and single-qubit gate errors.

In order to retrieve the end result of quantum computation circuit, the qubit
states need be measured. The most common technique used in the measurement
of superconducting qubits is the dispersive readout, where the qubit is capacitively
coupled to a linear readout resonator, that can be used to probe the quantum
mechanical state of the qubit into a classical response read out by external electronics.
In the dispersive limit, the resonator is far detuned from the qubit, which suppresses
energy transfer between the two oscillators. The coupling does, however, change the
bare frequency of the qubit by a constant Lamb shift, induced by vacuum fluctuations
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in the readout resonator, and an ac-Stark shift, that depends on the number of
excitations, i.e. photons, in the resonator. The photon number dependence of the
Stark shift can be a source of dephasing (see Sec. 2.4.1) for the qubit, since the
photon number fluctuations lead to fluctuations in the qubit frequency. [28]

In the dispersive regime, the qubit induces a state-dependent frequency shift
on the resonator, that can be probed with a microwave pulse to reveal information
about the qubit state. For example, one can pulse the resonator at the average
frequency ωRO = (ω|0〉r +ω|1〉r )/2, where ω|0〉r and ω|1〉r are the state-dependent resonator
frequencies. Then, after the readout pulse has reflected or transmitted from the
chip level, the information of the qubit state is encoded in the phase of the signal,
and can be recovered through classical signal processing. A key factor in successful
qubit readout is to maximize the signal-to-noise ratio and to minimize the potential
back-action to the qubit. Higher readout fidelities can be achieved with longer
readout pulses, but longer times subject qubits to energy decays governed by their
decoherence times. State-of-the-art solutions utilize Purcell filters and parametric
amplification in order to increase the signal-to-noise ratio at faster readout times.
[28]

2.4 Noise in superconducting qubits

Like any physical system, quantum computers exhibit noise. The delicacy of current
physical implementations mean that they are highly susceptible to errors induced by
different noise mechanisms. In fact, the noise governs the field to such a degree that
the current era has been named the NISQ (noisy intermediate-scale quantum) [9].
Vast resources are being dedicated to design and build less error-prone devices and at
the same time new schemes are being discovered to mitigate and even to correct for
errors, both in the pursue of fault-tolerant quantum computing. Nevertheless, even
the term implies that errors will always occur and need to be managed. The different
physical implementations of quantum computing all exhibits similar noise behaviour,
especially the characteristics originating from the physics of open quantum systems,
but they do have their own nuances. This sections focuses on superconducting qubits,
but many of the topics are applicable to other computing schemes as well.

Quantum mechanically noise and control are two sides of the same coin. In order
to minimize environmental noise, the coupling between the system of interest and
the outside world should be minimized, but at the same time some well-understood
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coupling is needed to control the system. A concrete example: single qubit control
is achieved with coupling to microwave drivelines, but the coupling is a trade-off
between control gained and introduction of a possible relaxation processes decreasing
the qubit’s lifetime [21].

Based on their effect on system dynamics, errors can be grouped into incoherent
and coherent errors. Incoherent errors lead to decoherence meaning the loss of
quantum information, and are stochastic by nature. On the other hand, coherent
errors are systematic and unitary, such as a fixed error in control pulses, and can
often be canceled by better calibration. The coherence is preserved, but the state or
the process no longer match the intended one. Coherent errors scale qaudratically
in circuit depth instead of linear scaling of decoherent errors and can therefore be
more detrimental to computation, which has inspired ways to transform coherent
errors incoherent, such as randomized compiling [36] and quantum measurement
emulation [37]. This work focuses on the mitigation of coherent errors with composite
sequences, which can also be seen as a transaction between a reduction in coherent
control errors and an increase in environmental decoherence due to longer execution
times.

This section discusses the standard model for characterizing decoherence with
energy relaxation and dephasing, as well as coherent noise and its sources. The
concept of fidelity is also discussed as a tool to compare noisy processes against their
ideal counterparts. Lastly, ways to implement decoherence and coherent errors into
simulation are presented.

2.4.1 Decoherent quantum processes

A two level quantum system can be studied using the Bloch-Redfield [38, 39] model
for open quantum systems. In this context the loss of quantum information is
characterized by two decay functions and their respectively decay rates: longitudinal
and transverse.

The longitudinal relaxation describes the energy relaxation of the qubit, and it
is expressed with a relaxation rate Γ1. It originates from an x- or y-axis coupling
to the environment, which relates to the fact that the off-diagonal elements in the
interaction Hamiltonian drive the excitation and relaxation between |0〉 and |1〉.
The overall rate can be expressed as a sum of the excitation and relaxation rates
Γ1 = Γ1↑ + Γ1↓ ≡ 1/T1, where the longitudinal relaxation time T1 is also introduced
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as a characteristic 1/e decay time scale in which the steady state is reached. The "up"
and "down" rates satisfy the detailed balance Γ1↑ = exp(−~ω/kbT )Γ1↓. In the regime
of typical superconducting qubits with frequencies ωq/2π ≈ 5 GHz at millikelvin
temperatures the excitation rate is exponentially suppressed and the qubit tends to
relax to the ground state. Also, the qubit transitions are only driven on a narrow
frequency band at the qubit frequency.[28] This means that Γ1 is only affected on
that narrow band, where the noise power spectral density is constant resulting in
white noise. This also relates to vanishing correlation times and thus the Markovian
assumption of an exponential decay holds well.

The decoherence of a superposition state is described by the transverse relaxation
rate Γ2, and it is mediated by both longitudinal (z-axis) and transverse (x-y plane)
noise. As discussed above, the longitudinal relaxation rate Γ1 tends to relax any
state into the ground state. Moreover, this leads to loss of the phase information
of the state; when a superposition state (|0〉 + |1〉)/

√
2 relaxes to |0〉, the original

location on the equator of the Bloch sphere is no longer evident. Transverse noise
causes the qubit frequency to fluctuate, which leads to dephasing, characterized by
the dephasing time Γφ. The effect is stochastic in nature, but since no energy is
exchanged with the surrounding environment, the process could be reversed, e.g.
with dynamical decoupling [40]. Also, pure dephasing is mediated by broadband
noise, since the qubit frequency can be shifted by noise at all frequencies. The
effective rate combining both noise mechanisms is

Γ2 = Γ1/2 + Γφ, (53)

assuming that dephasing is generated by Markovian processes. [28]

In superconducting qubits, the general noise spectrum tends to have 1/f spectrum,
meaning noise is biased to low frequencies. This nuisance, also know as flicker or
pink noise, often originates from unknown or uncontrollable changes in the studied
system or it’s control and measurement electronics [27]. The low frequencies translate
to long correlation between noise events exceeding the time scales related to the
computational operations on the circuit. As mentioned earlier, energy relaxation is
only driven on a narrow band at the qubit frequency, and therefore T1 is unaffected
by 1/f noise. However, the low frequency noise does induce pure dephasing. This
non-Markovianity breaks the exponential Bloch-Redfield assumption of the pure
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dephasing decay function and thus the characteristic decay time T2 cannot be
calculated as in Eq. (53). In the interest of having a simple and well-established
benchmark for transverse relaxation, the exponential decay model is still used, and
it is a reasonable approximation when Tφ & T1 [28]. For physical implementation
it is typical to aim for a T2 limited by T1 through the theoretical limit T2 < 2T1 as
pure dephasing vanishes [40], which would reinforce the approximation.

