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ABSTRACT

The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared
spectroscopy, across ∼15 000 deg2 of the sky. Euclid is expected to detect ∼12 billion astronomical sources, facilitating new insights
into cosmology, galaxy evolution, and various other topics. In order to optimally exploit the expected very large dataset, appropriate
methods and software tools need to be developed. Here we present a novel machine-learning-based methodology for the selection of
quiescent galaxies using broadband Euclid IE, YE, JE, and HE photometry, in combination with multi-wavelength photometry from other
large surveys (e.g. the Rubin LSST). The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours,
and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods
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separately. The pipeline has been designed to have ‘sparsity awareness’, such that missing photometry values are informative for the
classification. In addition, our pipeline is able to derive photometric redshifts for galaxies selected as quiescent, aided by the ‘pseudo-
labelling’ semi-supervised method, and using an outlier detection algorithm to identify and reject likely catastrophic outliers. After
the application of the outlier filter, our pipeline achieves a normalised mean absolute deviation of <∼0.03 and a fraction of catastrophic
outliers of <∼0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy
photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey photometry with ancillary ugriz, WISE, and
radio data; (ii) Euclid Wide Survey photometry with ancillary ugriz, WISE, and radio data; and (iii) Euclid Wide Survey photometry
only, with no foreknowledge of galaxy redshifts. In a like-for-like comparison, our classification pipeline outperforms UV J selection,
in addition to the Euclid IE − YE, JE − HE and u − IE, IE − JE colour–colour methods, with improvements in completeness and the
F1-score (the harmonic mean of precision and recall) of up to a factor of 2.

Keywords: galaxies: photometry – galaxies: high-redshift – galaxies: evolution – galaxies: general – methods: statistical

1. Introduction

The study of galaxies plays a pivotal role in the effort to under-
stand how the baryonic component of the Universe evolved
across cosmic time; it is on the size scale of galaxies that key
processes such as star formation, chemical evolution, black hole
growth, and feedback predominantly take place. Large, system-
atic imaging and spectroscopic surveys are among the most
valuable resources for investigating galaxy evolution, allowing
a wide range of studies, from the identification and study of
rare or elusive objects (e.g. Alexandroff et al. 2013) to statisti-
cal studies of large samples of galaxies (e.g. Kauffmann et al.
2003). A variety of ground- or space-based surveys have already
provided rich databases for investigating questions surrounding
the evolution of galaxies, for example the Sloan Digital Sky
Survey (SDSS; York et al. 2000; Gunn et al. 1998), with even
more data to be generated by ongoing and future campaigns and
facilities that will map the extragalactic sky to even fainter flux
levels, and out to even higher redshifts, for example the Vera C.
Rubin Observatory Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019), the Nancy Grace Roman Space Telescope
(Akeson et al. 2019), the Dark Energy Spectroscopic Instrument
survey (Dey et al. 2019), the 4-metre Multi-Object Spectro-
scopic Telescope (Guiglion et al. 2019), the Multi Object Optical
and Near-infrared Spectrograph for the VLT (Taylor et al. 2018;
Cirasuolo et al. 2020), the Square Kilometer Array (Dewdney
et al. 2009), and the extended Roentgen Survey with an Imag-
ing Telescope Array (Predehl et al. 2021). In the coming years,
the Euclid Space Telescope will make a substantial contribution
to our understanding of galaxy evolution. Euclid will observe
∼15 000 deg2 of the extragalactic sky at visible to near-infrared
(NIR) wavelengths, to a 5σ point-source depth of 26.2 mag1

in the Euclid VISible Instrument (VIS; Cropper et al. 2016) IE

(R+I+Z) filter and 24.5 mag in the Near Infrared Spectrometer
and Photometer (NISP; Maciaszek et al. 2016) YE, JE, and HE

filters (Euclid Collaboration 2022a,c). In addition, three fields
with an area totalling 53 deg2 will be the subject of a deeper sur-
vey, to a 5σ depth of 28.2 mag in IE and 26.5 mag in YE, JE, and
HE. Euclid is expected to detect ∼12 billion astronomical sources
(3σ), providing multi-colour imaging at 0.′′1–0.′′4 resolution,
and is also expected to obtain spectroscopic redshifts for ∼35
million galaxies (e.g. Laureijs et al. 2011). While the primary
science drivers of the Euclid mission are baryonic acoustic oscil-
lations, weak lensing cosmology, and redshift-space distortions,
the survey is also expected to enable a multitude of high-impact
extragalactic science projects, either in stand-alone form or in
combination with multi-wavelength data from other surveys
(e.g. LSST).

1 AB magnitudes are used herein.

Automated classification and derivation of physical prop-
erties are crucial steps towards the scientific exploitation of
data from any large astronomical survey, and traditionally this
would be done using colour–colour methods (e.g. Haro 1956;
Daddi et al. 2004; Leja et al. 2019) or by fitting spectral mod-
els or templates (e.g. Bolzonella et al. 2000; Fotopoulou et al.
2012; Gomes & Papaderos 2017). Machine-learning techniques
have proven to be particularly powerful in this context since
they have the ability to detect structure, correlations, and outliers
in large, multi-dimensional datasets, producing models that are
typically stronger and more efficient than the traditional meth-
ods (e.g. Baqui et al. 2021; Ulmer-Moll et al. 2019; Logan &
Fotopoulou 2020; Clarke et al. 2020; Cunha & Humphrey 2022).
While machine-learning techniques have been applied to extra-
galactic problems for several decades already (e.g. Odewahn
et al. 1993), in recent years there has been a rapid growth in
their application to this area. Notable examples include detailed
morphological classification via application of deep learning to
galaxy images (e.g. Dieleman et al. 2015; Huertas-Company
et al. 2015; Domínguez Sánchez et al. 2018; Tuccillo et al.
2018; Nolte et al. 2019; Bowles et al. 2021; Bretonnière et al.
2021), high-accuracy estimation of the redshift (z) of galaxies
from imaging or photometric data (e.g. Collister & Lahav 2004;
Brescia et al. 2013; Cavuoti et al. 2017; Pasquet et al. 2019;
Razim et al. 2021; Guarneri et al. 2021), selection and classi-
fication of galaxies into various phenomenological types (e.g.
Cavuoti et al. 2014; Steinhardt et al. 2020), and derivation of their
physical properties (e.g. Bonjean et al. 2019; Delli Veneri et al.
2019; Mucesh et al. 2021; Simet et al. 2021). A few studies have
taken a hybrid or ‘cooperative’ approach, combining results from
traditional methods (e.g. template fitting) with machine-learning
methods, resulting in improved accuracy (e.g. Fotopoulou &
Paltani 2018; Cavuoti et al. 2017).

The identification of quiescent galaxies2 is among the most
challenging classification problems in extragalactic astronomy
and represents a crucial task in our quest to understand the evolu-
tion of galaxies across cosmic time. A particular problem is the
fact that there exist substantial degeneracies between stellar age,
metallicity, and reddening by dust (e.g. Worthey 1994), causing
the scattering of galaxies across classification boundaries when
using broadband spectral energy distributions (SEDs). These
degeneracies can be significantly exacerbated by the absence of
redshift information.

A frequently applied technique for the selection of quies-
cent galaxy candidates is UV J colour–colour selection (Strateva
et al. 2001; Baldry et al. 2004; Wuyts et al. 2007; Williams et al.
2009; Muzzin et al. 2013; van der Wel et al. 2014; Leja et al.

2 We adopt the specific star-formation rate (sSFR) of 10−10.5 yr−1 as the
boundary between quiescent and star-forming.
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2019; Shahidi et al. 2020). This method selects objects in rest-
frame U − V , V − JE colour–colour space that are red because
their UV-to-NIR SED is dominated by an old stellar population,
as opposed to star-forming galaxies that are reddened by dust.
While the UV J selection method clearly works (e.g. Fumagalli
et al. 2014), there is a substantial contamination by star-forming
galaxies in the region of ∼10–30% (e.g. Moresco et al. 2013;
Schreiber et al. 2018; Fang et al. 2018). Various observer-frame
colour combinations have also been proposed for the selection of
quiescent galaxies, such as the BzK method (Daddi et al. 2004),
or the Galaxy Evolution Explorer (GALEX) FUV − V , V − JE,
and FUV − V , V −W3 methods proposed by Leja et al. (2019).
Once selected via colour–colour techniques, SED fitting (e.g.
Wiklind et al. 2008; Girelli et al. 2019) and spectroscopic obser-
vations (e.g. Belli et al. 2015; Glazebrook et al. 2017; Schreiber
et al. 2018) can then be employed to confirm their passive
nature. Alternative approaches have also been successful at
selecting quiescent galaxies, such as template fitting followed
by colour selection (e.g. Laigle et al. 2016; Deshmukh et al.
2018).

In the context of preparations for the Euclid survey, Bisigello
et al. (2020, B20 hereinafter) recently developed IE − YE, JE − HE

and u − IE, IE − JE colour–colour criteria to separate quiescent
galaxies from star-forming galaxies up to z = 2.5, for use in the
case where spectroscopic or photometric redshifts are available.
The proposed colour–colour criteria significantly outperform the
traditional UV J technique that, when derived using only the
four Euclid filters, provides a completeness of only ∼0.2 at
z < 3. For example, using their u − IE, IE − JE criteria, B20
were able to select a sample of quiescent galaxies at 0.75 <
z < 1 with a completeness of ∼0.7 and a precision >0.85. Their
IE − YE, JE − HE criteria also allowed the authors to select qui-
escent galaxies at 1 < z < 2 with a completeness >0.65 and a
precision >0.8.

An important limitation of colour–colour selection tech-
niques is that they are, in effect, lossy dimensionality-reduction
methods. As such, they are likely to discard a significant quantity
of otherwise useful information that is present in a broad-
band SED. In this context, machine-learning methods offer a
promising alternative since they are able to perform selection
from within highly multi-dimensional datasets, and can be tuned
to make a trade-off between purity and completeness that is
appropriate for a desired science application. Indeed, Steinhardt
et al. (2020) recently explored the selection of quiescent galax-
ies using the unsupervised t-distributed stochastic neighbour
embedding method (van der Maaten & Hinton 2008; van der
Maaten 2014), reporting a significant improvement over the UV J
and template fitting methods.

In this paper we present a new supervised machine-learning
method for the separation of quiescent and star-forming galax-
ies using Euclid and ancillary photometry, which is designed to
handle sparse data and can provide photometric redshift esti-
mates where necessary. The paper is organised as follows. In
Sect. 2 we describe the mock photometry catalogues used in this
study. The metrics of model quality we use are defined in Sect. 3.
Full details of the ARIADNE pipeline are given in Sect. 4. We
describe in Sect. 5 the results of applying our separation meth-
ods to the mock photometric data. Next, in Sect. 6 we compare
our method with colour–colour methods previously proposed
by B20 and others. In Sect. 7, we summarise results from a
number of further analyses and tests, with full details given in
Appendix B. Finally, in Sect. 8 we summarise our results and
conclusions.

2. Mock galaxy catalogues

In this work, we make use of an updated version of the
mock catalogues presented in B20. All catalogues were derived
from magnitudes in the COSMOS2015 multi-wavelength cata-
logues (Laigle et al. 2016). Objects labelled as stars or X-ray
sources, and objects with inadequate3 optical photometry, being
removed. After this selection, the COSMOS2015 catalogue con-
tains 518404 objects up to z = 6. We now briefly introduce the
two methods used to derive Euclid-like mock catalogues.

In the first method, we interpolated over the observed COS-
MOS2015 photometry to produce a broken-line template running
from ultraviolet to infrared wavelengths, which is then convolved
with the filters of interest to derive mock photometry. As this
method is affected directly by the COSMOS2015 photometric
errors, which are similar or larger than those expected in the
Euclid Wide Survey, we did not include any additional photomet-
ric scatter. The 20 cm Very Large Array (VLA) radio continuum
flux, where measured, is also included without modification.
Using this approach, we derived two separate catalogues, resem-
bling the Euclid Wide Survey (Euclid Collaboration 2022a) and
Euclid Deep Survey. We refer to these mock catalogues as ‘Int
Wide’ and ‘Int Deep’, respectively.

The question of the potential impact of emission lines on the
Int catalogues was discussed previously by B20. In short, the
broadband magnitudes in the Int and SED catalogues include
contributions from emission lines. Because the Int catalogues
were constructed using real observed photometry, this means that
for some bands and some galaxies, a contribution from nebu-
lar emission is present. In the case of the SED catalogues, the
LePhare code was used with emission lines included (see Ilbert
et al. 2006), allowing nebular emission to contribute to the mock
magnitudes.

Nevertheless, we do not expect the inclusion (or exclusion)
of emission lines to have a significant effect on our results. Given
the widths of the filters considered herein (Euclid Collaboration
2022c), the effect of emission lines is marginal: observed equiv-
alent widths larger than 350 Å, 260 Å, 390 Å, and 480 Å would
be required to produce a boost of ∼0.1 mag in the VIS, Y, J, and
H bands, respectively; such high equivalent widths are rare in the
sample of galaxies used for our mock catalogues (e.g., Amorín
et al. 2015).

In the second approach, we used the public code LePhare
(Arnouts et al. 2007; Ilbert et al. 2006) to fit the COSMOS2015
photometry with a large set of Bruzual & Charlot (2003) tem-
plates, with the redshift fixed at its COSMOS2015 value from
Laigle et al. (2016). In particular, we considered templates with
two different metallicities (Z⊙ and 0.4 Z⊙), exponentially declin-
ing star-formation histories with an e-folding timescale τ varying
from 0.1 to 10 Gyr, and ages between 0.1 and 12 Gyr. For the dust
extinction, we considered the reddening law of Calzetti et al.
(2000) with 12 values of colour excess from 0 to 1. For each
galaxy, we obtained the best SED template applying a χ2 minimi-
sation procedure and we convolved the resulting template with
the filters of interest to calculate the desired mock photometry.
In effect, the resulting photometric SED is a synthetic repre-
sentation of the observed one. For each galaxy, we derived ten
mock galaxies by randomising the mock photometry within the
expected photometric errors. As with the first approach, here we
derived two different catalogues, one for the Euclid Wide Survey

3 Sources that are ‘masked in optical broad-bands’ in the COS-
MOS2015 catalogue.

A99, page 3 of 36



A&A 671, A99 (2023)

Table 1. 10σ depth in AB magnitudes of the Wide Survey for the filters included in the mock catalogues.

IE YE JE HE CFIS/u SDSS/g SDSS/r SDSS/i SDSS/z W1 W2

24.5 23.25 23.25 23.25 24.20 24.50 23.90 23.60 23.40 18.39 18.04

Notes. The Deep Survey is expected to be two magnitudes deeper than the Wide survey in the Euclid, CFIS, and SDSS bands.

(SED Wide) and one for the Euclid Deep Survey (SED Deep).
Because the templates do not extend into the radio regime, the
SED Wide and SED Deep mock catalogues do not include the
20 cm radio band.

We included the VIS IE filter, the NISP YE, JE, and HE filters
(Euclid Collaboration 2022c), and the Canada-France Imaging
Survey u filter (CFIS/u), as previously presented in B20. In
addition, we derived mock fluxes for the SDSS (Gunn et al.
1998) griz filters and the Wide-field Infrared Survey Explorer
(WISE; Wright et al. 2010) filters at 3.4 and 4.6µm (W1 and
W2). For these two WISE filters, we considered the 5σ obser-
vational depths of the WISE All-Sky survey: 0.08 and 0.11 mJy,
respectively (Wright et al. 2010). For the other filters we instead
assumed the observational depths reported in the Euclid Red
Book (Laureijs et al. 2011), which are expected to be reached
with a variety of ground-based telescopes, for which we use the
SDSS filters as proxies. The complete list of observational depths
are listed in Table 1. Our choice of depths for the Euclid and
ground-based photometry is motivated primarily by the need to
make a direct comparison with the colour–colour results of B20.
Thus, we adopted the depths used in B204.

For all bands, only photometry measurements with a signal-
to-noise ratio of ≥3 are considered. This threshold has been
chosen to ensure that only reliable measurements are used. The
use of low signal-to-noise data deserves a detailed and in-depth
study, and is under investigation for a future paper. For all bands
except IE, non-detections are flagged as missing; objects for
which IE has a signal-to-noise below 3 are excluded from the
catalogues. We refer to B20 for further details on the creation of
the mock catalogues.

