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ABSTRACT 

Linja, Joakim 
Advancing Nanomaterials Design using Novel Machine Learning Methods 
Jyväskylä: University of Jyväskylä, 2023, 68 p. (+included articles) 
(JYU Dissertations 
ISSN 2489-9003; 621) 
ISBN 978-951-39-9517-1 (PDF) 

The rise of machine learning (ML) has revolutionized the usage of data. Re-
searchers continue to develop new ways to use ML and find new targets to apply 
ML on. One of these areas of application is found in nanoscience. Nanoscience is 
a constantly expanding field with applications in almost every part of life, such as 
medicine, materials design, and consumer products. The experimental research 
of nanoscience is expensive, augmented by computational research. Computa-
tional research is, however, also resource-intensive and time-consuming due to the 
complexity of the simulation models. Machine learning promises to alleviate that 
strain. This work and the articles presented focus on a family of distance-based 
machine learning algorithms, Minimal Learning Machine (MLM), and Extreme 
Minimal Learning Machine (EMLM), in the context of computational nanoscience. 
Specifically in the context of monolayer protected nanoclusters (MPC). 

The distance-based ML methods are studied as surrogates in feature selec-
tion and knowledge discovery. A set of benchmark, generated, and molecular 
dynamics-based datasets were used in the included articles. The performance of 
MLM was studied by using it as a surrogate, comparing it to other methods, and 
inspecting the effect of a solver on its function. EMLM was used as the ML model 
in feature selection and knowledge discovery. A set of scaling-focused benchmark 
datasets were developed based on the simulation data of Au38(SCH3)24 MPC 
and a set of synthetic benchmark & development datasets were created to test 
the performance of a feature selection algorithm. A Mean Absolute Sensitivity 
(MAS) utilizing distance-based feature selection algorithm, Distance-based one-shot 
wrapper, was developed and then extended to Feature Importance Detector. An um-
brella review was made to contextualize the one-shot wrapper to feature selection 
literature. The results prove the viability of distance-based ML methods in the 
context of computational nanoscience. 

Keywords: Machine Learning, Distance–Based Regression, Nanoscience, MLM, 
EMLM, Hybrid Nanoparticles, Feature Selection, Knowledge discov-
ery 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Linja, Joakim 
Nanomateriaalien suunnittelun edistäminen käyttäen uusia koneoppimismenetel-
miä 
Jyväskylä: University of Jyväskylä, 2023, 68 s. (+artikkelit) 
(JYU Dissertations 
ISSN 2489-9003; 621) 
ISBN 978-951-39-9517-1 (PDF) 

Datan käsittely on mullistunut koneoppimismenetelmien yleistymisen myötä. Ko-
neoppimiselle löydetään jatkuvasti uusia sovelluskohteita ja uusia sovellustapoja. 
Yksi näistä sovelluskohteista löytyy nanotieteen puolelta. Nanotiede on alati laa-
jeneva tieteenala, jonka vaikutuksia löytää nykyään melkein jokaisesta elämän 
osa-alueesta, kuten lääketieteestä, materiaalisuunnittelusta ja kuluttajatuotteis-
ta. Nanotieteen kokeellinen tutkimus on kuitenkin kallista, mutta tätä voidaan 
lieventää laskennallisen tieteen keinoja hyödyntäen. Laskennallisen tieteen kei-
not nanotieteen saralla ovat kuitenkin itsessään raskaita ja aikaavieviä, johtuen 
tutkimuksen vaatimasta tarkkuustasosta. Laskennallisen tieteen resurssivaadetta 
voidaan keventää koneoppimisen keinoin. Tässä työssä ja mukaanotetuissa artik-
keleissa keskitytään tarkastelemaan etäisyyspohjaisten koneoppimismenetelmien 
perhettä laskennallisen nanotieteen kontekstissa. Erityisesti yhden kerroksen suo-
jaamien nanoklusterien (monolayer protected cluster, MPC) kontekstissa. Käytet-
tyyn koneoppimismenetelmien perheeseen kuuluvat Minimal Learning Machine 
(MLM) ja Extreme Minimal Learning Machine (EMLM). 

MLM:n ja EMLM:n toimivuutta ja suorituskykyä tutkitaan sijaismalleina, 
sekä muuttujanvalinnassa että tietämyksen tuottamisessa. Tutkimuksessa käy-
tettiin aineistoja, joihin kuuluu suorituskykymittaukseen käytetyt, generoidut 
sekä molekyylidynamiikkasimulaatioon perustuvat aineistot. MLM:ää tutkittiin 
käyttämällä sitä sijaismallina sekä tutkimalla sen toimintaa eri yhtälönratkaisijoi-
den avulla. EMLM:ää käytettiin muuttujanvalinnassa sekä tietämyksen tuottami-
sessa. Tutkimusta varten luotiin skaalausominaisuuksia luotaava, Au38(SCH3)24 

MPC klusteriin perustuva joukko aineistoja sekä joukko synteettisiä aineistoja, 
joiden tarkoituksena on toimia suorituskykymittauksessa sekä menetelmänkehi-
tyksessä muuttujanvalinta-algoritmeille. Tutkimuksessa kehitettiin kaksi Mean 
Absolute Sensitivity (MAS)-pohjaista muuttujanvalinta-algoritmia: Distance-based 
one-shot wrapper sekä sen laajennos, Feature Importance Detector. Etäisyyspohjai-
nen muuttujanvalinta-algoritmi kontekstualisoitiin muuhun lähdekirjallisuuteen 
laajan koosteartikkelien koosteen avulla. Tulokset osoittavat MLM:n ja EMLM:n 
soveltuvuuden laskennallisen nanotieteen vaatimuksiin. 

Avainsanat: Koneoppiminen, Etäisyyspohjainen regressio, nanotiede, MLM, EMLM, 
Hybridinanopartikkelit, Muuttujanvalinta, Tietämyksen muodostus 
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PREFACE 

This is the personal voice part of this thesis, relating to experiences gained during 
the writing of this thesis. I’ll be the first to admit that things did not go according 
to plan. There were unexpected stressors and problems that impacted the writing 
process. Some to a lesser extent, some to a greater extent. But that is life, isn’t it? 

One often-said advice is not to let the work become a boogeyman to you. 
This thesis, however, did manage to turn itself into a boogeyman for me. The 
extent I managed to turn it back into a thesis remains to be seen. On the same note, 
there is a saying that something has taken the blood, sweat, and tears to get done. 
Unfortunately for me, this thesis required those literally. I am sure I am not the 
only one with that fate among those who have written a thesis. Though one would 
hope that at least the blood part is not a common occurrence in a thesis project. 

Throughout the years in the Finnish education system, I’ve considered myself 
a bad writer. Any writing assignment was automatically one of the most stressful 
and time-consuming part of any schoolwork. It is due to my experiences with 
writing assignments that I knew a project such as this thesis could not be taken 
lightly. And I didn’t. It managed to surprise me anyway. 

My roots are in physics, where it has been customary to start each work by 
somehow referencing the ancient Greeks or by referencing either Schrödinger’s 
equation or Maxwell’s equations. I specifically wanted to avoid that, although 
I kind of didn’t due to starting with Feynman. I, however, did want to end this 
preface with a similar type of reference. Paraphrasing the words of Neil Armstrong 
back in 1969: This thesis may have been a small step for science, but it was a giant leap 
for a man. 
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1 INTRODUCTION 

Machine learning and nanoscience are two facets of science from different fields. 
One is the study of partially automatic, trainable tools, and the other is the study of 
events, objects, and phenomena in the nanometer scale. The combination of them 
is akin to computational nanoscience, with the exception that the computational 
part specifically focuses on machine learning. In the most common case, the 
term computational would mean computer simulation–based, such as Density 
Functional Theory (DFT) based molecular dynamics simulations. 

This thesis approaches the topic of machine learning-assisted computational 
nanoscience mainly through the contributions made on the machine learning side 
of the duo. This chapter discusses the backgrounds and motivations, presents the 
research questions, and further explains the structure of this thesis. 

1.1 Background and motivations 

In the year 1959, Richard Feynman held his lecture There’s Plenty of Room at the 
Bottom [50]. In his lecture, he painted a picture of miniaturizations reaching into 
atomic scale, delving into nanoscale manufacturing. His lecture can be considered 
a starting point for the field of nanoscience, but this point has been contested [186]. 
One could argue that the field of nanoscience started to find the wind under its 
wings during the 1980s. The advent of the Scanning Tunneling Microscope (STM) 
in 1981 by Gerd Binnig and Heinrich Rohrer [13] (for which they got Nobel’s 
prize in 1986 [141]) can be considered to be a crucial enabling technology for 
nanoscience. The creation of STM also led to two other crucial tools in the field 
of nanotechnology, the Atomic Force Microscope (AFM) and Scanning Probe 
Microscope (SPM) [12, 92, 9]. Then, in 1986 came the book Engines of Creation: 
The Coming Era of Nanotechnology by Erik Drexler [44], which was the proper 
popularizer for nanotechnology according to research by Toumey [186]. 

Two now well-known discoveries gave the field popularizable results, which 
further cemented the interest towards nanoscience. They were Buckminsterfullerene [111] 
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FIGURE 1 The number of active journals of the top 79 journals in the field of Nanoscience 
and Nanotechnology, according to Scimago Journal & Country rank [118] 

and Carbon nanotubes [88]. Both were known before their physical structure was 
found. The years 1985 and 1991 are the years credited for the discovery of their 
physical structure. The year 1991 also saw another publication by Drexler et 
al. [43], Unbounding the Future: the Nanotechnology Revolution, which led to the 
term nanomedicine according to Bayda et al. [9]. The research on nanoscale car-
bon led to the creation of carbon dots (C-dots) in 2004 [203], which proved to 
hold various imaging, delivery applications, and others [9]. Later in 2017, Kin-
near et al. published their extensive study on the shape of nanoparticles in the 
context of nanomedicine, showing the importance nanoscience and nanotech-
nology has held for medicinal applications [105]. One way to contextualize the 
progress of nanoscience in recent years is to look at the number of journals that 
report nanoscience or nanotechnology as one of their subjects. If we take Scimago 
Lab [118] as a source and plot the number of journals covering nanoscience and 
-technology as a function of years, we get Figure 1. From the figure, we can see 
that the field of nanoscience took off during 2000–2010. 

Currently, nanoscience and -technology is a well-established field with re-
search marching on and applications and products finding their way into general 
availability. One area of study in the field of nanoscience is the study of mono-
layer protected clusters (MPC) (not to be confused with the machine learning 
term, cluster, or a computation cluster). MPCs have, according to Tsukuda and 
Häkkinen, been a target of interest for over four decades [187]. The field began 
with attempts at finding and observing them, trying to figure out where they 
came from. Later, synthesis became more understood, and new experimental and 
theoretical discoveries made strides in the field [187]. Tsukuda and Häkkinen also 
point out that the interesting part about metal nanoclusters is that their properties 
deviate significantly from their bulk material versions. The protected part into 
the metal nanoclusters came from a need to passivate the clusters to prevent them 
from congregating together [187]. 
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Returning to Feynman’s talk for a moment: 

If they (computers) had millions of times as many elements, they could make judge-
ments. They would have time to calculate what is the best way to make the calculation 
that they are about to make. They could select the method of analysis which, from their 
experience, is better than the one that we would give to them [50]. 

–Feynman, 1959 

We can see a hint on the second topic. The idea of a machine capable of making 
its own decision is by no means new. Science fiction authors have had a field day 
with the concept, probably for as long as science fiction has been a thing. However, 
in those cases, the topic is more accurately artificial intelligence instead of machine 
learning. The history of machine learning can be considered to begin in 1943 with 
the publication A logical calculus of the immanent in nervous activity by Pitts and 
McCulloch [130]. Although, one can make a claim that a simple linear regression is 
machine learning in a way that would take the beginnings of machine learning to 
a considerably earlier time in human history. In the article, A logical calculus of the 
immanent in nervous activity, Pitts and McCulloch lay the mathematical foundations 
for neural networks. The term machine learning was coined by A. Samuel in 1959 
(there are claims that the actual first time for the term was 1952, but no verifiable 
source for this was found) [169]. 

An important step was taken in 1965 by Ivakhnenko and Lapa, as they pub-
lished the first Multi layer perceptron and paved the way for deep learning later [90]. 
It was soon followed by the introduction of the nearest neighbor algorithm in 1967, 
which later led to pattern recognition [35]. The 1970’s saw backpropagation in 1970 
by Linnainmaa [125] and Neocognitron in 1980 by Fukushima [56]. The former 
led to automatic differentiation later on, and the latter led to neural networks. 
From there on out, an important step in reinforcement learning was made by 
Watkins in 1989 [195]. The 1990s saw the invention of the Support Vector Machine 
by Cortes and Vapnik [34] and an event which made the news, victory by Deep 
Blue against Gasparov in 1997 [28, 23]. A notable invention was published in 2001 
by Breiman, the Random Forest algorithm [16], utilizing work by Ho [74], Amid & 
Geman [5] and Ho [75, 48]. The history of machine learning kicked up a gear in 
the 2000s and 2010s, as the increasing computational capacity and the introduction 
of GPU computation allowed for increasingly complex and data-heavy models. 
Perhaps the most notable achievement was made by the company DeepMind 
Technologies, when their AlphaGo won against a professional human Go player 
Lee Sol in 2016 [179, 10]. 

The glue between these two, nanoscience and machine learning, is found in 
computational science. Computational science studies scientific matters through 
the design, application, and use of mathematical models [113]. The beginning 
of computational science can be traced to Los Alamos Scientific Laboratory in 
1945–1950 in the form of the Markov chain Monte Carlo computational method 
used in the research of nuclear weapons [132, 61, 113]. From there, it became 
a mainstay as the benefits of simulating an experiment, when possible, became 
apparent. Simulations are used, for instance, in modern car design. Previously if a 
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designer wished to optimize the air resistance of a vehicle, they had to construct 
either a scaled model or a full-sized model of the designed vehicle to test said air 
resistance. These days, the vehicle is first designed with computer-assisted design 
tools, and the virtual model is tested for air resistance in a simulated wind tunnel. 

In a similar fashion, we have nanoscience. Experiments can be done in a lab, 
where one usually needs a cleanroom, reagents, measurement devices, and compe-
tent people working in the lab. The problems arise when the required equipment 
and reagents are expensive (and potentially dangerous) with low expected yield. 
In these cases, it would be better to do the first exploration for potential outcomes 
computationally. The computational side can then function as a guide to the 
experimental side so more effective experiments can be made. On the theoretical 
side, computational experiments may be used to attempt to discover previously 
unknown interests, which, if found, could then be verified by experimenters in 
a lab. Of course, computational science requires expensive hardware, so it is 
not a free lunch either. The simulation of nanoscale events requires a calculator 
which functions as the ruleset of the simulation. A more accurate ruleset means 
more realistic simulation results, but this usually comes with the caveat that the 
more accurate the ruleset, the more computational power it takes. The driving 
forces behind this thesis are as follows: physically accurate calculations are com-
putationally expensive and time-consuming, and experimental research of hybrid 
nanoparticles requires expensive reagents and facilities. The project, which this 
thesis is based on aimed to develop a surrogate for DFT calculations or ML-based 
tools to be used in the computational research of hybrid nanoparticles to avoid 
both expensive calculations and experiments. 

1.2 Research questions 

This thesis was made as a part of two Academy of Finland-supported consortium 
projects: HNP-AI and MLNovCat [116, 143, 117]. The research questions follow the 
goals of the two projects. The goals are followed from the perspective of machine 
learning, emphasizing the methods and tools necessary for the realization of the 
project’s goals. The research questions of the dissertation are as follows: 

RQ1 How to improve distance-based machine learning methods, focusing on a) 
scalability and b) feature selection 

RQ2 How to utilize the distance-based machine learning methods for nanoscience 
applications a) as surrogate models and b) for knowledge discovery 

1.3 Structure of the thesis 

Chapter 2 provides an introduction to nanoscience, hybrid nanoparticles, and 
descriptors. Chapter 3 presents machine learning and the models used in the in-
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cluded articles. Chapter 4 contains a summary of the articles and the contributions 
given to the articles. Finally, Chapter 5 then concludes the thesis. Figure 2 presents 
a visualization of the research questions and their relation to the included articles. 

RQ1 
a 

b
RQ1 

RQ2 
a 

RQ2
b 

FIGURE 2 Visualization of how the included articles are related to the research questions 



2 NANOSCIENCE 

Nanoscience is the study of objects and phenomena at the nanoscale, which is in 
the scale of 10−9–10−8 meters. It is uniquely multidisciplinary as a nanoscientist 
can be expected to have at least some level of knowledge on physics, chemistry, 
and cell- and molecular biology [181]. The scale is important. Rules which apply 
in one scale do not necessarily apply in another scale. The nanoscale is special 
in the sense that the rules of atomic physics are in effect at the same time as the 
physics and chemistry of complex systems [181]. The ultimate goal of nanoscience 
could be said to be the ability to construct nanoscale objects atom by atom the way 
the builder sees fit while following the rules of physics and chemistry [50, 44]. In 
other words, something like the replicator from Star Trek. This chapter introduces 
the reader to the current status of the field and presents the topics of monolayer 
protected nanoclusters, computational nanoscience, and descriptors. 

2.1 Current nanoscience 

To look into the current nanoscience is to look at surprisingly numerous parts of 
modern life. Considering the widespread usage of nanoscience and nanotechnol-
ogy, it would go beyond the scope of this thesis to mention all possible areas. So 
instead, here are some highlighted ones. 

Nanolithography, which pertains to the patterning required for integrated 
chips or processors, has allowed engineers to develop smaller and more powerful 
chips, allowing consumer electronics to get smarter and more complicated [157, 
176]. The most penetrating outcome is the widespread usage of smartphones. In 
2021, Kemp estimated that 66, 6% of humans had a smartphone [102]. Smartphones 
have had significant cultural and societal impacts, which have been studied in, for 
example [81, 67, 18, 149, 4]. The increase in computational power has also allowed 
for the leaps and bounds taken on the computational and machine learning side 
(for more, see Section 2.3 and Chapter 3). 

Nanomedicine is one of the most important fields of application due to its 
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potential to ensure better lives. One of these is the improvement of anticancer 
methods. Terms such as nanoscale carriers, nanovectors, or nanovehicles have 
been used to describe designed molecules which can target themselves and either 
deliver a drug to where it is needed or perform other functions, such as early 
disease marker or as an aid in imaging techniques [177, 191, 174]. Another way 
is to use nanoparticles to make cancer cells vulnerable to immunotherapy [129]. 
Anticancer therapy is not the only area of application. Other examples of medical 
applications include tissue engineering with nanostructured scaffolds: improved 
bone regeneration speed [155] and neural tissue engineering [171], as well as a 
potential aid for inherited blindness [71]. 

Medical applications are just one of the examples of recent successes. A 
research team developed a protective layer for spacecraft, which can simulta-
neously shield the craft from UV radiation and atomic oxygen but also harvest 
energy [39]. Another team has studied the possibility of using carbon nanotubes 
as a component in energy storage mediums [137]. Computer technology may 
also see other avenues of carbon nanotube applications, such as carbon nanotube 
processors [178]. These CNT-based processors have reached 16-bit operation [72]. 
An exciting development has also been made in the form of Aquabots, which are 
said to be ultrasoft liquid robots able to adapt their shape for various tasks [210]. 
On a more general note, nanoscience and -technology have found their place, for 
example, in environmental science and technology [206], bioscience [62], food in-
dustry [168, 151], materials design [100, 188, 127], catalysis [25, 103], and everyday 
consumer products [197]. 

Three examples are also given closer to the topic of this thesis. A software 
named DNAxiS was developed by Fu et al. in 2022, which allows for the auto-
mated design of 3D DNA origami [55]. Self-assembly is a way to partially bypass 
nanoscale fabrication, and it is a property that DNA holds. The other two are ex-
amples of machine learning applied to nanoscience. The first is BOSS, which uses a 
Bayesian model with DFT calculations to determine optimized results from given 
building blocks [185]. The second is an example of the autonomous discovery of 
nanostructures using machine learning [41]. It uses Gaussian process regression 
method to determine the next step in their experimental loop automatically. These 
two examples show glimpses of the future of nanoscience and machine learning. 

2.2 Monolayer protected nanoclusters 

Monolayer protected nanoclusters (MPC) or hybrid nanoparticles (HNP) are 
nanoparticles with a metal core, which then have an outer layer protecting it, 
passivating them wholly or partially [187]. The reason protective layers are desired 
for the nanoparticles is that the metal core tends to be reactive, which complicates 
their experimental study [187]. 

Regarding this thesis, the special focus is on Au38(SC2H4Ph)24 (where C2H4Ph 
may be shortened to R), Au38 for short [158]. In other words, it is a gold atom 
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(a) Q isomer (b) T isomer 

FIGURE 3 The Q and T isomers of Au38(SCH3)24 

nanoparticle core protected by 24 thiolate ligands. Au38 has two experimentally 
discovered isomers, Au38Q discovered by Qian et al. in 2010 [158] (presented 
in Figure 3a) and Au38T discovered by Tian et al. in 2015 [183] (presented in 
Figure 3b). Au38Q is a prolate biicosahedral with quasi-D3h symmetry and Au38T 
has an oblate structure [97]. The synthesis of the two isomers is described in the 
respective papers. 

The created group of datasets in article PII and the simulation data in article 
PIV relied on work by Juarez-Mosqueda et al., who did ab initio molecular dynam-
ics simulations using Density Functional Theory (see Sec. 2.3) [97]. An important 
thing to note is that in the simulations performed by Juarez-Mosqueda et al., they 
replaced the thiolate ligands SC2H4Ph with computationally cheaper SCH3 which, 
through validation, proved to have affected the total energies by a range of −1.5 to 
2.0 eV [97]. The simulation data was later augmented by additional simulations by 
Antti Pihlajamäki and Sami Malola, mainly in high energies or special situations 
(see article PI). 

2.3 Computational nanoscience and -technology 

Due to this thesis having the combined topics of nanoscience and machine learning, 
a discussion on computational nanoscience is warranted. The focus will be on the 
topics present in the included articles. 

Neto divided computational nanoscience and -technology into five cate-
gories [139]: molecular modeling, nanodevices simulation, high-performance 
computing, nanoinformatics, and nanotechnology-inspired computing. Of these 
categories, Neto considered high-performance computing to be just a prerequi-
site, with the addition that nanotechnology-inspired computing held no actual 
examples. Neto considered nanoinformatics to be the computational support, 
information storage and processing, interpretation, manipulation, sharing, and 
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dissemination of data [139]. Then, nanodevice simulation was determined to be 
the simulation of specific nanoscale devices, such as LEDs or quantum dots, the 
function of which was described by mathematical equations. A type of simulation 
without simulating each individual atom. 

The molecular modelling category contains the topic of this thesis. It was 
further divided into four categories [139]: molecular mechanics, semi-empirical, 
quantum, and molecular dynamics. In a way, the split is between ways to calculate 
properties of time-independent structures (molecular mechanics, semi-empirical 
and quantum) and time-dependent simulations in the form of molecular dynamics. 

The time-independent categories can be classified by the mechanics that they 
use. By the categorization of Neto, molecular mechanics simulate molecules and 
nanostructures using classical physics. Considering how the laws of physics are 
very different in the macroscale and nanoscale, this category can be easily pointed 
out as the most inaccurate one. Semi-empirical category relies on parametriza-
tions and takes only the valence electrons into account. By only considering the 
valence electrons, semi-empirical methods gain accuracy compared to molecular 
mechanics without requiring too heavy computations. The last of the three is 
the quantum mechanics-based one. It produces the most accurate results but is 
computationally taxing as a tradeoff. The quantum-based solvers deal with the 
electronic structure of the target nanostructure in one way or another. Examples 
include the tight-binding approach, plane waves, and orbitals [192]. Probably the 
most well-known quantum mechanics-based calculator is the Density Functional 
Theory (DFT) [79, 108, 163]. DFT utilizes constructed potentials that act on the 
electronic structure and are also determined only by the geometry of the studied 
nanostructure [65]. One implementation for DFT calculations is given by the 
projector-augmented wave-based GPAW [46]. It is mentioned here since it is the 
calculator which was used in the molecular dynamics simulations with the Au38 

hybrid nanoparticle present in the articles PI, PII, PIII, and PIV. 
The time-dependent molecular dynamics category contains the simulations, 

which utilize a calculator to determine how each simulated component will move. 
Molecular dynamics simulations have been said to be one of the most fundamental 
tools of materials modeling [192]. The basic premise is that for each individual 
movable object, the next position and velocity are calculated based on where it is 
at the current timestep. Then when time advances in small steps, the simulated 
objects move according to the used calculator. The calculators range from the 
simple Lennard-Jones potential [94, 93, 123] to the quantum-based DFT. 