2.4.2 Fidelity

The similarity of two quantum mechanical states can be estimated by their fidelity.
In the field of quantum computing it is the de facto measurement for the accuracy of
the computation, but it does have some variations in the definitions and applications.
However, a well established standard is given in Ref. [1], where the fidelity between
density matrices ρ and σ is defined as

F (ρ,σ) ≡ tr
√
ρ1/2σρ1/2. (54)

It is not truly a metric, but does have many other suitable features. Firstly, its
values are bounded between 0 and 1, 0 ≤ F (ρ, σ) ≤ 1, with the upper limit met only
if the states are identical, i.e. ρ = σ. Also, F (ρ, σ) = 0 only if ρ and σ have support
on orthogonal subspaces and are thus perfectly distinguishable. Furthermore, it is
symmetric with respect to the inputs, F (ρ, σ) = F (σ, ρ). If either of the states is
pure with a density matrix is given by ρ = |ψ〉 〈ψ|, Eq. (54) simplifies to

F (|ψ〉 , σ) = Tr
√
|ψ〉 〈ψ|σ |ψ〉 〈ψ| =

√
〈ψ|σ |ψ〉Tr

√
|ψ〉 〈ψ| =

√
〈ψ|σ |ψ〉, (55)

where the properties of pure states ρ = ρ2, and Tr(ρ) = 1 were used. The square
of the fidelity introduced in Eq. (54) was originally proposed as the definition of
fidelity by Jozsa [41], and the two are at times used ambiguously in literature, with
Eq. (54) naturally yielding superior values.

As the states in computational quantum systems are often achieved by applying
an engineered quantum process, it is practical to introduce the concept of process
fidelity Fpro(E ,F) ≡ F (ρE , ρF), where ρE and ρF are the states created by the
processes E and F . When one of the channel is unitary, e.g F = U , as frequently is
the case when comparing physical implementation to ideal evolution, the process
fidelity can be expressed using the superoperator description of quantum channels
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(see Sec. 2.1) as

Fpro(E , U) = tr(L†ULE)
d2 , (56)

where d is the dimensionality of the channels [42]. Moreover, the fidelity of a quantum
process can depend on the initial state of the system, and in order to capture the
full dynamics, the average fidelity is defined as

Fave(E ,F) ≡
∫
dψF (E(ψ),F(ψ)), (57)

where the integration is done over the state space. Again, for a unitary channel
F = U this simplifies to [43, 44]

Fave(E , U) = Fpro(E , U)d+ 1
d+ 1 . (58)

For a analytically defined quantum processes used in simulations, Eqs. (56) and
(58) provide an efficient way to calculate the average fidelity. However, in physical
quantum computers the actual quantum channel is not fully known, so neither are
their superoperators. This gives rise to a need for an experimental method to evaluate
the same fidelity definition. An immediate solutions would be to estimate the channel
using quantum process tomography, but it scales unfavorably, as d4 − d2 observable
average measurements are needed for d dimensional quantum channel [1]. However,
there does exist alternatives that alleviate part of the computational cost [43].

2.4.3 The simulation of noise and errors

The longitudinal and transverse decay functions within the Bloch-Redfield model
are easily integrated to the Lindblad model to analyse open system evolution. The
longitudinal energy relaxation is described by an collapse operator a/

√
T1, where a

is the annihilation operator. Similarly, the transverse decay is defined as a†a
√

2/Tφ.
[45] The time-evolution can then determined by numerically solving the differential
equation, of course keeping in mind the assumptions made both in the Bloch-Redfield
model and the Lindblad master equation.

The simulation of coherent errors is more straightforward. Based on the level the
system is described in the simulation, systematic errors can be introduced in many
ways. For example, if a transmon qubit is designed for some target frequency and
anharmonicity, the physical device will always differ from these values. A systematic
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error could then be attributed to either the frequencies directly, or to the underlying
parameters, e.g. physical size or material constant. The control of qubits is subject to
comparable errors, since the capacitive coupling between the qubit and the driveline
is also affected by deviation from design parameters. Moreover, the electronic signals
controlling the magnetic flux in tunable qubits and the control pulses are limited in
accuracy. In the perfect world of simulations however, arbitrary control pulses can
be created, for example, to create a rotation deviating from the ideal one simply by
varying the integral of the envelope function in Eq. (52). The phase of the pulse can
also be offset by an user-defined value. It is noteworthy that these same paths can
be taken to implement stochastic errors in pulses.

Physical superconducting qubits never truly are two-level system, which can
be painfully obvious in weakly anharmonic transmons. The devices experience
leakage errors, meaning state population leaks away from computational subspace to
higher excitation states. These higher states can be included in the simulation by
defining the system Hamiltonian with general creation and annihilation operators in a
Hilbert space of the wanted size, instead of the Pauli matrices, as is done throughout
this work. However, each additional state grows the computational requirements
exponentially.

Lastly, the Hamiltonian can be made to include the dynamics introduced by noise
sources including specific interactions with environment and variation in the control
field. These further provide methods to use simulation to validate the system’s the
design, to investigate error budgeting, and to gain new insight about the quantum
mechanical system.

