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ABSTRACT

Geng, Zhuoran
Piezoelectrically mediated acoustic phonon tunneling

Although purely acoustic waves cannot exist in vacuum by definition, an acoustic
phonon can in fact "jump" or "tunnel" across a vacuum gap between two piezo-
electric solids. The dissertation presents the author’s work to provide a generally
applicable theoretical formulation and an experimental demonstration of acous-
tic phonon tunneling between arbitrarily anisotropic and oriented piezoelectric
crystals.

Within the continuum anisotropic linear elasticity theory and the quasistatic
approximation, this work solves the acoustic wave tunneling problem with two
different approaches for a plane-plane geometry, acquiring the solutions of re-
flection and transmission of all the partial waves for any incoming wave mode,
taking fully into account mode conversions. Such formalism can be applied to a
practical numerical or even an analytical implementation, as a few chosen ana-
lytical and numerical examples demonstrate.

A strikingly simple resonant tunneling condition was discovered in this
work, which leads to the complete tunneling of an acoustic phonon, a unity trans-
mission of the acoustic wave across vacuum without reflection. The detailed an-
alytical proof and numerical demonstration of such complete phonon tunneling
are presented.

Furthermore, this formalism was applied to investigate the heat flux asso-
ciated with the phonon tunneling mediated by piezoelectricity. A few numerical
results are demonstrated and compared with other near-field heat transfer mech-
anisms. In particular, this work shows that such heat transfer is significant when
a vacuum gap size is smaller than the phonon characteristic wavelength, and
even becomes the dominant mechanism at temperatures lower than 50 K.

Lastly, an experimental demonstration of the heat transfer mediated by acous-
tic phonon tunneling is presented, using two suspended piezoelectric microscopic
beams at sub-kelvin temperatures. The results of the measurements provide qual-
itative evidence of the heat transfer, with comparisons between different vacuum
gap widths and with non-piezoelectric devices. However, the quantitatively de-
termined transferred power is not in good agreement with the theoretical estima-
tions, and possible causes of the discrepancy are discussed.

Keywords: Phonon tunneling, near field heat transfer, Stroh formalism, arbitrary
crystal orientation, piezoelectricity, low temperature heat transfer.



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Geng, Zhuoran
Pietsosähköilmiön avustama akustisten fononien tunnelointi

Vaikka puhtaat akustiset aallot eivät voi esiintyä tyhjiössä määritelmänsä
mukaan, akustinen fononi voi itse asiassa "hypätä" tai "tunneloitua" tyhjiöraon
yli kahden pietsosähköisen materiaalin välillä. Tässä väitöskirjassa esitetään uusi
yleisesti sovellettava teoria sekä kokeellinen demonstraatio akustisten fononien
tunneloitumiselle kahden mielivaltaisesti anisotrooppisen ja suunnatun pietso-
sähköisen kiteen välillä.

Käyttäen anisotrooppista jatkuvan aineen lineaarista elastisuusteoriaa ja kva-
sistaattista approksimaatiota, tässä työssä ratkaistaan akustisten aaltojen tunne-
lointiongelma käyttäen kahta eri lähestymistapaa taso-taso geometriassa, saaden
ratkaisut kaikkien osa-aaltojen heijastuksille ja läpäisyille, minkä tahansa sisään-
tulevan aaltomoodin tapauksessa, ottaen täysin huomioon moodikonversiot. For-
malismia voidaan käyttää käytännön numeerisiin tai jopa analyyttisiin sovelluk-
siin, kuten muutamin esimerkein osoitetaan.

Työssä löydettiin silmiinpistävän yksinkertainen resonanssitunnelointi-ehto,
joka johtaa akustisen fononin täydelliseen tunnelointiin, eli akustisen aallon trans-
missioon tyhjiön yli ilman heijastuksia. Myös yksityiskohtainen analyyttinen to-
distus tälle täydelliselle fononitunneloinnille esitetään, kuten myös numeerinen
todistus.

Lisäksi formalismia käytettiin pietsosähköisen kytkennän mahdollistaman
fononitunnelointi-lämpövuon tutkimiseen. Muutama numeerinen esimerkki esi-
tetään, ja niitä verrataan muihin lähikentän lämmönsiirtomekanismeihin. Eiryi-
sesti tämä työ osoitti, että tällainen lämmönsiirtomekanismi on merkittävä, kun
tyhjiörako on pienempi kuin fononien karakteristinen aallonpituus, ja muodos-
tuu dominoivaksi alle 50 K lämpötiloissa.

Lopuksi esitetään kokeellinen demonstraatio akustisten fononien tunneloin-
nin mahdollistamasta lämmönsiirrosta, käyttäen kahta itsekantavaa pietsosäh-
köistä palkkia alle Kelvinin lämpötiloissa. Mittausten tulokset todistavat kvalita-
tiivisesti lämmönsiirron eri raon leveyksillä, seka verraten sitä ei-pietsosähköisiin
näytteisiin. Mitattu lämpöteho ei kuitenkaan ole kvantitatiivisesti yhtenevä teo-
reettisten arvioiden kanssa. Tähän eroavuuteen johtavia mahdollisia syitä pohdi-
taan lopuksi.
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1 GENERAL INTRODUCTION

There is a famous saying from an ancient influential Chinese philosopher Zhuang
Zhou from around 4th century BC: One foot-long of a wood stick, cut off half each
day, eternally inexhaustible. There is a little bit inaccuracy in his statement: after
30 days of wood-cutting, what left is only 0.5 nm-long1, a length scale of an atom,
and is hardly to be called as "wood stick" anymore. Of course, for people from
ancient times without the knowledge of modern science, it is impossible to know
the physical and chemical properties at a microscopic level.

There is another well-known statement from a modern influential American
entrepreneur Gordon Moore in 1965: the number of components per integrated
circuit will be doubling every two years2. Such prediction worked beautifully
since then, and became known as Moore’s law. However, approaching the 30th
two-year-period, Moore’s law is nearing to its end [Waldrop, 2016]. Just as that
ancient wood stick, things got too small, and the changes of the properties and
the rise of new phenomena demand more understanding on their underlying
physics, becoming limitations for the growth of the transistor density.

One of such challenges is heat management, the ability to control heat trans-
fer between bodies for suitable temperatures. For a macroscopic system, heat
transfer mainly takes form as convection, conduction and radiation, among which
only radiation3, carried by propagating thermal photons, can transport heat be-
tween bodies that are separated by vacuum. However, when the separation be-
comes microscopic, radiation is not the only form anymore, and new heat transfer
mechanisms emerge.

Near-field radiative heat transfer (NFRHT) is discovered to be capable of
transporting orders of magnitude higher heat flux if the gap width is below the
dominant photon thermal wavelength4, compared to that of (far-field) radiation.

1 The length of the wood stick L is a function of the number of days n, reads as L(n) =
0.3/2n−1 m. After 30 days, L(30) = 0.56 nm.

2 The Moore’s law is originally posited to be a doubling of every year in 1965 [Moore, 1965], but
later is revised to be a doubling of every two year in 1975 [Moore, 1975].

3 To be more precise, this is far-field radiation that is carried by propagating photons, in con-
trast to the near-field radiative heat transfer which is enabled by photon tunneling.

4 About 10 µm at room temperature.
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FIGURE 1 Transistor numbers per package as a function of time [Wikipedia, 2023].

From the decades-long collective efforts devoted by the scientists and engineers
5, NFRHT has opened promising applications in the fields of heat management
[Guha et al., 2012; Ben-Abdallah and Biehs, 2014; Zhu et al., 2019], energy har-
vesting [Fiorino et al., 2018; Bhatt et al., 2020; Lucchesi et al., 2021a], and thermal
spectroscopy [Kittel et al., 2008; Jones and Raschke, 2012; Ben-Abdallah, 2019], to
name a few.

Yet there is another much less known heat transfer mechanism unveiling its
appearance in the microscopic world, which is acoustic phonon tunneling. Acoustic
phonon is a particle-like quantum mechanical description for the propagation of
the vibrations in a solid, and is the major heat carrier for insulating, dielectric ma-
terials. From its definition, it may be hard to imagine that a phonon could travel
across a vacuum gap transferring the heat it carries. However, theoretical and ex-
perimental work presented in this dissertation will show that, if using materials
that can generate an electric field when deformed, called the piezoelectric effect,
an acoustic phonon can in fact transfer heat across a vacuum gap via tunneling.

This work is not the first to suggest taking advantage of piezoelectricity in
such a way. Several pioneering studies have been reported in the past [Kaliski,
1966; Balakirev and Gorchakov, 1977; Balakirev et al., 1978; Al’shits et al., 1993;
Darinskii and Weihnacht, 2003; Prunnila and Meltaus, 2010]. However, this work
is the first to provide a generally applicable theoretical formulation for the acous-
tic phonon tunneling[Geng and Maasilta, 2022a] and an experimental demon-
stration of the piezoelectrically mediated heat transfer (PEMHT) between vac-
uum separated piezoelectric crystals[Geng and Maasilta, 2023a]. The approach
described in this dissertation can be applied for any anisotropic and arbitrarily
oriented piezoelectric crystals, acquiring the solutions of reflection and transmis-
sion of all partial waves for any incoming mode, taking fully into account mode

5 There are numerous theoretical and experimental studies that have been carried out regard-
ing NFRHT, here we list some selected seminal works and reviews: Rytov [1953]; Polder
and Van Hove [1971]; Pendry [1999]; Joulain et al. [2005]; Volokitin and Persson [2007];
Basu et al. [2009]; Song et al. [2015]; Kim et al. [2015]; Kloppstech et al. [2017]; Lucchesi
et al. [2021b], and this list is not mean to be exhaustive.
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conversions.
Moreover, this work presents a strikingly simple resonance tunneling condi-

tion that leads to a complete tunneling of the acoustic phonon[Geng and Maasilta,
2022b], an unity transmission of the acoustic wave across vacuum without reflec-
tion. In addition, the numerical calculation[Geng and Maasilta, 2023b] shows that
the PEMHT between the solids will become the dominant heat carrying mecha-
nism at cryogenic temperatures, compared to channels mediated by photon and
other phonon tunneling mechanisms.

The main body of this dissertation is divided into three chapters. In Chap-
ter 2, the elasticity theory of piezoelectricity will be briefly introduced, focusing
on the the basic definitions, notations and the mathematical formalism that are
involved in the dissertation. In particular, the main aspects of the extended Stroh
formalism, a powerful mathematical tool for the anisotropic scattering problem in
piezoelectric materials, will be derived here. Chapter 3 presents the overview of
the theoretical work done by the author. The acoustic wave tunneling problem
will be solved with two different approaches, and will be also be illustrated with
both analytical and numerical examples. Complete tunneling of the phonon will
be analytically proved and discussed in detail. Lastly, heat transfer associated
with the tunneling will be investigated. Chapter 4 discusses the experimental
part of the author’s work. The experimental scheme, device fabrication and mea-
surement procedures will be presented first, and the measurement results will be
qualitatively and quantitatively discussed.



2 ELASTICITY THEORY OF PIEZOELECTRICITY

Although it is tempting to directly dive into the intriguing results of this work,
the definitions, notations and mathematical formalism involved in this disserta-
tion can be quite complicated for the readers that are not familiar with the field.
In addition, the Extended Stroh formalism, which is a powerful mathematical tool
used for dealing with the anisotropic scattering problem in piezoelectric materi-
als, may also be unfamiliar to many physicists. For these reasons, the author ded-
icates this chapter to the foundations this study is built upon. In the first section,
the basic framework of continuum anisotropic linear elasticity theory will be briefly
introduced. Piezoelectricity will be added into this framework in the second sec-
tion. In the last section, the main aspects of the extended Stroh formalism will be
presented with derivations. While walking through these sections, the conven-
tions of the definitions, notations and coordinate system of this dissertation will
also be established and clarified.

2.1 Acoustic field in solids

Elasticity theory is a mathematical tool to describe the relation between force
and deformation of a solid material. The main body of this work is built within
the continuum anisotropic linear elasticity theory, which implies four underly-
ing assumptions. Firstly, the material is modeled as a continuous medium rather
than discrete atoms, so that properties such as density or elastic constants are
regarded as continuous functions representing averages of microscopic quanti-
ties. Secondly, the material deforms elastically under the influence of the force,
and thereby will return to its initial shape and size upon the removal of the ex-
ternal loads, perfectly reversible. Moreover, the deformations are considered to
be small, thus the relationship between the strain, the measure of the deforma-
tion, and the stress, the traction force within the solid, is linearized and approxi-
mated by Hooke’s law which was originally formulated by Robert Hooke in the
17th century. Finally, the solids that are studied in this work are not generally
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FIGURE 2 Deformation of a solid.

isotropic, and may only be symmetric with respect to particular transformations
of the coordinates.

2.1.1 Deformation of a solid

Consider an infinitesimal volume element P1 at its equilibrium position rrr with
respect to some origin ooo in a continuum medium, as illustrated in Figure.2. If a
deformation occurs at time t, this point displaces itself to P′

1 which is at a new
position ℓℓℓ(rrr, t). The difference between these two positions is the displacement
vector:

uuu(rrr, t) = ℓℓℓ(rrr, t)− rrr, (1)

which can be divided into three components along Cartesian xyz axes, and is
conventionally denoted with a vertical vector form:

uuu =

ux
uy
uz

 . (2)

In this dissertation a common and useful shorthand form of vectors will be fre-
quently used for the sake of simplicity, e.g. ui where the subscript i is an index
that is assumed to run over x, y, z.

However, the displacement vector ui, or a more restricting quantity displace-
ment gradient ∇jui ≡ ∂ui/∂rj is not a good measure of the deformation, because
they can be produced solely by a rigid translation or a rotation. A more appro-
priate metric is the differential displacement dui = dℓi − dri from the point P1
to a neighboring point P2, as illustrated in Figure 2. Consequently, the material
deformation ∆d is conventionally defined as:

∆d ≡ dℓ2
i − dr2

i

= 2driSijdrj,
(3)

where Sij is an element of the second-order strain tensor SSS. A summation con-
vention for repeated indices is applied where subscript indices i, j needed to be
summed over the ranges x, y, z.
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Subscript L Expression ij
1 xx
2 yy
3 zz
4 yz, zy
5 xz, zx
6 xy, yx

TABLE 1 The abbreviated Voigt notation.

The exact expression of the strain tensor reads as Sij = (∇jui + ∇iuj +

∑k ∇iuk∇juk)/2, but with the small deformation assumption the quadratic terms
can be neglected, leading to a linearized strain-displacement relation:

Sij ≡
1
2
(
∇jui +∇iuj

)
. (4)

This strain tensor has an off-diagonal symmetry, thus it can be transformed into
a more convenient, six-element column vector form:

SL = ∇Ljuj (5)

following the Voigt notation convention with the translation rule presented in Table.1.
With Voigt convention, the 3 × 6 differential operator matrix ∇Lj reads as:

∇Lj →



∂/∂rx 0 0
0 ∂/∂ry 0
0 0 ∂/∂rz
0 ∂/∂rz ∂/∂ry

∂/∂rz 0 ∂/∂rx
∂/∂ry ∂/∂rx 0

 . (6)

2.1.2 Constitutive relations in solid

When a solid begins to vibrate acoustically, the displacement ui and strain SL
capture the motion and deformation of the medium. At the same time, stresses
develop between the neighboring volume elements acting as restoring forces with
respect to the equilibrium state. Such vibration can be driven by external forces
FFF either by the long-range body force or by the surface traction force.

The body force, e.g. given rise by gravity or electric field, acts directly upon
the interior of the solid, and can be expressed for each volume element dV as:

dFFF = FFFVdV, (7)

where FFFV is the body force with a unit of N/m3. On the other hand, the surface
force that is applied upon the boundary of a solid relies on the internal stresses
to transmit the excitations throughout the body. These internal stresses act at the
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interfaces between the neighboring volume elements, and can be expressed as
internal tractions exerting the forces on the interfaces as:

dFFF = σσσ · nnndA, (8)

where nnn is the unit vector normal to surface element dA, and σσσ is the second-order
stress tensor with the unit of N/m2. Additionally, within the scope of this work,
the stress tensor has also off-diagonal symmetry1, thus when the Voigt notation
convention is applied, σij → σL, in a similar way as for the abbreviated strain
tensor.

With given stimuli, the medium of a solid responses dynamically through
its motion and deformation. Under the linear elasticity framework, the stress-
strain relation can be described by Hooke’s Law:

σK = cKLSL, (9)

in which a proportionality factor cKL, the elastic stiffness tensor, linearly maps two
second-order tensors, and K, L = 1, ..., 6 are the Voigt indices.

The total forces that are exerted by the stimuli are the integrals of the body
force over the volume δV and the surface force over the area δA. Newton’s law of
motion then states: ∫

δA
σσσ · nnndS +

∫
δV

FFFVdV =
∫

δV
ρ

∂2uuu
∂t2 dV, (10)

where ρ is the mass density of the medium.
By assuming a sufficiently small volume δV → 0, the differential form of the

above equation can be obtained by taking divergences of both sides, and reads as:

∇iKσK ≡ ρ
∂2ui

∂t2 − FV
i . (11)

Eqs.(9) and (11) are called the constitutive equations of elastic solids. Together
with Eq.(5), the relations among the displacement ui, strain SL and stress σL are
thus established.

2.1.3 Acoustic Poynting’s theorem

As one of the main objectives of this work is to study the heat transfer carried
by tunneling phonons, the knowledge of how the power flows inside the solid
associated with the acoustic vibration is necessary. In this section, the energy
conservation relation of the elastic medium will be formulated, analogous to the
Poynting’s theorem used in electromagnetism, and the power flow (flux), which
has a unit of W/m2, will be derived and presented as acoustic Poynting vector PPP.

1 Under the linearized vibration theory, the body torque is negligible and thus the stress
matrix is always symmetric.
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Since the Voigt notation convention is adopted in this dissertation, ννν, a ten-
sor representation of a velocity vector, is introduced customarily to match to the
strain and stress tensor, and is defined as:

∇jνjL =
∂

∂t
(∇Ljuj) =

∂SL

∂t
. (12)

An equality [Auld, 1969]:

∇j(νjLσL) =
∂uj

∂t
(∇jLσL) + σL(∇jνjL), (13)

which is an analog of the divergence identity, can be found to relate the velocity
tensor to the stress tensor.

By inserting the Eqs.(11) and (12) into the right-hand side (RHS), integrat-
ing over a volume V, and applying the divergence theorem (Gauss’s theorem),
Eq.(13) becomes:∮

A
(−ννν · σσσ) · nnn dA = −

∫
V

ρ
∂uuu
∂t

· ∂2uuu
∂t2 dV −

∫
V

σσσ · ∂SSS
∂t

dV +
∫

V

∂uuu
∂t

· FFFV dV , (14)

where A is the surface enclosing the volume with nnn the unit vector normal to the
surface directed outward.

The first term on the RHS of Eq.(14) can be identified as the rate of change
of the total stored kinetic energy in the medium, and its integrand is thus the rate
of change of the stored kinetic energy density2 uK:

∂uK

∂t
= ρ

∂uj

∂t
∂

∂t
∂uj

∂t
. (15)

Interchanging the subscript indices i, j leads to the same value of uK, thereby one
finds3:

uK =
1
2

ρ

(
∂uj

∂t

)2

. (16)

Using the same approach, the second term is identified to be the rate of change of
the total stored elastic energy, whose density uS reads as:

uS =
1
2

SKcKLSL. (17)

The last term is the total power supplied to the medium by the body force.
Because there is no energy loss in the system, the left-hand side (LHS) of

Eq.(14) is the sum of the supplied power and the reductions in the stored energy,
and thereby can be interpreted as the total power flow outward through the sur-
face A. Thus its integrand is recognized as the acoustic analog of the Poynting’s
vector in electromagnetism:

PPP = −ννν · σσσ. (18)
2 To avoid confusion with the displacement vector ui, the energy density will be designated

with the Roman font u. The unit is J/m3.
3 Here the product rule of the derivative is used: dujuj = ujduj + ujduj
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2.1.4 Acoustic plane wave in a solid

For a plane wave, a general form of the wave solution to the equation of motion
(11) reads as:

uuu = ∑
α

AAAαe−ikkk·rrr+iωt, (19)

where kkk is the wave vector, ω is the angular frequency, i is the imaginary unit, and
AAAα is the amplitude of an orthogonal α component, which is commonly referred
as the wave mode α, where the full wave solution is a linear combination of all the
modes. Such a solution, although simple, is commonly known as the complex
harmonic plane wave solution, whose real part describes the physical observable,
whereas the imaginary part signifies the phase. It is widely used as a good ap-
proximation in many studies, such as electromagnetic waves in a homogeneous
medium and bulk waves in elasticity theory. In the scope of this work, the plane
wave solution will be exclusively used for its simplicity, so that a deeper under-
standing or even analytical solutions can be achieved for the phonon tunneling
phenomena. In addition, for the most part of this work, the medium is consid-
ered to be source-free, thereby the body force is zero, FFFV = 0, unless specifically
noted.

With the general wave solution, Eq.(19), the results that were obtained in
previous sections can be developed further for each mode (linear term). Firstly,
the differential operators can be substituted by ∇j → −ik j and ∇Lj → −ikLj, in
which kLj is explicit defined as:

kLj →



kx 0 0
0 ky 0
0 0 kz
0 kz ky
kz 0 kx
ky kx 0

 . (20)

Other simplified equations for plane waves are also summarized below:

Strain-displacement relation: SL = −ikLjuj, (21)

Stress-strain relation: σK = −icKLkLjuj, (22)

Equation of motion: ikiKσK = ρω2ui, (23)
Velocity tensor: k jνjL = iωkLjuj, (24)

Peak stored kinetic energy density: (uK)peak =
1
2

ρω2u∗
i ui, (25)

Peak stored elastic energy density: (uS)peak =
1
2

uikiKcKLkLju∗
j , (26)

Complex Poynting vector: Pi =
i
2

ν∗iKcKLkLjuj. (27)

The equation of motion, Eq.(23), governs the dynamics of the wave solution,
and, by substituting the stress-strain relation Eq. (22), it becomes the Christoffel
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equation, which reads as:
(k2Γij − ρω2δij)uj = 0, (28)

where δij = [i = j] is the Kronecker delta4, k = |kkk| is the norm of the wave vector,
and Γij = kiKcKLkLj/k2 is the Christoffel matrix.

The phase velocity v = ω/k of the wave can be obtained by solving the secu-
lar equation:

Ω(ω, kkk) ≡ ||k2Γij − ρω2δij|| = 0, (29)

in which the operator ||...|| denotes the determinant. For an infinite anisotropic
medium, there are generally three solutions, each having a corresponding dis-
placement vector ui and a phase velocity. These solutions are commonly referred
as the three uniform bulk wave modes, and their linear combination is the wave
solution Eq.(19).

There are two different conventions that have been applied to categorize
these bulk wave modes. One of the approaches is to examine the relation be-
tween the displacement vector uuu and the wave propagation direction kkk: when the
displacement of an elastic wave is (mostly) parallel to the propagation direction,
it is identified as a (quasi-) longitudinal wave, or an L mode for short; if the dis-
placement is (mostly) perpendicular to the propagation direction, it is a (quasi-)
shear wave, or an S mode. For anisotropic medium, there are one (quasi-) longi-
tudinal solution and two (quasi-) shear solutions, and they are most commonly
the quasi modes.

The other convention is to sort the phase velocities v = ω/k of the wave
modes from fastest to the slowest, and to assigns the modes, (quasi-) longitudinal
wave (L), fast (quasi-) transverse wave (FT), and slow (quasi-) transverse wave (ST),
in that order.

The complex Poynting vector, whose real part is the time-averaged power flow
and the imaginary part is the peak reactive power flow, can be formulated starting
from the equality:

∇j(ν
∗
jLσL) =

∂u∗
j

∂t
(∇jLσL) + σL(∇jν

∗
jL), (30)

which is similar to Eq.(13).
The conservation of the complex power is then:

∮
S

−ννν∗ · σσσ

2
· nnn dS = iω

∫
V

[
(uS)peak − (uK)peak

]
dV + iω

∫
V

−uuu∗ · FFFV

2
dV , (31)

where:

(uK)peak =
1
2

ρ

∣∣∣∣∂uuu
∂t

∣∣∣∣2
(uS)peak =

1
2

σσσ · SSS∗,

(32)

4 It is the index form of the unit matrix III, and the condition takes the values [True] = 1 and
[False] = 0.



21

are the peak kinetic and elastic stored energy density, respectively. The complex
acoustic Poynting vector is thus defined as:

PPP = −1
2

ννν∗ · σσσ. (33)

Since the scope of this work is focused on the time-averaged power, from
hereafter the vector PPP is exclusively used as the complex Poynting vector, and

PPPAV = −1
2

Re(ννν∗ · σσσ) (34)

is the time-averaged power flow.
The acoustic wave in a solid often travels also with a modulated enve-

lope, whose velocity is generally different from the wave’s phase velocity in
anisotropic medium, and is referred to as group velocity. A good example is
the concept of acoustic phonon, whose propagation speed and direction are repre-
sented by its group velocity ggg, and can be found from the expression ggg = ∂ω/∂kkk.

A common practice for finding the group velocity is to use the implicit dif-
ferentiations of the Christoffel determinant, Eq.(29), written in the form:(

∂Ω
∂ω

δω +
∂Ω
∂ki

δki

)
kj

= 0, (35)

from which one finds that the group velocity can be evaluated as:

ggg = − ∇kΩ
∂Ω/∂ω

. (36)

Alternatively, a more intuitive expression[Auld, 1990] will be derived and
presented next, under the framework of this dissertation and the assumptions of
source-free and lossless medium.

With two slightly different plane wave solutions

uuu1 = uuueiωt−ikkk·rrr

uuu2 = (uuu + δuuu)ei(ω+δω)t−i(kkk+δkkk)·rrr

σσσ1 = σσσeiωt−ikkk·rrr

σσσ2 = (σσσ + δσσσ)ei(ω+δω)t−i(kkk+δkkk)·rrr,

(37)

the sum of the complex velocity tensor identity [Eq.(30)] of both waves can be
rearranged using the product rule of derivative into:

∇ · (ννν∗2 · σσσ1 + ννν1 · σσσ∗
2) =

∂

∂t

(
ρ

∂uuu1

∂t
· ∂uuu∗

2
∂t

+ σσσ1 · SSS∗
2

)
, (38)

where ννν and SSS are functions of uuu using Eqs.(24) and (21). Inserting the wave solu-
tions and evaluating only the first-order quantities of δω, δkkk, δuuu, δσσσ, one obtains:

δkkk · 1
2
(−ννν∗ · σσσ − ννν · σσσ∗) = δω

(
1
2

ρ

∣∣∣∣∂uuu
∂t

∣∣∣∣2 + 1
2

σσσ · SSS∗
)

. (39)
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The RHS is the sum of the peak stored kinetic uK and elastic uS energy densities,
whereas the LHS can be identified as the real part of the complex Poynting vector,
which represents the time-averaged power flow. Therefore, Eq.(39) implies that
the group velocity5 is given by the ratio between the time-averaged power flow
and the averaged stored energy, and reads as:

ggg =
2PPPAV

(uK)peak + (uS)peak
. (40)

2.1.5 Crystal rotation

To solve the wave problem in an anisotropic solid for an arbitrary crystal orien-
tation, a method for transforming the material tensors from a standard crystallo-
graphic orientation to a specific arbitrary rotation needs to be provided.

FIGURE 3 Demonstration of crystal rotation angles. (a) The general Euler angle system.
(b) The cylindrical angle system for uniaxial crystals [Geng and Maasilta,
2022a], reproduced under the license CC BY 4.0.

The Euler angle system [Goldstein et al., 2011] has been commonly used to
describe how a crystal is rotated with respect to a fixed laboratory coordinate sys-
tem. In this system, two Cartesian frames, the XYZ which is the crystal intrinsic
coordinates, and the xyz, the external fixed laboratory coordinates, are defined
in this work. The relation between these two frames are fully described by three
angles: ϑ, φ and ψ, as illustrated in Fig.3(a).

To achieve a specific crystal orientation (ϑ, φ, ψ), one needs to perform a se-
quence of rotations on the frames with respect to their axis. This dissertation
adopts a widely used three-step extrinsic z-x-z rotation convention: Starting with
the two frames overlapping with each other, coinciding with each of their axes,
the crystal frame is firstly rotated about the laboratory z-axis by the angle ψ, fol-
lowing the right-hand rule (counterclockwise from top view); a second rotation
is about the x-axis by the angle ϑ; and the third rotation is again about the z-axis
by the angle φ.

After each crystal rotation step, material constant tensors, such as the elastic
stiffness tensor cKL, need to be transformed from the non-rotated ones. A tensor
TTTmn, where m, n = i, j, K, L are the abbreviated indices, can be transformed to TTT′

mn
by the rotation matrix RRR using the relation:

TTT′
mn = RRRmTTTmnRRRT

n , (41)
5 Strictly speaking it is the energy velocity. But with the lossless medium, the group velocity

and the energy velocity are equal.
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where RRRm and RRRn are two square rotation transformation matrices with dimen-
sions m × m and n × n, respectively, and the superscript T is the transpose opera-
tor. In this work, four rotation matrices are needed: RRR3,x(ζx) and RRR6,x(ζx) matrices
for the x-axis rotation by the angle ζx, and RRR3,z(ζz) and RRR6,z(ζz) for the z-axis ro-
tation by the angle ζz. The explicit expressions of these rotation transformation
matrices are listed below:

RRR3,x(ξx) =

1 0 0
0 cos ξx − sin ξx
0 sin ξx cos ξx

 , (42)

RRR3,z(ξz) =

cos ξz − sin ξz 0
sin ξz cos ξz 0

0 0 1

 , (43)

RRR6,x(ξx) =



1 0 0 0 0 0
0 cos2 ξx sin2 ξx −2 sin ξx cos ξx 0 0
0 sin2 ξx cos2 ξx 2 sin ξx cos ξx 0 0
0 sin ξx cos ξx − sin ξx cos ξx − sin2 ξx + cos2 ξx 0 0
0 0 0 0 cos ξx sin ξx
0 0 0 0 − sin ξx cos ξx

, (44)

RRR6,z(ξz) =



cos2 ξz sin2 ξz 0 0 0 −2 sin ξz cos ξz
sin2 ξz cos2 ξz 0 0 0 2 sin ξz cos ξz

0 0 1 0 0 0
0 0 0 cos ξz sin ξz 0
0 0 0 − sin ξz cos ξz 0

sin ξz cos ξz − sin ξz cos ξz 0 0 0 − sin2 ξz + cos2 ξz

, (45)

where the higher rank matrices RRR6 are obtained from the Bond stress matrix
[Auld, 1990].

In later chapters, wurtzite hexagonal crystals, e.g. AlN and ZnO, are used
as analytical and numerical examples. This type of crystal has an uniaxial sym-
metry about its Z-axis, and thereby the material tensors are unchanged after the
first z-axis rotation. As a result, the crystal orientation and the associated rota-
tion procedure can be simplified. Instead of the Euler angle system, a cylindrical
coordinate system is used, and the relation between the two frames can be de-
scribed by two angles: a zenith angle ϑ and an azimuthal angle φ, as shown in
Figure.3(b). A two-step rotation procedure is also adopted correspondingly: the
crystal frame is firstly rotated about the x-axis by an angle ϑ, followed by a second
rotation about the z-axis by an angle φ.

2.2 Piezoelectricity

The term "piezoelectric" is a combination of "electric" with the Greek word "piezo",
which means "to press". This term describes well the effect itself, indicating the
relation between the mechanical driving and the electrical response of this phe-
nomenon.
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FIGURE 4 Illustration of piezoelectricity in a ZnO crystal.

First reported experimentally by Jacques and Pierre Curie in the 19th cen-
tury, piezoelectricity became an interesting and credible topic in many scientific
studies. However, the invention of the piezoelectric ultrasound resonator, which
was used in SONAR to detect submarines during World War I, put piezoelectric
materials under the spotlight, and soon more applications were developed and
commercialized.

Nowadays, piezoelectric materials have already played a significant role in
modern technologies and engineering practices, as it couples the acoustic defor-
mations and electric fields, and has many applications such as acousto-optical
modulators and actuators for optical signal processing, ultrasonic imaging, fre-
quency control and processing devices, gas and fuel ignition generators, to name
a few[Royer and Dieulesaint, 2000b].

There are a lot of piezoelectric materials that exist in nature as crystalline
minerals, like quartz, topaz, Rochelle salt and tourmaline, and they all share a
same feature in their crystal structure: non-centrosymmetricity.

Taking Zinc oxide (ZnO) as an example, it has a wurtzite hexagonal crystal
structure, as shown in Fig.4. When in the equilibrium state, free of any stresses,
the center of the positive and negative charge densities inside the crystal unit cell
coincide, and thereby create zero net electric polarization. However, a deforma-
tion caused by stress may displace the centers of the charge densities, developing
a finite electric dipole moment inside the cell, like the case shown in Fig.4(b). For a
piezoelectric material, the collective effects of all the dipole moments throughout
the crystal lead to a finite electric field, whereas for a centrosymmetric material,
the net polarization stays zero.

In the following sections, the constitutive equations that couple the mechan-
ical and electrical responses of a piezoelectric material will be derived, and an
important approximation, the quasistatic approximation, will be discussed.
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2.2.1 Piezoelectric constitutive equations

To form a piezoelectric (PE) system, both mechanical and electrical work must
be done, and the internal energy U(SL, Di) of the system6 is a function of two sets
of state variables that represent the mechanical deformations and electric displace-
ments in three-dimensional space, respectively. Consequently, a small change in
the internal energy can be expressed as the sum of the increments of the mechan-
ical and electrical work[Royer and Dieulesaint, 2000a]:

dU = σLdSL + EidDi, (46)

where Ei is the electric field, and Di the electric displacement field.
Considering this PE system to be mechanically isolated but electrically cou-

pled to the outside world, the electrical enthalpy (free energy) then reads as:

H ≡ U − EiDi. (47)

The addition of the term EiDi changes the state variables to H(SL, Ei) via the
Legendre transformation [Reichl, 2016], and thus leads to a differential form:

dH = σLdSL − DidEi. (48)

For small changes in the state variables, using the partial derivatives of the
electric enthalpy give:

dH =
∂H
∂SL

∣∣∣∣
E

dSL +
∂H
∂Ei

∣∣∣∣
S
dEi, (49)

where the first term of RHS is at constant electric field and the second term is at
constant strain. Comparing Eqs.(49) with (48), one has:

σL =
∂H
∂SL

∣∣∣∣
E

, Di = − ∂H
∂Ei

∣∣∣∣
S
. (50)

The quantities σL and Di are also the functions of the state variables and can
be expressed with their partial derivatives:

dσL =
∂σL

∂SK

∣∣∣∣
E

dSK +
∂σL

∂Ei

∣∣∣∣
S
dEi, (51)

dDi =
∂Di

∂SL

∣∣∣∣
E

dSL +
∂Di

∂Ej

∣∣∣∣
S
dEj, (52)

in which one can identify:

∂σK

∂SL

∣∣∣∣
E
= cE

KL,
∂Di

∂Ej

∣∣∣∣
S
= ϵS

ij, (53)

6 Thermal effects on the system are customarily neglected in the elasticity theory here.
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as the elastic stiffness tensor at constant electric field and the electric permittiv-
ity tensor at constant strain, respectively. On the other hand, the remaining two
factors can be expressed as[Royer and Dieulesaint, 2000a]:

eLi ≡ −∂σL

∂Ei

∣∣∣∣
S
= − ∂2H

∂SL∂Ei

∣∣∣∣
E,S

, (54)

eiL ≡ ∂Di

∂SL

∣∣∣∣
E
= − ∂2H

∂Ei∂SL

∣∣∣∣
E,S

, (55)

where eiL is defined as the piezoelectric stress tensor7, which is symmetric eiL = eLi
according to the chain rule of partial differentiation.

In summary, the derivations in this section lead to the piezoelectric constitu-
tive equations:

σK = cE
KLSL − eKjEj (56)

Di = eiLSL + ϵS
ijEj. (57)

2.2.2 The quasistatic approximation

Acoustic waves typically have velocities more than four orders of magnitude
slower than that of light, and thereby have difficulties in exciting traveling elec-
tromagnetic waves via the rotational field. As a result, only the quasistatic part of
the electric field EEE = −∇Φ, where Φ is the electric potential, is considered in this
work, while the rotational part is set to zero and hence ∇×EEE = 0. Such a method
is commonly known as the quasistatic approximation, which is customarily used in
piezoelectric problems.

What follows is that by applying the quasistatic approximation and the
wave solution Eq.(19) to Eqs.(56) and (57), the following piezoelectric constitu-
tive equations for the acoustic field are obtained:

σK = −icE
KLkLjuj − ieKjk jΦ (58)

Di = −ieiLkLjuj + iϵS
ijk jΦ. (59)

In addition, the electric displacement field without free charges follows the
Gauss’s law ∇ · DDD = 0, whose matrix notation reads as:

−ikiDi = 0. (60)

The electric potential Φ can thus be expressed as a function of the displace-
ment uj as:

Φ =
kieiLkLj

kiϵ
S
ijk j

uj (61)

by inserting the constitutive Eq.(59) into the Gauss’s law, Eq.(60). The piezo-
electric version of the Christoffel equation can be obtained by substituting the

7 The superscript E, S are removed as they are the only two state variables considered here,
as well as to avoid crowded symbols.
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constitutive Eq.(58) together with the expression of Φ into the equation of motion
Eqs.(23). One finds the expression:

(k2ΓPE
ij − ρω2δij)uj = 0, (62)

which looks the same as Eq.(28), but with a different piezoelectrically stiffened Christof-
fel matrix[Auld, 1990]:

ΓPE
ij =

1
k2 kiK

[
cE

KL +
(eKjk j)(kieiL)

kiϵ
S
ijk j

]
kLj. (63)

It should be noted that, although the Eqs.(61) and (63) are correct in the
case of bulk waves as discussed here, their denominators can be zero in some
special wave modes in the scattering problems, e.g. for a reflected evanescent
wave. Such cases may introduce ambiguities in the results of Φ, if orthogonality
and completeness of the wave solutions are not carefully examined. This serves
as one of the motivations to introduce the extended Stroh formalism in the next
section.

With the addition of the coupling to the electrostatic field, the Poynting vec-
tor for the piezoelectric medium should also include the contribution stored in
the electric field.

The complex Poynting vector of electromagnetism is well known:

PPPEM =
1
2

EEE × HHH∗, (64)

where HHH is the magnetic field strength. Taking the divergence of the Poynting
vector leads to:

∇ · (EEE × HHH∗) = (∇× EEE) · HHH∗ − EEE · (∇× HHH∗). (65)

The first term on the RHS is zero under the quasistatic approximation, and
the second term becomes:

−EEE · (∇× HHH∗) = ∇ ·
(

ΦV
∂DDD∗

∂t

)
− ΦV∇ · ∂DDD∗

∂t
, (66)

where Ampere’s circuital law ∇× HHH = ∂DDD/∂t and the divergence product iden-
tity are applied. Without free charges inside the medium, so that ∇ · DDD = 0, the
quasistatic complex Poynting vector becomes:

PPPEM =
1
2

Φ
∂DDD∗

∂t
. (67)

Without any source currents or free charges, Gauss’s law states that kkk · DDD =
0, which has an interesting implication that the electric power flow is always or-
thogonal to the propagation direction of the wave. This property of the piezoelec-
trically stiffened acoustic wave will be exploited in the next chapter to enhance
the power flow in the vacuum between two semi-infinite solids.
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The total power flow of the piezoelectric medium is therefore the sum of the
elastic and electrostatic contributions:

PPP = −1
2

ννν∗ · σσσ − 1
2

iωΦDDD∗, (68)

where the time derivative is replaced by iω for a harmonic wave.
The peak stored kinetic and elastic energy densities (uK)peak, (uS)peak have

already been obtained in Eqs.(32) as:

(uK)peak =
1
2

ρω2|ui|2 (69)

(uS)peak =
1
2

ik∗iKσKu∗
i . (70)

The peak stored electrostatic energy is:

(uE)peak =
1
2

EiD∗
i =

1
2

iΦkiD∗
i . (71)

For a bulk wave whose k-vector is real, it is easy to show that the peak elastic
and kinetic energy densities are equal, and the peak stored electrostatic energy is
zero enforced by the Gauss’s law [Eq.(60)]. Therefore, the group velocity of the
bulk wave mode still has the same expression as in Eq.(40).

2.2.3 Piezoelectric crystal orientations

Piezoelectric AlN and ZnO will be used as analytical and numerical examples in
this dissertation. These are uniaxial wurtzite crystals, whose orientations can be
fully described by two angles (ϑ, φ) using a cylindrical angle system as discussed
in section 2.1.5.

There are three material constant tensors that are used in the elasticity the-
ory for the piezoelectric solid: the 6 × 6 tensor cccE

0 , the elastic stiffness tensor at
constant electric field; the 3 × 6 tensor eee0, the piezoelectric strain tensor; and the
3 × 3 tensor ϵϵϵS

0 , the electric permittivity tensor at constant strain. The subscript 0
indicates they are the non-rotated tensors.

With the rotation and the corresponding transformation procedure that was
described in the preceding section 2.1.5, the transformed tensors can then be ob-
tained as:

cccE = RRR6,z(φ)
[
RRR6,x(ϑ)cccE

0 RRR6,x(ϑ)
T
]

RRR6,z(φ)T

eee = RRR3,z(φ)
[
RRR3,x(ϑ)eee0RRR6,x(ϑ)

T
]

RRR6,z(φ)T

ϵϵϵS = RRR3,z(φ)
[
RRR3,x(ϑ)ϵϵϵ

S
0RRR3,x(ϑ)

T
]

RRR3,z(φ)T.

(72)

In the scope of this work, the piezoelectric crystal is considered to be cut
along a certain plane to form a semi-infinite solid. Therefore, it is also useful
to introduce the four basis vector {hkil} Miller-Bravais index system, which is
commonly used to describe the crystallographic planes [Schwarzenbach, 2003].
For hexagonal crystals, the rotation angle ϑ = ∠{hkil} describes the angle between
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the crystal Z-axis and the normal of the plane {hkil}, and the relation between the
angle and the indices is:

∠{hkil} = arccos

( −−→
(hkl) ·

−−−→
(001)

|
−−→
(hkl)||

−−−→
(001)|

)

= arccos

[
al
(

4
3

c2(h2 + k2 + hk) + a2l2
)− 1

2
]

,

where a and c are the in-plane (X,Y) and out-of-plane (Z) lattice constants of the
crystal, respectively. In Table 2, the indices and the rotation angles of common
crystallographic plane families of AlN and ZnO are given.

Plane name Miller index AlN ∠{hkil} ZnO ∠{hkil}
a {1120} 90◦ 90◦

m {1010} 90◦ 90◦

c {0001} 0◦ 0◦

r {1102} 42.73◦ 42.78◦

n {1123} 46.85◦ 46.89◦

s {1011} 61.58◦ 61.61◦

TABLE 2 The common cut planes of hexagonal AlN and ZnO crystals.

2.3 Extended Stroh formalism

The elasticity theory that was introduced in previous sections is a very well de-
veloped formalism, and it can constitute a complete system to solve a scattering
problem, the kind of problem this dissertation is focused on. However, for the
problems involving an anisotropic medium and arbitrarily orientated crystals, it
becomes complicated to apply the elasticity theory directly, because of the intri-
cate material parameters and the coupled quasi-wave modes. In addition, it is
also crucial to carefully examine the orthogonality and the completeness of the
wave solutions, otherwise ambiguities can arise.

An example of the last point can be found in the textbook of elasticity theory
written by Auld [1990]. In that example8, the author gives an example of a case
where the denominator of Eq.(61) is zero, and thus special procedure needs to be
taken to find the correct wave solution.

In contrast, the Extended Stroh formalism reveals the underlying relations
among the elasticity equations presented in the preceding sections, inherently
ensures the orthogonality and the completeness of the wave solutions, and thus
is a mathematically powerful and elegant tool to analyze the anisotropic piezo-
electric elasticity.

8 Example 5 in chapter 9 on page 52 in Volume II.
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FIGURE 5 Schematic of the single surface scattering problem.

The original sextic Stroh formalism was proposed by Stroh [1962], and was
developed into an eight-dimensional framework for arbitrary anisotropic piezo-
electric crystal by Barnett and Lothe (1975; 1976). With further developments con-
tributed by many authors [Al’shits et al., 1989, 1990, 1991; Chung and Ting, 1995;
Akamatsu and Tanuma, 1997; Hwu, 2008], this formalism has been successfully
applied to various studies, ranging from the analysis of the bulk [Al’shits et al.,
1989, 1990, 1991], surface [Lothe and Barnett, 1976; Lyubimov et al., 1980; Darin-
skii and Weihnacht, 2003], and gap [Al’shits et al., 1993, 1994; Darinskii and Wei-
hnacht, 2006] electroacoustic waves in anisotropic piezoelectric materials, to the
material science applications such as piezoelectric ceramics and composites[Pak,
1992; Liang et al., 1995; Lu et al., 2006], and phononic crystals[Barnett and Lothe,
1975; Darinskii and Shuvalov, 2019].

In the following sections, the main aspects of the extend Stroh formalism
will be introduced, and then the orthogonality and the completeness will be
briefly discussed. Lastly, the Poynting vector, the group velocity and the energy
density will be derived under the framework of this dissertation.

2.3.1 Stroh characteristic equation

Let’s consider an incident plane wave impinging on an interface in a piezoelectric
solid, and scattering into a linear combination of partial waves, either reflected or
transmitted, as illustrated in Figure 5. Without losing generality, this incident
wave is assumed to have a wave vector kkk such that kx > 0, ky = 0, and kz < 09,
and travels inside the xz-plane, the saggital plane, and is scattered at the interface
z = 0. The unit vectors of the x-axis and z-axis are designated mmm and nnn, respec-
tively, and a factor p ≡ kz/kx is defined as the ratio between the two non-zero
wave vector components.