Another application, besides the study of properties and molecular dynamics 
simulations, is found in local and global structural optimization. In these cases, 
a structural optimization algorithm, for example, Monte Carlo [132, 110, 61] or  
Genetic Algorithms [80, 53], is utilized with the addition of using either time-
independent methods, time-dependent methods, or a combination of both. 

As a final mention to the topic of computational nanoscience and -technology 
is the topic of this thesis, machine learning. The utilization of machine learning 
in nanoscience is still a relatively new concept, so all possible ways to apply ML 
in nanoscience have yet to be seen. However, several pathways have already 
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been taken. One pathway aims to use ML models as surrogates in the place of 
computationally heavy quantum-based calculators, such as DFT. The included 
article PI is an example of this. A second pathway is utilizing ML models in exper-
imental guidance and materials discovery, as in [185] and [41]. Then there is the 
ML utilization in knowledge discovery, like in article PIV. And many others [17]. 

2.4 Feature extraction using descriptors 

In the context of MPCs, the task of a descriptor is to translate information from 
simulation format into machine learning understandable format. Usually, the 
simulation format is a .xyz-file, where each individual atom is listed in order. The 
minimal amount of relevant information is the atomic number and the coordinates 
in 3D space. This format is machine learning compatible as it is. But not completely. 
In the ”eyes” of a machine learning model, the order the atoms are listed in 
becomes part of the information. The problem is that the specific order of the 
atoms in a list is not physical or chemical information, so it is something the 
machine learning model should not have. The task of a descriptor is to perform 
feature extraction, i.e., to translate the atomic number and 3D coordinates so that 
the outcome has only relevant physical and chemical information. It should be 
chosen carefully, as the descriptor is a crucial component in the prediction ability 
of the utilized ML method [207]. Himanen et al. listed the properties of an ideal 
descriptor: invariant to translation and rotation, invariant to the order of the atoms, 
unique, continuous, compact, and computationally cheap [73]. 

2.4.1 Types of descriptors 

There are two types of descriptors, local and global. Local descriptors describe the 
environment of a single atom, and global descriptors describe all present atoms 
at once, i.e., the whole molecule or the entire nanoparticle. Some descriptors are 
presented here. As these descriptors were not used in the included papers, they 
are left at textual description. 

Coulomb matrix: represents molecules by using atomic energies and the inter-
nuclear Coulomb repulsion operator to form the Coulomb matrix [164]. The 
issue with the Coulomb matrix is that it cannot represent periodic struc-
tures [47] 

Ewald sum matrix: is an extension to the Coulomb matrix, which allows for 
periodic structures to be described [47]. 

Sine matrix: is a simplified version of the Ewald sum matrix. In it, the long-
range electrostatic interaction is replaced with a simpler-to-compute expres-
sion [47]. 

Atom-centered Symmetry Functions: (ACSF) describe the environment of a sin-
gle atom by the use of symmetry functions, five of which were presented in 
the paper which proposed ACSF [11]. 
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Smooth Overlap of Atomic Positions: (SOAP) is a local descriptor for the envi-
ronment of a single atom, using radial basis functions and spherical harmon-
ics [8]. 

Valle-Oganov descriptor: is a descriptor specifically designed for periodic crys-
tal structures, going through all atoms in defined unit-cells using a two-body 
correlation function [189]. 

Property-labelled Materials Fragments: (PLMF) is designed for crystal struc-
tures, and it is based on describing a crystal structure as a set of characterized 
subgraphs [89]. 

Classical Force-Field-Inspired Descriptors: (CFID) is a combined set of radial 
distribution functions, nearest-neighbor distribution, angle distributions, 
dihedral distributions as well as a set of chemical descriptors [32]. 

The included articles PII, PIV focused on the usage of a global descriptor, Many-
body tensor representation (MBTR), which will be discussed separately next in 
Section 2.4.2. 

2.4.2 Many-body Tensor Representation 

Many-body tensor representation (MBTR) is a global descriptor for molecules and 
nanostructures developed by Huo and Rupp originally in 2017 as an arXiv paper, 
republished later in Machine Learning: Science and Technology, 2022 [85]. It has been 
implemented as a part of the Dscribe-package for Python by Himanen et al. [73]. 
MBTR primarily functions by constructing density distributions, which allows 
it to be permutation, translation, and rotation invariant. The included article PII 
touched on MBTR, and it was further detailed in article PIV, the expression there 
is mostly repeated here. 

The implementation by Himanen et al. has three types of description avail-
able: ”k1”, ”k2”, and ”k3” [73, 85]. Of the three available descriptions, the first is 
k1, or the number of elements in the described nanostructure. More specifically, it 
is FZ1 (x) which reads as follows:1 

|Z1| 
lFZ1 (x) =  w1Dl x), (1)1 ∑ 1( 

l 

where 

(x−g1(Zl ))
2 

2σ2D1 
l (x) =  √ 

1 
e 
− 

1 , (2)
σ1 2π 

g1(Zl) = Zl, the atomic number. (3) 

In Eq. (1), x is the input for the formed distribution. The number of elements 
in an array is used to store the distribution of the number of elements in the 
nanostructure. Z1 refers to the atomic number, w1 

l is the weighting function, and 
σ1 is the standard deviation of the gaussian kernel [73, 85]. The sum in Eq. (1) 
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goes over all atoms of a type present in the described nanostructure. As Eq. (1) 
is basically ”count the number of atoms of each type”, the parameter σ1 with the 
Eq. (2) is important. If a nanostructure has no changes in the number of atoms, 
Eq. (2) allows k1 to produce a smooth descriptor. 

The second available description, k2, processes the distances between each 
present atom and then forms distributions from the distances. In other words: 

|Z1| |Z2| 

where 

(x−g2(Rl ,Rm))2 

1 − 
Dl,m 2σ2 

(x) =  √ e 2 , (5) 

∑ 
l m 

2 
σ2 2π 

1

∑ 

g2(Rl, Rm) =  . (6)|Rl − Rm| 
The main difference from k1 is adding another sum term over the atomic number 

FZ1,Z2Z2. in Eq. (4) goes through all atoms of two elements in order to form a2 
l,mdistance distribution. w2 and σ2 hold the same function as they held with k1. 

The distance measure |Rl − Rm| is calculated between each individual atom pair, 
as defined by the sum in Eq. (4). As the inverse distance was used in articles PII 
and PIV, the distance measure in Eq. (6) is also the inverse version. 

The third description, k3, adds one more atomic number as a variable and 
then uses the three observed atoms simultaneously to form an angle distribution. 
The form is similar to k1 and k2: 

FZ1,Z2 
2 

l,mDl,m(x), (4)2 2(x) =  w 

∑∑∑
|Z1| |Z2| |Z3| 

l m n 

where 

FZ1,Z2,Z3 
3 wl,m,nDl,m,n 

3 3 (x), (7)(x) =  

(x−g3(Rl ,Rm ,Rn))2 

1 − 
Dl,m,n 2σ2 

(x) =  √ e 3 , (8)3 
σ3 2π 

g3(Rl, Rm, Rn) = cos ∠ (Rl − Rm, Rn − Rm) . (9) 

As can be seen from Eq. (9), each observed group of three atoms produces a vector 
angle. Going through all atoms of each three types then forms a distribution. The 

l,m,nweighting function w and standard deviation σ3 keep their meaning from k13 
and k2. 

The outcome of MBTR with all three k1, k2, and k3 is visualized for clarity 
in Figure 4 for Benzene (from article PIV). The distribution curve in Figure 4 is the 
mean calculated from the MBTR descriptors of each simulation step present in the 
source dataset. The molecular dynamics dataset used in the creation of the figure 
was published by Chmiela et al. and is available as a part of Symmetric Gradient 
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FIGURE 4 Example of an MBTR descriptor (k1+k2+k3) for Benzene. Each individual 
atomic interaction is labeled and given dashed vertical lines as borders. The 
first two, #H and #C represent k1, the second three (H-H, H-C, and C-C) 
represent k2, and the remaining interactions represent k3. 

Domain Machine Learning (sGDML) datasets [29]. As can be seen in Figure 4, the 
descriptor forms distribution peaks according to the geometry of the described 
atomic structure. 

In the cases where the described nanostructure has no changes in the number 
of atoms, k1 is always unnecessary. However, should one wish to use a single 
MBTR object to describe multiple nanostructures, k1 would be almost mandatory. 
Due to how k2 and k3 capture the information of the described nanostructure, 
either one could be used to reconstruct the original geometry with a suitable 
autodecoder. 



3 MACHINE LEARNING 

Machine learning research is the study of computer programs that can improve 
themselves with additional data in relation to a task and the study of the related 
statistical-computational-information-theoric laws [95]. The goal of machine learn-
ing research could be said to be the creation of a universal approximator. This 
chapter introduces the reader to the current status of the field, presents a discus-
sion on the differences between artificial intelligence and machine learning, and 
discusses the machine learning methods used in the included articles. 

3.1 Current machine learning 

Looking at the field of machine learning in January 2023, the most significant 
thing at the moment are diffusion-based–models and text transformers. In a 
surprisingly short time, these have formed into, at times, scarily good text-to-
image generators. Two examples of this are Dall-E and Midjourney [159, 134]. The 
latter of which entered into controversial waters by winning an art contest against 
human artists [162]. A second example of current machine learning ability is the 
ChatGPT, a conversational model [146]. ChatGPT has the ability to ”remember” the 
conversation it has had with a user and return to it should a need arise. It should 
be noted that ChatGPT is not able to pass the Turing test. For instance, ChatGPT 
has claimed that giraffes have long necks so that they may eat fish (the question 
was asked in Finnish). It is, however, able to write small programs and summarize 
encyclopedia entries. One of the well-known applications of machine learning 
methods are video and board games. The board game Diplomacy, characterized 
by conversations and deal-makings between players, saw an ML model with the 
capacity to not only play the discussion-based board game but even to win it [109]. 
Before this, there were specialized models for Go [179], Dota 2 [145], and Starcraft 
2 [194]. These three learned by playing against themselves in order to accumulate 
levels of experience that would not have been possible vs. a human. 

A discussion regarding the current state of machine learning is not com-
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plete without the mention of self-driving cars. The concept is attractive to some. 
Since wouldn’t it be nice if the work commute did not actually require attention? 
However, as of this writing and to the best knowledge of the author of this thesis, 
the idea of a fully self-driving car has not been achieved yet. This has also been 
reported by Zhao et al. in 2018 [209] and, more recently, Badue et al. in 2021 [6]. 
DARPA has organized competitions for self-driving cars. However, even when the 
competitions saw finalists, the competition environments could not replicate the 
potential chaos that a typical morning commute might be [6]. Lechner et al. [121] 
have recently shown a Neural Network model with improved autonomous driv-
ing ability using encapsulated input features. It may hold a new beginning for 
self-driving cars. For a look into the theoretical side of machine learning and as 
an example of the innovation the field sees, researchers have recently proposed 
a concept of liquid time-constant networks [69, 68, 138]. These types of neural 
networks have improved time-series prediction ability and adaptability. In tradi-
tional neural networks, the connection between neurons can be expressed as the 
weight coefficient between them. In these liquid neural networks, the connection 
is probabilistic and closer to nonlinear [138]. 

On a final note on current machine learning, is the way the advertising works 
with it [175, 1]. And that is personal data collection, personal data monetization, 
and related data mining. Social media, smart devices, websites, and even bill-
boards can collect data. Data such as: ”what did you look at”, ”when did you look 
at it”, ”where you looked at it”, ”how you looked at it” and ”what else in addition 
did you look at” [156, 31]. And many others. This data is collected from each 
user every time they interact with a collection-capable entity. As there are many 
humans, it is understandably impossible to process this mass of data manually. 
So the processing is automated, and the automation is usually combined with 
machine learning for further ends. The usual further end is to decide what kind of 
adverts to show to a user in order to maximize advertiser profit. 

3.2 AI vs. Machine Learning 

An important topic of discussion is the distinction between AI and machine 
learning. Artificial intelligence (a term coined at least as early as 1956 in the 
Darthmouth workshop [165, p.36]) is a popular term. In fiction, it mainly refers to 
a sentience with digital existence. In popular media, it is used interchangeably with 
machine learning and the version in fiction. According to work by Samoili et al., 
the definition of AI is an ongoing topic, dependent on the presented context [33]. 
Samoili et al. listed the commonly found features in AI definitions, and they are 
as follows [33]: 

– Perception of environment. 
– Information processing. 
– Decision making. 
– Achievement of specific goals. 
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These features tell us that for something to be considered an AI, it has to have 
some level of autonomy in how it achieves the goals given to it. Let us then look at 
the definition of machine learning. A relatively recent definition for it was given 
by Mitchell: 

A computer program is said to learn from experience E with respect to some task T and 
some performance measure P, if its performance in T, as measured by P, improves with 
experience E [135]. 

–Mitchell, 1997 

In other words, a computer program that gets better at a task according to a metric 
should the program be given more data to work on. 

A distinction between AI and ML can be made based on the definitions. A 
ML model is task-specific, it is given the data it needs to work with, and it is told 
to do the task it is given. An AI, on the other hand, by the common features of the 
definition, would not be limited to an operated, task-specific tool. A conglomerate 
of ML models could form it. An AI may appear as a machine learning model, 
should it be given such a task. It may appear as a sophisticated, almost automatic 
one but it does contain the necessary components needed for functioning as a 
machine learning model. 

If we approach the topic from the other direction, could a single ML model 
appear to be an AI? The answer would be maybe it can if the given task T is 
”appear to be an AI in a given context C”. It would be necessary to give the ML 
model all the data it needs to create a model which appears to be generalized like 
an AI. In this case, all the needed data refers to all expected environments, all 
expected information in said environments, every expected decision, and every 
expected outcome. In practicality, a single ML model with that level of exorbitant 
information is impractical. One could reasonably expect the accuracy of the model 
to be on the abysmal side. 

On the other hand, should the context C be well-defined in a limited scope? 
There should not be a reason why a ML model could not appear to be an AI. 
And maybe computational capacity increases to the point where the context C no 
longer needs to be that tightly limited. 

In conclusion, should the context be chosen properly, an AI may appear as 
a machine learning model, and a machine learning model may appear as an AI. 
However, by definition, an AI is not a necessary component of a machine learning 
model, whereas a machine learning model is (most likely) a necessary component 
of an AI. Therefore, machine learning is a subset of artificial intelligence. The 
statement of machine learning being a subset of AI is backed by numerous sources, 
for example [101, 21, 133, 142]. 

3.3 Feature selection 

As the included articles PIII and PIV both dealt with feature selection, it would 
be prudent to discuss the topic here. In machine learning, there is the term Curse 
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of dimensionality. The term pertains to several encountered phenomena as the 
dimension of data increases [193]. The most intuitively understood effect is that as 
the dimension increases, the required number of samples increases exponentially, 
should one wish to maintain a constant data sampling density. From the point of 
view of ML, the increasing number of observations (samples) or features or both 
causes increasing requirements in the learning task. It is a situation where feature 
selection may be employed. 

The goal of feature selection is to reduce the dimension of the data in such a 
way that the accuracy of a machine learning model does not suffer in a meaningful 
manner [126, 59]. It should be noted that the literature regarding feature selection 
emphasizes classification problems, leaving feature selection in regression a less re-
searched topic (see article PIII). The features in feature selection can be categorized 
by their relevance to the task. The definitions were given by Kohavi and John [107]: 
A feature is strongly relevant if its removal will result in the deterioration of ML 
model performance. A weakly relevant feature is not strongly relevant, but it may 
contribute to the accuracy of the model in some contexts. Furthermore, should 
a feature be neither strongly nor weakly relevant, it is categorized as irrelevant. 
Features can also be of different types. The main differences are between binary 
features, integer features, and continuous features. Each has its type of effect 
on the process of feature selection. Another point lies in the distribution of the 
values that a feature has. The data source can be basically anything, so one cannot 
assume that the data is, for example, normally distributed. Discussion by Gyuon 
and Elisseeff [59] also points out that features can also be relevant in the presence 
of other features while being irrelevant on their own. 

Feature selection algorithms can be given four categories based on how they 
utilize the ML model. Filters, wrappers, hybrids and embedded [59, 84, 112]: 

– In the filter approach, a learning algorithm independent feature evaluation 
measure is used. Example evaluation measures include Spearman R [200], 
Mutual Information [45], and Fisher-score [49]. 

– The wrapper approach then specifically uses a learning algorithm in its 
evaluation methods. Examples include greedy RLS [147], Quantum Whale 
Optimization Algorithm for Feature Selection [2], one-shot wrapper (see article 
PIII), and Feature Importance Detector (see article PIV). 

– Hybrid feature selection is a combination of a filter and a wrapper, typically 
using a filter to reduce the workload of the wrapper. Examples include smart 
HGP-FS [136], Ensemble Information Theory based binary Butterfly Optimization 
Algorithm [166], and Dynamic Feature Importance based Feature Selection [196]. 

– The embedded approach uses independent measures to build feature subsets 
of different cardinalities, using the learning algorithm to do the final selection 
form among the generated feature subsets. Examples include Recursive 
Feature Addition [64], ESFS [202], and ODEFS [27]. 

Another way to categorize feature selection algorithms is to go by the type of 
data or domain they are designed for. These are categories such as data type-
based FS [124], optimization-based FS [40], application domain targeted FS [122] 
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and FS for multi-label classification [99]. Data type-based examples include con-
ventional data, structured features, heterogenous data, and streaming data [124]. 
Optimization-based examples include evolutionary methods for single or multiob-
jective tasks and swarm intelligence-based methods [40, 140, 36]. There are more 
potential application domains that can be reasonably listed, but examples include 
renewable energy [167] and multimedia [122]. Multi-label FS is then feature selec-
tion, but the added labels force the inclusion of methodologies from multiobjective 
optimization [42, 99, 154]. 

The final presented way to categorize feature selection algorithms is by the 
search strategy they employ. These are sequential, exhaustive, exponential and 
random [112, 99]. Sequential search is iterative, feature by feature. Either additive 
or deductive. Exhaustive search goes through all possible states of the search 
space and can therefore guarantee the best possible solution. Exponential search 
strategies then aim to do what exhaustive search does while reducing the search 
space utilizing a suitable strategy. And finally, random search either bases itself 
on randomness or utilizes randomness as a part of another search strategy. 

3.4 Machine learning methods 

This section focuses on the machine learning methods used in the included articles. 
Throughout the history of machine learning, there have been numerous different 
ways to realize the concept of a trainable model that is then able to utilize what 
was learned. The most commonly known one is based on how the human brain 
works, imitating it to a degree as a neural network. As the distance-based models 
were the main focus with the added comparisons to neural networks, they are 
the primary focus here. There are three main ways in which a machine learning 
method may learn [165]: 

Supervised: The ML model is given a set of inputs and the corresponding set of 
outputs. The task is to form an approximator that is able to map the input 
to the outputs in a way that new inputs may be given for new outputs. An 
example of this would be a set of handwritten numbers, the task of having 
the ML model recognize the written number. 

Unsupervised: The ML model is given a set of data from which the model has to 
learn patterns on its own. An example of this would be a ML model tasked 
to find which data points in a dataset belong together (clustering). 

Reinforcement: The ML model is given knowledge on how well it did in a task, 
good or bad. The model is then responsible for updating itself in order to 
maximize its desired outcome. An example of this is a model set to play a 
game. Victory means it did well and loss the opposite. 
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3.4.1 Distance-based machine learning methods 

Distance-based methods construct a model where dissimilarity of the observations 
of data are in one way or another exploited [51, Ch. 8]. The distance is used to 
differentiate observations from each other and when predicting from previously 
unseen inputs [198, 51]. Two distance-based models are further elaborated here, 
Minimal Learning Machine (MLM) and Extreme Minimal Learning Machine 
(EMLM). Minimal Learning Machine (MLM) is a distance-based feature map 
machine learning method developed by de Souza et al. [38, 37] and it has been 
shown to have universal approximation capability [86]. It was primarily used 
in the included articles PI and PII. MLM is presented as in article PII, and the 
expression there is mostly reworded here. 

The task of MLM is to estimate a continuous mapping f : X → Y, given input 
N NX = {xi} 1|xi ∈ RD and output Y = {yi} 1|yi ∈ RS , with the multiresponse i= i= 

model 

Y = f (X) + R, (10) 

making it a supervised machine learning method [37]. The training of MLM 
begins by first selecting reference points from the data. The reference points are 

K Kdefined as R = {rk} 1 ⊆ X and T = {tk} 1 ⊆ Y where K ≤ N is the number k= k= 
of selected reference points. A good practice is to select reference points that 
are as different from each other as possible [86]. The selected reference points 
are used to form the distance matrices, Dx(i, k) =  xi − rk 2, Dx ∈ RN×K and 
Dy(i, k) =  yi − tk 2, Dy ∈ RN×K . It should be pointed out that the  ·  2 norm 
can be replaced with other dissimilarity measures [37]. The L2 norm  ·  2 was 
used in the article PII. 

These distance matrices then form the core of the MLM [37], by allowing 
linear mapping to be recovered from 

� �−1 
B = Dx Dx Dx Dy. (11) 

Another thing to be pointed out is that should K = N, then no reference point 
selection is necessary and B becomes 

B = D−1Dy. (12)x 

Once the coefficient matrix B has been obtained, the learning part of MLM has 
ended and it can then be used to predict new outputs through solving a multilat-
eration problem [37]: 

K � �22 − δ2J (ỹ ) = ∑ ỹ − ti , (13)i 
i=1 � � 

where δ = x̃ − r1 
2, · · ·  , x̃ − rK 

2 B. 
A point that was important in article PII, that will also be pointed out here 

is that due to Eq. (11), the number of features does not have an effect on the 
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dimensions of the distance matrices of MLM. This makes MLM capable of handling 
large numbers of features and large target dimensions without scaling issues. 

In the same family of machine learning methods as MLM is the Extreme 
Minimal Learning Machine (EMLM) first proposed by Kärkkäinen in 2018 [114, 
115]. It was primarily used in the included articles PIII and PIV as a part of the 
Mean Absolute Sensitivity (MAS, presented in article PIII) based feature ranking 
algorithm. Like MLM, EMLM is a distance-based supervised machine learning 
method with only one hyperparameter, the number of reference points. Also, like 
MLM, EMLM has been shown to have universal approximation capability [115, 
Remark 1]. The expression of EMLM found in article PIII is mostly repeated here. 

EMLM shares its task with MLM and also begins with the selection of refer-
K Nence points R = {rk}k=1 ⊆ X from input data X = {xi}i=1|xi ∈ Rn×N . The output 

Ndata is Y = {yi}i=1|yi ∈ Rp×N . The selected reference points are then used to 
form the distance matrix H ∈ Rm×N: 

(H)ij = ri − xj 2, i = 1,  . . . ,  m; j = 1, . . . , N. (14) 

While MLM has two distance matrices, EMLM has only one. The distance regres-
sion weights W ∈ Rp×m which are the goal of the training of the EMLM, are then 
solved from [115]: �   

αN
W HH + I = YH . (15)

m 

Once W has been computed, the model can be used to predict new outputs ỹ with 
unseen inputs x̃ using 

ỹ = WH̃ , (16) � 
where H̃ 

i1 = ri − x̃ 2, i = 1, . . . , m. 

3.4.2 Other machine learning methods 

The distance-based MLM and EMLM were not the only ML methods used in the 
articles. The other ML methods present in the articles are discussed here. It should 
be noted that the ML methods presented here do not represent all potential ML 
model structures. 

Neural Networks (NN) are a type of ML models that simulate a biological 
brain with a collection of activation functions, or neurons, which are organized in 
layers where each neuron is linked to each neuron of adjacent layers (in the case 
of deep neural networks) [82, 172]. Feedforward neural networks (FNN) were the 
primary comparison to MLM and EMLM, and FNNs were used in the included 
articles PII and PIII. FNNs were, however, not discussed in detail as they were 
added to the papers due to reviewer demands. The FNNs will be discussed more 
here. They are among the simplest forms of a neural network in the way that the 
connections between nodes travel only in one direction, as an acyclic graph [172]. 
In a FNN, the first layer is the input layer of a size N0, which is also the number of 
features present in the input. The input layer is followed by k ≥ 1 hidden layers. 
The size of each hidden layer is determined by the user and the task at hand. The 
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hidden layers are then followed by the output layer, which has Nk nodes in it. The 
nodes in a feedforward neural network determine the way it functions and the 
way the network handles its inputs. Each node calculates the weighted sum of the 
outputs of the previous layer through a network function [161]. The outcome of 
the activation function is then passed onto the neurons of the next layer. A typical 
value for Nk would be 1 in a regression task, the number of dimensions in the 
output. That is not the case in multi-target regression or classification. 