2.5 Composite pulse sequences

In principle, a known systematic error can always mitigated with calibration of
the qubit system and its controls. However, this is often a tedious task as the
initial calibration of a state-of-the-art superconducting quantum processor is time-
consuming and the systems need to be regularly monitored for drift and recalibrated.
Composite sequences promises to mitigate systematic gate errors up to an arbitrary
accuracy by utilising symmetries in the rotation angles of the sequences. These
methods have been used in nuclear magnetic resonance (NMR) experiments and
applications, where, for example, the dispersion in a large ensemble of quantum
system causes unwanted dynamics under a uniform control field. A typical task is
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to excite a spin ensemble with varying parameters from a initial state to a desired
final state. In the spin systems of NMR experiments and applications, possible
deviations in parameters include Larmor dispersion, i.e. variation in the precession
frequency around an external field, variation in spin relaxation rates and fluctuation
in the applied radio frequency control field. Compensating pulse sequences aim to
compensate for these dispersions.[11]

Composite pulse sequences has previously been shown to follow the theoretically
predicted excitation profiles on superconducting qubits. For example, in 2022 Torosov
and Vitanov [13] executed composite pulses on an open access IBM quantum processor
and found excellent agreement also with higher order corrections, contributed to the
quality of IBM devices and the error mitigation power of these methods. However,
how well can composite pulses be incorporated into full-scale computation is still an
open scientific question.

2.5.1 Composite sequence classes

Levitt [46] introduces a classification of different composite pulses into types A and
B. Type A includes the fully-compensating pulses, meaning the sequences which
are not initial state dependent and which transform an initial state into an ideal
final state over some range of control. On the other hand type B sequences are
called partially compensating, since the transformation does not fully achieve the
ideal one. Subtypes of this group include sequences up to a phase shift (B1), initial
state dependent sequences (B2) and the combination of both conditions (B3). In
the framework of quantum computing, type B sequences are of little use since they
require information about the initial and final states of the operations [47]. Typical
computation schemes consist of multiple of these operations and the intermediate
states of the system are not stored. Also, the phase of the qubit is a highly valuable
asset. Considerable efforts are taken to mitigate the dephasing of qubit systems (see
Sec. 2.4.1), and phase shift inducing sequences would quickly make these efforts
futile.

In the NMR literature, an ideal unitary transformation is often denoted as θϕ,
which translates to [48]

U(θ,ϕ) = exp[−iθ(σx cosϕ+ σy sinϕ)]. (59)
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With the difference of a factor of half for θ, this is identical to transformation created
by the PRX gate (Eq. 17). However, the real physical system has finite errors and
the above transformation is never accurately reproduced. By assuming a fractional
error f in the angle θ, the real transformation can be described as

V (θ, ϕ) = exp[−i(1 + f)θ(σx cosϕ+ σy sinϕ)], (60)

The previous assumes a linear error model. A model that captures the error as a
factor in the rotation angle is applicable to pulse amplitude and pulse length errors,
since they have a similar effect in the integration over the pulse shape. However
they arise from different physical mechanisms [47]. The exact size of error does not
need to be known, as long as it in a certain correctable window, but it is however
necessary to know its form [48].

The pulse sequences can also be categorized based on whether they search for
a new sequence that achieves the target transformation with a favorable error
susceptibility, or whether they aim to cancel the error caused by the application of
original gate after the fact. Below we introduce composite pulse sequences of both
kinds, the SCROFULOUS and the BB1 sequences.

2.5.2 SCROFULOUS sequence

The SCROFULOUS (Short Composite ROtation For Undoing Length Over and
Under Shoot) pulse sequence originates from the field of NMR and was initially
derived to compensate for pulse length errors. It is based on the work by Tycko et al.
[49] from 1985, where π/2 and π-rotations robust against phase shifts were studied,
at a time when the shortcomings of type B1 sequences was already recognised. It
was later generalized and named by Cummings, Llewellyn and Jones [14] in 2003.
The original three pulse sequence for a nominal 180◦0◦ rotation around x-axis is given
as

180◦60◦180◦300◦180◦60◦ . (61)

Further analysis, which falls outside the scope of this thesis, reveals, that a three
part pulse sequence correcting errors in the first order can be constructed as

θ1ϕ1180◦ϕ2θ3ϕ3 , (62)
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with

θ1 = θ3 =arcsinc
(

2 cos (θ/2)
π

)

θ2 =π

ϕ1 = ϕ3 = arccos
(
−π cos θ1

2θ1 sin(θ/2)

)

ϕ2 =ϕ1 − arccos(−π/2θ1), (63)

where sinc(x) = sin(x)/x and θ is the nominal rotation. The intended angle θ is kept
as a variable, and again, the phase angle can be tuned by offsetting all of the ϕi
angles by the wanted amount. The angle definitions above yield a time-symmetric
sequence. A quantum circuit recreating an error-tolerant PRX(π,0) gate is then

(180◦, 60◦) (180◦, 300◦) (180◦, 60◦) .

2.5.3 BB1 sequence

In 1994 Stephen Wimperis [15] introduced a wide range of fully compensating
composite pulses in the NMR context, categorized to broadband, narrowband, and
passband pulses. In the context of quantum computing, the broadband pulses, which
originally intended to compensate for errors induced by unhomogenous radiofrequency
fields, have gained the most attraction. The radiofrequency unhomogeneity is
comparable to an error in the qubit control, in that a broadband sequence would
more closely achieve the ideal unitary transformation over a larger coherent error
range. However, narrow band pulses, which drive excitations on a narrower range
compared to bare pulses, could have applications on addressing detuned neighbouring
qubits [13]. Passband pulses aim to combine robust control near the target frequency
with sharp transitions to suppressed excitations.

From the pulses introduced by Wimperis, the BB1 (for the simplest broadband
pulse, not to be confused with type B1) has been popular. It is a fully compensating
pulse sequence, that is able to correct for errors up to the second order [14]. A
operations of θϕ is replaced by a sequence of four gates:

BB1(θ) : 180◦ϕ1360◦ϕ2180◦ϕ1θ0◦ , (64)
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with ϕ1 = arccos(−θ/720◦) and ϕ2 = 3ϕ1. As the gates commute, a time-symmetric
equivalent can be created with an expense of one additional physical gate:

(θ/2)0◦180◦ϕ1360◦ϕ2180◦ϕ1(θ/2)0◦ . (65)

In the quantum circuit notation a single PRX(π, 0) gate, a π-rotation around the
x-axis, would be transformed approximately to

(90◦, 0◦) (180◦, 104.5◦) (360◦, 313.4◦) (180◦, 104.5◦) (90◦, 0◦) .