9 kz < 0 means traveling against the direction of z − axis, i.e. towards the interface
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The general wave solutions can be expressed[Geng and Maasilta, 2022a] as:

uuu = ∑
α

bαAAAαe−ikx(x+pαz)+iωt

Φ = ∑
α

bαϕαe−ikx(x+pαz)+iωt

nnn · σσσ = ikx ∑
α

bαLLLαe−ikx(x+pαz)+iωt

nnn · DDD = ikx ∑
α

bαDn
α e−ikx(x+pαz)+iωt ,

(73)

where bα is the dimensionless amplitude of the partial wave mode α, AAAα, ϕα, LLLα, Dn
α

are the constants describing the displacement, the electric potential, the traction
force and the normal projection of the electric displacement of the α mode, re-
spectively. It will be shown in the later part of this section that these constants
form a normalized eigenvector ξξξα = [AAAα, ϕα, LLLα, Dn

α ]
T to the Stroh characteristic

equation with a corresponding eigenvalue pα.
Under the quasistatic approximation, the normal projections of the piezo-

electric constitutive equations (58) and (59) read as:

nnn · σσσ = −iniKcE
KLkLjuj − iniKeKjk jΦ

nnn · DDD = −inieiLkLjuj + iniϵ
S
ijk jΦ,

(74)

where ni is the matrix notation of the normal vector nnn of the ith Cartesian compo-
nent10, and niK is a 3 × 6 matrix that has a form similar to the kiK = kT

Lj, explicitly
defined as:

niK →

nx 0 0 0 nz ny
0 ny 0 nz 0 nx
0 0 nz ny nx 0

 . (75)

If we introduce a composite 4 × 4 matrix expression (nnnkkk) that is defined as:

(nnnkkk) ≡
[

niK 0
0 ni

] [
cE

KL eKj
eiL −ϵS

ij

] [
kLj 0
0 k j

]
, (76)

in which each element of the matrices represents sub-matrices, the constitutive
equations (74) can be written into a more compact form as:[

nnn · σσσ

nnn · DDD

]
= −i(nnnkkk)

[
uuu
ϕ

]
. (77)

This matrix equation can be rearranged further by inserting the α partial
mode solution from the solutions Eqs.(73), and by separating the unknown pα,
which is introduced by the decomposition of the k-vector kkkα = kx(mmm + pαnnn) into

10 With the coordinates used in this dissertation, nz = 1, and nx = ny = 0. In addition,
mx = 1, and my = mz = 0.
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the two orthogonal unit vectors mmm and nnn, into the RHS of the equation. The re-
sulting equation reads as:

−(nnnnnn)−1(nnnmmm)

[
AAAα

Φα

]
− (nnnnnn)−1

[
LLLα

Dn
α

]
= pα

[
AAAα

Φα

]
, (78)

in which the expressions (nnnnnn) and (nnnmmm) are defined analogously to the Eq.(76)
and depend only on the material parameters since nnn and mmm are unit vectors. It
is worth mentioning that the inverse of the matrix (nnnnnn) always exists for real
materials.

In addition, starting from the equation of motion, Eq.(23), and the Gauss’s
law, Eq.(60), another similar matrix equation can be found as:

(kkkkkk)
[

uuu
Φ

]
= ρω2III′

[
uuu
Φ

]
, (79)

where III′ reads as:

III′ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (80)

By introducing the unknown pα from the decomposition of the k-vector as above
and substituting the term pα[AAAα, Φα]T from Eq.(78), one obtains:

−
[
(mmmnnn)(nnnnnn)−1(nnnmmm)− (mmmmmm) + ρv2

xIII′
] [AAAα

Φα

]
−(mmmnnn)(nnnnnn)−1

[
LLLα

Dn
α

]
= pα

[
LLLα

Dn
α

]
,

(81)

where vx ≡ ω/kx.
Finally, Eqs.(78) and (81) can be combined linearly into an eight-dimensional

characteristic equation
NNN(vx)ξξξα = pαξξξα , (82)

whose eigenvector is ξξξα = [AAAα, ϕα, LLLα, Dn
α ]

T, eigenvalue is pα, and NNN is a 8× 8 real
matrix given by:

NNN(vx) = −
[

(nnnnnn)−1(nnnmmm) (nnnnnn)−1

(mmmnnn)(nnnnnn)−1(nnnmmm)− (mmmmmm) + ρv2
xIII′ (mmmnnn)(nnnnnn)−1

]
. (83)

One of the key features of the extended Stroh formalism is that, besides
the material parameters, the Stroh matrix NNN is only a function of vx, which is a
conserved quantity at the scattering interface due to the continuity conditions at
the boundary, and is known if the incident wave is given. As a comparison, the
stiffened Christoffel matrix ΓΓΓ presented in Eq.(63) requires the knowledge of the
k-vectors of the scattered wave modes (equivalent to the pα), which are generally
unknown for anisotropic scattering problems.
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The characteristic equation (82) has eight distinct complex eigenvalues11

pα = p′α + ip′′α with α = 1, ..., 8 (p′α and p′′α are the real and imaginary parts of
the eigenvalue), as well as eight associated eigenvectors ξξξα which are orthogonal
and form a complete set [Lothe and Barnett, 1976]. These are the partial wave
mode solutions, which can be either homogeneous plane waves with real eigen-
value (p′′α = 0) or inhomogeneous waves (p′′α ̸= 0).

2.3.2 Orthonormalization

Customarily, a normalization method will be employed to ensure finding a unique
and complete set of solutions to the characteristic equation. An intuitive and con-
venient choice is to normalize with the displacement vector uuu (or its time deriva-
tive iωuuu) which is also the base vector of the elastic equations. However, it is
not rare to see cases in piezoelectric materials, where a valid partial wave mode
solution has no displacement such that uuu = 0. Therefore, a four-dimensional
eigenvector [uuu, Φ]T is quite often considered instead of uuu in the piezoelectric scat-
tering problems [Yashiro and Goto, 1978; Every and Neiman, 1992].

Such normalization problem is addressed formally in the extended Stroh
formalism. To ensure a distinct and complete set of solutions, an orthonormaliza-
tion condition is applied [Chadwick and Smith, 1977; Darinskii and Weihnacht,
2003], which can be expressed as:

ξξξα · T̂TTξξξβ = ξξξT
α T̂TTξξξβ = δαβ, α, β = 1, ..., 8 , (84)

where δαβ is the Kronecker delta, and T̂TT is a 8 × 8 matrix reading as:

T̂TT =

[
ÔOO(4) ÎII(4)
ÎII(4) ÔOO(4)

]
, (85)

where ÔOO(4) and ÎII(4) are 4 × 4 zero and unit matrices.
In numerical practice, the normalization will be done as follows: the non-

normalized eigenvector ξξξ ′α is obtained first; this solution will then be normalized

via equation ξξξα = ξξξ ′α/
√
(ξξξ ′α)

TT̂TTξξξ ′α.
The orthogonality of Eq.(84) can be proved based on the symmetry relation

of an auxiliary matrix T̂TTNNN [Chadwick and Smith, 1977; Ting, 1996]:

(T̂TTNNN)T = T̂TTNNN, (86)

which can be verified using simple algebra as the Stroh matrix NNN depends only
on vx and the material parameters.

Left-multiplying the characteristic equation (82) by ξξξβT̂TT· and writing it in
matrix notation, it becomes:

(ξi)β(T̂N)ij(ξ j)α = pα(ξi)βT̂ij(ξ j)α. (87)

11 In only few isolated cases, nonsemisimple degeneracy can be found. Such cases can be
solved by generalized eigenvectors[Chadwick and Smith, 1977; Darinskii and Weihnacht,
2003]. In this work, these cases are not considered because one can always solve the prob-
lem numerically in a limiting manner very close to such a special point.
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The modes α and β can be interchanged:

(ξi)α(T̂N)ij(ξ j)β = pβ(ξi)αT̂ij(ξ j)β. (88)

In the next step, one can transpose Eq.(87), followed by interchanging the
indices i, j, and applying the symmetry relations T̂ij = T̂ji and (T̂N)ij = (T̂N)ji
from Eq.(86). As a result, the new equation reads as:

(ξi)α(T̂N)ij(ξ j)β = pα(ξi)αT̂ij(ξ j)β. (89)

Subtracting Eq.(89) from Eq.(88), one obtains:

(pα − pβ)(ξi)αT̂ij(ξ j)β = 0, (90)

which states that ξξξT
α T̂TTξξξβ = 0 when pα ̸= pβ, and thereby the orthogonality is

demonstrated.
The eigenvectors obtained from the Stroh characteristic equation form a

complete set, satisfying the completeness condition:

∑
α

ξξξα ⊗ T̂TTξξξα = ÎII(8). (91)

This condition can be demonstrated conveniently with the help of the Dirac’s bra-
ket notation [Sakurai and Napolitano, 2020]12. Under such notation, the orthonor-
malization condition Eq.(84) reads as:

⟨ξξξα| T̂
∣∣ξξξβ

〉
=
〈

T̂ξξξα

∣∣ξξξβ

〉
= δαβ. (92)

The second form in the above equation can be multiplied by an inner product of
the γ and β modes

〈
ξξξγ

∣∣ξξξβ

〉
with a summation over α. This leads to a relation:〈

ξξξγ

∣∣ξξξβ

〉
= ∑

α

〈
ξξξγ

∣∣ξξξβ

〉 〈
T̂ξξξα

∣∣ξξξβ

〉
= ∑

α

⟨ξξξγ|ξξξα⟩
〈

T̂ξξξα

∣∣ξξξβ

〉
, (93)

from which the completeness of the eigenvector

∑
α

|ξα⟩
〈

T̂ξα

∣∣ = Î̂ÎI (94)

is thereby proved.
It is important to point out here that ξξξT

α T̂TTξξξβ has a unit of force and does
not keep the physical units of the eigenvectors. However, this is only a concern
in computation, in which the eigenvectors are actually in reduced "Stroh units".
From a theoretical point of view, the eigenvectors are always assumed to be a
unique and complete set satisfying the orthonormalization condition, without
the need of an additional normalization, and thus their units are correct in the
derivation and development of the theory in this dissertation.

12 Note that the complex conjugation is not taken here when using Dirac’s bra.
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2.3.3 Power flow, energy density and group velocity

The complex Poynting vector for the piezoelectric material is given in Eq.(68). By
adopting the general solution of the Stroh formalism, Eqs.(73), the component of
the complex Poynting vector of an α mode that is normal to the interface (z = 0)
can thus be expressed as:

nnn · PPPα = −ωkx

2
|bα|2

[
AAA∗

α · LLLα + Φ(Dn
α)

∗], (95)

in which kx is a conserved quantity because of the continuity conditions at the
scattering interface, and is assumed to be real so that the incident wave is always
a bulk plane wave.

The time-averaged power flow in the normal direction is the real part of the
complex Poynting vector:

nnn · PPPAV,α = −ωkx

4
|bα|2

[
AAA∗

α · LLLα + AAAα · LLL∗
α + Φ(Dn

α)
∗ + Φ∗(Dn

α)
]

= −ωkx

4
|bα|2ξξξT

α T̂TTξξξ∗α.
(96)

This result is interesting in several ways. Firstly, it can be simplified further
for the bulk wave solutions. Bulk waves have real eigenvalues pα, and because
the Stroh matrix NNN is also real, the eigenvectors have to be either real, so that
ξξξ∗α = ξξξα, or pure imaginary, so that ξξξ∗α = −ξξξα. This leads to:

ξξξT
α T̂TTξξξ∗α = ±ξξξT

α T̂TTξξξα = ±1, (97)

in which the sign is determined by the orthonormalization procedure. As a result,
the value of the power flow can be computed simply13 from ωkx|bα|2/4, and the
direction of the power flow is determined by the sign of the factor ξξξT

α T̂TTξξξ∗α. Here it
should be noted that the direction of the inhomogeneous wave is not determined
by this factor, but rather simply by the imaginary part of pα as it needs to ensure
a decaying solution at infinity.

Moreover, Eq.(96) also reveals the physical interpretation of the amplitude
bα. Because the angular frequency ω and the component of k-vector kx are un-
changed for all the wave mode solutions, the power flow ratio between the bulk
solutions α and β reduces to |bα|2/|bβ|2, meaning bα is the amplitude of power.
Assuming an incident amplitude bin = 1 in the scattering problem, bα becomes
the transmission or reflection amplitude coefficient, and |bα|2 becomes the power
transmittance and reflectance.

The peak stored energy densities (uK)peak, (uS)peak, (uE)peak can be obtained
from Eqs.(69),(70) and (71). For the bulk wave modes, these expressions become:

(uK)peak = (uS)peak =
1
2

ρω2|bα|2|AAAα|2

(uE)peak = 0.
(98)

13 With an extra force unit.
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The group velocity of a bulk wave mode α is the ratio between the time-averaged
power flow and the averaged peak stored energy density, as presented in Eq.(40)
in the previous section. Its component normal to the interface, which is the power
flow direction this work mainly concerns, reads as:

gn
α ≡ nnn · ggg = − 1

2ρvx|AAAα|2
ξξξT

α T̂TTξξξ∗α. (99)

where vx = ω/kx.

2.3.4 Wave-mode assignment

As discussed already in section 2.1.4, there are two conventions to categorize the
wave modes in the elasticity theory, which can also applied to a piezoelectric ma-
terial. Besides a new evanescent electrical potential E mode, which is, as the name
suggested, the energy is (mostly) contained in the electric field [Auld, 1990; Every
and Neiman, 1992], there are three (mostly) elastic wave modes in a piezoelectric
medium. With different displacement directions in relation to the propagation
direction, also referred to as polarization in some literature, the wave can be iden-
tified as: a (quasi-)longitudinal wave, or an L mode, if the polarization is (mostly)
parallel to the propagating direction; a vertically polarized (quasi-)shear wave, or an
SV mode, if the polarization is (mostly) inside the sagittal plane and (not purely)
perpendicular to the propagation direction; a horizontally polarized (quasi-)shear
wave, or an SH mode, if the polarization is perpendicular to both the sagittal
plane and the propagation direction.

The other alternative is to sort the phase velocity of the three elastic wave
modes from the fastest to the slowest as (quasi-)longitudinal wave (L), fast (quasi-
)transverse wave (FT) and slow (quasi-)transverse wave (ST).

The above two categorizations of the wave modes are only conceptual def-
initions originated from exactly the same set of solutions of the extended Stroh
formalism. There are eight eigenvalues pα and eight associated eigenvectors ξξξα,
and they can be divided into reflected and transmitted waves, each direction con-
taining four aforementioned wave modes. For the benefit of the topics in later dis-
cussions such as mode conversions, a programmable procedure will be described
below, which can be used to identify the wave modes.

The eight solutions of the Stroh formalism will be examined with four dif-
ferent categorization methods:

1. Homogeneous or inhomogeneous wave

2. Transmitted or reflected wave

3. The mode categorized as longitudinal (L), fast transverse (FT), slow trans-
verse (ST), or electric potential (E)

4. The mode categorized as longitudinal (L), vertically polarized shear (SV),
horizontally polarized shear (SH), or electric potential (E)
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Firstly, an eigenvalue of a wave solution is assumed to have a form of pα = p′α +
ip′′α . By examining the imaginary part: If p′′α = 0 (p′′α ̸= 0), the wave will be
identified as a homogeneous wave (an inhomogeneous wave).

Secondly, for an inhomogeneous wave, its eigenvalue has a non-zero imag-
inary part that if p′′α > 0 (p′′α < 0) the wave will be identified as a transmitted
(reflected) wave. This reflects an underlying physics that the inhomogeneous
wave can only decay (and not grow) from the surface. In contrast, the time-
averaged power flow direction of a homogeneous wave, i.e. the normal com-
ponent of the Poynting vector Eq.(96), should be examined such that the wave
with n̂nn · PPPAV,α < 0 (n̂nn · PPPAV,α > 0) is identified as a transmitted (reflected) mode.

It should be stressed here that, the wave modes, e.g. FT, SV, etc., are defined
only from a partial set of aspects of the wave solutions, such as phase velocity or
displacement. Consequently, it can be difficult and tricky in some special cases to
fully map these modes to the solutions, creating ambiguities. One example that
Every and Neiman [1992] showed, is a plane wave can be scattered into four bulk
modes without the excitation of the inhomogeneous E mode in the case of strong
electromechanical coupling. Hence, it is important to keep in mind that the mode
categorization procedure presented here is not a fully robust algorithm, but for
the benefit of the discussion and demonstration.

To assign the modes within the set L, FT, ST and E, the magnitudes of the
imaginary parts |p′′α | of all the inhomogeneous evanescent waves (p′′α ̸= 0) will
be compared first, and the modes are assigned based on the ordering |p′′E| >
|p′′L| > |p′′FT| ≥ |p′′ST| until there is no inhomogeneous wave left. The modes of
the remaining unassigned homogeneous waves will be assigned based on their
phase velocities v2

α = v2
x/(1 + p2

α) in the order v2
L > v2

FT ≥ v2
ST, starting from the

first unassigned mode.
To assign the modes within the set (quasi-) L, SV, SH and E, the displace-

ment constant AAAα from the eigenvector should be examined. However, this is
not always possible since there are usually no clear general differences between
the eigenvectors of the surface (inhomogeneous) modes. Hence, the inhomoge-
neous wave modes should be identified first using the method described above.
After that, the homogeneous modes, for which the definitions based on the dis-
placement vector exist, can be identified by comparing the direction of the dis-
placement with the wave vector as well as the unit normal vector of the sagittal
plane. A (quasi-)L mode can be identified from |kkk · AAAL| > |kkk · AAASV,SH|, if it is still
available for assignment, whereas the (quasi-)SV and (quasi-)SH modes follow
the relation |[0, 1, 0]T · AAASV | < |[0, 1, 0]T · AAASH|, based on the coordinate system
assumed in this dissertation.



3 PIEZOELECTRICALLY MEDIATED ACOUSTIC
WAVE TUNNELING

In a solid, the propagation of the deformation or vibration is described by an
acoustic wave or an acoustic phonon which is a particle-like quantum mechani-
cal description of the acoustic wave, and its constitutive and dynamic equations
were introduced in the preceding chapter. By definition, acoustic waves cannot
exist in vacuum, thus a conclusion that the energy carried by acoustic waves can-
not transport between two separated solids is seemingly correct. However, at
the microscopic level, atoms are bonded by electric forces and are separated by
vacuum, and their vibrations can propagate through vacuum and constitute the
acoustic wave via interatomic interactions. An interesting question thus rises: are
there interactions that can mediate the acoustic wave to travel across vacuum gap
of larger than the atomic scale?

Several potential mechanisms have been suggested in the context of near-
field heat transfer, such as the van der Waals force [Budaev and Bogy, 2011; Ez-
zahri and Joulain, 2014; Sasihithlu et al., 2017; Pendry et al., 2016] and electro-
static force1 bias[Pendry et al., 2016; Volokitin, 2019, 2020]. In the most recent
work, Viloria et al. [2023] have numerically demonstrated using molecular dy-
namic simulations that acoustic vibrational modes can transfer heat between po-
lar crystals. Nevertheless, these mechanisms scale out rapidly with the separa-
tion distance of the solids, and are only non-trivial when the vacuum gap is less
than ∼ 1 nm at room temperature. There is one recent experiment from Fong
et al. [2019] claiming coupling between acoustic phonon modes across hundreds
of nanometers wide vacuum gap with the help of Casimir force, but it has been
pointed out by Biehs et al. [2020] that the transmitted heat flux in that experiment
is 15 orders of magnitude smaller than that of the near-field radiative heat transfer
(NFRHT) at the same conditions. Hence, such mechanism can be omitted in the
scope of this work.

Another possible mechanism is piezoelectricity, which couples the defor-

1 By applying electric potential difference across the vacuum gap, where both surfaces must
be metallic.
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mations of a solid with a macroscopic electric field and vice versa. As a result,
an acoustic wave can extend into the vacuum as a decaying, evanescent electric
field, when it impinges onto a free surface of a piezoelectric solid. It is interesting
that such a field can have a macroscopic length scale, which is determined by the
wavelength of that incoming acoustic wave, and can then be coupled back to the
deformations of a second piezoelectric solid placed within that length scale. As
such, the acoustic wave (acoustic phonon) is coherently transmitted between two
solids across the vacuum.

This chapter is based on the author’s original theoretical work on this topic.
It will start with a review of previous relevant work on this topic, and then the
tunneling problem, i.e. the coupling across vacuum, will be solved with two dif-
ferent approaches for a plane-plane geometry: one directly solves the extended
Stroh formalism with the boundary conditions, and the other uses a multiple
reflection factor[Geng and Maasilta, 2022a]. Then follow a few illustrative exam-
ples: analytical solutions will be derived with both approaches for a hexagonal
wurtzite crystal with a high-symmetry orientation; and the tunneling transmis-
sion coefficients of two different crystallographic cuts of a hexagonal crystal will
be calculated numerically with different orientations[Geng and Maasilta, 2022a].
Furthermore, there is even a possibility for a complete transmission of the acous-
tic wave across the vacuum gap, and a strikingly simple resonance condition for
it will be presented with analytical proof and numerical demonstration[Geng and
Maasilta, 2022b]. Finally, the formalism developed in this work will be applied
to the investigation of the near field heat transfer of the acoustic phonons, and
numerical results and comparison with other heat transfer mechanisms will be
presented[Geng and Maasilta, 2023b].

3.1 A short review of the topic

To the best of the author’s knowledge, the first discussion on the topic of the
acoustic wave tunneling mediated by piezoelectricity was carried out by Kaliski
[1966], who theoretically investigated the tunneling of the horizontally polarized
shear (SH) waves between cubic piezoelectric crystals in the limit of zero vacuum
width.

Later, Balakirev and Gorchakov [1977] presented an important seminal work,
in which the transmission across a vacuum gap with a finite width is calculated
for the SH wave modes. Two crystal symmetries with high-symmetry orienta-
tions were considered in that work: a cubic crystal with the surface aligned with
YZ plane, and a hexagonal crystal with the surface parallel to the Z-axis, with
numerical examples given for Bi12GeO20 and LiIO3 crystals. One of the impor-
tant findings is that the transmission coefficient can be large and even close to
unity for angles close to glancing incidence. Following that study, an experimen-
tal demonstration of an observed transmission coefficient up to 0.5 using LiIO3
crystals with an 15 MHz ultrasound was reported by the same authors [Balakirev
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et al., 1978].
These early works were carried out using the standard elasticity theory of

piezoelectricity that is presented in Section 2.2. The results and expressions pro-
vided from these works are only applicable to the highest symmetry crystal ori-
entations and the simplest wave mode (SH), and thus have no generality.

More recently, Prunnila and Meltaus (2010) presented their study of acous-
tic phonon tunneling in the context of near-field heat transfer. In that work, the
standard elasticity theory is used with a scattering matrix approach to numer-
ically calculate the energy transmission coefficients as a function of the incident
angle and wave vector. However, many simplifications and approximations have
been applied in that study, including isotropic properties of the materials, single
component piezoelectric stress tensor, and the omitted piezoelectric stiffening. In
addition, there was only one crystal symmetry and orientation considered, where
the crystal Z-axis was perpendicular to the surface, in which case only two wave
modes contribute to the tunneling. Furthermore, their results are contradictory
to those obtained in this work, which will also be discussed in a later section of
this chapter.

On the other hand, there are a limited number of studies that have been
performed under the framework of the extended Stroh formalism to investigate
the tunneling of a bulk acoustic wave. To the author’s knowledge, the first sem-
inal work was done by Al’shits et al. [1993], in which a general solution of the
transmission and reflection coefficients of an incident slow quasi-transverse (ST)
bulk wave was formally introduced. In the later works presented by Darinskii,
that framework had been developed further [Darinskii, 1997, 1998], and has later
been applied to study the transmission and reflection mediated by the leaky gap
wave [Darinskii and Weihnacht, 2006]. The results derived in those works were
more general and can be applied to anisotropic piezoelectric solids. However,
only one incident bulk wave mode, the ST mode, was considered, and these re-
sults have not been applied to the scope of heat transfer.

3.2 Theory

A system of two anisotropic, semi-infinite piezoelectric solids separated by a vac-
uum gap of width d is considered in this dissertation, as illustrated in Figure 6.
Both solids can be oriented arbitrarily, and the relation between the crystal intrin-
sic coordinates XYZ and the external laboratory coordinates xyz is described by
a set of Euler angles (ϑ, φ, ψ). The details of the coordinates and angle setups,
as well as the rotation procedures have been presented in section 2.1.5, and the
transformations of the piezoelectric tensors have been explained in section 2.2.3.

The solid-vacuum interfaces are set to be mechanically and electrically free,
and are perpendicular to the xy-plane (the surface unit inward normal nnn is aligned
with z-axis). The surfaces of the solid 1 and solid 2 are at z = 0 and z = −d, re-
spectively. The incoming acoustic bulk wave is assumed to be a harmonic plane
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FIGURE 6 Schematic of two piezoelectric solids separated by a vacuum gap.

wave of the form ∼ exp(iωt − ikkk · rrr), and, without losing generality, is always
considered to propagate inside the xz-plane (sagittal plane) of the solid 1 from
the positive z-axis and negative x-axis directions towards the surface (z = 0),
hence kx > 0 and kz < 0. It should be stressed here that the sagittal plane has
a rotational degree of freedom with respect to nnn measured by an azimuth angle.
This angle is equivalent to the orientation angle φ from the crystal rotation, and,
for the sake of simplicity and to avoid the duplication of the rotations on the
same degree of freedom, only the azimuth angle φ of the crystal orientation will
be unambiguously taken into account in this dissertation.

In addition, the quasistatic approximation, which is discussed in section
2.2.2, is applied in this work, and only low energy acoustic waves are considered
so that a linear dispersion relation is assumed. Moreover, the modeling presented
below is not applicable to solids that are not piezoelectric, or have one or more of
the dimensions much smaller than the acoustic wavelength in question due to the
breakdown of the bulk wave assumption, or are separated by an atomic length
scale gap which would break down continuum elasticity.

3.2.1 Model solutions and Boundary conditions

An acoustic plane wave impinging onto the solid-vacuum interface will be scat-
tered into a linear combination of partial waves, either transmitted or reflected.
This scattering problem will be modeled using the extended Stroh formalism in
this work. For the convenience of the reader, the general model solutions of the
scattered wave solutions are listed again here, same as Eqs.(73):

uuu = ∑
α

bαAAAαe−ikx(x+pαz)+iωt

Φ = ∑
α

bαϕαe−ikx(x+pαz)+iωt

nnn · σσσ = ikx ∑
α

bαLLLαe−ikx(x+pαz)+iωt

nnn · DDD = ikx ∑
α

bαDn
α e−ikx(x+pαz)+iωt ,

(100)
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where p ≡ kz/kx, bα is the dimensionless amplitude of the partial wave mode α,
and AAAα, ϕα, LLLα, Dn

α are the Stroh normalized (see section 2.3.2 for details) constants
describing the displacement, the electric potential, the traction force and the nor-
mal projection of the electric displacement of the α mode, respectively. To avoid
redundant writing in expressions, the common phase factor exp(iωt − ikxx) will
be omitted hereafter.

For a given incident wave, the angular frequency ω and the wave vec-
tor components along the surface kx are known, and are conserved for all the
wave solutions. Hence the unknown solutions are ξξξα = [AAAα, ϕα, LLLn

α, Dn
α ]

T, pα and
the amplitude bα. ξξξα and pα are the eigenvector and eigenvalue of the eight-
dimensional Stroh characteristic equation (82):

NNN(vx)ξξξα = pαξξξα , (101)

and can be readily solved with the knowledge of the material, the crystal ori-
entation, and vx ≡ ω/kx. Whereas bα needs to be solved from the boundary
conditions at the solid-vacuum interfaces.

The continuities of the electric potential and the normal component of the
electric displacement, and the condition of mechanically free surface enforce the
boundary conditions to be:

Φ(i) = ΦV

nnn · DDD(i) = nnn · DDDV

nnn · σσσ(i) = 000

, (102)

where the superscripts (i) = 1, 2 are used to indicate the solid 1 and 2, respec-
tively, and the subscripts V indicate the corresponding fields are inside the vac-
uum.

The electric potential in vacuum needs to satisfy the Laplace equation ∇2ΦV =
0, which leads to k2

x + k2
z = 0 or kz = ±ikx for plane waves. The latter expression

states that there are two partial waves in the vacuum: an exponentially decaying
mode with ∼ exp(kxz) and an exponentially increasing mode with ∼ exp(−kxz),
if looking from the surface of solid 1 (z = 0) towards to the vacuum (z < 0).
Hence, the general model solutions of the waves in vacuum can be written in a
form following Eqs.(100) as:

ΦV = bV+ϕV+ekxz + bV−ϕV−e−kxz, (103)

in which the common phase factor exp(+iωt − ikxx) is omitted. This solution
strongly resembles the form of a wave function of a quantum-mechanical tunnel-
ing problem [Griffiths and Schroeter, 2018].

Using the relation DDDV = −ϵ0∇ · ΦV , the normal component of the vacuum
electric displacement can also be obtained:

nnn · DDDV = −ϵ0kxbV+ϕV+ekxz + ϵ0kxbV−ϕV−e−kxz. (104)

Comparing this to the electric displacement solution in Eqs.(100), one finds that
the Stroh normalized electric displacement constants Dn

V±
can be expressed in
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terms of the normalized potential ϕV± as Dn
V±

= ±iϵ0ϕV± . The normalization
condition Eq.(84), on the other hand, leads to 2ϕV±DV± = 1 since the displace-
ment and traction force are zero in vacuum. Thus, ϕV± = 1/

√
±2iϵ0 and Dn

V±
=√

±2iϵ0/2 can be readily solved, independent to the parameters of the solids or
the wave modes.

With all the relevant model solutions (100), (103) and (104) prepared, the
next task is to insert them into the boundary conditions (102) to find the solu-
tions for the amplitudes. Here, the explicit forms of the boundary conditions are
expressed as:

b(1)in ϕ
(1)
in +

4

∑
α=1

b(1)α ϕ
(1)
α = bV+ϕV+ + bV−ϕV−

b(1)in Dn,(1)
in +

4

∑
α=1

b(1)α Dn,(1)
α = bV+Dn

V+ + bV−Dn
V−

b(1)in LLL(1)
in +

4

∑
α=1

b(1)α LLL(1)
α = ÔOO(3)

4

∑
α=1

b̃(2)α ϕ
(2)
α = bV+ϕV+e−kxd + bV−ϕV−ekxd

4

∑
α=1

b̃(2)α Dn,(2)
α = bV+Dn

V+e−kxd + bV−Dn
V−ekxd

4

∑
α=1

b̃(2)α LLL(2)
α = ÔOO(3),

(105)

where the subscript in and α = 1, ..., 4 designate the incident and the four scat-
tered wave modes; the superscripts (1), (2) indicate the wave modes in the cor-
responding solids 1 and 2; z = 0 and z = −d are substituted for the surfaces
of solid 1 and solid 2, respectively; and the shorthand amplitudes of solid 2
b̃(2)α ≡ b(2)α exp

(
ip(2)α kxd

)
are used.

The above explicit conditions can be written into two compact expressions:

b(1)in UUU(1)
in +

4

∑
α=1

b(1)α UUU(1)
α = bV+UUUV+ + bV−UUUV− ,

4

∑
α=1

b̃(2)α UUU(2)
α = bV+UUUV+e−kxd + bV−UUUV−ekxd ,

(106)

by introducing a set of 5× 1 column vectors UUU(i)
γ = [ϕ

(i)
γ , Dn,(i)

γ , LLL(i)
γ ]T for the wave

modes γ = in, α inside the solid i = 1, 2.
As stated above, the solutions to these boundary conditions Eqs.(106) give

the partial wave amplitudes b(1)α , b̃(2)α , bV± . With a given incident amplitude b(1)in ,
the transmission and reflection amplitude coefficients can then be acquired as:

tα ≡ b̃(2)α /b(1)in , rα ≡ b(1)α /b(1)in . (107)
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It is also useful to note here that these coefficients represents the amplitude
ratio of the power flow in the direction normal to the interface, as has been dis-
cussed in section 2.3.3. For a transmitted bulk partial wave mode α, its power flow
in the normal direction can be written as:

nnn · PPP(2)
AV,α = |tα|2

[
nnn · PPP(1)

AV,in
]
. (108)

The above equation is obtained from Eq.(96) and using the facts that ξξξT
inT̂TTξξξ∗in =

ξξξT
α T̂TTξξξ∗α = −1(see Eq.(97)), for a bulk incident wave and a bulk transmitted partial

wave mode α.
In the next two sections, two approaches will be presented to solve the

boundary conditions: the first one is to build and solve a matrix that combines the
boundary conditions of both interfaces as a function of the incident wave using
matrix algebra, and the second is to introduce a gap distance dependent multi-
ple reflection factor, to connect the individual solutions of each interface together.
Both approaches lead to identical results, the choice of the method should be
based on the practicality and the computational efficiency, depending on which
parameters, either the incident wave or the distance between the solids, is to be
varied.

3.2.2 Combined boundary conditions approach

The goal of the first approach is to use simple matrix algebra to rearrange the
boundary conditions into a simple linear matrix equation:

ŷ = MMMx̂,

where ŷ is a 8× 1 column vector that contains the properties of the incident wave,
MMM is a 8 × 8 matrix derived from the information of the system, i.e. the material
properties and vacuum gap distance, and x̂ is a 8 × 1 column vector which con-
tains the wave amplitudes of all scattered waves, reading as:

x̂ = [b(1)1 , ...b(1)4 , b̃(2)1 , ..., b̃(2)4 ]T.

The derivations of this approach will be elaborated below.
Starting from the explicit boundary condition (105), the number of linear

equations can be reduced from ten to eight by eliminating bV± :

VVV−1
1

([
ϕ
(1)
in

Dn,(1)
in

]
b(1)in +

4

∑
α=1

[
ϕ
(1)
α

Dn,(1)
α

]
b(1)α

)
= VVV−1

2

( 4

∑
α=1

[
ϕ
(2)
α

Dn,(2)
α

]
b̃(2)α

)

b(1)in LLL(1)
in +

4

∑
α=1

b(1)α LLL(1)
α = ÔOO(3)

4

∑
α=1

b̃(2)α LLL(2)
α = ÔOO(3) ,

(109)

where

VVV1 =

[
ϕV+ ϕV−
Dn

V+ Dn
V−

]
,VVV2 =

[
ϕV+e−kxd ϕV−ekxd

Dn
V+e−kxd Dn

V−ekxd

]
.
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Recalling that ϕV± = 1/
√
±2iϵ0 and Dn

V±
=

√
±2iϵ0/2, we point out that the

matrices VVV1 and VVV2 only depend on the dimensionless factor kxd.
In the next step, all the terms having b(1)in will be moved to the LHS while

other terms are moved to the RHS. In addition, the 5 × 1 column vector UUU(i)
γ =

[ϕ
(i)
γ , D(i)

γ , LLL(i)
γ ]T, which was introduced in the previous section, is used to substi-

tute the Stroh eigenvectors of the incident wave (UUU(1)
in ), the reflected waves (UUU(1)

α )

and the transmitted waves (UUU(2)
α ). The new expressions read as:

−
[
VVV−1

1 ÔOO(2×3)

]
UUU(1)

in b(1)in =
4

∑
α=1

( [
VVV−1

1 ÔOO(2×3)

]
UUU(1)

α b(1)α −
[
VVV−1

2 ÔOO(2×3)

]
UUU(1)

α b̃(2)α

)

−
[
ÔOO3×2 ÎII(3)

]
UUU(1)

in b(1)in =
4

∑
α=1

( [
ÔOO3×2 ÎII(3)

]
UUU(1)

α b(1)α −
[
ÔOO3×2 ÔOO(3×3)

]
UUU(2)

α b̃(2)α

)

−
[
ÔOO3×2 ÔOO(3×3)

]
UUU(1)

in b(1)in =
4

∑
α=1

( [
ÔOO3×2 ÔOO(3×3)

]
UUU(1)

α b(1)α −
[
ÔOO3×2 ÎII(3)

]
UUU(2)

α b̃(2)α

)
,

(110)

where ÔOOn×m is a zero matrix of dimensions n×m, and ÎII(3) is the 3× 3 unit matrix.
The above equations can be written into a matrix equation form:

−MMM1UUU(1)
in b(1)in =

4

∑
α=1

(
MMM1UUU(1)

α b(1)α − MMM2UUU(2)
α b̃(2)α

)
, (111)

where MMM1 and MMM2 are 8 × 5 matrices defined as:

MMM1 =

 VVV−1
1 ÔOO(2×3)

ÔOO(3×2) ÎII(3)
ÔOO(3×2) ÔOO(3×3)

 , MMM2 =

 VVV−1
2 ÔOO(2×3)

ÔOO(3×2) ÔOO(3×3)
ÔOO(3×2) ÎII(3)

 . (112)

Comparing the above expression with the targeted matrix equation ŷ = MMMx̂
and recalling that x̂ = [b(1)1 , ...b(1)4 , b̃(2)1 , ..., b̃(2)4 ]T, one finds that ŷ = −MMM1UUUinbin,
and MMM is a 8 × 8 matrix constructed by joining eight 8 × 1 column matrices to-
gether as:

MMM =
[
MMM1UUU(1)

1 , MMM1UUU(1)
2 , MMM1UUU(1)

3 , MMM1UUU(1)
4 ,

− MMM2UUU(2)
1 ,−MMM2UUU(2)

2 ,−MMM2UUU(2)
3 ,−MMM2UUU(2)

4

]
,

As a result of the above derivations, the scattering coefficients of the partial
wave amplitudes x̂/b(1)in , including all the reflection coefficients rα ≡ b(1)α /b(1)in in

the solid 1 and all the transmission coefficients tα ≡ b̃(2)α /b(1)in in the solid 2, can
therefore be solved simultaneously by the inversion of the matrix MMM as:[

r1, ...r4, t1, ..., t4
]T

= −MMM−1MMM1UUU(1)
in . (113)

It is important to remark here that, for given materials, crystal orientations,
vacuum gap size and the frequency, the matrices MMM and MMM1 in Eq.(113) depend
only on kx, which is a conserved quantity at the scattering interface for all partial
wave modes due to the continuity conditions. On the other hand, the detailed
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information of the incident wave, i.e. the normal component of the wave vec-
tor kz and the displacement vector AAAin, are contained only in the column vector
UUU(1)

in . Therefore, in the case of a varying incident wave with a given kx, the ma-
trices MMM and MMM1 can be computed only once, and the results of the reflection and
transmission coefficients can be acquired simply by changing UUU(1)

in .
In contrast, the method suggested by Al’shits et al. [1993] uses Cramer’s

rule. This means that each time a new incident wave mode is given, the matrices
in the formulations have to be re-constructed and re-calculated. As demonstrated
in Eqs.(38) and (40) of Ref.[Al’shits et al., 1993], common columns of the matri-
ces collect all the eigenvector solutions of the transmitted wave modes except the
incident mode. This is to ensure the fully constructed matrices are linearly inde-
pendent in their columns. In addition, the Cramer’s rule requires computation
of n + 1 determinants to solve n linear equations, and is thus considered com-
putationally inefficient compared to the single inversion operation of MMM in the
approach presented above.

3.2.3 Multiple reflection approach

Alternatively, the reflections and transmissions from an incident acoustic wave
can be considered as coupled results of a superposition of multiple reflected
evanescent electric potential waves inside the vacuum gap between the two in-
terfaces. Such multiple reflection picture has been adopted before to describe the
"photon tunneling" of the frustrated total internal reflection of the electromag-
netic waves in optics [Court and von Willisen, 1964; Born et al., 1999].

FIGURE 7 Illustration of the scattering matrix S(i) and the single surface scattering co-
efficients b(i)α at a solid-vacuum interface.

To construct the coupled transmission and reflection coefficients using the
multiple reflection picture, the definition of the scattering matrix should be ex-
plained and derived first. The scattering matrix contains a set of "uncoupled" re-
flection and transmission coefficients, which describe the scattering of the waves
at the solid-vacuum interface as if there is no adjacent second solid. Conse-
quently, these uncoupled coefficients will be referred to as single surface coefficients
in this dissertation.

Consider an input wave scattering at an interface i between a piezoelectric
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solid and the vacuum. All the output waves can be related to the input one using
a scattering matrix S(i), as illustrated in Figure 7. S(i) is defined as:

b(i)1

b(i)2

b(i)3

b(i)4

b(V)
t

 = S(i)

[
b(i)in
b(V)

in

]
=

[
r̄rr(i) t̄tt(i)

t̄(i)in→V r̄(i)V

] [
b(i)in
b(V)

in

]
, (114)

where the superscript (i) = 1, 2 signifies either the solid 1 or 2, the superscript
(V) denotes the evanescent wave in the vacuum gap, r̄rr(i) = [r̄(i)in→1...r̄(i)in→4]

T are
the single surface coefficients of an incoming wave reflected into a partial wave
mode α = 1, ..., 4, t̄tt(i) = [t̄(i)V→1...t̄(i)V→4]

T are the single surface coefficients of a

vacuum wave transmitted into a partial wave mode α = 1, ..., 4, r̄(i)V is the coeffi-
cient of a potential wave in vacuum reflected on the vacuum side of the interface
i = 1, 2, and t̄(i)in→V is the coefficient of an incoming wave transmitted as a po-
tential wave into vacuum. To avoid confusion with those coefficients that denote
the reflection and transmission across the vacuum gap, i.e. obtained in Eq.(113),
overhead bars are used for the symbols here. It should stressed again that these
"bare" coefficients are the single surface coefficients, describing the scattering of the
waves as if there is no adjacent second solid.

The first boundary condition in Eqs.(106) can be rearranged by moving all
the inputs to RHS and outputs to LHS, giving:

[
UUU(1)

1 ,UUU(1)
2 ,UUU(1)

3 ,UUU(1)
4 ,−UUUV+

]


b(1)1

b(1)2

b(1)3

b(1)4
bV+

 =

[
−UUU(1)

in ,UUUV−

] [
b(1)in
bV−

]
. (115)

If we consider a similar scattering at the interface of the solid 2, the bound-
ary condition follows the above equation, but the medium index is changed to
(2), and the amplitudes of the incoming (bV−) and outgoing (bV+) vacuum waves
are interchanged, giving:

[
UUU(2)

1 ,UUU(2)
2 ,UUU(2)

3 ,UUU(2)
4 ,−UUUV−

]


b(2)1

b(2)2

b(2)3

b(2)4
bV−

 =

[
−UUU(2)

in ,UUUV+

] [
b(2)in
bV+

]
. (116)

By comparing the above two single surface boundary conditions with the
scattering matrix definition in Eq.(114), one finds the expressions of the scattering
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matrices S(1) and S(2):

S(1) =
[
UUU(1)

1 , ...,UUU(1)
4 ,−UUUV+

]−1[−UUU(1)
in ,UUUV−

]
,

S(2) =
[
UUU(2)

1 , ...,UUU(2)
4 ,−UUUV−

]−1[−UUU(2)
in ,UUUV+

]
.

(117)

It is worth mentioning that UUU(2)
in is formally written in the definition of S(2)

for completeness. However, it will not affect the transmission or reflection of
an incident wave in solid 1 due to the linearity in the equations. In practice,
i.e. computing S(2) for the case of incoming wave from solid 1, UUU(2)

in can be set
arbitrarily, for example, to zero.

With the knowledge of the single surface coefficients, the transmission of
an incident acoustic wave across the vacuum gap can be pictured in the follow-
ing way: the incoming wave transmits first through the interface between solid 1
and vacuum (t̄(1)in→V) and becomes an evanescent wave; it traverses the gap once

[exp(−kxd)], partly transmitted into a partial mode α in the solid 2 (t̄(2)V→α), and

partly reflected by the second interface (r̄(2)V ) and then the first one (r̄(1)V ); it tra-
verses the third time across the vacuum [exp(−3kxd)] and arrives the second in-
terface again; it will be reflected and so forth. As a result, a geometric series can be
applied to the coupled transmission coefficient tα for the partial mode α, giving:

tα =t̄(1)in→Ve−kxd t̄(2)V→α + t̄(1)in→V r̄(1)V r̄(2)V e−3kxd t̄(2)V→α

+ t̄(1)in→V(r̄
(1)
V )2(r̄(2)V )2e−5kxd t̄(2)V→α + . . .

=
t̄(1)in→V t̄(2)V→αe−kxd

1 − r̄(1)V r̄(2)V e−2kxd
,

in which an attenuation factor exp(−kxd) is applied each time the wave traverses
the gap. The coupled reflection coefficient r(1)α can also be derived using the same
approach, and the common multiple reflection factor of both coefficients reads as:

fm(d) =
e−kxd

1 − r̄(1)V r̄(2)V e−2kxd
. (118)

Consequently, the expressions of the coupled transmission and reflection
coefficients tα and rα from an incident wave into partial mode α across the vac-
uum can be written as:

tα = t̄(2)V→α t̄(1)in→V fm(d) (119)

rα = r̄(1)α + r̄(2)V t̄(1)V→α t̄(1)in→V fm(d)e−kxd. (120)

These coupled coefficients are equivalent to those obtained from Eq.(113)
of the combined boundary conditions approach. The results of both methods
were numerically checked and found to be identical. The key difference of the
multiple reflection approach is that only the multiple reflection factor fm(d) is a
function of the gap width d. Therefore, the scattering matrices S(1) and S(2) can
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be calculated for given materials, crystal orientations and the incident wave, and
the variation of the vacuum gap width can be considered via the explicit factor
fm(d) only. Such an approach benefits the case where a computation of a function
of the gap width is of the interest, since the scattering matrices are computed
only once. Furthermore, the multiple reflection picture provides an alternative
physical interpretation of the phenomenon of the acoustic waves tunneling across
the vacuum gap, analogous to the near-field electromagnetic wave "tunneling"
[Court and von Willisen, 1964; Born et al., 1999]. Until now, such an interpretation
has not been described in previous literature of bulk acoustic wave tunneling.

3.3 Illustrative examples

In this section, two example calculations will be presented to demonstrate how
the framework developed in this dissertation can be used to solve the acoustic
wave tunneling problem. In the first example, an analytical solution will be de-
rived for a special crystal orientation using both presented approaches. In the sec-
ond example, numerical results are presented for a hexagonal ZnO crystal with
different orientations.

3.3.1 Analytical example

FIGURE 8 Schematic of the phonon tunneling in a wurtzite hexagonal crystal with a
vacuum gap cut through a-plane [112̄0] and with an azimuth angle φ = 0,
[Geng and Maasilta, 2022a], reproduced under the license CC BY 4.0.