The teaching of a neural network is done by minimizing a cost function, 
which in turn is done by adjusting the weights between the neurons of the net-
work. The teaching is typically done using ADAM, a method for stochastic op-
timization [104]. The training has to be done meticulously, as neural networks 
are prone to overfitting [26]. The FNNs in the included articles were of a simple 
form, a shallow one with one neuron layer and a deep one with three hidden 
layers. One could say that two networks like that do not represent neural networks 
as a whole. And they would be correct. The so-called FNN-2 and FNN-4 were 
chosen to have the same ”user experience” as the compared MLM and EMLM (see 
Sec. 3.4.1) would have. It meant that their network configuration was based on 
a simple feature number-based heuristic, and their hyperparameters were left at 
their implementation default values. 

In addition to the primary comparison FNN, article PIII used the following 
concisely presented ML methods as a comparison. 

Decision tree: A method that employs a divide and conquer strategy to divide 
the given data into a set of attribute nodes, which then have leaves containing 
the next attribute node or result node [180, 24, 165]. One way to describe a 
decision tree is a strategically formed set of if-else questions. Decision trees 
are commonly used in classification, but they can also be used for regression 
tasks. 

Random forest: An ensemble type machine learning method; it is a collection of 
randomly initialized decision trees which together form the final answer [74, 
16]. Each tree in the forest is given a random part of the dataset to learn, 
and high enough numbers of trees have guaranteed levels of accuracy [16]. 
Breiman also mathematically showed how random forests do not overfit. 

Support Vector Machine: Proposed by Vapnik and colleagues in the early 1990’s [15, 
34]. It is a supervised machine learning method that nonlinearly maps input 
vectors to a high-dimension feature space, where a linear decision surface 
is constructed [34]. Hearst presented the form that SVM takes in regression 
tasks [70]: 

l 
f (x) =  ∑ vi · k(xi, x) + b, (17) 

i=1 

where k(xi, x) represents the used kernel, vi are weights and b is the bias 
vector. 

Lasso regression: A linear model first proposed by Santosi et al. in 1986 and 
later independently rediscovered by Tibshirani in 1996 [170, 184]. The name 
comes from the latter publication. Tibshirani put the function of the Lasso 
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regression in this manner: ”Lasso minimizes the residual sum of squares 
subject to the sum of the absolute value of the coefficients being less than a 
constant” [184]. More formally, the objective of Lasso is to solve the estimate 
(α̂, β̂) [184]: 

N 

(α̂, β̂) = arg min ∑ yi − α − ∑ β jxij , (18) 
i=1 j 

with subject to � � 
∑ � �β j ≤ t. (19) 

j 

In (18), N is the number of observations, yi are the targets, α is the constant 
coefficient, and β̂ is the coefficient vector. 

Ridge regression: Named by Hoerl et al. in 1970, originates from ridge analysis, 
also by Hoerl from 1959 [77, 78]. Ridge regression adds a small positive 
quantity to the diagonals of X X matrix product in order to ensure that all 
solutions can be obtained [77]. The formal version of ridge regression is [131]: 

β̂(k) = (X X + kI)−1X Y, k ≥ 0, (20) 

where X is the input data, k is the ridge parameter and Y are the targets of 
the dataset. 

3.4.3 On the evaluation of methods 

In optimization, one uses a ”fitness function” to measure the ”goodness”, the state 
of the optimization. In ML, the model accuracy holds a similar function. The 
precise way the accuracy of a ML method can be measured depends on the type 
of ML and the type of task at hand. As the included articles PI, PII, PIII, and PIV 
all dealt only with supervised learning regression tasks, it will be the focus here. 
Evaluation metrics for unsupervised learning are, for example, discussed in [148] 
and for reinforcement learning in [96, 120]. 

There are two types of tasks in supervised learning, classification (for categor-
ical targets) and regression (for continuous targets) [19]. An evaluation metric that 
works for one does not necessarily work for the other. Metrics for classification are 
discussed, for example, in [20, 83]. Formally, the task of an evaluation metric is to 
measure how much a predicted output Y∗ is different from the actual target Y [3]. 
Three such metrics are presented here. Do note that these are not the only three, 
as, for example, the Scikit-learn library [152] for Python [190] by itself provides 15 
regression task metrics. The first of the three is: 

Mean Absolute Error: (MAE) [199], which is defined as 

N1
MAE = ∑ |Y∗ 

i − Yi| , (21)
N i=1 

where N is the number of observations, Yi 
∗ the i:th predicted output and Yi 

the i:th desired output. The second of the three is: 
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Mean Square Error: (MSE) [83], which is defined as 

N1 
(Y∗ 

i − Yi)
2 , (22)∑MSE = 

N i=1 

where N, Y∗ and Yi are the same as with MAE in Eq. (21). The final of the i 
three, and the one used in the included articles PI, PII, PIII, and PIV is: 

Root Mean Square Error: (RSME) [7], which is defined as 

� � 
N� 1
∑(Y∗ − Y)2, (23)RMSE = � 

N i=1 

where N, Y∗ and Yi are the same as with MAE in Eq. (21). i 

RMSE is widely used in regression tasks [20]. Willmott and Matsura discussed the 
differences between the three in [199, Table 1] (MAE requires one’s own addition of 
the mean-part into the numbers for ∑ |ei|2). The conclusion Willmott and Matsura 
reach in their paper is that MAE is superior to RMSE. However, this point has been 
contested by Chai and Draxler [22], with discussion continued in [76] and [98]. 
Hodson points out in [76] that the discussion of RMSE vs. MAE has been going 
on for 200 years. Hodson also points out that the discussion is pointless due to 
both RMSE and MAE having their strengths and weaknesses. Time will tell if a 
consensus is reached one day. 

The use of metrics like RMSE is only one part of the evaluation of a ML 
method. An example for another part would be k-fold cross validation [106], 
utilized in articles PII, PIII, and PIV. The premise of k-fold cross-validation is 
that the utilized dataset is split into mutually exclusive k-folds [106]. These folds 
are then used as two groups, training dataset, and testing dataset [66, 165], by 
sequentially using one of the folds as a testing dataset while the others function 
as a training dataset. The test dataset is used to create test error by attempting 
to predict it with the model created using the training dataset. In model selection, 
the fold configuration which produced the best test error is selected as the result 
model [208]. Cross-validation may be used to evaluate the generalizability of the 
trained ML model, in which case the individual fold errors are combined and used 
as one (i.e., average) [204]. Additionally, before cross-validation is performed, a 
part may be taken aside from the available data to be used as a validation dataset. 
The validation dataset is used as the final check on the success of a ML model, and 
similarily to test error, it is used to produce validation error [204, 165]. Note that in 
the literature, the use of the terms test and validation is not consistent. Others call 
the final check test, and others call it validation. There is at least one more way to 
utilize cross-validation, and that is in hyperparameter optimization. It is due to the 
generalization estimate, which can be measured using cross-validation. Usually, 
methods such as Neural Networks require careful hyperparameter optimization 
to maximize their potential [205]. A point that was repeated in the articles PII 
and PIII is that MLM and EMLM are both single hyperparameter methods (the 
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number of features), thus in their case, allowing cross-validation to be used solely 
for the evaluation of generalizability. 

On the topic of datasets, they can also be used in evaluating the performance 
of a ML method. The source of the content in a dataset is its own variable. With 
synthetic datasets, the source is the creator. It allows for purposeful design, 
which allows the dataset to test a specific capability of a ML method. From the 
point of view of feature selection, a synthetic dataset also lets one know exactly 
which features should be selected. There is no guarantee that the same can 
be said for datasets constructed from real-world data. In literature, the typical 
examples are benchmark datasets. The primary function of a benchmark is to 
provide a reference point to be used. In this aspect, benchmark datasets have been 
created [144, 57, 14, 153, 128] and used [54, 201, 60, 58, 119]. In addition to literacy 
on the topic, the included articles PII and PIII both contained datasets made for 
benchmarking and the development of further ML methods. More specifically, in 
article PII, a set of datasets intended for evaluating the effects of scaling on a ML 
method was published, and in article PIII, a set of synthetic, purpose-designed 
datasets were published. The datasets in both articles were also used to compare 
ML methods to each other. 



4 SUMMARY OF ARTICLES AND RESEARCH 
CONTRIBUTION 

In this chapter, the included articles are discussed, and the contributions of the 
author of the thesis are presented. In addition, this chapter presents the contribu-
tions of the included articles as a whole. Even though the main topic of this thesis 
is nanoscience and machine learning, the main topic of the included articles is on 
the machine learning side. 

4.1 PI: Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Us-
ing Distance-Based Machine Learning Methods 

Pihlajamäki, A; Hämäläinen, J; Linja, J; Nieminen, P; Malola, S; Kärkkäinen, 
T; Häkkinen, H. Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using 
Distance-Based Machine Learning Methods Journal Physical Chemistry A. 2020, 124, 
4827–4836. 
DOI:10.1021/acs.jpca.0c01512 

Research aims The aim was to apply distance-based machine learning methods 
with Monte Carlo simulations to show the effectiveness of distance-based machine 
learning methods in the function of a surrogate model in computing potential 
energy. 

Data and methods Simulation data of Au38(SCH3)24 Q and T isomers between 
400 and 1200 K, generated by Juarez-Mosqueda et al. [97], was used in conjunc-
tion with MBTR to form training data for the distance-based machine learning 
method. In the process of the study, the source data was extended with additional 
molecular dynamics simulations in order to combat found unrealistic results. 

MLM and EMLM models were then used to predict potential energies of the 
Au38(SCH3)24 nanocluster in Monte Carlo simulations. The results were analyzed 
and validated. 
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Main results The article shows that distance-based ML models EMLM and MLM 
are able to function as DFT surrogate models given a suitable training dataset, 
allowing the potential energy surface exploration to be run with several orders of 
magnitude shorter CPU time as would have been needed with DFT. Additionally, 
the article shows that Monte Carlo is an efficient potential energy landscape explo-
ration strategy. 

Research contributions The article shows the viability of MLM and EMLM as 
DFT surrogates and presents a comparison of results between the distance-based 
models and DFT. The article also shows the viability of utilizing Monte Carlo 
search strategy in combination with ML methods. 

Author’s contributions The author mainly contributed to the background work, 
setup of the research environment, and setup of the programming side. 

4.2 PII: Do Randomized Algorithms Improve the Efficiency of Min-
imal Learning Machine? 

Linja, J; Hämäläinen, J; Nieminen, P; Kärkkäinen, T. Do Randomized Algorithms 
Improve the Efficiency of Minimal Learning Machine? Mach. Learn. Knowl. Extr. 
2020, 2, 533–557. DOI:10.3390/make2040029 

Research aims The main point of article PII was to experiment on a randomized 
SVD solver with the goal of achieving a speedup in the learning process of Minimal 
Learning Machine. In addition, a comparison between MLM and a shallow as well 
as a deep feedforward neural network was made while studying the effect of scale 
on the function of each machine learning method. 

Data and methods Six of the used datasets were mostly well-known and publically 
available machine learning datasets. One of the datasets, Mnist, is for classification 
tasks, whereas the rest were for regression tasks. Mnist was included due to it 
being a well-known benchmark dataset with 70000 observations. 

In addition to the six datasets, we created nine more, which were based on 
simulations made by Juarez-Mosqueda et al. [97], provided to us by our research 
collaborators led by Professor Hannu Häkkinen. These nine were specifically 
made to probe the effect of scale on the tested machine learning methods in the 
context of nanoscience. 

The main methodology was experimental science, as we ran simulations and 
measured the performance and time for each tested machine learning method. 

Main results The main results from article PII were that direct solvers provide 
the best accuracy when utilizing MLM. However, when the highest possible ac-
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curacy is not necessary, randomized solvers are a comparable option. That was 
also detected with MLM, as the reduction of solver accuracy does not translate 
through MLM as it is. Giving the result that a speedup is possible to achieve with 
randomized solvers in the context of MLM. 

The other main result is that a distance-based kernel method is able to out-
perform shallow and deep FNNs in the tested cases. Granted, the FNNs were 
not finely tuned with time and effort but were taken as ”off the shelf” as their 
comparison, MLM, can be taken. 

Research contributions This article showed the robustness of a distance-based 
approach and that it can compete with neural networks. The nanoscience-based 
nine datasets for a scaling study can be used by others should they desire to test 
their model on a group of datasets where the information in the data does not 
essentially change. 

Author’s contributions The author of this thesis contributed to the practical 
research work, result analysis, presentation, selection of datasets, selection of 
tested solvers (with the exception of SVP update), programming of the scripts used 
to run the tests, creation of the scaling datasets and main writing of the article. 
The author was not the only writer in the article. 

4.3 PIII: Feature selection for distance-based regression: An um-
brella review and a one-shot wrapper 

Linja, J; Hämäläinen, J; Nieminen, P; Kärkkäinen, T. Feature Selection for Distance-
Based Regression: An Umbrella Review and a One-shot Wrapper. Neurocomputing. 
2023, 518, 344–359. DOI:10.1016/j.neucom.2022.11.023 

Research aims After the speedup experiments of article PII, the next step was 
to find a way to reduce the number of features required by a machine learning 
method. Simultaneously, the aim was to study feature selection with distance-
based ML models, contextualize the research among feature selection research in 
general, and develop and propose a feature selection algorithm as well as compare 
it to other available feature selection algorithms. 

Data and methods Two sets of datasets were used in this study. The first set 
is a set of created toy datasets that were primarily designed for feature selection 
algorithm development. Of these, the first six were created by us, and the latter 
four were created by Sun et al. [182]. Inspired by the nine scaling datasets in 
article PII and in conjunction with feature selection competition datasets where the 
correct result remains unknown, we wanted datasets where the correct features 
were known from the start. The second set is a group of 13 publically available 
and well-known machine learning datasets, some intended for classification and 
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others for regression. 
The methodology was the experimental measurement of the performance 

of the developed feature selection algorithm in comparison to other known algo-
rithms. In addition, we compared the function of our feature selection algorithm 
when the feature ranking algorithm was switched to be a FNN-based one. 

Main results We made an extensive umbrella review to contextualize distance-
based regression feature selection to the feature selection research in general. We 
developed and proposed a synthetic dataset and the one-shot wrapper feature 
selection algorithm. We evaluated the performance of our developed feature 
selection algorithm by utilizing the developed set of benchmark datasets and by 
extensive comparison to other feature selection algorithms. We also tested the 
function of the algorithm should the EMLM core be switched to a Neural Network-
based one. The result of each comparison was that, in general, the EMLM-MAS 
combination held the best results. 

Research contributions This article had three main contributions. First is the 
extensive umbrella review on feature selection methods for regression datasets. 
The second is the development of the one-shot wrapper feature selection algo-
rithm and the extensive comparisons to other feature selection methods. The third 
contribution is the development of the toy datasets to be used in feature selection 
development and benchmarking. 

Author’s contributions The author of this thesis contributed to the practical 
research work, result analysis, presentation, selection of datasets, creation of syn-
thetic datasets, selection of tested algorithms, programming of the scripts used to 
run the tests, the final form of the feature selection algorithm, and main writing 
of the article (with the exception of the umbrella review). The author was not the 
only writer in the article. 

4.4 PIV: Knowledge Discovery from Atomic Structures using Fea-
ture Importances 

Linja, J; Hämäläinen, J; Nieminen, P; Pihlajamäki, A; Malola, S; Häkkinen, H; 
Kärkkäinen, T. Knowledge Discovery from Atomic Structures using Feature Im-
portances. Manuscript. 

Research aims In a continuation from article PIII, the aim was to use feature 
selection on datasets based on molecular dynamics simulations and to analyze the 
results using domain knowledge. 

Data and methods Two types of molecular dynamics datasets were used in this 
study. The gold nanoscluster data also used in the articles PI and PII, as well as 11 
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organic molecule simulation datasets from sGDML (symmetric Gradient Domain 
Machine Learning) [30, 173, 29]. 

The main methodology was to use the datasets and domain knowledge 
to verify the function of the updated version of the feature selection algorithm 
presented in article PIII and to analyze results and present a way for knowledge 
discovery. 

Main results We extended the feature selection algorithm presented in article 
PIII with a new rule. It was then applied to molecular dynamics-based datasets. 
The selected features for all 12 datasets were then presented and analyzed with the 
aid of domain knowledge. The outcome of the analysis is that the combination of 
molecular dynamics simulation data, distance-based machine learning, descriptor, 
and feature selection can infer knowledge from first principles simulations. In 
addition, a way to present the chemical information was shown and used. 

Research contributions A previously proposed feature selection algorithm was 
extended and applied to molecular dynamics simulation data. In doing so, we 
extended the comparative assessment of the MAS-based feature ranking method. 
We provided a proof-of-concept on how the developed feature scoring and ranking 
method can be used for knowledge discovery. 

Author’s contributions The author of this thesis contributed to the practical 
research work, main result analysis, presentation, selection of datasets, devel-
opment of the extension to the feature selection algorithm, development of the 
interaction relevance metric, programming of the scripts used to run the tests, and 
main writing of the article. The author was not the only writer in the article. 

4.5 Summary of the research contributions 

This thesis studied the viability of distance-based methods in the context of com-
putational nanoscience. In article PI, the viability of using MLM and EMLM as 
surrogate models was proven by comparing them to DFT calculations. In article 
PII, the performance of MLM was studied and compared to two FNN implementa-
tions, showing that in the studied case, MLM proves itself. The scalability of MLM 
was also studied through the use of the created scaling-based set of datasets. The 
results there correspond with previous findings [115, 52, 86, 63] that MLM does not 
seem to overlearn. Article PII also showed that MLM is resistant to the effects of 
unnecessary features. In article PIII, the use of EMLM as the ML method in feature 
selection was studied. The distance-based one-shot wrapper was proposed and 
compared to other feature selection methods. Additionally, a set of purposefully 
designed synthetic datasets were proposed and used in the study of the proposed 
feature selection algorithm. The function of the Mean Absolute Sensitivity based 
one-shot wrapper was studied by switching the EMLM at its core to a feedforward 
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neural network. The results show that EMLM and the one-shot wrapper hold their 
ground and that they are viable in feature selection. The study was also contex-
tualized to feature selection literature through an umbrella review. The feature 
selection saw a continuation in article PIV, as the developed one-shot wrapper was 
extended to Feature Importance Detector (FID) and exclusively used to study and 
analyze the information that can be gleaned from molecular dynamics simulation 
datasets. The summary of the research contributions is presented in Table 1 along 
with the articles’ relation to the research questions (given in Section 1.2). 

TABLE 1 Summary of the research contributions 

P RQ Research contributions 
PI RQ2a i) Showed that distance-based ML models work as DFT surrogates. 
PII RQ1a, 

RQ2a 
i) Applied MLM to molecular dynamics simulation based scaling 
datasets, ii) studied the effects of scaling on the function of MLM. 

PIII RQ1a, 
RQ1b 

i) Used datasets of various sizes while comparing to other methods, 
ii) developed a feature selection algorithm, iii) developed a set of 
synthetic datasets for use in feature selection benchmarking and 
development., 

PIV RQ1a, 
RQ1b, 
RQ2b 

i) Used datasets with increasingly large numbers of observations 
with 1100-5400 features, ii) developed an extension to previously 
developed feature selection algorithm, iii) extensively analyzed fea-
ture selection results, iv) showed proof-of-concept for knowledge 
extraction from simulation data. 



5 CONCLUSIONS AND DISCUSSION 

In this thesis, the topic of hybrid nanoparticles through the use of machine learning 
was approached from the machine learning side. Specifically with the idea of 
focusing on tools and improvements to methods. The first question to ask is: What 
was before? 

Before this thesis, in this context, there were three fields of science, one of 
nanoscience, one of machine learning, and one of computational nanoscience 
through the use of machine learning. Each of the three was taken a look at, and 
each three fields are constantly advancing forward. In addition, two two-part 
research questions needed an answer. The second question to ask is: What is now? 

This thesis included four articles, article PI more from the side of nanoscience 
and the other three from the machine learning side. In article PI, the viability 
of distance-based ML models MLM and EMLM as DFT surrogates was studied. 
A Monte Carlo-type potential energy surface exploration strategy was used and 
found effective. Finally, the results were compared to DFT ground truth. The 
results of article PI show that MLM and EMLM are competitive alternatives to DFT. 
Additionally, they show that the Monte Carlo-based search strategy is effective 
in combination with ML surrogate models. The results also show that the ML 
surrogates produce results that match the DFT ground truth. The article gives the 
primary answer to RQ2a. DFT is important in nanoscience, and for a good reason. 
But improvements can always be made. Article PI picks the path of surrogate 
models in search of said improvement and finds a foothold. The reliance on DFT 
is still there, as the training set for a ML method has to come from somewhere. 
Perhaps later on, DFT will be generally used together with a ML method, where 
DFT lays the groundwork, and the ML method handles the interpolation. 

In article PII, the possibility of utilizing a randomized solver in the context 
of distance-based machine learning was studied. In addition, a comparison was 
made between a deep and a shallow feedforward neural network and Minimal 
Learning Machine. Finally, a group of datasets based on the molecular simulation 
data of MPC Au38 was created. The randomized solvers were deemed to be able 
to achieve speedups compared to direct solvers in the context of MLM. The MLM 
was also found able to hold its own against the two FNN models. 
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The results of article PII show that a distance-based model does not necessar-
ily need full accuracy from each of its components in order to function and that a 
researcher should spend time thinking on which of the available machine learning 
methods are best suited to the task at hand. The article PII primarily answers RQ1a 
and gives a partial answer to RQ2a. The results of article PII open a discussion 
on how exact does a component of a ML method need be to still produce desired 
results. An example of a probabilistic neural network [121] was presented in 
Section 3.1. The point being in that in the paper, the researchers managed to make 
an autonomous driving ML model which relies upon probabilistic components to 
work [121]. Other applications in a similar manner could follow, where the ML 
model relies on, for example, a probabilistic component. 

In article PIII, the Mean Absolute Sensitivity and EMLM-based feature selec-
tion algorithm were proposed and compared to other feature selection algorithms 
as well as a FNN-version of itself. An extensive umbrella review on the topic 
of feature selection was made, taking part in ensuring that the observed lack of 
discussion regarding feature selection in regression tasks was brought to light. A 
group of synthetic datasets were proposed, intended for the development and 
benchmarking of feature selection algorithms. 

The results of article PIII show that EMLM comes out on top against FNNs 
as the machine learning model within the Mean Absolute Sensitivity ranking 
algorithm. The article also shows that in the field of feature selection, datasets 
which have known answers are helpful when performing a sanity check on a 
feature selection algorithm in development. The need to do the extensive umbrella 
review stemmed from the literature itself, pointing out that the field of feature 
selection is not looking in the direction of distance-based regression. Article PIII 
held many components, partially answering RQ1a and giving the first half of 
the answer for RQ1b. For a developer working on creating a feature selection 
algorithm, article PIII presents the utility of synthetic datasets where the correct 
features are known. The knowledge of correct features gives easily processed 
feedback on how well the development of an algorithm is going. Synthetic datasets 
also allow one to have a dataset of any size should one be desired. The MAS-based 
one-shot wrapper proved capable. Considering how EMLM is at its core and how 
EMLM shares properties with MLM, it would be interesting to see some of the 
results recomputed when the calculations are done on a GPU instead of a CPU. 

In the article PIV, the feature selection algorithm from article PIII was further 
developed and used exclusively on molecular dynamics simulation data of a group 
of organic molecules as well as the MPC Au38. The article focuses on analyzing 
the descriptor formed by Many-body Tensor Representation and what kind of 
information may be gained by such analysis. 