The BB1 pulse, as well as the other sequences proposed by Wimperis, has also
been extended to correct error to an arbitrary order O(fn), where f is the error, in
contrast to the third order correction of simplest sequence [50]. While higher order
corrections would theoretically yield more accurate operations, the number of gates
needed to perform these corrections grows rapidly and the advantage would quickly
be overcome by decoherence. Other arbitrarily accurate pulses suffering from the
same drawback have also been presented [51].
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3 Methods and materials

3.1 Simulation tools

3.1.1 Atos Quantum Learning Machine

The Quantum Learning Machine (QLM) [52] is a full-stack simulation tool for
quantum information processing build and developed by Atos, a global corporation
working across the digital sector. It provides a Python software library for the
development of quantum circuits and algorithms, and the tools to incorporate
physical details, such as topology, native gates, and noise models into the simulation.
The computation is done on a purpose-build server, one of which is hosted and
operated by CSC [53], a Finnish non-profit state enterprise, and it can accessed
remotely as part of their service portfolio.

QLM is the first of the two simulators used in this work. Admittedly, the software
and hardware capabilities go way beyond the scope needed for simulating single
qubit unitary gates with a standard Bloch-Redfield noise model. However, the
fidelity landscape measurements, reported in Sec. 4.1, do start to take advantage of
the computational resources. As a downside QLM does rely on qubits truly being
two-level systems without higher excitation levels, and essentially computes the
evolution by multiplying matrices in the dimensions of the system. Most often this
is sufficient for testing and development on the algorithm level, however a more
detailed simulator could reveal dynamics not captured by the simple model in QLM.

3.1.2 Pulse-level simulation with Qutip-qip

The second simulator works on the so-called pulse-level. It introduces a more
physically accurate description of a superconducting qubit system at the cost of
increased computational resources. In pulse-level simulation the time-dependent
system Hamiltonian is defined and the initial state is evolved numerically by the
Schrödinger equation in the case of a coherent, closed system. The open system
dynamics can also be easily incorporated with collapse operators, e.g. as discussed
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for the Bloch-Redfield model in Sec. 2.4.3, and in that case the Lindblad master
equation in (10) dictates the system’s time evolution. The Hamiltonian includes
terms both independent and dependent on time, and the qubit control terms are part
of the latter. The dynamics of real superconducting qubits can be investigated by
pulsing the control terms. Also, since the Hamiltonian can be defined with general
ladder operators instead of two-level Pauli matrices, the higher excitation levels can
be included to the simulation. Different pulsing methods, such as the DRAG scheme,
can also be investigated. The inclusion of the second excited state, i.e. simulating
the system as qutrits, can give new insight about leakage errors caused by population
transfer out of the computational subspace. This model naturally exponentially
increase the computational cost, since the density matrix grows from 2× 2 to 3× 3.
However, in weakly anharmonic transmon this can be quite strongly motivated.

The aforementioned details are included in an open-source Python library called
Qutip-qip, formerly part of larger Qutip library [54] for general quantum mechanical
open system simulations, but has since been spawned into a more tailored sublibrary
using the conventions of QIP. It was introduced with examples in Ref. [45]. Mainly, it
provides an interface between the gate-level abstraction and the quantum mechanical
physics in the quantum computer, and is thus a promising candidate for more accurate
simulation that still takes quantum circuits as an input. As such it also nicely
meets the requirements for this work. The accuracy of the simulation is dependent
on the Hamiltonian defined, which also opens up a possibility for introducing
more complex interactions. The simulation is made physically relevant by taking
experimental values, such as qubit frequencies and anharmonicities, drive parameters
and decoherence times, as input. The time evolution is solved by using Qutip’s
master equation numerical solver.

Qutip-qip also provides predefined classes for different quantum computer reali-
sations. The Processor class works as the main interface between the circuit-level
description and the open system numerical calculations, while the Model describes
the system Hamiltonian with relevant parameters that are passed to the numerical
solver. Taking inspiration from their SCQubits class, we inherit from both classes and
modify the children to follow IQM’s technological details. The system Hamiltonian
is described in the rotating frame by a Duffing oscillator driven on-resonance with
the rotating wave approximation applied (Eq. 49).
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3.2 IQM Quantum Processing Unit

To investigate the true error mitigation capability of SCROFULOUS and BB1 pulses,
a 5-qubit quantum computing processor (QPU), build and operated by IQM, was
deployed. The QPU has a star-shaped topology, with a central transmon connected
to four other transmons via tunable couplers. The central qubit was used for the
experiment, with measured decoherence times T1 = (32± 1) µs and T2 = (37± 2) µs.
The average fidelity of a single-qubit gate, with a duration of 40 ns, of over 99.9 %
was confirmed using randomised benchmarking. The transmon had a frequency of
4.118 GHz and an anharmonicity of -219 MHz. The above mentioned values were
used in the pulse-level QPU simulation. Also, a Gaussian DRAG pulse was used
for the gates both in simulation and on the QPU. A single shot readout fidelity of
94.9% was measured for the qubit in use, with the excited state falsely measured
as ground 6.2 % of the times, and the ground state measured as excited 3 % of the
times. These are denoted as Pe→g and Pg→e respectively. The measurement error
mechanisms are not included in the simulations, but a simple correction can be made
to the probabilities of the ground and excited states. For example, the corrected
excited state probability Pe can be calculated from the simulated probabilities P sim

e

and P sim
g with Pe = P sim

e (1− Pe→g) + P sim
g Pg→e.

In the experiments each circuit was repeated m = 2000 times to get a statistical
average of the measurement outcome. In the situation were the excited state is
measured, each measurement yields zi ∈ {0,1}, and the mean can be calculated
as ∑ zi/m. For large m the distribution becomes Gaussian and, using the central
limit theorem, the mean represents the true value for the probability. The standard
deviation is ∆z/

√
m, where ∆z is the standard deviation for a single measurement,

that is bounded to be lower than 1/2. The standard deviation is then at most 1/
√

4m.
[1]
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4 Results

4.1 Characterising the sequences with QLM

The composite sequences promise to cancel systematic rotation errors with increased
gate numbers relating directly to increased computation time. The interplay between
systematic coherent error and decoherence caused by the longer processes was
investigated by sweeping the error and the gate time, and calculating the average
gate fidelities (Eq. 58) for the respective two-level quantum channels in QLM. The
ideal gate was chosen as a π-rotation about the x-axis. The qubit specific decoherence
times of T1 = 32 µs and T2 = 37 µs were used to create noisy quantum channels
as discussed in Sec. 2.4.3. However, using the fundamental limit of T2 = 2T1 has
only a small effect in the fidelities. The resulting fidelity landscapes are shown in
Fig. 4, with a hundred equidistantly spaced values used for both variables. On the
horizontal axis the gate time is divided by the constant T1, and the scale is chosen
to represent the state-of-art regime for Tgate/T1 ratio in superconducting qubits.