The tunneling problem involving piezoelectricity, an anisotropic medium,
and an arbitrary crystal orientation can be extremely complicated, and is usually
not possible to acquire an analytical solution to the transmission and reflection
coefficients. However, there exists a special case in which a relatively simple
analytical solution can be derived for a particular incident mode with a high-
symmetry crystal configuration. Such a case is that of a fast transverse (FT) bulk
wave tunneling across two identical 6mm symmetry crystals2 oriented and cut 3

2 Taking ZnO, AlN as real world examples.
3 Considering the vacuum gap is created in such a way that the solid is cut into two pieces
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as illustrated in Figure 8. The crystallographic c-axes (Z-axes) of the solids are
perpendicular to the sagittal plane, and thus parallel to the solid-vacuum inter-
face.

Such a crystal orientation can be achieved by a single rotation, specifically,
rotating the crystal about the x-axis by 90◦ following the right-hand rule (see
section 2.1.5 for details about the crystal rotation). As a result, the material tensors
are transformed to (see section 2.2.3 for details about the tensor transformation):

eee =

 0 0 0 0 0 −e15
−e31 −e33 −e31 0 0 0

0 0 0 −e15 0 0

 (121)

ϵϵϵS =

ϵ11 0 0
0 ϵ33 0
0 0 ϵ11

 (122)

cccE =



c11 c13 c12 0 0 0
c13 c33 c13 0 0 0
c12 c13 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c66 0
0 0 0 0 0 c44

 . (123)

The incident FT bulk wave under the stated crystal configuration has its
displacement only in the y-axis direction and is completely perpendicular to the
sagittal (xz-) plane which contains the k-vector of the wave, and is thus referred
to as a horizontally polarized shear wave (SH). Upon scattering at the surface, it can
only excite waves with the same y-axis displacement in this case, and there is
thus no mode conversion into other bulk modes, i.e. no plane waves are excited
with a displacement in the xz-plane. Consequently, only the y-axis components,
uy, from the displacement and σyz from the stress enter the boundary conditions
Eqs.(102), leading to a reduced dimensionality 4 × 4 Stroh matrix NNN reading as:

NNN(vx) =


0 0 − ϵ11

ϵ11c44+e2
15

e15
ϵ11c44+e2

15

0 0 e15
ϵxc44+e2

15

c44
ϵ11c44+e2

15

c44 − ρv2
x −e15 0 0

−e15 −ϵ0 0 0

 . (124)

For a given incident angle θi defined between the direction of the incident k-
vector and the normal of the surface, the phase velocity component vx = v/ sin θi
can easily be derived from the dispersion relation (c44 + e2

15/ϵ11)k2 = ρω2 as:

v2
x =

ϵ11c44 + e2
15

ϵ11ρ sin2 θi
.

With the 4 × 4 Stroh matrix NNN, the solutions to the characteristic equation
(82) consequently reduce to four eigenvalues and the associated four sets of 4× 1

and separated by some distance.
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eigenvectors ξξξ = [uy, ϕ, Lyz, Dn]T. These solutions correspond to a reflected E
mode, a transmitted E mode, a reflected SH mode, and a transmitted SH mode,
and their explicit expressions are:

p1 = −i, ξξξ1 =

[
0,

√
i

2ϵ11
,

e15
√
−i√

2ϵ11
,
√
−iϵ11√

2

]T

p2 = i, ξξξ2 =

[
0,

√
−i√

2ϵ11
,

e15
√

i√
2ϵ11

,
√

iϵ11√
2

]T

p3 = cot θi, ξξξ3 =

√2
2

√
−k2 tan θi

ρω2 ,−
√

2e15

2ϵ11

√
−k2 tan θi

ρω2 ,

√
2

2

√
−ρω2

k2 tan θi
, 0

T

p4 = − cot θi, ξξξ4 =

√2
2

√
k2 tan θi

ρω2 ,−
√

2e15

2ϵ11

√
k2 tan θi

ρω2 ,

√
2

2

√
ρω2

k2 tan θi
, 0

T

,

which are normalized using 2(uyLyz + ϕD) = 1 based on the orthonormalization
condition Eq.(84).

Following the first approach described in section 3.2.2, the matrix MMM can be
constructed from the above solutions straightforwardly as:

MMM =
1
2


−U i(ϵ0 − ϵ11)V −iUekxd −(ϵ0 + ϵ11)Vekxd

iU (ϵ0 + ϵ11)V −Ue−kxd i(ϵ0 − ϵ11)Ve−kxd

−i
√

2ϵ11B −i
√

2iϵ11A 0 0
0 0 −

√
2ϵ11B −

√
2iϵ11A

 ,

where A = e15/ϵ11, B2 = (A2 + c44/ϵ11) cot θi, {B ∈ Re |B ≥ 0}, U = i
√

iϵ0A/
√

ϵ11B
and V = 1/

√
ϵ0ϵ11.

As a result, the reflection and transmission coefficients of the FT partial
wave mode can thus be solved from Eq.(113), and the exact expressions are:

rFT = 2iA2ϵ0
Q+e2kxd − Q−
Q2

+e2kxd − Q2
−
− i (125)

tFT = −4iA2B2ϵ0ϵ11ekxd

Q2
+e2kxd − Q2

−
, (126)

where

Q± = A2ϵ0 − iB2(ϵ0 ± ϵ11).

Identical results can be obtained by using the multiple reflection method
that was described in section 3.2.3. The single surface scattering coefficients that
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are used to construct the results read as:

r̄(1)FT =
iA2ϵ0 − B2(ϵ0 + ϵ11)

Q+
,

r̄(1)V =
iQ−
Q+

, r̄(2)V =
−iQ−

Q+
,

t̄(1)V = t̄(1)FT = t̄(2)FT =
2iAB

√
iϵ0ϵ11

Q+
,

and the multiple reflection factor is

fm(d) =
Q2

+ekxd

Q2
+e2kxd − Q2

−
. (127)

FIGURE 9 Tunneling of an incident FT wave between two ZnO solids. (a) Dependence
of |tFT| as a function of the incident angle θi. (b) Dependence of the peak
transmission angle θ0 (left axis) on the scaled gap width kd, with the right
axis showing the corresponding |tFT|. (c) Colored contour plot of the |tFT| in
a logarithmic scale versus incident angle θi and kd. From [Geng and Maasilta,
2022a], reproduced under the license CC BY 4.0.

With the above analytical expressions, it is easy to obtain the transmission
coefficients tFT with given material parameters. In Figure 9(a), |tFT| is calculated
as a function of the incident angle θi for two closely spaced identical ZnO crystals,
with three different scaled vacuum gap widths kd. The ZnO material constants
are taken from Auld [1990], and are ρ = 5680 kgm−3, c44 = 4.247 × 1010 Nm−2,
e15 = −0.48 Cm−2, and ϵ11 = 8.55ϵ0.

The plotted |tFT| shows a modest transmission until it reaches glancing an-
gles near θi = 90◦. For small enough gaps, i.e. kd < 1, the maximum transmission
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is seen to be very close to unity. The peak can be found at θ0, which is given by
setting the real part of the denominator in Eq.(126) to zero, giving the condition:

B4 ≡ (A2 + c44/ϵ11)
2

tan2 θ0
=

A4ϵ2
0(e

2kxd − 1)
(ϵ0 + ϵ11)2e2kxd − (ϵ0 − ϵ11)2 . (128)

Furthermore, at the zero gap width limit, the expression of the transmis-
sion coefficient, Eq.(126), simplifies to tFT = A2/(A2 − iB2), which approaches
unity when θ → 90◦. Conversely, this limiting case also shows that exact unity
transmission can never be achieved for a finite gap size with the stated wave and
crystal configuration.

In Figure.9(b), the angle θ0 of the peak and its corresponding transmission
is plotted as a function of the scaled gap width kd. The peak angle θ0 can only
be found in a narrow range of 0.4 degrees, and if the gap width increases over
kd ∼ 1, the transmission drops quickly to zero. The full dependency of the trans-
mission coefficient on the gap width and incident angle is demonstrated in Figure
9(c). A switch-off of the acoustic wave tunneling can be found at about kd ≥ 1,
where the gap width is beyond the characteristic wave length of the incident
wave. On the other hand, saturation of the transmission can be observed when
the gap width is much smaller than the wave length, i.e. kd ≤ 10−2.

3.3.2 Numerical example

In the second example, the transmission coefficients will be computed numer-
ically for arbitrarily oriented crystals. One of the goals of this example is to
demonstrate the workflow how the theoretical framework developed in this work
can be implemented numerically. Two identically oriented and closely separated
hexagonal 6mm ZnO crystals are chosen in this example.

FIGURE 10 Schematics of the phonon tunneling in Wurtzite hexagonal crystals with a
vacuum gap cut at (a) a-plane [112̄0] or, (b) n-plane [112̄3], and with the
azimuthal angle rotated between 0◦ and 360◦,[Geng and Maasilta, 2022a],
reproduced under the license CC BY 4.0.

The orientations of the ZnO crystals can be described by two angles, a crys-
tal zenith angle ϑ and a crystal azimuth angle φ, in a cylindrical coordinate sys-
tem because of the uniaxial symmetry. The definitions of the orientation angles
and the procedures of the rotation have been described in detail in section 2.1.5.
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The configuration of the two ZnO crystals is considered having been created by
a planar cut through a bulk solid with a width of d. Therefore, the orientation
of both crystals are identical and the zenith angle ϑ, which is the angle between
the crystal c-axis and the normal of the cut surface (z-axis), is fully determined as
illustrated in Figure.10 for two different crystallographic cuts. The other degree
of freedom of the orientation configuration is described by the rotation around
the z-axis after the cut, from which the azimuth angle φ, the angle between the
y-axis and the projection of the crystal c-axis on the xy-plane, is defined. Such a
rotation can be achieved by two equivalent ways: one is to consider rotating both
cut crystals around the z-axis, another is to consider rotating the sagittal plane,
which contains the incident wave, around the same axis. To avoid duplication,
φ is implemented in the computation only as a crystal rotation. Therefore, the
sagittal plane is fixed and there is only one degree of freedom considered for the
incident wave, the incident angle θi.

In summary, the orientation angle ϑ is determined by crystallographic cut
(see section 2.2.3 for common cuts and corresponding ϑ angles for ZnO). The
orientation angle φ describes the crystal rotation around z-axis, varying from 0◦

to 360◦. The incident angle θi resides inside the sagittal plane, varying from 0◦ to
90◦4.

Anaconda Python distribution has been exclusively used in this work to
implement the numerical algorithms. The workflow of the computation will be
described in the following paragraphs, which implements the combined bound-
ary condition approach (section 3.2.2) as an example.

The input parameters required for the computations are: the material con-
stants including the non-rotated tensors ϵϵϵS

0 , eee0, cccE
0 , and the scalar ρ; the crystal

rotation parameters including ϑ and φ; the gap distance d; the information of the
incident bulk wave including the mode and the incident angle θi.

The material tensors are first transformed based on the given crystal orien-
tation according to Eq.(72). The parallel component of the phase velocity vx of
the incident wave is then calculated based on the given incident angle and the
solution of the secular equation of piezoelectrically stiffened Christoffel Eq.(62).
The 8× 8 Stroh matrix NNN(vx) can now be constructed using the definition Eq.(83),
and then its eigenvalues pα and eigenvectors ξξξα can be solved from Eq.(82). The
obtained eigenvectors need to be normalized using the Stroh-normalization con-
dition from Eq.(84).

At this stage, one of the two approaches developed in sections 3.2.2 and
3.2.3 can be chosen to solve the boundary conditions for the scattering ampli-
tudes. In this example, the combined boundary condition approach will be used

4 For this illustrative example, it is easier to present the k-vector of the incident wave residing
inside the half-plane of the crystal (kz > 0). However, strictly speaking, from the perspec-
tive of power flow, the direction of the incidence should be determined by the Poynting
vector, as described in section 2.3.4. In some cases, the power flow direction along the z-
axis is opposite to the direction of kz, hence θi should be considered from −90◦ to 90◦, and
a step function is needed to "filter out" the directions where the power flows into the depth
of the solid. This topic will be discussed in a later section regarding the heat transfer, and,
for the sake of simplicity, will be dismissed in this example.
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for a demonstration. Two 8 × 5 vacuum matrices MMM1 and MMM2 are first built from
Eqs.(112). Then the 8 × 8 matrix MMM are constructed by combining the vacuum
matrices and the 5 × 1 column vectors UUUα which are obtained from the eigenvec-
tor solutions ξξξα. The incident column vector UUU(1)

in can also be built with the given

incident wave mode. Lastly, the matrix product of −MMM−1MMM1UUU(1)
in [Eq.(113)] leads

to the transmission and reflection coefficients of the given incident bulk wave.
Each process stated above costs less than 1 ms of computational time, and

the overall time is within 5 ms using a standard modern laptop. In Figure 11
and 12, two sets of calculated transmission coefficients with a varying incident
angle θi and rotation angle φ are presented, where each plot cost 6 minutes of
computational time.

FIGURE 11 The transmission coefficients |tα| (color scale) as function of the incident
angle θi and the rotation angle φ for an a-plane cut ZnO crystal [1120]. From
[Geng and Maasilta, 2022a], reproduced under the license CC BY 4.0.

These two sets of results are meant for demonstrating the capabilities of the
formalism developed in this work, and thus only the most interesting cases have
been chosen. An incident acoustic wave, either a fast transverse (FT) mode or
slow transverse (ST) mode, impinges onto the surface of the a-plane cut (Figure
11) or n-plane cut (Figure 12) crystals, and then tunnels across a gap of width kd =
10−2 into the adjacent identical crystal. The transmission coefficients of the FT
and ST partial wave modes are plotted as functions of both incident angle θi and
azimuth rotation angle φ. In these plots, mode conversions are also presented, i.e.
FT→ FT, FT→ ST, ST→ ST, ST→ FT. In addition, critical incident angles, beyond
which a faster partial wave mode will be reflected as an evanescent wave, are also
plotted.

A mirrored twofold symmetry can be seen along the φ rotation in the plots
with the a-plane cut, Figure 11. Such symmetry is expected, as the rotation axis
of the φ angle is perpendicular to the uniaxial c-axis. Comparing the incident
FT [panels (a) and (b)] and ST [panels (c) and (d)] modes, several interesting fea-
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tures can be observed. The high transmission areas with incident FT modes are
isolated, mainly populated at the extreme glancing angles. In particular, the line
segment of φ = 0◦ with incident angles varying from 0◦ to 90◦ is the same result
that was demonstrated using the analytical example in section 3.3.1. There is one
exception: for the FT→FT case with orientations around φ = 90◦ and 270◦, high-
est transmission is located at the incident angles just beyond the critical angle θLc

(dashed line).
In contrast, the high transmission areas with an incident ST mode are tightly

located in a narrow band of incident angles that lies just beyond the critical an-
gle θFTc of the FT partial mode. In addition, the transmission is significantly en-
hanced when rotated to φ = nπ/3 , n = 1, 2, .... This can be interpreted as a
resonant transmission induced by the excitation of leaky surface wave modes
coupling across the gap [Darinskii and Weihnacht, 2006].

Furthermore, significant enhancement of the transmission can be observed
when the incident angle is beyond the critical angle θLc of the L partial mode in
all plots. This can be interpreted to happen because part of the incident energy is
more concentrated near the surface due to the reflected L partial wave becoming
evanescent, enhancing the coupling across the gap. It is good to stress here that
the electric power flow is always orthogonal to the propagation direction of the
wave, as has been shown in section 2.2.2, and, in this case, is perpendicular to the
surface towards the adjacent solid as L mode become evanescent.

FIGURE 12 The transmission coefficients |tα| (color scale) as function of the incident
angle θi and the rotation angle φ for an n-plane cut ZnO crystal [1123]. From
[Geng and Maasilta, 2022a], reproduced under the license CC BY 4.0.

Similar mirrored twofold symmetry is not observed with the crystallographic
n-plane cut example, as shown in Figure 12. Significant differences in the trans-
mission are seen by comparing the two cuts. The transmission is generally atten-
uated for the n-plane crystal cut with an incident FT mode. To understand this,
let’s look for example at the rotation φ = 0. With the n-plane crystal cut, the
incident FT mode is a quasi-transverse mode which couples to all other acoustic
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modes at the interface, whereas with the a-plane crystal cut, it is a pure horizon-
tal shear wave (SH), as demonstrated in the analytical example. As a result, it is
intuitive to expect a stronger FT→FT transmission with the a-plane cut case.

It is also very interesting to note here that significant transmission reso-
nances can also be observed just beyond the critical angle θFTc with the n-plane
crystal cut. This is a robust feature in both cases, and, in particular, there exists
exact unity transmission in the case of ST→ST transmission in Figure 12 (c). Such
complete transmission will be analytically studied and discussed in the next sec-
tion.

3.4 Complete tunneling of acoustic waves

One interesting observation in the previous numerical example is that there ex-
ists specific crystal orientations and incident angles where the peak transmission
coefficient approaches unity, which means that the incident power flow is com-
pletely tunneled to the adjacent solid across the vacuum gap. Similar claims have
been suggested by Prunnila and Meltaus [2010]; Balakirev and Gorchakov [1977];
Darinskii and Weihnacht [2006], however those results are limited either by the
simplified models or concern only the highest symmetry crystal orientations. To
the best of the author’s knowledge, up until now, no generally valid condition
has been given for complete acoustic wave tunneling.

In this section, the existence of the complete tunneling of an acoustic wave
will be analytically proved using the formalism developed in this work. Further-
more, a strikingly simple resonance tunneling condition will be presented with a
few numerical examples with ZnO crystals. This part of work has been described
in Geng and Maasilta [2022b].

3.4.1 Resonant tunneling

As this section only focuses on the power flows in the direction perpendicular to
the solid-vacuum interface, the time-averaged normal component Poynting vector in
solid will be designated as:

P(i)
α ≡ nnn · PPP(i)

AV,α (129)

to avoid redundant notation. Thus, the normal Poynting vector of a transmitted
bulk partial wave mode α in the second solid, following Eq.(108), reads as:

P(2)
α = |tα|2P(1)

in , (130)

in which tα is given in Eq.(119) as the transmission coefficient of an tunneled
partial wave mode α, and P(1)

in is the normal direction power flow of the incident

wave with amplitude b(1)in and reads as:

P(1)
in = −1

4
ωkx|b(1)in |2. (131)
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It is worth mentioning that the reflected and transmitted evanescent partial waves
have no power flow in the normal direction into the depth of the solid (Pα = 0 if
α is evanescent mode), since these waves are bound onto the surface of the solid.

The total power transmitted into solid 2 in the normal direction, denoted
by P(2)

Σ , is obviously the sum of P(2)
α over all the bulk wave modes, and it can be

expressed as:

P(2)
Σ = ∑

α

|tα|2P(1)
in = ∑

α

|t̄(1)in→V t̄(2)V→α fm(d)|2P(1)
in , (132)

where t̄(1)in→V is the single surface coefficient of an incident mode transmitted into

a vacuum from solid 1, t̄(2)V→α is the single surface coefficient of a vacuum wave
transmitted into solid 2 as a partial wave mode α, and fm(d) is the multiple reflec-
tion factor defined in Eq.(118), and α runs only over all the possible transmitted
bulk modes, the number of which can be from zero to up to four [Every and
Neiman, 1992]. If there is no available bulk mode, then there is no power that
flows into the depth of solid 2.

When there is power transmitted into the second solid, there must exist en-
ergy flow inside the vacuum. The normal direction time-averaged electrostatic
power flow in vacuum, denoted by PV , can be expressed using the complex
Poynting vector derived in section 2.2.2 as:

PV = −1
2

Re
[
iωΦV(nnn · DDDV)

∗] , (133)

in which the vacuum electric potential ΦV and the normal direction of the electric
displacement nnn · DDDV are given in Eqs.(103) and (104).

Using the single surface scattering coefficients that were defined and dis-
cussed in section 3.2.3, the two dimensionless amplitudes bV± in the expressions
in ΦV and nnn ·DDDV , representing the decaying and increasing partial waves in vac-
uum, can be expressed as:

bV+ = t̄(1)in→Vb(1)in + r̄(1)V bV−

bV− = r̄(2)V bV+e−2kxd ,
(134)

in which r̄(1)V and r̄(2)V are the single surface reflection coefficients of the vacuum
wave at the surface of the solid 1 and 2, respectively.

By inserting the expressions of ΦV and nnn · DDDV with Eqs.(134) into the vac-
uum power flow Equation (133), one obtains:

PV = 2|t̄(1)in→V fm(d)|2Re
[
r̄(2)V
]
P(1)

in , (135)

in which the expression of fm(d) from Eq.(118) and P(1)
in from Eq.(131) are applied.

The system studied in this work has no dissipation inside the vacuum gap,
consequently, the normal direction power flow in the vacuum PV is equal to the
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total transmitted power P(2)
Σ in solid 2. Comparing their expressions in Eqs.(132)

and (135), a simple yet important relation can be found:

2Re
[
r̄(2)V
]
= ∑

α=bulk
|t̄(2)V→α|

2 , (136)

from which the total transmitted power can be calculated using a single surface
reflection coefficient r̄(2)V , without the need to sum over all the transmitted bulk
modes.

For a system of two identical crystals with the same orientations, additional
relations between the single surface coefficients of the two solids can be found by
exploiting the completeness condition of the extended Stroh formalism [Eq.(91)].
However, the derivations of these relations are not straightforward, hence they
will be presented with details in the following sub-section between the horizontal
lines, which can then be skipped if those details are of no interest to the reader.

By explicitly writing down the completeness condition ξξξα ⊗ T̂TTξξξα = ÎII(8),
where α = 1, ..., 8 corresponds to the eight wave mode solutions, one finds ∑α ϕαDn

α =
1 and that ∑α ϕαϕα, ∑α Dn

α Dn
α , ∑α LLLT

α LLLα, ∑α ϕαLLLα, ∑α Dn
αLLLα are all zero or zero ma-

trices. For two identical crystals, the eight solutions can be sorted into two groups
such that: the first four solutions α = 1, ..., 4 are the reflected wave modes in solid
1, and are denoted by mode indices i = 1, ..., 4; the last four solutions α = 5, ..., 8
are the transmitted wave modes in solid 2, and are also denoted using mode in-
dices i = 1, ..., 4 but with superscript (2) to avoid ambiguities.

Recalling the definition of the column vector UUUi = [ϕi, Dn
i , LLLi], one can con-

struct the dyadic multiplication of UUUi as:

4

∑
i

UUU(1)
i ⊗UUU(1)

i +
4

∑
i

UUU(2)
i ⊗UUU(2)

i =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (137)

Using the normalization conditions of the vacuum wave ϕV+DV+ +ϕV−DV− =
1, and the relations ϕV+ϕV+ + ϕV−ϕV− = DV+DV+ + DV−DV− = 0 which are cal-
culated from ϕV± = 1/

√
±2iϵ0 and DV± = ±iϵ0ϕV± , and the fact LLLV± = 000, one

finds:

4

∑
i

UUU(1)
i ⊗UUU(1)

i +
4

∑
i

UUU(2)
i ⊗UUU(2)

i = UUUV+ ⊗UUUV+ +UUUV− ⊗UUUV− . (138)

The outer products of the above equations can be transformed further into
products of determinants of 5× 5 matrices constructed from horizontally stacked
column vectors of UUU. The conversion is done by using the Laplace expansion of
the determinant:

||AAA|| =
n

∑
i=1

(−1)i+jaijMij, (139)
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where the operator ||...|| signifies the determinant of matrix AAA, aij is the element
of a n× n matrix AAA, and Mij is defined to be the determinant of a (n− 1)× (n− 1)
matrix that results from AAA by removing the i-th row and the j-th column. One sees
that the determinant can be calculated from the product of one of the columns
of the matrix AAA e.g. ai5 where j = 5, with a corresponding cofactor e.g. C =
(−1)i+5Mi5, which is independent of the column ai5. As result, if introducing a
5× 5 matrix AAA(UUUα) = [UUU(1)

1 UUU(1)
2 UUU(1)

3 UUU(1)
4 UUUα] as a function of UUUα which can be any

possible wave solution, including UUU(1)
i , UUU(2)

i or UUUV± , one has:

||AAA(UUUα)|| = ∑
i
(−1)i+5ai5Mi5 = CCCUUUα, (140)

where ai5 is the element of column vector UUUα, and the cofactors can be combined
into a row vector CCC, which is independent of UUUα and can be calculated from the
remaining columns of AAA excluding UUUα.

Let’s now construct two cofactors CCCL and CCCR from the matrices AAAL(UUUα) =

[UUU(1)
1 UUU(1)

2 UUU(1)
3 UUU(1)

4 UUUα] and AAAR(UUUα) = [UUU(2)
1 UUU(2)

2 UUU(2)
3 UUU(2)

4 UUUα], respectively. By left
multiplying CCCL and right multiplying CCCR to the dyadic multiplication Eq.(138),
one obtains:

4

∑
i
||AAAL(UUU(1)

i
)
|| · ||AAAR(UUU(1)

i
)
||+

4

∑
i
||AAAL(UUU(2)

i
)
|| · ||AAAR(UUU(2)

i
)
||

= ||AAAL(UUUV+

)
|| · ||AAAR(UUUV+

)
||+ ||AAAL(UUUV−

)
|| · ||AAAR(UUUV−

)
||.

(141)

Since the determinant equals zero when it has linearly dependent columns, e.g.
||AAAL(UUU(1)

i
)
|| = 0 for i = 1, ..., 4, the above equation has zeros on the LHS and thus

can be rearranged to:

||UUU(1)
1 UUU(1)

2 UUU(1)
3 UUU(1)

4 UUUV− ||
||UUU(1)

1 UUU(1)
2 UUU(1)

3 UUU(1)
4 UUUV+ ||

= −
||UUU(2)

1 UUU(2)
2 UUU(2)

3 UUU(2)
4 UUUV+ ||

||UUU(2)
1 UUU(2)

2 UUU(2)
3 UUU(2)

4 UUUV− ||
. (142)

Considering a boundary condition:

4

∑
i=1

b(1)i UUU(1)
i = bV+UUUV+ + bV−UUUV− , (143)

where an incident wave is coming from vacuum with amplitude bV− and reflected
back with amplitude bV+ . It can be rearranged and expressed in a matrix form:

[
UUU(1)

1 UUU(1)
2 UUU(1)

3 UUU(1)
4 −UUUV+

]


b(1)1

b(1)2

b(1)3

b(1)4
bV+

 = bV−UUUV− . (144)
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The Cramer’s rule allows to solve for the amplitude bV+ as:

bV+

bV−
= −

||UUU(1)
1 UUU(1)

2 UUU(1)
3 UUU(1)

4 UUUV− ||
||UUU(1)

1 UUU(1)
2 UUU(1)

3 UUU(1)
4 UUUV+ ||

, (145)

in which r̄(1)V ≡ bV+/bV− is defined from the scattering matrix introduced in sec-
tion 3.2.3, and it is the LHS of the Eq.(142) with an opposing sign.

Similarly, by considering the boundary condition on the surface of solid 2:

4

∑
i=1

b(2)i UUU(2)
i = bV+UUUV+ + bV−UUUV− , (146)

one finds that the RHS of Eq.(142) is r̄(2)V . As a result, a relation

r̄V ≡ r̄(2)V = −r̄(1)V (147)

is derived, which states that the single surface reflection coefficients of the vac-
uum wave of two identical solids have the same absolute value but opposing
signs.

Taking the same above approach, but with differently constructed cofac-
tors CCCL from the matrix AAAL(UUUα) = [UUU(1)

1 UUU(1)
2 UUU(1)

3 UUU(1)
4 UUUα] and CCCR from matrix

AAAR(UUUα) = [UUU(2)
2 UUU(2)

3 UUU(2)
4 UUUV−UUUα], one obtains:

||AAAL(UUU(2)
1

)
|| · ||AAAR(UUU(2)

1

)
|| = ||AAAL(UUUV+

)
|| · ||AAAR(UUUV+

)
||, (148)

where only the non-zero terms (non-linearly dependent terms) remain. Writing
the above equation explicitly gives:

||UUU(1)
1 UUU(1)

2 UUU(1)
3 UUU(1)

4 UUU(2)
1 ||

||UUU(1)
1 UUU(1)

2 UUU(1)
3 UUU(1)

4 UUUV+ ||
=

||UUU(2)
2 UUU(2)

3 UUU(2)
4 UUUV−UUUV+ ||

||UUU(2)
2 UUU(2)

3 UUU(2)
4 UUUV−UUU(2)

1 ||
. (149)

The column vector UUU(2)
1 is clearly a solution of the transmitted wave in

solid 2. Using Cramer’s rule with the same boundary condition, Eq.(146), one
finds that the RHS of Eq.(149) is the single surface transmitted coefficient t̄(2)V→1 ≡
b(2)1 /bV+ of an incoming vacuum wave.

Assuming UUU(2)
1 is a bulk wave solution and is also the solution represent-

ing the incident bulk wave, which is true for two identical solids, the boundary
condition of a single surface of solid 1 with an incident bulk wave can be written
as:

b(1)in UUU(2)
1 +

4

∑
i=1

b(1)i UUU(1)
i = bV+UUUV+ , (150)

from which one finds the LHS of Eq.(149) is t̄(1)1→V ≡ bV+/b(1)in .
As a result, another relation:

t̄(1)γ→V = t̄(2)V→γ (151)
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is derived, which states that if a transmitted bulk wave mode γ in the solid 2 is
the same mode as the incident wave in solid 1, then the single surface coefficients
t̄(1)γ→V and t̄(2)V→γ are equal.

To summarize the lengthy derivations in the above sub-section, three sim-
ple yet important relations that link the single surface scattering coefficients are
discovered, given as:

2Re(r̄V) = ∑
α=bulk

|t̄(2)V→α|
2 in Eq.(136),

r̄(2)V = −r̄(1)V = r̄V in Eq.(147),

t̄(1)γ→V = t̄(2)V→γ in Eq.(151).

In addition, an inequality can be found by comparing Eqs.(136) with (151), read-
ing as:

2Re(r̄V) ≥ |t̄(1)in→V |
2 , (152)

in which the equality is satisfied when there exists only one transmitted bulk
wave mode in solid 2 and that mode is the same as the incident wave in solid 1.

The expression of the total tunneled power flow P(2)
Σ in Eq.(132) can thus be

simplified with the help of the relations Eqs.(136) and (147), giving:

P(2)
Σ

P(1)
in

=
2Re(r̄V)|t̄

(1)
in→V |

2e−2kxd∣∣1 + r̄2
Ve−2kxd

∣∣2
=

2Re(r̄V)|t̄
(1)
in→V |

2

4Re(r̄V)2 +
(
e2kxd − |r̄V |2

)2e−2kxd
,

(153)

where P(2)
Σ /P(1)

in defines the total power transmittance (will be designated as T
in later section), and only explicitly depends on two single surface coefficients:
t̄(1)in→V and r̄V . By applying the inequality relation,Eq. (152), the above equa-

tion shows that P(2)
Σ /P(1)

in ≤ 1. This result has important implications. Firstly,
complete tunneling cannot be achieved if more than one transmitted bulk wave
modes exist, as the inequality (152) takes the "greater-than" sign leading to P(2)

Σ <

P(1)
in from Eq.(153). This statement is in contradiction to the claims made by Prun-

nila and Meltaus [2010].
On the other hand, the "equal to" sign is valid if there is only one trans-

mitted bulk mode which is the same mode as the incident wave, and the power
transmittance [Eq.(153)] can be simplified further to

PΣ

Pin
=

4Re(r̄V)
2e−2kxd∣∣1 + r̄2

Ve−2kxd
∣∣2

=
4Re(r̄V)

2

4Re(r̄V)2 +
(
e2kxd − |r̄V |2

)2e−2kxd
.

(154)



63

It is clear that the above equation has a maximum of unity (PΣ = Pin), which
means the transmitted power is exactly equal to the incident power, when the
resonance condition

|r̄V | = ekxd , (155)

is satisfied. This proves it is possible for an acoustic wave to have an unity trans-
mission across a vacuum gap, and the condition of such complete tunneling only
explicitly depends on a single surface reflection coefficient r̄V and the a scaled
gap width kxd.

In the system defined in this dissertation, kxd > 0, so that the resonance tun-
neling can only be excited if |r̄V | > 1. Furthermore, it is interesting to note that
kxd doesn’t contain any information about the materials or orientations, whereas
r̄V , having been called the single surface coefficient, is independent of the exis-
tence of the second solid5. Hence, an intuitive guess is that r̄V should be a mate-
rial parameter, which should be possible to determine without the knowledge of
the gap or, in a more general sense, about the acoustic wave tunneling.

3.4.2 Effective permittivity

There is a great interest to study the single surface reflection coefficient r̄V , since
it plays a crucial role in calculating the transmitted power and determining the
resonant tunneling.

In electromagnetism, a dependency between the electrical potential ΦV and
the normal component of the electric displacement Dn

V can be found at the surface
using the Maxwell’s equations. For a wave propagating inside the xz-plane, their
relation reads as [Ingebrigtsen, 1969]:

ΦV

Dn
V
=

iv2
x

ω
Zp, (156)

where Zp is defined by Zp ≡ Ex/Hy, the ratio of the transverse electric and mag-
netic fields, and is referred to as the TM-wave surface impedance.

The expressions of ΦV(z) and Dn
V(z) in the framework of this dissertation

are given by Eqs.(103) and (104). Hence at the surface of the solid 2 (z = −d), one
obtains:

Z(ω, vx) =
i

vxϵ0

bV+ϕV+e−kxd + bV−ϕV−ekxd

bV+ϕV+e−kxd − bV−ϕV−ekxd . (157)

With the help of the equation ϕV− = iϕV+ that can be derived from the def-
inition of ϕV± given in section 3.2.1, and with bV− = r̄VbV+ exp(−2kxd) from
Eqs.(134), the reflection coefficient r̄V can be expressed in terms of the surface
impedance Zp as:

r̄V = i
1 + ivxϵ0Zp

1 − ivxϵ0Zp
. (158)

5 Mathematically speaking, even without an incoming vacuum wave, i.e. when its amplitude
is zero, there still exists the reflection coefficient r̄V .
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It has been shown by Ingebrigtsen [1969]; Zhang et al. [1992] that the ef-
fective surface permittivity can be obtained from the surface impedance as ϵe f f =
i/[vxZp(ω, vx)], hence it can also be related to r̄V giving:

r̄V = i
ϵe f f − ϵ0

ϵe f f + ϵ0
. (159)

The concept of effective surface permittivity has been used in many stud-
ies of piezoelectric materials, such as in the generation and detection of acous-
tic waves by transducers [Milsom et al., 1977] and in determining of gap wave
modes between piezoelectric solids [Darinskii and Weihnacht, 2006]. The above
derived relation (159) could allow r̄V to be determined experimentally by mea-
suring ϵe f f (vx).

In addition, it is interesting to show here the striking similarity between the
acoustic wave tunneling and the near-field photon tunneling, using the effective
surface permittivity.

With the same wave form and coordinate setup, i.e. when the wave vector is
in the xz-plane and the z-axis is perpendicular to the surface, the Fresnel reflection
coefficient of a TM electromagnetic wave reflected at solid-vacuum interface reads
as [Born et al., 1999; Polder and Van Hove, 1971; Volokitin and Persson, 2004]:

rTM =
ϵrkz − k′z
ϵrkz − k′z

, (160)

where kz and k′z are the normal components of the k-vector in the solid and in
vacuum, and ϵr is the relative permittivity in the solid. Under the quasistatic
approximation, kz = k′z ≈ ikx, since the electrostatic potential needs to satisfy the
Laplace equation ∇2Φ = 0.

Assuming an effective surface permittivity such that ϵe f f = ϵrϵ0, one finds
that the reflection coefficient becomes:

rTM =
ϵe f f − ϵ0

ϵe f f + ϵ0
, (161)

which leads to an equivalence rTM = −ir̄V by comparing with Eq.(159).
Furthermore, the power transmittance Tph of the photon tunneling [Pendry,

1999; Volokitin and Persson, 2004; Joulain et al., 2005] is given as:

Tph =
4Im(rTM)2e−2kxd∣∣1 − r2

TMe−2kxd
∣∣2

=
4Re(r̄V)

2e−2kxd∣∣1 + r̄2
Ve−2kxd

∣∣2 ,
(162)

which has exactly the same expression as Eq.(154), if the relation rTM = −ir̄V is
applied.
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Lastly, it is also interesting to mention that the symmetric and antisymmetric
conditions of the subsonic gap waves [Darinskii and Weihnacht, 2006]:

ϵ0 tanh
(

kxd
2

)
+ ϵe f f = 0

ϵ0 coth
(

kxd
2

)
+ ϵe f f = 0 ,

(163)

can also be expressed using r̄V by inserting Eq.(159). The above conditions are
thereby simplified to:

r̄V = ±iekxd, (164)

which implies that the gap waves must always satisfy the resonance condition
Eq.(155), whereas resonant tunneling does not necessary excite pure gap waves,
since r̄V can have real (leaky) part.

3.4.3 Numerical examples

To demonstrate the effect of complete tunneling, in this subsection a few numeri-
cal examples will be presented for two identical ZnO crystals, using the formula-
tion developed above.

FIGURE 13 Power transmittance (a) Pα/Pin (b) PST/Pin as a function of incident angles.

In the first example (Figure.13), two ZnO crystals are separated with a scaled
gap width of kd = 0.01, and are both rotated first with respect to the x-axis by
ϑ = 46.89◦ and then to the z-axis by φ = 88◦. A slow quasi-transversal wave (ST)
is chosen to be the incident wave in this example, as it allows a critical incident
angle beyond which only one transmitted bulk mode can be found, satisfying the
general condition for complete tunneling.

The power transmittance P(2)
α /P(1)

in of each tunneled bulk mode is plot-
ted in the left panel of Figure 13 as a function of the incident angle θi. Abrupt
cut-offs can be seen for the transmitted quasi-longitudinal (L) and fast quasi-
transversal (FT) modes, corresponding to the critical incident angles θLc ≈ 28◦

and θFTc ≈ 63.5◦. Beyond these critical angles, the respective wave becomes
evanescent and bound onto the surface of the solid, hence no power flows into
the bulk. In addition, the transmittance is generally low for most of the incident
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FIGURE 14 (a) Color scale of the ST→ST maximum power transmittance PST/Pin over
all incident angles as function of crystal rotation angles ϑ and φ. (b) A
spherical representation of the plot (a) where the surface normal signifies
the orientation of c-axis of the crystal.

angles, except that there are two sharp transmission peaks,for the ST mode at
angles between 75◦ and 80◦, achieving exactly unity transmission.

A zoomed view on these resonant transmission peaks (orange solid line)
are demonstrated in the right panel of the Figure.13. An additional transmittance
curve with a scaled gap value kd = 1 (blue solid line,) and an overlay of the |r̄V |
curve (black dashed line) are also presented to help to understand the doublet
structure. By plotting the values of exp(kd sin θi) where the blue dashed line rep-
resents kd = 1 and the orange dashed line kd = 0.01, one can clearly see that the
unity transmission occurs at where the resonance condition |r̄V | = exp(kd sin θi)
[Eq.(155)] is valid, proving the consistency between the analytical theory and the
numerical approach.

In addition, with the increase of the scaled gap width from 0.01 to 1, the
separation of the peaks is reduced. With the parameters and orientation of this
example, the two solutions eventually merge together into one at a maximum of
|r̄V | ∼ 4, which corresponds to a maximum possible gap width of kd ≈ 1.4 for
complete tunneling. To be more specific, for the ZnO used in this case which has
an ST wave velocity v = 2780 m/s, a wave with 2 GHz frequency can achieve
complete tunneling across a gap corresponding to a distance of d = 300 nm.

Generally speaking, complete tunneling is not an extremely rare effect in
crystals and can be found for a range of orientations. For an incident ST mode that
tunnels across a vacuum gap of width kxd = 0.01 into a transmitted ST mode, the
numerically calculated maximal power transmittance PST/Pin over all incident
angles θi is plotted in Figure.14, as a function of all possible crystal rotations (ϑ
and φ). It is clear that a significant parameter space of orientations, with multiple
separate regions, can be found to have complete tunneling.

In particular, a set of dotted contour lines are plotted in Figure 14(a) to encir-
cle the orientations satisfying |r̄V | > 1. These regions are in excellent agreement
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with the dark red areas where the the unity transmission is found numerically,
providing a validation of the analytical condition developed in section 3.4.1.

It is also important to point out that the incident angle θi satisfying the com-
plete tunneling condition varies with the crystal orientation, and the values can
be as low as 60◦ in certain cases as shown in the right panel of Fig. 14(a).

To provide a better spatial understanding of the relation between the maxi-
mal power transmittance and the crystal orientation, the data presented in Figure
14(a) are plotted on the surface of a 3-D sphere, as shown in Figure 14(b), in which
each surface normal of the sphere denotes a crystal c-axis direction under the lab-
oratory xyz-coordinate frame.

To understand the physics, the three ellipsoidal unity transmission regions
around ϑ = 90◦ in Figure.14(a) can be examined first. The incident ST waves
are not pure shear waves inside these areas, and thus couple to the other partial
waves (L, FT) at the surface. Consequently, when the incident angle is beyond
the critical angle of the FT mode, the reflected FT wave is bound onto the sur-
face, concentrating its energy on the surface. The displacement direction of these
FT waves are predominately aligned with the crystal c-axis, the direction of the
piezoelectric dipole, creating a strong piezoelectric response. Therefore, large
electric potential differences will be excited on the solid surface, leading to strong
electrostatic coupling across the gap and enabling the resonant tunneling.

Conversely, the incident ST mode becomes a pure shear mode and decou-
ples from all other partial modes when the azimuth rotations approach φ = ±90◦

with ϑ = 90◦. At these orientations, the c-axis aligns with the x-axis, whereas the
polarization of the ST mode is perpendicular to the xz-plane. As a result, the
incident ST wave becomes very weakly piezoelectric leading to minimal trans-
mission.

It is also interesting to mention that there are nodes having low transmis-
sion at around φ = ±25◦ and ϑ = 90◦, as shown in Figure 14. At these nodes, the
electric potentials excited by the reflected FT mode waves change polarity, giv-
ing rise to minimized electric potential differences and weak coupling between
the two interfaces. In addition, unity transmission is also observed in four small
regions around φ = ±90◦. In these areas, the single surface reflection coefficient
r̄(1)ST→FT increases significantly (not shown), indicating a strong mode conversion
between the ST and FT partial waves. As the FT waves become evanescent be-
yond their critical angles, the enhanced mode conversion will give rise to a large
electric coupling between the surfaces, leading to strong tunneling.

These numerical results emphasize the importance of the existence of the
evanescent modes to the acoustic wave tunneling. In particular, complete tun-
neling requires the resonances of evanescent modes between two solids to excite
large electric potentials and to concentrate the energy of the waves at the sur-
face. In the next discussion, numerical results of the particle displacement uuu, the
electric potential Φ, and the time-averaged power flow Px (parallel) and Pz (nor-
mal) at the surface will be presented, to provide a deeper understanding of the
resonant tunneling effect.

Let us take one of the resonance peaks of Figure 13 (θ = 78.37◦) as an ex-
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ample. As the incident wave completely tunnels across the vacuum gap, there is
no reflected bulk partial mode which can propagate into the depth of the solid 1.
Instead, the reflected (coupled) wave has its displacement vector decaying along
the z-axis towards the bulk, as shown in Figure 15(a), and the only possible non-
decaying (bulk) partial mode, the reflected ST mode, has an amplitude exactly
zero. On the other hand, the coupled reflected wave propagates along the sur-
face of the solid 1, having periodic displacement along x-axis as demonstrated in
panel (c).

FIGURE 15 The reflected particle displacement uuu as function of spatial positions when
the resonant tunneling condition is on (a,c), or off (b,d). Panels (e) and (f)
show the time evolutions of the particle motion in xz− and yz− planes of
three particles [(x,z)=(0,0), (0,2) and (0,4)] for the case (c).

It is interesting to visualize the displacements of this reflected (coupled)
wave schematically with a point grid, to show how each mass element of the
solid moves spatially when the resonant tunneling condition is "on" or "off". In
Figure 15(c), the orange dots depict how the mass elements displace from their
equilibrium positions, signified by the blue dots, at the resonant case. Strong
wave motion can be observed at the surface of the solid (kxz = 0), disappearing
into the depth of the solid. In contrast, the wave motion is strong with no clear
decay inside the solid in panel (d), where the incident angle is set to θ = 60◦.
A more intriguing phenomenon is presented in panels (e) and (f), in which the
mass elements that are close to the surface move in an elliptical motion (the or-
ange dots) in the xz- and yz-planes around their equilibrium positions (blue dots),
strongly resembling the Rayleigh-type surface waves.

However, it should be stressed that such "surface wave-like" solution is a
result of the resonant tunneling, and thus can not exist on a single surface. Con-
sequently, it is sensitive to the conditions, i.e. the incident angle, the gap distance,
and the crystal orientation. A small change could instantaneously break the res-
onance leading to a finite reflection via the bulk ST wave.

In Figure 16, the normalized6 electric potential Φ inside solid 1 for two dif-
6 Normalized to the incident amplitude.
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FIGURE 16 The normalized electric potential Φ of all partial waves in solid 1 are plotted
as functions of the position in the xz-plane. (a-f) are at resonance, (g)-(l) off-
resonance.
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ferent incident angles, θ = 76.06◦ [on-resonance, in panels (a-f)] and θ = 60◦ [off-
resonance, in panels (g-l)] are presented for each partial wave mode. In the res-
onant tunneling case, the total electric potential of all the reflected partial modes
is bound at the surface (kxz = 0), and decays to zero in the depth of the solid, as
shown in Figure 16(b). The amplitude of the total reflected Φ is much higher than
that of the incident ST wave [Figure 16(a)], there is more than 17 orders of magni-
tude difference between their peaks. This high amplitude is mostly contributed
by the reflected E [panel (c)], L [panel (d)] and FT [panel (e)] waves, whereas the
reflected bulk ST mode has practically zero amplitude (∼ 10−12)7.

In contrast, the total reflected wave in a non-resonant case [Figure 16(h)]
can propagate into the bulk, and has a maximum potential at the surface (∼ 1013)
about 4 orders of magnitude smaller than that of the resonance case. In this case
the potential is contributed dominantly by the reflected partial L [panel (j)] and
FT [panel (k)] modes, whereas the FT wave remains a bulk mode (critical angle
is about 64◦), which gives rise to a significant bulk reflection. In addition, there
is a reflected ST partial wave which has an amplitude comparable to the incident
wave.