The results of article PIV show that chemical information can be extracted 
from the data, even though the chemists already knew the answers in the case of 
the used datasets. It also gives a proof-of-concept for knowledge discovery from 
first principles simulation data. The article also proposes the extension to the one-
shot wrapper proposed in article PIII, in the form of FID. The function of FID was 
verified utilizing the aid of chemical domain knowledge. Finally, an interaction 
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relevance metric was proposed, with potential applications in determining the 
priority of parametrizations and others. The dataset sizes in article PIV finalize 
the answer to RQ1a, give the second half of the answer for RQ1b, and answer 
RQ2b in full. The knowledge discovery proof-of-concept shown in article PIV 
may potentially see use in further computational nanoscience applications. 

The outcome of this thesis is then the study of the properties of solvers in the 
context of distance-based machine learning, two feature selection algorithms (with 
one being a continuation from the other), two groups of datasets, a way to use 
feature selection to infer chemical knowledge and an extensive umbrella review 
on feature selection. The final question to ask is: What will be in the future? 

Under no circumstances should one think that this thesis was expected to 
rock the boat, so to say. And that is okay, for that is how the vast majority of 
scientific research is nowadays concluded [150]. However, all that is asked is that 
something is provided, which others may then build upon. And that is provided 
here. The two groups of datasets may help someone to develop new algorithms, 
and the feature selection algorithms may help someone in their task. The analysis 
of the effect of solvers may lead to machine learning methods which might even 
rely upon the increased randomness in their working. The provided umbrella 
review may give someone the context they need to move forward. The work here 
has mostly been with a certain set of tools while mainly focusing on the positions 
of the atoms. 

A clear possible path for the future is, for instance, in the study of other 
descriptors, local and global, as well as taking more of the atomic properties into 
account. Local structural descriptors have been shown to, in some cases, provide 
a better global descriptor through local descriptors than global descriptors [91]. 
So naturally, a part of future work is to study local descriptors as they are and in 
combination with global descriptors. In the same vein, the knowledge discovery 
approach from article PIV could be applied to other MPCs and heterogeneous 
nanostructures in conjunction with utilizing other types of descriptors. It would 
be interesting to see if the knowledge discovery approach manages to unearth 
something previously unthought of. In this work and the included articles, the 
direction of a descriptor has been from a 3D structure to a ML input vector. In order 
to fulfill the goal of automatically locating new MPCs and other nanostructures, 
work has to be made for the reversed direction: from a descriptor to a 3D structure. 
GPU computation has been in the news in recent years (see Section 3.1). It is quite 
easy to put the application of GPU computation to the todo-list. Additionally, the 
ML model part could be rethought, and the model could be split into multiple 
parts [87]. The feature selection could also be applied to the first phase of MLM in 
order to see if the feature selection could be applied mid-training. The MAS-based 
approach to feature selection showed promise in regression tasks and should 
also be applied to classification tasks. The distance-based methods should also be 
applied to different types of datasets with different types of dissimilarity measures, 
for example, to text data with edit distance [160] or graphs and the related distance 
measures. 

The research work itself is not done. As it rarely is. The topic of simulated 
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MPCs using machine learning is not solved. It may someday be. It is difficult 
to estimate where the fields will go. Nanoparticles have such vast potential that 
keeping track of the new applications and discoveries would be a topic of its own. 
Machine learning has, in recent years, taken rapid steps, and the waves caused by 
said steps are still rocking the boat. 
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YHTEENVETO (SUMMARY IN FINNISH) 

Nanomateriaalien suunnittelun edistäminen käyttäen uusia koneoppimismenetelmiä 

Tässä väitöskirjassa tutkittiin koneoppimisen keinojen käyttämistä nanotieteen 
tutkimuksen edistämisessä, keskittyen erityisesti hybridinanoklustereihin. Väitös-
kirja on kaksijakoinen yhdistelmä nanotiedettä ja koneoppimista. Aihetta pohjuste-
taan käsittelemällä molemmat aiheet erikseen, sekä tuomalla aiheet lähemmäs 
toisiaan kummankin näkökulmasta. Nanotieteessä tutkitaan nanoskaalan tapah-
tumia ja asioita. Tieteenalan kehitys on ollut nopeaa ja nykyään on helpompi 
nimetä elämän osa-alueita, joihin nanotiede ja sen tuotokset eivät ole tavalla tai 
toisella koskeneet. Koneoppimisessa tutkitaan osittain automaattisia, opetettavissa 
olevia työkaluja. Koneoppiminen on datankäsittelykykynsä ja jatkuvasti uusien 
sovellustapojensa ansiosta noussut tärkeäksi osaksi teknologista ja tieteellistä 
kehitystä. Yhdessä nämä kaksi tieteenalaa muodostavat koneoppimispohjaisen 
laskennallisen nanotieteen. Väitöskirjan sisällössä tämä tarkoittaa tiheysfunk-
tionaaliteorian (DFT) korvaamista etäisyyspohjaisilla koneoppimismenetelmillä 
sekä menetelmien käyttämisen tietämyksen tuottamisessa. DFT on fysikaalis-
esti tarkka laskin, mutta samalla laskennallisesti hyvin vaativa. Laskennallinen 
nanotieteen tutkimus DFT:tä käyttäen on siten myös laskennallisesti vaativaa. 
Koneoppimisella tuotettu sijaismalli kykenee poistamaan suuren osan DFT:n 
laskentavaatimuksesta, jolloin laskentojen vaativuustasokin helpottuu. 

Väitöskirjan tavoitteena on vastata seuraaviin tutkimuskysymyksiin: 

RQ1 Miten etäisyyspohjaisia koneoppimismenetelmiä voi parantaa keskittyen a) 
menetelmien skaalautuvuuteen ja b) muuttujanvalintaan 

RQ2 Miten etäisyyspohjaisia koneoppimismenetelmiä voidaan hyödyntää nanoti-
eteen sovelluksissa a) sijaismalleina ja b) tietämyksen tuottamiseen 

Tutkimuskysymyksiin vastataan väitöskirjaan liitetyn neljän artikkelin avulla. En-
simmäisessä artikkelissa käsiteltiin etäisyyspohjaisten koneoppimismenetelmien 
soveltuvuutta ja toimivuutta hybridinanopartikkelien potentiaalienergian ennus-
tamisessa. Toisessa artikkelissa käsiteltiin etäisyyspohjaisten menetelmien toimin-
nan parantamista, sekä suoritettiin skaalautuvuustesti käyttäen kultaytimestä ja 
suojaavasta ligandikerroksesta koostuvan AU38(SCH3)24 klusterin simulaatio-
datasta muodostettua skaalautuvuusaineistojoukkoa. Kolmannessa artikkelissa 
kehitettiin etäisyyspohjainen muuttujanvalintamenetelmä sekä pohjustettiin työ 
laajalla koosteartikkelien koosteen avulla. Neljännessä artikkelissa laajennet-
tiin kolmosartikkelissa kehitettyä muuttujanvalintamenetelmää ja hyödynnettiin 
sitä tietämyksen löytämisessä AU38(SCH3)24 klusterin kanssa sekä 11:sta muun 
molekyylisimulaatiodatasetin kanssa. 
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ABSTRACT: We present an implementation of distance-based machine learning (ML) 
methods to create a realistic atomistic interaction potential to be used in Monte Carlo 
simulations of thermal dynamics of thiolate (SR) protected gold nanoclusters. The ML 
potential is trained for Au38(SR)24 by using previously published, density functional theory 
(DFT) based, molecular dynamics (MD) simulation data on two experimentally 
characterized structural isomers of the cluster and validated against independent DFT 
MD simulations. This method opens a door to efficient probing of the configuration space 
for further investigations of thermal-dependent electronic and optical properties of 
Au38(SR)24. Our ML implementation strategy allows for generalization and accuracy 
control of distance-based ML models for complex nanostructures having several chemical 
elements and interactions of varying strength. 

■ INTRODUCTION 

Monolayer-protected clusters (MPCs) are small metal nano-
particles that have a metal core with size ranging from a few 
atoms to a few hundred atoms and a protecting surface layer of 
organic molecules such as thiols, phosphines, alkynyls, or 
carbenes.1 MPCs are synthesized via wet chemistry by 
reducing metal salts in the presence of the protecting 
molecules. A variety of synthesis recipes and combination of 
metals and protecting molecules yields a rich chemistry and a 
large array of products in terms of size, shape, and composition 
of metal cores and the molecular overlayer. The wide range of 
synthetic parameters gives a unique possibility to study the 
fundamental structure−stability−property relations and to 
engineer the properties for applications such as catalysis, 
plasmonics, biosensing, and drug delivery. 
The first crystallographically resolved MPCs were reported 

already over 50 years ago (such as the so-called undecagold 
Au11 cluster protected by phosphines2), and first advances in 
synthesis and structural characterization produced a series of 
mostly noble metal clusters protected by L-type (such as 
phosphine) and mixed L−X type (X being an electronegative 
ligand such as halide or thiolate) ligands. The largest such 
known cluster was the phosphine−halide protected Au39, 
reported in 1992.3 

Considerable steps forward were taken when Brust and co-
workers4 reported a synthesis that produced all-thiolate 
protected gold clusters for an average size of two nanometers. 
Several new chemical compositions of both organo-soluble and 

water-soluble clusters were reported soon after,5−8 culminating 
to the breakthroughs of the first crystal structure of a large 
water-soluble all-thiol protected cluster, Au102(pMBA)44 
(pMBA = p-mercaptobenzoic acid) by the Kornberg group

−10−12 inin 20079 as well as the organo-soluble Au25(PET)18 
2008 and Au38(PET)24 (PET = phenyl ethyl thiolate)13,14 

clusters in 2008−2010. Up to date, atomic structures of at least 
150 different compounds are crystallographically known, which 
facilitates detailed theoretical computations and dynamical 
simulations of the properties of MPCs and greatly helps to 
correlate structures to measured properties in experimental 
data. 
Density functional theory (DFT) methods are the corner-

stone for all computations that need to deal with details of the 
electronic structure, such as studies of optical absorption, 
optical excitation, fluorescence, and magnetism. However, 
while giving the most accurate and detailed information, DFT 
methods are also numerically the most demanding. DFT 
computations of some of the largest structurally known MPCs 
like the thiolate-protected Ag374

15,16 have to deal with up to 
13 000 valence electrons, and even a single-point DFT energy 
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calculation can take minutes and use hundreds or even 
thousands of CPU cores in a supercomputer. Force fields 
describing gold−thiolate MPCs have been developed to be 
used in molecular dynamics (MD) simulations, e.g., in the 
context of ReaxFF17 and AMBER-GROMACS.18 Effective but 
reliable methods to simulate the atomic dynamics of MPCs are 
needed, for instance, to study interactions of the clusters with 
the environment in the solvent phase, or with biomolecules 
and biological materials (viruses, proteins, lipid layers 
etc.).19−21 However, developing such force fields may be 
time-consuming, system- or problem-specific, and suffer from 
poor transferability. Finally, understanding of nucleation 
processes in formation reactions of MPCs or reactions between 
two different MPCs are fundamental unsolved issues that are 
currently out of reach of any usable simulation method. 
Machine learning (ML) and data-driven methods are 

emerging as a promising alternative to analyze structure− 
property correlations and make systematic predictions of 
physicochemical properties in materials science.22,23 So far, ML 
has been applied to relatively small systems such as molecules 
with up to a few tens of atoms or systems where degrees of 
freedom can be limited such as binding of an atom to the 
surface.24−28 A few homogeneous systems such as bulk 

29,30water or pure metal nanoparticles31,32 have been studied 
as well. There has been very few studies of applying ML to 
MPCs. Recently deep neural networks and support vector 
machines were applied successfully to predict formation of 
MPCs in varying synthesis conditions.33,34 

Systems with diverse chemical environments, such as MPCs, 
possess a large number of degrees of freedom, a range of 
chemical interactions of varying strength, and may require 
large training sets in order to cover the chemical space 
thoroughly enough. The most popular ML methods include 
neural networks, kernel ridge regression and Gaussian 
processes.35 Neural networks have a great potential to learn 
very complicated data, because of their large number of 
parameters, weights, and network shapes to be adjusted during 
training. On the other hand, this flexibility also makes the 
method prone to overfitting. Kernel ridge regression and 
Gaussian processes are versatile tools, since one can define 
different kernel functions suiting a problem at hand. These 
kernels can easily transform the method to a complex one. 
Here we demonstrate that even simple distance-based 

methods are applicable to complex systems such as MPCs. 
We use two methods, the so-called Minimal Learning Machine 
(MLM)36 and the Extreme Minimal Learning Machine 
(EMLM)37 and create a ML potential for a gold−thiolate 
Au38(SR)24 cluster. We utilize our previously published 
extensive DFT MD simulation data38 based on two known 

13,39structural isomers of Au38(PET)24 (Figure 1A,B) as the 
initial training set. We test the ML potential by performing 
Monte Carlo simulations up to 300 K and compare the cluster 
dynamics to that from DFT MD simulations. To our 
knowledge, this work reports the first successful demonstration 
of a ML potential for MPCs, suitable for fast explorations of 
the configurational space. An immediate application could be 
to combine the MLM/EMLM potential with the recently 
published algorithm40 designed to build complete nanoparticle 
structures based only on information about the metal core, in 
order to accelerate structural discovery. Alternatively, the 
efficient probing of the configuration space at a desired 
temperature can be utilized to generate realistic cluster 

Figure 1. Initial structures of Au38(SCH3)24 are visualized for Q and 
T isomers in parts A and B, respectively. While moving sulfur atoms 
and methyls the orientation of the S−C bond has to be preserved. 
Part C shows how alignment is preserved if methyl is moved. Part D 
shows the same when sulfur atom is moved. A long protecting unit is 
visualized in part E) and a short unit in part F. In parts E and F, 
methyls are omitted for the sake of clarity. Key: orange, gold; yellow, 
sulfur; gray, carbon; white, hydrogen. 

structures for further investigations of thermal-dependent 
electronic and optical properties of Au38(SR)24. 

■ THEORETICAL METHODS 
Here we discuss the necessary components of the development 
of the ML method to deal with dynamical simulations of 
thiolate protected gold nanoclusters. We introduce the used 
descriptor for the cluster structures, the general principles of 
the distance-based machine learning, and the Monte Carlo 
method to probe the configuration space. 

Many-Body Tensor Representation. The Cartesian 
coordinates of atomic positions include the whole structural 
information about a single nanostructure, however one cannot 
use them to describe the system for a machine-learning 
method. If even a small rotation or translation is applied to the 
system, the coordinates would change, but physically, the 
situation is still the same. In order to overcome this problem, 
one needs to use a suitable structural descriptor, which are 
required to be invariant to translation, rotation, and 
permutation. Cartesian coordinates are not fulfilling any of 
these requirements. In addition to these requirements it is 
desirable that description would be continuous, unique in the 
sense of description−property correlation, and fast to be 
computed.41 There have been several different approaches with 
a varying level of complexity to describe nanostructures for 
machine-learning methods. Frequently used descriptors in the 
field are atom-centered symmetry functions,42 Coulomb 
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matrices,43 Ewald sum and sine matrices,44 bag of bonds,45 

Zernike functions,46,47 and smooth overlap of atomic positions 
(SOAP),48 to name a few. These descriptors can be divided to 
local and global ones depending on whether they describe the 
environment around a single atom or the whole system as 
relationships between atoms. In this study, we used a global 
descriptor called many-body tensor representation (MBTR),41 

which is implemented in the DScribe package.49 We chose to 
use a global descriptor instead of a local one, because it gives a 
straightforward and fast way to describe the system. It gives a 
single representation for a single configuration. A local 
descriptor, on the other hand, would have to be evaluated 
several times in order to describe every atom in the system. 
Since our system is quite large and has many different chemical 
interactions, a global descriptor such as the MBTR keeps the 
process simple and transparent. 
The basic idea of the MBTR is based on a bag of bonds 

description. There, the system is first divided into the 
contributions of different element pairs and then described 
with pairwise distances between the atoms belonging to the 
elements of interest. Huo and Rupp used this as a starting 
point and formalized the basis of MBTR.41 Afterward Jager et 
al. simplified the theoretical presentation50 and Himanen et al. 
implemented it into the DScribe package.49 The backbone of 
the description is 

N Natoms ,1 atoms ,2 

f ( ,  , z ) = ∑ ∑ w  i j D x g  i jx z  ( , ) ( , ( , ))1 2 k 
i=1 j=1 (1) 

k k 

where 

2(x − g)  

computations. A small cutoff value allows a large number of 
values to be included into the summation increasing the time 
spent for every element pair. On the other hand, a small cutoff 
would allow smaller changes in the structure to be visible in the 
description than a large cutoff. Using small cutoff values makes 
the descriptor sensitive but also very system-specific. Thus, 
there is a trade-off between accuracy and transferability. 

Distance-Based Machine Learning Methods. Minimal 
Learning Machine MLM. Here we briefly introduce the 
theoretical background of the utilized distance-based machine-
learning methods. First we go through the Minimal Learning 
Machine (MLM) formalized by de Souza Junior et al.36 In 
general, we assume that a set of Nd input points X = {xi}i

N 
=1 
d , 

nxi ∈  , are given with the corresponding output points Y = 
{yi}i

N 
=1 
d , y ∈ p, to be predicted. We restrict here to univariatei 

(nonlinear) regression problems. In supervised machine 
learning, one usually trains a model to map input points to 
certain output directly or through some kernel space. In that 
case the mapping f: X → Y between input and output spaces 
would be used to make the regression model as 

= f X + E (3)Y ( )  

where E denotes residuals. MLM, on the other hand, 
determines the Euclidean distances between input and 
reference points and then uses these distances to construct a 
linear regression model to predict the Euclidean distances in 
the output space. These predicted distances with respect to the 
output space reference points form a multilateration problem 
from which the actual output is computed. 
Reference points are defined as M = {mk}k

K 
=1 with M ⊆ X 

and corresponding outputs are naturally T = {tk}k
K 
= 1  with T ⊆−1D x  g  = σ π xp( , )  (  2 )  e

2σ2
(2) Y. Then input space distances d(xi, mk) =  |xi − mk| are forming 

N Kdthe distance matrix D ∈  × . Analogously output spacex
In eq 1, summations are going through atoms with atomic distances δ(yi, tk) =  |yi − tk| are presented in a matrix 

(element) numbers of z1 and z2. Function D(x, g) introduces NdΔ ∈  × 
y 

K . In the notation, Greek letters are used for outputbroadening, which can be controlled by changing the 
space distances in order to distinguish them from input spaceparameter σ. Here x is sweeping variable, which probes the 
notations. Next the mapping g is used to create regressionvalues produced by the function gk(i, j). Parameter k is the one 
model between distances in input and output spaces asdefining the properties that are used to describe the system. In 

the theory, there is no limits for k; therefore, in principle, one 
can freely define a suitable property. Usually choices are k = 1  Δ = g( )D + Ex (4)y 

for atomic numbers, k = 2 for pairwise atomic distances (or the 
inverse of the distance), and k = 3 for angles formed by three 
different atoms. In this study, we chose to set k = 2 in order to 
use pairwise distances, therefore the weights are w2(i, j) =  
exp(−dRij) and the property measure is defined as g2(i, j) =  
Ri,j 

−1. Here d is a parameter, which is used to define the 
amount of weight for the contributions of atoms i and j if they 
are Ri,j apart from each other. 
As the name suggest, MBTR is a tensor with dimensions of 

Nelements × Nelements × nx, when k = 2.  Nelements is the number of 
different elements in the system and nx is the number of points 
that variable x can probe. Every element pair is described with 
their own summation but all pairs are using the same set of 
parameters. We list parameters as sets of {min, max, nx, σ, d, 
cutoff}. First there are minimum and maximum values of the 
variable x. nx is the number of points for x. As mentioned 
earlier, σ controls the broadening and d is used in weighting. 
DScribe package has also its own parameter to define cutoff. 
Only the values of the eq 1, which are greater than the cutoff, 
are used in summation for every value of x. This affects the 
sensitivity of the descriptor and also the speed of 

Next, de Souza Junior et al. assume that the mapping g has a 
linear structure for each response. The model simplifies into a 
matrix product36 

Δy = D Bx + E (5) 

In order to get the matrix B containing the coefficients for 
the K responses some approximations are needed. B is 
estimated from training data through minimizing the multi-
variate residual sum of squares. This provides a least-squares 
estimate of the matrix 

T −1 TB̂ = (D D ) D Δ (6)x x x y 

Solving the B corresponds to training of the model. 
Now the last task is the multilateration problem in the 

output space. There is no single definite way to approach this 
problem, but many approaches can be applied.51 The idea is to 
minimize the objective function of single output regression 
problem 
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K After getting the optimal solution for the RLS problem, one22 2) (d x( ̃, M)B̂) )kJ y( )  = ∑ ((y − tk − can use W to predict the output for a new arbitrary input x. 
(7) This is done ask=1 

1×Kwhere d( ,x ̃ M) ∈  is a vector containing distances 
between a new input x and all reference points M. The task 
is to find suitable output y, which minimizes the objective 
function. In our case we adopted cubic equation introduced by 
Mesquita et al.52 The minimum or minima are found where 
the derivative equals zero. Differentiation yields 

K K 
23 2 2Ky − 3∑ t y + ∑ (3tk − (d x( ̃, M)B̂)k )yk 

k=1 k=1 
K 

2 3+ ∑ ((d x( ̃, M)B̂) − t )k k 
k=1 

= 0. (8) 

This can be thought as a cubic equation ay3 + by2 + cy + d = 
0. From three possible roots, we choose the one that yields the 
smallest value of the objective function. 
Extreme Minimal Learning Machine EMLM. Another 

distance-based machine-learning method, which was used in 
this study, is the Extreme Minimal Learning Machine 
(EMLM). The origin of the method lies in the so-called 
Extreme Learning Machine (ELM), which are single-layer 
perceptrons with special training and optimization meth-
ods.53−57 When their training methods are combined with the 
Euclidean distance basis of MLMs, one gets EMLM.37 

The first step is again to collect Nd input points into a matrix 
n N× ×p Nd dX ∈  . Corresponding outputs are in a matrix Y ∈  . 

Here n and p are the lengths of single input and output vectors 
xi and yi. Input points xi are first operated with a kernel 

×K Ndfunction h(·) forming new inputs H ∈  . Here h(·) is a  
vector valued function, which is used to calculate the input 
vector in a kernel space. Due to the fact that we are using 
distance-based method, K is the number of reference points; 
therefore, the elements of H are defined as 

H = ( (h x )) = |m − x |i j, j i i j (9) 

This is just the Euclidean distance between a reference point 
and an input point. We simplify the notation by writing hj

K N× × d≡h(xj). Now hj ∈ K 1 and H ∈  . Then as Karkkainen 
states, the training of the model is done through regularized 
least-squares (RLS) optimization problem37 

f ( )x ̃ = Wh x( )̃ (12) 

where h is the same vector valued kernel function as before. 
With input vector x, it yields a K × 1 vector. The elements of 
this vector are defined to be Euclidean distances as |mi − x|. 
We can see that the EMLM framework is fundamentally a 

kernel ridge regression with the Euclidean distance basis as a 
kernel. Because of the structural similarity to the linear radial 
basis function network, the EMLM model possesses the 
universal approximation capability.58−60 MLM and EMLM 
have just one hyperparameter, which is the number of 

 

reference points. Overfitting is rarely an issue for distance 
based ML methods, therefore we can use all data points as 
reference points in training without worrying about over-
fitting.37,61 There is no need for optimization of hyper- or 
metaparameters. This is a significant difference compared to 
the artificial neural networks, support vector machines, 
Gaussian processes or other popular ML methods. These 
methods require hyper- or metaparameter optimization 
through, for example, cross-validation. 