The fidelity improvements of the SCROFULOUS and BB1 sequences over the
native gate are seen in Fig 4a and Fig 4b, respectively. The results are fairly similar.
To begin with, these results suggest that a fairly large systematic error is needed to
find substantial benefits from these sequences. At Tgate/T1 = 10−3 the threshold for
a gain is crossed at low single digits errors, and when the ratio decreases close to
10−4 a benefit can be seen at smaller errors. In Fig. 4c the sequences are compared
to each other qualitatively. The SCROFULOUS pulse reaches higher fidelities at
smaller errors, but the switching point increases with the gate time. BB1 is capable
of correcting larger errors, as stated in literature [14]. The two additional gates in
comparison to SCROFULOUS do lead to more decoherence, but this effects becomes
negligible as gate time decreases, hence the funnel-like shape of the data. Since ideal
rotation is achieved with both sequences at the limit of zero error, BB1 would be
the obvious choice at infinite decoherence times. With realistic decoherence values,
SCROFULOUS is speculated to be a better candidate.

To conclude, larger fidelity benefits are probably not found in physical devices,
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Figure 4. Fidelity comparison of a π-rotation about the x-axis created with a)
SCROFULOUS and b) BB1 sequences against the native gate, as a function of
Tgate/T1 and error in rotation angle θ, simulated using noisy two-level system
quantum channels in QLM, where experimental decoherence values for T1 and
T2 were used. The contours show the average gate fidelity improvement in
comparison to a single native PRX-gate. For reference, the vertical lines indicate
Tgate/T1 ratios for the IQM transmon device used in this work (solid), a recent
IBM device [55] (dotted), and Google’s Sycamore chip during the quantum
advantage experiment [56] (dashed). The sequence fidelities are qualitatively
compared to each other in c).

since they would require large systematic errors at relevant Tgate/T1 values, which are
easily corrected with calibration, but some improvements could be found. Therefore,
these results indicate that the sequences, especially SCROFULOUS, could be used
to offer some protection against systematic errors as the field works to achieve
single-qubit gate fidelities ever closer to unity.

4.2 Transition probability at a wider range

The error correction capability of the methods in this work can be investigated
by artificially creating faulty quantum operations. Since only coherent errors are
addressed, adding an error to the rotation angle is equivalent to inaccurate calibration
at the pulse-level. Additional calibration error could still remain in the execution.

The plotted lines in Fig. 5 represent the ideal unitary results for the sequences for
a varying degree of artificially added rotation error. The simulations were performed
in Qiskit by building a single qubit circuit starting in ground state and adding the
respective gate(s) with a systematic error added to rotation angle, as defined in
Eq. (60). The build-in state vector simulator was use to propagate the circuits in the
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Figure 5. The results for measuring the excited state after applying a single
gate or one of the two sequences to the ground state, for a varying degree of
artificially added rotation error. The lines represent ideal, unitary simulations of
the respective circuits without decoherence.

unitary case and the probability amplitudes for the excited states were read from
the results and squared. For the single-qubit gate, the expected sinusoidal behaviour
can be identified. This can be related to the Rabi oscillations in a resonantly driven
two-level system. As expected [14], BB1 corrects errors in a slightly wider range
compared to SCROFULOUS, a characteristic also identified in the previous Sec. 4.1.
This is also a consequence of SCROFULOUS and BB1 correcting errors in the first
and second order, respectively. However, with errors ranging from roughly -25 to 25
%, both sequences perform almost identically. The sequences match the native gate
at 0 %.

To gain more insight into how composite pulse sequences perform on a supercon-
ducting quantum computer, they were simulated on the pulse-level simulator and
run on the IQM quantum processing unit. Figures 6 shows (a,d) the single qubit
PRX gate, (b,e) SCROFULOUS and (c,f) BB1 on a physical qubit compared against
simulation. As above, the transition probability from ground to excited state is
plotted with respect to artificially added rotation error. The readout fidelity correc-
tions were made to the simulation results, and the errors displayed are the standard
deviations over 2000 samples (see Sec. 3.2). The results show that probabilities are
slightly lower than the simulations would suggest throughout the error range. This
is most likely due to noise that is not captured by simulation setup. The sequences
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Figure 6. Transition probability from ground to excited state with the native
PRX(π, 0) gate (a,d), SCROFULOUS (b,e), and BB1 (c,f) on an IQM QPU
compared against noisy three-level simulations with Qutip-qip. Artificially added
rotation error in the -100 to 100 % range were added for each method.

take longer to execute, by factors of three and five for SCROFULOUS and BB1,
respectively, but this should have a minimal effect since the gate time is three orders
of magnitude smaller compared to the decoherence times. At the point where no
artificial error is added (0% on horizontal axis), one would expect all three methods
to achieve similar probabilities, and this is confirmed by the results. The exact values
are 0,901 ± 0,012, 0,916 ± 0,012 and 0,911 ± 0,012 for PRX, SCROFULOUS and
BB1, respectively. This could be interpreted as the sequences correcting for a small
unknown amplitude error, but the uncertainties overlap to the extent that this is
advised against.

In general, the composite sequences behave as expected and as previously reported
in literature for superconducting qubits [13]. The QPU results also match reasonably
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well with the simulations, giving some reassurance about the accuracy of the pulse-
level simulator. Systematic errors ranging from about -25 to 25 % in the rotation
angle are well corrected. However, such large errors are typically eliminated in the
calibration procedure, and the question whether these methods could be used to
mitigate the remaining errors is not yet answered.

4.3 Repeated π-rotations

Next, the investigation proceeds into repeated rotations. While not strictly needed for
gate-based universal quantum computing, since all consecutive single qubit operations
can always be compiled to an effective operation, it is a commonly used technique in
error calibration (for a recent example see [57]). In the calibration of single qubit
drive amplitude it can be used to fine tune the amplitude value gained from a Rabi
oscillation experiment, since the error is amplified in consecutive pulses.

In the experiment each circuit starts with a PRX(π/2,0) gate, initialising the
qubit approximately in state (|0〉 − i |1〉)/

√
2, with the state vector pointing along

the negative y-axis in the Bloch sphere picture. Measuring the initial state should
then reveal equal population in both ground and excited states. This is done in
order for the subsequent errors in state population to be linearly dependent on the
systematic error of the π-rotation or corresponding sequences. Then, π-rotations are
repeated and the population should ideally remain constant after each addition. In
the simulation in total 20 rotations were performed at most, and this number was
increased to 48 on real hardware. Additionally, the rotations are added in pairs to
cancel out oscillations in the population.