FIGURE 17 The normal (a) and parallel (b) component of the time-averaged Poynting
vector at the surface, plotted as a function of the incident angle. In addi-
tion, the parallel components of the Poynting vectors are also plotted as a
function of z-axis positions inside solid 1 (c), vacuum (d) and solid 2 (e).

The total power flow PPPAV on the surfaces of the solids is plotted as a function
of the incident angle in Figure 17, both (a) the normal component (|Pz|) and (b) the
parallel component (|Px|). The blue solid line designates the reflected power flow

7 The small but finite amplitude of the reflected ST mode is because of the numerical impre-
cision in the computation, and it is exactly zero theoretically.
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at the solid 1 surface on the solid side, the orange dashed line is the transmitted
power flow at the solid 2 surface on the solid side, and the blue and orange dotted
lines are the transmitted power flow at the surface of solid 1 and 2 on the vacuum
side. These power flows are normalized to their respective components of the
incident Poynting vector by setting the incident components to 1.

The reflected power flow (ratio) in the normal direction |Pz| at the surface
of solid 1 is close to unity with a large range of incident angles. However, it
quickly drops to zero and the transmitted power rises to unity when the resonant
tunneling is excited. The normal direction power flow in vacuum is equal to the
transmitted power in solid 2, as has been pointed out already in previous sections.

It is also interesting to look at the parallel component of the power flow,
which is presented in Figure 17(b). There are two resonant peaks at the surfaces
of both solids, both have the power flow (ratio) more than two orders of magni-
tude higher than the incident wave. Such high power flow is the result of the ex-
citation of the quasi-surface wave, which concentrates the energy of the scattered
wave on the surfaces and becomes the key to enabling the resonant tunneling. It
should be noted here that the higher-than-unity power flow ratio is not breaking
energy conservation, because the energy density increases only in the vicinity of
the surface and decays exponentially into the bulk, as demonstrated in panels (c)
and (e) in both solids for the resonance case (θ = 76.06◦). In panel (d) the power
flow |Px| inside the vacuum gap is presented as a function of the z-axis position,
and we see that |Px| is distributed symmetrically inside the vacuum gap at the
resonant tunneling conditions.

3.5 Heat transfer across vacuum

As the last part of the theoretical modeling in this dissertation, the topic of heat
transfer across the vacuum gap carried by acoustic phonon tunneling[Geng and
Maasilta, 2023b] will be presented in this section.

A general formula for such piezoelectrically mediated heat transfer (PEMHT)
will be briefly derived first. A few numerical results will be investigated and
compared to the heat transfer carried by other phonon and photon tunneling
mechanisms. The piezoelectric material constants that are adopted in the calcu-
lation in the following sections are listed in Table 3

3.5.1 Heat flux of thermal phonons

There are many angles used in this work to describe the crystal orientation, i.e.
ϑ, φ and ψ, and the direction of the incident wave, i.e. θ and φ, as illustrated in
Figure 18. At the start of this section, it is particularly important to stress that
the azimuth angle φ, which is used both for the crystal orientation angle and the
incident wave angle for a semi-infinite half-space solid, signifies an equivalent
rotational degree of freedom, as has been discussed in section 3.2. Therefore,
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ZnO AlN LiNbO3
cE (1010Nm−2)

c11 20.97 34.5 20.3
c33 21.09 39.5 24.5
c44 4.247 11.8 6
c66 4.43 11 7.5
c12 12.11 12.5 5.3
c13 10.51 12 7.5
c14 0.9

e (Cm−2)
e15 -0.48 -0.48 3.7
e22 2.5
e31 -0.573 -0.58 0.2
e33 1.32 1.55 1.3

ϵS (ϵ0)
ϵxx 8.55 9.04 44
ϵzz 10.2 10.7 29

Density ρ (kgm−3) 5680 3260 4700
Crystal class 6mm 6mm 3m

TABLE 3 Anisotropic piezoelectric material constants used in the calculations. These
parameters are taken from Refs.Auld [1990]; Tsubouch and Mikoshiba [1985]

the rotation of φ should only be taken into account once in the mathematical
formulation to avoid the duplication. Logically, the straightforward way is to
consider that the direction of an incoming wave is a function of the angles θ and
φ, spanning a full unit sphere, whereas the orientation of the crystal is completely
fixed and should be described by the two given rotation angles ϑ and ψ8. Hence
the derivations presented in this section will assume that the crystal orientation
(ϑ, ψ) is given, and the formulations depend explicitly on the incident angles
(θ, φ). However, in practice it is more convenient to directly use φ as part of the
rotations of crystal to compute the material constants.

Consider an incident acoustic phonon of mode α impinging onto the sur-
face of solid 1 and tunneling across the vacuum gap into the adjacent solid 2, as
illustrated in Fig. 18. Up to four transmitted partial wave modes can be excited
inside solid 2, but only the bulk phonon modes can carry the tunneled energy
into the depth of solid 2. The total power transmittance of the incoming, tunnel-
ing α mode phonon (summed over all transmitted modes) denoted by Tα, can be
expressed as [Eq.(132)]:

Tα(θ, φ, k, d) =
2Re

[
r̄(2)V
]∣∣t̄(1)α→V

∣∣2e−2kd sin θ∣∣1 − r̄(1)V r̄(2)V e−2kd sin θ
∣∣2 , (165)

8 In such a case, the rotational degree of freedom from angle φ influences the results from
the direction of the incident wave rather than the orientation of the crystal. Hence, one can
choose any initial value of φ for the rotation the crystal, and the material constants become
independent to the change of φ after the rotation.
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FIGURE 18 Schematic of two piezoelectric solids at temperatures T1 and T2, separated
by a vacuum gap of width d.

in which Tα is a function that explicitly depends on the incident angles θ and
φ, the norm of the incident k-vector k, and the gap width d, whereas the single
surface scattering coefficients t̄(1)α→V , r̄(1)V , and r̄(2)V defined in Eq.(117) are deter-
mined by the materials, crystal orientations, and the incident angles θ and φ.9 In
this work, the temperature range of interest is from room temperature (∼ 300 K)
down to the cryogenic (∼ 10 mK) temperatures, hence the heat transfer of acous-
tic phonons is dominated by the phonons whose wave vector values (k) are far
from the Brillouin zone boundaries. Therefore, the dispersion relation is consid-
ered to be linear (but not isotropic!), vα = ωα/k, where vα is the phase velocity of
the wave mode α.

Starting from the above transmittance, the phonon heat flux can be consid-
ered as the tunneling of phonons with statistically averaged energy:

Π(ω, T) =
h̄ω

exp(h̄ω/kBT)− 1
, (166)

where ω and T are the angular frequency and the temperature of the incident
phonon, and h̄ and kB are the Planck and Boltzmann constants, respectively.
These phonons move with a group velocity in the normal direction of the sur-
face

gn
α(θ, φ) ≡ nnn · ∂ωα

∂kkk
= − sin θ

2ρvα(θ, φ)|AAAα(θ, φ)|2 ξξξT
α T̂TTξξξ∗α, (167)

derived in Eq.(99)10, and then tunnel across the vacuum gap with a power trans-
mittance Tα(θ, φ, k, d) carried by the transmitted bulk phonon modes. It should

9 We only need the eigenvector solutions ξξξ to solve for the single surface coefficients from
Eq.(117). Although the Stroh characteristic function Eq.(82) is a function of vx = ω/kx,
which seemingly depends on both ω and k, vx can be computed from vx = v/ sin θ where
v is the solution to the secular equation of piezoelectrically stiffened Christoffel equation
Eq.(62). Hence, all the single surface coefficients can be obtained only with the knowledge
of the material, orientation and the incident angle.

10 Note that the group velocity depends explicitly neither on ω nor k using the extended Stroh
formalism.
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be noted here that in the coordinate system used in this dissertation, the incident
phonon must have a negative-valued group velocity component, since nnn is the
inward normal of the surface of solid 1, hence a net power flow from solid 1 to
solid 2 should have a negative value.

As a result, the total heat flux of incoming phonons at temperature T tun-
neling to an adjacent solid at 0 K, summed over all of k-space and all incoming
bulk modes α, can be expressed as:

JPE(T, d) = ∑
α

∫ d3k
(2π)3 Π

[
ωα(k), T

]
gn

α(θ, φ)Θ
[
− gn

α(θ, φ)
]
Tα(θ, φ, k, d), (168)

where ωα(k) is the phonon frequency of mode α, and Θ
[
− gn

α(θ, φ)
]

is the Heav-
iside step function that equals to unity (zero) when the group velocity gn

α < 0
(gn

α > 0).
It is important to point out that the group velocity, which signifies the speed

and direction of the phonon propagation, generally has a different direction from
the phase velocity, which describes the movement of the wave phase. There there-
fore exist cases where the normal components of these two velocities have oppos-
ing directions. In other words, a phonon that tunnels from solid 1 to 2 may have
its wave vector (k-vector) pointing away from the surface. Consequently, in or-
der to correctly account for all the possible incident acoustic phonons in solid
1 propagating towards the surface, the integration must cover the full k-space
in Eq.(168), including the half-hemisphere on the vacuum side. By applying a
Heaviside step function Θ, only the phonons propagating from solid 1 to 2 will
then contribute to the integration.

With the expressions given in Eqs.(165), (166) and (167), the tunneled heat
flux from solid 1 at a temperature T to a solid 2 at 0 K can be written into a more
explicit form by introducing spherical coordinates in the integration over the full
k-space as d3k = k2 sin θdθdφdk, giving:

JPE(T, d) =
1

8π3 ∑
α

∫ 2π

0
dφ

∫ π

0
dθgn

αΘ
[
− gn

α

] ∫ ∞

0
dk Π

[
ωα, T

]
Tα

=− h̄
8π3ρ

∑
α

∫ 2π

0
dφ

∫ π

0
dθ

sin2 θ

|AAAα|2
Re
[
r(2)V
]∣∣t(1)α→V

∣∣2ξξξT
α T̂TTξξξ∗αΘ

[
ξξξT

α T̂TTξξξ∗α
]

×
∫ ∞

0
dk

k3

evα h̄k/kBT − 1
e−2kd sin θ∣∣1 − r(1)V r(2)V e−2kd sin θ

∣∣2 ,

(169)

in which ξξξT
α T̂TTξξξ∗α = ±1, if α is a bulk mode and zero for evanescent modes, and the

sign signifies the direction of the phonon: it is positive for a transmitted phonon
and negative for a reflected phonon (see section 2.3.3 for more details).

The net heat flux between solid 1 at temperature T1 and solid 2 at tempera-
ture T2 is the difference between their corresponding heat fluxes to 0 K, and reads
as ∆JPE(T1, T2, d) = JPE(T1, d)− JPE(T2, d).

Furthermore, if we take the extreme limiting conditions of setting the power
transmittance to unity, T = 1, and assume that the group velocity is isotropic and
equals the phase velocity, giving gn

α = vα cos θ, then the heat flux equation (169)
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is simplified significantly to:

J(T) = ∑
α

π2k4
BT4

120v2
αh̄3 , (170)

which has been referred to as the phonon blackbody radiation for isotropic matter
[Swartz and Pohl, 1989].

3.5.2 Numerical examples

FIGURE 19 Contour plot of power transmittance TL as function of incident angle θ and
angular frequency ω. The vacuum gap is set to d = 1 nm.

The power transmittance Tα is the key to the heat flux, bearing the underly-
ing physics of the piezoelectrically mediated heat transfer (PEMHT). In the first
numerical example, an incident longitudinal (L) phonon is considered to tunnel
across a d = 1 nm vacuum gap between two ZnO crystals, which are identically
rotated to an orientation (ϑ, ψ) = (π/2, 0), with an azimuth angle of φ = π/3.
The power transmittance TL is plotted as a function of the incident angle θ and
the phonon frequency ω in Figure 19.

The most noticeable feature of the plot is that the transmittance decreases
with the increasing of the phonon frequency, and has a sharp roll-off at about
1014 Hz. For a given incident angle and phase velocity, the rise of the phonon
frequency leads to a proportionally increased k = ω/vα, which, in turn, affects
the transmittance via the exponential factors exp(−ωd/vα) of the Eq.(165): at low
frequency ω ≪ vα/d, it approaches 1 leading to a constant transmittance; at high
frequency ω ≫ vα/d, it decays quickly to zero. By introducing a characteristic
wavelength λT of temperature T defined as11:

λT =
2πvαh̄

kBT
, (171)

11 This definition has been consistently quoted in the studies of near-field phonon heat trans-
fer[Prunnila and Meltaus, 2010; Pendry, 1999; Pendry et al., 2016; Volokitin and Persson,
2007; Volokitin, 2019, 2020], and also been used in literature regarding to the phonon heat
transfers[Schwab et al., 2001; Sun and Murthy, 2006; Chen et al., 2008; Nomura et al., 2015].
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the switching-off of the power transmittance can be described approximately by
the frequency ω = 2πvL/λT sin θ, where λT = d, as plotted with the dotted line
in Figure 19 for the case of d = 1 nm.

The temperature corresponding to λT = 1 nm is approximately 300 K (the
relevant frequency ω = kBT/h̄ ≈ 4 × 1013 rad s−1), or in other words, the power
transmittance from the PEMHT rapidly decays to zero if a vacuum width is larger
than 1 nm at room temperature. On the other hand, as the gap width d increases,
the relevant temperature T and frequency ω describing the roll-off of the trans-
mittance decrease proportionally. For example, a 1 µm gap, a dimension easily
accessible by current technology, corresponds to a temperature of 0.3 K and a
frequency about 1010 rad s−1.

FIGURE 20 Contour plot of emitted heat flux JPE from all phonon wave modes as a
function of temperature T and gap width d. The adjacent solid is assumed
to be at T = 0.

In Figure 20, the heat flux JPE (assuming the adjacent solid is at T = 0)
is plotted as a function of the phonon temperature T and the gap width d, for
two identical ZnO solids with orientation (ϑ, ψ) = (π/2, 0), the same as in the
previous example. This color-scaled contour plot can be roughly divided into two
regions separated by the black dotted line T = 2πv̄h̄/kBd, which represents the
condition d = λT, and v̄ = 3900 m/s is chosen as an "averaged" phonon phase
velocity for the illustration.

Towards the lower-left region, the heat flux decreases strongly with decreas-
ing temperature, but saturates with the gap width. This comes about because,
when the gap width d is much smaller than the characteristic wavelength λT,
the power transmittance T [Eq.(165)] saturates and the phonon state energy Π
[Eq.(166)], which is strongly modified by T but independent of d, determines the
heat flux. In contrast, the exponential cutoff of the power transmittance domi-
nates the heat flux towards the upper-right section. For example, at the large-gap

It is also worth noting that such definition is different by a factor of 1/2.82[Ziman, 1960]
from the dominant phonon wavelength[Ramiere et al., 2017], which is the wavelength corre-
sponding to the peak frequency of the phonon spectral energy distribution.
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limit (d ≫ λT), the heat flux is practically "switched-off" and becomes insensitive
to the change of temperature. In addition, a black dashed line marks where the
heat flux equals that of the photon blackbody radiation as a function of tempera-
ture [J(T) = π2k4

BT4/60c2h̄3 where c the speed of light]. The comparison between
the dashed and dotted lines suggests that the PEMHT, if "switched-on" (d ≤ λT),
generally contributes at least 3 orders of magnitude more heat flux than that of
blackbody radiation at a given temperature, making it an non-trivial source in
the context of near-field heat transfer.

FIGURE 21 Comparison of the heat flux driven by different short range mechanisms.
Left: Heat flux as a function of gap width at 300 K. Right: Heat flux as as a
function of temperature with a fix gap width of 1 nm.

In addition, at room temperature, the PEMHT is stronger than the black-
body radiation even at a gap width close to 10 nm. This heat transfer, in fact, is
very different to what has been suggested in previous studies of other acoustic
phonon tunneling mechanisms [Ezzahri and Joulain, 2014; Pendry et al., 2016;
Volokitin, 2019, 2020], in which the effective ranges at a room temperature are
extremely limited, in sub-nanometer scales. In Figure 21, the heat flux carried by
various relevant close-range mechanisms are compared, including the near-field
radiative heat transfer (NFRHT, Pendry [1999]; Joulain et al. [2005]) of ZnO12 and
Au13 , phonon tunneling in Au mediated by the van der Waals force [Pendry et al.,
2016] ,and by the electrostatic force Volokitin [2019, 2020]14 , and the blackbody
radiation (far-field radiative heat transfer).

On the left panel of Figure.21, the heat fluxes of all the mentioned mech-
anisms at 300 K are plotted as a function of the gap width d. It is clear that at
room temperature, the near-field radiative heat transfer, also called "photon tun-
neling", for both Au and ZnO (blue and orange dotted lines) are significantly
stronger than all the acoustic phonon tunneling mechanisms. In particular, heat
fluxes driven by the van der Waals force and the electrostatic force scale as d−9

and d−7, respectively [Volokitin, 2020]. Hence they only have non-trivial contri-
butions at gap sizes < 1 nm at room temperature, and will fall off rapidly with
the increase of the gap. In contrast, the PEMHT, plotted as square symbols, scales
as d−3, which is similar to that for photon tunneling. Consequently, it quickly

12 Material constants are taken from Ashkenov et al. [2003]; Ooi et al. [2011].
13 Material constants are taken from Chapuis et al. [2008].
14 Assuming a 1 V potential difference is biased across the vacuum gap.
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dominates the other phonon tunneling mechanisms at nanometer scales, being a
relatively "long-range" effect.

One interesting observation in the left panel is that the NFRHT of ZnO is
particularly large. The reason[Joulain et al., 2005] is because the surface-phonon
polariton of ZnO can be excited at infrared frequencies [Ashkenov et al., 2003;
Ooi et al., 2011], matching the spectrum of the room temperature thermal pho-
tons, and hence enhancing the heat flux. But this also infers that one should
expect an attenuation of the NFRHT once the excitations are stopped, i.e. when
the temperature is lowered. This is confirmed by the right panel of Figure 21, in
which the heat fluxes are plotted as a function of the temperature for a fixed gap
width of 1 nm. There is a clear cutoff of the NFRHT flux at about 100 K for ZnO.

More interestingly, the PEMHT becomes stronger than the fluxes from all
other mechanisms, including NFRHTs, between T = 0.1 K to T = 50 K. At
this temperature range, the power transmittance of the PEMHT increases expo-
nentially as the characteristic wavelength of the acoustic phonon increases, and
eventually saturates at the sub-Kelvin range (see Figure 20). With the tempera-
ture lowered even further, the PEMHT flux is determined by the phonon state
energy term (phonon thermal spectrum), and therefore has a T4 dependence on
the temperature15 , similar to the NFRHT of ZnO at the low temperature limit.
Meanwhile, other acoustic phonon tunneling mechanisms, scaling more slowly
than the PEMHT, begin to dominate the heat transfer at temperatures below 0.1
K.

FIGURE 22 Comparison of emitted PEMHT as a function of the crystal rotation angle ϑ

for ZnO (solid line), AlN (dotted line) and LiNbO3 (dashed lines).

Lastly, the influences of the materials and orientations will be demonstrated
in Figure 22. Three piezoelectric materials, ZnO, AlN and LiNbO3 are consid-
ered, and their PEMHTs are presented as a function of an identically rotated ϑ

15 This temperature dependence can be shown by analytically computing the integration
f =

∫ ∞
0 dk

{
vα h̄k3/[exp(vα h̄k/kBT) − 1]

}
, using the Riemann zeta function, giving f =

π4(kBT)4/15(vα h̄)3.
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orientation16 at a gap width of 1 nm and a temperature of 0.1 K.
There is a similarity shared by the heat fluxes of ZnO, plotted as a solid line,

and AlN, plotted as a dotted line. For example, their fluxes are generally stronger
around the orientations of ϑ = π/2, contrasting to those around 0 and π; sharp
slopes appear around 20◦ and 40◦, leading to more than five-fold variation in the
heat fluxes. This similarity comes about because they share the same crystal sym-
metry, namely they both are 6mm wurtzite crystals. The underlying physics of
these features is that ϑ is the angle between the normal of the solid-vacuum inter-
face and the piezoelectric axis of the crystal (the c-axis), and when ϑ is close to 90◦,
the c-axis is more aligned with the surface. As a result, the reflected evanescent
modes, which propagate only on the surface, can excite stronger piezoelectric re-
sponse, leading to an enhanced electrostatic coupling across the vacuum. As been
shown in the previous section, e.g. in Figure.14, a high power transmittance can
be found between ϑ ∈ (π/3, 2π/3) for certain partial wave modes, even achiev-
ing unity.

Meanwhile, PEMHT is stronger with ZnO about one order of magnitude
over that of AlN. This is mostly due to the differences in their phase velocities.
When the characteristic wavelength is much larger than the gap width, the heat
flux scales roughly with v−3

α . In the presented case, AlN has a transverse phase
velocity about vT ≈ 6000 m/s, whereas ZnO has about vT ≈ 2700 m/s, and hence
a ten-fold difference in heat flux is expected.

On the other hand, LiNbO3 has a trigonal crystal system without uniaxial
symmetry. Consequently, its PEMHT changes with the ψ rotations (see Fig.18), as
demonstrated with the colored dash-lines in Figure 22. It is obvious that LiNbO3
has even higher heat flux compared to ZnO, even if they share similar phase
velocities. This can be explained simply by the fact that LiNbO3 has much larger
piezoelectric stress constants e, as listed in Table.3, which leads to an enhanced
piezoelectric response on the solid-vacuum interface.

16 Among the three angles ϑ, ψ and φ that are relevant to the orientation, ψ has no effect on
the uniaxial crystals, e.g. ZnO and AlN, whereas φ is integrated in computing the heat flux
[Eq.(169)] since it is equivalent to the incident azimuth angle.



4 EXPERIMENT ON ACOUSTIC PHONON HEAT
TUNNELING

In the previous chapter, a theory on the piezoelectrically mediated phonon tun-
neling has been established step by step, starting from the basic continuum anisotropic
linear elasticity theory, and ending with the discussion on the heat transfer of
phonons between solids. An attractive yet crucial question arises: can this phe-
nomenon be demonstrated in an experiment?

Heat, as one of the most studied phenomenon in nature, can be a great can-
didate to be measured in an experiment. Far-field radiation, which is well under-
stood by Planck’s law of blackbody radiation, is considered as the fundamental
heat transfer channel between solids separated by vacuum. When the separation
is small enough, super-Planckian heat transfer can be observed in experiments
[Song et al., 2015; Lucchesi et al., 2021b], several orders of magnitude higher
than that of the blackbody radiation. One of the most well-known mechanisms
responsible for this is the near-field radiative heat transfer (NFRHT), mediated
by photon tunneling [Polder and Van Hove, 1971; Pendry, 1999; Volokitin and
Persson, 2001; Joulain et al., 2005], which becomes operable at the length scale of
λph ∼ 10 µm at room temperature1.

With the advances in nanotechnology, heat transfer in the extreme near-
field with gap width of nanometers becomes accessible to real devices and ex-
periments [Kim et al., 2015; Kloppstech et al., 2017; Cui et al., 2017]. However,
concrete experimental demonstrations of the heat transfer mediated by acoustic
phonon tunneling is still lacking, and, to the best of the author’s knowledge, there
exist no report on piezoelectrically mediated heat transfer (PEMHT). It is per-
haps not a surprise, because there are numerous difficulties to realize and verify
the PEMHT in an experiment. For instance, the effect is weak at room tempera-
ture compared to photon tunneling. In particular, the surface phonon-polaritons
in the piezoelectric material, such as ZnO, can be excited at room temperature,
overwhelmingly dominating the heat transfer. In addition, the room temperature

1 The Wien wavelength of a thermal photon is λph = ch̄/kBT where c the speed of light
[Biehs and Greffet, 2010; Joulain et al., 2005]
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FIGURE 23 (a) Schematic of the measurement scheme. (b) The thermal model of the
device used in the measurements.

characteristic wavelength of an acoustic phonon λT [Eq.(171)] is still too short,
e.g. in gold it is ∼ 0.5 nm at 300 K, and it is therefore hard to achieve such gap
widths even by the state-of-art lithography technologies. Although it has been
shown in the previous chapter that PEMHT of ZnO can be higher than that of
the blackbody radiation up to vacuum gap width of 10 nm, it still puts severe
challenges on both the device fabrication and the heat flux measurement.

Measuring the heat transfer in a cryogenic environment can be an attractive
solution to these difficulties. As has been discussed previously, at sufficiently
low temperatures, there is no excitation of the surface phonon-polariton, and the
PEMHT becomes the dominant heat transfer channel. Furthermore, with the in-
crease of the characteristic wavelength of the acoustic phonons, it is possible to
observe the enhanced heat transfer even at a sub-micrometer vacuum gap widths,
making the device fabrication more feasible with standard nano-lithography.

In this work, an experimental demonstration on PEMHT is proposed and
conducted using a microscopic device at sub-Kelvin temperatures. The strategy
of the measurement, fabrication of the device and the discussion of the measure-
ment results will be presented in the following sections.

4.1 Experimental scheme

Two sets of measurements will be carried out in the experiment using a micro-
scopic on-chip device consisting two closely spaced piezoelectric AlN suspended
beams: the enhanced heat transfer will be demonstrated qualitatively in the first
set of measurements; then the transferred heat flux will be quantitatively deter-
mined via a set of followed complementary measurements.

4.1.1 Experimental design

The model for the first qualitative measurement is shown schematically in Figure
23(a). Two piezoelectric beams (AlN in this work) are separated by a few hundred
nanometer-wide vacuum gap, and are suspended from the bulk of the device by
weak thermal links. The measurement starts from a complete thermal equilib-
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rium of the device at a sub-Kelvin temperature2. The temperature TE of one of the
beams, labeled as emitter, is increased by applying local Joule heating power Q̇H.
Simultaneously, the temperature TR of the unheated beam, labeled as receiver, is
measured. Hence, the observation of the rise of TR over the device substrate tem-
perature Tsub indicates heat transfer across the vacuum gap. In addition, a second
identically designed but non-piezoelectric (SiN in this work) device will be mea-
sured in the same manner. A much lower increase in TR is expected for such a
device, because the heat transfer from photon tunneling of the dielectric material
is strongly suppressed at such low temperatures, and other acoustic phonon tun-
neling mechanisms are also considered to be weak due to their strong decay with
gap width. As a result, the contrast between the measurement of the two devices
signifies the presence of PEMHT, demonstrating tunneling of acoustic phonons.

It is also possible to quantitatively determine the tunneled power Q̇t
3 be-

tween the two beams by a second set of measurements that complements the first
set in a reciprocal manner. Considering the system consisting of both beams in a
steady-state, there is a balance between the input and output power of the system.
In the first measurement, where the Joule heating is applied to the emitter beam
(referred to as main measurement hereafter), this power balance can be expressed
as [see Figure 23(b)]:

Q̇H + eE + eR = Q̇E(TE, Tsub) + Q̇R(TR, Tsub). (172)

In this equation, in the LHS there are the three power input sources that are con-
sidered in this model: a Joule heating power Q̇H that is steadily applied to the
emitter beam, and two extra power loads eE and eR applied to each beam from
the sources4 that are independent to the application of Q̇H, e.g. the heating from
the thermometer biases and noise, the Peltier cooling from the superconducting
junction [Nahum et al., 1994; Leivo et al., 1996; Koppinen and Maasilta, 2009], etc.

The RHS of Eq.(172) represents the rate of heat that flows out of the system
via thermal conduction between the beams and the bulk when a temperature
difference is present: Q̇E(TE, Tsub) is the power transported from the emitter beam
at temperature TE to the bulk at temperature Tsub, and Q̇R(TR, Tsub) flows from the
receiver beam at temperature TR to the bulk. Such power transport is customarily
modeled using a temperature dependent expression [Klitsner et al., 1988; Anghel
et al., 1998]:

Q̇a(Ta, Tsub) = Ka(Tna
a − Tna

sub), (173)

where Ka and na are the device specific parameters of the beam a = E, R deter-
mined by the details of the materials and geometry. Meanwhile, the differential
thermal conductance can also be defined from Eq.(173), giving:

Ga(T) ≡
dQ̇a(T, Tsub)

dT
= naKaTna−1. (174)

2 In the measurement, this means the readings of all thermometers do not change with time.
3 The heat transferred between the beams is estimated to be Qt = AJPE, where A is the

surface area between the beams and JPE is the heat flux.
4 The direction of the power is assigned such that heating is positive and cooling is negative.
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It should be noted that the blackbody radiation between the system and the
environment is omitted in the presented thermal model, because of its vanish-
ingly small contribution (< 10−20 W) at sub-Kelvin temperatures and the device
dimensions concerning this work.

In the second set of measurements, the complementary measurement, the Joule
heating is applied to the receiver beam instead of the emitter [see Figure 23(b)],
and consequently the power balance is Q̇′

H + e′E + e′R = Q̇′
E(T

′
E, T′

sub)+ Q̇R(T′
R, T′

sub),
in which the prime superscripts signify the quantities of the complementary set.
If in this measurement the temperature of the emitter and the substrate are ad-
justed to be the same as their respective values in the main measurement, i.e.
T′

E = TE and T′
sub = Tsub, the power balance can be stated as:

Q̇′
H + e′E + e′R = Q̇E(TE, Tsub) + Q̇R(T′

R, Tsub), (175)

where the power flows from the emitter to the bulk Q̇E(TE, Tsub) are the same in
both measurements.

The difference of Eqs.(172) and (175) gives:

∆Q̇H + ∆e = KR
[
(T′

R)
nR − (TR)

nR
]
, (176)

where ∆Q̇H = Q̇′
H − Q̇H is the difference between the heating powers of the two

measurements, ∆e = eE + eR − e′E − e′R is the difference of the extra heat loads, and
KR and nR are the receiver parameters of Eq.(173). Taking the derivative of T′

R on
Eq.(176), and noting that ∆e is independent of T′

R from the model assumptions,
an expression:

d∆Q̇H

dT′
R

= GR(T′
R)− GR(TR)

dTR

dT′
R

(177)

is obtained, in which GR(T) = nRKRTnR−1 is the thermal conductance of the
receiver beam.

The receiver parameters KR and nR can be extracted from the measured
quantities ∆Q̇H, TR and T′

R in the experiment5 using either Eq.(176) or Eq.(177).
As a result, the power transferred between the two beams in the main measure-
ment Q̇t can be determined from the power balance of the receiver beam, reading
as:

Q̇t = KR(T
nR
R − TnR

sub)− eR, (178)

in which eR, the extra power load on the receiver beam in the main measurement,
can be inferred from the quiescent temperature of the receiver beam TR,quiet as
eR = KR(T

nR
R,quiet − TnR

sub). It is also worth mentioning here that the tunneled power
can also be expressed as Q̇t = ∆JPEA, where ∆JPE is the net power flux of PEMHT,
and A is the surface area normal to the flux direction.

4.1.2 Heater and thermometer

The above experimental scheme depends highly on the accuracy of the measured
Joule heating power and temperatures of the beams. This requires that the heaters

5 ∆e is a free parameter in fitting Eq.(176) from the measurement results.
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and the thermometers are capable of functioning at sub-Kelvin temperatures, be-
ing integrated onto the suspended structures, and working only locally on the
beams.

Based on these requirements, superconducting junction heaters and temper-
ature sensors are selected for the experiment. Symmetric normal metal-superconductor
(NS) junctions are used as the heater, which provide a nearly ideal local heating to
the beam. The Joule heating can be generated uniformly across the normal metal
wires on the beams, whereas the NS junctions act as perfect thermal insulators
due to the Andreev reflection process [Karvonen et al., 2005]. Thus, by measuring
the heating current IH and the voltage drop between the NS junctions VH, using
a four-terminal sensing method, the Joule heating power Q̇H = IHVH is deter-
mined, reflecting only the power inputs to the beam, as there is no leakage or
resistive dissipation on the superconducting sides of the leads.

The temperatures of both beams and the substrate are measured using sym-
metric normal metal-insulator-superconductor (NIS) tunnel junctions [Rowell and
Tsui, 1976], which are also known as SINIS thermometers [Giazotto et al., 2006].
This type of a sensor provides an extremely sensitive temperature measurement
of its normal metal island, which can be confined in a targeted area, for example
only at the top of the beam, and thus offers a sensing of only the local temper-
ature. In addition, such sensors are perfectly compatible with the cryogenic en-
vironment and easily integrated onto micro-devices due to their nano-scale size,
and therefore are ideal for the measurements in this work.

Thermometry is not the point of this dissertation, but for the sake of offering
the readers with a more tangible understanding of the temperature measurement
technique carried out in this work, a very brief introduction of the working prin-
ciple of the SINIS thermometer is presented here.

FIGURE 24 (a) The energy-band model of NIS junction. (b) Current-voltage (c) voltage-
temperature characteristics of a typical SINIS thermometer.

In an energy-band model of an NIS junction, which is valid when excita-
tions are thermally distributed and described by temperature T, as shown in
Figure 24(a), the presence of the superconducting gap 2∆ forbids the tunneling
of electrons from the normal metal to the superconductor across the thin insu-
lator barrier, except for those that are highly thermally excited. The probability
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of finding an electron of energy E at temperature T is described by the Fermi
distribution:

f (E, T) =
1

exp
[
(E − E f )/kBT

]
− 1

, (179)

where E f is the Fermi-energy of the normal metal. By applying a voltage bias
V over the junction, this probability is modified, and the tunneling current will
change exponentially until the bias reaches V = ∆/e.

Quantitatively, this tunneling current can be written as:

INIS =
1

eRT

∫ ∞

−∞
dE nS(E, TS) [ fS(E, TS)− fN(E + eV, TN)] , (180)

where RT is the resistance of the junction in the normal state, TS and TN are the
temperatures of the superconductor and normal metal, ns is the density of states
of the superconductor in the weak-coupling limit and reads as:

nS(E, T) =

∣∣∣∣∣Re
[

E√
E2 − ∆(T)2

]∣∣∣∣∣. (181)

The current of another symmetric NIS junction, assuming also biased by V,
can be written similarly as:

ISIN =
1

eRT

∫ ∞

−∞
dE nS(E, TS) [ fN(E − eV, TN)− fS(E, TS)] . (182)

Since the two junctions are connected in series via a shared common normal metal
island, their currents are equal and thus can be expressed in a combined form as:

ISINIS =
1

2eRT

∫ ∞

−∞
dE nS(E, TS) [ fN(E − eV, TN)− fN(E + eV, TN)] . (183)

It is clear that the distribution functions in the current expression, Eq.(183),
depend only on the temperature of the normal metal[Giazotto et al., 2006]. More-
over, in practice, the SINIS thermometer almost always operates at a temperature
far below the superconducting transition temperature Tc, i.e. TS < 0.4Tc where
TS is the temperature of the superconducting leads6, thus the energy gap ∆ of
the superconductor is considered to be constant. The current of a SINIS sensor is
thus only a function of the bias voltage and the temperature of the normal metal
island, and thereby provides the capability of measuring the temperature locally.

The operational scheme of an SINIS thermometer is demonstrated in Fig-
ure 24(b) and (c), showing the computed I-V and V-T characteristics of the junc-
tion, respectively. Such a sensor is usually current biased, for example with a
(reduced) current value 2eRT I/∆ = 0.1 or 0.01, and the measurable quantity is
the (reduced) voltage across the junction whose response to the temperature for
different current biases are shown in panel (c). In addition, the SINIS junction
could even be used as a primary thermometer, nevertheless, here it will be oper-
ated with a calibration to a commercially calibrated Ge thermistor (GR-200A-30,
LakeShore) before each measurement, to ensure accuracy.
6 The temperature of the superconducting leads in the experiment is expected to be close to

that of the substrate in this work.
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FIGURE 25 Schematic and the photo of the plastic dilution refrigerator used in this
work.

4.1.3 Plastic dilution refrigerator

To achieve the sub-kelvin operational temperatures required in this work, an in-
house built 3He-4He plastic dilution refrigerator (PDR) is used[Pekola and Kaup-
pinen, 1994], which reaches a base temperature below 50 mK routinely, with a
fast turn-around time and high cost-efficiency.

The basic principle of a dilution refrigerator is to utilize the heat absorp-
tion when the 3He isotope is pumped and circulated across the phase boundary
between the 3He rich and diluted mixtures of 3He/4He liquid.

In practice, several pre-cooling stages are needed, as illustrated in Figure
25. The PDR has an ambient temperature of 4.2 K provided by a liquid Helium
(LHe) bath, and the low temperature stages are located inside a pumped vacuum-
jacket (not shown), to be thermally isolated from the environment. A small pot
chamber, which contains 4He replenished via a flow impedance connected to the
LHe bath, is thermally anchored to a copper flange, and is continuously pumped
to maintain a temperature of ∼ 1.5 K. In the next stage, a condensed mixture of
3He/4He liquid is pumped from another chamber located at the top of the plastic
part, giving a temperature of ∼ 0.7 K, caused by the evaporation of mainly 3He.
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At the last stage, the dilution cooling happens at the bottom chamber of the
plastic part, where the phase separated 3He/4He liquids are accommodated. A
heat exchanger made from a sintered silver powder connects and thermalizes this
chamber to the measurement stage at the bottom of the PDR.

The electrical wires inside the PDR system are thermalized to the sample
stage and the stages above. In the refrigerator used in this work, cryogenic woven
loom wire first connects the room temperature device-interface to a set of Pi filters
(SBSMP5000223MX, Syfer) in direct contact with the LHe, and then to a circuit
panel that is thermalized at the 1.5 K stage inside the vacuum jacket via a feed-
through. Niobium superconducting wires are used to continue the connections
from 1.5 K to a set of home-built low-pass filters at the measurement stage. This
filter set is made from Eccosorb CR-124, providing a dissipative attenuation from
150 kHz and a strong cut-off at 1.4 MHz [Andrii, 2012].

The temperature of the measurement stage is monitored using a commer-
cially calibrated germanium (Ge) thermistor (GR-200A-30, LakeShore) via a resis-
tance bridge (Picowatt AVS-47), and is stabilized by applying heating through a
resistor mounted on the stage via a PID controller (Picowatt TS-530).

4.2 Device fabrication

A total of four devices have been measured in the experiment of this work, in-
cluding two piezoelectric aluminum nitride (AlN) devices with vacuum gap widths
400 nm and 500 nm, and two non-piezoelectric silicon nitride (SiN) devices with
gap widths 500 nm and 600 nm 7. The design and fabrication of these devices will
be explained and discussed in this section.

4.2.1 Device design

All devices share the same design, varying only in dielectric materials and vac-
uum gap widths, hence Figure 26, a set of scanning electron microscope (SEM)
images of one of the devices, can represent the design of the devices used in this
work. The main structures of the device are two parallel suspended beams, each
having a nominal length of 124 µm, fabricated either from a 500 nm thick stress-
free SiN or from wurtzite [002] AlN8. These beams are suspended over a 10 µm
deep cavity etched into silicon, and each beam is supported by four 44 µm ×4 µm
bridges. The bridges are designed to anchor to the bulk substrate via two or-
thogonal directions, in order to reduce the degrees of freedom for the movement
of the beams so that rolling, tilting or buckling of the beams are minimized, see
Figure 27 for failed designs.

A pair of symmetric normal metal-superconductor (NS) junctions are used

7 There were attempts to fabricate more devices with different gap widths, but those failed,
for example due to the breaking of the suspended beams or tunnel junctions.

8 In the [002] AlN, the crystallographic c-axis is perpendicular to the substrate surface.
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FIGURE 26 Scanning electron microscope images of a AlN device. (a) and (c) are fake-
coloured bird-eye views of the device. (b) is the top view. (d) is the zoomed
view of a NS junction. (e) is the zoomed view of a NIS junction.

as the local heater on each of the beam. The Joule heating is generated from
a 120 µm×300 nm×70 nm (length×width×thickness) titanium-gold (Ti/Au) bi-
layer wire. A NS junction is located at each end of the wire, consisting of a small
area of Ti/Au bilayer over a 800 nm × 20 nm (width×thickness) niobium (Nb)
lead, as shown in Figure 26(d). It is worth mentioning that the bottom Nb lead
[blue wire in panel (d)] and the top Ti/Au lead (purple wire) are fabricated sep-
arately with different pattern masks, and, to improve the quality of the metallic
contact between the two leads, a 4 nm gold layer [yellow pad in panel (d)] is de-
posited on the top of the Nb lead covering the junction area, directly following
the evaporation of Nb using an angular evaporation technique. The Nb leads
run across those supporting bridges that align with the beam, and join with other
electrical leads, which are also made mainly from Nb, on the substrate.

The temperatures of both beams and the substrate are monitored by sym-
metric normal metal-insulator-superconductor (SINIS) tunnel junctions. Each
junction has an area of 300 nm × 300 nm [see Figure 26(e)], and, from the bottom
up, consists of: a 300 nm× 40 nm (width×thickness) superconducting aluminum
(Al) lead running across the supporting bridge that is perpendicular to the beam;
a native oxide layer (AlOx), which grows with a controlled time and oxygen pres-
sure; a 45 µm×300 nm×70 nm (length×width×thickness) Ti/Au bilayer wire,
which connects to another identical junction and acts as the temperature sensing
element of the structure it resides on.

It should be mentioned here that the minimum distance between the normal
metal wires (Ti/Au) across the vacuum gap between different beams is designed
to be 6 µm, much larger than the sub-micrometer gap width used in this work.
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FIGURE 27 Failed designs due to deformations of the suspended structures.

As a result, the relevant gap width for near-field photon tunneling between the
metal wires is thus much larger than that for the acoustic phonon tunneling.

4.2.2 Fabrication procedures

The work flow of the device fabrication is illustrated in Figure 28, which can be
divided into four major steps: AlN etching, Nb deposition, junction deposition,
and structure release.

In the first AlN etching procedure, the structures of the beam and the sup-
porting bridges are defined by an etching process. For the AlN thin film chip, a
500 nm 4% 950 PMMA in anisole (A4) resist layer is patterned as an etching mask,
using standard electron beam lithography (EBL) with a Raith eLiNE system. Af-
ter the development, the AlN film is etched using a 25% wt. Tetramethylam-
monium Hydroxide (TMAH) solution for 15 seconds, followed with a deionized
water rinse. During the etching process, the TMAH bath is agitated with a sy-
ringe to create turbulence around the patterned areas, in order to achieve better
uniformity. With the SiN thin film chip, an 1 µm A4 resist mask is used instead,
and after the development, a plasma reactive ion etching (RIE) process is carried
out with a mixture of 50 sccm CHF3 and 5 sccm O2, at an RF power of 150 W for
10 min. Following either of the above etching processes, the etched gap between
the beams will be thoroughly cleaned by using a focused neon ion beam from
a Zeiss Orion helium ion microscope (HIM) system. This process is to ensure
a controlled width and a clean cut of the vacuum gap without unwanted direct
contacts, such as resist residues or the hillock-shaped structures surviving from
the etching. The comparison of a vacuum gap in AlN before and after the HIM
cleaning step is demonstrated in Figure 29.

Nb is used as the superconducting electrode material of the NS junctions,
and as the common leads for all the electrical connection on the substrate. In
the second, Nb deposition procedure, EBL is used to pattern a spin-coated bi-
layer resist mask consisting of a 300 nm 9% copolymer in ethyl lactate (EL9) at
the bottom, and a 500 nm A4 on the top. After the development, the bottom EL9
layer creates a larger cavity in contrast to the top A4 layer, providing an undercut
structure. In the next metal deposition process, a 5 nm titanium (Ti) is evaporated



90

FIGURE 28 The general work flow for fabricating the devices used in this work. See
main text for details.
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FIGURE 29 A comparison of a AlN vacuum gap before (a) and after (b) the HIM milling
process.

first from the direction normal to the substrate, followed by a 20 nm Nb from the
same direction. The thin bottom Ti layer is used to enhance the quality of the Nb
leads9. Right after the Nb deposition, an 1 nm Ti/6 nm Au bilayer is evaporated
to the device from an angle of 60◦ to the normal. Using such an angular evapora-
tion technique, the deposited Ti/Au bilayer covers only two small areas of the Nb
leads, where the NS junctions are designed to be formed, as shown in Figure 26.
The purpose of these Ti/Au areas is to protect the Nb from directly contacting
the atmosphere and other chemicals, to avoid oxidation, which would damage
the junction.

In the third, junction fabrication procedure, a bottom 400 nm EL9 and a top
500 nm A4 bilayer resist mask is patterned with EBL. Since the insulator barri-
ers of the NIS junctions require an accurately controlled oxidization process of
the thin Al film, in the deposition process multiple metal layers are evaporated
sequentially, including an oxidization process in between, without breaking the
vacuum of the evaporation chamber. In addition, to avoid metals overlapping
in unwanted areas, a two-axes rotation, multi-angular evaporation method is
employed with the help of a specially designed deposition stage, as shown in
Figure.30(a).

During the deposition, a nominal 35 nm Al layer10 is first deposited from the
direction that is perpendicular to the beams and with a set of evaporation angles,
as illustrated in Figure.30(b). The evaporation angles begin from ±75◦ and reduce
progressively to ±60◦, with 5◦ decrement in each step, and, in each step, the
angles are also switched back and forth once with respect to the normal of the
substrate. Such multi-angular evaporation technique can reduce self-shadowing
and enhance the coverage of the deposited metals. After the deposition, the thin
Al film is immediately oxidized under 200 mbar of pure oxygen gas for 6 min, to

9 The critical temperature of the Nb is increased on top of a Ti layer.
10 This is the normal direction thickness, calculated from the actual evaporation angles.
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FIGURE 30 (a) Evaporation sample stage used in the deposition process. This stage
can be rotated against two orthogonal axes inside the evaporator without
breaking the vacuum. (b) Schematic of the two-axes angular evaporation
method developed in this work.

form native AlOx layers acting as the insulating barriers for the SINIS junctions.
Before depositing the next Ti/Au bilayer, the substrate is rotated 90◦ around

its normal using the stage shown in the Figure 30(a), without breaking the vac-
uum. A 4 nm Ti/66 nm Au bilayer is then evaporated from the direction aligning
with the beams [see Figure 30(b)], with the same set of evaporation angles that
were used in the Al deposition. As a result, this bilayer covers only the pattern
areas that overlap with the Al/AlOx and Nb/Ti/Au at their respective SINIS and
NS junction areas.