Monte Carlo. We used Monte Carlo to simulate the 
dynamics of the Au38(SCH3)24 clusters with simplified methyl 
ligands. Clusters are divided to three different moving parts: 
gold, sulfur and methyl. Gold atoms are moved into a random 
direction according to the step size. Sulfur is moved in a similar 
fashion, but in order to preserve the orientation of sulfur− 
carbon bond, the methyl group is rotated making it to face the 
sulfur atom. The same principle is applied for the movement of 
the methyl groups. When methyl is moved according to the 
step size, the S−C bond orientation is preserved. In addition to 
this we allowed methyl group to rotate around the sulfur− 
carbon bond. The way how the alignment of sulfur−carbon 
bond is preserved is visualized in Figure 1, parts C and D. The 
stretching of carbon−hydrogen bond does not have a 
significant contribution to the total potential energy of the 
system; therefore, we decided to fix these bonds. 
The acceptance of every move is decided according to the 

Metropolis question. The probability of the move to be 
accepted is defined as 

min 1, exp 
 
 

−(E + − E )i 1 iP = 
k TB (13) 

Ei is the potential energy of the ith configuration and Ei+1 is 

N p Kd1 2 α 2min ∑ |Vhi − y | + ∑ ∑ |Vij|× ip KV∈  2N 2Kd i=1 i=1 j=1 (10) 

The parameter α is a small positive real number (square root 
of machine ϵ by default) used for regularization. V is a matrix 
containing the coefficients used for the actual regression and 

×p KV ∈  . One could say, that V and reference points 
together form the actual machine-learning model. The 
minimum of the optimization problem lies on the zero point 
of the matrix derivative. The optimal solution W ≡ Voptimal 
satisfies 

1 T α
(WH − Y H + I = 0)

Nd K (11) 

the potential energy of the configuration after a proposed 
move. Going downhill in energy landscape is always permitted 
but going uphill is accepted with certain probability defined by 
the energy difference and simulation temperature T. In the 
exponent kB is the Boltzmann constant. The step size of a 
single move is adjusted during the simulations so that the 
acceptance of the moves is between 40% and 60%. This step 
size is the same throughout the whole cluster and it is not 
affected by the type of the moved block. During a MC step, all 
moving parts are sampled randomly, and every one of them has 
an opportunity to move. This means that one MC step consists 
of 38 + 24 + 24 = 86 trial moves. 

■ RESULTS AND DISCUSSION 
Generating Training Data and Training the Models. 

The training data from the Au38(SCH3)24 clusters were 
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Figure 2. PCA visualization of MBTR descriptors of the training data. For the sake of clarity only 25% of the points are present in the graph. (i) the 
initial structures and (ii) high-temperature structures of the original MD simulations38 (iii) snapshots from Monte Carlo simulations, where S−Au 
bonds have been broken. In parts ii and iii, left/right structures originate from Q/T isomers. Key: orange, gold; yellow, sulfur; gray, carbon; white, 
hydrogen. 

generated using density functional theory (DFT) run with 
GPAW code.62,63 The major training data were published 
earlier by Juarez-Mosqueda et al.38 In that work, Born− 
Oppenheimer NVT molecular dynamics simulations were run 
for the so-called Q13 and T39 isomers of Au38(SCH3)24 at 
various temperatures between 400 and 1200 K. To be 
consistent with the training data we used same level of theory 
(the Perdew−Burke−Ernzerhof (PBE) exchange-correlation 
functional64). The DFT MD simulation trajectories of Juarez-
Mosqueda et al.38 contained 12413 configurations for the Q 
isomer and 12647 for the T isomer. 
We used two different sets of MBTR parameters {min, max, 

nx, σ, d, cutoff}. The first set was {0, 1.4, 100, 0.1, 0.5, 10
−3} 

and the second set was {0, 1.2, 100, 0.045, 0.8, 10−5} (for a 
discussion on choosing the parameters, see the Supporting 
Information text and Figures S1 and S2). In the beginning, we 
trained MLM for the MBTR data corresponding to the first set 
of parameters. Minmax scaling was applied to the training data, 
so that descriptor values belonged to interval [0, 1]. As we 
mentioned earlier in the Theory section, overfitting is rarely an 
issue for MLM and EMLM. Therefore, we used the Full MLM 
and EMLM variants meaning that all data points were selected 
as reference points. We used MLM to predict potential 
energies during the Monte Carlo simulations in various 
simulation temperatures and with different starting structures 
taken from the training data. Monte Carlo frequently found the 
outer boundaries of the reference points pushing itself out of 
the working range of MLM. This resulted in erroneous 
potential energy values and nonphysical structures. In the 
Supporting Information text and Figure S3, we show that the 
MLM, which was trained only with the initial MD data,38 is 
not able to handle configurations produced by the Monte 
Carlo. However, it can still find clear structure−energy 
correlation within the training data. 
To cope with the erroneous behavior, we expanded the 

MLM training set including the MC-generated “unrealistic” 
configurations and their energies from DFT. The training set 
was expanded with 1580 new configurations for the Q and 
2124 for the T isomer. After this we used the second set of 
MBTR parameters, which had improved descriptive possibil-
ities (see Supporting Information). With the expanded training 
set and improved descriptor we trained both MLM and 

EMLM. In Figure 2, the principal component analysis (PCA) 
of the MBTR shows that the training set contains a large 
variety of configurations of both isomers spanning a large area 
of the feature space. Due to the fact that MLM/EMLM 
methods are using the Euclidean distances to measure the 
similarity of input point it is educative to visualize how the data 
points are arranged in the feature space. 

Validation: Potential Energy MLM/EMLM vs DFT-MD. 
For validation, we created new independent DFT MD 
reference data sets for both Q and T isomers. For the Q 
isomer, we ran 2000 steps at 269 K, 2000 steps at 475 K, and 
3653 steps at 795 K. For the T isomer we ran 2000 steps at 
273 K and 2049 steps at 486 K. Potential energies were 
predicted for every configuration using both MLM and EMLM 
and compared to the actual DFT values from the MD run. The 
performance is seen in Figure 3. Generally, the predicted values 
correlate clearly with the DFT values, with the root-mean-

Figure 3. Correlation between the predicted potential energy from 
(A) MLM and (B) EMLM to the DFT energy from the MD 
calculations for Q and T isomers. 
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squared error (RMSE) being 2.98 eV for MLM and 2.67 eV for 
EMLM. The corresponding average relative errors are only 
0.38% and 0.33%, respectively. The predicted energies are 
somewhat higher (less negative) than those from DFT. Our 
training set contains a lot of high energy configurations of 
Au38(SCH3)24; therefore, the set might be biased. The 
visualization of PCA in Figure 4 indicates that the new MD 

Figure 4. Visualization for PCA from training data and test MD data. 
Potential energies on z axis are computed with DFT. The graph is 
rotated with respect to Figure 2. In order to keep visualization clear, 
only 25% of the points are included. 

simulations are rather far away from the points in the original 
training set. However, they are not outside of the working 
region of the MLM and EMLM like the first Monte Carlo 
simulations, which were used to expand the training set. This 
enables distance-based methods to predict well the potential 
energy values. 
MC Simulations with EMLM-Predicted Energies. As 

the most stringent test, we performed MC simulations of both 
Q and T isomers at temperatures of 200, 250, and 300 K, using 
the EMLM-predicted potential energy in the Metropolis 
criterion while advancing the dynamics. Typical simulations 
were run for 9000 to 10000 MC steps, one MC step consisting 
of 86 independent trial moves of the atoms (hence 86 EMLM 
energy evaluations per MC step). PCA of the runs at 300 K is 
shown in Figure 5A, indicating that the MC dynamics of both 

isomers are concentrated on a quite small region close to the T 
= 0 K local potential energy minimum, as expected for this 
rather low temperature. Figure 5(B) shows the evolution of the 
potential energy of both isomers at 300 K indicating that the 
potential energy of the Q isomer is consistently lower by about 
1 eV than that of the T isomer. This result is consistent with 
the energetics known from DFT. 
We analyzed the statistics of selected bond distances and 

bond angles for both isomers from the MC runs at 200, 250, 
and 300 K. The last 500 MC steps from each simulations were 
used for the analysis. Figure 6 shows the statistics for the 
nearest neighbor Au−Au bonds in the metal core as well as for 
the S−Au and S−C bonds, and compares them to the statistics 
obtained from DFT MD runs at 268 and 474 K for Q isomer 
and 272 and 486 K for T isomer. We observe that the EMLM-
MC runs generally slightly overestimate the Au−Au bonds in 
both isomers as compared to DFT MD. The peaks of the 
distributions are at 2.862 Å (MC) and 2.805 Å (MD) for Q 
isomer, and 2.845 Å (MC) and 2.805 Å (MD) for T isomer. 
For S−Au and S−C bonds, EMLM-MC and DFT-MD 
produce very similar distributions both regarding the peak 
position and width. This analysis shows that the EMLM-MC 
runs indeed are able to simulate the bond dynamics of the 
atoms in the harmonic vibration regime. 
Figure 7 shows the corresponding comparison between 

EMLM-MC and DFT-MD data for Au−S−Au and S−Au−S 
angles. In the crystal structures of these isomers the Au−S−Au 
angle is close to 90° and S−Au−S angle close to 170° (Figure 
1). We observe that the maxima of Au−S−Au angles produced 
by EMLM-MC are slightly smaller than 90°, with a small side 
peak around 130° for the T isomer. We see a wider scatter in 
describing the S−Au−S angles in EMLM-MC as compared to 
DFT-MD, with the distributions having a maximum around 
150° and tail extending close to 100°. MD simulations shows 
distributions peaked around 170°. We assign these slight 
discrepancies to the k2 description of the MBTR which does 
not take into account any angular information. 

■ CONCLUSION 

Distance-based machine-learning methods discussed in this 
study are conceptually straightforward and very simple to 
implement. We have shown here that they are suitable to 

Figure 5. (A) Same as Figure 2, but including also the PCA analysis of EMLM MC runs at 300 K for isomers Q and T. The arrow highlights the 
region of the MC data. The analysis indicates that both of the isomers are vibrating close to their minima. Only 25% of the points are included into 
the Figure and PC1 values are multiplied with −1 to produce a comparable graph. (B) Evolution of potential energies of both isomers predicted by 
EMLM during MC. 
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Figure 6. Top row: bond distance distributions from EMLM MC simulations at the indicted temperatures. Bottom row: the same data from DFT 
MD simulations at indicated temperatures. Labels on the top indicate the isomer and bond type. The vertical dashed lines indicate the average peak 
positions for every angle distribution in both MC and MD cases for every column (purple, MC; black, MD). Most of them are overlapping, and 
only black lines are visible. The statistics are summed from Gaussian-smoothened (σ = 0.05 Å) data points. 

Figure 7. Top row: Selected bond angles distributions from EMLM MC simulations at the indicted temperatures. Bottom row: the same data from 
DFT MD simulations at indicated temperatures. Labels on the top indicate the isomer and type of the angle. The vertical dashed lines indicate the 
average peak positions for every angle distribution in both MC and MD cases for every column (purple, MC; black, MD). The colored numbers 
show the averages. The statistics are summed from Gaussian-smoothened (σ = 1.75°) data points. 

simulate complex systems such as MPCs that have a number of 
chemical interactions with varying strength, while resulting in 
significantly reduced computational cost as compared to DFT. 
The CPU time to predict the energy by using MLM or EMLM 
with MBTR k2-level descriptors for the atomic structure is 
several magnitudes smaller than for DFT. For a comparison, 
MLM/EMLM energy predictions were run on a single core of 
Intel Xeon CPU E5−2680 v3 @ 2.50 GHz with 8GB memory. 
Computing MBTR k2 with our parameters took about 0.07 s 
for one atomic structure. Prediction of the potential energy 
using MBTR k2 took about 0.05 s with EMLM and 0.56 s with 
MLM. The order-of-magnitude difference between MLM and 

EMLM arises from the fact that the EMLM needs reference 
points only in the input space and is ready to give an output 
estimate from matrix and vector multiplication, while the 
MLM is predicting distances in the output space and solving a 
multilateration problem. 
Excluding all angular information and using only pairwise 

distances to describe atomic structures with MBTR k2-level 
further helps to make these methods computationally light. 
The lack of angular information in MBTR k2 description does 
not mean, that our methods would not be able to reproduce 
reasonable bond angles. As shown in the Supporting 
Information, we could improve the description of the angles 
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of protecting RS(AuSR)n=1,2 units by tuning the parameters, 
although the MC simulations showed that the energy 
landscape produced by EMLM slightly differed from the one 
that DFT would yield. 
Monte Carlo was shown to be an efficient strategy to study 

the energy landscape learned by MLM and EMLM. The 
method is not bound by any assumptions; therefore, it freely 
explores the feature space and gives useful insight of possible 
weaknesses of the machine-learning method. An important 
lesson learned in this work was that the initial MC simulations 
showed that our initial DFT-MD training set38 was not 
extensive enough to train a comprehensive machine-learning 
method, since the DFT-MD produced atomistic configurations 
that were all “physical”. By enlarging the training data with the 
structures corresponding to the DFT energies of the 
“unphysical” configurations predicted by MLM/EMLM-MC 
back to the training data, we were able to teach the methods to 
avoid the unphysical regions of the configurational phase 
space. 
Our future work involves further development of the models 

and descriptors for MPCs and other heterogeneous nano-
structures. Here we used a global descriptor and predicted the 
potential energy of the system as a property of a whole system. 
Dividing the potential energy into atomic or molecular 
contributions creates in principle a way to get spatial insight 
into the energetics.26 Fabrizio et al. have pointed out that it is 
reasonable to use global description when predicting global 
properties but it might cause size-dependence, which some-
times can be overcome with usage of local descriptions.65 Our 
method is currently trained solely for Au38(SCH3)24 with the 
goal to demonstrate that distance-based machine-learning 
methods can be used to handle complex systems such as 
MPCs. We aim to generalize the methods by including other 
MPCs (other metals and ligands) and other sizes of gold− 
thiolate clusters in the training set. 
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1 Effects of MBTR k2 parameters to Monte Carlo simu-

lation 

The theory behind the MBTR descriptor is explained in the main article. It has a few 

parameters, which affect its descriptive effectiveness. One can define minimum and max-

imum values of the sweeping variable x, adjust Gaussian broadening with σ, increase or 

decrease the effect of long distance terms with d and adjust the summation of distributions 

with cut-off.1,2 We used the MBTR descriptor with k = 2 (MBTR k2), which contains only 

pairwise distances in the description. However, it does not totally neglect angular informa-

tion. The parametrization actually affects the angles in protecting units during Monte Carlo 

simulations. 

We present parameters as sets of {min,max,nx,σ,d,cutoff}. The first used set was {0, 1.4, 

100, 0.1, 0.5, 10−3} and the second one was {0, 1.2, 100, 0.045, 0.8, 10−5}. The MBTR is 

visualized in the top row of Figures S1 and S2. The most significant pairwise term is S-Au, 

which is drawn with thick red line in the Figures. When the first parameter set is used, the 

S-Au curve is dominated by the peak at about x ≈ 0.2. This corresponds to the distance 

of 5.0 Å. This is not the bond distance between the closest neighboring S and Au atoms. 

On the other hand, the MBTR shows two separate peaks when the second parameter set is 

used. One is at x ≈ 0.2 and another one at x ≈ 0.4. The second peak corresponds to the 

region close to 2.5 Å, which is close to the bond length of S-Au bond. This shows clearly 

that using the second parameter set descriptor can distinguish closest and second closest S 

and Au neighbors. 

We trained EMLMs and ran Monte Carlo simulations at 200 K, 250 K and 300 K using 

both parameter sets. The mechanics of Monte Carlo are explained in the main article. 

Simulations were run for 9000 to 10000 steps and the last 500 were used for the analysis. In 

the Figures S1 and S2, the angle distributions are presented for the corresponding MBTR 

parameters. It is clear that the distributions are much more well defined, when the second 

S2 



2 

parameter set is used. Especially the S-Au-S angle improves when the method uses the latter 

parameter set. 

Pitfalls of using molecular dynamics as a training data 

Molecular dynamics (MD) simulations are always deterministic. They create a path in a con-

figuration space as a function of time or simulation steps. This creates a pitfall for machine 

learning methods, especially for those whose construction relies on the actual observations, 

like the reference points with the distance-based methods. 

In the beginning we used the first set of MBTR parameters to describe the structures 

of Au38(SCH3)24 clusters. The structures were from the publication of Juarez-Mosqueda et 

al.3 The data set contained 25060 configurations in total. This data was then used to train 

the Minimal Learning Machine (MLM). From the whole data set 80% was randomly chosen 

to the training set. All training data points were selected as reference points during the 

training process. Finally the remaining 20% of the MD data was used for testing. The test 

results can be seen in Figure S3. It seems that the predicted potential energies of MLM 

follow accurately the results of DFT. In other words, the MLM could find a clear structure-

property correlation from the data set. Unfortunately the MLM is greatly restricted to the 

path that MD had made. It is not a difficult task to predict the property (in our case 

potential energy) between two similar data points along the path but predicting what is 

outside the path is much more difficult. This was seen in Monte Carlo simulations. They 

frequently broke the structures and made non-physical configurations, when this MLM was 

used to predict potential energies. In the main article principal component analysis (PCA) 

of the MBTR descriptors in Figure 2 shows how much the predicted structures differ from 

the original training data. In order to improve the generalization capability of the method 

we used configurations from these Monte Carlo simulations to expand the training set. 
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Figure S1: Here we visualize the effect of MBTR k2 to the angles of protecting units during 
the Monte Carlo simulations of Au38(SCH3)24 Q. In the top row MBTR k2 is shown for 
different element pairs. Left side shows the results for the first parameter set and right 
side for the second set. The statistics of angles are summed from gaussian-smoothened 
(σ = 1.75◦) data points. 
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Figure S2: Here we visualize the effect of MBTR k2 to the angles of protecting units during 
the Monte Carlo simulations of Au38(SCH3)24 T. In the top row MBTR k2 is shown for 
different element pairs. Left side shows the results for the first parameter set and right 
side for the second set. The statistics of angles are summed from gaussian-smoothened 
(σ = 1.75◦) data points. 
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Figure S3: Here the potential energies predicted by MLM are shown as a function of real DFT 
level potential energies. Data set contains both Q and T isomers of Au38(SCH3)24. From the 
data 80% is used as reference structures and the remaining 20% are used for testing. When 
MLM is interpolating within the set its predictive power is excellent. RMSE = root mean 
squared error, MAE = mean absolute error 
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Abstract: Minimal Learning Machine (MLM) is a recently popularized supervised learning method, 
which is composed of distance-regression and multilateration steps. The computational complexity 
of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers 
can be applied to the resulting linear problem. In this paper, a thorough comparison of possible 
and recently proposed, especially randomized, algorithms is carried out for this problem with a 
representative set of regression datasets. In addition, we compare MLM with shallow and deep 
feedforward neural network models and study the effects of the number of observations and the 
number of features with a special dataset. To our knowledge, this is the first time that both scalability 
and accuracy of such a distance-regression model are being compared to this extent. We expect our 
results to be useful on shedding light on the capabilities of MLM and in assessing what solution 
algorithms can improve the efficiency of MLM. We conclude that (i) randomized solvers are an 
attractive option when the computing time or resources are limited and (ii) MLM can be used as an 
out-of-the-box tool especially for high-dimensional problems. 

Keywords: machine learning; supervised learning; distance–based regression; minimal learning machine; 
approximate algorithms; ordinary least–squares; singular value decomposition; random projection 

1. Introduction 

Minimal Learning Machine (MLM) [1,2] is a supervised learning method that is based on 
a linear multi-output regression model between the input and output space distance matrices. 
The distance matrices are computed with respect to a subset of data points referred to as reference 
points. Although the mapping between the distance matrices is conducted linearly, the kernel-based 
construction using pairwise distances to the reference points enables the MLM to learn nonlinear 
relations from data for classification and regression problems. Promising results were obtained with 
the MLM in several applications [3–5]. 

The original formulation of the MLM was proposed in [1] and fully formalized in [2]. 
However, closely related proximity-based machine learning methods were proposed already from 
the start of the 21st century in [6–10]. Although the proposed methods in [6,9] are also based on 
using distance kernel in supervised learning, they are very different from the MLM. In the MLM, 
distances are used directly as features, and the outputs of the distance regression model are only used 
to define the multilateration problem which can be solved efficiently to obtain the actual prediction. 
The distance kernel-based construction of the MLM provides advantages compared to the more 
popular supervised methods such as Neural Networks and Support Vector Machines: The MLM has 
only one hyperparameter—the number of reference points—and over-learning seems not to occur in 
multidimensional input spaces [3,11–14]. Moreover, compared to currently popular feedforward 
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deep learning techniques [15] with nonlinear optimization of multiple layers of weights whose 
dimensions depend on the data dimension, the number of unknowns in the linear problem for 
the MLM is independent of the number of features (see Section 2.1). Hence, the simple formulation and 
straightforward training can improve the efficiency and reliability of the machine learning framework 
where the MLM is being applied. Practitioners do not need to tune various metaparameters related to 
the structure of the model and the way in which it is trained, so that more efforts can be dedicated to 
the way in which a particular application is being presented for supervised learning (see, e.g., [3]). 

Lately, it was shown that the MLM possesses basic theoretical guarantees [12]: interpolation 
and universal approximation capability. To reduce the complexity of the distance regression 
model, reference point selection methods for the MLM were proposed for classification [16,17] and 
regression [12]. In Ref. [13], use of a data independent regularization matrix in the MLM training was 
proposed to reduce the MLM model’s complexity similarly to reference point selection. The prediction 
of the MLM is obtained by solving a multilateration optimization problem determined by the predicted 
distances of the distance matrix mapping. In general, methods such as Levenberg-Marquardt [1], 
Newton [14], or Localization Linear System [12] (LLS) can be used to solve this problem efficiently. 
However, in a single-output regression and in classification, iterative algorithms can be completely 
avoided by using analytic formulae and nearest neighbor classification [11,18]. Hence, computationally 
the most demanding step of the MLM is to recover the linear distance matrix mapping from the 
ordinary least-squares (OLS) problem during training. If cross-validation is used to optimize the 
MLM’s only hyperparameter, the OLS problem has to be solved several times [12]. 

One possibility to reduce the computational burden in the linear distance regression is to use 
the iterative Singular Value Decomposition (SVD) update (pp. 101–102, [19]), which tries to reduce 
the total computational complexity by using the previously computed regression model. A more 
straightforward approach to speed up the computation is to use randomized SVD (pp. 49–50, [20]) 
or randomized LU decomposition (pp. 251–252, [21]) where the main idea is to compute the 
decomposition in a lower dimensional space approximately and then expand the result to the original 
dimensions. Comparisons between randomized and non-randomized solvers were reported previously, 
e.g., in [20], but to the best of our knowledge, such comparisons have not been performed when 
the overall quality of a machine learning framework, here the MLM, is being assessed. We also 
present a comparison of the MLM with shallow and deep feedforward neural network (FNN) 
models, experimenting on the effects of the number of features and the number of observations 
with both methods. 

Let us briefly summarize our main findings here. Direct solvers, especially Cholesky decomposition 
hold their position as the go-to solver if accuracy of the MLM model is the main objective. They can be 
also extended to GPUs [22]. Randomized solvers are a valid option if time is an issue or the accuracy 
of the model can be slightly relaxed. In addition, differently from feedforward networks, the MLM 
remains both efficient and accurate in a high-dimensional situation where even 90% of the given 
features are unnecessary. Therefore, based on the comparison, the MLM should be generally preferred 
over FNN for high-dimensional datasets. 

The contents of the paper are as follows: First, in Section 2, we introduce the basic 
MLM formulation and solvers for the MLM’s distance matrix mapping. In Section 3, we show 
experimental results for the solver comparison with several real datasets. The expanded result 
tables are presented in Supplementary Material. Discussion of the results is given in Section 4. 
Finally, Section 5 concludes the paper. 

2. Methods 

Next, we summarize the basic MLM method [2,11], the reference point selection algorithm 
RS–maximin [11,12], and different choices of the linear system solvers. 
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2.1. MLM in a Nutshell 

Given a set of inputs X = {xi}N 
1, where xi ∈ RM, and the corresponding outputs Y = {yi}N 

1,i= i= 
where yi ∈ RL , the MLM originates from the distance matrices Dx ∈ RN×K and Dy ∈ RN×K . 
These are computed with respect to sets of reference points R = {rk}K

k=1 ⊆ X and T = {tk}K
k=1 ⊆ Y, 

where Dx(i, k) =  xi − rk , Dy(i, k) =  yi − tk , and K ≤ N. Here  ·  denotes the originally proposed 
euclidean distance [2], although the MLM method is applicable with any dissimilarity metric. 

The linear mapping between the distance matrices can be recovered from the Ordinary 
Least-Squares (OLS) estimate (p. 36, [2]) 

B = (Dx Dx)
−1Dx Dy. (1) 

For the special case when N = K we have a single solution if the matrix Dx is of full-rank 
(p. 36, [2]). Then the mapping can be solved simply with 

B = Dx 
−1Dy. (2) 

Equations (1) and (2) suggest that the inversion of the input distance matrix Dx has a central 
role in the computational efficiency of the MLM. It is a dense matrix with non-negative components 
because with distinct inputs only the distance from each reference point to itself ( xi − xi ) is zero. 