Again, the pulse-level simulation with the Bloch-Redfield decoherence model
was deployed. Figure 7a shows simulated results for the experiment in the case of
the native gate. The error-free gate is compared to few artificially faulty ones. As
expected, adding larger errors causes the probability to measure the excited state to
increase as functions of the amount of error and the number of rotations. The plot
closely resembles a typical output of a calibration experiment. The initial offsets
from 0.5 is due to equal error in the initialisation gate, but they decrease for larger
artificial errors. The results also reveal that the single-qubit gate as implemented in
the Qutip-qip simulator does have an intrinsic rotation error, that is captured by the
decreasing probability in the 0 % error case. It can be extrapolated that the nominal
π-rotation under-rotates the state by a few parts per thousand. To investigate the
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Figure 7. Pulse-level simulation results for the probabilities to measure the
excited state |e〉, when starting in an equal superposition on the negative y-axis
and applying repeated pairs of π-rotations around the x-axis, plotted with a few
values for the amount of error in the rotation angle. An unintentional coherent
error is seen the 0 % case and in b) this is plotted for two and three-dimensional
systems with and without Bloch-Redfield decoherence model. For N = 2 the
noisy and ideal results are very close and overlaid in the plot.

origin of this effect, the 0 % error gate was simulated using both two and three-level
systems with and without decoherence. From the results in Fig. 7b one can attribute
a large part of the error to leakage to the second excited state, since the error is
clearly reduced when limiting system dimensions, and that decoherence has little
significance. The remaining error is most likely due to bad parameters or numerical
errors in the simulation model.

Figure 8 extends the simulation analysis to the sequences, as the earlier result
of the native gate is compared against SCROFULOUS and BB1. Firstly, the
SCROFULOUS sequence shows excellent performance in keeping the population
constant, emphasising its potential as an error mitigation tool. However, the same
does not apply to the BB1 sequence; for unknown reasons the population drifts
towards the excited state. The drift is not affected by the amount of error at least in
the range chosen. After careful examination of the simulation setup and confirmation
of the gate arguments, a concrete reason for the behaviour is not found.

The same experiment was conducted on real hardware, and the results are shown
in Fig. 9. Most notably, the native single-qubit gate is able to keep the probability
stable, when compared against the sequences. For the BB1 sequence, the probability
drifts towards the excited state, as it did in the simulation. The amount by which
the population drifts over ten pairs is also comparable: about 10 %. On the other
hand, for SCROFULOUS the probability drifts towards the ground state, and this
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Figure 8. Extending from the pulse-level simulation of Fig. 7, the accumulation
of error is visualised by plotting the probability of excited state |e〉 as a function
of pairs of π-rotations. The sequences show similar performance in all cases,
accounting for the error in initialisation. SCROFULOUS corrects errors reliably,
while BB1 drifts from equal population irrespective of the amount of error. PRX
and BB1 data points are practically identical in the f = 0.5% case.

effect was not seen in the simulations. Therefore, it could be speculated, that the
reasons behind these effects are at least partly separate, because only BB1 drifts
in the simulations. Furthermore, the initialisation is imperfect, as the probabilities
start below 0.5 in all three cases. The uncertainties represent the standard deviation
over 2000 samples. To conclude, the native gate seems to be the most accurate
during repeated π-rotation, and the sequences perform miserably. While previously
all three methods have been assumed to perform equally in the limit of very small
errors, it could be speculated that in this regime the native gate is more accurate,
and that there is a threshold for the magnitude of the fractional error after which
the sequences become more accurate. Such an effect was left as a possibility in Sec.
4.2. Unlike in Sec. 4.1, the effect would not be due to lesser energy decay during
the single gate, but inaccuracy in physically creating the sequence pulses. However,
analytically the sequences converge to the native gate in the small error limit.

As mentioned in Sec. 2.5.3, the BB1 sequence can be expressed as either a
time-symmetric sequence with the correcting pulses placed in the middle of the
execution, or the correcting pulses can be placed on either side of the original pulse.
The resulting overall operators are identical, but keeping the original pulse intact
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Figure 9. The probability of to measure the excited state as a function of pairs
of consecutive π-rotations, executed on an IQM quantum computer for the native
single-qubit gate, SCROFULOUS and BB1 sequences. BB1 (5) and BB1 (4)
refer to the five and four-gate variants.

saves one pulse, reducing the overhead in the execution time to a factor of four.
While the five-pulse sequence have been used through these experiments, here a
four-pulse variant, with the correcting pulses placed after the original pulse, was also
experimented with. The results in Fig. 9 reveal that the sequences perform similarly.

As the execution times increase, the decoherence effects become more significant.
Rough estimates for the intrinsic energy relaxation can be made in the two-level
Bloch-Redfield noise model. For the native gate the longest execution time was
(1 + 48)× 40 ns = 1960 ns, during which the excited state probability decreases by a
factor of exp(−1960 ns/32 µs) ≈ 0.94. Due to the overhead in execution times, for
SCROFULOUS and BB1 with five gates the factors are 0.83 and 0.74, respectively.
Therefore the energy relaxation should be taken into account when considering the
results of Fig. 9. For example, removing T1 decay in this simplified way from the
probability of the last SCROFULOUS data point with 24 pairs of rotations would
give roughly 0.3/0.83 ≈ 0.36, and thus still indicates towards a slight downwards
slope.
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4.4 Process tomography for the sequences

To get a sense on how the sequencing methods perform on an arbitrary initial
state, the concept of quantum process tomography (QPT) is introduced. It extends
quantum state tomography, a procedure to experimentally determine the unknown
quantum state of a system, to determining an unknown quantum process. In the
case of single qubit, the system is first prepared in a chosen orthonormal set of the
eigenstates for Pauli matrices, then evolved by the process one wants to characterise,
and finally measured in the basis determined by the Pauli matrices. This will
yield 12 different experiments, and based on the results a quantum channel, which
represents the noisy process in the system, can be constructed. The quantum channel
representation can then be used to get an estimate for the average gate fidelity
irrespective of the initial state. [1]

Here, the characterisation relies on QPT as it is implemented in the Qiskit Exper-
iments Python library [58]. It provides a low overhead approach with existing circuit
generation and analysis tools. The output includes a Choi-matrix representation of
the quantum channel and its process fidelity, from which an average gate fidelity
can be calculated (Eq. 58). The experiment was repeated ten times for the native
single-qubit gate, SCROFULOUS and BB1.