The specific star-formation rate (sSFR) was derived for each
galaxy at z ≤ 3 by fitting the 30-band photometric SED of Laigle
et al. (2016) using LePhare. Further details of this process are
given in B20. The dividing line between ‘quiescent’ and ‘star-
forming’ in terms of sSFR is somewhat arbitrary, and various
different thresholds are in use in the literature, although these
are usually in the range <10−10 yr−1 (e.g. Wu et al. 2018) to
<10−11 yr−1 (e.g. Ilbert et al. 2013). For consistency with B20, we
define quiescent to mean that a galaxy has sSFR <10−10.5 yr−1,
and star-forming to mean that a galaxy has sSFR ≥10−10.5 yr−1.
In any case, the classification metrics we obtain herein are not
significantly dependent on which value of sSFR we adopt for

4 The Euclid photometric depths adopted herein differ slightly from
the most recent forecasts: the IE photometry is now forecast to be
0.5 mag deeper, and the NISP photometry 0.25 mag deeper (Euclid
Collaboration 2022a), compared to the values adopted herein. In the
case of ground-based optical photometry overlapping the Euclid survey
areas there is no single forecast, since the photometry is expected to
come from several different surveys. For instance, at the time the Euclid
DR3 release, the UNIONS survey (Chambers et al. 2020) is forecast
to be 0.6 mag shallower in u and 0.2 mag deeper in r compared to the
Wide Survey depths adopted herein, with similar depths in the g, i and z
bands. In the Southern Hemisphere, LSST is expected to provide deeper
optical data.
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Fig. 1. Redshift distribution of galaxies in the Int Wide and Int Deep
catalogues (top panel), and the quiescent galaxy fraction as a function
of redshift up to z = 3 (lower panel).

the threshold between quiescent and star-forming galaxies, for
values of the threshold between 10−10 yr−1 and 10−11 yr−1.

For the redshift labels we adopt the 30-band COSMOS pho-
tometric redshifts estimated by Laigle et al. (2016). For the SED
catalogues, the redshift labels represent the true redshifts (i.e.
with no uncertainty), because the mock photometry is derived
directly from templates with known redshifts. On the other hand,
in the case of the Int catalogues, the redshift labels are merely
photometric redshift estimates, and thus have an uncertainty with
systematic and random components.

We characterise the properties of the mock catalogues in
Figs. 1–4. In Fig. 1, we show the redshift distribution of galaxies.
Also shown is the distribution and fraction of quiescent galaxies
as a function of redshift, up to z = 3. It can be seen that the qui-
escent fraction falls rapidly with increasing redshift, starting at
∼0.16 at z ∼ 0 and declining to ≤0.05 by z ∼ 2.5, illustrating the
highly challenging nature of the search for quiescent (or passive)
galaxies at high redshift.

The distribution of magnitudes is shown in Fig. 2, with the
expected 10σ detection limits in the Euclid filters marked. This
figure shows that the Wide mock catalogues are complete down
to the 3σ detection limit in all optical and NIR bands. However,
the Deep catalogues are not complete, due to the limits of the
COSMOS2015 photometry catalogue.

Figure 3 shows the distribution of IE −HE, u− IE, and YE −HE

colours in the four mock catalogues. There are slight colour
differences between the Int and SED catalogues that arise due
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Fig. 2. Distribution of galaxy magnitudes in the Int catalogues (left) and the SED catalogues (right) for the various optical and NIR bands used
herein. Vertical dashed lines indicate the expected 10σ sensitivity of the Euclid Wide and Deep Surveys in the IE, YE, JE, and HE bands. In all
bands, only photometry with a signal-to-noise ratio ≥3 is included.
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Fig. 3. Comparison between the distribution of the IE − HE, u − IE, and YE − HE colours in the Int and SED mock catalogues. Top row: Euclid Wide
catalogues. Bottom row: Euclid Deep catalogues. Significant differences between the Int and SED methods are apparent, most notably with the
SED method giving rise to significantly bluer u − IE colours compared to the Int method. These differences arise when the galaxy templates are
unable to closely match the observed broadband SED; this may be due to the photometric redshift being incorrect and/or due to the absence of a
template that sufficiently represents the properties of the galaxy.

to their different construction methodologies. For instance, the
SED catalogues are slightly bluer in terms of their average
observer-frame u − IE colours, compared to the Int catalogues.

In Fig. 4, we show the fraction of missing photometry mea-
surements as a function of redshift for the optical and infrared
bands. In the case of our mock catalogues, photometry is flagged
as missing when (i) a galaxy or area is unobserved in that
band, (ii) a galaxy or area was masked, (iii) a photometry

measurement falls below the detection threshold of the cata-
logue, or (iv) a photometry measurement has a signal-to-noise
ratio lower than 3. In general terms, the missing fraction is higher
for higher redshifts, although in some cases (notably the NIR
bands) there is a turnover and decrease in the missing fraction at
very high redshifts (z >∼ 4). The WISE W1 and W2 bands and the
20 cm radio band data are highly sparse, with missing fractions
of 0.947, 0.976, and 0.992, respectively. Conversely, the IE band
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Fig. 4. Fraction of missing photometry measurements vs. redshift for each of the filters used for model training. By construction, the IE band has
no missing values. Very few of the galaxies are detected in the W1, W2, or VLA 20 cm bands.

has a missing fraction of exactly 0, since detection in this band
is a requirement for inclusion in our mock catalogues.

Finally, Fig. 5 shows the impact on the number and redshift
distribution of galaxies from application of the main photomet-
ric pre-selection criteria used herein: (i) 3σ detections in IE, YE,
JE, HE; (ii) 3σ detections in u, IE, YE, JE, HE; and (iii) 3σ detec-
tions in ugriz, IE, YE, JE, HE. As expected, the impact of requiring
detection in the u band is to induce a step in the distribution at
z ∼ 3, as the Lyman break is redshifted out of the u-band filter;
this step is much stronger in the Wide catalogues than in the SED
catalogues. In the Int Deep catalogue, the reduction in the num-
ber of sources at z >∼ 3 when detection in u or ugriz is required is
surprisingly small; this is likely to be at least partly caused by the
presence of sources with incorrect photometric redshifts in the
COSMOS2015 catalogue. Table C.1 lists the number of galaxies
that are detected in each band for each of the mock catalogues.

3. Metrics of model quality

To evaluate our classification models, we used several metrics
that are useful to quantify model quality. Precision, P, is the

fraction of assignments to a particular class that are correct,
calculated as

P =
TP

TP + FP
, (1)

where TP is the number of true positives and FP is the number
of false positives. Precision is also sometimes known as ‘purity’
in astronomy, or the ‘positive predictive value’.

Recall, R, is the fraction of galaxies of a particular class
within the dataset that are correctly classified as such. It is
calculated as

R =
TP

TP + FN
, (2)

where FN is the number of false negatives. Recall is also
sometimes known as ‘completeness’ or ‘sensitivity’.

The F1-score is the harmonic mean of the precision and the
recall and, as such, provides a more general metric for model
quality (Dice 1945; Sørensen 1948). The F1-score is calculated
as

F1-score = 2
P R

P + R
, (3)
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Fig. 5. Effect of various photometric pre-selection criteria on the num-
ber and redshift distribution of galaxies in the four mock catalogues.
We show four cases: (i) only a detection in IE is required; (ii) detec-
tion is required in all four Euclid bands (IE, YE, JE, HE); (iii) detection
is required in u and all four of the Euclid bands; and (iv) detection is
required in ugriz and all of the Euclid bands. As described in the main
text, for all bands we adopt a signal-to-noise detection threshold ≥3.

where we have opted to give equal weights to P and R. The met-
rics P, R, and F1-score have values between 0 and 1. Since there
is a large imbalance between classes in the datasets used here,
we compute the metrics separately for each class. Unless other-
wise stated, the values of P, R, and the F1-score we quote are
computed for the quiescent galaxy class only.

To assess the quality of photometric redshift estimates pro-
duced by our pipeline, we used the following measures. As a
measure of accuracy, we used the normalised median absolute
deviation (NMAD), which we calculated as

NMAD = 1.48 median
(
|zphot − zref |

1 + zref

)
, (4)

where zphot is our photometric redshift and zref is the reference
redshift used as the ‘ground truth’. In this study, we adopt the
30-band photometric redshifts from COSMOS2015 (Laigle et al.
2016) for zref . The NMAD can be loosely interpreted as the
standard deviation.

As a further measure of quality, we also calculated the
fraction of catastrophic outliers ( fout). A photometric redshift
estimate is considered to be a catastrophic outlier when

|zphot − zref |

1 + zref
> 0.15. (5)

To test whether (and to which extent) our pipeline system-
atically over- or underestimates galaxy redshifts, we defined the
bias of the photometric redshifts as

bias = median
(

zphot − zref

1 + zref

)
. (6)

It is also useful to have a metric that quantifies the degree
to which a false positive classification is in error. We define the
‘incorrectness’ of an individual false positive classification as

IFP = log10(sSFR yr) + 10.5. (7)

We considered a false positive to be ‘marginal’ when IFP ≤

0.5, and ‘catastrophic’ when IFP ≥ 1.0. We also defined an
average incorrectness parameter as

ĪFP =

n∑
i=0

log10(sSFR yr) + 10.5
FP

. (8)

We have not used the commonly used ‘accuracy’ metric, which
gives the fraction of predictions that are correct, because it can
be misleading when the test data are significantly imbalanced, as
is the case here.

4. The ARIADNE pipeline

ARIADNE is a flexible, modular machine-learning pipeline
designed for the purpose of classification and derivation of phys-
ical properties of astronomical sources on the basis of their
photometric SEDs. In a nutshell, ARIADNE takes a table of pho-
tometry as input, and uses algorithms to learn how the input
data maps to labels corresponding to galaxy properties. Here we
describe the functionality of ARIADNE in its classification mode
(a flowchart is also shown in Fig. 6); its application to estima-
tion of physical properties, such as stellar mass, star-formation
rate, and extinction, will be presented in a future publication
(Humphrey et al., in prep.).
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Fig. 6. Flow chart illustrating the overall learning algorithm used for the ARIADNE classification pipeline.

4.1. The learning algorithm

After completion of the feature engineering and preprocessing
steps described in Sect. 4.2, the data are split into a training set
and test set with a 2:1 ratio between the two. This ratio was cho-
sen to give a good balance between having a large number of
examples on which to train the learners, while still having a test
set that is representative of the whole dataset5. The split is done
randomly, without attempting to balance target labels, redshift,
or any other observational properties, and each execution of the
pipeline produces a different train-test split.

The pipeline then trains binary classification models on the
training dataset, using five different ‘base-learners’ (see Fig. 6).
Three of the base-learners are tree-ensemble methods with
somewhat different implementations (CatBoostClassifier6

version 0.23.2; LGBMClassifier7 version 0.90;
RandomForestClassifier), one is nearest-neighbours-based
(KNeighborsClassifier), and one is deep-learning-based
(MLPClassifier). All are open source and are briefly
summarised below.

The Python Scikit-Learn8 version 0.22.2 package
(Pedregosa et al. 2011) offers various machine-learning methods
with excellent functionality and inter-operability with a multi-
tude of in-package preprocessing tools. From Scikit-Learn
we make use of the nearest-neighbours-based, non-parametric
KNeighborsClassifier method, the Multi-layer Perceptron-
based MLPClassifier, and the randomised decision-tree clas-
sifier RandomForestClassifier (Breiman 2001).

Several other, advanced machine-learning methods are used
in our pipeline. CatBoost (Prokhorenkova et al. 2018) is a
gradient-boosting, tree-ensemble method that offers high perfor-
mance classification or regression, using ‘ordered-boosting’ in
place of the classic boosting algorithm to significantly reduce
the ‘prediction shift’ commonly associated with the latter.

Arguably the most advanced tree-based learning algorithm
publicly available at the time of writing is LightGBM, a gradient-
boosting, decision-tree method that deploys a number of key
innovations that are especially relevant for the classification

5 When applied to the actual Euclid survey data it is expected that the
ratio used for the train test split may be of order ∼1 : 10 000.
6 https://catboost.ai
7 https://lightgbm.readthedocs.io
8 https://scikit-learn.org

problems we approach in this work (Ke et al. 2017). For instance,
LightGBM uses leaf-wise (best-first), rather than level-wise tree-
growth, for improved classification accuracy. Also of relevance
is the use of histogram-based algorithms that place continuous
feature values into discrete bins, significantly reducing training
time and memory usage.

In addition to the five default base-learners described above,
our pipeline also includes the option to use the tree-based
method XGBoost9 version 0.25.3 (Chen & Guestrin 2016),
for use in situations where this learning algorithm is able to train
stronger models than those described above. The XGBoost algo-
rithm uses gradient boosting and has several key innovations,
including sparsity-aware split-finding, which is of particular rel-
evance for datasets containing a significant fraction of missing
values (e.g. photometric non-detections, masked or unobserved
areas).

Our application of these learning algorithms to the data
at hand reveals that no single algorithm consistently outper-
forms the others over the full range of classification problems
posed herein. Thus, our pipeline employs model ensembling and
interactive algorithm selection.

The base-learners are trained within a stratified k-fold proce-
dure: the training data are shuffled and split, with replacement,
into five similarly sized folds, ensuring that each fold contains
the same proportion of each target class. Each base-learner is
trained five times, each time leaving out a different fold, for
which a set of out-of-fold (OOF) class predictions is produced.
This results in an array of OOF predictions for each base-learner.
For each iteration of the k-fold procedure, class predictions are
also produced for the test set, averaging the five sets of class pre-
dictions for each base-learner. Unless otherwise stated, we adopt
a class probability threshold of 0.5: predictions of <0.5 corre-
spond to class 0 (star-forming galaxies), and predictions of ≥0.5
correspond to class 1 (quiescent galaxies).

The pipeline then performs several iterations of non-linear
combination of class predictions from the individual learners.
First, a hard-voting ensemble is produced for the OOF and test
predictions. Each base learner contributes one vote towards the
class of a galaxy, and the class with the highest number of votes
is chosen. For the data and classification problem considered in
this work, the hard-voting ensemble almost always results in a

9 https://xgboost.readthedocs.io
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significantly higher F1-score than any of the individual base-
learners, or a simple average of the class probabilities.

To further improve model quality, the pipeline contains
our implementation of the ‘generalised stacking’ method pro-
posed by Wolpert (1992). A linear discriminant analysis or
MLPClassifier meta-learner is trained to classify galaxies
using the OOF predictions from the five base-learners as fea-
tures. This is performed within a stratified k-fold procedure as
described above, and produces a new set of OOF predictions for
the training dataset, in addition to a new set of predictions for
the test dataset. A second iteration of meta-learning is then per-
formed, this time training on just two features: (i) the results of
the hard-voting ensemble and (ii) the OOF predictions produced
in the previous iteration of meta-learning. Finally, the resulting
model is used to predict classes for the test data. An alterna-
tive implementation of generalised stacking, applied to redshift
estimation, is presented in Zitlau et al. (2016).

One of the benefits of generalised stacking is that the opti-
misation of base-learner hyperparameters, while still necessary
to some extent, is not as crucial for the final performance of the
pipeline as it would be when a single learning algorithm is used.
This is partly because when the meta-learner distills the base-
classifiers into a single classifier, it performs a process broadly
analogous to optimisation and model-selection. Arguably, this
process can be more efficient than traditional optimisation and
model selection methods, since it is performed in a single step
and is not restricted to selecting a single model or a single set
of hyperparameters, and instead can combine the strengths of
several different classifiers that are best able to model differ-
ent subsets of the data. In the case where a single base-learner
is used within our pipeline, the generalised stacking procedure
instead serves as an ‘error-correction’ algorithm.

We have not attempted to perform an exhaustive optimisation
of the base-learners prior to applying our generalised stacking
method. Instead, for each learner we manually identified a set
of default hyperparameters that gives what we judged to be near
to the global maximum of the F1-score for selecting quiescent
galaxies from the mock catalogues. This is done to avoid biasing
the individual base-learners towards producing classifiers that all
succeed (or fail) in modelling the same subset of the data, and
to expand the diversity of classification models available to the
meta-learner.