The last fabrication procedure is to release the beam structures from the
substrate. This step is achieved by carrying out an RIE process of silicon etching
using a mixture of 100 sccm SF6 and 8 sccm O2 at 50 W RF power for 100 min.
A sandwiched resist mask, consisting of a total 1.5 µm A4 with a 8 nm Al layer
inserted in between, is used to reduce the charging effect from both EBL and RIE
processes, and to protect the tunnel junctions from being electrically shocked. At
the end of this procedure, the device is thoroughly cleaned with heated acetone
to lift-off the remaining resist masks.

4.3 Experimental results

The four devices that were fabricated following the procedures presented in Sec-
tion 4.2 were measured with the scheme explained in Section 4.1. All the mea-
surements were carried out inside an electromagnetically shielded room, and in
this section the procedures and the results of the measurements will be described
and discussed.

4.3.1 Measurement procedures

In the beginning of each measurement, all the SINIS thermometers on the de-
vice are characterized via a set of current-voltage (IV) measurements at different
bath temperatures, to examine the quality of the junctions and to optimize the
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FIGURE 31 (a) IV characteristic and (b) dynamic conductance of a measured SINIS ther-
mometer. (c) a calibrated VT characteristic of the thermometer.

current bias for the desired temperature range. Typical measured IV and tun-
neling spectroscopic (dI/dV) results are demonstrated in Figure 31(a) and (b),
respectively. Usually, two bias values are chosen for their optimal sensitivities to
different temperature ranges. A 20 ∼ 50 pA current bias has a higher sensitivity
for a temperature range < 0.4 K, whereas 100 ∼ 200 pA current bias performs
better at 0.4 ∼ 1 K. A smaller current bias is, in general, preferred in this work, as
the self-heating of the thermometer is undesired11.

FIGURE 32 The schematic of measurement circuitry.

Next, the electrical instruments for the main measurements will be con-
nected to the device-interface of the plastic dilution refrigerator (PDR), and the
circuit configuration is schematically illustrated in Figure 32. All the SINIS ther-
mometers are current-biased by a Zener-diode regulated nickel-metal hydride

11 Nevertheless, the self-heating is taken into account in the analysis.
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(NiMH) battery via an 1 GΩ resistor in series, and the bias circuit has a floating
configuration isolated from the common ground. The voltage signal of the junc-
tion is monitored by a Ithaco 1201 voltage pre-amplifier in a differential mode
with a 3 Hz low pass filter. The voltage-to-temperature (VT) response of the ther-
mometers are then calibrated against a commercially calibrated Ge thermistor
(GR-200A-30, LakeShore) from 4 K to 50 mK, and the calibration is carried out
during a slow cooling process over several hours to ensure a full thermalization
between the on-chip thermometers and the Ge thermistor. A calibrated VT re-
sponse of the example SINIS junction is presented in Figure 31(c).

In the following main and complementary measurements, the temperature
of the device stage will be maintained at 60 mK, stablized by a PID controller
(Picowatt TS-530). The Joule heating power is supplied to the beam (emitter or
receiver, depending on the measurement) by a home-built analog voltage-sweep
controller, powered by two 12 V lead-acid batteries. The voltage sweeps slowly
between ±1 ∼ ±10 V, with the voltage on the sample depending on the choice of
the voltage division circuit, and the peak-to-peak time is usually about 30 min-
utes.

The current and the voltage across the heater junctions is measured using
a four-terminal method by a current (Ithaco 1211) and a voltage (Ithaco 1201)
pre-amplifiers. The output signals, along with the voltage readout of the ther-
mometers, are collected by a data acquisition system (National Instrument DAQ)
and recorded by lab-computer through an optical cable.

4.3.2 Results and discussion

The results of the main measurements are shown in Figure 33, in which the mea-
sured temperatures of the emitter TE (red dots), receiver TR (orange dots), and the
bath Tb (blue dots) are plotted as functions of the Joule heating Q̇H applied to the
emitter beam. In panel (a), the AlN device with 400 nm gap width, and (b), AlN
with 500 nm gap width, the rise of the receiver temperatures above the bath tem-
peratures can be observed when their emitters are heated, and the temperature
excursions of the receivers are particularly clear at emitter temperatures TE > 0.4
K. Based on the thermal model described in Section 4.1.1, a net power transfer
from the emitter to the receiver beam across the vacuum gap can be inferred.

In addition, to confirm that such power transfer is the result of the piezo-
electrically mediated heat transfer (PEMHT), the results from the AlN devices
are compared with that of the SiN device with 500 nm vacuum gap, as shown in
Figure 33(c)12. The temperature of the SiN receiver beam exhibits only a small
change when the emitter is heated up to close to TE = 1 K, and its difference
to the bath temperature is nearly zero. Contrasting with the results measured
from the AlN devices, it is evident that piezoelectricity enables the power trans-
fer between the vacuum separated beams, and a conclusion can be stated that the
transferred power Q̇t is significantly enhanced when the material changes from
non-piezoelectric to piezoelectric.

12 The 600 nm gap SiN device has a similar result.



95

FIGURE 33 Measurement results from the main measurement. The temperature of the
thermometers are plotted as function of the heating power.

As has been derived and described in Section 4.1.1, the transferred power Q̇t
can be quantitatively determined from Eq.(178) by using the receiver parameters
KR and nR. Therefore, additional complementary measurements are performed
for each device after the main measurements, to extract the two device parame-
ters by fitting the results using either Eq.(177), or Eq.(176).

The results of both methods are presented in Figure 34, in which panel (a)
shows the numerical differentiation d∆Q̇H/dT′

R of the data, which is approxi-
mately equal to the differential thermal conductance of the beam GR(T′

R), as a
function of the heater temperature T′, whereas panel (b) demonstrates the ∆Q̇H
as a function of T′. Since the devices used in this work have identically designed
emitter and receiver beams, as well as their associated heaters and thermometers,
the main and complementary measurements can be interchanged, as well as the
roles of the emitter and receiver, and thereby the device parameters of both beams
can be determined. The T′ used here refers to the temperature of the beam that
the Joule heating is applied to in the respective complementary measurement. It
should also be noted that although the fitting of Eq.(177) requires one less param-
eter, the numerical differentiation introduces "noise-like" uncertainties into the
data, as can be seen from the plot in panel (a), in contrast to the data representing
Eq.(176) in panel (b). Nevertheless, the fitting results agree well with each other
as demonstrated in the plots, and the following discussion will focus on panel
(a).

The heat flow between the beam to the substrate via the respective support-
ing bridges is dominantly carried by phonons, and the corresponding thermal
conductance obtained from the measurement is plotted in Figure 34(a). Based on



96

FIGURE 34 The results of the main and complementary heating measurements pre-
sented in the form of (a) Eq.(177) and (b) Eq.(176) for extracting the device
parameters KR and nR. The dotted lines in panel (a) represent the maximum
phononic heat conductivity in the ballistic limit.
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Eq.(177), the presented thermal conductances are approximately equal to the dif-
ferential thermal conductance G(T′), the first term of the RHS of Eq.(177), since
the second term of the RHS is generally several orders of magnitude smaller. In
the said plots, the blue and orange points are the measured data from the 400
nm and 500 nm gap width AlN devices including both their emitter and receiver
beams, and the red and green points demonstrate both beams from the 500 nm
and 600 nm gap SiN devices. One finds that the thermal conductances of the
bridges at the temperature range between 0.1 K and 0.7 K are similar for both
AlN devices, for example they are about 7 × 10−11 W/K at 0.3 K, and scale with
a same power law ∼ T2.2 of the heater temperature. On the other hand, both SiN
devices have a lower thermal conductance, e.g. 2 × 10−11 W/K at 0.3 K, but scale
differently with temperature as ∼ T2.6 and ∼ T2.2 for 500 nm and 600 nm gap
widths. All the extracted device parameters Ka and na are listed in Table 4, and
the black dashed lines in both panels of Figure 34 are guides for the eye with the
exponents that are given in the plots.

Device Beam Prefactor K (W/Kn) exponent n
AlN 400nm Emitter 3.0 × 10−10 3.2

Receiver 3.1 × 10−10 3.2
AlN 500nm Emitter 3.1 × 10−10 3.2

Receiver 2.7 × 10−10 3.2
SiN 500nm Emitter 1.2 × 10−10 3.6

Receiver 1.2 × 10−10 3.6
SiN 600nm Emitter 1.0 × 10−10 3.2

Receiver 1.0 × 10−10 3.2

TABLE 4 Extracted device parameters.

The maximum phononic bulk heat conductivity in the ballistic limit can be
expressed as Gmax = 4σAT3 [Klitsner et al., 1988; Holmes et al., 1998], where
A = 8 µm2 is the total cross-sectional area of the supporting bridges in the devices
presented here, and σ = ∑α π2k4

B/120v2
αh̄3 [Swartz and Pohl, 1989] is the phonon

blackbody radiation summed for all the bulk modes α. The comparison between
the measured thermal conductance at 0.3 K of the devices and those computed in
the ballistic limit are listed in Table 5.

AlN at 0.3 K SiN at 0.3 K
Computed Gmax 1.6 × 10−10 W/K 1.4 × 10−10 W/K
Computed Gmax/A 20 W/m2K 18 W/m2K
Measured G 7 × 10−11 W/K 2 × 10−11 W/K
Measured G/A 8.8 W/m2K 2.5 W/m2K

TABLE 5 Comparison of the computed thermal conductance Gmax in the ballistic limit,
the computed specific conductance Gmax/A in the ballistic limit, the measured
thermal conductance G and the measured specific conductance G/A. A =

8 µm2 is the total cross-sectional area of the supporting bridges in the devices.
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With the AlN devices, an upper limit of Gmax = 1.6 × 10−10 W/K at 0.3 K
can be estimated using the phase velocity values from Tsubouch and Mikoshiba
[1985], in which two transversal modes have vt = 6016 m/s and one longitudinal
mode vl = 7891 m/s. Similarly, the SiN devices are expected to have an upper
limit of Gmax = 1.4 × 10−10 W/K at 0.3 K based on vt = 6200 m/s and vl =
10300 m/s from Holmes et al. [1998]. In addition, the heat conductance of ballistic
phonons in bulk scales with the temperature as ∼ T3, and it is presented in Figure
34(a) as the dotted lines for AlN (top) and SiN (bottom) using the phase velocities
given above. In contrast, the dashed lines, representing the measurement results
from all the devices, have lower thermal conductances and smaller temperature
exponents.

It has been shown by Kühn and Maasilta [2006] that the temperature expo-
nent of the ballistic thermal conductance (n − 1) is 1.5 for two-dimensional (2D)
phonon gas in the low-temperature limit. When the temperature increases, the
exponent recovers to 3, the three-dimensional (3D) result, in a continuous man-
ner. Meanwhile, when the supporting bridge (2D like) joins the bulk substrate
(3D), a strong scattering can occur as the dimension of the structure changes
abruptly, and thereby both the conductance and the temperature exponent are
modified further [Cross and Lifshitz, 2001; Zhou et al., 2009; Koppinen and Maasilta,
2009]. On the other hand, the extracted temperature exponents of the SiN devices
agree well with those measured from SiN membranes [Hoevers et al., 2005; Zen
et al., 2014], and the extracted specific heat conductance G/A = 2.5 W/m2K at
0.3 K is in agreement with the reported ∼ 2 − 16 W/m2K for SiN membranes
by Holmes et al. [1998] and ∼ 2 W/m2K by Zen et al. [2014]. For the AlN de-
vices, to the best of author’s knowledge, there are no similar experimental results
regarding the heat conductance in the ballistic regime.

FIGURE 35 Measured transferred heat between two beams determined using Eq.(178).
The standard deviation errors are presented as the colour-shadowed areas.

With the extracted device parameters listed in Table 4, the power transferred
between the two vacuum separated beams Q̇t can be determined using Eq.(178).
The results are presented in Figure.35, in which the 400 nm and the 500 nm gap
width AlN devices are plotted using blue and orange points, respectively, and
the 500 nm and 600 nm gap SiN devices are plotted with green and red points,
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respectively. There are clear differences in the transferred powers between the
two AlN devices. For example at 0.3 K, the 400 nm gap AlN device has a trans-
ferred power of 7 × 10−15 W across the vacuum, whereas the 500 nm gap device
has 4 × 10−15 W. Such differences can be observed over all the measured temper-
atures, and imply that the underlying heat transfer mechanism depends strongly
on the vacuum width. These results qualitatively agree with the PEMHT dis-
cussed in Section 3.5, which states that strong phonon tunneling can be achieved
when the separation of the piezoelectric solids is less than the length scale of
the characteristic phonon wavelength, i.e. about λT ≈ 1 µm for the transverse
phonon in AlN (v ≈ 6000 m/s) at 0.3 K, as computed from Eq.(171), and that the
transferred heat depends exponentially on the vacuum gap width. Conversely,
a direct phonon transport is mainly ballistic at low temperatures, and the associ-
ated power transfer is determined mostly by the interface scattering, rather than
the distance in the heat flow direction.

In contrast, the two SiN devices appear to have a similar transferred power,
roughly ∼ 1 × 10−15 W, much smaller than the AlN devices, and it exhibits
no clear dependency on the gap width. It is reasonable to attribute such re-
sults to the fact that SiN is non-piezoelectric, and thereby is incapable of en-
abling the PEMHT. Meanwhile, the near-field radiative heat transfer (NFRHT) of
SiN is strongly suppressed at such low temperatures, since the surface phonon-
polariton frequency is at 10 ∼ 30 THz[Cataldo et al., 2012], three orders of mag-
nitude higher than the dominant phonon frequency (h̄ωdom ≈ 2.8kBT[Ziman,
1960]) at sub-Kelvin temperatures, i.e. 17 GHz at 0.3 K, leading to an estimated
NFRHT of < 10−18 W. As a result, the comparison between the SiN and AlN de-
vices in Figure.35 strengthens the conclusion of the presence of piezoelectrically
mediated acoustic phonon tunneling.

However, there is still a finite transferred power observed in the measure-
ment results from the SiN devices, contradicting the expectation. Such power
seems to saturate at about 8 × 10−16 W when the emitter temperature is below
0.3 K, and the data exhibits a large uncertainty (the shadow areas). This likely
reflects that the precision of the measurements are limited at the femtowatt level,
and the possible error sources can be the noise from the room temperature elec-
tronics and the tunnel junctions, as well as the fluctuations of the bath tempera-
ture from the PID controller. However, above 0.3 K, there is a clear increase in the
transferred power, which could possibly be due to the NFRHT between the Au
leads that reside on each of the beams. The closest pair of Au leads across the vac-
uum are separated by 6 µm and each has a nominal thickness of 70 nm. This gives
rise to an estimated 4 × 10−17 W transferred power at 0.3 K, using a plane-plane
NFRHT model [Joulain et al., 2005]. Such a value could be an underestimation,
however, since the thickness of the Au lead is much smaller than the character-
istic wavelength of the photon at the temperature in question, thereby breaking
the plane-plane picture [Thompson et al., 2018]. Because the Au leads are iden-
tically designed for all devices, the same contributions from the Au NFRHT are
applicable to all four devices, and seem to become the dominant power transfer
mechanism for the SiN device at temperatures > 0.3 K. However, this Au NFRHT
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mechanism is much weaker than that of PEMHT, judging from the measurement
results, and these observations of the SiN devices will not undermine the conclu-
sion of the presence of PEMHT in the AlN devices.

Quantitatively, the two AlN beams can be described as two identically ro-
tated piezoelectric crystals with an orientation angle ϑ = 90◦, following the crys-
tal rotation method described in Section 2.1.513, and the PEMHT between them
can thus be theoretically estimated using Eq.(169) with a plane-plane area of
A = 124 × 0.5 µm2 (length×thickness), based on the device design. However,
such calculated transferred power levels are two orders of magnitude smaller
than the actual measured results demonstrated in Figure.35, where the theoreti-
cally estimated values are shown multiplied by a common factor of 400, plotted
as blue and orange dotted lines corresponding to the 400 nm and 500 nm gap
devices, respectively.

Such a big discrepancy between the experimental results and the theoretical
estimations could be attributed to several possible reasons. The first obvious one
is the breaking of the plane-plane geometry assumption, which has been taken
in the theoretical work here. The thickness of the suspended AlN beam (500 nm)
is significantly smaller than the other two dimensions (124 µm × 10 µm), making
the beam a more 2D-like structure. Furthermore, at the lowest temperatures, the
characteristic wavelength of thermal phonons can be even longer than the thick-
ness, e.g. λT > 500 nm at temperature lower than 0.5 K. As a result, the power
transmittance T from Eq.(165) could be strongly modified due to the breaking
of the plane-plane geometry assumption. What is more intriguing is that it has
been shown both theoretically [Fernández-Hurtado et al., 2018] and experimen-
tally [Thompson et al., 2018] that far-field radiative heat transfer can in fact be
enhanced by hundred-fold between two thin SiN plates with sub-wavelength
thickness at room temperature. Similar effect has not yet been investigated for
the acoustic phonon tunneling between the piezoelectric solids.

In addition, due to the thickness being in the sub-wavelength regime, the
bulk wave assumption14 also needs to be revised, since for thin plates the group
velocities differ from the bulk modes. Different phonon modes, for example dif-
ferent Lamb modes[Auld, 1990; Graff, 1991], can be excited and contribute to heat
transport.

Moreover, a possible presence of the acoustic gap waves can also contribute
to the enhanced heat transfer. Darinskii and Weihnacht [2006] investigated the
gap waves between two identical piezoelectric semi-infinite planes, and demon-
strated the excitation conditions of the gap waves. On the other hand, Pendry
et al. [2016] and Volokitin [2020] studied the contributions of the Rayleigh sur-
face wave to the acoustic wave tunneling between two non-piezoelectric solids,

13 In regard to the other two rotation angles, φ is equivalent to the incident phonon azimuth
angle and thus will be taken into account in the heat flux calculation, whereas ψ is omitted
due to the uniaxial symmetry of the AlN crystal.

14 In a thick solid, higher order plate phonon modes converge to the bulk modes, and the
average group velocities [Zen et al., 2014] of all the elastic modes resemble the velocities of
the bulk wave.
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and Volokitin [2020] suggested that the heat transfer due to the surface wave
coupling can be of the same order than the bulk waves. Meanwhile, this work
also concludes that the evanescent partial modes which propagate along the sur-
faces enhance the phonon tunneling (see Section.3.3.2), and a complete tunneling
of the incident phonon can be achieved when the reflected bulk partial modes
vanish (see Section.3.4.3). In particular, at such complete tunneling, the reflected
coupled-wave strongly resembles the Rayleigh-type surface wave (see Figure 15),
and the resonant tunneling condition Eq.(155) can also be related to the gap wave
condition Eq.(164) as a leaky gap wave.

FIGURE 36 Rough edges of the chemically etched AlN.

It is then maybe possible to excite the real (non-leaky) gap waves in the AlN
devices of this work, since the coupling between the thermal phonons and the
gap modes can perhaps be enabled on the rough side-surfaces of the suspended
beams. These rough surfaces were created via the chemical etching process of
the AlN crystal, as shown in Figure 36. Indeed, a similar effect has been studied
for NFRHT, in which the surfaces roughness allows the coupling between the
propagating waves and the surface phonon polaritons, leading to enhanced heat
transfer Biehs and Greffet [2010]; Xu et al. [2019].

In conclusion, the measurement results of the transferred heat between two
vacuum separated piezoelectric beams are not quantitatively agreeing with the
numerical estimations, which are computed from the PEMHT theory developed
in this work. The discrepancy is most likely caused by the simplifications used
in the model assumptions, namely the bulk wave assumption, the semi-infinite
plane assumption, and the assumption of omitting of the coupling between the
thermal phonons and the gap waves. Nevertheless, these results, in contrast with
the results measured from non-piezoelectric beams, qualitatively demonstrated
the presence of heat transfer associated with acoustic phonon tunneling between
piezoelectric solids, which is one of the core arguments of this work.



5 SUMMARY

Acoustic phonon tunneling between vacuum-separated solids is an intriguing
and not well-understood phenomenon. In this work, both theoretical and exper-
imental studies were carried out to investigate piezoelectrically mediated acous-
tic phonon tunneling and the associated heat transfer for arbitrarily oriented and
anisotropic crystals.

Chapter 2 set the foundations for the theory developed in this work, intro-
duced the basic terminologies, definitions and formulations that were used in
this dissertation. The most crucial part of that chapter was the introduction and
discussions of the main aspects of the extended Stroh formalism (Section.2.3), which
is an elegant and powerful mathematical tool to solve the scattering of an elec-
troacoustic wave on the solid-vacuum interface. In particular, several important
properties and propositions, which have been used for developing the theory of
acoustic phonon tunneling, were derived and presented. In addition, the gen-
eral crystal rotation method (Section.2.1.5), especially for the piezoelectric crystal
(Section.2.2.3) was explained, since this work intends to provide a general for-
malism applicable to arbitrarily oriented and anisotropic crystals.

The theoretical part of the work was presented in Chapter 3. This chapter
begun with a short review of the topic (Section.3.1), and then provided two ap-
proaches to solve the reflection and transmission coefficients for all partial wave
modes for the acoustic wave tunneling: one was a direct solution of the boundary
conditions (Section 3.2.2), the other was based on the physical picture of multi-
ple reflections of the evanescent modes in the vacuum gap (Section 3.2.3). The
usefulness and the workflow of these approaches were demonstrated with an ex-
plicit analytical solution, and a more general numerical example for two adjacent
wurtzite ZnO crystals, in Section 3.3. An interesting observation in the latter ex-
ample pointed out that there exist strongly enhanced, close to unity transmissions
of the acoustic phonon tunneling with an incoming slow transverse wave. This
part of the work has been published in Ref.[Geng and Maasilta, 2022a].

By advancing this formalism, three simple yet important relations [Eqs.(136),
(147) and (151)] regarding the scattering coefficients were discovered in Section
3.4.1. With these relations, the observed enhancement was then shown to be an
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exact unity transmission, and it was analytically proven. In particular, such com-
plete acoustic phonon tunneling was found to be a resonant pehnomenon, with a
simple resonance condition Eq.(155). In addition, the scattering coefficient r̄V
that dictates the resonance condition was discovered to be a material parame-
ter in Section 3.4.2, and it relates to the TM-wave surface impedance [Eq.(158)] and
the effective surface permittivity [Eq.(159)], and can also be used as a condition for
finding gap waves [Eq.(164)]. This part of the theory development was then con-
cluded with a set of demonstrations of numerical examples in Section 3.4.3. Not
only the unity transmission and where to find them were presented, but the un-
derlying physics of the resonant tunneling was discussed, with a close look on the
partial modes and the associated power transfer. This part of the work appears
in manuscript A.II [Geng and Maasilta, 2022b].

At the last part of the theoretical modeling, the formalism developed in
this work was utilized to derive the heat flux of thermal phonon tunneling be-
tween adjacent piezoelectric solids (Section.3.5). It was found that such piezoelec-
trically mediated heat transfer (PEMHT) depends strongly on the length scale of
the characteristic phonon wavelength λT and the gap width d, and only has a
significant effect when d < λT. The numerical examples in Section 3.5.2 demon-
strated the PEMHT as a function of gap width and temperature. In particular, the
PEMHT was shown to decay with gap distance much more slowly than those of
other acoustic phonon tunneling mechanisms, and can dominate the heat trans-
fer at cryogenic temperature ranges over other near-field heat transfer mecha-
nisms enabled by photon and phonon tunneling. This part of the work appears
in manuscript A.III [Geng and Maasilta, 2023b].

The experimental part of the work was presented in Chapter 4 and in manuscript
A.IV [Geng and Maasilta, 2023a]. The methodology of the experiment was ex-
plained first in Section 4.1.1. To be brief, a qualitative demonstration of the pres-
ence of PEMHT was carried out in the main measurement, which showed that heat-
ing of one suspended beam increases the temperature of another vacuum sepa-
rated suspended beam. A following complementary measurement, in which recip-
rocal heating was applied, was performed to quantitatively extract the heat flux
that was associated with phonon tunneling. The core devices and instruments of
the experiment, the superconducting junction heaters and thermometers (Section
4.1.2) and the cryostat (Section 4.1.3), were also briefly introduced as part of the
methods. After that, the design (Section 4.2.1) and fabrication (Section.4.2.2) of
the devices that have been measured in the experiment were described.

Finally, the measurement procedures (Section 4.3.1) and results (Section 4.3.2)
were presented and discussed. In the main measurements, upon heating one of
the suspended beams, the temperature rise of the unheated beam was observed
in the piezoelectric (AlN) device, but not in the non-piezoelectric device (SiN),
which qualitatively demonstrated the presence of PEMHT. However, the quanti-
tatively determined transferred powers did not agree with the estimations based
on the theory developed in this work, which led to a number of discussions on
the possible causes of the discrepancies at the end of the chapter.

The discrepancy discovered in the experiment calls on improvements of the
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theoretical work, and the most straightforward objective is to relax some of the
restrictive assumptions of the theory in the future. On the other hand, there are
also many intriguing experimental opportunities that can be carried out based on
the presented theoretical understanding, for example, quantitatively measuring
the heat transfer between larger plane-plane structures, comparing the PEMHT
between different piezoelectric materials, demonstrating the resonant tunneling
of the acoustic waves, etc.

In conclusion, the theoretical and experimental work presented in this dis-
sertation fills in many blanks in the understanding of acoustic phonon tunneling
mediated by piezoelectricity. The formalism and the approaches derived in this
work set the foundations for many future studies and applications of the elec-
troacoustic wave tunneling, for example, in phononic crystals, thermal switches,
phonon focusing, cryogenic near-field thermal imaging, optomechanics, quan-
tum information science and etc. With the advances in nanotechnology, the vac-
uum gap in many state-of-art devices and experiments have already achieved the
size where PEMHT is significant. It is the author’s genuine hope that this disser-
tation can contribute to the physical understanding of the phenomena at such
length scales, and can attract more attention to this topic.
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Acoustic wave tunneling across a vacuum gap between two piezoelectric crystals
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It is not widely appreciated that an acoustic wave can “jump” or “tunnel” across a vacuum gap between
two piezoelectric solids, nor has the general case been formulated or studied in detail. Here, we remedy that
situation, by presenting a general formalism and approach to study such an acoustic tunneling effect between
two arbitrarily oriented anisotropic piezoelectric semi-infinite crystals. The approach allows one to solve for the
reflection and transmission coefficients of all the partial-wave modes, and is amenable to practical numerical or
even analytical implementation, as we demonstrate by a few chosen examples. The formalism can be used in the
future for quantitative studies of the tunneling effect in connection not only with the manipulation of acoustic
waves, but with many other areas of physics of vibrations such as heat transport, for example.
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I. INTRODUCTION

Acoustic waves in solids (also known as elastic waves)
have many applications ranging from acoustic wave filters for
mobile phones, mechanical resonators for sensors, acousto-
optical modulators for optical signal processing, to ultrasonic
imaging devices, to name a few [1]. They are often generated
with the help of piezoelectric (PE) transducers, converting
an electrical signal to an acoustic wave, as piezoelectricity
couples acoustic deformations and electric fields [2,3]. This
also means that the elastic waves in piezoelectric materials are
not purely elastic but contain electric waves as a by-product.
To be more descriptive, such waves are sometimes also called
acoustoelectric or electroacoustic waves. The main very well
understood effect of piezoelectricity on the propagation of
acoustic waves is that the acoustic velocities are slightly
modified, due to the piezoelectric “stiffening” of the effective
elastic constants for wave propagation [2,3].

However, when considering wave transmission and reflec-
tion problems, another intriguing and much less widely known
effect due to piezoelectricity can happen: a bulk elastic wave
can be transmitted across a vacuum gap between two piezo-
electric solids. This transmission is not possible for purely
elastic waves, which by definition cannot exist in vacuum, but
is made possible by the evanescent electric-field components
of the electroacoustic waves extending into the vacuum gap.
The effect works for gap sizes of the order of the acoustic
wavelength, which is much longer than the length scale of
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other possible mechanisms that can couple bulk acoustic wave
energy across vacuum gaps in the nanometer to subnanome-
ter scale (such as van der Waals, Casimir, and electrostatic
interactions discussed in the context of heat transfer, see
Refs. [4–9]). As such, the phenomenon is highly analogous
to quantum-mechanical tunneling of a particle through a clas-
sically forbidden region, and for this reason, we also call
this effect “acoustic wave tunneling” or “phonon tunneling,”
terminology that was already introduced by others [7–11].

To our knowledge, acoustic wave tunneling mediated by
piezoelectricity was first discussed theoretically by Kaliski
[12] for the case of horizontally polarized shear (SH) waves
in a cubic piezoelectric crystal in the limit of zero gap width.
Later, in an important seminal work, Balakirev and Gorchakov
[13] extended the calculations for the same SH wave mode
for finite gap widths (with the cubic axes aligned with the
surfaces). They also provided results for hexagonal crystals
with the c6-symmetry axis oriented parallel to the surfaces,
still considering only the SH wave mode, and plotted ex-
amples for the transmission coefficient vs incident angle for
Bi12GeO20 (cubic) and LiIO3 (hexagonal). An important re-
sult of that study was that the transmission coefficient was
shown to be large and even approaching unity for angles close
to glancing incidence. An experimental study by the same
authors [10] with ultrasound ( f = 15 MHz) using LiIO3 crys-
tals confirmed the phenomenon with observed transmission
coefficients up to ≈0.5.

These early studies used the standard piezoelectrically
stiffened elasticity theory [3,14] and were focused on finding
explicit solutions, available only for the highest symmetry
crystal orientations and for the simplest wave modes, there-
fore providing only expressions with no generality.

Much more recently, Prunnila and Meltaus revisited the
topic in the context of thermal transport using a scattering
matrix approach [11] and provided results for energy trans-
mission coefficients as a function of the angle of incidence
and wave vector. However, their approach assumed isotropic

2643-1564/2022/4(3)/033073(18) 033073-1 Published by the American Physical Society
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properties of the materials, a simplified single component
piezoelectric tensor, no PE stiffening, and the results were
limited to a single symmetry direction of the “crystal.” Within
these approximations only two modes contribute.

On the other hand, to study anisotropic piezoelectric insu-
lators more generally, Barnett and Lothe [15,16] extended the
so-called sextic Stroh formalism, an elegant and mathemati-
cally powerful tool to analyze anisotropic elasticity [17–20],
to an eight-dimensional framework for arbitrary anisotropic
piezoelectric crystals. This extended Stroh formalism was
further developed by several authors [21–26] and has been
successfully applied from the analysis of reflection of bulk
electroacoustic waves [21–23] and anisotropic piezoelectric
surface acoustic waves (SAW) [16,27,28] to the gap waves
(GW) [29–31], which are surface waves guided and coupled
by a gap between two piezoelectric surfaces [32,33]. It has
also been used in material science applications for piezo-
electric ceramics and composites [34–36] and recently [37]
also to study the control SAW propagation using piezoelectric
phononic crystals [38].

Even though the framework of extended piezoelectric
Stroh formalism was developed some time ago, only a limited
number of investigations have been carried out to study the
phenomenon of bulk acoustic wave tunneling. Al’shits et al.
[29] introduced formally a general solution of reflection and
transmission coefficient for an incident slow quasitransverse
bulk wave. Later, Darinskii developed this framework fur-
ther [39,40] and investigated the reflection and transmission
mediated by the leaky gap wave [31]. In these studies, only
single transmitted bulk wave mode was considered, and the
resonance conditions of the leaky gap waves were usually
applied.

The purpose of this work is to demonstrate a general for-
malism and solution for transmission of elastic waves across a
vacuum gap that is applicable to any incident bulk wave mode
in any anisotropic crystallographic orientation. Furthermore,
an alternative approach to the direct solution will be presented.
In this method, the scattering problems of semi-infinite piezo-
electric half-spaces are solved independently for both crystals
using the extended Stroh formalism, and the reflection and
transmission coefficients of the tunneling are acquired with
a simple factor, which is determined from multiple reflections
of evanescent electric waves inside the vacuum gap. To our
knowledge, such an interpretation of acoustic wave tunneling
has not been discussed in literature, although the multiple
reflection picture has been widely adopted in the field of
near-field electromagnetic wave tunneling [41–43].

This work is organized as follows: We first briefly intro-
duce the main aspects of the extended Stroh formalism for
plane interface scattering problems using generally applicable
coordinate setup and plane-wave functions in Sec. II. The
tunneling problem for the plane-plane geometry is then solved
in Sec. III, first by directly applying the boundary conditions
to the Stroh eigenfunctions, then followed by the alternative
approach of using multiple reflection factor. In Sec. IV, we
then present a few illustrative examples: first an analytical
solution for a hexagonal crystal with a high-symmetry ori-
entation derived using both methods, and finally numerical
calculations of tunneling transmission coefficients for a cou-
ple of different crystallographic cuts of a hexagonal crystal

FIG. 1. (a) Schematic of the single interface scattering problem
with the coordinate system used, with the interface plane at z = 0 and
the sagittal plane at y = 0. The scattering and mode conversions of an
incident bulk slow transverse (ST) wave from the angle θi are shown,
with a hypothetical set of slowness surfaces. m and n are the unit
vectors of the x axis and z axis. Under the quasistatic approximation,
four wave modes are shown: longitudinal (L), fast transverse (FT),
slow transverse (ST), and quasistatic electric potential (E). (b) Two
piezoelectric media 1, 2 are separated by a vacuum gap of width d .

in different orientations. At the end in Sec. V, we present
conclusions and outlook on the applications of this study.

II. EXTENDED STROH FORMALISM FOR
SCATTERING PROBLEMS

We consider acoustic waves within the continuum
anisotropic linear elasticity theory. A bulk acoustic plane wave
with a wave vector k in an anisotropic piezoelectric medium
using Cartesian coordinates r = [x, y, z]T ([. . .]T stands for
transposition) is incident on an interface plane n · r = z = 0
between two media, with a plane of incidence (sagittal plane)
(n × m) · r = y = 0, where n is the unit normal vector of the
interface plane and m the unit vector parallel to the interface
and sagittal planes. With our coordinate system, they are
the unit vectors of the z axis and x axis, respectively [see
Fig. 1(a)]. Without losing generality, we always consider that
the incident bulk wave has a positive x component of the wave
vector kx > 0 and propagates in the sagittal plane (the wave
vector is contained in the plane), but the sagittal plane has
a rotational degree of freedom with respect to the normal of
interface plane (z axis).1 The piezoelectric medium is charac-
terized by its density ρ, piezoelectric stress tensor eiL, elastic
stiffness tensor at constant electric field cE

KL, and electric per-
mittivity tensor at constant strain εS

i j , where i, j = x, y, z are
the Cartesian coordinate indices and K, L = 1, . . . , 6 are the
abbreviated Voigt indices.

The sound velocities v = ω/k are typically more than four
orders of magnitude slower than the speed of light, therefore
it is possible and customary to apply the quasistatic approx-
imation [3] to the piezoelectric scattering problems, ignoring
the magnetic field. Under such conditions, the propagation of

1The sagittal plane has a rotational degree of freedom with respect
to the normal of the interface plane (azimuth angle), which is equiv-
alent to the rotation of the crystal azimuth angle ϕ. For the sake of
simplicity and to avoid the duplication of the effect of this degree of
freedom, we unambiguously take into account the azimuth angle by
the rotation of the crystal (see Appendix F).
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a time-harmonic plane wave ∝ exp(−ik · r + iωt ) with wave
vector k and angular frequency ω is governed by the elastic
equation of motion ∇ · σ = ρ∂2u/∂t2 and just one of the
Maxwell’s equations (Gauss’s law) ∇ · D = 0, which together
with the piezoelectric constitutive relations read in the matrix
notation [3]:

ikiKσK = ρω2ui,

−ikiDi = 0,

σK = −icE
KLkL ju j − ieK jk jΦ,

Di = −ieiLkL ju j + iεS
i jk jΦ,

(1)

where σ, u, D are the elastic stress, mechanical displacement,
and electric displacement fields, respectively, Φ is the electric
potential, and kiK is a 3 × 6 matrix defined by the wave-vector
components [3] (see Appendix A for more details). As usual,
repeated indices are summed.

An incident plane wave is scattered into a linear combina-
tion of partial waves at the interface, which are either reflected
or transmitted, and can also be inhomogeneous modes. [An
example where three reflected and transmitted homogeneous
bulk acoustic waves and an inhomogeneous electric potential
wave are generated is depicted in Fig. 1(a).] The general
solutions of such partial waves that satisfy the governing
equations can be written [21–23] as

u =
∑

α

bαAαe−ikx (x+pαz)+iωt ,

Φ =
∑

α

bαφαe−ikx (x+pαz)+iωt ,

n · σ = ikx

∑
α

bαLαe−ikx (x+pαz)+iωt ,

n · D = ikx

∑
α

bαDn
αe−ikx (x+pαz)+iωt ,

(2)

in which Aα , φα , Lα , Dn
α are normalized constants describing

the displacement (polarization vector), the electric potential,
the traction force and the normal projection of the electric
displacement of a partial wave mode α, respectively. bα is the
dimensionless amplitude of the partial wave, and p ≡ kz/kx

where kz and kx are the normal and parallel components of
the k vector. To avoid redundant writing in expressions, we
omit from now on the common phase factor exp(−ikxx + iωt )
shared by all solutions.

With the above partial-wave formulation, the solution
of the governing equations (1) reduces to determining the
eigenvalues pα and eigenvectors ξα of an eight-dimensional
eigenvalue problem [15,16] with a 8 × 8 real matrix N:

N(vx )ξα = pαξα, (3)

where the matrix N(vx ) depends on the phase velocity along
the interface vx ≡ ω/kx, a conserved quantity due to con-
tinuity conditions on the boundary, and the orientation and
material of the crystal. The eight-component eigenvector for
mode α is defined as ξα = [Aα, φα, Lα, Dn

α]
T . The derivation

of Eq. (3) with the detailed definition of N(vx ) is presented in
Appendix B.

The matrix N also satisfies the symmetry relation (T̂N)T =
T̂N, where the 8 × 8 matrix T̂ is given by

T̂ =
[

0̂ Î

Î 0̂

]
,

with Î and 0̂ the 4 × 4 unit and zero matrices, respectively
[17,18,44]. This relation provides an orthonormalization con-
dition:

ξT
α T̂ξβ = δαβ, α, β = 1, . . . , 8, (4)

where δαβ is the Kronecker delta and ensures a unique and
complete set of solutions for the extended Stroh eigenfunc-
tion.2

At this point it is good to point out that the above “Stroh-
normalization”, widely used in literature as it is, does not keep
the physical units (as ξT

α T̂ξα has units of force), but introduces
computationally useful “Stroh units.” This is not a problem,
as the units cancel out in the end if transmission and reflection
amplitudes are the observables to be calculated.

Totally eight partial-wave mode solutions can be obtained
from Eq. (3), containing complex eigenvalues pα = p′

α + ip′′
α

and the associated eigenvectors ξα with α = 1, . . . , 8 (with p′
α

denoting the real part and p′′
α the imaginary part). These partial

waves can be either homogeneous plane waves (p′′
α = 0) or

inhomogeneous waves (p′′
α �= 0). For an inhomogeneous wave

mode, the scattering direction of the wave is determined by the
imaginary part of the eigenvalue such that if p′′

α > 0 (p′′
α < 0)

the wave is transmitted (reflected), to ensure decaying solu-
tions at infinity. For a plane-wave mode, the direction of the
power flow normal to the interface is examined. By investi-
gating the time-averaged acoustic Poynting vector component
normal to the interface [21]

Pnα ≡ n · PAV,α = −ωkx

4
|bα|2ξT

α T̂ξ∗
α, (5)

one can determine which wave mode is transmitted (Pnα < 0)
or reflected (Pnα > 0).

If Stroh-normalization is used, Eq. (5) simplifies even fur-
ther for the bulk modes. For them, the eigenvalues pα are real,
which means that the eigenvectors are real as well, ξ∗

α = ξα ,
as N is real. We then have ξT

α T̂ξ∗
α = ξT

α T̂ξα = 1, and see from
Eq. (5) that the power transmission and reflection coefficients
(ratios of Poynting vector normal components) are simply
given by the ratio |bα/bin|2. This is one justification for the
usefulness of the used Stroh normalization.

2The above results are strictly true only if N is nondegenerate (has
a nonzero determinant). Slightly modified eigenvectors and normal-
ization conditions have been determined in the opposite case [28]
taking place at the exact conditions for a critical angle (transonic
state), where the reflected bulk wave carries energy only along the
interface. Our discussion is meant for the general case to facilitate
numerical computation, thus these conditions are special cases that
do not have to be considered here, as numerical computation can be
done very close to the exact conditions.
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III. BULK ACOUSTIC WAVE TUNNELING
ACROSS A VACUUM GAP

To formulate a generalized expression for bulk acoustic
wave tunneling across a vacuum gap between two adjacent
piezoelectric solids, we consider a geometry which consists of
two parallel semi-infinite piezoelectric half spaces (medium
1 and medium 2) separated by a vacuum gap of distance d ,
as shown in Fig. 1(b). Our modeling is not applicable for
nonpiezoelectric solids, or in situations where one or more
of the dimensions of the solids are smaller than the acoustic
wavelength in question (breakdown of the bulk wave assump-
tion), or when the gap size or solid dimensions are in the
atomic length scale (breakdown of continuum elasticity). The
incident wave is propagating towards the gap from the positive
z-coordinate direction in the sagittal plane, and the two solid-
vacuum interfaces are located at n · r = 0 and n · r = −d .

For a given incident wave propagating in a given crystal
orientation, the wave vector and phase velocity components
along the interface (kx and vx) are known. Therefore, the
unknowns left in the partial-wave solutions in Eqs. (2) are the
eigenvectors ξα and eigenvalues pα of the Stroh eigenequation
(3), as well as the amplitude factors bα . The eigenvectors and
eigenvalues can readily be solved with the knowledge of the
material, the crystallographic orientation and vx, whereas the
determination of bα requires solving the boundary conditions
of the solid-vacuum interfaces.

We assume for this study that both interfaces are mechan-
ically free and without electrodes or net charge density on
the surface, i.e., electrically free. For such a case, there are
conditions for the continuity of the electric potential and the
normal component of the electric displacement, giving for the
boundary conditions

Φ (i) = ΦV ,

n · D(i) = n · DV

n · σ (i) = 0,

, (6)

in which the superscript i = 1, 2 indicates the medium index
and the subscript V represents the fields in the vacuum gap.

In the vacuum region, the electric potential wave must
satisfy the Laplace equation ∇2ΦV = 0, which for the plane
waves leads to the condition k2

x + k2
z = 0. Thus, it can be

expressed in terms of two partial wave modes with kz = ±ikx.
Following the form of the general solutions for the electric
potential in Eq. (2) leads to a solution with decaying and
increasing exponentials [omitting the common phase factor
exp(−ikxx + iωt )]

ΦV = bV+φV+ekxz + bV−φV−e−kxz, (7)

and the normal component of the vacuum electric displace-
ment can then be calculated directly from DV = −ε0∇ · ΦV ,
giving

n · DV = −ε0kxbV+φV+ekxz + ε0kxbV−φV−e−kxz. (8)

From the form of solutions above, the analogy with
quantum-mechanical tunneling is apparent.

Comparing the result for the electric displacement in
Eq. (8) with the definitions of the Stroh formalism, Eqs. (2),
we see that the components for the electric displacement DV±

and for the potential φV± satisfy a simple relation DV± =
±iε0φV± . In addition, we have φV± = 1/

√±2iε0, as can be
readily calculated from the Stroh-normalization condition
2φV±DV± = 1 obtained from Eq. (4) by setting the vacuum
eigenvector components associated with the displacement and
traction force to zero: AV± = 0, LV± = 0.

By inserting the general solutions of Eqs. (2), (7), and (8)
into the boundary conditions in Eqs. (6), we obtain two sets
of linear equations to express the boundary conditions at both
interfaces as

b(1)
in U (1)

in +
4∑

α=1

b(1)
α U (1)

α = bV+UV+ + bV−UV− ,

4∑
α=1

b̃(2)
α U (2)

α = bV+UV+e−kxd + bV−UV−ekxd ,

(9)

in which we introduce a 5 × 1 column vector U (i)
γ =

[φ(i)
γ , Dn,(i)

γ , L(i)
γ ]T for the wave mode γ = in, α, where the

subscript in indicates the incident wave mode, α = 1, . . . , 4
corresponds to the four physically allowed wave modes in the
corresponding media i = 1, 2 (the reflected and transmitted
modes, respectively), and b̃(2)

α ≡ b(2)
α exp(ip(2)

α kxd ). AsU (i)
γ are

known and defined by the Stroh eigenvectors (more explicit
expressions can be found in Appendix C), Eqs. (9) can be used
to solve for the partial-wave amplitudes b(i)

α , bV± , giving us
finally the transmission and reflection amplitude coefficients
t (2)α ≡ b̃(2)

α /b(1)
in and r (1)

α ≡ b(1)
α /b(1)

in .
We have considered two approaches to solve Eqs. (9):

First, by directly solving the combined boundary conditions
of both interfaces with matrix algebra, and second, by using a
multiple reflection factor to connect the separate solutions on
each interface. Both approaches are discussed in the following
and give identical results. The choice of the method should be
based on which parameters are to be varied: In the case where
the incident wave is a variable, the first combined boundary-
condition method is more efficient, whereas if the gap size is
a variable, the second multiple reflection amplitude method is
more practical, as will become clearer below.