Table 1 shows values attained over the ten repetitions. It is clear that QPT fails
to characterise the error mitigation methods as it gives almost identical fidelities for
all three cases. Also, the native gate value of 0.94± 0.010 is substantially smaller
than 99.9% reported based on randomised benchmarking. The standard deviations
are small, and thus the culprit must be in the procedure itself. Main reason for the
discrepancy is that the preparation and observable operations are subject to the
same errors and noise as the studied processes, while the derivation and the analysis
of QPT assumes them ideal. The readout fidelity of 94.9 % is close to the QPT
fidelity estimates achieved here, and thus it seems that possible small differences
in the native gate and sequence fidelities are overshadowed by the readout error.
Additionally, the preparation and observable operations lengthens the circuit always
by two gates, thus disproportionately affecting shorter circuits, which makes the
comparison of the achieved values difficult.

The shortcomings of QPT could be addressed by using a self-consistent tomogra-
phy method called quantum gate set tomography (GST) [59], which accounts also
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Method Average gate fidelity
PRX 0.94± 0.010
SCR 0.943± 0.005
BB1 0.943± 0.012

Table 1. The fidelity data obtained with quantum process tomography on an
IQM quantum processing unit.

for the errors in state preparation and observable operations. The superiority of
GST as a process characterisation tool is especially advantageous when the fidelities
increase near and above the quantum error correction limits. However, GST adds
more overhead, with approximately 80 distinct circuits needed for single qubit char-
acterisation and a classical optimisation problem used in the analysis of the result.
While acknowledging the shortcomings of QPT and the somewhat meaningless results
achieved, the characterisation of the sequences using GST is left as a possible future
endeavour.
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5 Conclusions

The field of quantum computing is slowly but surely progressing towards larger and
more complicated systems. The future promise of quantum advantage might soon
become reality. All quantum computers, regardless of the physical implementation,
require delicate manipulation of the underlying quantum physical phenomena. In
superconducting quantum computers the precise control of the quantum state of
a single qubit is one of the fundamental requirements. The present work confirms
that composite pulse sequences offer simple and easily compatible solution to the
mitigation of large unknown coherent errors in the control pulse amplitude, but fails
to find an advantage on the IQM QPU. Therefore, it does not answer the question
of how much can be gained over standard calibration practises on superconducting
computers in the near term.

Throughout the characterisation full π-rotations with respect to the x-axis are
used, even though the sequences are applicable to any single-qubit gate with an
arbitrary rotation angle and phase, which are needed for quantum computation. The
use of π-rotation does make the analysis of population transfer more straightforward,
and it is the largest rotation needed for the state control over the Bloch sphere.
Also, the drive amplitude calibration typically involves such pulses, and thus, they
could be most accurate on a real device. Smaller rotation angles are often calculated
from the calibrated π-pulse, which could lead to larger coherent errors as the control
signal attenuates non-linearly through the control electronics. The effect could be
reduced by calibrating the signal for a discrete number of smaller rotations, and then
extrapolating for an arbitrary angle, but it also is a potential source for the coherent
errors this work aimed to mitigate.

Based on the achieved results, it can be concluded that both composite pulse
sequences, SCROFULOUS and BB1, can be used to correct for large errors in
the pulse amplitude in the control of superconducting transmons. However, the
experiments on real hardware indicate that current systems do not benefit from
their use in the case of longer circuits. While the broadband error correction over a
wide range is an interesting behaviour in itself, it is not relevant for control methods
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used in modern superconducting quantum computers. Much more essential would
be to address small errors still remaining after calibration procedures, but here this
is not accomplished. The most probable reason for this is that the controls and
their calibration are precise enough, and that the application of the sequences create
additional errors in the system. However, there doesn’t seem to be any fundamental
restriction in term of using pulse sequences on superconducting qubits, but this
work demonstrates that finding an advantage from these methods is non-trivial and
requires in-depth knowledge of the system. In the context of this thesis, further
insight would be gained by studying arbitrary operations with the help of a more
detailed tomography method, such as GST.

All composite sequences will by their nature lead to more constituents in the
desired operation. If, in the future, a fidelity improvement can be achieved with
these methods, it will lead to an interesting trade-off between single gate accuracy
and computation time; assuming shorter gates can be less accurately calibrated, the
sequence could be used to regain some of the accuracy while keeping the overall
length shorter. Of course other error types must also be taken into consideration,
such as leakage to higher states that is characteristic for short pulses. Also, the linear
scaling of the computation time might be manageable as decoherence times increase.

In this work simulation on both the gate and pulse-level gave valuable insight
and were able to predict the behaviour of the single-qubit operations. Discrepancies
appeared as the system was evolved for a longer duration with more operations,
as noise processes that are not captured in the simulation models start to have
noticeable effects. It is known that the two-level gate simulations do not represent
accurately the dynamics of weakly anharmonic transmons and, despite their lower
computational requirements, are not sufficient for detailed characterisation. On the
other hand, pulse-level simulation describes the physical system in more detail, but is
then computationally heavier. Also, it is key to accurately define the physical model
with experimentally confirmed parameters. When properly configured, a pulse-level
simulator can be a useful asset in the development of quantum computers.

The composite sequences in general will be more effective with larger coherent
errors, and greater advantages will be found in quantum systems, where control
calibration is more difficult. The amplitude errors targeted here do not make up
the whole picture of coherent errors, as for example inaccuracies in drive frequency
and phase exist as well. These errors are not discussed in the framework of this
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work, but are important nonetheless. Composite sequence approaches to mitigating
frequency errors have been proposed [14, 50] and form a possible future topic to
explore. Furthermore, extensions to two-qubit gates have been studied [60, 61]. While
the role of these methods in the pursuit of quantum advantage remains unclear, they
at least offer one possibility for error mitigation.
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A The rotating frame: transformation and ap-
proximation

In the laboratory frame, the Hamiltonian operator of a quantum harmonic oscillator,
HQHO = ωa†a, causes the qubit state rotate at a frequency ω. This in turn propagates
a state |ψ0〉 as |ψ(t)〉 = UQHO |ψ0〉 = exp (−iHQHOt) |ψ0〉. The goal of the rotating
frame transformation is to go into the qubit’s frame, effectively cancelling the rotation.
In two-level systems, in the laboratory frame the Bloch vector rotates around the
Bloch sphere at frequency ω, and in the rotating frame the spectator rotates around
the sphere at the same frequency seeing effectively a stationary system. Here, the
unitary transformation from laboratory to rotating frame and a following rotating
wave approximation are presented in detail.