In the default configuration of our pipeline, all five default
base-learners are used. However, the user can instead use a
subset of the base learners, or a single base-learner, when appro-
priate. For example, we opt to use XGBoostClassifier for
the selection of quiescent galaxies at 2.5 < z < 3.0, where
its sparsity awareness confers a significant advantage over the
other classifiers. In addition, the pipeline has a ‘fast mode’ that
uses LightGBM for all classification or regression tasks, at the
cost of a small but significant reduction in P, R, and F1-score
(∼0.01–0.03). Timed on a mid-range laptop with a quad-core
Intel i5-8350U CPU and 16 Gigabytes of RAM, the pipeline
used in fast mode takes at total of ∼2 min to train its classifier
on a dataset with ∼120 000 examples and 70 features, compared
to ∼74 min when using the default (5 base-learners) pipeline
configuration.

Our pipeline makes use of redshift information in one of sev-
eral ways, depending on the classification problem that is posed.
When redshifts are available, these can be included as an addi-
tional feature in the training and test data. In addition, when
the objective is to select quiescent galaxies in a specific red-
shift interval, pre-binning can be used to discard objects that lie
outside the desired redshift interval.

In the absence of redshifts for the test sample, the pipeline
first performs a global selection of quiescent galaxies (without
regard to redshift), then trains a KNeighborsRegressor model
to predict photometric redshifts for the selected quiescent galax-
ies. The photometric redshift point estimates are refined using
our implementation of the semi-supervised ‘pseudo-labelling’
technique (Lee 2013), which aims to use both labelled and unla-
belled data to learn the underlying structure of the data, thereby
improving generalisation. Finally, analogous to Fotopoulou &
Paltani (2018); Singal et al. (2022), a KNeighborsRegressor
model is trained to predict whether a galaxy’s redshift estimate
is a catastrophic outlier, with a tunable probability threshold to
control the strength of the outlier removal.

4.2. Feature engineering

4.2.1. Broadband colours

Before applying our algorithm to the data, we first performed
a pre-processing step known as ‘feature engineering’, whereby
the data are enriched with information to help the algorithm
learn more efficiently. We start with the broadband magnitudes
and their 1σ errors as base features. Because colours offer a
potentially clearer description of the relative shape of the broad-
band SED than magnitudes, we also calculated all possible
(unique) broadband colour permutations, and included them as
features. In cases where fluxes are given instead of magnitudes
(e.g. VLA radio flux measurements), we converted the values to
magnitudes before deriving the related colours.

4.2.2. Missing data imputation strategy

One of the advantages of our machine-learning approach to
galaxy classification is the possibility to efficiently deal with
missing data. A subset of galaxies in the mock catalogues is
undetected, or unobserved, in one or more filters; we consider it
highly desirable to include them in our analysis, where possible,
for several reasons: (i) such objects enlarge our training dataset;
(ii) non-detection in some bands is likely to carry useful informa-
tion for our learning algorithm (e.g. u-band drop-outs); and (iii)
the upcoming large surveys (e.g. Euclid, LSST, etc.) that moti-
vate this work will produce large datasets where many galaxies
have missing data in one or more bands, and such objects need
to be utilised to make the most effective use of the survey
data.

Here, we impute values for missing data with a method
that is independent of the reason for it to be missing. When
using tree-based learning algorithms (CatBoostClassifier,
LightGBMClassifier, RandomForestClassifier, or
XGBoostClassifier), we impute the missing values with
the arbitrarily chosen constant value −99.9. All broadband
colours that would have used the missing value are also set to
−99.9. Because none of the measured magnitudes or colours
have this value (nor do they have similar values), information
about the presence of missing values is thus preserved such
that the tree-based learners can use non-detections to aid their
classification of sources; this information is essentially lost
if the average, median, or minimum value would be used
instead for the imputation. Conversely, the MLPClassifier
and KNeighborsClassifier learning algorithms are generally
more sensitive to the normalisation of the input features, and
imputing data with the value −99.9 is likely to create inappro-
priate and unhelpful artefacts in feature-space; therefore, in the
cases of MLPClassifier and KNeighborsClassifier we
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Table 2. Impact on the F1-score from using one of several different imputation strategies.

Learning algorithm Imputed value −99.9 Mean −99.9 or mean Median Minimum
(1) (2) (3) (4) (5) (6)

CatBoostClassifier 0.633 0.632 0.633 0.644 0.621
LightGBMClassifier 0.678 0.621 0.678 0.596 0.655
RandomForestClassifier 0.607 0.561 0.607 0.576 0.607
MLPClassifier 0.000 0.610 0.610 0.621 0.633
KNeighborsClassifier 0.519 0.526 0.526 0.526 0.519
Meta-learner ensemble of the above 0.667 0.600 0.656 0.623 0.610
XGBoostClassifier 0.610 0.576 0.610 0.586 0.621

Notes. In this example, we have trained models to select quiescent galaxies from the Int Wide mock catalogue in the redshift bin 2 < z < 2.5,
using ugriz, Euclid, W1, W2, and 20 cm photometry and colours, and with pre-binning by redshift, as described in Sect. 5.1.2. A single random
seed is used for the train/test split and base learners to allow a relatively controlled comparison between methods. The columns are as follows: (1)
The learning algorithm; also shown are the final F1-scores after the models produced by the 5 default base-learners have been ensembled using
meta-learners; (2) F1-score when missing values are imputed with the constant value −99.9; (3) F1-score when imputing with the average value
of a feature; (4) F1-score when missing values are dynamically imputed with either the constant value −99.9 (tree-based learners) or the mean of
a feature (MLPClassifier and KNeighborsClassifier); (5) F1-score when imputing with the median value of a feature; (6) F1-score when
imputing with the minimum value of a feature. Some F1-scores differ significantly to those presented in Sect. 5, since here we use only a single
random seed instead of averaging results over multiple pipeline runs that use different random seeds. Note that in this test, MLPClassifier was
unable to correctly identify any quiescent galaxies when missing values were imputed with −99.9; nonetheless, this failure did not appear to be
detrimental to the final meta-learner ensemble.

instead impute missing values with the mean of the respective
feature, computed across the sample of galaxies using all the
non-missing values.

We emphasise that the primary motivation behind our impu-
tation strategy is to flag non-detections such that the learning
algorithms can deduce how to use them most effectively; an
added benefit of this strategy is that it allows the use of objects
with photometric SEDs that are missing one or more bands,
without necessarily having to discard them.

Table 2 illustrates the impact on the F1-score from using
one of several different imputation strategies, using a fixed ran-
dom seed for the train/test split and base learners. Results for
the following strategies are shown: imputation with the mean,
the median, the minimum, a constant value of −99.9, or dynam-
ically switching between −99.9 for tree-based learners and
the mean for MLPClassifier and KNeighborsClassifier.
In each case, the F1-scores are shown for the base learners
and for the final stacked ensemble classifier. While the results
vary significantly depending on the choice of random seed, the
general outcome is that, as expected, the tree-based learning
algorithms (CatBoostClassifier, LightGBMClassifier,
RandomForestClassifier, or XGBoostClassifier) gen-
erally give higher F1-scores when using missing values
that are imputed with −99.9, whereas MLPClassifier and
KNeighborsClassifier generally produce higher F1-scores
when using the mean, median, or minimum of a feature for
imputation.

To provide the learning algorithms with additional help
to treat missing data, we created a feature (n_missing) that
counts the number of missing magnitude values for each galaxy.
Although not needed in the present study, the ARIADNE pipeline
has the capability to make use of categorical flags that spec-
ify the reason for each missing data point in the input data (i.e.
non-detection vs. not observed or masked).

Standardisation was performed using the Standard
Scaler from Scikit-Learn, which removes the mean and
scales to unit variance. Missing values flagged with the value
−99.9 are ignored during the standardisation procedure.

4.2.3. Target variable

We generate a target feature representing the binary classifica-
tion of the galaxies. This feature is dynamically filled, depending
on the specific subset of galaxies to be selected. At its simplest,
the target variable is set to 0 for star-forming galaxies and 1 for
quiescent galaxies. To select quiescent galaxies in a specific red-
shift range, the target feature is set to 1 for all quiescent galaxies
in that redshift band, and 0 for all other galaxies.

It is important to note that in the case of the Int catalogues,
the sSFR label, and consequently the binary target variable, has
an intrinsic uncertainty. Depending on the nature of the uncer-
tainties, it is entirely possible that our classification methodology
is outperforming the initial sSFR evaluation. However, a detailed
analysis of this potential effect is beyond the scope of this paper.

4.2.4. Feature importance and selection

It is important to ensure that our models are trained using
only features that provide useful information for the prediction
of the target variable. First, we examined the feature impor-
tance information provided by three of the tree-based learn-
ing algorithms that we use here (RandomForestClassifier,
CatBoostClassifier, and XGBoostClassifier). Feature
importance provides a general picture of the relative useful-
ness of each feature in the construction of the resulting clas-
sification models. Each of the aforementioned learning algo-
rithms uses a slightly different method to calculate feature
importance values. RandomForestClassifier calculates the
mean decrease in impurity when a feature is used in a split.
CatBoostClassifier provides several options, from which we
select PredictionValuesChange, which indicates the average
change in the predicted values that result from a change in the
feature value. In the case of XGBoostClassifier, we opt to
use the gain, defined as the improvement in accuracy resulting
from the use of a feature in the branches it is on.

In Fig. 7, we show examples of the feature importances
resulting from training each of the three aforementioned
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Fig. 7. Examples of feature importance derived from the RandomForest, CatBoost, and LightGBM classifiers when selecting quiescent galaxies
from within the 0 < z < 3 interval, without foreknowledge of galaxy redshifts. For each learner, the feature importance values are normalised such
that their sum is 1.0. The y axis labels correspond to feature names used by the pipeline after the pre-processing steps outlined in Sect. 4.2 have been
applied and should be self-explanatory. For example, the feature named ‘u’ is derived from the u-band magnitudes (i.e. after our pre-processing
steps), the feature ‘VIS-20CM’ is derived from the IE − 20 cm colours, etc.

tree-based learners to select quiescent galaxies in the range 0 <
z < 3, without foreknowledge10 of galaxy redshifts. Significant
differences are evident among the results in terms of the impor-
tance values themselves and feature importance rank, reflecting
differences among the learning algorithms, the fact that many of

10 In other words, the input features for the classification models do not
contain redshift values, nor are they binned or sorted by redshift. In
cases where redshift information is included among the input features,
this will be stated.

the features are strongly correlated, and the somewhat different
methods used to compute feature importance.

In general, the broadband colours typically show some of
the highest feature importance values, indicating they are among
the most informative, as one would expect given the strong cor-
relation between the shape of a galaxy’s SED and its activity
type. In addition, the broadband magnitudes are also clearly
useful to some degree. The feature that counts missing val-
ues (n_missing) also appears to be useful, at least in some
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circumstances. However, the magnitude errors (not shown) show
very low importance values, implying they provide little or no
useful information. An important caveat is that feature impor-
tance values do not necessarily give an accurate picture of how
the inclusion (or removal) of a particular feature affects the met-
ric used to quantify model performance. Moreover, our feature
analysis applies only to the tree-based learning algorithms we
used, and there is no guarantee that it applies to any of the other
learning algorithms present in our pipeline.

Thus, to better understand the general usefulness of each of
our features, we tested how removing a feature affects the F1-
score metric that we calculate after execution of the complete
pipeline. We conducted split-run tests in which our algorithm is
trained and cross-validated twice, once with a particular feature
removed, and once more with this feature reinstated. All other
parameters were kept constant between the two training runs,
including the training-test data split and all random seeds; this
split-run test process was repeated multiple times (>10) for each
feature, each time using a new random seed to ensure the split-
run test results are not dependent on which random seed is used.
The resulting difference in the F1-scores between the two split-
run test runs then indicates whether the inclusion of a feature is
useful (higher F1-score) or not (lower or unchanged F1-score).

We find that removal of any of the broadband colours or mag-
nitude values results in a noticeable decrease in the F1-score,
indicating they are all useful for training our algorithm. While
the broadband magnitudes technically provide the learning algo-
rithms with a full description of the broadband SED enclosed
by the respective wavelength range, it is clear that explicitly pro-
viding spectral slopes in the form of broadband colours allows
significantly more accurate model training.

We also find that inclusion of n_missing results in a sig-
nificant improvement in the F1-score, although the size of the
improvement appears to depend somewhat on the classification
objective, such as the redshift range of galaxies under selection,
and the base learner used. Conversely, removing any (or all) of
the magnitude error features results in a small but significant
improvement in the F1-score, indicating they are uninforma-
tive and merely add noise to the training data. Therefore, our
machine-learning pipeline trains on the following features: (i) the
magnitudes; (ii) the broadband colours; and (iii) the n_missing
feature.

5. Results

5.1. Selection in redshift bins

We now apply our classification pipeline to the problem of
selecting quiescent galaxies from the mock Euclid photometry
catalogues. The objective is to examine the suitability of our
method for the separation of quiescent and star-forming galaxies,
to facilitate expected Euclid legacy science related to quiescent
galaxies. We assume that prior to application of our pipeline, the
following steps have been performed: (i) correction for Galactic
extinction; (ii) pre-classification into star, active galaxy, and
non-active galaxy classes; and (iii) photometric or spectroscopic
redshifts have been determined, where applicable.

To allow a direct comparison with the colour–colour methods
of B20, we select quiescent galaxies in redshift bins delimited
by the values z = 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5.
We include an additional bin covering the range 2.5 ≤ z < 3.
The binning is performed using the 30-band photometric red-
shifts from Laigle et al. (2016), and assumes that high quality
photometric (or spectroscopic) redshifts will be available for all

the galaxies. Hereinafter, all redshift values correspond to the
30-band photometric redshifts from Laigle et al. (2016), with
the obvious exception of those derived using our pipeline in
Sect. 5.2.

A significant fraction of the Euclid survey area is expected
to have deep, overlapping ground-based imaging observations
from optical surveys (e.g. LSST), but in some areas these obser-
vations may be sparse or non-existent. Therefore, we test the
performance of our pipeline under the three main expected cases
in terms of photometric depth and coverage: (i) Euclid Deep
Survey photometry with supporting ugriz, W1, W2, and 20 cm
photometry; (ii) Euclid Wide Survey photometry with support-
ing ugriz, W1, W2, and 20 cm photometry; and (iii) Euclid Wide
Survey photometry only. Results for these, and additional cases,
are shown in Figs. 8 and 9.

5.1.1. Deep survey: Euclid, ugriz, W1, W2, 20 cm

When selecting from the Int Deep catalogue using features
derived from the Euclid, ugriz, WISE, and VLA photometry
(blue points, second row of Fig. 8), the F1-score shows a gen-
eral rise from values of ∼0.7 at low-z, before peaking at a value
of 0.86 in the 1.0 < z < 1.25 bin and declining towards higher
redshifts, reaching a value of 0.48 in the 2.5 < z < 3.0 bin.

Selecting from the SED Deep catalogue results in a broadly
similar F1-curve (blue points, fourth row of Fig. 8), albeit with
a broad plateau over the range 0.75 <∼ z <∼ 2.0, with maxi-
mum and minimum values of 0.97 and 0.75, respectively. The
F1-scores are systematically higher by ∼0.1–0.3 compared to
values obtained in the same redshift bins using the Int Deep
catalogue.

Interestingly, at z >∼ 1 there is only a marginal reduction in
F1-score when the selection is performed without the ugriz,
WISE, and 20 cm photometry. In other words, provided the red-
shifts are known beforehand, these bands are largely superfluous
for the selection of quiescent galaxies, presumably due to the
fortuitous positioning of the 4000-Å break within the Euclid
broadband SED.

5.1.2. Wide survey: Euclid, ugriz, W1, W2, 20 cm

The situation is broadly similar when selecting from the Wide
catalogue using features derived from the Euclid, ugriz, WISE
and 20 cm photometry (blue points in the first and third rows of
Fig. 8). The F1-curve shows a gradual increase from z = 0 to a
broad peak or plateau at 0.75 <∼ z <∼ 2.0, after which there is a
gradual decline towards higher redshifts. In the case of the Int
Wide selection, the maximum and minimum F1-scores are 0.87
and 0.42, respectively. For the SED Wide selection, these values
are 0.89 and 0.69.

As before, the F1-scores are usually higher when select-
ing from the SED Wide catalogue compared to the Int Wide
catalogue, with values that are up to ∼0.3 higher. Again, at
z >∼ 1 there is only a marginal reduction in F1-score when
the selection is performed without the ugriz, WISE, and VLA
photometry.