A. Combined boundary conditions approach

In the first approach, where the boundary conditions are
solved directly, we introduce two 8 × 5 matrices M1 and M2:

M1 =

⎡
⎢⎣

V −1
1 Ô(2×3)

Ô(3×2) Î(3)

Ô(3×2) Ô(3×3)

⎤
⎥⎦, M2 =

⎡
⎢⎣

V −1
2 Ô(2×3)

Ô(3×2) Ô(3×3)

Ô(3×2) Î(3)

⎤
⎥⎦, (10)

in which Ô(m×n) and Î(m) are the m × n zero matrix and
the m × m identity (unit) matrix. V 1, V 2 are 2 × 2 matrices
depending only on the wave-vector component kx along the
interface and the size of vacuum gap d:

V 1 =
[
φV + φV −
DV + DV −

]
, V 2 =

[
φV +e−kxd φV −ekxd

DV +e−kxd DV −ekxd

]
,

as we recall that both DV± and φV± are simply set by the
vacuum permittivity ε0: DV± = ±iε0φV± , φV± = 1/

√±2iε0.
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With the above definitions, the boundary conditions in
Eqs. (9) can then be written in the following compact form
(the detailed derivation can be found in Appendix C):

M
[
b(1)
1 , . . . , b(1)

4 , b̃(2)
1 , . . . , b̃(2)

4

]T = −M1U
(1)
in b(1)

in ,

where M is a 8 × 8 matrix constructed by joining four (α =
1 . . . 4) M1U (1)

α and four −M2U (2)
α 8 × 1 column vectors to-

gether as

M = [
M1U

(1)
1 , M1U

(1)
2 , M1U

(1)
3 , M1U

(1)
4 ,

− M2U
(2)
1 ,−M2U

(2)
2 ,−M2U

(2)
3 ,−M2U

(2)
4

]
. (11)

All the reflection coefficients r (1)
α ≡ b(1)

α /b(1)
in in medium 1

and all the transmission coefficients t (2)α ≡ b̃(2)
α /b(1)

in in medium
2 of the partial-wave amplitudes can therefore be solved si-
multaneously as[

r (1)
1 , . . . , r (1)

4 , t (2)1 , . . . , t (2)4

]T = −M−1M1U
(1)
in . (12)

We remark that, with the given materials, crystallographic
orientations, the size of the vacuum gap and the frequency,
the matrices M and M1 depend only on the wave-vector com-
ponent kx along the interface, which is a conserved quantity
for all partial-wave modes in a scattering problem. The de-
tailed information about the incident wave, such as the normal
component of the wave vector kz and the polarization Ain, are
defined separately in the column vector U (1)

in . This means that
the choice of the incident wave mode does not influence the
calculation M and M1, therefore those matrices are only com-
puted once for a given kx, and the reflection and transmission
coefficients for all the incident modes can readily be obtained
simply by changing U (1)

in .
In contrast, in the approach described by Ref. [29] in which

Cramer’s rule is used, the matrices used in equations (38) and
(39) of Ref. [29] have to be reconstructed and calculated each
time a new incident wave mode is given. This is because the
common columns of these matrices should be the eigenvector
solutions of all the transmitted wave modes except the incident
mode, to ensure the columns of the fully constructed matrices
are linearly independent. Furthermore, Cramer’s rule used
in Ref. [29] requires computation of n + 1 determinants to
solve n linear equations, which is considered computationally
inefficient compared with the single matrix inversion used in
Eq. (12) in our approach.

B. Multiple reflection approach

In the second, alternative approach, the reflected and trans-
mitted waves in both media can be considered to be coupled
by a superposition of multiply reflected evanescent electric
potential waves in the vacuum gap. A similar picture has been
adopted before in the description of the analogous “photon
tunneling”, in other words the frustrated total internal reflec-
tion phenomenon for electromagnetic waves in optics [45,46].

In this approach, we define two 5 × 2 scattering matrices
S(1) and S(2) for the two vacuum-solid interfaces (connect-
ing the incoming and outgoing partial wave amplitudes for
all modes), calculated separately for each interface [for the
definitions, see Appendix D, Fig. 6 and Eq. (D1)]. These scat-
tering matrices are generalized in the sense that they include
evanescent modes, in particular the two evanescent vacuum

gap modes. As shown in Appendix D, the resulting scattering
matrices are

S(1) =
[

r̄(1) t̄ (1)

t̄ (1)V r̄ (1)
V

]

= [
U (1)

1 , . . . ,U (1)
4 ,−UV+

]−1[−U (1)
in ,UV−

]
,

S(2) =
[

r̄(2) t̄ (2)

t̄ (2)V r̄ (2)
V

]

= [
U (2)

1 , . . . ,U (2)
4 ,−UV−

]−1[−U (2)
in ,UV+

]
, (13)

where r̄(i) = [r̄ (i)
1 , . . . , r̄ (i)

4 ]T are the reflection amplitude coef-
ficients into modes α = 1, . . . , 4 of the incoming wave mode
from medium i = 1, 2, r̄ (i)

V the reflection amplitude coeffi-
cient from medium i of an incoming vacuum mode, t̄ (i) =
[t̄ (i)1 , . . . , t̄ (i)4 ]T the transmission amplitude coefficients of an
incoming vacuum mode into wave modes α = 1, . . . , 4 of
medium i, and finally, t̄ (i)V the transmission amplitude coef-
ficient of the incoming wave mode from medium i into a
vacuum mode. To avoid confusion with the coupled scattering
coefficients calculated with the direct approach in Sec. III A
[Eq. (12)], we have used bars on the top of the symbols
here. These “bare” coefficients describe the scattering of the
electroacoustic wave as if there is no second bulk medium
and will be used below to construct the total tunneling trans-
mission and reflection coefficients with the help of a multiple
reflection factor generated by the vacuum gap.

The total transmission factor consists of sum of partial
evanescent waves in the gap that have traversed the gap once,
reflected at both interfaces and traversed the gap three times,
and so on. We therefore get a geometric series for the total
transmission coefficient into mode α, t (2)α as

t (2)α = t̄ (1)V e−kxd t̄ (2)α + t̄ (1)V r̄ (1)
V r̄ (2)

V e−3kxd t̄ (2)α

+ t̄ (1)V

(
r̄ (1)

V

)2(
r̄ (2)

V

)2
e−5kxd t̄ (2)α + · · ·

= t̄ (1)V t̄ (2)α e−kxd

1 − r̄ (1)
V r̄ (2)

V e−2kxd
,

where an attenuation factor e−kxd due to the wave path has
been included each time wave passes through the gap. We
can also calculate the total reflection coefficient the same way.
Collecting in both cases the common multiple reflection factor

fm(d ) = e−kxd

1 − r̄ (1)
V r̄ (2)

V e−2kxd
, (14)

we arrive at the expressions for the total transmission and
reflection coefficients t (2)α and r (1)

α from the input mode into
the mode α = 1, . . . , 4 in medium (2) (transmission) or in (1)
(reflection):

t (2)α = t̄ (2)α t̄ (1)V fm(d ), (15)

r (1)
α = r̄ (1)

α + r̄ (2)
V t̄ (1)α t̄ (1)V fm(d )e−kxd . (16)

We have checked that the results of the multiple reflection
approach are identical to our previously derived scattering
coefficients determined using the first, combined boundary
conditions approach. The main difference is that in this second
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FIG. 2. Wurtzite hexagonal crystal orientations used in the illustrative examples. (a) In the analytical example (Sec. IVA), the vacuum gap
is cut through the a plane [112̄0] of the crystal. The azimuthal angle ϕ = 0 and the polarization of the wave is aligned with the crystallographic
c axis. (b) In the first numerical example, vacuum gap is also cut through the a plane [112̄0] of the crystal, while the azimuthal angle is rotated
from 0◦ to 360◦ with respect to the z axis. (c) In the second numerical example, the vacuum gap is cut through the n plane [112̄3] of the crystal.
The crystallographic c axis is no longer parallel to the interface plane, while the azimuthal angle is rotated from 0◦ to 360◦ with respect to the
z axis.

approach, the gap distance d is completely separated from
the calculation of the matrices. For given materials, crystal
orientations and the incident wave, the scattering matrices S(1)

and S(2) are independent of the gap distance, and the effects
of the gap to the scattering coefficients can easily be obtained
through the explicit factor fm(d ). This makes the computation
as a function of the gap distance easier, as the scattering
matrices are computed only once. In addition, the multiple
reflection approach provides an alternative physical picture
of the phenomenon of tunneling of acoustic waves through a
vacuum gap, analogous to the near-field electromagnetic wave
“tunneling” (frustrated total internal reflection) [45,46]. To the
authors’ knowledge, this multiple reflection picture has not
been described in the literature before for the problem of bulk
electroacoustic wave tunneling.

IV. ILLUSTRATIVE EXAMPLES

In this section, we provide some example calculations, first
for a rare case that is analytically soluble. After that, we
provide a limited set of examples of numerical results for a
hexagonal ZnO crystal with varying crystal orientation. The
results are not meant to be exhaustive, as the main focus of this
work is the introduction of the formalism and the workflow
how solutions can be obtained.

A. Analytical example for an incident fast transverse bulk wave

Generally speaking, for crystals with arbitrary anisotropy
and orientation, it is not possible to obtain simple analytical
expressions for the reflection and transmission coefficients
for bulk acoustic wave tunneling. However, for some particu-
lar incident modes and high-symmetry crystal configurations,
analytical solutions can be acquired. In this section, we
demonstrate results for such an example: a fast transverse (FT)
incident bulk wave scattering from a gap structure between
two identical wurtzite hexagonal crystals (6mm symmetry)

with the same crystal orientation. The acoustic polarization
direction of the incident wave is aligned with the crystallo-
graphic c axis, which is perpendicular to the sagittal plane
[see Fig. 2(a)], in other words the c axis is aligned with the
solid-vacuum interface planes. With such a high-symmetry
configuration, one could also call the incident wave mode a
horizontally polarized share wave (SH).

With the above configuration, there is no mode conver-
sion and only acoustic waves with the same polarization
can be excited and scattered [3], therefore the matrix N in
the eigenequation (3) simplifies to a 4 × 4 matrix and the
eigenvectors are four-vectors [uy, φ, Lyz, Dn]T (for details, see
Appendix E):

N(vx ) =

⎡
⎢⎢⎢⎣

0 0 − ε11
ε11c44+e215

e15
ε11c44+e215

0 0 e15
ε11c44+e215

c44
ε11c44+e215

c44 − ρv2
x −e15 0 0

−e15 −ε0 0 0

⎤
⎥⎥⎥⎦. (17)

The phase velocity along the interface vx contained in N
can easily be found using the dispersion relation (c44 +
e215/ε11)k

2 = ρω2 [3] and the definition of the incident angle
θi in vx = v sin θi:

v2
x = ε11c44 + e215

ε11ρ sin2 θi
.

A set of four eigenvalues (pα = ± cot θi and ±i) and eigen-
vectors can be obtained, corresponding to two homogeneous
(transverse modes) and two inhomogeneous (evanescent
modes) partial waves. In particular, the particle displacement
fields vanish in the solutions of inhomogeneous waves, but
their stress fields exist. In contrast, for the bulk modes, the
electrical displacement fields vanish, but not the electrical
potential (Appendix E).

Matrix M can be constructed following our first approach
and obtained using straightforward algebra as

M = 1

2

⎡
⎢⎢⎢⎣

−U i(ε0 − ε11)V −iUekxd −(ε0 + ε11)Vekxd

iU (ε0 + ε11)V −Ue−kxd i(ε0 − ε11)Ve−kxd

−i
√
2ε11B −i

√
2iε11A 0 0

0 0 −√
2ε11B −√

2iε11A

⎤
⎥⎥⎥⎦,
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FIG. 3. (a) Dependence of the magnitude of the amplitude transmission coefficients |tFT|, from Eq. (19), of a fast transverse wave tunneling
between two ZnO crystals aligned as in Fig. 2(a), as a function of the incident angle θi, with three different values of kd = 0.01, 0.1, 1,
where d is the gap width and k the incident wave-vector magnitude. The inset zooms into the glancing angles. (b) Dependence of the peak
transmission angle θ0 (left axis) on kd , with the right axis showing the corresponding |tFT| at θ0. (c) Colored contour plot of the magnitude of
the transmission coefficient |tFT| in a logarithmic scale versus incident angle θi and kd .

where A = e15/ε11, B2 = (A2 + c44/ε11) cot θi, {B ∈ �|B �
0}, U = i

√
iε0A/

√
ε11B, and V = 1/

√
ε0ε11.

The exact solutions of the reflection and transmission co-
efficients of the fast transverse partial wave mode can be
obtained from Eq. (12):

rFT = 2iA2ε0
Q+e2kxd − Q−
Q2+e2kxd − Q2−

− i, (18)

tFT = −4iA2B2ε0ε11ekxd

Q2+e2kxd − Q2−
, (19)

where

Q± = A2ε0 − iB2(ε0 ± ε11).

The alternative approach we presented in Eqs. (13)–(16)
provides identical solutions, where the half-space scattering
coefficients read

r̄ (1)
FT = iA2ε0 − B2(ε0 + ε11)

Q+
,

r̄ (1)
V = iQ−

Q+
, r̄ (2)

V = −iQ−
Q+

,

t̄ (1)V = t̄ (1)FT = t̄ (2)FT = 2iAB
√

iε0ε11
Q+

,

and the multiple reflection factor is

fm(d ) = Q2
+ekxd

Q2+e2kxd − Q2−
. (20)

Figure 3(a) shows plots of the magnitudes of the tunneling
transmission coefficients |tFT| of the fast transverse SH wave
[calculated from Eq. (19)] across a vacuum gap structure sep-
arating ZnO crystals with 6mm hexagonal symmetry oriented
as in Fig. 2(a), as a function of the incident angle θi, with
three different scaled vacuum gap values kd , where k is the
magnitude of the incident wave vector. The ZnO material
constants adopted in the calculation are ρ = 5680 kgm−3,
c44 = 4.247 × 1010 Nm−2, e15 = −0.48 Cm−2, and ε11 =
8.55ε0 [3]. The main observation is that transmission remains
modest, except at small glancing angles (near 90◦ incidence),
where a maximum can be found at θ0. For small enough
gaps with kd < 1, this transmission peak approaches unity.
The peak transmission condition can be found by setting the
real part of the denominator in Eq. (19) to zero, giving an
equation for θ0:

B4 ≡ (A2 + c44/ε11)
2

tan2 θ0
= A4ε2

0 (e
2kxd − 1)

(ε0 + ε11)2e2kxd − (ε0 − ε11)2
. (21)

Furthermore, when the gap size approaches zero, the trans-
mission coefficient, Eq. (19), is simplified to the expression
tFT = A2/(A2 − iB2), which approaches unity when θ → 90◦.
Conversely, our expressions demonstrate that the transmission
is never mathematically exactly one for a finite gap size.

Similar analytical results for an incoming SH mode for
the same crystal orientations have also been demonstrated for
LiIO3 (hexagonal class 6 symmetry) and Bi12GeO20 (cubic
class 23 symmetry) by Balakirev and Gorchakov [13], who
attributed the peak transmission to phase matching of the
incident and transmitted waves. They did not, however, give
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explicit formulas for 6mm symmetry. For the lower class 6
symmetry of their study, they showed that a range of angles
can be found for complete transmission with a finite small gap
size, in contrast with our findings for the 6mm-symmetry case.

Figure 3(b) gives a closer look of the angle of maxi-
mum transmission θ0 and its corresponding peak transmission
value. The range of angles that can satisfy the condition is
tightly limited to lie within a range of 0.4 degrees, and with an
increasing gap size beyond the characteristic length kd ≈ 1,
the peak transmission quickly drops to zero. The dependence
of the transmission coefficient on the gap size is more clearly
presented in Fig. 3(c). The bulk acoustic wave tunneling is
switched off at about kd � 1, whereas the transmission is
saturated for gap sizes smaller than about kd � 10−2. The
smallest incident angles providing a transmission factor larger
than 10% are around ≈60◦ for small gaps.

B. Numerical results for arbitrarily oriented
hexagonal ZnO crystals

The reflection and transmission coefficients of arbitrarily
oriented crystals can also be obtained numerically by follow-
ing our theoretical approach. Here, we demonstrate two sets of
results (two cuts) for hexagonal 6mm ZnO crystals that been
cut into two pieces and separated by a vacuum gap of distance
d . In other words, we only consider here that the two crystals
have the same orientation.

Due to the uniaxial symmetry, the orientation of the crys-
tals can be fixed by just two angles: the crystal zenith angle ϑ

and the crystal azimuth angle ϕ [see Fig. 7(b)]. The details of
the definition of the crystal orientation, the rotation procedure
and the transformations of the material tensors are described
in Appendix F. Both semi-infinite bulk crystals share this
identical crystal orientation in which the zenith angle ϑ is
fully determined by the plane of the cut (see Appendix H for
the common cut planes for a hexagonal crystal), whereas the
rotation of the crystal azimuth angle ϕ is equivalent to the
rotational degree of freedom of the incident wave (the orien-
tation of the sagittal plane) around the normal of the interface
plane. The incident wave has two degrees of freedom: One
is the incident angle θi that resides inside the sagittal plane
and varies from 0◦ to 90◦. The other is the incident azimuth
angle that varies from 0◦ to 360◦. For the cases demonstrated
in this section, the rotation of the crystal azimuth angle ϕ

can be considered either as a change of the incident wave
azimuth angle, or a change of the crystal orientation. In the
computations here, we implemented it as a rotation of the
crystal, to avoid duplication.

The numerical algorithms were implemented by using the
Anaconda Python distribution. Here, we briefly explain the
workflow of the implementation of the combined boundary
condition approach presented in Sec. III A. A set of input
parameters specifying the material constants (tensors εS

0, e0,
cE
0 , and scalar ρ, values from Ref. [3]), the crystal orientation

(ϑ, ϕ), the gap distance d , and the incident angle θi and the
mode of the incident bulk wave are first given. With the
material constants and crystal orientation, the rotated material
parameters (εS , e, cE ) can be obtained by using the formula-
tion described in Appendix F.

Knowing the rotated material parameters and the incident
angle and mode, the parallel component of the incident wave
phase velocity vx is solved from the piezoelectrically stiffened
Christoffel equations (for details, see standard textbooks, e.g.,
Refs. [2,3]). By combining the rotated material constants and
the phase velocity vx, the 8 × 8 Stroh matrix N(vx ) given by
Eq. (B9) can be constructed, whose eigenvalues pα and eigen-
vectors ξα are then solved from Eq. (3). The orthogonality
of the eigenvectors are then checked and they are normalized
using the Stroh-normalization condition, Eq. (4).

At this point, we can begin to solve the boundary-condition
problem of Eq. (9). By following our first approach, two 8 × 5
vacuummatrices M1 and M2 can be constructed from Eq. (10)
based on d and vx; the 8 × 8 matrix M can be formed by
combining the vacuum matrices and the eigenvector solu-
tions of the Stroh matrix; and the column vector U (1)

in can be
constructed from the incident mode eigenvector ξin. Finally,
with these computed matrices, the transmission and reflection
coefficients of the incident bulk electroacoustic wave can be
acquired from Eq. (12). The computational time of each of
the above processes took less than 1 ms, with an overall time
less than 5 ms using a standard modern laptop. A set of results
with a two varying incident angles, as shown in Figs. 4 and 5
then took 6 minutes each.

In the first set of results, shown in Fig. 4, we start from an
a-plane-cut crystal with ϕ = 0◦, which describes an orienta-
tion that is identical to the analytical example in Sec. IVA.
Then, we gradually rotate the crystal orientation around the z
axis, the normal of the interfaces, from ϕ = 0◦ → 360◦ [see
Fig. 2(b)].

We have chosen to plot just the most interesting exam-
ple cases in Fig. 4, as our goal here is to demonstrate the
capabilities of the formalism. We plot the magnitudes of tun-
neling amplitude transmission coefficients |tα| of incident fast
transverse (FT) and slow transverse (ST) wave modes, and
their mode converted transmission amplitudes (i.e., FT → FT,
FT → ST, ST → ST, ST → FT), as a function of the incident
angle θi and the rotation angle ϕ, keeping the scaled gap kd =
10−2 constant. (The mode assignment process is discussed in
Appendix G). In comparison with the FT and ST modes, the
transmission of the L mode is much weaker, does not show
as many interesting features, and we choose not to use it as
an example here. In addition, we plot the critical incident
angles, beyond which a faster reflected partial-wave mode
becomes evanescent. Thus, for the incident FT mode, only one
critical angle exists, where the L mode becomes evanescent
(θLc ), whereas for the incident ST mode, there are two critical
angles: for the L mode θLc and for the FT mode θFTc .

Since for this first crystal orientation example the az-
imuthal rotation axis ϕ is perpendicular to the crystal uniaxial
c axis, we expect and observe a mirrored twofold symme-
try in the plots. With an incident FT mode, several isolated
high transmission areas are observed, and they are primarily
located at small glancing angles (large θi) around high-
symmetry orientations. In particular, the line segment of ϕ =
0◦ and θi ∈ [0◦, 90◦] for FT → FT represents the same results
as already discussed in the analytical calculation in Sec. IVA.
However, with crystal orientations around ϕ = 90◦ and 270◦,
the high transmission region lies just after the critical angle
θLc . Another general observation is that for both modes, the
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FIG. 4. The magnitudes of amplitude transmission coefficients |tα| across a vacuum gap (color scale) of an a-plane-cut ZnO crystal (1120)
versus incident angle θi and z axis rotation angle ϕ for a scaled gap kd = 10−2. Two different incident wave modes (FT, ST) and two transmitted
wave modes (FT, ST) are demonstrated: (a) FT-to-FT, (b) FT-to-ST, (c) ST-to-ST, and (d) ST-to-FT transmission. θLc (dashed) and θFTc (dotted)
are the critical angles for scattered L and FT wave modes. Note that panel (d) has a different logarithmic scale, as in the mode conversion
|tα| > 1 is possible.

FIG. 5. The magnitudes of amplitude transmission coefficients |tα| across a vacuum gap (color scale) of an n-plane-cut ZnO crystal (1123)
versus incident angle θi and z-axis rotation angle ϕ, for a scaled gap kd = 10−2. Two different incident wave modes (FT, ST) and two
transmitted wave modes (FT, ST) are demonstrated: (a) FT-to-FT, (b) FT-to-ST, (c) ST-to-ST, and (d) ST-to-FT transmission. θLc (dashed)
and θFTc (dotted) are the critical angles for scattered L and FT wave modes. Note that panel (d) has a different logarithmic scale, as in the mode
conversion |tα| > 1 is possible.
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transmission is significantly enhanced when θi is beyond θLc ,
as more energy is then concentrated near the interfaces.

With an incident ST mode, in contrast, a narrow high trans-
mission “resonance” exists close to the critical angle of the FT
partial waves (θFTc ) in the first intersonic interval, and is sig-
nificantly enhanced around ϕ = nπ/3, n = 1, 2, . . .. Such a
resonant transmission could be interpreted as arising from the
excitation of leaky surface wave modes coupling across the
gap [31]. In addition to resonant features, “antiresonances,”
or sharp dips, can also be observed in the transmission. In
particular the u-shaped feature between ϕ ≈ 20◦ . . . 160◦ and
ϕ ≈ 200◦ . . . 340◦ is prominent in all plots.

In the second crystal cut example of Fig. 5, we demonstrate
the same FT and ST mode results for ZnO, but which is now
initially cut from a crystallographic plane of {112̄3} [n plane,
see Fig. 2(c) and Appendix H for common cut planes for
a hexagonal crystal]. The change in the crystal orientation
dramatically distorts the amplitude transmission as a function
of both θi and ϕ. The twofold symmetry with respect to ϕ

rotations is lost, and with an incident FT mode, the transmis-
sion is generally attenuated compared with the a-plane results.
To understand this, we consider for example the case ϕ = 0
in the n-plane crystal cut, for which the incident FT mode
is a quasitransverse mode which now couples to all other
acoustic modes at the interface. As a result, the FT → FT
transmission is attenuated, while the mode converted FT →
ST transmission increases. In contrast, with the a-plane cut the
incident FT mode wave is a pure horizontal shear wave (SH),
as described in the analytical example, leading intuitively to
a stronger FT → FT transmission and vanishing FT → ST
transmission. Furthermore, it is interesting to see that, with
an incident ST mode, significant transmission resonance just
beyond the FT wave critical angle θFTc still survives as a
robust feature also for the n cut. As mentioned above, this can
be interpreted as excitation of coupled leaky surface waves
between the vacuum interfaces [31].

V. CONCLUSIONS AND OUTLOOK

We have shown that in general, bulk acoustic waves can
be transmitted (“tunnel”) across a finite vacuum gap between
two piezoelectric crystals. This mechanism works not only
in the nanoscale, but also for large gap widths of the order
of the wavelength. Here, we presented a rigorous general
approach and formalism that can be applied to study this effect
for any anisotropic piezoelectric crystals with arbitrary crys-
tallographic orientation, acquiring the solutions of reflection
and transmission coefficients of all the partial waves. The
extended Stroh formalism, briefly reviewed for the benefit of
the reader, was used as a powerful tool to solve in general
the scattering of an electroacoustic wave on the solid-vacuum
interface. Two new approaches to solve the reflection and
transmission coefficients of the coupled tunneling problem
(two interfaces separated by a gap) were then derived: one
based on the direct solution of the boundary conditions, the
other on the physical picture of multiple reflections of evanes-
cent waves in the vacuum gap. In particular, the multiple
reflection method provides a physical insight of the acoustic
tunneling that is analogous to near-field tunneling of evanes-
cent electromagnetic waves. In this picture, the effect of the

vacuum gap size on the reflection and transmission coeffi-
cients is conveniently separated and described by a single
multiple reflection factor, offering a potential computational
advantage.

To verify the usefulness and validity of the methodology,
explicit example solutions for the case of two adjacent ZnO
wurtzite hexagonal crystals were demonstrated. First, we pre-
sented analytical results for a fast transverse incident mode
and high-symmetry crystal orientation. Simple expressions for
the transmission and reflection coefficients and the multiple
reflection factor were derived, and an explicit mathematical
condition for the peak transmission was also presented. We
made the observation that tunneling transmission is not neces-
sarily small: For small glancing angle incidence, transmission
was approaching one for gap sizes smaller than the wave-
length.

Second, we described the workflow for numerical imple-
mentation for an arbitrary orientation and presented some
numerical results for two cases of anisotropic ZnO crystals
(two different crystal cut surfaces). We plotted the transmis-
sion coefficients of the fast and slow transverse partial modes,
as well as the conversion between them, against the incident
angle and the crystal azimuth rotation angle. In the numeri-
cal examples, we also find close to unity transmissions, and
not only for small glancing angles. Such cases were mostly
observed in the vicinity of the critical angles of the scat-
tered partial-wave modes, where they become inhomogeneous
surface modes. The enhancement of tunneling transmission
was a particularly sharp and strong feature (resonance) for
an incoming slow transverse wave with an incident angle just
beyond the critical angle for the fast transverse wave, where
coupled leaky surface waves can be excited.

With the formalism and the approaches derived in this
work, we have set the foundation for many further studies
of electroacoustic wave tunneling. The first straightforward
objective is to map and understand the conditions for ex-
ceptionally high transmission, as there are indications of the
possibility of complete acoustic wave tunneling. In addition to
direct applications in the manipulation of acoustic waves, our
formalism can be applied in the future in other areas of physics
related to vibrations, such as heat transport, optomechanics,
and quantum information science.
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APPENDIX A: PLANE-WAVE EQUATIONS OF MOTION
AND CONSTITUTIVE EQUATIONS IN QUASISTATIC

APPROXIMATION

Here we clarify the definitions of the variables in Eqs. (1),
presented in the abbreviated (Voigt) matrix notation. The first
equation in the set, the acoustic field equation, reads in general
(if no external body forces are present)

∇ · σ = ρ
∂2u
∂t2

,
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where σ is the stress tensor and u is the displacement vector.
Transforming it into the abbreviated Voigt notation, where the
capital Voigt index K runs over six coordinate pairs K = xx,
yy, zz, yz, xz, xy, will result in a matrix equation ∇iKσK =
ρ ∂2ui

∂t2 where the index i denotes the usual Cartesian compo-
nent and repeated indices are summed. Thus, ∇iK defines a
3 × 6 differential operator matrix [see, for example, Ref. [3]
Eq. (2.36) for an explicit expression]. For harmonic plane
waves, such an operator is replaced by a 3 × 6 matrix formed
by the wave-vector components −ikiK , explicitly defined as
[3]

k̂ =

⎡
⎢⎣

kx 0 0 0 kz ky

0 ky 0 kz 0 kx

0 0 kz ky kx 0

⎤
⎥⎦, (A1)

and the second derivative w.r.t time is replaced by −ω2, yield-
ing the first equation in Eq. (1) in the main text,

ikiKσK = ρω2ui. (A2)

The second equation, Gauss’s law ∇ · D = 0, is the only
Maxwell’s equation that needs to be satisfied within the qua-
sistatic approximation. It contains the usual vector divergence
operator, and it can directly be written in the component form
as ∇iDi = 0, which gives for the plane waves the equation in
the main text,

−ikiDi = 0, (A3)

where ki are now simply the Cartesian components of the
wave vector.

The third and the fourth equations in Eqs. (1) are the
constitutive relations for piezoelectrics, coupling the elastic
and electric variables. They are given in abbreviated notation
for the stress as σK = cE

KLsL − eK jE j and for the electric dis-
placement Di = εS

i jE j + eiLsL, where sL is the strain tensor,
Ei is the electric field, and cE

KL, eK j , and εS
i j are the material

parameters: the elastic stiffness tensor at constant electric
field, the piezoelectric strain tensor, and the electric permit-
tivity tensor at constant strain, respectively. The constitutive
relations simplify in the quasistatic case by writing them in
terms of the displacement ui and the electric potential Φ,
sL = ∇L ju j , Ei = −∇iΦ, and as before for the plane waves
the differential operators can be substituted by ∇L j → −ikL j ,
∇i → −iki, which lead to the forms presented in Eqs. (1):

σK = −icE
KLkL ju j − ieK jk jΦ,

Di = −ieiLkL ju j + iεS
i jk jΦ. (A4)

APPENDIX B: EXTENDED STROH FORMALISM

In this Appendix, we provide the derivation for the
piezoelectric Stroh eigenequation, Eq. (3), in the quasistatic
approximation, including all necessary definitions, and pro-
vide a few remarks about the normalization. Under the
framework of the quasistatic approximation, one can derive
the normal projections of the stress and electric displacement
fields using the piezoelectric constitutive equations in Eq. (1)

as

n · σ = −iniK cE
KLkL ju j − iniK eK jk jΦ,

n · D = −inieiLkL ju j + iniε
S
i jk jΦ, (B1)

where ni is the ith Cartesian component of the inward unit
normal vector n of the piezo-vacuum surface, and the 3 × 6
matrix niK has the same structure as kiK , but is now formed by
the unit normal components ni, explicitly written as

n̂ =

⎡
⎢⎣

nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0

⎤
⎥⎦. (B2)

If we introduce a matrix expression (nk) for a 4 × 4 matrix
that is defined as

(nk) ≡
[

niK 0

0 ni

][
cE

KL eK j

eiL −εS
i j

][
kL j 0

0 k j

]
, (B3)

where the elements of the matrices represent submatrices
instead of scalars (niK represents the matrix n̂, etc.), it is
straightforward to show that Eqs. (B1) can be written in the
following more compact notation:[

n · σ

n · D

]
= −i(nk)

[
u

Φ

]
. (B4)

By adopting the general field solutions for a mode α in
Eqs. (2) and decomposing the k vector k = kx(m + pαn) us-
ing the two orthogonal unit vectors m and n, where m is
parallel to the piezo-vacuum interfaces, we can further arrange
Eq. (B4) into a form where the unknown pα is separated into
the right-hand side of the equation:

−(nn)−1(nm)

[
Aα

φα

]
− (nn)−1

[
Lα

Dn
α

]
= pα

[
Aα

φα

]
. (B5)

The matrices (nn) and (nm) are defined analogously to
Eq. (B3) and thus depend only on the material parameters and
the orientation of the crystal. We note that real materials do
not present any pathological cases where the matrix inverse
(nn)−1 would not exist.

Furthermore, the equation of motion and Gauss’s law can
also be organized into a similar linear equations set:

(kk)
[

u

Φ

]
= ρω2I′

[
u

Φ

]
, (B6)

in which I′ is a 4 × 4 matrix with elements I ′
ii = 1, i = 1, 2, 3

and others zero.
By decomposing the k vector as above and substituting the

expression for pα[Aα,Φα]T from Eq. (B5), we obtain

− [
(mn)(nn)−1(nm) − (mm) + ρv2

x Î
′][Aα

φα

]

− (mn)(nn)−1

[
Lα

Dn
α

]
= pα

[
Lα

Dn
α

]
, (B7)

where vx = ω/kx. Finally, combining Eqs. (B5) and
(B7) by defining an eight-dimensional eigenvector ξα =
[Aα, φα, Lα, Dn

α]
T , we have derived the eigenequation for the

piezoelectric scattering problem, Eq. (3):

N(vx )ξα = pαξα, (B8)
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where the 8 × 8 real matrix N reads

N(vx ) = −
[

(nn)−1(nm) (nn)−1

(mn)(nn)−1(nm) − (mm) + ρv2
x I′ (mn)(nn)−1

]
. (B9)

The set of eigenvectors ξα are orthogonal and form a
complete set in the usual case, where the eigenvalues pα

are distinct [16]. In a few isolated situations, nonsemisimple
degeneracy can occur, in which case generalized eigenvectors
can be introduced [18,28]. We do not consider those special
cases (transonic states) in this study because numerically one
can always solve the problem in a limiting manner very close
to such a special point.

In the main text, we quoted the orthonormalization condi-
tion in Eq. (4). It follows [18,19] from the symmetry condition
for the auxiliary matrix T̂N

(
T̂N

)T = T̂N,

where

T̂ =
[

Ô(4) Î(4)

Î(4) Ô(4)

]
, (B10)

with which a reciprocal eigenvector set Tξα orthogonal to
ξα can be defined. It follows that the eigenvectors satisfy the
relation

ξα · T̂ξβ = ξT
α T̂ξβ = δαβ, α, β = 1, . . . , 8, (B11)

where δαβ is the Kronecker delta. We stress here that the dot
symbol has the meaning of a matrix product in this context,
as exemplified by the second form. In particular, it does not
denote a complex inner product, in which case complex con-
jugation would be included for one of the vectors.

Equation (B11) [identical to Eq. (4) in the main text] is thus
readily available as the orthonormalization condition to secure
a unique normalized eigenvector solution for the N matrix. In
addition, the orthonormalization condition Eq. (B11) leads to
a completeness condition∑

α

ξα ⊗ T̂ξα = Î(8), (B12)

providing us a powerful tool to ensure the accuracy of the
solutions.

APPENDIX C: MATRIX SOLUTION OF
THE BOUNDARY CONDITIONS

In this Appendix, to avoid cumbersome expressions Dn,(i)
α

and Dn
V± with the explicit superscript n, we will use the short-

hand notation D(i)
α and DV± in their place to represent the

Stroh eigenvector components for the normal projection of
the electric displacement in Eq. (2) in the solid i = 1, 2 and
in vacuum (V), respectively.

The boundary conditions of the tunneling problem,
Eqs. (9), provide a total of ten linear equations cor-
responding to ten partial-wave amplitude solutions
(b(1)

1 , . . . , b(1)
4 , b̃(2)

1 , . . . , b̃(2)
4 , bV ±). Here, we list explicitly

all the boundary conditions included in Eqs. (9):

b(1)
in φ

(1)
in +

4∑
α=1

b(1)
α φ(1)

α = bV +φV + + bV −φV −,

b(1)
in D(1)

in +
4∑

α=1

b(1)
α D(1)

α = bV +DV + + bV −DV −,

b(1)
in L(1)

in +
4∑

α=1

b(1)
α L(1)

α = Ô(3),

4∑
α=1

b̃(2)
α φ(2)

α = bV +φV +e−kxd + bV −φV −ekxd ,

4∑
α=1

b̃(2)
α D(2)

α = bV +DV +e−kxd + bV −DV −ekxd ,

4∑
α=1

b̃(2)
α L(2)

α = Ô(3). (C1)

The goal of this Appendix is to rearrange the above bound-
ary conditions into a simple matrix equation that separates the
incident wave properties, the information about the materials
properties and the vacuum gap, and the scattered amplitudes,
i.e., by writing

ŷ = Mx̂, (C2)

where ŷ is a 8 × 1 column vector that contains the information
about the incident wave and M is a 8 × 8 matrix, both to be
derived below, and x̂ and is a 8 × 1 column vector containing
the wave amplitudes of all scattered waves (and therefore the
information on the transmission and reflection coefficients):

x̂ = [
b(1)
1 , . . . b(1)

4 , b̃(2)
1 , . . . , b̃(2)

4

]T
.

By eliminating bV ± from Eq. (C1), the number of linear
equations provided by the boundary conditions in Eq. (C1)
can be reduced from ten to eight:

V −1
1

([
φ

(1)
in

D(1)
in

]
b(1)

in +
4∑

α=1

[
φ(1)

α

D(1)
α

]
b(1)

α

)
= V −1

2

(
4∑

α=1

[
φ(2)

α

D(2)
α

]
b̃(2)

α

)
,

b(1)
in L(1)

in +
4∑

α=1

b(1)
α L(1)

α = Ô(3), (C3)

4∑
α=1

b̃(2)
α L(2)

α = Ô(3),

where

V 1 =
[
φV + φV −
DV + DV −

]
, V 2 =

[
φV +e−kxd φV −ekxd

DV +e−kxd DV −ekxd

]
.
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The 2 × 2 matrices V 1 and V 2 are not dependent on the in-
coming or scattered wave properties except for the conserved
wave-vector component kx.

To combine all equations in Eqs. (C3) into one matrix
equation, we can move all the terms depending on b(1)

in to the

right and all the others to the left and write all equations in
terms of 5 × 1 column vectors U (i)

γ = [φ(i)
γ , D(i)

γ , L(i)
γ ]T con-

taining the reflected (U (1)
α ), transmitted (U (2)

α ) and input wave
(U (1)

in ) Stroh eigenvector components for the electric potential,
electric displacement and traction force. This way we obtain

4∑
α=1

([
V −1

1 Ô(2×3)
]
U (1)

α b(1)
α − [

V −1
2 Ô(2×3)

]
U (1)

α b̃(2)
α

) = −[
V −1

1 Ô(2×3)
]
U (1)

in b(1)
in ,

4∑
α=1

([
Ô3×2 Î(3)

]
U (1)

α b(1)
α − [

Ô3×2 Ô(3×3)
]
U (2)

α b̃(2)
α

) = −[Ô3×2 Î(3)]U
(1)
in b(1)

in ,

4∑
α=1

([
Ô3×2 Ô(3×3)

]
U (1)

α b(1)
α − [

Ô3×2 Î(3)
]
U (2)

α b̃(2)
α

) = −[Ô3×2 Ô(3×3)]U
(1)
in b(1)

in ,

(C4)

where Ôn×m denotes a zero matrix of dimensions n × m, and
Î(3) is the 3 × 3 identity matrix.

From the above form, Eqs. (C4), we see that a single matrix
equation

4∑
α=1

(
M1U (1)

α b(1)
α − M2U (2)

α b̃(2)
α

) = −M1U
(1)
in b(1)

in (C5)

can be written if we define the 8 × 5 matrices M1 and M2 as

M1 =

⎡
⎢⎣

V −1
1 Ô(2×3)

Ô(3×2) Î(3)

Ô(3×2) Ô(3×3)

⎤
⎥⎦, M2 =

⎡
⎢⎣

V −1
2 Ô(2×3)

Ô(3×2) Ô(3×3)

Ô(3×2) Î(3)

⎤
⎥⎦. (C6)

Finally, by comparing Eq. (C5) with the targeted
expression ŷ = Mx̂ [Eq. (C2), remembering that x̂ =
[b(1)

1 , . . . b(1)
4 , b̃(2)

1 , . . . , b̃(2)
4 ]T ], we obtain ŷ = −M1U inbin,

with the 8 × 8 matrix M formed by combining eight 8 × 1
column matrix blocks as

M = [
M1U

(1)
1 , M1U

(1)
2 , M1U

(1)
3 , M1U

(1)
4 ,

− M2U
(2)
1 ,−M2U

(2)
2 ,−M2U

(2)
3 ,−M2U

(2)
4

]
,

which is the definition given in the main text in Eq. (11). From
the above, we see that, in the matrix M, the submatrices M1

and M2 depend only on the vacuum permittivity ε0 (DV± =
±iε0φV± and φV± = 1/

√±2iε0, Sec. III in the main text),
the gap distance d and the conserved incident wave k-vector
component kx; vectors Uγ are the physical solutions obtained
from the eigenvectors ξγ in the extended Stroh formalism.

Finally, the four reflection and four transmission coeffi-
cients of the wave amplitudes can readily be obtained as[

r(4×1)

t (4×1)

]
= x̂

bin
= −M−1M1U in. (C7)

APPENDIX D: SCATTERING MATRIX

If we consider a scattering problem for an interface i be-
tween a piezoelectric crystal and vacuum, as illustrated in
Fig. 6, the scattering matrix S(i) determining how input waves

scatter into output waves can be defined as

⎡
⎢⎢⎢⎢⎢⎢⎣

b(i)
1

b(i)
2

b(i)
3

b(i)
4

b(V )
t

⎤
⎥⎥⎥⎥⎥⎥⎦

= S(i)

[
b(i)

in

b(V )
in

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r̄ (i)
1 t̄ (i)1

r̄ (i)
2 t̄ (i)2

r̄ (i)
3 t̄ (i)3

r̄ (i)
4 t̄ (i)4

t̄ (i)in r̄ (i)
in

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
b(i)

in

b(V )
in

]
, (D1)

where the superscript (V ) denotes the evanescent electric po-
tential wave in the vacuum gap.

The first boundary condition in Eq. (9) can then be rear-
ranged by moving all the outgoing (incoming) waves to the
left (right) side, giving

[
U (1)

1 ,U (1)
2 ,U (1)

3 ,U (1)
4 ,−UV+

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(1)
1

b(1)
2

b(1)
3

b(1)
4

bV+

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [−U (1)
in ,UV−

][b(1)
in

bV−

]
.

(D2)
The second boundary condition follows from Eq. (D2) by
changing the medium index, and exchanging the incoming

FIG. 6. Illustration of the scattering matrix S(i) for an interface
between medium i and vacuum. For the second medium on the
receiving side, the incoming amplitude b(i)

in is zero.
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and outgoing vacuum waves

[
U (2)

1 ,U (2)
2 ,U (2)

3 ,U (2)
4 ,−UV−

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(2)
1

b(2)
2

b(2)
3

b(2)
4

bV−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [−U (2)
in ,UV+

][b(2)
in

bV+

]
.

(D3)

By comparing Eqs. (D2) and (D3) with Eq. (D1), we obtain
the expressions for the scattering matrices S(1) and S(2) as
given in Eq. (13). Note that, even if we have formally used
an input wave from medium (2) in the definition of S(2), due
to the linearity of the problem it will not affect how an input
wave frommedium (1) is transmitted or reflected. In the actual
computation of S(2) for the case of input wave from medium
(1), −U (2)

in can be set arbitrarily, for example to zero.

APPENDIX E: DETAILS OF THE ANALYTICAL
SOLUTION EXAMPLE

In the analytical example we presented in Sec. IVA, a
hexagonal 6mm symmetry crystal was rotated in such way that
its crystallographic c axis is aligned with the solid-vacuum
interface and is perpendicular to the sagittal (incident) plane.
The material parameters of the rotated crystal, εS the elec-
tric permittivity at constant strain, e the piezoelectric stress,
and cE the elastic stiffness at constant electric field, can be
obtained using the method provided in Appendix F. To be
specific, the crystal is rotated about the x axis by 90◦ following
the right-hand rule, after which the rotated material tensors

read as

e =
⎡
⎣ 0 0 0 0 0 −e15

−e31 −e33 −e31 0 0 0
0 0 0 −e15 0 0

⎤
⎦, (E1)

εS =
⎡
⎣ε11 0 0

0 ε33 0
0 0 ε11

⎤
⎦, (E2)

cE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c13 c12 0 0 0
c13 c33 c13 0 0 0

c12 c13 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c66 0

0 0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (E3)

In Appendix B, the general approach for computing the
extended Stroh 8 × 8 matrix N was described. However, this
matrix can be significantly simplified in the analytical ex-
ample in Sec. IVA. This is because, for this high-symmetry
case, the piezoelectric response appears only along the crystal
c axis, which is aligned with the y axis of the laboratory
coordinates after the rotation [as shown in Fig. 2(a)], and there
is no mode conversion as stated in the main text. Therefore,
only the y-axis components, uy in displacement and σyz in
stress, enter the boundary conditions, Eqs. (6), and thus a
reduced 4 × 4 Stroh matrix N and four-dimensional eigenvec-
tors ξ = [uy, φ, Lyz, D]T are sufficient to solve the scattering
problem at hand, involving only SH and E wave modes.

The explicit expression of the reduced Stroh matrix N is
given in the main text in Eq. (17), and its eigenvalues and
Stroh-normalized eigenvectors are

p1 = −i, ξ1 =
[
0,

√
i

2ε11
,

e15
√−i√
2ε11

,

√−iε11√
2

]T

,

p2 = i, ξ2 =
[
0,

√−i√
2ε11

,
e15

√
i√

2ε11
,

√
iε11√
2

]T

,

p3 = − cot θi, ξ3 =
[√

2

2

√
k2 tan θi

ρω2
,−

√
2e15
2ε11

√
k2 tan θi

ρω2
,

√
2

2

√
ρω2

k2 tan θi
, 0

]T

,

p4 = cot θi, ξ4 =
[√

2

2

√
−k2 tan θi

ρω2
,−

√
2e15
2ε11

√
−k2 tan θi

ρω2
,

√
2

2

√
−ρω2

k2 tan θi
, 0

]T

.

The normalization conditions for the above solutions are
2(uyLyz + φD) = 1, and the dispersion relation is ρω2 =
(c44 + e215/ε11)k

2. The first two solutions (p1, p2) correspond
to the two inhomogeneous E waves, and the last two (p3, p4)
to the propagating SH waves.

APPENDIX F: CRYSTALLOGRAPHIC ORIENTATION

To solve the tunneling problem for an arbitrary crystal ori-
entation, a method for transforming the material tensors from
a standard crystallographic orientation to a specific arbitrary

rotation needs to be provided. The tensors in question are the
electric permittivity at constant strain, εS

0, the piezoelectric
stress, e0, and elastic stiffness at constant electric field, cE

0 ,
where the subscript 0 refers to the standard crystallographic
orientation.