The original suggestion in [2] was to select the reference points, i.e., locations of the distance-based 
basis functions, randomly. However, this does not ensure proper exploration and representation of the 
convex hull of the data. For this purpose, the RS–maximin algorithm was later suggested (p. 11, [12]), 
(pp. 36–37, [11]) for the reference point selection. RS–maximin is based on maximin clustering method 
by Gonzales [23]. It selects new reference points sequentially from the input space starting from the 
mean of data by maximizing the distance to the already selected reference points. This selection 
method makes the MLM approach fully deterministic and enforces possible duplicate observations in 
the input data to be the last ones to be selected. 

The training phase of the MLM simply consists of the creation of distance matrices and the 
recovery of the coefficients B of the linear distance regression. To predict the output ỹ of a new, 
unseen input x̃ with the MLM, one needs to solve a multilateration problem [2] 

K � �2 J (ỹ ) = ∑ ỹ − ti 
2 − ffii 

2 , (3) 
i=1 

where ffi = [  x̃ − r1 , ..., x̃ − rK ]B. As explained in Section 1, in single-output regression and 
multi-class classification, the second step can be solved efficiently by using direct methods [11,18]. 

As the training phase of the MLM is based on learning a multi-target regression model for the 
distance matrices, the computational costs and scalability of the method are solely determined by 
the number of observations also for the high-dimensional input and output data. More precisely, 
the number of features do not affect the dimensions of B as it is determined by the number of 
observations. It does affect the computation time of B as vectors need to be computed for B. 
This is a significant difference, e.g., compared to the feedforward randomized [24] or deep [15] 
learning techniques. 

2.2. OLS Calculation Methods 

A total of nine different approaches for solving the matrix inverse in Equation (1) in the context of 
the MLM were chosen for the comparison. While matrix inversion is a thoroughly explored subject, 
the effect of a solver on the performance of the MLM, from both computational efficiency and prediction 
accuracy perspectives, has not been presented before. Iterative, inexact stochastic gradient-based 
methods such as Adam [25] are typically used in deep learning without rigorous control on the solution 
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accuracy of the nonlinear optimization problem during training, so here we test how randomized 
approximate solution affects the prediction capability of the MLM. 

The methods were selected on the basis of covering different solution techniques and being 
available. The selected approaches are summarized in Table 1 along with their abbreviations used 
in the plots. Please note that the recently proposed randomized LU decomposition method in [21] 
was omitted from the comparison because it is based on a randomized SVD template which is readily 
covered by the other techniques. 

Table 1. Methods compared. 

Name Abbreviation Source 

np.lstsq Lstsq_X [26] 
np.inverse np_inv_X [26] 
np.solve np_sol_X [26] 
Cholesky decomposition Cho.Dec [26,27] 
np.svd np_svd [26] 
sp.svd sp_svd [27] 
rank K random SVD rKrSVD_XX [20] 
sk rank random SVD sk_rrSVD_XX [28] 
SVD update SVD–upd [19] 

More of the practical details of the methods compared are given in Section 3.1. It is also relevant to 
note that when using RS–maximin as the reference point selection algorithm for the MLM, the rank of 
matrix Dx increases as a function of the number of reference points as shown in Figure 1. We show the 
mean of the number of relevant singular values in Figure 1 as each simulation was repeated 40 times 
for each dataset and reference point percentage. This is explained further in Section 3. 

5000 
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Figure 1. Mean of the number of relevant singular values in matrix Dx as the function of reference 

points with dataset Computer Activity. 

The singular value decomposition [29] is a factorization method of a matrix A ∈ RN×K in 
which it can be expressed as the product of three matrices: unitary U ∈ RN×N , diagonal S ∈ 
RN×K and unitary V ∈ RK×K in the way of A = USV . The randomized SVD [20,28] methods are 
based on a random projection to a lower matrix rank by constructing a desired rank randomized 
orthogonal matrix and using it with the original matrix to construct the singular value decomposition. 
Their goal is to approximate the input matrix to a high enough degree to be useful in practical 
situations while providing speedup in computational times by momentarily moving the calculation to 
a lower dimension. 

N
u
m

b
e
r 

o
f 

re
le

v
a
n
t 

s
in

g
u
la

r 
v
a
lu

e
s
 

10 20 30 40 50 60 70 80 90 100 

Reference point % 



�
�

� � � � �

� � �

� � �

�

�

537 Mach. Learn. Knowl. Extr. 2020, 2 

The use of randomized SVD’s in solving B with Equation (1) is based on the singular value 
decomposition of the input space distance matrix Dx = USV which allows us to avoid computing 
the matrix inverse. By substituting Dx = USV into Equation (1) we get  

� �−1 
B = VS U USV VS U Dy � �−1 
= VS2V VS U Dy (4) 

= (V )−1S−2V−1VS U Dy 

= VS−1U Dy. 

Equation (4) is useful since the SVD decomposition can be used as it is and there is no need to 
reconstruct Dx from the decomposition or to compute heavy matrix inversions. In this paper, we use 
Equation (4) in the place of Equation (1) when using SVD based methods. 

3. Experiments and Results 

In this section we describe the experimental setup and show the experimental results. 

3.1. Details on the Methods 

Of the nine tested unique methods, five were tested multiple times with small differences. 
Methods Lstsq, np.inverse and np.solve had two versions, one with Tikhonov regularization [30] and 
one without. Methods rank K random SVD and sk rank random SVD are based on random projection to a 
lower matrix rank and were tested with five different settings, one for each remaining rank percentage 
(20%, 40%, 60%, 80%, and 100%). Thus, the total number of tested methods and their versions was 20. 

Of the methods, np.lstsq, np.inverse, np.solve, Cholesky decomposition, np.svd, sp.svd and sk rank random 
SVD were readily implemented in commonly available Python packages [26–28]. Of these, np.inverse and 
np.solve require the input matrix to be square and invertible. Cholesky decomposition requires the input 
matrix to be a Hermitian positive–definite matrix. Matrix Dx Dx in (1) is not guaranteed to satisfy 
these assumptions. As the readily implemented methods are readily available with documentation and 
source code, we will not go into detailed explanations here. As their names imply, np.lstsq uses a least 
squares solver to compute the approximate solution, np.inverse solves the inverse of the given matrix 
and np.solve computes the solution to a linear equation. Decomposition methods Cholesky decomposition, 
np.svd, sp.svd and sk rank random SVD compute their respective decomposition and SVD based ones 
make use of Equation (4). The Cholesky decomposition solves the inverse of a matrix by computing L 
and using a specialized solver made for triangular groups of equations. 

Martinsson et al. [20] proposed a rank–k random SVD algorithm, for which we could not find any 
available implementation. Our implementation is based on algorithms 4.3 and 5.1 by (pp. 25–28, [31]). 
Moreover, the SVD update by (pp. 101–102, [19]) was readily available for Python 2.7 (link in source 
for original) and had to be modified to use Python 3. 

Finally, the so-called industry standard least squares solver with Tikhonov regularization (Lstsq) 
was chosen as the baseline in the statistical analysis of the MLM model’s generalization capability 
(i.e., cross-validation error) using the Kruskal–Wallis H test [32]. 

3.2. Datasets 

A representative set of publically available machine learning datasets were chosen for the tests, 
as presented in Table 2. Of the public datasets, the first five are actual regression datasets and, 
therefore, primarily used in this study. They were previously used in the MLM research and they were 
chosen to enable us to probe the scalability of the OLS computation methods (p. 13, [12]). The largest 
dataset, Mnist, was created by combining the training set and the test set. Because of our special 
research interest in nanotechnology [3], the density functional theory (DFT) oriented nanostructures 
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as gathered by Juarez-Mosqueda et al. [33] were used to create nine different special datasets. 
These different feature representations of the Au38Q hybrid nanostructures allow us to assess the 
effect of the number of features and the number of observations. The details on how these nine 
instances of data were formed are given in Appendix C. 

Table 2. Datasets used. 

Dataset name Acronym # Obser. # Feat. # Uniq. Targets Source 

Breast Cancer Progn. (Wisc.) BC 194 32 94 [34] 
Boston Housing BH 506 13 229 [34] 
Airplane Companies Stocks AC 950 9 203 [35] 
Computer Activity (CPU) CA 8192 21 56 [36] 
Census (House 8L) CE 22,784 8 2045 [36] 
Mnist MN 70,000 784 10 [37] 
Au38Q AuNx-yk 12,413 4000 12,413 [33] 

Preprocessing each dataset included removal of incomplete observations and constant 
features, and normalization of the input and output ranges into [0, 1] with minmax-scaling. 
Duplicate observations were not removed. This only affects the Census dataset due to it being the 
only one with duplicate observations (one duplicate). The duplicate was present in the simulations 
when the portion of the reference points increased but it did not affect the results because of the use of 
RS-maximin as the reference point selection algorithm (see Section 2.1). 

The first two features (measurement identification number and class-based outcome variable) 
were removed from the Breast Cancer dataset and the feature “disease-free time or recurrence time” 
was used as the target output. For the other datasets, the last feature was used as the output feature. 
Table 2 presents the dimensions of the input matrices for the datasets. The sources of the datasets 
include a link to where we obtained the datasets. 

3.3. Experimental Setup 

Experiments were carried out using Python 3.7.3 with two Intel Xeon E5-2680 v3 CPUs (for 
a total of 24 threads at 2.50 GHz) and 188 GB RAM. The main packages were NumPy (version 
1.16.4) [26], Scikit-learn (version 0.20.3) [28] and SciPy (version 1.3.0) [27]. Source code for the 
implemented rKrSVD_XX is provided in the supplementary files along with MLM and RS-maximin. 
Each dataset was randomly split into a training set (80%) and a test set (20%) 100 times. We measured 
the root mean square error (RMSE) value of the MLM test error and the process time taken to 
compute Equation (1) when the portion of the selected reference points increased according to 
[10%, 20%, . . . , 100%]. The measurements were performed on all methods for all reference points 
before a new randomly generated dataset split was created. This was to ensure that the results from 
each iteration would be comparable. 

Exceptions had to be made with the Census dataset and SVD update due to time constraints. 
The dataset Census was randomly split 40 times instead of 100, a smaller set of methods were tested 
and with reference points [10%, 20%, . . . , 70%]. SVD update had to be measured differently, due to its 
iterative nature. The method was used to evaluate Equation (1) at the same reference points as the 
other methods. In the required intermediary update iterations, only the internal update was called to 
avoid reconstructing the SVD decomposition which the SVD update holds within itself. For SVD update, 
each provided process time value includes the time taken to evaluate Equation (1) and the time that 
was taken to get to that evaluation. The SVD update in total is the slowest of the selected methods and 
it was only experimented with the Breast Cancer, Boston Housing and Airplane Companies Stocks datasets. 

Based on the results, we wished to study lower remaining rank percentages and chose to do this 
with Census and Mnist. The reasons are further expanded upon in Section 4. We selected Cholesky 
Decomposition as the baseline and compared it to sk rank random SVD with remaining rank percentages 
[1%, 10%] at reference points [10%, 20%, . . . , 100%]. The measurements were repeated 30 times at 
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each reference point by randomly selecting the training and test sets. We repeated the process time 
and the model accuracy measurements 40 times. Each with randomly selected training and test set. 
The full MLM case of Equation (2) is not used in the experiments. The results as a function of different 
reference point percentages need to be comparable to each other, which removes the possibility of 
using Equation (2). 

It is also interesting to compare the performance of MLM with a shallow and a deep feedforward 
neural network (FNN) models due to their popularity [38]. The experiments with FNNs were carried 
out using the popular Tensorflow_cpu 2.1 for Python 3 framework [39]. Both a shallow model with one 
hidden layer as well as a deep network architecture with three hidden layers, and four transformation 
layers altogether, were tested. We applied systematic, gradual decrease strategy to fix the sizes of the 
hidden layers. More precisely: 

Deep feedforward neural network (FNN-4) 

1. Input layer of size M, 
2. Feedforward layer with sigmoid activation function of size M/2, 
3. Feedforward layer with sigmoid activation function of size M/4, 
4. Feedforward layer with sigmoid activation function of size M/8, 
5. Feedforward layer with sigmoid activation function of size 1, 

Shallow feedforward neural network (FNN-2) 

1. Input layer of size M, 
2. Feedforward layer with sigmoid activation function of size M/2, 
3. Feedforward layer with sigmoid activation function of size 1, 

FNNs were trained using maximum of 150 epochs using a batch size 10 with an early stopping 
criteria that followed the RMSE test error.I.E. the default settings for Adam-solver and sequential dense 
layer model given by Tensorflow 2.1 plus the early stopping criteria. Because of random initialization, 
the training process of FNN is not deterministic, so we repeated the training 10 times and selected the 
result based on the minimal training error. From the 40 results of the random splits into training/test 
datasets, we then calculated the mean and standard deviation for the test errors. The random splits 
into training/test datasets were the same as with the MLM, limiting to the first 40 in the case of smaller 
datasets (where total of 100 splits were used with the MLM). We measured the training time of the 
FNNs and compared them to Equation (1) computation time on the same hardware. The reported 
process times for the FNNs are the average of the sum of 10 trainings made for each training/test split. 

Finally, we performed experimentation on the Au38Q dataset. The dataset and its variants allowed 
us to study the effects of the number of observations and the number of features on the MLM by 
doing a method comparison between Cholesky decomposition and random SVD with remaining rank 
percentages [1%, 10%]. We also computed results with the FNNs for the Au38Q dataset. 

The MLM measurements were performed as previously, we had Cholesky Decomposition and 
variants of sk_rrSVD_XX (remaining rank percentages [1, 10]) as the solvers. Each dataset was 
randomly split into 40 different training and test datasets with 80/20 ratio and the reported normalized 
RMSE value is measured from the test set as well as the process time taken to solve Equation (1). 
FNN measurements were also carried out in the previous way with the 40 random 80/20 splits and 
10 repeats at each random split. 

3.4. Results 

We were interested in measuring the MLM test error (RMSE) and process time (time taken to 
compute Equation (1)) and we measured them as a function of reference point percentages [10%, 100%] 
for each dataset. We report the numerical values in tables and of these tables, we show the RMSE 
table for reference point percentage 70% in Table 3 here. Due to the number of tables, we opted to 
present the rest in Supplementary Material (Tables S1–S19). In Table 3, we report the mean x and 
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standard deviation σ of each measured method, dataset and reference point percentage combination. 
For rigorous statistical analysis, [40], we also show the result of Kruskal–Wallis H test (significance 
level 0.05) by bolding the text of the mean values that are considered to be different from the mean 
result. In the data tables, below the symbol of either mean x or standard deviation σ is the order of 
magnitude of the numbers in the same column. 

Table 3. RMSE for K = 70. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 

x σ x σ x σ x σ x σ 
Method/coef. 1 × 10−1 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−3 1 × 10−2 1 × 10−4 1 × 10−2 1 × 10−3 

Lstsq 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17 
Lstsq (nr) 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
np.inv 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17 
np.inv (nr) 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
np.solve 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17 
np.solve (nr) 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
np.svd 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17 
sp.svd 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
Cho.Dec 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17 
rKrSVD02 2.67 2.33 7.93 1.38 2.57 1.47 2.48 8.17 6.21 2.12 
rKrSVD04 2.72 2.27 7.1 1.36 2.31 1.48 2.45 8.27 6.24 2.18 
rKrSVD06 2.75 2.37 6.86 1.36 2.23 1.46 2.44 8.39 6.27 2.18 
rKrSVD08 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
rKrSVD10 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
skrSVD02 2.65 2.32 7.8 1.47 2.49 1.63 2.46 8.38 6.18 2.2 
skrSVD04 2.72 2.35 6.98 1.38 2.28 1.46 2.44 8.3 6.24 2.2 
skrSVD06 2.75 2.37 6.84 1.36 2.22 1.45 2.43 8.39 6.27 2.17 
skrSVD08 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
skrSVD10 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
SVDU 2.74 2.36 7.07 1.47 2.27 1.62 - - - -

We show plots of the RMSE and process time behaviors as a function of reference point percentages 
for Airplane Companies Stocks in Figure 2, for Computer Activity in Figure 3 and for Census in Figure 4. 
In the figures we show the mean value of either RMSE or process time and plot only the lines that are 
either from Lstsq or differ statistically from it using the Kruskal–Wallis H test with 0.05 significance level. 
As is shown in Table 3, we also calculated the standard deviation for each datapoint and as stated 
previously, we presented similar tables corresponding reference point percentages [10–60%, 80–100%] 
for RMSE and [10%, 100%] for process time in Supplementary Material. Non-Tikhonov-regularized 
versions of methods are not shown in the figures in order to improve readability. Since the two random 
SVD methods have nearly identical performance, only the readily implemented version, rank K random 
SVD is shown in the figures. 

Please note that the process time in Figure 2b is not truly comparable between SVD update and 
the other methods because of the iterative nature of the SVD update. The process time values for SVD 
update include the iterative update steps that are necessary for the method. As the other methods do 
not need iterative steps, they naturally have faster computation times in the type of point testing that 
we performed. 

After our initial simulations we wanted to see an even lower rank reduction percentage. To that 
end, we chose to use Cholesky decomposition as the baseline method due to its performance in the initial 
simulations. We compared sk_rrSVD_XX with remaining rank percentages [1%, 10%] to the selected 
baseline with reference point percentages [10%, 100%]. As with previous simulations, we repeated 
the calculations 40 times in order to use statistical testing. The result for RMSE values and process 
times are shown in Figure 5 and the numerical values and standard deviations can be found in the 
Supplementary Material in Tables S20 and S21. Please note that unlike in the initial simulations, 
duplicates were removed from Census since the MLM requires all observations to be unique and Census 
as it is contains a duplicate observation. 
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(a) Normalized RMSE (b) Process time 

Figure 2. Normalized RMSE values (a) and process times (b) as a function of reference points for the 

Airplane Companies Stocks dataset. In (a), only methods that at any reference point percentage differ 

from Lstsq with Kruskal–Wallis H test are shown along Lstsq. 

(a) Normalized RMSE (b) Process time 

Figure 3. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Computer Activity dataset. In (a), only methods that 
at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are shown along Lstsq. 
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(a) Normalized RMSE (b) Process time 

Figure 4. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Census dataset. In (a), only methods that at any 

reference point percentage differ from Lstsq with Kruskal–Wallis H test are shown along Lstsq. 

After the results shown in Figure 5, we wished to see the behavior on an even larger dataset. 
For this, we chose Mnist since it is readily available and sufficiently larger than Census. Mnist is a 
classification dataset but here it is considered to be an integer regression dataset. Cholesky decomposition 
continued to function as a baseline method to the compared sk_rrSVD_XX at reference point 
percentages [10%, 100%]. We used remaining rank percentages [1%, 10%] with sk_rrSVD_XX and 
repeated each point calculation 40 times with randomized selection of training and testing sets. 
The result is shown in Figure 6 and the numerical values along with computed standard deviations 
are presented in Supplementary Material in Tables S22 and S23. Please note that Mnist had duplicate 
removal as a preprocessing step unlike the datasets in the initial simulations. 

We opted to include result figures with the FNNs in Appendix A for datasets Breast Cancer 
(Figure A1), Boston Housing (Figure A2), Airplane Companies Stocks (Figure A3), Census (Figure A5) and 
Mnist (Figure A6). The raw data is provided in the supplementary as Tables S24 and S25. The figures 
in Appendix A contain the calculated results for the FNNs and the corresponding results for the 
MLM. Figures A1 and A2 are the normalized RMSE and process time used for the MLM and the 
FNNs for datasets Breast Cancer and Boston Housing. Figure 2 corresponds to Figure A3, where the 
difference is the addition of the FNN results. Similarily, Figures 3, 5 and 6 respectively correspond 
to Figures A4, A5 and A6. The figures presented in Appendix A have the item “FNN-4” representing 
the results relating to the deep neural network, or the neural network with four layers and “FNN-2” 
representing the one with two layers. For the figures with RMSE values, we also included the standard 
deviation and represented it as a see-through filled area. 

Results for the dataset Au38Q are shown in Appendix B in Figures A7 and A8. The raw data is 
provided in the supplementary as Tables S26–S45. It is important to note that in the name of readability, 
we included another version of Figure A7 in Figure A9. The difference being the removed plot of 
FNN-2 due to its behaviour in the 4000 feature column. In addition, Figures A8 and A9 also have 
equalized Y-axes to better show the behaviour of MLM. 
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(a) Normalized RMSE (b) Process time 

Figure 5. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Census dataset. Variants of sk_rrSVD_XX that 
differ statistically from Cholesky decomposition are marked with *. 

(a) Normalized RMSE (b) Process time 

Figure 6. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Mnist dataset. Variants of sk_rrSVD_XX that 
differ statistically from Cholesky decomposition are marked with *. 

4. Discussion 

Various methods to recover the weight matrix in the distance-regression and their effects to the 
accuracy of the whole MLM were studied with fifteen different instances of seven datasets. In addition 
to this, we also compared a smaller subset of MLM methods with two feedforward neural network 
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configurations. We will first provide discussion related to the direct and randomized solvers and then 
discuss the comparison between MLM and FNNs. We wished also to see the performance of the novel 
incremental SVD update algorithm SVDU but the computational resources it required forced us to 
stop using it on bigger datasets than Airplane Companies Stocks (see Figure 2b). 

4.1. Comparison of Direct and Randomized Solvers for MLM 

In the experiments, we wanted to see if the industry standard solver Lstsq could be improved upon 
by randomization. It was noted that the readily implemented solvers generally had the same accuracy 
with minor differences in progress times. Considering this, we do our comparisons of random SVD to 
either Lstsq due to its status as the industry standard or to Cholesky decomposition due to it generally 
outperforming all other readily implemented methods. We presented summary of the comparison in 
Table 4. In short, Table 4 tells us that randomized solvers beat the accuracy of Cholesky decomposition in 
two datasets and that the training time with randomized solvers is faster in 11 datasets. Expecially in 
the largest two and in the Au38Q dataset. We can summarize Figures 2a, 3a and 4a by noting that 
readily implemented methods match each other in the accuracy they provide to the MLM and that 
randomized solvers start falling behind at 30% reference points and higher. It is to be expected that 
the introduction of randomness in the solver causes the accuracy of the MLM to change relative to 
the amount of introduced randomness. The differences between the methods are mostly found in the 
process time Figures 2b, 3b and 4b. Based on the process time behavior in the figures, it is clear that 
a specialized solver such as Cholesky decomposition is superior to Lstsq in the MLM context. This led 
us to leave Lstsq out of further experiments and use Cholesky decomposition as the default method in 
this comparison. The results also show the expected behaviour that the degree of randomness in the 
random SVD solver has a direct effect on the process time taken. 

The process time figures gave us the idea to use even lower remaining rank percentages with 
the random SVD and to use it on a larger dataset. This led us to use remaining rank percentages 
[1%, 2%, . . . , 10%] which were reported in Figures 5 and 6. Figures 5a and 6a, in conjunction with 
Figures 2a, 3a and 4a, show that the random SVD has a tendency to plateau around 30–50% reference 
point mark. This is to say that the random SVD does not provide the MLM with meaningful increases 
in accuracy at higher reference point percentages. The same 30–50% reference point mark is the area 
where low remaining rank percentage random SVD overtakes Cholesky decomposition in process time 
as is seen in Figures 5b and 6b. We do not know why in Figure 5a the Cholesky decomposition shows a 
non-improving accuracy score. 

Table 4. Summary of comparison between Cholesky decomposition and randomized solvers for the MLM. 
Symbols + and − indicate that the randomized solver is better/worse than the Cholesky decomposition. 

MLM (Cholesky Decomposition) Accuracy Training Time 

Dataset rnd. Solver rnd. Solver 

BreastCancer + − 
BostonHousing − − 
AirplaneCompanies − − 
ComputerActivity − − 
Census + + 
Mnist − + 
AuN2-4k − + 
AuN2-8k − + 
AuN2-12k − + 
AuN10-4k − + 
AuN10-8k − + 
AuN10-12k − + 
AuN100-4k − + 
AuN100-8k − + 
AuN100-12k − + 
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The results of the MLM in the case of the Au38Q dataset are shown in Figures A7, A8 and A9. 
Figure A8 depicts the process times and Figure A9 the accuracy most clearly. An immediate observation 
from Figure A9 is that the subfigure columns for 400 features and 4000 features appear identical. 