As discussed in Sect. 4.1, when selecting from the 2.5 < z <
3.0 bin we used a single base-learner, XGBoost, together with the
generalised stacking algorithm (see also Fig. B.1, right panel).
When selecting quiescent galaxies from the Wide catalogues in
this redshift bin, this pipeline setup provides significantly higher
F1-scores compared to the default pipeline configuration where
five base-learners are employed. Although it is not immediately
clear why this is the case, we suggest that its ability to understand
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Fig. 8. Precision, recall, and F1-score for various methods of identifying quiescent galaxies. We show results for the three cases discussed in
Sect. 5.1: (i) Euclid Deep Survey photometry with supporting ugriz, W1, W2, and 20 cm photometry; (ii) Euclid Wide Survey photometry with
supporting ugriz, W1, W2, and 20 cm photometry; and (iii) Euclid Wide Survey photometry only. Two curves are shown for the Euclid-only case,
corresponding to results obtained either with or without foreknowledge of the galaxy redshifts. All other results shown in this figure were obtained
assuming foreknowledge of redshifts. In addition, we show the result of applying the IE − YE, JE − HE colour–colour selection method developed
by B20, assuming foreknowledge of (photometric) redshifts. In this and subsequent plots showing metrics vs. redshift, the x axis represents the
‘ground truth’ photometric redshifts from COSMOS2015 (Laigle et al. 2016).
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Fig. 9. Precision, recall, and F1-score for quiescent galaxy identification methods when applied to the subset of galaxies detected in u, IE, and JE,
using features derived from the ugriz, Euclid, W1, W2, and (for the Int catalogues) the 20 cm bands. For comparison, we show the F1-scores when
only features derived from the u and Euclid bands are used. We also show curves representing the u − IE, IE − JE colour–colour selection method
proposed by B20.
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Table 3. Results from global selection of quiescent galaxies at 0 ≤ z ≤ 3, and photometric redshift estimation.

Classification statistics︷                          ︸︸                          ︷ Photometric redshift statistics︷                                                   ︸︸                                                   ︷
Catalogue Detections required P R F1-score NMAD fout Bias frej
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Int Wide IE, YE, JE, HE 0.85 0.75 0.80 0.027 0.022 0.0031 0.14
SED Wide IE, YE, JE, HE 0.88 0.76 0.82 0.033 0.017 0.0000 0.22
Wide (averaged) IE, YE, JE, HE 0.87 0.76 0.81 0.030 0.019 0.0016 0.18

Int Deep IE, YE, JE, HE 0.77 0.60 0.67 0.030 0.022 0.0002 0.44
SED Deep IE, YE, JE, HE 0.88 0.79 0.83 0.022 0.015 −0.0008 0.29
Deep (averaged) IE, YE, JE, HE 0.83 0.70 0.75 0.026 0.018 −0.0003 0.37

Int Wide ugriz, IE, YE, JE, HE 0.88 0.85 0.86 0.023 0.020 0.0024 0.20
SED Wide ugriz, IE, YE, JE, HE 0.96 0.91 0.94 0.024 0.009 0.0008 0.01
Wide (averaged) ugriz, IE, YE, JE, HE 0.92 0.88 0.90 0.024 0.014 0.0016 0.10

Int Deep ugriz, IE, YE, JE, HE 0.80 0.63 0.70 0.030 0.020 0.0013 0.39
SED Deep ugriz, IE, YE, JE, HE 0.96 0.92 0.94 0.020 0.010 0.0000 0.01
Deep (averaged) ugriz, IE, YE, JE, HE 0.88 0.78 0.82 0.025 0.015 0.0007 0.20

Notes. The columns are as follows: (1) Mock catalogue; (2) bands in which galaxies are required to be detected; (3) precision P for quiescent galaxy
selection; (4) recall R for quiescent galaxy selection; (5) the F1-score for quiescent galaxy selection; (6) normalised median absolute deviation
(NMAD) for the photometric redshifts; (7) catastrophic outlier fraction ( fout) for the photometric redshifts; (8) bias of the photometric redshifts;
(9) fraction of quiescent galaxy redshifts rejected as potential catastrophic outliers ( frej). The typical uncertainties on the P, R, and F1-score values
herein are ≤0.01.

which values are missing, and its subsequent use of missing val-
ues when performing splits, allows the XGBoost algorithm to
build stronger classifiers than other learners when there is a high
fraction of (informative) missing values in the dataset, as is the
case here (see Fig. 4).

It is also interesting to note that the Int Wide catalogue con-
tains only 16 quiescent galaxies in the range 2.5 ≤ z ≤ 3 with
detections in all of the Euclid bands. As such, the training set
contains on average 10.7 quiescent galaxies, and the test set 5.3,
making this a ‘few-shot learning’ problem. Remarkably, despite
the small number of examples in this redshift band, our pipeline
is able to obtain P, R, and, F1-score of ∼0.43.

5.1.3. Wide survey: Euclid only

We also examine the performance of our pipeline when only
Euclid observations are available and for which a reliable red-
shift is not available (black points in Fig. 8). These conditions
are likely to pertain to a small, but potentially significant number
of galaxies in the Wide survey. In this case, our classification
pipeline must learn to place galaxies simultaneously into the
correct activity class and into the correct redshift bin.

The quality of the classification varies substantially across
the redshift range, with a peak F1-score of 0.71 in the z = 0.75–
1 bin, and with minima of ∼0.2–0.3 at either end of the range.
The results are largely independent of whether the Int Wide or
SED Wide catalogue is used.

Without ugriz photometry or redshifts, the classification
problem becomes much more challenging, and unsurprisingly
the resulting selection is of reduced quality compared to the
cases discussed in Sects. 5.1.1 and 5.1.2. In particular, the F1-
scores are consistently lower than those obtained when also
using ugriz photometry and redshifts, with differences of a factor
of 2 or more occurring near endpoints of the considered redshift
range. Thus, a key result is that redshift information allows for a
significantly more accurate selection of quiescent galaxies.

5.2. Global selection and redshift estimation

An alternative to selection in bins (Sect. 5.1) is first to per-
form a global selection of quiescent galaxies, ignoring redshift
information, and subsequently derive photometric redshifts for
the selected galaxies. In this approach, we set the Target vari-
able to 1 for all quiescent galaxies in the range 0 ≤ z ≤ 3. The
Target is set to 0 for star-forming galaxies at z ≤ 3, and also for
all galaxies at z > 3, regardless of their sSFR. This analysis is
performed on two different subsets of the mock data. Casting a
relatively wide net, we use all galaxies from the subset of each
mock catalogue for which there is a detection in all of the Euclid
bands. In addition, the analysis is performed for the subset of
galaxies for which there is a detection in each of the ugriz and
Euclid bands.

The results are shown in Table 3. The F1-score, P, and R
metrics can vary significantly depending on which mock cat-
alogue is used and whether galaxies with a non-detection in
an optical band are included or rejected. When detections are
required in Euclid IE, YE, JE, and HE bands only, we obtain
P = 0.85, R = 0.75, and an F1-score of 0.80 for the Int Wide
catalogue, or P = 0.88, R = 0.76, and an F1-score of 0.82 for the
SED Wide catalogue. Using the Int Deep catalogue, we obtain
the metric values P = 0.77, R = 0.60, and an F1-score of 0.67,
which are significantly lower than those obtained with Int Wide.
On the other hand, when using the SED Deep catalogue, the
metrics are P = 0.88, R = 0.79, and an F1-score of 0.83.

When detection in Euclid IE, YE, JE, HE, and all of ugriz is
required, the metrics are substantially improved, with P = 0.88,
R = 0.85, and an F1-score of 0.86 for the Int Wide catalogue,
or P = 0.96, R = 0.91, and an F1-score of 0.94 for the SED
Wide catalogue. These improvements are predominantly due to
the fact that requiring a detection in each of the optical and
NIR bands reduces the input data to a substantially smaller sub-
set with relatively well constrained broadband SEDs (see Fig. 5
and Table C.1). Under these conditions, for the Int Deep cata-
logue, we obtain P = 0.80, R = 0.63, and an F1-score of 0.70;
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for SED Deep, P = 0.96, R = 0.92, and an F1-score of 0.94 are
obtained.

To evaluate the quality of the photometric redshift estimates,
the 30-band photometric redshifts derived by Laigle et al. (2016)
were used as the ground truth. In Table 3, we also give the values
of NMAD, bias, and the catastrophic outlier fraction ( fout) for the
quiescent subset of galaxies whose photometric redshifts were
not flagged as outliers by our pipeline.

Removal of likely catastrophic outliers was performed as
described in Sect. 4.1, using a relatively stringent probability
threshold of 0.15. In other words, we rejected photometric red-
shift estimates that were assigned a probability of ≥0.15 of being
a catastrophic outlier. As with most outlier removal methods, the
removal of genuine catastrophic outliers usually comes at the
cost of also removing cases that are not catastrophic outliers. The
fraction of quiescent galaxies whose photometric redshifts were
rejected as catastrophic outliers ( frej), and thus were not used to
calculate NMAD, bias, or fout, is also shown.

Like the classification metrics, the metrics of photometric
redshift quality show variation depending on which mock cata-
logue (or subset thereof) is used. We obtain values for NMAD
between 0.020 and 0.033, catastrophic outlier fractions between
0.009 and 0.022, and values of bias in the range −0.0008 to
0.0031. While these values appear to improve on the results
of the recent Euclid Photometric Redshift Challenge (Euclid
Collaboration 2020), it is important to recognise that the mock
Euclid photometry catalogue used therein has a significantly
different construction to those we have used herein, making
the inter-comparison of photometric redshift metrics potentially
unreliable.

6. Comparison with other methods

We test the performance of our quiescent galaxy selection
pipeline against four different colour–colour selection methods.
We make like-for-like comparisons, such that our pipeline and
the colour–colour method under consideration are applied to
photometrically identical subsets of the mock catalogues. In
summary, our machine-learning method outperforms each of the
colour–colour methods we tested; full details are given in the
following subsections.

6.1. IE – YE, JE – HE selection

To perform a like-for-like comparison with the IE − YE, JE − HE

selection method, we select from the mock catalogues those
galaxies that have a detection in all of the Euclid bands (i.e. IE,
YE, JE, and HE). We then bin the galaxies by redshift as described
in Sect. 5.1, and for all bins (except z = 2.5–3.0 where there are
too few galaxies; see B20), we select quiescent galaxies using
the IE − YE, JE − HE criteria given by B20. The results are shown
by the green points in Fig. 8.

Our selection pipeline outperforms the IE − YE, JE − HE for
almost every combination of redshift and mock catalogue, with
the greatest improvements in the F1-score occurring near each
endpoint of the considered redshift range. When our pipeline
uses all the available photometry (blue line in Fig. 8), the
improvement in the F1-score ranges from negligibly small at
z ∼ 1.5, to a factor of ∼2 in the z = 0–0.25 and z = 2–2.5 bins.

While the inclusion of additional photometry bands is clearly
part of the reason for the improvements we have obtained, it
is not the whole story. We find that, even when our pipeline
has access to exactly the same photometry bands as the

IE − YE, JE − HE method (i.e. all four Euclid bands; orange points
in Fig. 8), it still significantly outperforms the colour–colour
method. This is because the other Euclid colours (IE− JE, IE−HE,
YE − JE, YE −HE) carry information regarding the sSFR that is not
present in IE − YE or JE − HE.

When our pipeline is configured to select quiescent galaxies
in the same set of redshift bins, using Euclid photometry only,
and in the absence of redshift information (black points in Fig. 8,
we find that, in roughly half of the redshift bins, the resulting
F1-scores are similar to those obtained using the IE − YE, JE −

HE method (which has the benefit of foreknowledge of galaxy
redshifts). This is generally the case for z <∼ 1, while in the range
1 <∼ z <∼ 1.75 our pipeline yields significantly lower F1-scores
in this configuration. Interestingly, the F1-scores obtained using
our pipeline to select quiescent galaxies in the z = 2–2.5 bin are
practically identical to, or slightly above, those obtained using
the IE − YE, JE − HE method.

6.2. u – IE, IE – JE selection

For our comparison with the u − IE, IE − JE method, we use only
galaxies that are detected in each of the u, IE, and JE bands. Due
to the increasing sparsity of the u-band data at high redshifts,
B20 were only able to derive u − IE, IE − JE selection criteria in
redshift bins delimited by the values z = 0, 0.25, 0.5, 0.75, 1.0
in the case of the Wide survey mock catalogues, or z = 0, 0.25,
0.5, 0.75, 1.0, 1.25, 1.5 for the Deep catalogues. To these bins we
applied our quiescent galaxy selection pipeline. The results are
shown in Fig. 9, together with the result of applying the u − IE,
IE − JE method of B20.

Once again, our pipeline (blue or orange points in Fig. 9)
outperforms the colour–colour selection method (green points).
The improvement is minimal when using the Wide survey mock
catalogues, but is more substantial in the case of the Deep cata-
logues (up to a factor of ∼1.4), mainly due to improved recall.
The largest improvements occur at the upper endpoint of the
considered redshift ranges. There is little to no reduction in
the performance of our pipeline when only the u, IE, YE, JE,
and HE bands are used (orange points in Fig. 9), compared to
when the full suite of photometry is used (blue points in Fig. 9).
Once again, the improvement obtained from using our machine-
learning pipeline is largely due to its ability to make use of a
larger colour- and magnitude-space.

6.3. BzK selection

In addition, we compare the quality of our quiescent galaxy
selection method against the BzK selection method, which is
designed to select quiescent galaxies at 1.4 < z < 2.5 using
the z − K and B − z broadband colours (Daddi et al. 2004).
For this comparison, we used the observed B, z and K magni-
tudes from the COSMOS2015 catalogue, for galaxies in the Int
Wide catalogue, adopting the criteria of Daddi et al. (2004) of
(z − K) − (B − z) < −0.2 and z − K > 2.5 to select quiescent
galaxies. To evaluate the success of the BzK method, we use
the sSFR values from the Int Wide catalogue, adopting the same
sSFR < 10−10.5yr−1 threshold to define quiescence.

First, we take the subset of the Int Wide catalogue that lies
in the redshift range 1.4 < z < 2.5, and apply the BzK selection
method. We obtain P, R, and F1-score values of 0.51, 0.50 and
0.50, respectively. Applying the ARIADNE pipeline to the same
subset of galaxies, using features derived from the Euclid, ugriz,
W1, W2, and 20 cm bands, we obtain P, R, and F1-score val-
ues of 0.79, 0.80, and 0.79, respectively. Repeating the same
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tests over the full redshift range of the Int Wide catalogue,
the BzK method results in P, R, and F1-score of 0.44, 0.07,
and 0.13, compared to 0.85, 0.75, 0.80 from ARIADNE. In sum-
mary, our machine-learning method strongly outperforms the
BzK selection method.

6.4. SED fitting with LePhare and UVJ selection

We also tested, though not exhaustively, our selection pipeline
against an SED fitting method wherein the galaxies are sepa-
rated into quiescent and star-forming on the basis of the sSFR
estimated from the LePhare best fit to the mock photometry.
The fitting procedure is identical to that described in Sect. 2,
except that the fitting is performed on SED Wide mock photom-
etry, instead of on observational data. Three slightly different
approaches are taken, as follows: (i) Only Euclid photometry is
used, with redshift being a free parameter; (ii) only Euclid pho-
tometry is used, but redshift is fixed to the value given in Laigle
et al. (2016); and (iii) Euclid, ugriz, W1, and W2 photometry
is used, including upper limits, with redshift fixed. We derive
rest-frame UV J colours from the best-fitting spectral templates,
and use the UV J selection criteria of Whitaker et al. (2011). The
approach used here may overestimate how well LePhare and the
UV J method can recover the galaxy class, since the creation of
the SED Wide mock catalogue and our subsequent fitting were
in both cases performed using LePhare, with an identical set of
base templates.

The F1-scores as a function of redshift are shown in Fig. 10
for the LePhare fitting and UV J methods. Also shown is the
F1-score for our machine-learning method when applied to the
same subset of data, with identical redshift information.

Our machine-learning method significantly outperforms both
approaches, most noticeably at z < 1 and z >∼ 2.5. While the
LePhare SED fitting method sometimes comes close to reaching
the F1-scores obtained by our machine-learning method within
the z ∼ 1–2.5 range, in most redshift bins its F1-scores are dra-
matically lower; in the case of the UV J method, the F1-scores
are always dramatically lower, typically by ∼0.2, than those
obtained with our machine-learning method. The superior per-
formance of our method is at least partly due its ability to learn
how to optimally weight the different bands and colours in dif-
ferent regions of feature-space, unlike the LePhare fitting and
UV J methods.