To describe the orientation of a crystal with respect to a
fixed laboratory coordinate system, we adopt the Euler angle
system [47]. In this system, we define two Cartesian frames
XY Z and xyz, the crystal intrinsic coordinates and the ex-
ternal fixed laboratory coordinates, respectively. The relation
between these two frames can be fully expressed by three
angles: ϑ , ϕ, and ψ , as illustrated in Fig. 7(a).
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FIG. 7. Demonstration of crystal rotation angles. (a) The general
Euler angle system. (b) The cylindrical angle system for uniaxial
crystals

Several different conventions of the sequence of elemental
rotations can be used to acquire the material constants for a
specific crystal orientation (ϑ, ϕ,ψ). In this work, we adopted
the widely used extrinsic z-x-z rotation sequence, which ro-
tates the crystal frame from initial overlap with the laboratory
coordinates to the desired orientation. In this procedure, the
crystal frame will first be rotated about the z axis by an angle
ψ defined by the right-hand rule (counterclockwise if viewed
from top), followed by a second right-hand rotation of angle
ϑ about the x axis, and finally a third right-hand rotation of
angle ϕ about the z axis.

The material constant tensors (represented by T m×n matri-
ces in the abbreviated index notation) can then be transformed
to the rotated ones T ′

m×n by using rotation transformation
matrices R [3],

T ′
m×n = RmT m×nRT

n , (F1)

where Rm or Rn are the two rotation transformation matrices
required for a general m × n matrix. In our case, εS

0 has m, n =
3, e0 has m = 3 and n = 6, and cE

0 m, n = 6, so we need only
two different dimensionalities of rotation matrices R3 and R6

for both the z and x axes, for a total of four rotation matrices.
For the crystal rotations about the x and z axes by the right-

hand rule angles ξx and ξz, respectively, R3 can be expressed
[3] as

R3,x(ξx ) =

⎡
⎢⎣
1 0 0

0 cos ξx − sin ξx

0 sin ξx cos ξx

⎤
⎥⎦, (F2)

R3,z(ξz ) =

⎡
⎢⎣
cos ξz − sin ξz 0

sin ξz cos ξz 0

0 0 1

⎤
⎥⎦. (F3)

R6, required for the higher rank e and c tensors, can be ob-
tained from the Bond stress matrix [3] as

R6,x(ξx ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 cos2 (ξx ) sin2 (ξx ) −2 sin (ξx ) cos (ξx ) 0 0

0 sin2 (ξx ) cos2 (ξx ) 2 sin (ξx ) cos (ξx ) 0 0

0 sin (ξx ) cos (ξx ) − sin (ξx ) cos (ξx ) − sin2 (ξx ) + cos2 (ξx ) 0 0

0 0 0 0 cos (ξx ) sin (ξx )

0 0 0 0 − sin (ξx ) cos (ξx )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (F4)

R6,z(ξz ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 (ξz ) sin2 (ξz ) 0 0 0 −2 sin (ξz ) cos (ξz )

sin2 (ξz ) cos2 (ξz ) 0 0 0 2 sin (ξz ) cos (ξz )

0 0 1 0 0 0

0 0 0 cos (ξz ) sin (ξz ) 0

0 0 0 − sin (ξz ) cos (ξz ) 0

sin (ξz ) cos (ξz ) − sin (ξz ) cos (ξz ) 0 0 0 − sin2 (ξz ) + cos2 (ξz )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (F5)

As a result, the material tensors are then obtained with the composite z-x-z rotation as

εS = R3,z(ϕ)
{
R3,x(ϑ )

[
R3,z(ψ )εS

0R3,z(ψ )T
]
R3,x(ϑ )T

}
R3,z(ϕ)T ,

e = R3,z(ϕ)
{
R3,x(ϑ )

[
R3,z(ψ )e0R6,z(ψ )T

]
R6,x(ϑ )T

}
R6,z(ϕ)T ,

cE = R6,z(ϕ)
{
R6,x(ϑ )

[
R6,z(ψ )cE

0 R6,z(ψ )T
]
R6,x(ϑ )T

}
R6,z(ϕ)T . (F6)

For a solid with uniaxial symmetry about the crystal Z axis,
such as in our example (the wurtzite hexagonal crystal ZnO),
the first z-axis rotation will not change the material tensors.
Thus for such a symmetry, the description of the orientation
can be simplified from the Euler angle system to the cylin-
drical angle system, which uses only a zenith angle ϑ and an
azimuthal angle ϕ, as shown in Fig. 7(b). The corresponding
rotation transformations will also be reduced to a two-step
procedure: first a right-hand rotation of ϑ about the x axis,

followed by a second rotation of ϕ about the z axis. The
material tensors will then be obtained as

εS = R3,z(ϕ)
[
R3,x(ϑ )εS

0R3,x(ϑ )T
]
R3,z(ϕ)T ,

e = R3,z(ϕ)
[
R3,x(ϑ )e0R6,x(ϑ )T

]
R6,z(ϕ)T ,

cE = R6,z(ϕ)
[
R6,x(ϑ )cE

0 R6,x(ϑ )T
]
R6,z(ϕ)T . (F7)
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APPENDIX G: WAVE-MODE ASSIGNMENT

Conventionally, there are two different approaches that
have been widely used to categorize the three bulk elastic
wave mode solutions. The first approach considers the rela-
tion between the particle displacement vector (also commonly
known as the polarization vector) and the propagation direc-
tion of the wave (wave vector): when an elastic wave has a
polarization that is (mostly) parallel to the propagating di-
rection, it is identified as a (quasi-)longitudinal wave, or an
L mode; if a transverse wave is polarized (mostly) inside
the plane of incidence and (not purely) perpendicular to the
propagation direction, it is a vertically polarized (quasi-)shear
wave or an SV mode; and if a transverse wave is (mostly) per-
pendicular to both the plane of incidence and the propagation
direction, it is a horizontally polarized (quasi-)shear or an SH
mode. For anisotropic crystals, the quasiprefixes mostly apply,
as pure L, SV, and SH polarizations appear only in certain
high-symmetry propagation directions [3].

The second approach is to compare the phase velocities
v = ω/k of the wave modes, and to designate the mode from
the fastest to the slowest as (quasi-)longitudinal wave (L),
fast (quasi-)transverse wave (FT), and slow (quasi-)transverse
wave (ST).

It should be noted here that the choice for the categoriza-
tion of the wave modes is a conceptual definition based on
exactly the same set of solutions of the constitutive equa-
tions, and, therefore the choice of the categorization will not
affect the results of the formalism discussed in this article.
However, for completeness and for the benefit of the discus-
sion of topics such as mode conversions, we provide here a
procedure that can be programed to consistently identify the
wave modes based on both categorization approaches in this
work.

A total of eight eigenvalues pα and their associated eigen-
vectors ξα can be obtained by solving the eigenfunction (3).
In this section, we will examine these solutions with four
different categorization methods:

(1) homogeneous or inhomogeneous wave;
(2) transmitted or reflected wave;
(3) the mode categorized as longitudinal (L), fast trans-

verse (FT), slow transverse (ST), or electric potential (E);
(4) the mode categorized as longitudinal (L), vertically

polarized shear (SV), horizontally polarized shear (SH), or
electric potential (E).

The electric potential mode E is an inhomogeneous wave
mode solution that appears in piezoelectric scattering prob-
lems (within the quasistatic approximation), describing a
solution where the energy is mostly contained in the electric
fields [3,48].

First, for a wave solution that has an eigenvalue pα =
p′

α + ip′′
α , we examine the imaginary part: If p′′

α = 0 (p′′
α �= 0),

the wave will be categorized as a homogeneous wave (an
inhomogeneous wave).

Second, for an inhomogeneous wave, the scattering direc-
tion of the wave can be determined by the imaginary part
of the eigenvalue: If p′′

α > 0 (p′′
α < 0) the wave will be cat-

egorized as a transmitted (reflected) wave. This follows from
the principle that the physically allowed inhomogeneous wave

solution can only decay (and not grow) from the interface. In
contrast, for a homogeneous plane wave, the direction of the
power flow should be examined, as the normal components
of the wave vector and the power flow can have different
directions in general. By acknowledging the time-averaged
Poynting vector in Eq. (5), a wave with Pnα < 0 (Pnα > 0) is
categorized as a transmitted (reflected) wave.

The aforementioned wave modes (e.g., FT, SV, etc.) are de-
fined from a partial set of characteristics of the wave solutions,
such as phase velocity, polarization vector, etc. Therefore, it
can in some cases be tricky to fully map such simplified mode
definitions to the corresponding full solutions, and ambiguity
can arise. For example, in some cases four scattered bulk
modes can be excited simultaneously (without the excitation
of the inhomogeneous Emode) due to a strong electromechan-
ical coupling [48]. Therefore, it should be kept in mind that
the mode categorization method presented here is not a fully
robust and generally applicable algorithm.

To assign the modes within the set L, FT, ST, and E,
we first compare the magnitudes of the imaginary parts |p′′

α|
of all the inhomogeneous evanescent waves (p′′

α �= 0), and
identify them based on the ordering |p′′

E | > |p′′
L| > |p′′

FT| �|p′′
ST | (always starting from the E-mode, if fewer than four

inhomogeneous modes exist). For the remaining unassigned
homogeneous modes, the phase velocities v2

α = v2
x /(1 + p2

α )
will be examined, and the wave modes are assigned in the or-
der v2

L > v2
FT � v2

ST , starting from the first unassigned mode.
This means that if, for example, the L mode was identified
already as inhomogeneous, the fastest homogeneous mode
would then be FT.

Finally, if one wishes to assign the modes within the set
quasi-L, -SV, -SH, and -E, the polarization vectors Aα of the
eigenvector solutions should be examined. However, we still
first identify the inhomogeneous wave modes with the method
described above, based on the magnitudes of the imaginary
parts of the eigenvalues because there are often no clear
general differences between the eigenvectors of the surface
(inhomogeneous) modes.

In contrast, for the homogeneous modes, definitions based
on the polarization vector exist. We identify them by com-
paring the polarization vector with the wave vector and the
unit normal vector of the sagittal plane. If the quasi-L mode
is still available for assignment, it can be identified from
|k · AL| > |k · ASV,SH |. Within the coordinate system of this
article, quasi-SV and quasi-SH modes can be identified from
the relation |[0, 1, 0]T · ASV | < |[0, 1, 0]T · ASH |.

TABLE I. The common cut planes of hexagonal crystals: plane
names, Miller indices, and rotation angles (ZnO).

Plane name Miller index ∠{hkil}

a {1120} 90◦

m {1010} 90◦

c {0001} 0◦

r {1102} 42.78◦

n {1123} 46.89◦

s {1011} 61.61◦
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APPENDIX H: COMMON CUT PLANES FOR A HEXAGONAL CRYSTAL

For hexagonal crystals, the four basis vector Miller-Bravais index system {hkil} is commonly used to designate a crystallo-
graphic plane family [49]. These indices can be related to the crystal rotations, described in Sec. F, by ϑ = ∠{hkil}, in which
∠{hkil} is the angle between the plane normal and the crystal Z axis, and can be calculated from

∠{hkil} = arccos

( −−→
(hkl ) · −−−→

(001)

|−−→
(hkl )||−−−→

(001)|

)
= arccos

[
al

(
4

3
c2(h2 + k2 + hk

) + a2l2
)− 1

2

]
,

where a and c are the in-plane (X , Y ) and out-of-plane (Z) lattice constants of the crystal, respectively. The common
crystallographic plane families for ZnO are given in Table I with their corresponding ∠{hkil}.
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Abstract
When two piezoelectric solids are placed in close proximity, acoustic waves (phonons) can ”tunnel”
across a vacuum gap transmitting energy between the two solids. Here, we demonstrate analyti-
cally that not only is such a phenomenon possible, but that a simple resonance condition exists for
which complete transmission of the incoming wave is possible. This result is derived for an arbi-
trary anisotropic crystal symmetry and orientation. We also show that the complete transmission
condition can be related to the surface electric impedance and the effective surface permittivity
of the piezoelectric material, making it possible to be determined experimentally. In addition, we
present numerical results for the maximum power transmittance of a slow transverse wave, tunneling
between identical ZnO crystals, as function of all possible crystal orientations. The results show a
large range of orientations for which complete tunneling can be achieved.

INTRODUCTION

Acoustic waves (acoustic phonons) are deformations or
vibrations propagating through a material medium. As
such, they do not exist in vacuum, leading to the initial
conclusion that it is impossible for the vacuum to trans-
mit the energy of an acoustic wave between two separated
media. However, at the atomic scale the vibrations of
the nuclei can propagate via their electrical interactions
through vacuum. Thus, a question can be raised, whether
acoustic phonons can also be transmitted across larger
than atomic scale vacuum gaps through some electromag-
netic mechanism. This is a relevant question, as with the
advances in experimental techniques, nanometer to sub-
nanometer scale vacuum gaps can be achieved[1–4]. The
possibility of such acoustic phonon ”tunneling”, as it is
often called in the literature, has attracted a considerable
amount of theoretical work in recent years to investigate
possible mechanisms of the effect such as Casimir and van
der Waals forces, particularly in the context of near-field
heat transfer[5–17].

One possible mechanism for acoustic wave tunneling
is piezoelectricity, as in piezoelectric materials mechani-
cal displacements carry along macroscopic electric fields.
When an acoustic wave in a piezoelectric solid impinges
on a free surface, it extends a decaying, evanescent elec-
tric field into the vacuum [18]. The length scale of this
decay is determined by the wavelength of the acoustic
wave, so by bringing another piezoelectric solid within a
wavelength, acoustic power can be transmitted into the
second piezoelectric solid across the vacuum gap. What
makes this piezoelectrically mediated acoustic wave tun-
neling particularly attractive is its length scale: it is not
fixed to be in the nanoscale, but operates on the typ-
ically much larger wavelength scale defined by the fre-
quency (1 GHz would correspond to ∼ 5 μm). The effect

∗ zhgeng@jyu.fi
† maasilta@jyu.fi

was introduced [19, 20] and observed [21] long ago (for
more detailed background, see [22]), but developed fur-
ther more recently[5, 22, 23]. In particular in Ref.[22],
a general formalism was introduced that is applicable to
any incident bulk wave mode for any anisotropic crystal-
lographic orientation. One of the most interesting sug-
gestions in Refs.[5, 20, 23] is the possibility of unity trans-
mission for some particular conditions, meaning that the
incident wave could perhaps be completely transmitted
into the adjacent solid. However, the discussions in
Refs.[5, 20, 23] are limited either by the simplified models
used, or only show numerical results for the highest sym-
metry crystal orientations. Until now, no rigorous proof
of complete acoustic wave tunneling has been presented,
nor have generally valid complete tunneling conditions
been put forward.

In this work, we use the general formalism developed
for piezoelectric acoustic wave tunneling in Ref.[22] to
analytically prove the existence of the complete tunneling
phenomenon, in general. In addition, a strikingly simple
resonant tunneling condition is also derived for identical
crystals, and we propose that this condition could be
checked experimentally. Further discussion of the results
are presented with a few numerical examples for ZnO
crystals. In particular, we find our results differ from
those obtained in Ref.[5].

RESULTS AND DISCUSSION

Tunneling of acoustic waves. We study a system
of two anisotropic, semi-infinite piezoelectric solids sep-
arated by a vacuum gap of width d, as shown in Figure
1. Two coordinate systems describe the relation between
the crystal intrinsic orientation, denoted by XY Z, and
the external laboratory space, denoted by xyz. The sur-
faces of the solids are assumed to be mechanically and
electrically free [22], with surface normals aligned with
the z-axis. We consider an incoming homogeneous acous-
tic plane (bulk) wave ∼ exp(−ikkk · rrr + iωt), where kkk and
ω are the wave vector and angular frequency, propagat-



2

ing inside the xz-plane (sagittal plane) from the positive
z-axis direction towards the surface at z = 0, with a
positive x-component of wave vector (kx > 0). In ad-
dition, we only consider low frequency acoustic waves
with linear dispersion and assume the usual quasistatic
approximation for piezoelectric acoustic waves [18] sat-
isfying EEE = −∇Φ, where EEE and Φ are the electric field
and the electric potential, respectively.

FIG. 1. System under study. Two piezoelectric solids 1,
2 are separated by a vacuum gap of width d. An incoming
acoustic wave from solid 1 (positive z-axis of a laboratory
coordinates xyz) with an incident angle θi tunnels across the
vacuum gap into solid 2 inside the xz-plane. XY Z describe
the intrinsic crystal coordinates, which can be rotated w.r.t.
the xyz coordinates.

An incident bulk wave scatters into a linear combina-
tion of partial waves at an interface. These partial waves
are either reflected or transmitted, and can either be ho-
mogeneous (bulk) waves or inhomogeneous (evanescent)
waves bound on the surface of the solid [22]. The sin-
gle surface reflection and transmission coefficients, which
describe the amplitudes of these scattered waves, can be
calculated following the multiple reflection method pre-
sented in Section III.B in Ref.[22]. We denote these co-

efficients with an overhead bar, as follows: t̄
(1)
in→V is the

coefficient of an incoming wave from solid 1 transmitted

into a vacuum electric wave, t̄
(2)
V→α is the coefficient of

an vacuum wave transmitted into mode α in solid 2, and

r̄
(i)
V is the coefficient of an vacuum wave reflected on the
vacuum side of the interface of solid i = 1, 2. In these
coefficients, α = 1, ..., 4 correspond to the four physically
allowed partial wave modes in the corresponding solids 1
or 2.

A total transmission coefficient tα, which describes the
amplitude ratio of a transmitted partial wave α in solid 2
to an incoming bulk wave from solid 1, takes a form (for
derivation, see Section I of the Supplementary Material)

tα =
t̄
(1)
in→V t̄

(2)
V→α

ekxd − r̄
(1)
V r̄

(2)
V e−kxd

= t̄
(1)
in→V t̄

(2)
V→αfm(d) , (1)

with kx the wave vector component along the surfaces,
which is conserved in the tunneling process. This ex-

pression can be interpreted as two single surface trans-

mission coefficients t̄
(1)
in→V and t̄

(2)
V→α coupled by a geo-

metrical multiple reflection factor fm(d) = [exp(kxd) −
r̄
(1)
V r̄

(2)
V exp(−kxd)]

−1 [22]. It implicitly depends on the
incident angle θi not only via kx = k sin θi, but also
via the coefficients t̄ and r̄, which are functions of vx =
ω/(k sin θi) (Section I in the Supplementary Material).

Derivation of the condition for complete tun-
neling. To fully describe the tunneling of the acoustic
wave, we also look at the energy transfer between the
solids. The time-averaged power flow density (energy
flux, units [W/m2]) of a transmitted partial wave in the
direction normal to the surfaces (denoted as Pα) can be
obtained from the real part of the normal component of
piezoelectric Poynting vector (Section I in the Supple-
mentary Material ). For the tunneled bulk partial waves,
the transmitted power relates to the normal component
of the incident power by Pα = |tα|2Pin, whereas the re-
flected or transmitted evanescent partial waves in solids
1,2 are bound onto the surface and carry no power in the
normal direction (Pα = 0 if α is an evanescent mode).

As there is no dissipation inside the vacuum gap, the
normal direction power flow density inside the vacuum
(denoted by PV ) is equal to the total normal direction
transmitted power density (denoted by PΣ). It is clear
that PΣ is the sum of Pα over all the transmitted bulk
waves in solid 2, and we can write it using Eq.(1) as PΣ =∑

α |t̄(1)in→V t̄
(2)
V→αfm(d)|2Pin, where α runs only over the

bulk modes. The number of transmitted bulk modes can
be from zero to three (in some cases four[24]), and if there
is no bulk mode available, the power flow in both the vac-
uum and solid 2 are zero. On the other hand, the normal
power flow inside the vacuum gap can be expressed using
the Poynting’s theorem under the quasistatic approxima-

tion as PV = 2|t̄(1)in→V fm(d)|2Re[r̄(2)V ]Pin (see Section II
in the Supplementary Material for the derivation). As a
result, from PV = PΣ we find a relation

2Re
[
r̄
(2)
V

]
=

∑

α=bulk

|t̄(2)V→α|2 , (2)

which allows us to calculate the total transmitted power
by simply using the single surface reflection coefficient

r̄
(2)
V , without having to sum over the transmitted bulk
modes.

Furthermore, if we assume that the two solids consist
of the same material with identical crystal orientations,
two additional relations that link the single surface co-
efficients of the two solids can be found by exploiting
the completeness of the eigensolutions of the scattering
problem (see Section III in the Supplementary Material
for the derivations). The first one relates the reflection

coefficients r̄
(i)
V of the two solids as

r̄V ≡ r̄
(2)
V = −r̄

(1)
V . (3)

The second one states that if the transmitted bulk wave
mode γ in the solid 2 is the same mode as the incident
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wave in solid 1, there exists a relation

t̄
(1)
γ→V = t̄

(2)
V→γ . (4)

In addition, by comparing the relation (4) with Eq.
(2), we find the condition

2Re(r̄V ) ≥ |t̄(1)in→V |2 , (5)

where the equality is satisfied when there exists only one
transmitted bulk wave mode in solid 2 and the mode is
the same as the incident wave in solid 1. By applying the
relations (2) and (3), PΣ can then be simplified to

PΣ

Pin
=

2Re(r̄V )|t̄(1)in→V |2
4Re(r̄V )2 +

(
e2kxd − |r̄V |2

)2
e−2kxd

, (6)

which explicitly depends only on two single surface coef-

ficients: t̄
(1)
in→V and r̄V .

Eq. (6) shows that the total transmitted power PΣ is
always less than the incident power Pin if more than one
transmitted bulk wave modes exist, since in that case
the inequality Eq.(5) takes the ”greater-than” sign. This
result has the important implication that complete tun-
neling, i.e. the full transmission of the incident power,
can’t be achieved if the transmitted wave consists of mul-
tiple partial bulk waves, in contradiction to Ref.[5].

In contrast, if there is only one transmitted homoge-
neous bulk mode and it is the same mode as the incident
wave, then the ”equal” sign of Eq.(5) is valid, and Eq.(6)
simplifies to

PΣ

Pin
=

4Re(r̄V )
2

4Re(r̄V )2 +
(
e2kxd − |r̄V |2

)2
e−2kxd

. (7)

From Eq. (7), it is clear that the maximum transmitted
power is exactly equal to the incident power (PΣ = Pin)
when the resonance condition

|r̄V | = ekxd , (8)

is satisfied. This proves that (i) unity transmission (com-
plete tunneling) of an acoustic wave across a vacuum gap
is possible, and (ii) the condition for it depends explic-
itly only on the single surface reflection coefficient r̄V ,
the wave vector component kx and the gap width d.

In particular, with a given material and crystal orien-
tation, r̄V is only a function of the incident angle and
is independent of the gap width or the existence of the
adjacent solid. We propose that, as a material parame-
ter, r̄V could be determined experimentally by measur-
ing the effective surface permittivity εeff(vx)[23, 25, 26]
or the TM-wave surface impedance Zp(ω, vx)[27, 28] of
the piezoelectric solid. They are found to be related by
expressions (see Section IV in the Supplementary Mate-
rial

r̄V = i
εeff − ε0
εeff + ε0

, r̄V = i
1 + ivxε0Zp

1− ivxε0Zp
, (9)

where ε0 is the vacuum permittivity. The effective surface
permittivity concept is useful in the study of piezoelectric
materials, for example for the generation and detection of
acoustic waves by transducers [26] or for determining the
gap wave modes between piezoelectric solids[23]. We find
the symmetric and antisymmetric gap wave conditions
can be simply expressed by r̄V = ±i exp(kxd) (Section
IV, Supplemental Material).

Numerical examples and physical interpreta-
tion of complete tunneling between identical ZnO
crystals. We now turn to demonstrate the complete
tunneling effect with numerical examples for two iden-
tical ZnO crystals, using the formalism developed in
Ref.[22]. The first example is shown in Figure 2, where
the two crystals are separated with a scaled gap width
of kd = 0.01, and are both rotated first with respect
to the x-axis by ϑ = 46.89◦ and then to the z-axis by
ϕ = 88◦ (see Ref.[22] for details on the crystal rotation
procedure). The mode of the incident wave in this ex-
ample is chosen to be the slowest quasi-transversal wave
(ST), so that there exists a critical incident angle beyond
which only one bulk transmitted wave can be found, thus
satisfying the general condition for complete tunneling.

In Fig.2(a), we plot the transmittance into each bulk
mode Pα/Pin as a function of the incident angle θ,
where α can be the quasi-longitudinal (L), the fast
quasi-transversal (FT) or the slow quasi-transversal (ST)
mode, categorized based on their phase velocities. We
see that for most angles, transmittance is low, except
for the two sharp transmission peaks for the ST mode
giving exactly unity transmission at angles between 75◦
and 80◦. Abrupt cut-offs are visible for the transmitted
L and FT modes, corresponding to the critical incident
angles θLc ≈ 28◦ and θFTc ≈ 63.5◦. Beyond these criti-
cal angles, the corresponding modes become evanescent,
bound on the surface of the solid with no direct energy
transmission into the bulk.

Figure 2(b) provides a zoomed view on the resonant
transmission peaks, now with two different scaled gap
values kd = 1 (blue solid line) and kd = 0.01 (orange
solid line), with an overlay of the |r̄V | curve (black dashed
line), helping us also to understand the doublet struc-
ture. The additional two colored dashed lines represent
two values of the resonance condition of Eq.(8). It is clear
that the unity transmission occurs where the resonance
condition is valid, proving consistency between the ana-
lytical theory and the numerical approach. In addition,
we see that with the increase of the scaled gap width from
0.01 to 1, the separation of the peaks is reduced, and with
a further increase the two solutions would merge into one
at the maximum of |r̄V |. With this particular ZnO crys-
tal orientation, this maximum is about 4 as shown in the
plot, which leads to a maximum gap width of kd ≈ 1.4
to observe complete tunneling (merged unity transmis-
sion peak). For ZnO (ST wave velocity v = 2780 m/s),
and a 2GHz frequency relevant for device applications,
this corresponds to a quite a long physical distance of
d = 300 nm with the parameters and the orientation used
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FIG. 2. Angular dependence of the power transmittance of an incoming ST wave. (a) Power transmittance Pα/Pin

of the longitudinal α = L (green), the fast transverse α = FT (orange) and the slow transverse α = ST (blue) waves, for an
incoming ST wave as function of the incident angle θi, for two identical ZnO crystals separated by a scaled gap kd = 0.01 and
oriented with a zenith angle ϑ = 46.89◦ and an azimuth angle ϕ = 88◦ (inset). We used the anisotropic crystal parameters
c11 = 20.97×1010 N/m2, c33 = 21.09×1010 N/m2, c44 = 4.247×1010 N/m2, c12 = 12.11×1010 N/m2, c13 = 10.51×1010 N/m2,
c66 = (c11 − c12)/2, εxx = 8.55ε0, εzz = 10.2ε0, ex5 = −0.48 C/m2, ez1 = −0.573 C/m2, ez3 = 1.32 C/m2, and the density
ρ = 5680 kg/m3, taken from Ref.[18]. (b) Zoomed view on the peaks of the transmittance (left axis) with two values kd = 1
(blue solid line) and kd = 0.01 (orange solid line). The single surface reflection coefficient |r̄V | curve (black dashed line) is
overlayed (right axis) together with exp(kxd) = exp(sin θi) (blue horizontal dashed line) and exp(kxd) = exp(0.01 sin θi) (orange
horizontal dashed line) to demonstrate the resonance condition, Eq.(8), for the two scaled gaps, respectively.

FIG. 3. Crystal rotation map for complete tunneling
between ZnO crystals. Color scale of the ST-to-ST mode
maximum power transmittance PST /Pin over all incident an-
gles, plotted as function of crystal rotation angles ϑ and ϕ for
anisotropic ZnO. The dotted lines encircle the regions where
|r̄V | > 1. The panels on the top and on the right show the
range of θi where |r̄V | > 1 for two fixed ϕ (top), or ϑ (right).
Here, we fix kxd = kd sin θi instead of kd, as complete tun-
neling can be achieved by tuning kx either by changing the
incident angle θi or by the angular frequency ω.

in the example.

In general, the complete resonant tunneling can take
place for a range of crystal orientations. In Fig. 3 we
show the numerically calculated maximal power trans-
mittance PST /Pin (over all θi) of an incident ST mode to

a transmitted ST mode, as a function of all possible crys-
tal rotations [29], using again parameters for anisotropic
ZnO[18] and a fixed scaled gap kxd = 0.01. We find a
significant parameter space for orientations, with multi-
ple separate regions, where complete tunneling is possible
(dark red regions). To validate the consistency of the nu-
merics with the analytical condition, Eq.(8), we also plot
a set of dotted contour lines in Figure.3(a) to encircle
the orientations satisfying |r̄V | > 1, where unity trans-
mission is possible, finding excellent agreement. Another
observation is that the incident angle θi satisfying com-
plete tunneling varies for different crystal orientations,
reaching as low values as 60◦ in some cases (right panel).

To understand the physics, we first consider the the
three ellipsoidal unity transmission areas around ϑ = 90◦
[Figure 3(a)]. Inside these areas, the incident ST waves
are not pure shear waves and therefore couple to the other
partial waves (L, FT) at the surface. As a result, when
the incoming ST wave has an incident angle beyond the
critical angle of the FT mode, the reflected FT wave be-
comes evanescent, with its energy concentrated on the
surface. For those orientations the FT-mode waves are
predominately polarized in the direction of the c-axis,
the direction of the piezoelectric dipole, creating a strong
piezoelectric response. That excites large electric poten-
tial differences on the surface and hence gives rise to
a strong electric coupling across the gap, which finally
enables the resonant transmission. On the other hand,
when the azimuth rotations approach ϕ = ±90◦ with
ϑ = 90◦, the c-axis aligns with the x-axis and the ST
mode becomes a pure shear mode, polarized perpendic-
ular to the sagittal plane. Then the incident ST waves
are very weakly piezoelectric, and also decouple from all
other partial modes.
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Other interesting features can also be observed in Fig-
ure 3. Nodes having low transmission at around ϕ =
±25◦ and ϑ = 90◦ appear. This is because the electric
potential excited by the reflected FT wave mode change
polarity around these nodes, leading to minimized po-
tential differences and weak coupling between the two
surfaces. In addition, unity transmission is also observed
in four small areas around ϕ = ±90◦, where the single

surface reflection coefficient r̄
(1)
ST→FT of the reflected FT

partial waves increases significantly (not shown). This in-
dicates an enhanced mode conversion between the ST and
FT partial wave modes at these orientations, providing
large electric potential differences on the solid-vacuum
interface again via the evanescent FT wave, leading to
strong tunneling signal. A more detailed discussion of
the physical interpretation of the resonance can be found
in Section V of the Supplemental Material.

Our numerical formalism can also be applied to the
particular case studied with a simplified model in Ref.[5],
the details of which can be found in Section VI of the Sup-
plementary Material We do not find complete tunneling
for the incoming modes and the crystal orientation in
question, in contradiction to Ref.[5].

CONCLUSIONS

In conclusion, we have analytically and numerically
proven it is possible for acoustic waves to completely
tunnel across a vacuum gap between two piezoelectric
solids, up to gap sizes of about a wavelength. We showed
that such complete tunneling, with unity power trans-
mittance, is possible only if one transmitted partial bulk
mode is excited, it being the same mode as the incident
wave. We derived a strikingly simple resonance tunnel-
ing condition for the complete tunneling effect, Eq.(8),
and proved its validity and range of applicability with
numerical examples for arbitrarily rotated ZnO crystals.
As this is a strong and not a rare effect, it could have an
impact in future acoustic wave devices, as well as in other
application areas concerning phonons, such as controlling
heat transport, optomechanics and quantum information
science.

Data availability All relevant data are available from
the authors upon request.

Code availability All relevant code for simulations
are available from the authors upon request.
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I. DERIVATION OF TRANSMISSION
COEFFICIENT USING EXTENDED STROH

FORMALISM AND MULTIPLE REFLECTION
APPROACH

Here, we revisit the derivations presented in Ref. [1]
for the acoustic phonon tunneling transmission coefficient
and power flow density in the piezoelectric solids.

In piezoelectric solids, the dynamics of a propagating
plane (bulk) wave ∼ exp(−ikkk · rrr + iωt) are governed by
the elastic equation of motion ∇ ·σσσ = ρ∂2uuu/∂t2, Gauss’s
law∇·DDD = 0, together with the piezoelectric constitutive
relations [2]:

σσσ = cccE : SSS − eee ·EEE
DDD = eee : SSS + εεεS ·EEE (1)

where SSS, σσσ, uuu, DDD are the elastic strain, elastic stress,
mechanical displacement and electric displacement fields,
ρ, cccE , eee, εεεS are the mass density, elastic stiffness ten-
sor at constant electric field, piezoelectric stress tensor
and electric permittivity tensor at constant strain, re-
spectively. The double dot product indicates summa-
tion over paired indices between second-rank and higher-
rank tensors, and the strain-displacement relation reads
as Sij = (∂ui/∂rj + ∂uj/∂ri)/2.

An incident plane wave is scattered into a linear combi-
nation of partial waves at an interface, which are either
reflected or transmitted. The general solutions of such
partial waves that satisfy the governing equations take
the expressions [3–5]:

uuu =
∑

α

bαAAAαe
−i(kxx+kyy+pαkxz−ωt)

Φ =
∑

α

bαφαe
−i(kxx+kyy+pαkxz−ωt)

nnn · σσσ = ikx
∑

α

bαLLLαe
−i(kxx+kyy+pαkxz−ωt)

nnn ·DDD = ikx
∑

α

bαDαe
−i(kxx+kyy+pαkxz−ωt) ,

(2)

in which nnn is the unit vector of the z-axis. AAAα, φα,LLLα, Dα

are the normalized constants describing the polarization
vector, the electric potential, the normal projection of
the traction force and the normal projection of the elec-
tric displacement of a partial wave mode α, respectively.

∗ zhgeng@jyu.fi
† maasilta@jyu.fi

bα are dimensionless amplitudes of the partial waves,
and p ≡ kz/kx. To avoid redundant writing in the fol-
lowing expressions, we omit the common phase factor
exp(−ikxx− ikyy + iωt) shared by all solutions.

In this study, we solved these governing equations un-
der the framework of extended Stroh formalism, as de-
scribed in Ref.[1], in which Eq.(1) is combined and re-
arranged into an eight-dimensional eigenvalue problem
[6, 7] in the form of:

NNN(vx)ξξξα = pαξξξα , (3)

where NNN is 8 × 8 real matrix and vx ≡ ω/kx is the x-
component of the phase velocity. Generally, eight lin-
early independent eigenvectors ξξξα = [AAAα, φα,LLL

n
α, D

n
α]

T

and corresponding eigenvalues pα can be obtained for
partial wave modes α = 1, ..., 8. These eigenvectors fol-
low the orthonormalization and completeness conditions

ξξξTα T̂̂T̂Tξξξβ = δαβ (4)
∑

ξξξα ⊗ T̂̂T̂Tξξξα = Î̂ÎI8×8 , (5)

where the operator ⊗ denotes the outer product of two

matrices, δαβ is the Kronecker delta, Î̂ÎI8×8 is 8 × 8 unit

matrix, and T̂TT takes the form:

T̂̂T̂T =

[
OOO4×4 Î̂ÎI4×4

Î̂ÎI4×4 OOO4×4

]
(6)

where OOO4×4 and Î̂ÎI4×4 are 4× 4 zero and unity matrices.
The continuity of the electric potential (Φ(i) = ΦV ,

where the subscript i = 1, 2 indicates the medium index
and the subscript V indicates the vacuum) and the nor-
mal component of electric displacement (nnn·DDD(i) = nnn·DDDV ),
as well as the condition of a mechanically free surface
(nnn ·σσσ(i) = 000) enforce the boundary conditions of the two
solid-vacuum interfaces:

b
(1)
in UUU

(1)
in +

4∑

α=1

b(1)α UUU (1)
α = bV+UUUV+ + bV−UUUV− ,

4∑

α=1

b̃(2)α UUU (2)
α = bV+

UUUV+
e−kxd + bV−UUUV−e

kxd ,

(7)

in which we introduce 5 × 1 column vectors UUU
(i)
γ =

[φ
(i)
γ , D

(i)
γ ,LLL

(i)
γ ]T for wave modes γ = in, α, where

the subscript in indicates the incident wave mode,
α = 1, ..., 4 corresponds to four physically allowed wave
modes in their corresponding medium i = 1, 2, UUUV± =
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[φV± , DV± , 0, 0, 0]
T , and b̃

(2)
α ≡ b

(2)
α exp(ip

(2)
α kxd) for sim-

plicity. In the vacuum region, the electric potential and
displacement fields take the form

ΦV (z) = bV+φV+e
kxz + bV−φV−e

−kxz

nnn ·DDDV (z) = −ε0kxbV+
φV+

ekxz + ε0kxbV−φV−e
−kxz ,

(8)
where φV± = 1/

√±2iε0, noting the normalization condi-
tion for the vacuum mode 2φV±DV± = 1.

The amplitude factors b
(i)
α can be solved from the

boundary conditions of Eqs.(7), following the multiple re-
flection method introduced in Ref.[1]: The single surface

reflection (r̄
(i)
in→α, r̄

(i)
V ) and transmission (t̄

(i)
V→α, t̄

(i)
in→V )

coefficients are calculated first via scattering matrices SSS(i)

for solid i = 1, 2, and the total transmission coefficient
tα for a partial mode α is then obtained by coupling the
single surface coefficients with a multiple reflection factor
fm(d), which explicitly depends on the gap distance d.
We note here that the overlined single surface coefficients
describe the scattering of the electroacoustic wave as if
there is no second adjacent solid.

The 5 × 2 scattering matrices SSS
(1) and SSS

(2) take the
following form:

SSS
(1) =

[
r̄rr(1) t̄tt

(1)

t̄
(1)
in→V r̄

(1)
V

]

=
[
UUU

(1)
1 , ...,UUU

(1)
4 ,−UUUV+

]−1[−UUU
(1)
in ,UUUV−

]
,

SSS
(2) =

[
r̄rr(2) t̄tt

(2)

t̄
(2)
in→V r̄

(2)
V

]

=
[
UUU

(2)
1 , ...,UUU

(2)
4 ,−UUUV−

]−1[
UUU

(2)
in ,UUUV+

]

(9)

where the expression r̄rr(i) = [r̄
(i)
in→1, ..., r̄

(i)
in→4]

T and t̄tt
(i)

=

[t̄
(i)
V→1, ..., t̄

(i)
V→4]

T are the single surface reflection and
transmission coefficients of modes α = 1, ..., 4.

The total transmission coefficient tα from an incoming
bulk wave in solid 1 into a partial wave of mode α in solid
2 can be obtained as

tα ≡ b̃
(2)
α

b
(1)
in

= t̄
(1)
in→V t̄

(2)
V→αfm(d) (10)

where the multiple reflection factor is fm(d) =

[exp(kxd)−r̄
(1)
V r̄

(2)
V exp(−kxd))]

−1. Equation (10) is iden-
tical to Eq.(1) in the main text.

The time-averaged transmitted power flow density in
the direction normal to the surfaces from solid 1 to 2 can
be expressed by the real part of the piezoelectric Poynting
vector in the normal direction[3]

Pα = −ωkx
4

|bα|2ξξξTαT̂TTξξξ∗α . (11)

For transmitted homogeneous (bulk) waves, ξξξTαT̂TTξξξ
∗
α =

±ξξξTαT̂TTξξξα = ±1, due to the Stroh-normalization condi-
tion, (Eq.(4)). Therefore |tα|2 can be interpreted as the

power flow ratio (the transmittance) of the transmitted
bulk partial wave over the incident wave in the normal
direction:

Pα = |tα|2Pin . (12)

II. POWER FLOW INSIDE VACUUM GAP

For a piezoelectric solid, an incoming acoustic wave
can excite an electric potential inside the vacuum in the
vicinity of its surface, and hence transmit power across
the vacuum to an adjacent solid via means of an quasi-
electrostatic field[1]. The time-averaged power flow PPP
inside the vacuum gap can be expressed by the real
part the complex Poynting vector of electromagnetism,
PPP = Re(EEE ×HHH∗)/2, where EEE and HHH are the electric and
magnetic fields, respectively.

Taking the divergence of the cross product of the fields
and applying the cross product rule, we can obtain the
equation

∇ · (EEE ×HHH∗) = (∇×EEE) ·HHH∗ −EEE · (∇×HHH∗) . (13)

Under the quasistatic approximation, the rotational elec-
tric field component is set to zero, which corresponds to
∇×EEE = 0 andEEE = −∇ΦV , where ΦV is the electrostatic
potential inside the vacuum. In addition, for an electri-
cally free surface with no net charge density or current,
Gauss’s law leads to ∇ ·DDD = 0, and Ampere’s circuital
law relates the magnetic field to the electric displacement
as ∇ ×HHH = ∂DDD/∂t. By applying the dot product rule
for this quasistatic case, Eq.(13) becomes

∇ · (EEE ×HHH∗) = ∇ ·
(
ΦV

∂DDD∗

∂t

)
− ΦV ∇ · ∂DDD

∗

∂t

= ∇ ·
(
ΦV

∂DDD∗

∂t

)
.

(14)

As a result, the time-averaged power flow inside the
vacuum in the direction normal to the interface can be
expressed as

PV ≡ nnn ·PPP = −1

2
Re

[
iωΦV (D

n
V )

∗] , (15)

where Dn
V ≡ nnn · DDDV is the normal component of the

electric displacement in vacuum.
The expressions of ΦV and Dn

V , derived in Ref.[1],
are given as (by omitting the common phase factor
exp(−ikxx+ iωt))

ΦV (z) = bV+
φV+

ekxz + bV−φV−e
−kxz

Dn
V (z) = −ε0kxbV+

φV+
ekxz + ε0kxbV−φV−e

−kxz ,
(16)

where ε0 is the vacuum permittivity and φV± =

1/
√±2iε0. The dimensionless amplitudes bV± of the de-

caying and increasing partial waves in vacuum can be
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expressed in terms of the single surface coefficients as

bV+
= t̄

(1)
in→V b

(1)
in + r̄

(1)
V bV−

bV− = r̄
(2)
V bV+

e−2kxd ,
(17)

where b
(1)
in is the amplitude of the incident wave in solid

1.
Inserting Eqs.(16) and (17) into the expression of the

vacuum power flow, Eq.(15), we obtain

PV =− ωkx
4

2Re(bV+b
∗
V−)

=− ωkx
4

|bV+ |2e−2kxdRe

[
2Re(r̄

(2)
V )

+ i(|r̄(2)V |2e−2kx(z+d) − e2kx(z+d))

]

=− ωkx
2

|bint̄(1)in→V fm(d)|2Re(r̄(2)V ) ,

(18)

where the first line shows the analogy with quantum
mechanical tunneling. The above expression also shows
that the power flow is constant inside the vacuum gap,
independent of z. This makes sense since there is no
input or output for the energy flux inside the vacuum
gap. We also note that the incident power flow is Pin =
−ωkx|bin|2/4 so that Eq.(18) reduced to

PV = 2|t̄(1)in→V fm(d)|2Re(r̄(2)V )Pin . (19)

III. RELATIONS OF SINGLE SURFACE
TRANSMISSION AND REFLECTION

COEFFICIENTS

By explicitly writing the completeness of the Stroh
eigenvectors, Eq.(5), one finds

∑
α φαDα = 1, and that∑

α φαφα,
∑

α DαDα,
∑

αLLL
T
αLLLα,

∑
α φαLLLα,

∑
α DαLLLα

are all zero or zero matrices. Here α = 1, ..., 8 corre-
spond to the eight solutions obtained from the eigen-
value problem of Eq.(3). For waves in the vacuum,
we have φV+DV+ + φV−DV− = 1 as a manifestation
of the Stroh-normalization, and φV+

φV+
+ φV−φV− =

DV+
DV+

+ DV−DV− = 0, which are computed using

φV± = 1/
√±2iε0 and DV± = ±iε0φV± [1], and LLLV± = 000

because the traction force is zero in vacuum.
In the case of tunneling between two identical solids,

four of the solutions are the reflected wave modes in solid
1, e.g. the solutions α = 1, ..., 4 are the reflected waves
designated with indices i = 1, ..., 4 in solid 1, and the re-
maining four solutions are the transmitted wave modes in
solid 2, e.g. the solutions α = 5, ..., 8 are the transmitted
waves designated with indices i = 1, ..., 4 in solid 2. As
result, the relations we obtained from the completeness
condition lead to an equation that reads as (similar to
Eq.(11) in Ref.[8])

4∑

i

UUU
(1)
i ⊗UUU

(1)
i +

4∑

i

UUU
(2)
i ⊗UUU

(2)
i = UUUV+

⊗UUUV+
+UUUV−⊗UUUV− .

(20)

Here we want to convert the outer products of the
above equation into products of determinants of 5 × 5
matrices constructed from horizontally stacked column
vectors of UUU . We use the Laplace expansion of the deter-
minant

||AAA|| =
n∑

i=1

(−1)i+jaijMij , (21)

where the operator ||...|| denotes the determinant of ma-
trix AAA, aij is the element of a n × n matrix AAA, and Mij

is defined to be the determinant of a (n − 1) × (n − 1)
matrix that results from AAA by removing the i-th row and
the j-th column. One sees that the determinant can be
calculated from one of the columns of the matrix AAA, e.g.
for j = 5, the corresponding cofactor is C = (−1)i+5Mi5,
which is independent of that column (ai5). As result, if

we introduce a 5×5 matrix AAA = [UUU
(1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUUα] in

which UUUα can be any of the following solutions UUU
(1)
i , UUU

(2)
i

or UUUV± , one has ||AAA|| = ∑
(−1)i+5ai5Mi5 = CCCUUUα, where

ai5 is the element of column vectorUUUα. The cofactors can
be combined into a row vector CCC which is independent of
UUUα and can be calculated from the remaining columns of
AAA excluding UUUα.

Let us assume a transmitted wave solution UUU
(2)
1 which

is both the incoming and the transmitted wave mode,
and construct two row cofactor vectors CCCL and CCCR from
two matrices AAAL = [UUU

(1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUUα] and AAAR =

[UUU
(2)
2 UUU

(2)
3 UUU

(2)
4 UUUV−UUUα], respectively. Then we left mul-

tiply by CCCL and right multiply by CCCR Eq.(20), and, by
eliminating the linearly dependent terms whose determi-
nants equal zero, we obtain the relation

||UUU (1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUU

(2)
1 ||

||UUU (1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUUV+

||
=

||UUU (2)
2 UUU

(2)
3 UUU

(2)
4 UUUV−UUUV+

||
||UUU (2)

2 UUU
(2)
3 UUU

(2)
4 UUUV−UUU

(2)
1 ||

.