Figure A10 shows that the outlook of the dataset has not changed in any meaningful way when the 
number of features increases from 400 to 4000. The reason for that is found in the original nanocluster 
trajectory data for Au38Q where the entire dataset is composed of nanocluster configurations where each 
adjacent nanocluster differs from each other in miniscule fashion. This is to say that the nanocluster 
configurations in Au38Q are similar enough to each other that 4000 features do not provide additional 
information that could be used when compared to 400 features. Should there be more variance 
in the dataset (such as nanoclusters from another isomer) we would expect to see 4000 features 
provide information that 400 features cannot provide. This is at the same time a good argument for 
feature selection. Regarding random SVD and Cholesky decomposition, we are comfortable in noting 
that Cholesky decomposition is a clear winner in the accuracy it provides to the MLM with the Au38Q 

dataset. Although we do suspect that the result would not be so cut an dry with a dataset of more 
variance. Considering the properties of the MLM in the case of Au38Q in Figure A7 we can say the 
following: The increasing number of observations improves the accuracy of the MLM model and the 
increasing number of features do not improve the result if the increased number of features do not 
provide meaningful information. Also, the increasing number of features does not make the result 
worse either. Process time wise (Figure A8), the MLM behaved as expected. The process time taken 
increased as the number of observations increased and it changed only slightly by the changes in the 
number of features. 

4.2. Comparison of MLM to Shallow and Deep FNNs 

We begin the discussion about the FNN results with a short summary of them. In general, the deep 
FNN architecture, with higher computational costs, provided better accuracy than the shallow one. 
However, the variation of accuracy for both FNN models was rather extensive in the Breast Cancer, 
Boston Housing, Computer Activity and Census datasets. One could expect that the larger network FNN-4 
would have higher accuracy than the FNN-2, with longer training times as a drawback. One could also 
expect that the FNN-2 models for datasets with low number of features could be competitive against 
the more complex FNN-4. Both assumptions are backed up by our results, although the process time 
for Mnist in Figure A6b was smaller for the FNN-4 compared to FNN-2. 

The results for the MLM and FNN comparison are summarized in Table 5. In terms of the overall 
performance, i.e., by considering both accuracy and training time, MLM with Cholesky decomposition 
was better than FNN in nine of fifteen (60%) of the cases. The training times were on a same level only 
with Mnist, otherwise MLM training was more efficient with a clear margin, altogether in 93% (14/15) 
of the cases. The FNN-4 model’s accuracy was comparable to the MLM in five cases, and better than 
MLM only for the Mnist dataset. This outcome is probably due to the form of Mnist data, which is 
given by small 28 × 28 images whose processing through multiple higher-level feature generating 
layers is known to be advantageous, especially, compared to a direct distance computation between 
the gray scale values as with the MLM. 

Regarding FNN and the Au38Q dataset, one can immediately see that FNN-2 is not competitive in a 
situation with 4000 features (Figure A7). This was fully expected, as FNN-2 was not meant for datasets 
with high number of features (even if it adapts to the number of features in the dataset). In addition, 
FNN-2 can at best only match FNN-4 with the Au38Q dataset. Observing FNN-4 in Figure A9 reveals 
a trend. At first, the increasing number of features to 400 is beneficiary for both MLM and FNN-4. 
However, a further increase in the number of features to 4000 causes FNN-4 to lose accuracy while 
MLM stays the same. In addition, the increase in the number of observations causes FNN-4 to gain 
accuracy with 80 and 400 features whereas it loses accuracy in the case of 4000 features. This indicates 
that FNN-4 cannot naturally handle an increased number of either observations or features that do not 
provide new information. Something that MLM shows itself to be capable of. 
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Table 5. Summary of comparison of MLM with Cholesky decomposition to a shallow (FNN-2) and a 

deep (FNN-4) neural network results. Symbols +, ≈, and − indicate that the FNN results are better, 
no different, or worse than the MLM results, respectively. Symbol / and the symbols with it are used to 

signify that the FNN results are not properly in either category. 

MLM (Cholesky Decomposition) Accuracy Training Time 

Dataset FNN-4 FNN-2 FNN-4 FNN-2 

BreastCancer ≈ ≈ − − 
BostonHousing − − − − 
AirplaneCompanies − − − − 
ComputerActivity ≈ − − − 
Census − − − − 
Mnist + ≈ − / ≈ −/ ≈ 
AuN2-4k − − − − 
AuN2-8k − − − − 
AuN2-12k − − − − 
AuN10-4k −/ ≈ − / ≈ − − 
AuN10-8k − / ≈ − / ≈ − − 
AuN10-12k − / ≈ − − − 
AuN100-4k − − − − 
AuN100-8k − − − − 
AuN100-12k − − − − 

In order to improve the FNN models’ accuracies, we would need to manually tailor the models 
for each dataset. This brings an important point in the comparison of the MLM to FNN models. 
The MLM has a clear advantage compared to the deep FNN models. Achieving a better result with the 
MLM can be conducted straightforwardly since MLM has a only one hyperparameter. Increasing the 
number of reference points increases the accuracy of the regression model with a cost of higher training 
time. In contrast, the FNN models are known to require careful hyperparameter selection and a 
well-designed structuring of the hidden layers. Zhou and Feng [41] argue that the training of deep 
neural network models resembles more an art than science or engineering. 

5. Conclusions and Future Work 

Summarizing our work, we showed results for the accuracy of the MLM and the process time 
taken to solve Equation (1) for randomized SVD algorithms with varying level of randomness and 
for direct solvers that are well-known to research community. In addition to this, we compared the 
accuracy of the MLM to deep and shallow FNN models by means of the number of observations and 
the number of features. To begin, we started with Lstsq as the standard and ended up switching it to 
Cholesky decomposition as it clearly outperformed Lstsq as well as other tested direct solvers. The only 
datasets where Cholesky decomposition was not the clear winner in accuracy provided to the MLM 
were Breast Cancer (see Tables 3, Tables S5–S9) and Census (see Figure 5a and Table S20). From there 
we can make the conclusion that if the accuracy of the MLM is the only objective, then randomized 
solvers do not provide an advantage if the dataset is preprocessed so that there are no duplicates. 
The randomized solvers come in to play if the training speed is an issue and one is handling a large 
number of observations. The random SVD follows the general principle that the higher the randomness 
the lower the accuracy and faster the training speed. However, in the context of the MLM the reduction 
of accuracy in the solver does not translate to as great of a loss in model accuracy. Meaning that one 
might expect to have results roughly somewhere in the ballpark if 99% of the information is replaced 
with randomness but in practice the results with random SVD at low remaining rank percentage are 
in the same order of magnitude. We can conclude that a researcher may choose to sacrifice some 
accuracy and gain speed in the training phase by choosing a randomized solver with a low remaining 
rank percentage. 
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As a whole, we demonstrated that: 

1. If accuracy is the only objective in a prepared situation, one should choose to use a direct solver 
with the MLM. 

2. If not, randomized solvers provide comparable performance to direct solvers while 
providing a speedup. 

3. Utilization of linear training technique with a distance-based kernel is computational more 
efficient than nonlinear optimizers needed for the FNN models. In general, the MLM 
outperformed the shallow and deep FNNs with fixed architecture, with one exception. 
Especially, in cases of thousands of features, as with the experiments for the Au38Q 

dataset here, the MLM is the recommended technique from both training time and model 
accuracy perspectives. 

Therefore, the use of randomized algorithms appear to be a promising avenue for improving the 
efficiency of the MLM and other distance-based regression techniques. In addition to this, we believe 
that our comparison of the MLM with currently popular neural network techniques showed that the 
MLM is a viable option as the general method for nonlinear regression problems. 

While this work focused on randomized algorithms, we find it an important topic of future work 
to expand the comparison also to iterative solution methods such as the Chebyshev method [42] 
and the block-iterative methods [43]. Especially the classical block Jacobi method with successive 
overrelaxation can be easily parallelized using data parallelism. It would also be interesting to see the 
performance of the MLM when it is set to use a GPU in the calculations. 
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Appendix A. MLM vs. FNN 

(a) Normalized RMSE (b) Process time 

Figure A1. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Breast Cancer dataset. In (a) for MLM, only 

methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are 

shown along Lstsq. 

(a) Normalized RMSE (b) Process time 

Figure A2. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Boston Housing dataset. In (a) for MLM, 
only methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test 
are shown along Lstsq. 
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(a) Normalized RMSE (b) Process time 

Figure A3. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Airplane Companies Stocks dataset. In (a) for MLM, 
only methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are 

shown along Lstsq. 

(a) Normalized RMSE (b) Process time 

Figure A4. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Computer Activity dataset. In (a) for MLM, 
only methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are 

shown along Lstsq. 
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(a) Normalized RMSE (b) Process time 

Figure A5. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Census dataset. For MLM, variants of 
sk_rrSVD_XX that differ statistically from Cholesky decomposition are marked with *. 

(a) Normalized RMSE (b) Process time 

Figure A6. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1) 
(b) as a function of reference point percentage for the Mnist dataset. For MLM, variants of sk_rrSVD_XX 

that differ statistically from Cholesky decomposition are marked with *. 
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Appendix B. Au38Q 

Figure A7. Normalized RMSE for Au38Q. Each subfigure has reference point percentage on the 

horizontal axis and normalized RMSE on the vertical axis. The top row corresponds to dataset variants 

with 4000 observations, middle row represents variants with 8000 observations and the bottom row is 

for the full dataset. The left column represents dataset variants with 80 features, middle represents 

400 features and the right column is for the full feature set. Please note that the Y–axis is different in 

each column. 
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Figure A8. Process time for Au38Q. Each subfigure has reference point percentage on the horizontal 
axis and normalized RMSE on the vertical axis. The top row corresponds to dataset variants with 

4000 observations, middle row represents variants with 8000 observations and the bottom row is for the 

full dataset. The left column represents dataset variants with 80 features, middle represents 400 features 

and the right column is for the full feature set. Please note that the Y-axis is equalized in the subfigures. 
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Figure A9. Same as Figure A7 but, for readability, without FNN-2. In addition, the Y–axis scale is same 

in each subfigure. 

Appendix C. Au38Q MBTR-K3 Dataset and Its Variants 

The Au38Q dataset has its roots in a hybrid nanostructure reported by Qian et al. [44]. The Au38Q 

is a monolayer ligand protected nanoparticle, or a hybrid nanoparticle that is from here on referred 
to as a nanostructure (referring more to the physical structure than to the scientific concept, also to 
avoid confusion with the machine learning meaning of a cluster). The nanostructure was studied 
with molecular dynamics simulations under heating by Juarez-Mosqueda et al. [33] which produced a 
trajectory file (a data format containing one or more nanostructure configurations and metadata) for 
Au38Q that contained 12,413 nanostructures formed during a molecular dynamics simulation from a 
start point to an end point. Each nanostructure in the trajectory is akin to a log of a time step during the 
molecular dynamics simulation. Each nanostructure is also paired with a value called potential energy, 
which can be used to describe the stability of a nanostructure. The potential energy was calculated by 
Juarez-Mosqueda et al. [33] using a density functional theory (DFT) calculator GPAW. However, a raw 
nanostructure configuration (the cartesian coordinates of the atoms) is problematic as it is for machine 
learning since there is no way to deterministically order the atoms so that the order in which they 
are given has no effect on the machine learning model. A set of cartesian coordinates are also not 
translationally and rotationally invariant, which is a major issue since the orientation and the exact 
location of a nanostructure are not allowed to have an effect. To solve this problem one has to use a 
concept called a descriptor. A descriptor is very literal in its function. We opted to use one called many 
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body tensor representation (MBTR) [45] which combines several descriptors to form its own. The use 
of MBTR in the context of nanostructures is also discussed in [3,45]. In our case, the description of a 
nanostructure is a vector, computed using a package known as Dscribe [46] (version 0.4.0). In short, 
the input values in our Au38Q datasets are the description vectors and the output values are the 
potential energy values of each nanostructure. 

We opted to use a setting denoted as K = 3 which computes a distribution of angles between 
groups of three elements and then concatenates those distributions to form a description vector. 
The Au38Q is formed of four elements, hydrogen (H), carbon (C), sulfur (S) and gold (Au). The name 
Au38Q refers to the nanostructure having 38 gold atoms as its core. For example, one of the distributions 
is formed from H-Au-C, meaning that the angle between vectors formed from H-Au and Au-C 
are computed. Repeated angles are of no interest, in our case there are 40 different three element 
angle groups [H-H-H, H-H-C, . . . , Au-S-Au, Au-Au-Au] that are calculated to form the MBTR K = 3 
description vector. We used mainly the default settings of the MBTR in Dscribe: l2 normalization 
(the length of a description vector was normalized to 1), cosine was used as the angle calculation 
function, measurement grid was set as [−1, 1] and σ was 0.1. We used exponential weighting function 
with a scale of 0.5 and a cutoff of 1 × 10−3. As we were describing a single nanostructure in a vacuum 
at a time, the descriptor is not periodic. 

We mentioned that there are variants of Au38Q dataset. In total we used nine variants by having 
two parameters with three values in each. One of the varied parameters was the number of features 
through the grid accuracy parameter N for the MBTR, which defines the number of points in a single 
angle distribution component. In other words, a grid accuracy parameter N = 100 results in 40 vectors 
of 100 length to form a description vector with 4000 features. The grid accuracy parameters that we 
used were N ∈ [2, 10, 100]. The number two is the lowest that can be used since a single number is 
not enough to describe a distribution. The other varied parameter was the number of observations. 
The full variant is denoted as 12 k, even though it uses the full 12,413 observations. Other two 
variants are 4 k and 8 k, which use 4000 observations and 8000 observations, respectively. The subsets 
of observations are taken from the full set with the use of the reference point selection algorithm 
RS-maximin. Since RS-maximin is deterministic, the first 4000 observations in 8 k are  the  same as 
all the observations in the 4 k subset. We denoted the variants of Au38Q as AuNx-yk in the tables, 
where x ∈ [2, 10, 100] and y ∈ [4, 8, 12]. As  Au38Q is not a commonly used dataset we included a 
figure showing the mean of all 12,413 MBTR description vectors with the three grid accuracy values 
in Figure A10 to aid the reader in understanding the way that a description vector might look like. 
The data files are available at 10.5281/zenodo.4268064. 

0 20 40 60 80 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

M
B

T
R

 v
a
lu

e
 

0 100 200 300 400 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

M
B

T
R

 v
a
lu

e
 

0 1000 2000 3000 4000 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

M
B

T
R

 v
a
lu

e
 

Feature index Feature index Feature index 

(a) N = 2 (b) N = 10 (c) N = 100 

Figure A10. Means of 12,413 MBTR-K3 descriptors for grid accuracy N values 2 (a), 10 (b) and 

100 (c). Features represent N consecutive numbers representing the angle distribution measured 

between groups of three atoms. The nanostructure Au38Q is composed of four elements, hydrogen 

(H), carbon (C), sulfur (S) and gold (Au). The first N features are H-H-H angles, second N are H-H-C 

and so on. Ending with Au-Au-Au angle. There are no repeated angles and so there are a total of 
40 distributions laid consecutively to form the resulting MBTR-K3 vector. 
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Supplementary Materials: Do Randomized 
Algorithms Improve the Efficiency of Minimal 
Learning Machine? 

Joakim Linja 1* , Joonas Hämäläinen 1 , Paavo Nieminen 1 and Tommi Kärkkäinen 1 

1 1. RMSE tables 

2 Tables S1–S9 report the mean and standard deviation of MLM test error, measured as RMSE value. 
3 The data table with K = 70 for RMSE is shown in the main text and is not repeated here due to that. 

Table S1. RMSE for K = 10. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 1x10−2 1x10−3 

Lstsq 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
Lstsq (nr) 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
np.inv 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
np.inv (nr) 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
np.solve 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
np.solve (nr) 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
np.svd 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
sp.svd 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
Cho.Dec 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
rKrSVD02 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
rKrSVD04 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
rKrSVD06 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
rKrSVD08 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
rKrSVD10 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
skrSVD02 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
skrSVD04 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
skrSVD06 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 6.17 2.24 
skrSVD08 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
skrSVD10 2.59 2.16 9.55 1.46 3.06 1.94 2.58 7.53 - -
SVDU 2.62 2.16 9.58 1.63 3.56 3.14 - - - -
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Table S2. RMSE for K = 20. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 1x10−2 1x10−3 

Lstsq 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
Lstsq (nr) 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
np.inv 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
np.inv (nr) 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
np.solve 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
np.solve (nr) 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
np.svd 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
sp.svd 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
Cho.Dec 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
rKrSVD02 2.63 2.28 7.88 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
rKrSVD04 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
rKrSVD06 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
rKrSVD08 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
rKrSVD10 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
skrSVD02 2.63 2.28 7.88 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
skrSVD04 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
skrSVD06 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 6.19 2.22 
skrSVD08 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
skrSVD10 2.63 2.28 7.87 1.48 2.54 1.5 2.49 7.99 - -
SVDU 2.64 2.33 8.64 1.56 2.98 2.43 - - - -

Table S3. RMSE for K = 30. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 1x10−2 1x10−3 

Lstsq 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
Lstsq (nr) 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
np.inv 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
np.inv (nr) 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
np.solve 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
np.solve (nr) 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
np.svd 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
sp.svd 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
Cho.Dec 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
rKrSVD02 2.64 2.17 7.83 1.45 2.54 1.52 2.47 8.09 6.18 2.18 
rKrSVD04 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
rKrSVD06 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
rKrSVD08 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
rKrSVD10 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
skrSVD02 2.64 2.22 7.68 1.46 2.49 1.55 2.46 8.08 6.18 2.22 
skrSVD04 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
skrSVD06 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 6.2 2.21 
skrSVD08 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
skrSVD10 2.67 2.19 7.39 1.46 2.39 1.47 2.45 8.14 - -
SVDU 2.66 2.39 8.11 1.56 2.69 2.23 - - - -
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Table S4. RMSE for K = 40. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 1x10−2 1x10−3 

Lstsq 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
Lstsq (nr) 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
np.inv 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
np.inv (nr) 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
np.solve 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
np.solve (nr) 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
np.svd 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
sp.svd 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
Cho.Dec 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
rKrSVD02 2.65 2.29 7.81 1.35 2.56 1.47 2.47 8.2 6.19 2.22 
rKrSVD04 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
rKrSVD06 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
rKrSVD08 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
rKrSVD10 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
skrSVD02 2.65 2.27 7.65 1.41 2.49 1.53 2.46 8.13 6.18 2.2 
skrSVD04 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.19 
skrSVD06 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 6.24 2.2 
skrSVD08 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
skrSVD10 2.7 2.24 7.04 1.33 2.31 1.46 2.45 8.33 - -
SVDU 2.69 2.42 7.76 1.54 2.53 1.96 - - - -

Table S5. RMSE for K = 50. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 1x10−2 1x10−3 

Lstsq 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
Lstsq (nr) 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
np.inv 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
np.inv (nr) 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
np.solve 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
np.solve (nr) 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
np.svd 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
sp.svd 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
Cho.Dec 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
rKrSVD02 2.68 2.23 7.86 1.4 2.55 1.54 2.47 8.13 6.2 2.19 
rKrSVD04 2.72 2.25 7.06 1.35 2.31 1.45 2.45 8.24 6.24 2.2 
rKrSVD06 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
rKrSVD08 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
rKrSVD10 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
skrSVD02 2.66 2.25 7.73 1.47 2.48 1.54 2.46 8.21 6.18 2.23 
skrSVD04 2.72 2.25 6.98 1.36 2.29 1.46 2.44 8.3 6.24 2.18 
skrSVD06 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 6.26 2.2 
skrSVD08 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
skrSVD10 2.75 2.29 6.95 1.35 2.26 1.45 2.44 8.34 - -
SVDU 2.71 2.45 7.48 1.51 2.42 1.82 - - - -
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Table S6. RMSE for K = 60. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 1x10−2 1x10−3 

Lstsq 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.27 2.19 
Lstsq (nr) 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
np.inv 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.27 2.19 
np.inv (nr) 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
np.solve 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.27 2.19 
np.solve (nr) 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
np.svd 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.27 2.19 
sp.svd 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
Cho.Dec 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.27 2.19 
rKrSVD02 2.67 2.22 7.96 1.45 2.56 1.57 2.47 8.64 6.21 2.24 
rKrSVD04 2.72 2.3 7.1 1.37 2.3 1.44 2.45 8.2 6.24 2.22 
rKrSVD06 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.27 2.19 
rKrSVD08 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
rKrSVD10 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
skrSVD02 2.66 2.28 7.77 1.46 2.49 1.63 2.46 8.3 6.18 2.21 
skrSVD04 2.72 2.28 6.97 1.37 2.28 1.43 2.44 8.26 6.24 2.2 
skrSVD06 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 6.29 2.22 
skrSVD08 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
skrSVD10 2.76 2.26 6.83 1.36 2.23 1.45 2.44 8.41 - -
SVDU 2.71 2.41 7.28 1.54 2.34 1.75 - - - -

Table S7. RMSE for K = 80. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 - -
Lstsq 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
Lstsq (nr) 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
np.inv 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
np.inv (nr) 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
np.solve 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
np.solve (nr) 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
np.svd 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
sp.svd 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
Cho.Dec 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
rKrSVD02 2.68 2.41 8.01 1.39 2.58 1.53 2.48 8.32 - -
rKrSVD04 2.74 2.3 7.13 1.36 2.32 1.43 2.45 8.33 - -
rKrSVD06 2.73 2.37 6.88 1.36 2.22 1.45 2.44 8.47 - -
rKrSVD08 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
rKrSVD10 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
skrSVD02 2.66 2.32 7.84 1.46 2.51 1.65 2.45 8.43 - -
skrSVD04 2.71 2.34 6.99 1.37 2.28 1.42 2.44 8.34 - -
skrSVD06 2.74 2.36 6.84 1.36 2.21 1.46 2.43 8.44 - -
skrSVD08 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
skrSVD10 2.77 2.39 6.78 1.35 2.18 1.48 2.43 8.4 - -
SVDU 2.75 2.41 6.94 1.41 2.22 1.55 - - - -
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Table S8. RMSE for K = 90. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 - -
Lstsq 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
Lstsq (nr) 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
np.inv 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
np.inv (nr) 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
np.solve 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
np.solve (nr) 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
np.svd 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
sp.svd 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
Cho.Dec 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
rKrSVD02 2.7 2.39 7.97 1.44 2.6 1.53 2.47 8.5 - -
rKrSVD04 2.73 2.4 7.1 1.35 2.32 1.45 2.45 8.39 - -
rKrSVD06 2.73 2.35 6.85 1.36 2.23 1.49 2.44 8.55 - -
rKrSVD08 2.76 2.44 6.75 1.35 2.18 1.47 2.43 8.45 - -
rKrSVD10 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
skrSVD02 2.67 2.32 7.83 1.47 2.52 1.59 2.45 8.37 - -
skrSVD04 2.71 2.26 6.96 1.38 2.28 1.44 2.43 8.38 - -
skrSVD06 2.73 2.37 6.81 1.37 2.21 1.46 2.43 8.47 - -
skrSVD08 2.76 2.46 6.74 1.35 2.17 1.48 2.43 8.44 - -
skrSVD10 2.77 2.45 6.72 1.36 2.16 1.49 2.42 8.48 - -
SVDU 2.77 2.38 6.79 1.36 2.19 1.49 - - - -

Table S9. RMSE for K = 100. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−2 1x10−2 1x10−2 1x10−3 1x10−2 1x10−4 - -
Lstsq 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
Lstsq (nr) 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
np.inv 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
np.inv (nr) 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
np.solve 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
np.solve (nr) 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
np.svd 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
sp.svd 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
Cho.Dec 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
rKrSVD02 2.69 2.35 8.03 1.4 2.61 1.66 2.47 8.51 - -
rKrSVD04 2.73 2.36 7.13 1.33 2.32 1.45 2.44 8.58 - -
rKrSVD06 2.75 2.41 6.87 1.35 2.23 1.45 2.43 8.62 - -
rKrSVD08 2.76 2.32 6.79 1.35 2.18 1.52 2.43 8.46 - -
rKrSVD10 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
skrSVD02 2.66 2.31 7.84 1.43 2.54 1.63 2.45 8.38 - -
skrSVD04 2.69 2.39 6.99 1.37 2.28 1.45 2.43 8.46 - -
skrSVD06 2.73 2.34 6.82 1.37 2.21 1.44 2.43 8.52 - -
skrSVD08 2.77 2.35 6.76 1.35 2.17 1.51 2.42 8.5 - -
skrSVD10 2.78 2.43 6.71 1.36 2.15 1.5 2.42 8.48 - -
SVDU 2.78 2.43 6.71 1.36 2.15 1.5 - - - -
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4 2. Process time tables 