7. Further analysis and tests

Here we summarise some additional analysis and tests we have
conducted. Full details are provided in Appendix B.

7.1. Stacking versus individual learners

Our implementation of the generalised stacking method demon-
strably improved classification performance. With few excep-
tions, the stacking method consistently outperforms each indi-
vidual base-learner, as well as outperforming model averaging
and hard-voting (Fig. B.1). The method is robust against pollu-
tion by multiple low-quality classifier models, and can be used
as a form of model selection. Finally, when applied to a sin-
gle classifier model, the meta-learner often makes a substantial
improvement over the original model.

7.2. The nature of the false positives

We also examined the distribution of false positives within
sSFR space, with the following three main conclusions. First,

Fig. 10. Comparison between our machine-learning method, LePhare
SED fitting, and UV J colour–colour method, for the selection of quies-
cent galaxies from the SED Wide mock Euclid catalogue. The following
three configurations of input data were used: (i) Euclid photometry only,
with no redshift information; (ii) Euclid photometry only, this time with
photometric redshifts from Laigle et al. (2016); and (iii) Euclid, ugriz,
W1 and W2 photometry, again using photometric redshifts from Laigle
et al. (2016).

as expected, the incorrectly classified objects cluster around
the class threshold value (10−10.5yr−1), with a density that is
highest in the bins immediately adjacent to the class bound-
ary (Figs. B.2 and B.3). Second, the precise distribution of the
incorrect classifications differs between the different mock cata-
logues. Finally, our pipeline offers a significant improvement in
ĪFP over the IE − YE, JE − HE and u − IE, IE − JE colour–colour
methods, reducing the degeneracy between quiescent galaxies
and dusty, star-forming galaxies as shown in Fig. B.4 (in addition
to improving on the P, R, and the F1-score metrics as described
above).
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Table 4. Global selection of quiescent galaxies at 0 ≤ z ≤ 3 for different pipeline and data configurations.

Catalogue Bands used Detections required Redshifts P R F1-score
(1) (2) (3) (4) (5) (6) (7)

Int Wide ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.85 0.75 0.80
Int Wide (fast mode) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.84 0.74 0.79
SED Wide ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE None 0.88 0.76 0.82
SED Wide (fast mode) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE None 0.88 0.75 0.81
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE None 0.92 0.88 0.90
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE 100% 0.92 0.91 0.92
Wide (averaged) IE, YE, JE, HE IE, YE, JE, HE None 0.81 0.68 0.74
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.87 0.76 0.81
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 50% 0.86 0.79 0.82
Wide (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.83 0.85
Wide (averaged, σz = 0.025) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.83 0.84
Wide (averaged, σz = 0.05) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.82 0.84
Wide (averaged, σz = 0.075) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.86 0.81 0.83

Int Deep ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.77 0.60 0.67
Int Deep (fast mode) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.77 0.59 0.67
SED Deep ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE None 0.88 0.79 0.83
SED Deep (fast mode) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE None 0.88 0.78 0.83
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE None 0.88 0.78 0.82
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm ugriz, IE, YE, JE, HE 100% 0.89 0.85 0.87
Deep (averaged) IE, YE, JE, HE IE, YE, JE, HE None 0.73 0.54 0.62
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.83 0.70 0.75
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 50% 0.83 0.74 0.78
Deep (averaged) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE 100% 0.85 0.81 0.83

SED Wide (train), Int Wide (test) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE 100% 0.76 0.86 0.81
Int Wide (train), SED Wide (test) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE 100% 0.89 0.76 0.82
Int Deep (train), Int Wide (test) ugriz, IE, YE, JE, HE, W1, W2, 20 cm IE, YE, JE, HE None 0.76 0.72 0.74
SED Deep (train), SED Wide (test) ugriz, IE, YE, JE, HE, W1, W2 IE, YE, JE, HE None 0.71 0.83 0.76

Notes. No pre-binning of the data by redshift was performed. The columns are as follows: (1) Mock catalogue; where the metrics from using the
SED and Int catalogues have been averaged, this is indicated in parentheses; where the pipeline has been used in its fast mode, this is also indicated;
in the case of transfer-learning, we specify separately the catalogues from which the training and test data are drawn; (2) bands used for galaxy
selection, which includes missing values; (3) bands in which galaxies are required to be detected; (4) redshift information included in the input
data; (none, or a percentage of redshifts included in a feature); (5) precision P for quiescent galaxy selection; (6) recall R for quiescent galaxy
selection; (7) the F1-score for quiescent galaxy selection. The typical uncertainties on the P, R, and F1-score values herein are ≤0.01.

7.3. Reconciling the Int and SED results

Generally speaking, our classification results differ depending
on whether the mock catalogue was constructed using the Int or
SED method. Firstly, we argue that results obtained using the Int
catalogues are likely to be pessimistic with regard to the perfor-
mance of our pipeline when applied to real Euclid data; this is
because the Euclid photometry is expected to have significantly
higher signal-to-noise ratios, and because the method of inter-
polating photometry to simulate the Euclid bands is also likely
to introduce errors. Conversely, we expect that results obtained
with the SED catalogues are likely to be somewhat optimistic,
because the construction of the SED catalogues involves forcing
the photometry to conform to one of a limited range of galaxy
templates.

Thus, we argue that results obtained with the Int and SED
catalogues will bracket the real-Universe performance of our
pipeline. As a result, we show performance metrics averaged
over the Int catalogue and the corresponding SED catalogue (i.e.
Int Wide and SED Wide; Int Deep and SED Deep) in Tables 3
and 4, where appropriate.

7.4. Tuning the probability threshold

We investigated the impact on the precision and recall of tuning
the value of the class probability threshold, instead of adopting

the default threshold value of 0.5 (see Fig. B.5). Our two main
findings are as follows. First, there exists a trade-off between pre-
cision and recall such that one may be increased, but at the cost
of reducing the other; tuning the probability threshold allows a
balance to be struck between P and R that is suitable for different
scientific needs.

Second, using the case shown in Fig. B.5 (bottom panel)
as an example, adopting a probability threshold of 0.85 yields
a very pure sample of quiescent galaxies (P = 0.98) but with
moderate incompleteness (R = 0.56); conversely, a probability
threshold of 0.05 results in high completeness (R = 0.97) but
moderate purity (P = 0.61).

7.5. Impact of including redshift as a feature

We examined the usefulness of including the Laigle et al. (2016)
COSMOS2015 photometric redshifts as a feature in the data
used for model training (e.g. Simet et al. 2021). Selected results
are included in Table 4, and are shown in Fig. B.6. Our two
main findings are as follows. First, the inclusion of redshifts
as a feature in the data significantly improves the classification
metrics by reducing the degeneracy between redshift and sSFR,
particularly for galaxies at z ≤ 0.5 or z ≥ 2.5.

Second, even when only a subset of the redshifts are
included, the classification metrics are still improved compared
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to the case where no redshift are included. In other words, it is
beneficial to include any available redshift information, even if it
is somewhat sparse, when training classification models.

7.6. The impact of noise

The impact of different types of noise has been explored. The
main results are summarised as follows. As expected, adding
extra noise to the photometric data results in a reduction in
the F1-score when selecting quiescent galaxies. However, even
when the data becomes extremely noisy (S/N ∼ 3), our classi-
fication pipeline remains nominally functional with an F1-score
of ∼0.67 (see Fig. B.7).

Our classification pipeline is robustly resistant to labelling
errors when these are random. However, systematic labelling
errors tend to propagate into the final classification results.

Finally, when photometric redshifts are included as a feature,
adding Gaussian noise to their values generally results in little
or no reduction in the classification metrics; we find that includ-
ing noisy redshift values still gives generally better classification
results compared to the case where no redshifts are included.

7.7. Transfer learning experiments

We also experimented with using classification models trained
on spectral templates to select quiescent galaxies from cata-
logues of observed photometry (see Fig. B.8). We find that
classifiers trained on the SED Wide catalogue are indeed able
to select quiescent galaxies from the Int Wide catalogue, albeit
with marginally lower F1-scores compared to models trained
on the Int Wide catalogue itself. Thus, machine-learning mod-
els trained on synthetic galaxy SEDs are a potential alternative
to traditional methods used selecting quiescent galaxies at red-
shifts where there are few (or no) known examples (e.g. Girelli
et al. 2019; Cecchi et al. 2019).

7.8. Which observables are useful to select quiescent
galaxies?

We investigated the impact of adding one of u,g,r,i,z, W1,
W2, and 20 cm to the Euclid bands, when selecting quiescent
galaxies. The main results are summarised as follows.

Generally speaking, this results in a significant improvement
in the F1-score when selecting quiescent galaxies. The improve-
ment varies depending on which band is added, and the redshift
interval in which the selection is performed (Figs. B.9, B.10,
B.11, and B.12).

As expected, the addition of a longer-wavelength optical
band is typically more useful for selecting quiescent galaxies at
higher redshift. Conversely, shorter wavelength optical bands are
more useful for low-redshift selection.

Interestingly, the 20 cm radio band provides a significant
improvement in F1-score at 1.75 <∼ z <∼ 2.5, despite these data
being very sparse.

8. Summary and concluding remarks

We have introduced the ARIADNE machine-learning pipeline
for the classification of galaxies. It uses a novel architecture
with meta-learning to combine the strengths of tree, nearest-
neighbours, and deep-learning methods, resulting in signifi-
cantly higher classification accuracy compared to the individual
learning algorithms. The most relevant technical conclusions
from this study are as follows:

– We have applied the tree-ensemble methods
CatBoostClassifier and LightGBM to the selection
of quiescent galaxies, and find that both offer significant

performance improvements over the commonly used
Scikit-Learn RandomForestClassifier method, in
terms of model quality and training efficiency.

– Providing our pipeline with sparsity awareness, by quantify-
ing the sparsity of the photometry for each galaxy, improves
the classification performance. In addition, the sparsity-
aware method XGBoostClassifier was found to be well
suited for selecting quiescent galaxies at high redshifts (z >
2.5), which tend to have many missing photometry values.

– We have shown that our implementation of the ‘generalised
stacking’ method can be used to perform error correction
on individual machine-learning-based galaxy classification
models, sometimes turning a mediocre model into a signifi-
cantly better one.

– We have used the pseudo-labelling technique (Lee 2013) to
improve the quality of our photometric redshift estimates,
with improvements in NMAD and the catastrophic outlier
fraction of ∼1–3%. When applied to the high-volume of data
that will come from future very large surveys, such as Euclid
or LSST, we expect pseudo-labelling to have a much greater
effect. Further exploration of the application of pseudo-
labelling to the estimation of galaxy physical properties is
presented in Humphrey et al. (2023).

We have applied our pipeline to the selection of quiescent galax-
ies from mock Euclid photometric catalogues, using simulated
Euclid IE, YE, JE, and HE photometry, optionally using ancillary
optical, infrared, or radio measurements. The main results are as
follows:

– We have shown that our classification pipeline is able to
efficiently select quiescent galaxies from within the red-
shift range 0 < z < 3, using mock Euclid IE, YE, JE, and HE

photometry and somewhat sparse supporting data at other
wavelengths. The precision (purity), recall (completeness),
and F1-scores vary substantially with redshift, and between
the various mock catalogues and subsets thereof.

– We find that including ancillary ugriz, mid-infrared (WISE),
and radio (20 cm) photometry yields substantial improve-
ment in the selection of quiescent galaxies at z <∼ 1. Smaller,
but nonetheless significant, improvements were found at
z >∼ 1.

– In like-for-like comparisons, our machine-learning pipeline
strongly outperforms the UV J method (Whitaker et al. 2011)
when derived from Euclid (and ancillary) survey mock pho-
tometry, and usually outperforms the Euclid-specific IE − YE,
JE − HE, and u − IE, IE − JE colour–colour selection methods
(B20). The improvement we obtain over the colour–colour
methods can exceed a factor of 2 in terms of completeness
and F1-score, with the greatest improvements occurring at
z <∼ 1 and z >∼ 2.

– In addition to being fewer in number, the false positives
resulting from our classification pipeline are less extreme
than those resulting from the IE − YE, JE − HE, and u − IE,
IE − JE methods, in that their actual sSFR values are typically
closer to the boundary between quiescent and star-forming
galaxies.

– The significantly improved classification compared to the
colour–colour, UV J, and template-fitting methods is likely
the result of the more efficient use of the available data
by our machine-learning methodology. Compared to the
colour–colour methods, the ability to perform the classifica-
tion in a higher-dimensional colour-magnitude space clearly
helps. More generally, machine-learning methodologies
have the ability to automatically weight the different colours
and filters according to their usefulness for the classification

A99, page 18 of 36



Euclid Collaboration: Selection of quiescent galaxies

task at hand, whereas traditional methods often take a
somewhat ‘blind’ approach to data weighting.

– Our pipeline is able to derive photometric redshifts for
galaxies selected as quiescent, aided by the pseudo-labelling
semi-supervised method, also using an outlier detection
algorithm to identify and reject likely catastrophic outliers.
Our pipeline achieves a normalised mean absolute deviation
of <∼0.03 and a fraction of catastrophic outliers of <∼0.02
when measured against the COSMOS2015 photometric
redshifts of Laigle et al. (2016). These values appear to
improve on the results of the Euclid Photometric Redshift
Challenge (Euclid Collaboration 2020), but we emphasise
that the mock photometry catalogue used therein is of a
significantly different construction to those we have used
herein, making any inter-comparison of photometric redshift
metrics potentially unreliable.

– The inclusion of galaxy redshifts among the train and test
datasets offers significant improvement in the quality of our
classification models, even when the redshifts are relatively
noisy or incomplete.

– We have investigated the potential impact of various sys-
tematics. Most notably, we find that our pipeline results are
robust against the presence of random errors in the class
labels of the training data, for label error rates of up to ∼33%.

This work has added to the growing body of evidence support-
ing the importance of machine-learning techniques (or artificial
intelligence) in astronomy and astrophysics. In particular, we
have demonstrated that machine learning usually outperforms
colour–colour methods for the selection of quiescent galaxies;
while part of this improvement is due to the ability to make use
of a larger number of bands and colours, we have also shown
that machine-learning methods still perform a superior selec-
tion even when the training data contains only the bands used by
the respective colour–colour method. In future publications the
methods presented herein will be further developed and applied
to other related problems in extragalactic astrophysics.
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Appendix A: Impact of redundant features on
feature importance

Machine-learning methods that build models using decision-tree
ensembles have the potential to provide insights into the struc-
ture of the training data via analyses of the feature-importances.
When all features in the dataset are fully independent of
each other, the feature-importance can provide a relatively
straightforward indication of how useful each feature is for
the model to predict the target labels. However, when there is
significant co-linearity between features, the importance may
be shared between co-linear features, resulting in potentially
misleading feature-importance information. Indeed, it is likely
that significant co-linearity exists among the various broadband
magnitudes and colours used in this work. Therefore, here
we examine how the feature importance calculations used by
the RandomForestClassifier, CatBoostClassifier, and
XGBoostClassifier tree-based algorithms are affected by the
presence of multiple co-linear features.

We first take the Int Wide catalogue, select features derived
from u, IE, YE, JE, or HE photometry, and add five identical
copies of the u − IE feature to the dataset. We then train
RandomForestClassifier, CatBoostClassifier, and
XGBoostClassifier models to select quiescent galaxies in the
0 < z < 0.25 range. We selected the u − IE colour for duplication
because RandomForestClassifier, CatBoostClassifier,
and XGBoostClassifier all find this feature to be the
most important for this particular classification problem. For
these model runs, no information was provided regarding the
redshifts of the galaxies. The results are shown in Figs. A.1– A.3.

The impact on the feature importances of duplicating the
most important single feature (IE − u in this example) is some-
what different for each of the learning algorithms, presumably
due to: (i) differences in the way the algorithms select features
for constructing individual decision trees; (ii) how they deal
with co-linearity among the input features; and (iii) the different
methods used to calculate feature importance values.

In the case of RandomForestClassifier, the impact
of including duplicates of IE − u is for this feature and its
duplicates to be demoted to a significantly lower rank of
importance (Fig. A.1), with all six features occupying a sim-
ilar position within the feature importance ranking. Clearly,
it is risky to rely on the feature importances produced by
RandomForestClassifier, since they are a function of how
informative a features is and the uniqueness of the information it
provides. When using CatBoostClassifier, the inclusion of
duplicates of IE − u also results in the demotion of IE − u and its
duplicates to significantly lower ranks of importance (Fig. A.2),
with several being placed at the very end of the importance
ranking.