In order to cancel out the rotation with frequency ω, one needs to create a unitary
transformation that cancels the time-dependent propagation of that term. Therefore,
it can be identified that the transformation is

Urf = U †QHO = eiHQHOt = eiωa
†at, (66)

and in the rotating frame the system evolves as |ψrf(t)〉 = Urf |ψ0〉. The corresponding
rotating frame Hamiltonian can be solve from the Schrödinger equation

i∂t |ψrf(t)〉 =i∂t(Urf(t) |ψ〉)

=i(∂tUrf) |ψ0〉+ iUrf(∂t |ψ0〉)

=iU̇rfU
†
rf |ψrf(t)〉+ UrfHQHO |ψ0〉

=
[
iU̇rfU

†
rf + UrfHQHOU

†
rf

]
︸ ︷︷ ︸

=H̃QHO

|ψrf(t)〉 , (67)

where H̃QHO represents HQHO in the new frame [28]. It will be shown below that
H̃QHO vanishes.

Next, the same transformation is studied for the driven Duffing Hamiltonian
(Eq. 43) representing the weakly anharmonic and capacitively controlled qubit. As
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implied in Eq. (67) a Hamiltonian changes under a unitary transformation U as
H → UHU † + iU̇U †. In the following the Baker-Campbell-Haussdorf formula

eABe−A = B+[A,B]+ 1
2[A,[A,B]]+ . . . 1

n! [
nA’s︷ ︸︸ ︷

A,[A, . . . [A ,B] . . .] =
∞∑
n=0

[(A)n, B]
n! , (68)

where [(A)n, B] is the iterative commutator, is heavily used. Additionally, the creation
and annihilation operators satisfy the commutation relation [a, a†] = 1, equivalent to

aa† − a†a = 1 ⇔ aa† = a†a+ 1 ⇔ a†a = aa† − 1. (69)

The first term of the transformation is

UrfHU
†
rf = eiωa

†at
[
ωa†a+ α

2 a
†a†aa− iΩ(t)(a− a†)

]
e−iωa

†at (70)

= ωeiωa
†at
[
a†a

]
e−iωa

†at + α

2 e
iωa†at

[
a†a†aa

]
e−iωa

†at

− iΩ(t)eiωa†at
[
(a− a†)

]
e−iωa

†at. (71)

The terms above transform as:
1)

ωeiωa
†at
[
a†a

]
e−iωa

†at = ω
[
a†a+ [iωa†at, a†a]︸ ︷︷ ︸

∗

+1
2[iωa†at,[iωa†at, a†a]] + . . .

]

∗ = iωta†aa†a− iωta†aa†a = 0

= ωa†a (72)

2)

α

2 e
iωa†at

[
a†a†aa

]
e−iωa

†at

= α

2 e
iωa†at

[
a†(aa† − 1)a

]
e−iωa

†at = α

2
[
eiωa

†at
[
a†aa†a

]
e−iωa

†at − a†a
]

= α

2
[
a†aa†a+ [iωa†at, a†aa†a]︸ ︷︷ ︸

∗

+1
2[iωa†at,[iωa†at, a†aa†a]] + . . .− a†a

]

∗ = iωta†aa†aa†a− iωta†aa†aa†a = 0

= α

2
[
a†aa†a− a†a

]
= α

2 a
†a†aa (73)
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3) The control term can be investigated through the transformations of the ladder
operators. For the annihilation operator:

eiωa
†atae−iωa

†at = a+ [iωa†at,a]︸ ︷︷ ︸
∗

+1
2 [iωa†at,[iωa†at,a]︸ ︷︷ ︸

∗ ∗

] + . . .

∗ = iωta†aa− iωtaa†a = iωta†aa− iωta†aa− iωta = −iωta

∗ ∗ = ω2t2a†aa− ω2t2aa†a = ω2t2a†aa− ω2t2a†aa− ω2t2a = −ω2t2a

= a
(

1− iωt− 1
2ω

2t2 − . . .
)

= e−iωta. (74)

With similar arguments a† is transformed to eiωta†. Therefore the complete control
term is

−iΩ(t)eiωa†at
[
(a− a†)

]
e−iωa

†at = −iΩ(t)
(
e−iωta− eiωta†

)
= − iΩ(t)

(
(cosωt− i sinωt)a− (cosωt+ i sinωt)a†

)
= Ω(t)

[
cosωt(−i(a− a†))− sinωt(a+ a†)

]
. (75)

The second term in the unitary transformation of the Hamiltonian is

iU̇rfU
†
rf = i

(
iωa†a

)
eiωa

†ate−iωa
†at = −ωa†a. (76)

This cancels the QHO term of the original Hamiltonian as promised earlier, and thus
the Hamiltonian in the rotating frame has the form

Hrf = α

2 a
†a†aa+ Ω(t)

[
cosωt(−i(a− a†))− sinωt(a+ a†)

]
. (77)

The form of the time-dependent drive Ω(t) will be discussed next. Omitting
possible constant factors, it can often be considered a sinusoidal signal multiplied by
an envelope function, i.e

Ω(t) = s(t) sin (ωt+ φ) = s(t)(cosφ︸ ︷︷ ︸
= I

sinωt+ sinφ︸ ︷︷ ︸
= Q

coswt), (78)

the I and Q are the in-phase and out-of-phase signals, respectively. The driving
frequency is assumed to be identical to the qubit frequency, in other words the qubit
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is driven on-resonance. The second term in Eq. (77) is then

s(t) (I sinωt+Q cosωt)
(
cosωt(−i(a− a†))− sinωt(a+ a†)

)
= s(t)

(
(I sinωt cosωt+Q cos2 ωt)(−i(a− a†))

− (I sin2 ωt+Q cosωt sinωt)(a+ a†)

= s(t)
2
(
(I sin 2ωt+Q(cos 2ωt− 1))(−i(a− a†))

− (I(1− cos 2ωt) +Q sin 2ωt)(a+ a†). (79)

By applying the rotating wave approximation, the high-frequency (2ω) terms can be
neglected with the reasoning that the fast oscillations average to zero. Finally, the
rotating frame Hamiltonian after the rotating wave approximation is

Hrf = α

2 a
†a†aa− s(t)

2
(
I(a+ a†) +Q(−i(a− a†))

)
. (80)
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