(22)
Considering the boundary condition of a scattering

problem of a single semi-infinite half space

bγUUU
(2)
γ +

4∑

i=1

biUUU
(1)
i = bV+

UUUV+
, (23)

where γ = 1 is the incident wave mode, it can be shown
that the the LHS of Eq.(22) is the single surface trans-

mission coefficient t̄
(1)
γ→V of an incoming wave (UUU

(2)
γ=1) into

vacuum mode (UUUV+
), using Cramer’s rule. Similarly,

with the boundary condition

4∑

i=1

biUUU
(2)
i = bV+UUUV+ + bV−UUUV− , (24)

the RHS of Eq.(22) is the single surface transmitted co-

efficient t̄
(2)
V→γ of an incoming vacuum wave (UUUV+) to the

same wave mode as the incident wave (UUU
(2)
γ=1). Thereby,

we arrive at a simple relation t̄
(1)
γ→V = t̄

(2)
V→γ , if the mode
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solution of the transmitted wave in solid 2 is the same
as the incident wave, e.g. UUU

(2)
γ=1 as the solution for both

waves in the above example.
We can also construct the cofactors CCCL and CCCR from

the matrices AAAL = [UUU
(1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUUα] and AAAR =

[UUU
(2)
1 UUU

(2)
2 UUU

(2)
3 UUU

(2)
4 UUUα], respectively, and obtain

||UUU (1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUUV− ||

||UUU (1)
1 UUU

(1)
2 UUU

(1)
3 UUU

(1)
4 UUUV+ ||

= −||UUU (2)
1 UUU

(2)
2 UUU

(2)
3 UUU

(2)
4 UUUV+

||
||UUU (2)

1 UUU
(2)
2 UUU

(2)
3 UUU

(2)
4 UUUV− ||

.

(25)
We can also consider the boundary condition

4∑

i=1

biUUU
(1)
i = bV+

UUUV+
+ bV−UUUV− , (26)

which describes an evanescent wave in vacuum with an
amplitude bV− scattering on the surface of the solid 1.

The resulting reflection coefficient r̄
(1)
V ≡ bV+/bV− can

then be expressed using the LHS of Eq.(25) using the
Cramer’s rule. Similarly, by considering a reciprocal
boundary condition on the surface of solid 2

4∑

i=1

biUUU
(2)
i = bV+

UUUV+
+ bV−UUUV− , (27)

where the incident amplitude is set to be bV+
, one finds

that the reflection coefficient r̄
(2)
V is the RHS of Eq.(25).

As a result, another important relation r̄
(1)
V = −r̄

(2)
V is

obtained.

IV. SURFACE IMPEDANCE AND EFFECTIVE
PERMITTIVITY

At a surface, the electrical potential Φ and the elec-
trical displacement Dn = nnn · DDD that is normal to the
surface are dependent. For a wave propagating inside
the xz-plane (as in the main text), the ratio of Φ and Dn

is [9]:

Φ

Dn
=

iv2x
ω

Zp, (28)

where Zp is the TM-wave impedance defined by Zp =
Ex/Hy, the ratio of the transverse electric and magnetic
fields.

By inserting the expressions of the electric displace-
ment Dn

V (z) and potential ΦV (z) in vacuum at z = −d
from Eqs.(16), we obtain

Z(ω, vx) =
i

vxε0

bV+
φV+

e−kxd + bV−φV−e
kxd

bV+
φV+

e−kxd − bV−φV−e
kxd

. (29)

With the relations bV− = r̄V bV+
exp(−2kxd) and

φV− = iφV+
that were obtained in Section II, and with

kx = ω/vx, the expression of the impedance is further
simplified to:

r̄V = i
1 + ivxε0Zp

1− ivxε0Zp
. (30)

The effective surface permittivity can be obtained from
the impedance[9, 10] as εeff = i/[vxZp(ω, vx)], hence we
can relate it with r̄V with the expression

r̄V = i
εeff − ε0
εeff + ε0

. (31)

In addition, the symmetric and antisymmetric condi-
tions of the subsonic gap waves were given by Eqs.(8) in
Ref.[11] and read as

ε0 tanh

(
kxd

2

)
+ εeff = 0

ε0 coth

(
kxd

2

)
+ εeff = 0 .

(32)

By inserting Eq.(31) in the above conditions, they reduce
to r̄V = −i exp(kxd) and r̄V = i exp(kxd), respectively.

V. PHYSICAL INTERPRETATION OF THE
RESONANCE CONDITION: DISPLACEMENT

FIELD, ELECTRIC POTENTIAL AND
POYNTING VECTOR AT THE INTERFACE

As discussed in the main text, acoustic wave tunneling
is enabled by evanescent modes that are localized at solid-
vacuum interfaces. In particular, the complete tunneling
phenomenon requires resonant effects that can concen-
trate the energy of the waves at the surface and therefore
excite large electric potentials. Here, we provide plots to
visually demonstrate such resonant phenomena, by plot-
ting examples of the displacement uuu, the electric potential
Φ and the time-averaged electroacoustic Poynting vector
PPP fields at the surface of the solids using the numerical
example for ZnO crystals shown in Figure 2 of the main
text (crystal rotation angles ϑ = 46.89◦ and ϕ = 88◦,
incoming ST wave), for which complete tunneling is pos-
sible.

When the resonant tunneling condition is satisfied,
which means an incident angle θ = 76.06◦ or θ = 78.37◦
in the case we discuss here, the incoming bulk ST wave
in solid 1 completely tunnels across the vacuum gap to
the adjacent solid 2, and therefore no reflected bulk ST
wave propagates into the depth of solid 1. However, such
a reflected wave can still propagate along the surface of
solid 1, having a decaying displacement amplitude in the
direction normal to the surface, as demonstrated in Fig-
ure.1(a). In this solution, three partial modes, the longi-
tudinal (L), the faster transversal (FT) and the electrical
(E) are coupled and become a generalized Rayleigh wave
solution [2], whereas the reflected bulk slow transversal
(ST) wave has an exactly zero amplitude, and therefore
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FIG. 1. The scattered particle displacement field uuu at the resonant incident angle θ = 76.06◦ [(a),(c),(e)] and at off-resonant
angle θ = 60◦ [(b),(d)]. Panels (a) and (b) show the three components ux (blue), uy (orange) and uz (green) of the complex
displacement vector amplitude (solid = real part, dotted = imaginary part) as a function of the z-axis position inside solid 1.
The values are normalized to the amplitude of the incident displacement vector |uuuin|. Panels (c) and (d) show schematically
the displacement fields in the sagittal plane using a snapshot of the displacement of the positions of imaginary particles (orange
dots) from their equilibrium positions (blue dots). Panels (e) (x-z plane projection) and (f) (y-z plane projection) show the
time evolution of three such particles [equilibrium positions (x,y,z)=(0,0,0), (0,0,2) and (0,0,4)] for the resonant case (c), for
one period of oscillation from ωt = 0 to ωt = 2π.

doesn’t contribute to the coupled wave solution. This
generalized Rayleigh wave is not a true pure surface
eigenmode (which couldn’t be excited by a incoming bulk
mode), but is ”leaky”, as it couples to a scattered bulk
mode in solid 2 through the tunneling phenomenon.

Figure 1(c) schematically shows what the reflected
waveform looks like in the resonant tunneling case, by
plotting pieces of the solid as particles (orange dots) dis-
placed from their equilibrium positions (blue dots) in
solid 1. A strong wave motion is present at the sur-
face of the solid (kxz = 0), but disappears into the depth
of the solid. In addition, in Fig.1(e) and (f) the mo-
tions of three ”particles” near the surface at equilibrium
positions (kxx, kxy, kxz)=(0,0,0), (0,0,2) and (0,0,4) are
shown in x−z and x−y planes as a function of time from
ωt = 0 to ωt = 2π, with the incident angle the same as
in panels (a) and (c). The elliptical particle motions (the
orange dots) resemble the classical Rayleigh-type surface
wave motion, justifying the use of the term generalized
Rayleigh wave.

In comparison, with an incident angle of θ = 60◦ cor-
responding to off-resonant conditions, the wave motion
is strong in the bulk of the solid, and there is no surface
mode or decay of the displacement vectors, as can be seen
in Figs.1(b) and (d).

We should emphasize that the above surface wave so-
lution does not exist on a single surface, but is a result of
the resonant tunneling. Subsequently, it is very sensitive

to the conditions, e.g. the incident angle, the gap dis-
tance, and the crystal orientations, and a small change
in any of them will break the exact resonance and lead
to a finite amplitude of the reflected bulk ST mode.

Figure 2 presents time snapshots of the normalized
electric potentials Φ inside solid 1 for two different in-
cident angles, θ = 76.06◦ [on resonance, panels (a)-(f)]
and θ = 60◦ [off-resonance, panels (g)-(l)]. In the reso-
nant case, the sum of the electric potentials Φ of all the
reflected partial waves in solid 1 [Figure.2(b)] is local-
ized near the surface (kxz = 0) and decays to zero into
the depth of the solid, as expected for a surface wave
mode. Notably, the amplitude of the potential is also
much higher than the incident bulk ST wave amplitude
[Fig.2(a)], more than 17 orders of magnitude at the max-
imum. We also see that the partial modes of the reflected
waves E [Fig.2 (c)], L [Fig.2 (d)] and FT [Fig.2 (e)] are all
evanescent and have similarly high potentials, whereas
the only reflected bulk ST mode has a practically zero
amplitude (∼ 10−12). We note that the small but finite
amplitude of the reflected ST mode in this example is
simply because of the numerical precision of the compu-
tation, and is exactly zero, as proven analytically in the
main text.

As a comparison, the sum of the reflected waves in the
off-resonant case, in Fig.2 (h) has a propagating compo-
nent into the bulk, and its maximum potential at the sur-
face (∼ 1013) is about four orders of magnitude smaller
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FIG. 2. Snapshot of the normalized electric potential Φ inside solid 1 on resonance (incident angle θ = 76.06◦), panels (a)-(f),
and off-resonance (incident angle θ = 60◦), panels (g)-(l). All values are scaled to the amplitude of the incident Φ. Scaled axes
kxx and kxz represent the spatial coordinates x and z. The solid-vacuum interface is at kxz = 0. Panels (a) and (g) show the
real part of Φ of an incident slow transverse (ST) wave, (b) and (h) the sum of of all reflected waves, (c) and (i) the reflected
electrical (E), (d) and (j) the longitudinal (L), (e) and (k) the fast transversal (FT), and (f) and (l) the slow transverse (ST)
partial modes. In each plot, the main panel shows the color scale of Re(Φ) inside the sagittal plane. The right panels show the
real (blue) and imaginary (yellow) parts of Φ as function of the scaled coordinate kxz at kxx = 0.
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FIG. 3. The absolute values of the normal Pz (a) and parallel Px (b) components of the time-averaged electroacoustic Poynting
vector at various surfaces vs. incident angle θ. The blue solid line is the reflected wave at the solid 1 surface inside solid 1,
the orange dashed line is the transmitted wave at the solid 2 surface inside solid 2, and the blue and orange dotted lines with
symbols are the transmitted waves on the vacuum side of the surface of solid 1 and 2, respectively. In panels (c)-(e), the parallel
component of the Poynting vector Pz is plotted at the resonant condition θ = 76.06, as function of the z-axis position, in solid
1 (c), in the vacuum gap (d) and in solid 2 (e). All Poynting vectors are normalized to the incident Poynting vector of the same
component.

than in the resonant case. The reflected partial modes
L [Fig.2(j)] and FT [Fig.2(k)] dominate the electrical po-
tentials, and, in particular, the FT wave is still a bulk
mode (its critical angle is about 64◦), giving rise to a sig-
nificant bulk reflection. Moreover, the reflected ST wave
also has an amplitude comparable to the incident wave,
and is thereby also contributing to bulk reflection.

The normal (PPP z) and parallel (PPP x) components of the
time-averaged Poynting vector at the surfaces of both
solids both inside the solid and out on the vacuum side
are plotted as a function of the incident angle in Fig-
ures 3(a) and (b), respectively. These power flows are
normalized to the respective components of the incident
Poynting vector, i.e. |PPP x,in| = 1 in (a) and |PPP z,in| = 1 in
(b).

With most incident angles, the magnitude of the re-
flected power flow in the normal direction [3(a)] at the
surface of solid 1 is close to unity (equal to the inci-
dent flow with an opposite sign). However, the reflected
flow quickly drops to zero while the transmitted power
rises to unity at the two resonant angles θ = 76.06 and
θ = 78.37◦, which is the key takeaway of the main text.

We also see that the power flow in the normal direction
in the vacuum equals to the transmitted power in solid
2, which has also been discussed in the main text.

It is even more interesting to look at the power flow
component parallel to the surfaces, presented in Figure
3(b). We again find the two resonances, now exhibiting
peaks at the surfaces of both solids, with a power flow den-
sity more than two orders of magnitude higher than that
of the incoming wave. Such a high power flow density
is the result of the excitation of the surface wave mode,
as was discussed above, which concentrates and propa-
gates the energy of the scattered wave along the surfaces.
We should also note that the higher-than-incident power
flow density does not break the energy conservation, be-
cause the energy density increases only at the vicinity
of the surfaces and decays exponentially into the bulk,
as demonstrated for the resonant condition θ = 76.06 in
Figures 3(c) and (e) for both solids. Figure 3(d) also
shows the parallel power flow inside the vacuum gap for
the same condition, being symmetric as function of the
z-axis position, but having a magnitude orders of magni-
tude below the one on the side of the solids. These plots



8

FIG. 4. The normalized, parallel component of the Poynting vector |PPP x| as function of z-axis positions and incident angles
inside the solid 1, 2 and the vacuum.

clearly demonstrate the coupled nature of this surface
wave mode: both surfaces are involved in a symmetric
way, coupled by the tunneling effect.

For completeness, we also plot the color-scaled parallel
power flow density |PPP x| as function of both z-axis posi-
tion and the incident angle θ in Figure 4 for both solids
and the vacuum gap. It can be seen that the flow in
solid 1 generally equals the incident flow, except in the
two narrow ranges around the resonance angles where
it is two orders of magnitude higher. In addition, only
these resonant tunneling conditions give rise to such large
power flow inside the solid 2, and only the first resonance
carries significant power inside the vacuum gap.

VI. NUMERICAL EXAMPLE COMPARING TO
PREVIOUS LITERATURE

Here, we again consider two identical ZnO crystals.
The material parameters and the orientations of the crys-
tals are chosen to be exactly the same as those used in
Ref.[12], in which the Z-axis of the crystal is aligned with
the z-axis of the laboratory coordinates. In this case,
piezoelectric response can only be excited by the polar-
izations inside the sagittal plane (xz-plane) from the lon-
gitudinal (L) and vertical shear (SV) partial wave modes.
The horizontal shear (SH) wave mode, which polarizes
perpendicular to the sagittal plane, stays purely mechan-
ical and decouples from the other two partial modes as
well as from the electrostatic field. Thus the contribution
of the SH mode can be omitted, and the total transmit-
ted power is the sum of the power of L and SV mode
waves PΣ = PL + PSV .

In Figure.5, we plot PΣ/Pin for an incoming L wave
[panel (a)] and for an incoming SV wave [panel (b)]
as functions of both the incident angle θi and kd =
kxd/ sin θi. Comparing these plots to Fig.(2) in Ref.[12],
we observe a significantly lower transmittance, with a
maximum of only 0.6%, far lower than the claimed unity
transmittance in Ref.[12].

FIG. 5. The total transmitted power (PL + PSV )/Pin (color
scale) of an incoming (a) longitudinal (L) and (b) vertically
shear (SV) wave as function of scaled gap kd and incident
angle θi. Two identical ZnO crystals are oriented such that
the crystalXY Z coordinates coincide with the laboratory xyz
coordinates [as illustrated in (c)]. The materials parameters
used for isotropic ZnO were c11 = c33 = 209.7 × 109 N/m2,
c44 = c66 = 42 × 109 N/m2, c12 = c13 = c11 − 2c44, εxx =
εzz = 10ε0, ez3 = 1.3 C/m2, ex5 = ez1 = 0 C/m2 and ρ =
5600 kg/m3, which are the same as those used in Ref.[12]. (c)
The single surface reflection coefficient |r̄V | of incoming SV
wave is plotted as a function of incident angle θi. Note that
it stays below unity for all θi.

We argue that when the transmitted L and SV partial
waves are both bulk modes, e.g. an incoming L wave
with θi ∈ (0, 90◦) or an incoming SV wave with θi < 31◦
which is the critical angle of the reflected L mode, Eqs.

(2) and (5) of the main text require 2Re(r̄V ) = |t̄(2)V→L|2+
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|t̄(2)V→SV |2 > |t̄(1)in→V |2 where the subscript in is either L
or SV , depending on the incident wave mode. Hence
the total transmitted power PΣ is always smaller than
the incident power Pin based on Eq. (6) of the main
text. On the other hand, for an incoming SV wave with
incident angle θi > 31◦ beyond the critical angle of the L
mode, there is only one transmitted bulk wave (SV), but

the resonant tunneling condition, Eq. (8) of the main
text,is not satisfied. This is because exp(kxd) > 1 for
a finite gap size, whereas the absolute value of single
surface reflection coefficient |r̄V | < 1, as shown in panel
(c) of Figure 5. As a result, unity transmission cannot
be achieved with this configuration, in contradiction to
the claim made in Ref.[12].
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In contradictin to the common concept that acoustic phonons can only travel inside a material
medium, they can in fact ”tunnel” across a vacuum gap with the help of piezoelectricity, trans-
mitting a significantly stronger heat flux than that of blackbody radiation. Here, we present a
theoretical formulation for the heat flux of such piezoelectrically mediated heat transfer, applicable
to any anisotropic piezoelectric crystals with an arbitrary orientation. A few numerical results are
demonstrated and compared to heat transfer driven by other close-range mechanisms, including
near-field radiative heat transfer and other acoustic phonon tunneling mechanisms. We find that
piezoelectrically mediated heat transfer has a significant effect when the vacuum gap size is smaller
than the phonon characteristic thermal wavelength, and its heat flux can dominate heat transfer
between piezoelectric solids over all other known heat transfer mechanisms at temperatures below
50 K.

It is known that heat can be transfered between macro-
scopic bodies via three different channels, namely, con-
duction, convection and radiation. Out of those, radia-
tion is the only possible channel between two materials
separated by a vacuum gap, and the corresponding heat
flux is well understood based on Planck’s law of radia-
tion. However, when the separation between two mate-
rial bodies decreases, heat flux exceeding that of Planck’s
law by several orders of magnitude has been observed in
experiments[1–3]. Among the mechanisms that can lead
to such super-Planckian radiation, near field radiative
heat transfer (NFRHT) mediated by photon tunneling[4–
7] is the most studied one. Analogous to quantum me-
chanical tunneling, this photon tunneling becomes rele-
vant when the vacuum gap distance is below the photon
thermal wavelength, which is about ∼ 10μm at room
temperature.

With advances in nanotechnology, vacuum gaps with
sizes in the nanometer-to sub-nanometer range can be
achieved in experiments[8–11]. This has stimulated ac-
tive research in recent years also on the heat transfer
driven by the tunneling of acoustic phonons[11–23] in
addition to photons, as their thermal wavelengths are
at that length scale. However, the concept of acoustic
phonon tunneling is far from obvious, as a phonon, being
a vibration of the atomic lattice, requires the presence
of a medium to propagate. In the past decade, a few
mechanisms that can mediate acoustic phonon tunneling
have been suggested, the van der Waals force[16–19] the
electrostatic force[19–21], or the non-local contribution of
acoustic phonons to NFRHT in polar crystals [24]. Nev-
ertheless, these studies show that the heat flux due to
these mechanisms decay rapidly with the gap width (d−7

and d−9 for van der Waals and electrostatic mechanisms,
respectively), and hence provide non-trivial contributions
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to the heat transfer only when a vacuum gap d < 1 nm
at room temperature[19].

There exists yet another, much less studied acoustic
phonon tunneling mechanism, which utilizes piezoelec-
tricity. A thermally excited acoustic phonon impinging
on a free surface of a piezoelectric solid can create a de-
caying, evanescent electric field leaking into the vacuum.
Such field couples to the lattice deformations of a second
piezoelectric solid placed within the phonon wavelength,
leading to a transmission of heat across the vacuum. Such
piezoelectrically mediated heat transfer (PEMHT) was
previously suggested and studied in Ref. [12], however
the theoretical estimation in that study was based on a
highly simplified model, in which the isotropic material
parameters were assumed and only two phonon modes
were considered. Moreover, their results are not in agree-
ment with those derived from the more general acous-
tic wave tunneling formalism for piezoelectric materials
developed in Refs.[25, 26], and hence the PEMHT phe-
nomenon needs to be re-examined.

In this work, we present a general formulation for
the piezoelectrically mediated heat transfer via acous-
tic phonon tunneling, which can be applied to arbitrarily
anisotropic and oriented piezoelectric crystals. Numer-
ical examples are investigated and compared to other
close-range heat transfer mechanisms, including non-
piezoelectric tunneling of acoustic phonons and near-
field radiative transfer (photon tunneling). We find that
PEMHT can dominate heat transfer at temperatures be-
low 50 K. At the end, numerical examples of PEMHT
using different piezoelectric materials with varying crys-
tal orientations are discussed.

We consider two piezoelectric, semi-infinite solids
which are placed parallel to each other and separated
by a vacuum gap of width d, as shown in Fig.1. Both
solids can be rotated to arbitrary orientations described
by a set of Euler angles denoting the relation between
the intrinsic crystal coordinates and the laboratory co-
ordinates xyz (see [27] for more details on crystal ori-
entation). In our model, these solids are assumed to be
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FIG. 1. Two piezoelectric solids 1, 2, at temperatures T1

and T2, are separated by a vacuum gap of width d. An in-
coming acoustic phonon (red) with an incident zenith angle θ
and azimuth angle ϕ tunnels across the vacuum from solid 1
and transfers heat to the adjacent solid 2. In this study, we
demonstrate results for hexagonal crystals, (ZnO,AlN), whose
orientation can be described by a rotation angle ϑ between the
crystal c-axis and the laboratory z-axis.

continuous and anisotropic, satisfying linear elastic con-
stitutive equations[25, 28].

We assume that the thermal acoustic phonons in solid
1 impinging on the gap consist of three bulk acoustic
wave modes α = 1, 2, 3[25], where each wave mode can
be described by a time-harmonic displacement field

uuuα = bαAAAα exp(iωαt− ikkk · rrr), (1)

where kkk is the wave vector, rrr = (x, y, z) is the posi-
tion vector in the laboratory coordinates, ωα is the an-
gular frequency of the phonon mode, AAAα is the Stroh-
normalized[25] polarization vector and bα is the dimen-
sionless amplitude of the mode[25].

In PEMHT, the emitted heat flux JPE from the solid
γ = 1, 2 across the gap can then be expressed as

JPE
γ (Tγ , d) =

∑

α

∫
d3k

(2π)3
�ωα(kkk)n(ωα, Tγ)

×
(
n̂̂n̂nγ · ∂ωα

∂kkk

)
Θ

(
n̂̂n̂nγ · ∂ωα

∂kkk

)
Tα(θ, ϕ, k, d),

(2)
where n(ωα, Tγ) = [exp(�ωα/kBTγ) − 1]−1 is the Bose-
Einstein distribution describing the thermal occupation
of the phonon mode of energy �ωα(kkk), n̂̂n̂nγ is the outward
unit normal of the vacuum-solid interface, and Tα is the
power transmittance of mode α [26].

The term n̂̂n̂nγ · ∂ωα/∂kkk in Eq.(2) describes the group
velocity of the phonon wave mode α in the direction of
the outward normal of the vacuum-interface, and can be
expressed as[27]:

n̂̂n̂nγ · ∂ωα

∂kkk
=

1

2

sin θ

ρvα(θ, ϕ)|AAAα(θ, ϕ)|2 ξ̂γ(θ, ϕ), (3)

where ρ is the density of the solid. The phase velocity
term vα = ωa/k depends on the material, crystal ori-
entation and incident angles (θ, ϕ), and can be solved

from the piezoelectrically stiffened Christoffel equation
[Eq.(8.147) in Ref.[28]]. Furthermore, the polarization
vector AAAα is obtained from the normalized eigenvector of
the extended Stroh matrix [Eq.(3) in Ref.[25]], whereas

for the bulk waves, ξ̂γ = ±1 (J/m) is obtained from the
Stroh-normalization[26], whose sign determines the en-
ergy flow direction of the phonon along the unit vector
n̂̂n̂nγ .

In addition, a Heaviside step function Θ(f), which
equals to unity (zero) when f > 0 (f < 0), is used
to correctly select the phonons whose group velocities
point from the solid towards the vacuum. It is impor-
tant to note that in anisotropic crystals, the direction
of phonon propagation, signified by the direction of the
group velocity ∂ωα/∂kkk, is generally different from the
wave front direction given by the wave vector kkk. It is
possible for a phonon that tunnels outward from solid
1 to 2 to have an inward wave vector in the normal di-
rection, i.e. (n̂̂n̂nγ · ∂ωα/∂kkk) < 0 but (n̂nn1 · kkk) > 0. There-
fore, to fully account for all the possible incident acoustic
phonons impinging on the surface towards the vacuum,
we have to integrate over the complete k-space in Eq.(2)
including the inward half-hemisphere, but choosing the
outward traveling phonons with the help of the Heaviside
step function Θ[n̂̂n̂nγ · (∂ωα/∂kkk)].
By following the methods presented in Ref.[25], the

total tunneled power transmittance of an incoming wave
mode α, coupling into all possible bulk modes in the sec-
ond solid, takes the form[26]:

Tα(θ, ϕ, k, d) =
2Re

[
r
(2)
V

]∣∣t(1)α→V

∣∣2e−2kd sin θ

∣∣1− r
(1)
V r

(2)
V e−2kd sin θ

∣∣2 , (4)

where t(i) and r(i) are the single surface transmission and
reflection coefficients, which describe the scattering of the
acoustic wave at the surface of solid i = 1, 2 as if there is
no adjacent second solid. To be more specific, we denote

with t
(1)
α→V the coefficient of an incoming α mode wave

transmitted into an evanescent wave (electrical potential)

in vacuum from solid 1, and with r
(i)
V the coefficient of

an evanescent wave coming from vacuum reflected on the
surface of solid i. For given material parameters, crystal
orientations and incident wave mode α, these coefficients
are functions of the incident angles θ and ϕ, indepen-
dent of k and d, and can be obtained numerically using
the boundary conditions at the solid-vacuum interface,
following the formalism presented in Ref.[25].

The net heat flux between solid 1 at temperature T1

and solid 2 at temperature T2 is the difference between
their corresponding emitted heat fluxes, and reads as
ΔJPE = JPE

1 (T1, d) − JPE
2 (T2, d). Furthermore, in the

limit where the power transmittance [Eq.(4)] is set to
unity and isotropy is assumed for the group velocity,
given then by (n̂̂n̂nγ · ∂ωα/∂kkk) = vα cos θ, the heat flux
Eq.(2) simplifies to Jγ =

∑
α π2k4BT

4
γ /120v

2
α�

3, recov-
ering the expression for phonon blackbody radiation for
isotropic matter[29].
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To demonstrate PEMHT numerically, we consider the
case of two ZnO crystals with a hexagonal 6mm sym-
metry, with their material constants taken from Ref.[28].
These solids are separated by a vacuum gap of width
d, and are rotated identically such that their crystal
c-axes are aligned with the laboratory y-axis (hence
ϑ = π/2, see Fig.1). In Fig.2 we plot the emitted
heat flux JPE(T, d) between the two solids as a func-
tion of the emitter temperature T and gap width d.
By introducing the characteristic thermal wavelength λT

[12, 19, 21], defined as λT = 2πvα�/kBT , we find that
the plot can be divided into two regions roughly sepa-
rated by the black dotted line signifying the condition
d = λT ≈ (0.2 μm)/T , where we used an average phonon
phase velocity [v = (

∑
α vα)/3] of 3900 m/s for ZnO.

FIG. 2. Contour plot of the total emitted heat flux JPE of
all phonon wave modes for ZnO as function of temperature T
and gap width d. The dotted line is T = 2π�v/kBd, denoting
the condition d = λT where v = 3900 m/s. The dashed line
is JPE = π2k4

BT
4/60c2�3, signifying the blackbody radiation

limit.

Towards the lower-left region, the heat flux decreases
strongly with decreasing temperature, but saturates with
the gap width. This saturation comes about because only
the power transmittance Tα is a function of the gap width
d in Eq.(2), and this dependency is only expressed via the
exponential term ∼ exp(−kd) in Eq.(4)[25]. As a result,
for a gap width d � λT ∼ 1/k, T becomes constant, and
the heat flux JPE is hence determined by the thermal
distribution function n(ω, T ), which is strongly modified
by the temperature. In contrast, the exponential decay
of T dominates the heat flux towards the upper-right
section. In the large-gap limit (d � λT ), the heat flux
is practically ”switched-off” and becomes insensitive to
the change of temperature. In addition, a black dashed
line marks where the heat flux from PEMHT equals to
that of the blackbody radiation at the same tempera-
ture [JPE(T, d) = π2k4BT

4/60c2�3 where c the speed of
light]. The comparison between the dashed and dotted
lines shows that PEMHT, if ”switched-on” (d ≤ λT ),
generally contributes at least three orders of magnitude
stronger heat flux than blackbody radiation at a given
temperature, making it a non-trivial source in the con-
text of near-field heat transfer.

In addition, at room temperature, PEMHT is stronger
than blackbody radiation even at a gap width close to 10
nm. This is very different to the other acoustic phonon
tunneling mechanisms described in literature [14, 17, 19–
21, 24], for which non-trivial heat flux occurs in the
sub-nanometer length scale at room temperature. In
Fig.3, the heat flux carried by various relevant close-
range mechanisms are compared, including the near-field
radiative heat transfer (NFRHT, [5, 7]) for ZnO [30, 31]
and Au [32], phonon tunneling for Au mediated by van
der Waals force [19] and electrostatic force (for 1 V bias
across the vacuum) [20, 21], and the blackbody radiation
(maximal far-field radiative heat transfer).

FIG. 3. Comparison of the emitted heat fluxes driven by
different close-range mechanisms. (a) The heat fluxes as a
function of the gap width at 300 K. Purple square marker is
PEMHT of ZnO, the dotted lines are NFRHT for Au (blue)
and ZnO (orange). The dashed lines are the acoustic phonon
tunneling in Au mediated by van der Waals force (green)
and 1 V electrostatic potential difference (red). (b) The heat
fluxes as function of temperature with a fix gap width of 1
nm. (c) The heat fluxes as a function of gap width at 4 K.

In panel (a) of Fig.3, the heat fluxes of all the above
mentioned mechanisms at 300 K are plotted as a function
of the gap width d. It is clear that at room temperature,
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NFRHT for Au and ZnO, denoted by the blue and orange
dotted lines, respectively, is significantly stronger than
the heat transfer mediated by the acoustic phonon mech-
anisms. Moreover, the heat fluxes driven by the van der
Waals force and the electrostatic force scale as d−9 and
d−7, respectively [21], hence they only have non-trivial
contributions below d < 1 nm at room temperature, and
will fall off rapidly with the increase of the gap width. In
contrast, PEMHT (square symbols) scales as d−3, similar
to that for NFRHT (photon tunneling). Consequently,
PEMHT quickly dominates the other phonon tunneling
mechanisms at larger-than-nanometer scales, being a rel-
atively ”long-range” phenomenon.

One interesting observation in Fig.3 (a) is that the
NFRHT of ZnO is particularly strong. This happens[7]
because the surface-phonon polaritons of ZnO can be ex-
cited at infrared frequencies [30, 31], matching the spec-
trum of the room temperature thermal photons, and
hence enhancing the heat flux. But this also infers that
one should expect a strong attenuation of the NFRHT
once the excitations are stopped, i.e. when the temper-
ature is lowered. This is confirmed in Fig.3(b), in which
the heat fluxes are plotted as a function of the temper-
ature for a fixed gap width of 1 nm. There is a clear
cut-off of the NFRHT flux at about 100 K for ZnO.

More interestingly, PEMHT becomes stronger than the
fluxes from all other mechanisms, including NFRHTs,
between 0.1 K to 50 K. At this temperature range, the
power transmittance of the PEMHT increases exponen-
tially as the thermal wavelengths of the acoustic phonons
increase, eventually saturating at sub-Kelvin range (see
Fig.2). With the temperature lowered even further, the
PEMHT flux is determined by the phonon state energy
term (phonon thermal spectrum), and therefore has a T 4

dependence on the temperature, similar to the NFRHT
of ZnO in the low temperature limit. Meanwhile, the
other acoustic phonon tunneling mechanisms, scaling
more slowly than the PEMHT, begin to dominate the
heat transfer at the temperatures below 0.1 K.

From the above numerical analyses, we believe that
PEMHT can be experimentally observed using modern
nanofabrication techniques at cryogenic temperatures.
As an example,in Fig.3 (c) we demonstrate the heat
fluxes from all the above mentioned mechanisms, as a
function of the gap width at 4 K. One finds that the
PEMHT of ZnO (purple squares) dominates the heat flux
up to a gap width as high as d ∼ 300 nm, compared
to the NFRHT of ZnO (orange dotted line) and black-
body radiation (black line). With further lowering of the
temperature or reduction of the gap width, PEMHT will
become more prominent and easier to observe.

Next, we plot in Fig.4 the emitted PEMHT for two
different piezoelectric materials, ZnO and AlN[33], as a
function of the orientation angle ϑ, with a fixed gap width
of 1 nm and a temperature of 0.1 K, to illustrate the
influence of the material choice and orientations.

Obvious similarities are shared by the heat fluxes of
ZnO (solid line) and AlN (dotted line). For example,

FIG. 4. Comparison of emitted PEMHT as a function of the
crystal rotation angle ϑ for ZnO (solid line) and AlN (dotted
line). The heat fluxes are calculated for a gap width of 1 nm
at a temperature of 0.1 K.

for both materials the flux is generally stronger around
the orientation ϑ = π/2, contrasting to those around
0 and π, and sharp slopes appear around 20◦ and 40◦
leading to more than five-fold, step-like variations of the
heat flux. These similarities come about because both
materials have the 6mm-wurtzite crystal symmetry. The
underlying physics of these features is that as ϑ is the an-
gle between the normal of the solid-vacuum interface and
the crystal’s piezoelectric axis (the c-axis), and when ϑ is
close to 90◦, the c-axis is more aligned with the surface.
As a result, the reflected evanescent modes, which prop-
agate only on the surface, can excite a stronger piezo-
electric response, leading to an enhanced electrostatic
coupling across the vacuum. It has been shown that
even complete tunneling of certain acoustic modes can be
achieved for ZnO, when ϑ is between 60◦ and 120◦[26].
In addition, PEMHT for ZnO is about one order of

magnitude stronger than that of AlN. This is mostly due
to the differences in their phase velocities. When the
characteristic wavelength λT is much larger than the gap
width, the heat flux scales roughly with v−3

α . As a result,
a ten-fold difference in the heat flux is expected since AlN
has an average phase velocity v ≈ 7500 m/s, whereas it
is about v ≈ 3900 m/s for ZnO.
To summarize, we presented a general formulation for

piezoelectrically mediated heat transfer (PEMHT) via
acoustic phonon tunneling. Such a formulation can be
used to compute the heat flux across a vacuum gap, be-
tween arbitrarily anisotropic and oriented piezoelectric
crystals. Our analytical and numerical studies reveal that
PEMHT provides a significant heat flux, generally more
than three orders of magnitude stronger than that from
the blackbody radiation when the gap width d is smaller
than the phonon characteristic thermal wavelength λT .
By comparing to other near-field mechanisms, our study
shows that PEMHT can dominate the heat flux at tem-
peratures below 50 K.

Finally we remark that with the currently available
nano-fabrication and cryogenic measurement techniques,
PEMHT could possibly be investigated experimentally.
We believe that further understanding and engineering
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of acoustic phonon tunneling can be crucial for many
application areas such as nano-electronics, low tempera-
ture detectors, quantum information devices and others,
for which increasing demand for heat manipulation and

management exists.

This study was supported by the Academy of Finland
project number 341823.
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1 Crystal orientation

Figure 1: A schematic of the laboratory coordinates xyz and the orientation
of the crystal intrinsic coordinates XY Z. (a) shows the general layout of the
vacuum separated piezoelectric solids 1 and 2, with the two coordinate frames
illustrated for solid 1. (b) shows the details of the rotation angles for the crystals
and the incident angle of the phonon (red). The orientation of the crystals is
signified by a set of Euler angles (ϑ, ϕ, ψ). An incoming acoustic phonon (red)
has a zenith angle θ and an azimuth angle ϕ.

In this work, crystal orientation is described using the Euler angle system
with respect to a fixed laboratory coordinate system, the same as in Ref.[1]. In
this system, as illustrated in Fig.1, a set of Cartesian laboratory coordinates xyz
(blue axes) is chosen to describe the spatial position, whereas a set of orthog-
onal XY Z coordinates (green axes) is chosen to describe the intrinsic crystal
coordinates. The relation between these two frames can be fully expressed by
three angles: ϑ, ϕ, and ψ as illustrated in panel (b) of Fig.1.

It is particularly important to note here that for the case of a semi-infinite
half-space solid, the rotation of the azimuth angle ϕ of the crystal is in fact
equivalent to a rotation of the phonon incident azimuth angle, both signifying

1



the same rotational degree of freedom. Therefore, the rotation of ϕ should only
be taken into account once in the mathematical formulation to avoid duplication.
For example, we can describe the crystal orientation using only the angles ϑ and
ψ, and use θ and ϕ to describe the incident angle of the phonon.

The formulation presented in the main text takes the material tensors, such
as the elastic stiffness tensor cccE , the piezoelectric strain tensor eee, and the electric
permittivity tensor εεεS , after the rotation transformation by three angles (ϑ, ψ
and ϕ). The details of the crystal rotation procedures and the transformation
of the material tensors have been introduced and explained in Ref.[1].

It is also worth to note that the material tensors will not change with the
rotation ψ about the crystal Z-axis for a crystal with uniaxial symmetry, which
is the case for ZnO and AlN used as example materials in the main article. As a
result, the crystal orientation can be simplified further to only a single rotation
angle ϑ.

2 Group velocity in Stroh-formalism

In piezoelectric solids, the direction of the phonon group velocity doesn’t align
with that of the phase velocity in general. For a non-dissipative medium, phonon
group velocity is identical to the energy flow velocity, and thereby can be ob-
tained from the ratio of the time-averaged acoustic Poynting vector SSS and the
average stored mechanical energy density (uK+uS)/2, where uK the peak stored
kinetic energy and uS the peak stored elastic energy [2, 3].

The normal component of the Poynting vector takes the form[1]

n̂nnγ ·SSSα =
1

4
ωαk sin θ|bα|2ξ̂, (1)

where for the bulk waves, ξ̂ = ±1 (J/m) is obtained from the Stroh-normalization[4],
where the sign determines the direction of the Poynting vector. For bulk waves
in an elastic medium, the peak elastic and kinetic stored energies are equal[2]
and hence read as

(uS)α = (uK)α =
1

2
ρ

∣∣∣∣
duuuα

dt

∣∣∣∣
2

=
1

2
ρω2

α|bα|2|AAAα|2, (2)

where ρ is the density of the solid. As a result, the normal component of the
group velocity can be expressed as:

n̂̂n̂nγ · ∂ωα

∂kkk
=

n̂nnγ ·SSSα
1
2 (uK + uS)

=
1

2

sin θ

ρvα|AAAα|2 ξ̂, (3)

It is worth to mention here that, for an outward normal vector n̂̂n̂nγ , a positive
value of Eq.(3) indicates that the phonon travels in the direction from the solid
towards the vacuum.
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3 Near field radiative heat transfer

The near field radiative heat transfer (NFRHT) of two closely spaced parallel
surfaces separated by a vacuum gap of width d has been very well studied. The
associated heat flux between surface 1 with temperature T1 and surface 2 with
temperature T2 can be obtained from J rad

1→2 = J rad
1 − J rad

2 in which J rad
i reads

as[5, 6]

J rad
i =

1

π2

∑

σ=p,s

∫ ∞

0

∫ ∞

0

dωk‖dk‖
�ω

e�ω/kBTi − 1

Im(Rσ1)Im(Rσ2)e
−2k‖d

|1−Rσ1Rσ2e
−2k‖d|2 , (4)

where ω is the angular frequency, k‖ is the component of kkk-vector parallel to
the surface, Ti is the temperature of surface i = 1, 2, and Rσ1 and Rσ2 are
the reflection coefficients of surfaces 1 and 2 for wave mode σ = p, s. These
coefficients are given by

Rp =
εk⊥ − k′⊥
εk⊥ + k′⊥

, Rs =
k⊥ − k′⊥
k⊥ + k′⊥

, (5)

where ε ≡ ε(ω) is the relative dielectric function of the metal, and k⊥ and k′⊥
are the components of kkk-vectors perpendicular to the surface on the vacuum
and material sides, respectively,

k⊥ = i
√

k2‖ − ω/v2c , k′⊥ = i
√

k2‖ − εω/v2c , (6)

where vc is the speed of light.
The Drude-model dielectric function of Au takes form[7]

ε(ω) = εb −
ω2
p

ω2 + iων
, (7)

where we have used εb = 1, ωp = 1.71× 1016 s−1, ν = 4.05× 1013 s−1.
For the dielectric function of ZnO[8, 9], the vertical and parallel vibrational

modes have different transverse-optical (TO) and longitudinal-optical (LO) fre-
quencies. Thereby we have used εi for different polarizations to substitute ε in
Eqs.(4),(5),(6), which reads as

εi(ω) = ε∞,i

ω2
LO,i − ω2 − iωγi

ω2
TO,i − ω2 − iωγi

, (8)

where i = p, s describe the electric field polarization parallel or perpendicular
to the crystal Z-axis, γp = γs = 13 cm−1 is the damping parameter, and the
rest of the parameters are given in Table 1:

4 Heat transfer mediated by other phonon tun-
neling mechanisms

Two other phonon tunneling mechanisms are discussed in the main text: cou-
pling mediated by the van der Waals force and the electrostatic force. The heat
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i = p i = s
ε∞,i 3.78 3.7

ωLO,i [cm
−1] 574 589

ωTO,i [cm
−1] 384 411

Table 1: Parameters for the dielectric function of ZnO.

flux mediated by these mechanisms can be expressed in a general form developed
by Volokitin[10] and given by

JPh
i =

1

π2

∫ ∞

0

dω
�ω

exp(�ω/kBTi)− 1

×
∫ ∞

0

dk‖ k‖
b2ImM1ImM2

|(1− aM1)(1− aM2)− b2M1M2|2 ,
(9)

in which a and b parametrize the coupling mechanism and are defined as

σ1 = au1 − bu2, σ2 = au2 − bu1, (10)

where σi and ui are the stress and displacement on surface i = 1, 2; M is the
susceptibility of the material, u = Mσ, and can be obtained as

M =
i

ρc2t

(
ω

ct

)2
pl
S
, (11)

where

S =

[(
ω

ct

)2

− 2k2‖

]2
+ 4k2‖ptpl

pt =

√(
ω

ct

)2

− k2‖, pl =

√(
ω

cl

)2

− k2‖,

(12)

in which ρ, ct, and cl are the material density, the transverse phase velocity,
and the longitudinal phase velocity, respectively.

For the van der Waals interaction, a and b read as

a =
H

2πd4
, b =

Hk2‖K2(k‖d)

4πd2
, (13)

where H is the Hamaker constant and K2(x) is the modified Bessel function
of the second kind and second order. We note that by inserting Eqs.(13) into
Eq.(9), we confirm that it becomes identical with Eq.(41) in Ref.[6].

With an electrostatic potential difference V between the surfaces, a and b
take the form [10]

a =
ε0V

2k‖
d2

ek‖d + e−k‖d

ek‖d − e−k‖d
, b =

ε0V
2

d2
2k‖

ek‖d − e−k‖d
, (14)
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where we give the equations in SI units, unlike in the original work [10, 11]
which uses CGS units.

For acoustic phonon tunneling between two Au surfaces, we use the following
parameter values: ρ = 1.92 × 104 kgm−3, ct = 1200ms−1, cl = 3240ms−1, and
H = 34.7× 10−20 J[10].

5 Comparing ZnO and AlN with LiNbO3

Figure 2: Comparison of emitted PEMHT as a function of the crystal rotation
angle ϑ for ZnO (solid line), AlN (dotted line) and LiNbO3 (colored dashed
lines). Four different ψ rotations 0 (blue), π/12 (orange), π/6 (green), and π/4
(red) are plotted for LiNbO3 as its has no uniaxial crystal symmetry. All heat
fluxes are calculated for a gap width of 1 nm at a temperature of 0.1 K.

To add to Fig.4 of the main article, we compare the PEMHT of another
piezoelectric material, LiNbO3, with ZnO and AlN as a function of crystal
rotation. The piezoelectric material constants adopted in the calculations are

LiNbO3 has a trigonal crystal system without the uniaxial symmetry. Con-
sequently, its PEMHT is expected to change with ψ rotations. We demonstrate
the PEMHT of LiNbO3 with four different ψ rotations, 0, π/12, π/6, and /π/4
in Fig.2 as a function of ϑ rotation. By comparing to the results for ZnO, we
find that PEMHT is even stronger for LiNbO3, despite the fact that the phase
velocities of these two materials are close. This is explained by LiNbO3 having
much larger piezoelectric stress constants e, as listed in Table.2, leading to an
enhanced piezoelectric response on the solid-vacuum interface.
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ZnO[2] AlN[12] LiNbO3[2]
cE (1010Nm−2)

c11 20.97 34.5 20.3
c33 21.09 39.5 24.5
c44 4.247 11.8 6
c66 4.43 11 7.5
c12 12.11 12.5 5.3
c13 10.51 12 7.5
c14 0.9

e (Cm−2)
e15 -0.48 -0.48 3.7
e22 2.5
e31 -0.573 -0.58 0.2
e33 1.32 1.55 1.3

εS (ε0)
εxx 8.55 9.04 44
εzz 10.2 10.7 29

Density ρ (kgm−3) 5680 3260 4700
Crystal class 6mm 6mm 3m

Table 2: Anisotropic piezoelectric material constants used in the numerical
calculations.
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