In contrast, the feature importance values provided by
XGBoostClassifier are much more robust against the pres-
ence of co-linearity among features. As illustrated in Fig. A.3,
IE − u, and/or several copies thereof are consistently assigned
the highest values of feature importance, or else are simply
ignored (feature importance = 0). As such, the feature impor-
tances provided by XGBoostClassifier are likely to offer a
relatively robust method to determine the most relevant observ-
ables for the selection of particular galaxy types, even when there
is significant co-linearity between the observables.

Appendix B: Further analysis and tests

In this appendix we provide full details of the analyses and tests
that were summarised in Sect. 7.

B.1. Stacking versus individual learners

We discuss the benefits of our implementation of the generalised
stacking method, in which meta-learners are trained to fuse the
output from several base-learners into a single classifier. We find
that, with very few exceptions, our stacking method consistently
outperforms each of the individual base-learners, in addition
to outperforming the traditional ensembling methods of model
averaging and hard-voting. This is illustrated in Fig. B.1 (left
panel), where we show results from a single run of our pipeline,
in this case applied to the selection of quiescent galaxies at
z = 2–2.5 from the Int Wide catalogue using Euclid photometry,
and without foreknowledge of galaxy redshifts. In this example,
averaging the predictions across the base-learners results in an
‘averaging-down’, while the hard-vote ensemble method results
in an F1-score that matches that of the best individual base-
learner (in this case LightGBMClassifier). In contrast, the
meta-learner yields an F1-score that is substantially higher (∼46
per cent in this case) than any of the individual base-learners or
other ensemble methods.

In Fig. B.1 (centre panel) we illustrate the robustness of
the generalised stacking method against pollution by multi-
ple low-quality classifier models. We ensembled a LightGBM
model with hyperparameters that are well tuned for this prob-
lem (LightGBM 1), with four other LightGBM models that
have purposefully poorly tuned hyperparameters (LightGBM 2–
5). Whereas the average and hard-voting ensembles give poor
results, the meta-learner is able to discard low-quality class pre-
dictions and also make a significant improvement over the single
high-quality model (LightGBM 1).

In addition, we illustrate the usefulness of generalised stack-
ing when applied to a single classifier model. In Fig. B.1 (right
panel), we show the result of selecting quiescent galaxies in the
z = 2.5–3 redshift range, using ugriz, Euclid, W1, and W2 pho-
tometry from the Int Wide catalogue, with foreknowledge of
redshifts. The meta-learner is able to substantially improve on
the F1-score of the XGBoostClassifier, increasing the score
by 61 per cent, effectively turning a rather poor classifier into a
potentially much more useful one.

B.2. The nature of the false positives

Although the P, R, and F1-score classification metrics are infor-
mative about whether galaxies are correctly or incorrectly classi-
fied, they do not provide information about the incorrectness of
the incorrect classifications. For instance, the F1-score is insensi-
tive to whether false positives are marginally non-quiescent (e.g.
sSFR ∼ 10−10.4 yr−1) or are in fact powerful starburst galaxies
(e.g. 10−8yr−1); when selecting samples of quiescent galaxies,
the former case is clearly less baneful than the latter. Therefore,
we now examine the nature of the non-quiescent contaminants
in samples selected as quiescent by our classification pipeline,
utilising our metrics of incorrectness IFP and ĪFP (see Eqs. 7 and
8).

In Figs. B.2 and B.3 we show the distribution of incorrect
classifications with respect to IE − HE, sSFR, and stellar mass,
for the Int and SED catalogues. As is often the case when
performing a binary classification on a continuously distributed
sample, the incorrectly classified objects cluster around the class
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Fig. A.1. Feature importance values when using RandomForestClassifier to select quiescent galaxies in the redshift range 0 < z < 0.25. The
results in the upper panel are for the case where none of the features have been duplicated. The lower panel shows the feature importance values for
the case where five copies of IE − u have been injected into the dataset prior to model training. The x axis labels correspond to feature names used
by the pipeline after the pre-processing steps outlined in Sect. 4.2 have been applied, and should be self-explanatory (see the caption of Fig. 7. For
example, the feature named ‘VIS-u_copy1’ is a copy of the feature named ’VIS-u’, etc.
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Fig. A.2. Similar to Fig. A.1, but for models trained using CatBoostClassifier.
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Fig. A.3. Similar to Fig. A.1, but for models trained using XGBoostClassifier.
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Fig. B.1. Examples of the F1-scores from individual base-learners and the model ensembling methods. Left: Selection of quiescent galaxies at
z = 2–2.5 from the Int Wide catalogue using Euclid photometry, without foreknowledge of galaxy redshifts. As described in the text, the meta-
learner performs a non-linear fusion of the individual classifiers, resulting in a significantly higher F1-score than obtained by any of the individual
base learners or the two other ensemble methods (averaging and hard-voting). Centre: Impact of ensembling a LightGBMClassifier model, the
hyperparameters of which are well-tuned for this problem (LightGBM 1), with four other LightGBMmodels that have poorly tuned hyperparameters
(LightGBM 2,3,4,5). In this case, averaging the model predictions and hard-voting both produce poor results, but the meta-learner is able to identify
and weight accordingly the low quality class predictions. Right: Application of a meta-learner to a classification model produced by a single base-
learner, in this case XGBoostClassifier. In this circumstance, the meta-learner performs ‘error correction’, resulting in a significant improvement
in the quality of the classifier.

threshold value (10−10.5yr−1), with a density that is highest in
the bins immediately adjacent to the class boundary. However,
the precise distribution of classification errors varies between
the different catalogues (and subsets thereof).

When using the Wide survey mock catalogues, >∼ 50 per
cent of false positives are what we consider to be marginal
classification errors, that is, their sSFR is within 0.5 dex of the
class boundary. Furthermore, there are very few false positives
with high values of sSFR: fewer than 25 per cent of the false
positives are at sSFR ≥10−9.5yr−1, while false positives with
sSFR ≥10−9yr−1 are negligible (<∼ 5 per cent). On the other
hand, when the Deep survey mock data are used, the fraction of
false positives at relatively high values of sSFR (≥10−9yr−1) is
non-negligible (∼25 per cent). This is true regardless of whether
the Int Deep or SED Deep catalogue is used. The distribution

of the incorrect classifications with respect to the stellar mass
shows a significant diversity and depends strongly on which
mock catalogue is used. In general, the false positives are biased
towards relatively high stellar mass (i.e. ≥109M⊙).

For comparison, in Fig. B.4 we also show the distribution of
errors with respect to sSFR for the IE − YE, JE − HE (left column)
and u − IE, IE − JE (middle column) colour-colour methods
developed by B20. To allow a relevant comparison between the
u − IE, IE − JE colour-colour method and our machine-learning
pipeline, Fig. B.4 (right column) also shows results from
applying our pipeline with conditions equivalent to those used
for the u− IE, IE − JE method: (i) Galaxy redshifts are included as
a feature to be trained on; (ii) only galaxies detected in u, IE, and
JE are used; (iii) only galaxies in the redshift ranges 0 < z < 1
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ĪFP = 0.66

4 5 6 7 8 9 10 11 12

log10 (mass/M�)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
a

li
ze

d
d

en
si

ty

Int Wide

FP

FN

all

-1 -0.5 0 0.5 1 1.5 2 2.5 3

IE − YE [mag]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
a

li
ze

d
d

en
si

ty

Int Wide (ugriz required)

FP

FN

all

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7

log10 (sSFR yr)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

or
m

a
li

ze
d

d
en

si
ty

Int Wide (ugriz required)

. FP

. FN

. all

F1 =0.86

P =0.88

R =0.83
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Fig. B.2. Distribution of incorrect classifications (FP and FN) with respect to IE−YE, sSFR, and stellar mass, when selecting quiescent galaxies from
the Int catalogues. Also shown is the overall distribution of galaxies in the catalogue (or catalogue subset) on which the selection was performed.
Top row: Using the ugriz, Euclid, W1, W2, and 20 cm photometry from the Int Wide catalogue, excluding only those galaxies with a non-detection
in any Euclid band. Centre row: As above, but excluding galaxies without a non-detection in any of the ugriz or Euclid bands. Bottom row: Using
the ugriz, Euclid, W1, W2, and 20 cm photometry from the Int Deep catalogue, excluding only those galaxies with a non-detection in any Euclid
band. In each case, we include the values of the F1-score, precision, recall, and ĪFP metrics

and 0 < z < 1.5 are used for the Wide and Deep catalogues,
respectively.

Our classification pipeline results in significantly lower ĪFP
than the colour-colour methods. This is due to a reduction in
the fraction of false positives that are located at high sSFR
(e.g. >∼ 10−9yr−1). In other words, our pipeline not only offers a
significant improvement over colour-colour methods, in terms
of P, R, and the F1-score, but also significantly reduces the
degeneracy between quiescent galaxies and dusty, star-forming
galaxies.

There is another potential source of classification errors that
should be mentioned. Throughout this work we have tacitly
assumed that the target variable accurately represents the ground
truth. This assumption is clearly valid for the SED catalogues,
since they are derived from templates corresponding to known
physical properties. However, for the Int catalogues there is the
possibility that some instances flagged as classification errors
are, in actual fact, instances where our pipeline provides the
correct classification and the target variable is incorrect.

B.3. Reconciling the Int and SED results

As discussed above, our machine-learning models were trained
and evaluated using one of the four mock catalogues, but there
are often significant differences between the results obtained
using the Int or SED catalogues for a given Euclid survey (e.g.
Fig. 8). In particular, the precision, recall, and F1-scores for
quiescent galaxy selection tend to be higher when using an SED
mock catalogue, compared to its corresponding Int catalogue
(i.e. SED Wide vs. Int Wide; SED Deep vs. Int Deep).

This is due to the different methods used in the construction
of the catalogues (see Sect. 2 and B20). The Int catalogues have
an observationally more realistic starting point since they are
constructed with real photometry, albeit twice convolved with
a filter, but the signal-to-noise ratio of the data is significantly
lower than will be the case for the actual Euclid photometry,
likely increasing the difficulty of the classification problem com-
pared to when the real Euclid (and ancillary) survey data are
used. Conversely, the mock photometry in the SED catalogues
has noise properties that match those expected for Euclid obser-
vations, but the SEDs themselves are forced to conform to a
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Fig. B.3. Similar to Fig. B.2, but instead using the SED catalogues.

restricted set of simplified templates, which could potentially
simplify the classification problem.

Therefore, results obtained using the Int catalogues are likely
to be pessimistic, and results obtained with the SED catalogues
are likely to be optimistic with regard to the performance of our
pipeline when applied to real Euclid (and ancillary) survey data.
Thus, to estimate the performance of our pipeline when selecting
quiescent galaxies from Euclid (and ancillary) survey data, we
use performance metrics averaged over the Int catalogue and the
corresponding SED catalogue (i.e. Int Wide and SED Wide; Int
Deep and SED Deep). Therefore, Tables 3 and 4 include aver-
aged metrics, where appropriate. We consider results obtained
with the Int and SED catalogues to bracket the likely range of
performance of our pipeline when it is applied to real Euclid
(plus LSST, etc.) photometry.

B.4. Tuning the probability threshold

In some circumstances, it is desirable to maximise either the pre-
cision (purity) or the recall (completeness) of the selected quies-
cent galaxy samples, according to the nature of one’s scientific
objectives. Thus, we investigate and illustrate the impact on the
precision and recall of tuning the value of the class probability
threshold, instead of adopting the default threshold value of 0.5.

In Fig. B.5 we show how precision (P), recall (R), and
the F1-score vary with the class probability threshold when

selecting quiescent galaxies from the Int Wide mock catalogue
(top) or the SED Wide catalogue (middle). Also shown are the
scores when averaged between the two catalogues (bottom). The
redshifts are included as a feature in the input data. There exists
a trade-off between precision and recall such that one may be
increased, but at the cost of reducing the other. For example,
from the averaged scores (bottom panel), we find that adopting
a probability threshold of 0.85 yields a sample of quiescent
galaxies that is very pure (P = 0.98) but somewhat incomplete
(R = 0.56). Conversely, using a probability threshold of 0.05
results in a sample with moderate purity (P = 0.61) but high
completeness (R = 0.97).

Tuning the probability threshold allows a balance to be struck
between P and R that is suitable for different scientific needs. For
instance, using a probability threshold of 0.3 gives a sample of
quiescent galaxies that is both reasonably pure (P = 0.8) and
reasonably complete (R = 0.9). While the examples given here
pertain to selection in the redshift range 0 ≤ z ≤ 3, this exercise
can, of course, also be performed for the selection of quiescent
galaxies in narrower redshift bands. As an example of this, when
selecting quiescent galaxies in the redshift range 1 ≤ z ≤ 2 using
a probability threshold of 0.9, we obtain P = 0.98 and R = 0.51,
while using a threshold of 0.1 yields P = 0.70 and R = 0.95.
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Fig. B.4. Distribution of incorrect classifications for the IE − YE, JE −HE method of B20 ((left column) and the u− IE, IE − JE method of B20 (centre
column) To allow a direct comparison between the u − IE, IE − JE and our machine-learning selection method, we show results from our pipeline
under conditions equivalent to those used for the B20 u − IE, IE − JE method: Galaxy photometric redshifts are included as a feature to be trained
on; only galaxies detected in u, IE, and JE are used; only galaxies in the redshift ranges 0 < z < 1 and 0 < z < 1.5 are used for the Wide and Deep
catalogues, respectively. In each panel, we include the values of the F1-score, precision, recall, and ĪFP metrics.

B.5. Impact of including redshift as a feature

Here we investigate the impact of several different methods
for the treatment of redshift information in our pipeline. Thus
far, we have included redshift information by pre-binning the
mock catalogues using the Laigle et al. (2016) COSMOS2015
photometric redshifts (Sect. 5.1). Alternatively, we ignored
redshift information and instead performed a global selection of
quiescent galaxies, deriving photometric redshifts subsequently
(Sect. 5.2). A further possibility that we now also examine is the
inclusion of redshifts as a feature in the input data for model
training (e.g. Simet et al. 2021).

In Fig. B.6 we show F1-score versus redshift when select-
ing quiescent galaxies from the Int Wide catalogue, considering
several different configurations for the included redshift infor-
mation. As before, we exclude galaxies that have a non-detection
in one or more Euclid bands. The left panel of Fig. B.6 shows
results from our pipeline when the mock catalogue data are pre-
binned by redshift as described in Sect. 5.1, and all available
photometry is used (i.e. ugriz, Euclid, W1, W2, 20 cm). We find
that including the Laigle et al. (2016) photometric redshifts in
the input data significantly increases the F1-scores in bins at
z ≤ 0.5 or z ≥ 2.5, by reducing the degeneracy between redshift
and sSFR. However, the F1-score is not significantly changed for
bins in the range 0.5 < z < 2.5.
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Fig. B.5. Precision (purity), recall (completeness), and the F1-score as
a function of the probability threshold used to separate quiescent and
star-forming galaxies, for Int Wide (top), SED Wide (centre), and the
average result (bottom).

We also experimented with the inclusion of redshifts for a
fraction of galaxies only, by randomly replacing redshift values
with −99.9. The left panel of Fig. B.6 also shows the result of
including only 50 per cent of the redshifts. At the low end of
the redshift range, we find that the inclusion of 50 per cent of
the redshifts provides a small but significant improvement in the
F1-score. However, at the high endpoint of the redshift range,
there is no noticeable improvement compared to the F1-scores
obtained when no redshifts are included.

We repeated the same experiment, but without pre-binning
the galaxies by redshift (see Sect. 5.1.3). As before, we excluded
objects with a non-detection in any of the Euclid bands and used
all available photometry from the Int Wide catalogue. The results

are shown in the right panel of Fig. B.6. Within the 0 < z < 2
range, there is essentially no penalty in terms of F1-score asso-
ciated with not pre-binning by redshift, provided all redshifts
are included as a feature in the input data (nevertheless, pre-
binning does allow considerably faster training of models, since
the training set is now much smaller). However, at z = 2 and
above, significantly lower F1-scores are obtained compared to
the case where the data are pre-binned by redshift. When only
50 per cent of redshift values are included, we find a significant
decrease in F1-scores compared to the case where 100 per cent
of redshift values are included, but the F1-score are still usu-
ally significantly above those obtained when none of the redshift
values are included. Classification metrics for the global selec-
tion of quiescent galaxies, including 100 per cent, 50 per cent, or
none of the galaxy redshifts are included in Table 4.

B.6. The impact of noise

In this subsection we explore the impact of different types
of noise that are expected to be present within the data. The
experiments presented here are intended to be informative and
illustrative, but not necessarily exhaustive.

B.6.1. Adding noise to the photometry

In Fig. B.7 we show results from modelling the impact of the
addition or the reduction of noise in the data. For this experi-
ment, we select quiescent galaxies at 0 ≤ z ≤ 3 from the Int Wide
mock catalogue, using our pipeline in fast mode. The upper panel
of Fig. B.7 shows how the F1-score decreases when each magni-
tude measurement has a random offset, drawn from a Gaussian
distribution of σ, applied. Interestingly, even when the data are
extremely noisy, the pipeline remains nominally functional. For
instance, even when the photometry has been degraded to a
signal-to-noise ratio of ∼3, it is nonetheless still able to perform
a global selection of quiescent galaxies, albeit with somewhat
reduced precision, recall, and F1-scores of ∼0.67.

To simulate a reduction in noise, we perform a cut to remove
galaxies fainter than an arbitrary IE threshold, where lower val-
ues of this threshold result in a higher average signal-to-noise
ratio for the mock catalogue (Fig. B.7, lower panel). Despite the
crudeness of these tests, it is clear that reducing (increasing) the
signal-to-noise ratio of the data results in lower (higher) quality
classification models, as evaluated by the F1-scores. While the
different noise characteristics probably play a significant role in
the differences in pipeline performance between the Int and SED
catalogues, additional effects may also be important.

B.6.2. Label noise

Heretofore, we have tacitly assumed that the quiescent and star-
forming labels used in the training and evaluation of our clas-
sification models give an accurate representation of the ground
truth. However, there is the possibility that some labels are incor-
rect, that is, quiescent galaxies labelled as star-forming or vice
versa. We examine the potential impact of incorrect labels using
two slightly different approaches.

In the first approach, we assess the impact on model qual-
ity from introducing incorrect labels at random. To do this, we
select a subset of galaxies in the mock photometry catalogue, and
for these galaxies we replace all occurrences of the value 0 with
the value 1, and all occurrences of the value 1 with 0. We then
perform our standard preprocessing and model training steps as
described in Sect. 4. For these tests, the ARIADNE pipeline is used
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Fig. B.6. Impact of including source redshifts as an additional feature in the input data. Left: Case where the dataset is binned by photometric
redshift prior to model training, with 100 per cent, 50 per cent, or none of the redshifts included as a feature in the data. Right: Illustrating the case
where no redshift binning is performed, with classifiers being trained to identify quiescent galaxies at specific redshift intervals. For this test, the
Int Wide mock catalogue was used.
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Fig. B.7. Testing the impact of photometry measurement uncertainties
on the results from our classification pipeline. Top: Example of how
the F1-score is reduced when Gaussian noise is added to the optical
and NIR photometry in the Int Wide catalogue. Bottom: Example of
how the F1-score is increased when galaxies fainter than an arbitrary IE

threshold are excluded from the Int Wide catalogue.

in fast mode. The classification metrics are evaluated for two dif-
ferent cases, where (i) the test set class predictions are compared
with the original unaltered test set labels, or (ii) the test set class
predictions are compared with the altered (noisy) test set labels.

In the context of this experiment we point out that the ‘ran-
dom errors’ discussed here can either be truly random errors
arising from the methodology used to generate the labels (e.g.
LePhare template fitting) or else can be systematic errors that
the machine-learning algorithms are unable to model and repro-
duce. An example of the latter type of error might be a systematic

Fig. B.8. Results from our transfer learning method. When we train
models on SED Wide data, and use them to select quiescent galax-
ies from Int Wide data (dashed orange curve), the F1-scores are only
slightly lower than those we obtain from models trained on Int Wide
data (solid blue curve). A generally similar result is obtained when we
train models on Int Wide data and use them to select quiescent galax-
ies from SED Wide data (dotted black curve). For comparison we also
show the results from the LePhare template fitting method applied to
the SED Wide mock catalogue (see Sect. 6.4), using Euclid, ugriz, W1,
W2, and 20 cm photometry, and with redshifts fixed at the Laigle et al.
(2016) values.

error driven by photometric bands that are present in the multi-
wavelength dataset used to generate the labels, but which do not
appear in the data that are seen by our pipeline.

Under these conditions, the presence of noisy labels varies
depending on the particular classification problem that is being
addressed. For instance, when selecting quiescent galaxies at
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0 ≤ z ≤ 3 from the Int Wide catalogue, without foreknowledge of
redshifts, and with 33 per cent of the labels having been flipped,
the metrics obtained when the test set labels contain errors are
relatively poor, at P = 0.62, R = 0.12, and F1-score = 0.21. This
is to be expected, because the classification results are being
evaluated against a ground truth that contains many incorrect
labels, leading to artificially poor metrics.

Conversely, the metrics we obtain are substantially better
if we instead evaluate the same classification results against
the original ground truth, yielding P = 0.86, R = 0.68, and
F1-score = 0.76; these values are only slightly different com-
pared to the case where label errors are not introduced at all
(P = 0.84, R = 74, F1-score = 0.79). In other words, for this
case the presence of randomly incorrect labels in the training
data did not have a substantial impact on the classification of
sources in the test set.

In another example, selecting quiescent galaxies at 1 ≤ z ≤
1.25 with no foreknowledge of redshifts, and with 10 per cent
of labels in error, results in an F1-score of 0.13 when evaluated
using the test set ground truth with label errors injected. Remark-
ably, when evaluating the same classification results using the
ground truth test set without label errors, the F1-score is 0.69,
effectively unchanged from the case where no label errors are
injected at all (F1-score = 0.69). In this case, the presence of
random errors in the training set labels had no detrimental effect
on the final classifications of sources in the test set.

One of the interesting implications of these results is that our
pipeline is generally able to ignore random label errors. Further-
more, when random label errors are present, our pipeline may
even produce predictions that are of higher quality than the labels
in the input data, in terms of how close the predictions are to
the real ground truth. Further research (beyond the scope of this
paper) is needed to test whether machine-learning methods such
as those discussed herein may be able to improve on traditional
SED fitting methods, rather than simply emulating them.

The second approach is similar to the first, but aims to sim-
ulate systematic errors in the class labels. For this, we used the
KMeans clustering algorithm from Scikit-Learn to separate
galaxies from the Int Wide catalogue into an arbitrary number of
clusters, with an arbitrary number of the clusters being selected
to have an arbitrary fraction of their class labels inverted. For
illustrative purposes, we separated the data into 100 clusters, and
inverted 99 per cent of the labels in three randomly selected clus-
ters; the inverted labels represent 11 per cent of all labels. We
then selected quiescent galaxies at 0 ≤ z ≤ 3, again using fea-
tures derived from the ugriz, Euclid, W1, W2, and 20 cm bands,
and without foreknowledge of galaxy redshifts. Evaluating the
metrics when using the modified labels for the test set, we obtain
P = 0.89, R = 85, and an F1-score of 0.87. In contrast, evaluat-
ing the metrics using the original test set labels, we obtain the
substantially lower values P = 0.36, R = 0.69, and an F1-score
of 0.47. In this case, our pipeline is able to emulate the system-
atic label errors present in the training set, resulting in test set
class predictions that contain similar systematic errors.

B.6.3. Redshift noise

As we have demonstrated heretofore, the inclusion of redshift
information in the training data often results in classification
models that are better able to correctly identify quiescent galax-
ies (e.g. Appendix B.5). A key point to be considered is whether
our results are significantly affected by the accuracy of the
photometric redshifts used, especially since the 30-band COS-
MOS2015 redshifts (Laigle et al. 2016) we have used could

potentially be more accurate than the redshifts that will be esti-
mated from Euclid photometry and the anticipated ancillary data
(see e.g. Euclid Collaboration 2020). Therefore, we explore the
impact of adding Gaussian noise to the COSMOS2015 redshifts
prior to model training. While a full treatment of this issue
is beyond the scope of the present work, we consider several
different cases in order to obtain indicative results.

Random samples were drawn from a Gaussian distribution
with standard deviation σz; these values were multiplied by
1 + z and then added to the photometric redshift values after
the Target variable was set, simulating the addition of Gaussian
noise. The global selection of quiescent galaxies in the range
0 < z < 3 was then repeated with the (now noisier) redshifts
included as a feature, along with the ugriz, Euclid, and Wise
photometry, and colours derived therefrom. This test was per-
formed for the Int Wide and SED Wide catalogues, for the values
σz = 0.025, 0.05, 0.075.

The results from this test, averaged over an equal number
of pipeline runs on the Int Wide and SED Wide catalogues, are
shown in Table 4. While P is essentially unchanged, R, and the
F1-score are slightly reduced by ∼0.01–0.02.

Next, we consider the impact of redshift noise on the selec-
tion of quiescent galaxies in the narrower redshift bins used
in Sect. 5.1. As one might expect, it is more difficult to select
quiescent galaxies inside these narrower redshift bins when the
photometric redshifts are noisier. This is because the models,
in addition to separating quiescent and star-forming galaxies,
must now also separate quiescent galaxies by their redshift. For
example, in the case where σz = 0.05, the F1-score is typi-
cally reduced by ∼0.07 compared to the case where no noise is
added. Nevertheless, the F1-scores are still significantly higher
than when the redshifts are not included at all, with the improve-
ment ranging from ∼0.02 at 1 < z < 1.5, to ∼0.2 at z < 0.5
and z > 2. Interestingly, even in the case where σz = 0.1, rep-
resenting rather noisy redshifts (NMAD ∼0.1), the F1-scores at
z < 0.5 and z > 2 are still ∼0.1 higher than when redshifts are
not included. In other words, even when photometric redshifts
are somewhat noisy, their inclusion in the data can nevertheless
result in significantly stronger classification models, compared
to when photometric redshifts are not used.

B.7. Transfer learning experiments

B.7.1. Training on templates and predicting on real SEDs

We also experimented with the possibility of using classifica-
tion models trained on spectral templates to select quiescent
galaxies from catalogues of observed photometry. To explore
this, our pipeline trained its classification models on the SED
Wide mock catalogue, and selected quiescent galaxies from the
Int Wide catalogue using the resulting classifier. Essentially, we
gave our pipeline the task of identifying and weighting the defin-
ing characteristics of quiescent and star-forming galaxies from a
set of simplifying abstractions (galaxy SED templates), rather
than from observed SEDs. The train-test split was performed
as described in Sect. 4.1, ensuring that each galaxy is present
in either the training set or the test set, but not both. For this
experiment, the data are pre-binned by redshift as described in
Sect. 5.1, but we did not include the redshift values as a feature
in the input data for the classification pipeline.

The results are shown in Fig. B.8, where it can be seen that
classifiers trained on the SED Wide catalogue are indeed able
to select quiescent galaxies from the Int Wide catalogue, albeit
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with marginally lower F1-scores compared to models trained
on the Int Wide catalogue itself. This opens up the interest-
ing possibility of using machine-learning models trained on
synthetic galaxy SEDs as a potential alternative to traditional
colour-colour or template fitting methods (e.g. Girelli et al. 2019;
Cecchi et al. 2019) of selecting quiescent galaxies that have red-
shifts (or other properties) for which there are no (or few) known
examples.

Figure B.8 also reveals that the transfer learning method can
also function in reverse. When the training and test datasets are
swapped with each other, such that classification models are
trained on the Int Wide catalogue and are then used to select
quiescent galaxies from the SED Wide catalogue, very similar
results are obtained. The exception is in the lowest redshift bin
(0 < z < 0.25), where the F1-score is now reduced by ∼0.12
compared to the previous case. Classification metrics for the
global selection of quiescent galaxies using transfer learning are
also included in Table 4.

We also show in Fig. B.8 (red dashed line) the F1-scores
obtained when using LePhare to fit templates to SED Wide
mock data using the same photometry, and with redshifts fixed
to the values from Laigle et al. (2016, see also Sect. 6.4). This
template fitting method clearly provides results of similar qual-
ity to our pipeline in the 1.0 <∼ z <∼ 2.0 redshift range, but at
z <∼ 1.0 or at z >∼ 2 the method significantly under-performs
our transfer learning method. The under-performance of our
LePhare template fitting method is likely caused, at least partly,
by the absence of priors concerning (i) the known (or suspected)
distribution of the galaxy classes within the redshift and colour-
spaces, and (ii) the relative importance (or weighting) that should
be given to each data point in the broadband SED, aside from
their signal-to-noise ratio.

B.7.2. Training on Deep and predicting on Wide survey data

The Euclid Deep Survey will provide photometry (and spec-
tra) in several fields for which there are pre-existing multi-
wavelength observations, allowing the construction of source
catalogues with high-quality labels. In turn, this is expected to
facilitate the training of classifiers, which can then be used to
predict labels for the enormous number of sources that will be
detected in the Euclid Wide Survey. An important question, how-
ever, is whether models trained using the deep field photometry
are suitable for use in selecting quiescent galaxies in the wide
field survey. While the Deep and Wide Surveys are expected
to be somewhat similar (but clearly not identical) within the
magnitude-space covered by the Wide Survey, at least 60 per cent
of the galaxies in the Deep Survey are below (or close to) the IE

3σ detection threshold of the Wide Survey. It is not clear a priori
how the presence of these faint galaxies will affect the quality of
the classification models.

To test this, we train our pipeline using the Int Deep cat-
alogue, and use the resulting classification model to predict
classes for the galaxies in the Int Wide catalogue. No galaxy
was permitted to be present in both the training and the test
set. In addition, no foreknowledge of redshifts was assumed, all
available photometry bands were used (ugriz, Euclid, W1, W2,
and 20 cm), and only galaxies detected in all four Euclid bands
were included. Under these conditions, the resulting F1-score for
selection of quiescent galaxies from the Int Wide catalogue is
0.74, moderately lower than the F1-score of 0.80 obtained using
models trained using Int Wide (see Table 4). Conducting this test
instead using the SED catalogues resulted in a similarly reduced

F1-score of 0.76, compared to 0.82 when using only SED Wide
catalogue.

Thus, although it is possible to separate quiescent and star-
forming galaxies in the Wide Survey mocks, the F1-score suffers
a significant penalty and is reduced by at least ∼0.06. Clearly,
the presence of a large number of additional, faint galaxies in
the training set exacerbates at least some of the degeneracies
described in Sect. 1, and induces the learning algorithms to place
undue weight on galaxies near the faint end of the magnitude
distribution.

In this study we are, of course, only able to make use of mock
Euclid photometry catalogues, but we must also consider how
the training set for this task will be constructed from real Euclid
data. Based on the analyses presented heretofore, we propose
constructing the training set(s) from Deep Survey photometry
from fields that have high-quality multi-wavelength observations
(and spectroscopy), using the deepest available data in order
to generate high-quality ground truth labels, but then training
classification models on Wide Survey-depth observations.

B.8. Alternative targets

In this work, we have used target labels that were generated
using an sSFR threshold to differentiate between quiescent and
star forming galaxies. However, it is also interesting to consider
other methods for generating the labels. Thus, here we explore
the impact of using labels derived from the NUV − r versus
r− JE (Ilbert et al. 2010, 2013) or NUV− r versus r−K (Arnouts
et al. 2013) colour-colour methods, instead of the sSFR-based
labels used throughout this work. The mock catalogue used for
these tests is Int Wide, and features derived from the ugriz, IE,
YE, JE, HE, W1, W2 and 20 cm bands were used, with detections
required in all of the Euclid bands. Our pipeline was used in fast
mode. The results are summarised in Table B.1.

In the global selection of quiescent galaxies (0 ≤ z ≤ 3),
the impact of using labels the alternative labels is limited. In
the case of the labels derived from the NUV − r versus r − JE

method, the F1-score is improved by ∼0.03 compared to the
original (sSFR) labels. On the other hand, the F1-score when
using the labels derived from the NUV − r versus r − K method
is ∼0.02 lower compared to when the original labels are used.

When selected quiescent galaxies in narrower redshift
ranges, having first removed sources whose photometric red-
shifts place them outside the range of interest, we usually obtain
slightly higher F1-scores when using labels from the NUV − r
versus r − JE method, compared to when the original labels are
used. in the z = 2.5 − 3 bin, there is a particularly large improve-
ment in the F1-score (from ∼0.4 to ∼0.6). Conversely, in the
z = 0 − 0.25 bin we obtain a significantly lower F1-score when
using when using labels from the NUV − r versus r − JE method
(0.53 compared to 0.69). When labels derived from the NUV− r
versus r − K method are used, the resulting F1-scores are con-
sistently lower compared to the case where the original labels
(sSFR) are used.

B.9. Which observables are useful to select quiescent
galaxies?

Heretofore, we have approached the question of the useful-
ness of different features (colours, magnitudes, etc.) in terms
of whether they are informative and whether their inclusion
significantly improves the quality of our classification models
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Table B.1. Selection of quiescent galaxies in the redshift range 0 ≥ z ≥ 3, using the Int Wide catalogue with its labels replaced by labels derived
from the NUV − r vs. r − JE or NUV − r vs. r − K colour-colour methods.

NUV − r vs. r − JE labels︷                          ︸︸                          ︷ NUV − r vs. r − K labels︷                          ︸︸                          ︷ sSFR labels︷                          ︸︸                          ︷
Redshift range Redshift binning P R F1-score P R F1-score P R F1-score

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0 − 3 No 0.86 0.79 0.82 0.79 0.74 0.77 0.84 0.74 0.79

0 − 0.25 Yes 0.51 0.56 0.53 0.41 0.46 0.43 0.72 0.67 0.69
0.25 − 0.5 Yes 0.82 0.81 0.82 0.78 0.74 0.76 0.81 0.80 0.80
0.5 − 0.75 Yes 0.86 0.85 0.86 0.84 0.81 0.83 0.86 0.85 0.85
0.75 − 1 Yes 0.90 0.90 0.90 0.80 0.85 0.82 0.85 0.87 0.86
1 − 1.25 Yes 0.90 0.90 0.90 0.79 0.86 0.82 0.88 0.88 0.88

1.25 − 1.5 Yes 0.81 0.85 0.83 0.69 0.80 0.74 0.82 0.84 0.83
1.5 − 2 Yes 0.77 0.79 0.78 0.61 0.72 0.66 0.80 0.82 0.81
2 − 2.5 Yes 0.70 0.69 0.69 – – – 0.62 0.69 0.65
2.5 − 3 Yes 0.62 0.65 0.62 – – – 0.40 0.57 0.37

Notes. For this test the ugriz, IE, YE, JE, HE, W1, W2 and 20 cm bands were used, with detections required in all of the Euclid bands. Here, the
ARIADNE pipeline was used in its fast mode. No results are shown for the NUV − r vs. r − K case in the redshift ranges 2 − 2.5 or 2.5 − 3, due to
the very low number of sources labelled as quiescent by this method.
The columns are as follows:
(1) Redshift range in which the test was conducted;
(2) information on whether photometric redshifts were used to restrict the dataset to source in the specified redshift range (‘Yes’ or ‘No’);
(3) precision P for quiescent galaxy selection when using labels derived from the NUV − r vs. r − JE method;
(4) recall R for quiescent galaxy selection when using labels derived from the NUV − r vs. r − JE method;
(5) the F1-score for quiescent galaxy selection when using labels derived from the NUV − r vs. r − JE method;
(6) precision P for quiescent galaxy selection when using labels derived from the NUV − r vs. r − K method;
(7) recall R for quiescent galaxy selection when using labels derived from the NUV − r vs. r − K method;
(8) the F1-score for quiescent galaxy selection when using labels derived from the NUV − r vs. r − K method;
(9) precision P for quiescent galaxy selection when using labels derived from the sSFR;
(10) recall R for quiescent galaxy selection when using labels derived from the sSFR;
(11) the F1-score for quiescent galaxy selection when using labels derived from the sSFR.

(see Sect. 4.2.4). However, it is also desirable to reach a deeper
understanding of the usefulness of each feature, and how their
usefulness depends on the circumstances under which quiescent
galaxies are to be selected. For instance, the colours that are most
useful for selecting quiescent galaxies in one redshift range may
be less useful in another.

Moreover, while it may be self-evident that the inclusion of
photometry in various optical bands allows for better character-
isation of galaxy SEDs, and thus more accurate classification
of galaxies, the degree of improvement may not always justify
the cost of acquiring additional observations. Figure 8 illustrates
such an example, where the inclusion of ugriz photometry pro-
vides little or no significant improvement in the selection of
quiescent galaxies at z >∼ 1.25, compared to when only the Euclid
photometry is used (see Sect. 5.1.3 for further details).

Our objective for this section, therefore, is to provide anal-
yses that can inform the planning of future surveys regarding
which filters or frequencies would be important to include, and to
guide the construction of new selection methods, be they colour-
colour, template- fitting, or machine-learning-based. For this we
employ feature importance analysis (see also Sect. 4.2.4). The
machine-learning models we use for these analyses are trained
using the XGBoostClassifier learning algorithm and the Int
Wide mock catalogue, because its feature importance values are
more robust, as discussed in Appendix A. We also perform split-
run tests using our pipeline in fast mode to examine the impact
on the F1-score from the addition of ancillary bands to the Euclid
IE, YE, JE, HEphotometry.

It is worth noting that these analysis methods provide infor-
mation about machine-learning models and how they make use

of the input data, rather than the data itself. As such, the infor-
mation provided is limited by what the learning algorithms were
able to learn from the data, and it is quite possible that addi-
tional relationships exist between features and the target that the
learning algorithm was unable to find. Thus, while features found
to be important are highly likely to be useful for the selection
of quiescent galaxies, features found to be unimportant (or less
important) may nevertheless hold hidden information that other
selection methods (e.g. template fitting) may find useful when
selecting quiescent galaxies.

B.9.1. Which single optical band is most useful?

In Fig. B.9 we show the effect of adding one optical band to
the Euclid photometry set, when selecting quiescent galaxies
in specific redshift ranges from the Int Wide catalogue using
XGBoostClassifier, with no foreknowledge of redshifts. In
addition, Fig. B.10 shows the improvement in F1-score due to
the inclusion of each optical band.

First, we examine feature importance as a function of redshift
when only the Euclid data are available (Fig. B.9, top left). In this
circumstance, there is no single, decisive broadband colour for
the selection of quiescent galaxies at z <∼ 0.5. The lack of sen-
sitivity to the 4000 Å break, or to emission bluewards thereof,
results in models with relatively low F1-scores (see Fig. 8). In
this regime, our XGBoostClassifier models assign a fairly
similar importance value to each feature.

Above z = 0.4, the 4000 Å break becomes redshifted into the
IE band, becoming potentially detectable via one or more of the
Euclid broadband colours. In the range 0.5 < z < 1.5, the colour
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Fig. B.9. Visual representation of the feature importances derived from XGBoostClassifiermodels trained to select quiescent galaxies using only
Euclid photometry and colours (top left panel), or Euclid photometry with the addition of one ground-based optical band, and the relevant broad-
band colours. The optical bands are u (top right), g (middle left), r (middle right), i (bottom left), and z (bottom right). The XGBoostClassifier
models were trained without foreknowledge of the redshifts.
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Fig. B.10. Effect on the F1-score due to the including one addi-
tional band with the Euclid photometry set. The ARIADNE pipeline
was run in fast mode using the LightGBMClassifier base learner, or
XGBoostClassifier at 2.5 < z < 3, without foreknowledge of galaxy
redshifts.

IE − YE is the most sensitive to the presence of the 4000 Å break,
and our XGBoostClassifiermodels consider this feature to be
the single most important for these redshifts. At z > 1.5, where
the 4000 Å break is now redshifted into the NIR bands, other
colours become more important: IE − JE at 1.5 < z < 2, YE − HE

at 2 < z < 2.5, and JE − HE at 2.5 < z < 3.
The addition of u-band photometry allows the 4000 Å break

to be detected at z <∼ 0.5, resulting in significantly increased F1-
scores in this redshift range (see Fig. B.10). In this case, IE − u
and/or YE − u become the most important in the redshift range
0 < z < 0.75 by a large margin. Features using the u-band pho-
tometry continue to have significant (or non-zero) importance up
to z ∼ 2, before dropping to ∼0 at z > 2.5.

In the case where models are trained using features derived
from the g-band and Euclid photometry, colours involving g are
found to be the most important within the range 0.25 < z < 1.
While the inclusion of g also helps significantly at z < 0.25, the
improvement is considerably smaller compared to when the u
is used, because the 4000 Å break is bluewards of the u band’s
wavelength range. While the importance values of features using
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Fig. B.11. Similar to Fig. B.9, but showing the feature importances
when the W1 (top), W2 (middle) or 20 cm (bottom) bands are included
with the Euclid photometry.

the g band decrease substantially at z > 1.25, these features
remain useful even in the 2.5 < z < 3 bin.

When the r, i, or z band is used together with the Euclid
bands, the situation is similar to that described above for g, with
the main differences being the substantially lower feature impor-
tances at 0.25 < z < 0.5 for colours that use one of the three
bands, and the relatively high importance of IE − z at 1 < z <
1.25.

In summary, there is no single ‘ideal’ optical band to include
alongside the Euclid bands when selecting quiescent galaxies,
and a trade-off should be made depending on whether low-
redshift (z <∼ 0.25) or high-redshift (z >∼ 2) galaxies are required.
Of course, one may circumvent this choice if ugriz photometry
is available.

B.9.2. Importance of long wavelength bands

We repeat the process described in Appendix B.9.1, this time
considering the addition of the W1, W2, or 20 cm radio band
and related broadband colours. The data for these three bands is
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Fig. B.12. Similar to Fig. B.10, but showing the effect on the F1-
score due to the including W1, W2, or the 20 cm radio band with the
Euclid photometry when training LightGBMClassifier (z < 2.5) or
XGBoostClassifier (2.5 < z < 3) models.

very sparse, with detection fractions of 0.053, 0.024, and 0.0076
for W1, W2, and 20 cm, respectively.

The feature importance as a function of redshift is shown in
Fig. B.11, and the improvement from including the W1, W2, or
20 cm bands with the Euclid photometry is shown in Fig. B.12.
Despite being very sparse, each of the three bands provide a
significant improvement in F1-score within the redshift ranges
0 < z < 1 and 1.5 < z < 3. We find little or no improvement
evident in the redshift range 1 < z < 1.5.

The usefulness of the 20 cm band for discriminating qui-
escent galaxies from star-forming galaxies is intriguing and
somewhat surprising. Clearly, there is a correlation (or corre-
lations) between the galaxy class and the presence of radio
continuum emission. We speculate that this may be due to a sub-
set of star-forming galaxies being detected in radio continuum,
and/or the presence of radio-loud massive elliptical galaxies
whose X-ray emission is below the COSMOS2015 detection
threshold.

B.10. Selection of quiescent galaxies from SPRITZ: Euclid
Deep Survey

To complement the results presented in Sect. 5.1.1, we also tested
the selection of quiescent galaxies using the simulated Euclid
Deep Survey from SPRITZ (Bisigello et al. 2021). Compared to
the Euclid Deep Survey catalogues, the SPRITZ catalogue has
the advantage of being complete down to the expected depth
for the actual survey Deep Survey and the expected ancillary
ground-based data. For the Euclid and ugriz bands, we adopt
identical photometric uncertainties and detection limits to those
used for the SED Deep catalogue given in Sect. 2. In the case
of Spitzer Space Telescope IRAC bands, we adopt the follow-
ing four cases based on Euclid Collaboration (2022b): Case 1:
no IRAC photometry; Case 2: IRAC photometry 3σ depths of
24.55, 24.39, 22.61, and 22.17 mag in channel 1, 2, 3 and 4,
respectively; Case 3: IRAC photometry 3σ depths of 25.55,
25.39, 23.61, and 23.17 mag in channel 1, 2, 3 and 4, respectively;
and Case 4: IRAC photometry 3σ depths of 26.55, 26.39, 23.61,
and 23.17 mag in channel 1, 2, 3 and 4, respectively.

The ARIADNE pipeline was used in its default configuration,
where five base-learners are employed. Galaxies not detected

A99, page 34 of 36



Euclid Collaboration: Selection of quiescent galaxies

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Redshift z

0.75

0.80

0.85

0.90

0.95

1.00

F1
-s

co
re

ARIADNE applied to SPRITZ

Case 1 (no IRAC)
Case 2
Case 3
Case 4

Fig. B.13. Results from applying the ARIADNE pipeline to the selection
of quiescent galaxies from the SPRITZ Euclid Deep Survey simulated
catalogue. Four cases described in Appendix B.10 are shown.

in one or more of the Euclid bands were removed from the
dataset, as were galaxies containing an active galactic nucleus.
The results are shown in Table B.2 and Fig. B.13.

Appendix C: Number of detections in each
catalogue and band
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Table B.2. Selection of quiescent galaxies in the redshift range 0 ≥ z ≥ 3, from the SPRITZ Euclid Deep Survey simulation.

SPRITZ Case 1︷                          ︸︸                          ︷ SPRITZ Case 2︷                          ︸︸                          ︷ SPRITZ Case 3︷                          ︸︸                          ︷ SPRITZ Case 4︷                          ︸︸                          ︷
Redshift range Redshift binning P R F1-score P R F1-score P R F1-score P R F1-score

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
0 − 3 No 0.92 0.86 0.89 0.92 0.88 0.90 0.93 0.90 0.91 0.93 0.91 0.92

0 − 0.25 Yes 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.86
0.25 − 0.5 Yes 0.92 0.90 0.91 0.92 0.91 0.91 0.92 0.91 0.91 0.92 0.91 0.92
0.5 − 0.75 Yes 0.96 0.92 0.94 0.96 0.92 0.94 0.96 0.93 0.94 0.96 0.93 0.95
0.75 − 1 Yes 0.93 0.91 0.92 0.94 0.91 0.93 0.94 0.92 0.93 0.95 0.92 0.94
1 − 1.25 Yes 0.95 0.92 0.93 0.96 0.92 0.94 0.97 0.93 0.95 0.97 0.94 0.96

1.25 − 1.5 Yes 0.93 0.95 0.94 0.96 0.95 0.95 0.97 0.96 0.97 0.98 0.97 0.97
1.5 − 2 Yes 0.90 0.93 0.91 0.94 0.94 0.94 0.95 0.95 0.95 0.96 0.96 0.96
2 − 2.5 Yes 0.91 0.84 0.87 0.93 0.89 0.91 0.95 0.91 0.93 0.95 0.93 0.94
2.5 − 3 Yes 0.82 0.83 0.83 0.86 0.84 0.85 0.89 0.89 0.89 0.91 0.89 0.90

Notes. The columns are as follows:
(1) redshift range in which the test was conducted;
(2) information on whether photometric redshifts were used to restrict the dataset to source in the specified redshift range (‘Yes’ or ‘No’);
(3) precision P for quiescent galaxy selection for SPRITZ Case 1;
(4) recall R for quiescent galaxy selection for SPRITZ Case 1;
(5) the F1-score for quiescent galaxy selection for SPRITZ Case 1;
(6) precision P for quiescent galaxy selection for SPRITZ Case 2;;
(7) recall R for quiescent galaxy selection for SPRITZ Case 2;
(8) the F1-score for quiescent galaxy selection for SPRITZ Case 2;;
(9) precision P for quiescent galaxy selection for SPRITZ Case 3;;
(10) recall R for quiescent galaxy selection for SPRITZ Case 3;;
(11) the F1-score for quiescent galaxy selection for SPRITZ Case 3;;
(12) precision P for quiescent galaxy selection for SPRITZ Case 4;;
(13) recall R for quiescent galaxy selection for SPRITZ Case 4;;
(14) the F1-score for quiescent galaxy selection for SPRITZ Case 4.

Table C.1. Number of 3σ detections in each of the bands, for each mock catalogue.

Catalogue IE YE JE HE u g r i z W1 W2 20 cm Quiescent
Int Wide 315755 212019 231039 250077 140782 226514 198564 194912 204649 10476 4704 1536 21998 (7.0 %)
Int Deep 517890 486394 491588 500299 499565 504416 490457 493018 499140 10476 4704 1698 30990 (6.0 %)

SED Wide 3249101 2056800 2270138 2455887 1498518 2330338 2091921 2040916 2031115 131703 65904 – 213837 (6.6 %)
SED Deep 5121526 4763050 4890667 4963038 3971472 4796448 4828112 4802416 4766807 134656 69493 – 303761 (5.9 %)

Notes. Also shown are the numbers of quiescent galaxies. The SED catalogues do not contain 20 cm radio band.
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