5 Tables S10–S19 report the mean and standard deviation of process time taken in OLS evaluation. 

Table S10. Process time (s) for K = 10. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−2 1x10−4 1x10−2 1x10−3 1x10−1 1x10−2 1x101 1x10−1 1x102 1x101 

Lstsq 0.71 3.46 2.93 0.75 0.87 0.18 1.05 3.19 0.68 0.09 
Lstsq (nr) 0.61 3.26 2.67 0.7 0.8 0.14 1.01 3.19 - -
np.inv 0.4 3.84 1.44 0.66 0.86 2.88 0.57 2.37 0.21 0.17 
np.inv (nr) 0.33 6.36 1.42 1.02 0.89 3.46 0.52 3.81 - -
np.solve 0.4 6.03 1.78 45.32 0.85 5.36 0.53 1.74 0.17 0.06 
np.solve (nr) 0.31 3.62 1.54 26.85 0.79 1.85 0.53 1.5 - -
np.svd 0.69 4.93 3.86 1.02 1.35 0.33 0.99 1.71 0.99 0.53 
sp.svd 0.83 4.86 3.88 2.58 1.32 0.36 0.9 1.48 - -
Cho.Dec 0.71 4.82 1.46 0.4 0.3 0.06 0.36 1.57 0.19 0.05 
rKrSVD02 1.38 7.81 8.18 4.46 3.02 3.01 2.02 3.11 2.75 3.08 
rKrSVD04 2.66 24.14 18.28 5.84 5.41 3.46 4.89 46.35 7.98 12.9 
rKrSVD06 5.86 175.01 27.47 11.01 7.68 6.67 8.82 138.23 15.73 28.32 
rKrSVD08 9.75 31.69 31.5 13.87 10.12 3.88 13.63 246.86 - -
rKrSVD10 9.3 23.94 36.57 24.79 11.61 8.62 18.98 367.6 - -
skrSVD02 2.08 4.19 12.58 19.79 3.31 0.85 2.32 3.86 3.08 3.69 
skrSVD04 4.18 8.45 21.29 6.05 5.98 4.55 5.16 51.83 8.68 14.9 
skrSVD06 7.95 19.95 30.11 11.45 8.11 8.98 9.21 139.95 16.59 31.63 
skrSVD08 7.69 58.72 34.12 28.07 9.74 2.79 14.1 250.61 - -
skrSVD10 10.43 78.93 37.07 23.16 11.72 3.65 19.49 371.08 - -
SVDU 0.23 0.86 0.5 0.29 0.11 0.06 - - - -
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Table S11. Process time (s) for K = 20. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−2 1x10−4 1x10−1 1x10−2 1x10−1 1x10−2 1x101 1x10−1 1x102 1x101 

Lstsq 1.41 4.43 0.91 0.17 4.47 3.55 3.08 5.12 4.68 2.74 
Lstsq (nr) 1.29 4.04 0.87 0.14 4.33 3.26 2.95 4.61 - -
np.inv 1.05 7.34 1.06 7.99 3.49 8.57 0.8 2.74 0.63 0.41 
np.inv (nr) 0.96 5.6 0.91 0.34 3.38 5.06 0.79 3.68 - -
np.solve 0.99 5.77 1.12 9.15 3.42 5.89 0.73 3.05 0.49 0.18 
np.solve (nr) 0.91 5.81 0.91 0.51 3.44 9.17 0.71 2.67 - -
np.svd 1.53 4.54 1.35 0.52 4.3 2.1 2.95 4.31 4.78 5.58 
sp.svd 1.65 3.57 1.29 0.36 4.21 1.46 2.73 4.03 - -
Cho.Dec 0.91 4.61 0.24 0.05 0.67 0.13 0.52 0.93 0.61 0.32 
rKrSVD02 2.09 4.03 1.44 0.38 4.74 3.3 3.34 4.66 5.19 5.1 
rKrSVD04 3.58 16.01 2.68 0.73 8.29 2.49 6.81 52.26 11.24 16.8 
rKrSVD06 6.93 17.37 3.77 4.25 10.87 7.11 11.04 144.73 19.5 33.04 
rKrSVD08 10.79 31.3 4.25 3.81 13.31 3.89 16.18 256.66 - -
rKrSVD10 10.6 118.74 4.77 3.96 14.81 4.42 22.12 384.69 - -
skrSVD02 2.93 4.98 1.76 0.56 5.23 2.41 3.88 5.42 5.88 6.58 
skrSVD04 5.19 41.87 3.07 1.92 9.00 6.62 7.37 59.56 12.44 19.19 
skrSVD06 9.02 18.26 4.12 2.81 11.4 5.04 11.99 153.22 21.39 37.31 
skrSVD08 8.87 16.33 4.57 4.16 13.99 4.12 17.37 269.13 - -
skrSVD10 11.68 37.99 4.93 4.56 15.75 4.59 23.63 404.46 - -
SVDU 69.47 415.75 45.84 73.05 166.61 242.93 - - - -

Table S12. Process time (s) for K = 30. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−2 1x10−3 1x10−1 1x10−2 1x101 1x10−2 1x101 1x101 1x103 1x102 

Lstsq 3.71 1.00 2.74 0.54 1.09 7.48 6.98 0.82 2.17 2.33 
Lstsq (nr) 3.54 1.01 2.65 0.6 1.06 7.67 6.79 0.92 - -
np.inv 2.19 1.03 2.2 4.91 0.7 11.07 1.34 0.4 0.13 0.07 
np.inv (nr) 2.64 37.42 2.17 3.04 0.7 9.26 1.28 0.47 - -
np.solve 2.3 17.7 2.31 7.95 0.71 12.19 1.18 0.42 0.1 0.05 
np.solve (nr) 2.54 37.45 2.14 2.07 0.69 11.2 1.14 0.41 - -
np.svd 3.33 0.89 2.9 0.9 0.75 5.67 5.92 1.97 1.46 2.05 
sp.svd 3.43 0.87 2.85 1.67 0.73 10.34 5.67 2.47 - -
Cho.Dec 1.28 0.63 0.37 0.17 0.13 0.47 1.02 0.27 0.12 0.05 
rKrSVD02 2.37 0.43 1.68 1.77 0.58 5.12 4.07 0.69 0.8 0.94 
rKrSVD04 5.2 3.98 3.71 0.92 1.02 8.73 9.06 5.44 2.34 3.6 
rKrSVD06 8.84 1.75 5.52 3.44 1.44 15.73 13.95 14.31 2.94 4.96 
rKrSVD08 12.8 3.13 6.00 1.43 1.7 4.86 19.48 25.75 - -
rKrSVD10 12.6 2.84 6.61 1.84 1.89 7.39 25.86 39.04 - -
skrSVD02 4.2 2.91 2.18 0.41 0.63 5.53 4.69 0.81 0.88 1.15 
skrSVD04 6.9 4.89 4.12 0.93 1.11 9.29 9.96 6.84 2.5 3.99 
skrSVD06 11.17 8.82 5.82 2.83 1.51 6.59 15.3 16.58 3.15 5.52 
skrSVD08 11.09 1.96 6.34 4.52 1.78 4.73 21.21 29.17 - -
skrSVD10 13.91 2.73 6.84 3.52 1.98 5.32 27.85 43.78 - -
SVDU 104.84 45.74 75.01 116.65 29.85 178.95 - - - -
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Table S13. Process time (s) for K = 40. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−2 1x10−3 1x10−1 1x10−2 1x101 1x10−2 1x102 1x101 1x103 1x102 

Lstsq 4.62 3.25 5.03 2.36 1.89 14.76 1.4 2.86 5.49 7.26 
Lstsq (nr) 4.46 4.3 4.91 2.41 1.82 5.5 1.38 2.88 - -
np.inv 5.57 48.52 3.54 5.7 1.03 14.65 0.21 0.7 0.23 0.14 
np.inv (nr) 5.29 27.8 3.49 8.37 1.00 6.74 0.2 0.75 - -
np.solve 5.49 37.29 3.64 9.38 1.00 11.00 0.18 0.39 0.17 0.09 
np.solve (nr) 5.71 66.33 3.57 8.18 1.00 13.42 0.17 0.55 - -
np.svd 5.5 1.52 4.04 1.08 1.15 13.44 1.15 9.97 3.25 5.00 
sp.svd 5.57 1.43 3.87 0.98 1.13 4.29 1.13 10.69 - -
Cho.Dec 1.52 0.61 0.56 0.12 0.19 0.32 0.17 0.3 0.22 0.08 
rKrSVD02 2.56 0.52 2.05 0.9 0.73 6.3 0.49 0.85 0.72 0.63 
rKrSVD04 6.52 1.48 4.47 2.43 1.29 5.7 1.27 8.4 3.28 4.54 
rKrSVD06 10.23 2.03 6.04 3.58 1.75 12.19 2.41 29.93 5.72 8.46 
rKrSVD08 14.88 20.39 7.19 4.75 2.17 5.4 2.54 32.29 - -
rKrSVD10 15.19 6.86 8.06 7.06 2.4 7.93 3.24 46.71 - -
skrSVD02 4.75 26.04 2.53 0.49 0.75 4.98 0.56 1.12 0.84 0.88 
skrSVD04 8.52 9.27 4.92 3.4 1.41 4.16 1.4 11.11 3.55 5.19 
skrSVD06 12.7 9.88 6.38 3.92 1.84 4.06 2.57 33.22 6.04 9.89 
skrSVD08 13.03 2.55 7.59 6.37 2.23 5.55 2.74 36.77 - -
skrSVD10 16.61 7.5 8.08 1.96 2.49 21.2 3.49 53.82 - -
SVDU 49.86 22.8 114.78 142.93 44.98 389.7 - - - -

Table S14. Process time (s) for K = 50. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−2 1x10−3 1x10−1 1x10−2 1x101 1x10−2 1x102 1x101 1x103 1x102 

Lstsq 8.08 5.85 9.25 12.04 2.78 6.92 2.88 1.63 9.81 12.28 
Lstsq (nr) 7.74 1.57 8.99 7.82 2.75 10.53 2.88 1.77 - -
np.inv 8.8 57.52 5.46 8.24 1.5 15.93 0.29 0.11 0.36 0.18 
np.inv (nr) 8.48 47.64 5.27 3.89 1.47 13.35 0.28 0.1 - -
np.solve 9.83 106.89 5.65 12.11 1.47 19.87 0.24 0.06 0.26 0.17 
np.solve (nr) 9.56 91.57 5.43 10.09 1.44 21.34 0.23 0.07 - -
np.svd 8.75 2.76 5.79 4.22 1.72 15.16 2.46 2.89 5.87 10.18 
sp.svd 8.85 9.66 5.6 4.26 1.67 5.67 2.44 2.93 - -
Cho.Dec 1.89 0.59 0.76 0.21 0.29 0.43 0.25 0.06 0.34 0.15 
rKrSVD02 2.68 0.54 2.32 1.09 0.82 5.99 0.54 0.08 0.8 0.64 
rKrSVD04 6.93 1.74 5.07 5.29 1.51 14.08 1.64 1.24 4.28 5.93 
rKrSVD06 12.14 3.19 7.42 6.47 2.18 5.86 3.43 4.25 8.08 12.9 
rKrSVD08 17.44 21.88 8.38 2.85 2.72 9.11 5.18 7.79 - -
rKrSVD10 18.96 22.02 10.05 2.32 3.07 8.59 4.57 6.54 - -
skrSVD02 4.71 0.95 2.95 3.29 0.87 2.57 0.64 0.11 0.94 1.06 
skrSVD04 9.56 2.00 5.68 3.08 1.66 7.34 1.8 1.61 4.6 7.26 
skrSVD06 14.66 4.14 7.76 5.55 2.33 5.17 3.66 4.92 8.31 13.98 
skrSVD08 16.06 3.53 8.71 1.87 2.78 6.87 5.49 8.53 - -
skrSVD10 20.1 4.7 10.12 5.4 3.09 13.74 4.88 7.3 - -
SVDU 199.23 35.27 146.85 180.49 61.48 503.14 - - - -
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Table S15. Process time (s) for K = 60. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−3 1x10−1 1x10−2 1x101 1x10−1 1x102 1x101 1x103 1x102 

Lstsq 1.13 2.35 12.32 2.64 4.00 0.97 6.44 5.73 16.29 20.62 
Lstsq (nr) 1.1 2.52 12.17 5.76 4.00 1.31 6.47 5.93 - -
np.inv 1.25 27.89 7.52 13.18 1.83 1.21 0.39 0.15 0.54 0.27 
np.inv (nr) 1.27 52.01 7.2 7.32 1.83 1.65 0.38 0.09 - -
np.solve 1.25 15.13 7.55 13.1 1.84 1.63 0.33 0.08 0.39 0.27 
np.solve (nr) 1.36 85.89 7.49 12.9 1.8 1.37 0.32 0.07 - -
np.svd 1.2 4.31 6.72 6.18 2.28 1.7 7.22 12.24 14.76 20.75 
sp.svd 1.2 3.7 6.46 2.16 2.22 1.04 7.24 12.59 - -
Cho.Dec 0.22 0.72 0.99 0.7 0.35 0.09 0.34 0.09 0.51 0.24 
rKrSVD02 0.29 1.45 2.55 0.68 0.91 1.04 0.6 0.1 0.91 0.65 
rKrSVD04 0.73 5.64 5.37 1.19 1.62 1.15 2.05 1.7 5.33 7.02 
rKrSVD06 1.44 3.42 8.38 2.4 2.59 0.78 4.48 5.72 10.02 14.59 
rKrSVD08 2.06 5.59 10.03 14.34 3.24 1.15 6.76 10.6 - -
rKrSVD10 2.23 14.4 11.4 7.67 3.67 0.84 9.18 15.63 - -
skrSVD02 0.49 1.00 3.14 0.69 0.94 0.65 0.71 0.12 1.04 0.85 
skrSVD04 1.01 2.13 6.15 2.02 1.8 0.77 2.24 2.23 5.52 7.67 
skrSVD06 1.76 3.98 9.09 9.73 2.76 1.2 4.7 6.64 10.49 16.59 
skrSVD08 1.97 4.4 10.2 10.9 3.29 1.21 7.00 11.43 - -
skrSVD10 2.39 5.66 11.41 7.82 3.71 0.87 9.44 17.01 - -
SVDU 22.81 26.09 191.38 218.18 79.62 39.45 - - - -

Table S16. Process time (s) for K = 70. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x10−1 1x10−2 1x101 1x10−1 1x102 1x101 1x103 1x102 

Lstsq 1.55 0.51 17.81 10.81 5.39 1.7 11.92 13.41 24.55 31.52 
Lstsq (nr) 1.52 0.31 17.65 3.89 5.34 1.38 11.9 13.17 - -
np.inv 1.74 7.97 9.17 14.43 2.32 1.83 0.5 0.18 0.75 0.33 
np.inv (nr) 1.69 6.2 8.91 10.69 2.32 1.69 0.48 0.18 - -
np.solve 1.93 10.79 8.9 9.21 2.25 1.3 0.42 0.11 0.55 0.35 
np.solve (nr) 1.6 1.52 8.95 10.73 2.25 1.49 0.41 0.11 - -
np.svd 1.56 1.52 8.48 6.57 2.81 0.54 9.2 15.63 19.32 21.7 
sp.svd 1.51 1.36 8.21 7.04 2.78 0.57 9.28 15.47 - -
Cho.Dec 0.25 0.1 1.34 0.38 0.49 0.12 0.45 0.28 0.71 0.31 
rKrSVD02 0.31 0.29 2.78 0.77 0.95 0.7 0.66 0.09 1.01 0.75 
rKrSVD04 0.77 0.87 5.92 7.53 1.85 1.3 2.49 2.24 6.21 9.00 
rKrSVD06 1.63 1.96 9.17 5.75 2.93 1.23 5.39 6.9 11.45 16.65 
rKrSVD08 2.41 2.95 11.63 5.26 3.89 2.25 8.5 13.00 - -
rKrSVD10 2.63 2.75 13.65 6.34 4.48 0.99 11.4 18.04 - -
skrSVD02 0.52 0.13 3.41 0.65 1.04 0.84 0.78 0.13 1.16 1.08 
skrSVD04 1.05 0.23 6.61 1.9 1.96 0.38 2.67 2.47 6.3 9.28 
skrSVD06 2.07 0.6 9.9 6.16 3.11 1.71 5.64 7.34 12.2 19.83 
skrSVD08 2.3 0.72 11.71 2.4 3.98 1.47 8.66 12.95 - -
skrSVD10 2.76 0.98 13.21 2.75 4.5 0.87 11.67 18.74 - -
SVDU 27.22 2.78 234.85 154.78 103.73 74.91 - - - -
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Table S17. Process time (s) for K = 80. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x101 1x10−2 1x101 1x10−1 1x102 1x101 - -
Lstsq 2.9 5.12 2.17 13.28 6.63 1.82 19.42 23.55 - -
Lstsq (nr) 2.81 3.25 2.17 22.53 7.54 5.2 19.4 25.48 - -
np.inv 2.38 7.07 1.12 15.77 2.74 1.56 0.64 0.24 - -
np.inv (nr) 2.34 6.05 1.09 11.02 2.72 1.43 0.62 0.31 - -
np.solve 2.48 8.07 1.11 13.21 2.71 1.49 0.53 0.19 - -
np.solve (nr) 2.44 7.84 1.13 19.49 2.71 1.58 0.52 0.23 - -
np.svd 1.91 1.05 0.99 4.23 3.45 1.13 11.89 19.1 - -
sp.svd 1.87 0.51 0.97 8.00 3.44 0.9 11.96 19.96 - -
Cho.Dec 0.29 0.28 0.17 1.12 0.59 0.5 0.58 0.37 - -
rKrSVD02 0.32 0.18 0.3 1.89 1.04 0.58 0.73 0.12 - -
rKrSVD04 0.82 0.21 0.69 8.89 2.14 0.83 1.88 0.95 - -
rKrSVD06 1.77 1.51 0.97 1.73 3.1 0.61 6.44 8.85 - -
rKrSVD08 2.77 2.35 1.32 4.1 4.48 1.19 10.38 15.63 - -
rKrSVD10 3.03 0.94 1.61 3.38 5.32 1.43 14.11 22.47 - -
skrSVD02 0.55 0.43 0.38 2.65 1.12 0.27 0.86 0.18 - -
skrSVD04 1.14 0.95 0.81 10.46 2.38 0.67 2.1 1.26 - -
skrSVD06 2.27 2.27 1.05 1.98 3.32 1.1 6.83 9.38 - -
skrSVD08 2.77 2.79 1.35 3.41 4.64 2.22 10.8 16.22 - -
skrSVD10 3.29 5.16 1.51 5.56 5.19 0.91 14.56 24.14 - -
SVDU 35.08 6.2 27.53 163.82 129.56 55.15 - - - -

Table S18. Process time (s) for K = 90. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x101 1x10−2 1x101 1x10−1 1x102 1x101 - -
Lstsq 3.57 2.6 2.57 14.37 8.24 2.01 28.74 37.33 - -
Lstsq (nr) 3.58 5.09 2.52 5.86 8.25 3.67 29.04 40.28 - -
np.inv 2.73 5.36 1.33 9.29 3.15 1.94 0.8 0.4 - -
np.inv (nr) 2.61 0.81 1.31 10.47 3.11 1.8 0.78 0.45 - -
np.solve 2.77 3.57 1.36 20.7 3.14 1.89 0.66 0.37 - -
np.solve (nr) 2.79 8.19 1.31 12.11 3.08 1.91 0.64 0.36 - -
np.svd 2.12 1.52 1.21 12.51 4.22 1.42 14.37 24.44 - -
sp.svd 2.08 2.17 1.15 11.00 4.11 2.00 14.33 23.87 - -
Cho.Dec 0.36 0.17 0.2 0.76 0.76 0.11 0.71 0.46 - -
rKrSVD02 0.33 0.23 0.33 1.37 1.13 0.24 0.8 0.24 - -
rKrSVD04 0.87 0.73 0.73 2.3 2.3 0.94 1.98 1.06 - -
rKrSVD06 1.89 0.49 1.04 6.45 3.4 1.16 7.27 9.87 - -
rKrSVD08 2.97 2.74 1.42 16.97 4.85 1.13 11.75 18.25 - -
rKrSVD10 3.33 4.54 1.77 9.05 5.98 1.43 16.58 26.35 - -
skrSVD02 0.58 0.75 0.4 2.18 1.2 0.73 0.95 0.27 - -
skrSVD04 1.29 1.5 0.82 1.49 2.47 1.08 2.22 1.37 - -
skrSVD06 2.45 3.05 1.11 5.12 3.58 0.77 7.67 10.3 - -
skrSVD08 2.87 4.24 1.47 2.41 4.97 0.87 12.42 19.99 - -
skrSVD10 3.42 3.04 1.73 3.02 5.98 1.56 17.22 28.6 - -
SVDU 39.98 4.21 34.13 214.64 156.52 43.84 - - - -
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Table S19. Process time (s) for K = 100. Bolded numbers differ statistically from Lstsq. 

Dataset BC BH AC CA CE 
x σ x σ x σ x σ x σ 

Method / coef. 1x10−1 1x10−2 1x101 1x10−2 1x101 1x10−1 1x102 1x102 - -
Lstsq 4.72 3.07 3.05 6.98 9.48 2.51 41.14 6.4 - -
Lstsq (nr) 4.75 6.44 3.06 6.89 9.44 2.34 40.96 6.03 - -
np.inv 3.58 8.24 1.57 17.92 3.42 2.04 1.01 0.07 - -
np.inv (nr) 3.47 8.22 1.55 17.07 3.45 3.02 0.98 0.07 - -
np.solve 3.65 9.79 1.52 11.55 3.43 2.05 0.83 0.06 - -
np.solve (nr) 3.62 10.12 1.51 15.6 3.36 2.15 0.81 0.06 - -
np.svd 2.5 1.63 1.46 4.52 4.89 1.15 17.71 3.17 - -
sp.svd 2.41 0.61 1.36 7.84 4.74 1.93 17.62 3.27 - -
Cho.Dec 0.42 0.34 0.26 0.42 0.94 0.38 0.89 0.04 - -
rKrSVD02 0.35 0.09 0.4 6.79 1.15 0.58 0.88 0.02 - -
rKrSVD04 0.95 0.28 0.77 2.17 2.42 1.9 2.11 0.13 - -
rKrSVD06 2.00 0.51 1.15 14.89 3.57 0.84 8.42 1.28 - -
rKrSVD08 3.1 1.41 1.5 3.82 5.18 0.89 13.52 2.23 - -
rKrSVD10 3.68 1.82 2.01 6.03 6.66 1.23 19.4 3.29 - -
skrSVD02 0.59 0.45 0.47 6.26 1.23 0.28 1.03 0.03 - -
skrSVD04 1.38 1.1 0.89 2.17 2.58 0.88 2.35 0.17 - -
skrSVD06 2.55 0.8 1.21 8.18 3.81 1.11 8.69 1.33 - -
skrSVD08 2.99 1.43 1.58 3.19 5.33 0.94 13.81 2.4 - -
skrSVD10 3.86 3.13 1.96 4.61 6.8 1.85 19.79 3.41 - -
SVDU 42.67 5.79 37.78 184.8 178.72 43.06 - - - -
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6 3. RMSE and process time tables for additional simulations 

7 Tables Table S20 and Table S21 report the mean and standard deviation of MLM test error measured as 
8 RMSE value and process time taken in OLS evaluation for the additional simulations with Census and 
9 tables Table S22, Table S23 for Mnist. Contrary to other data tables, Table S20, Table S21, Table S22 and 

10 Table S23 are for one dataset only. 

Table S20. RMSE for Census at reference point percentages [10%, 100%] for Cholesky Decomposition (CD) 
and for random SVD with remaining rank percentages [1%, 10%]. Bolded numbers differ statistically 

from Cholesky Decomposition. 

sk_rank_svd_xxx 
Method CD 001 002 003 004 005 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 

10 6.17 3.98 6.44 3.86 6.28 3.81 6.22 3.79 6.19 4.01 6.18 4.07 
20 6.15 4.19 6.43 3.89 6.27 3.61 6.19 3.7 6.17 3.88 6.15 3.98 
30 6.17 4.41 6.43 3.87 6.26 3.74 6.19 3.8 6.16 3.91 6.14 4.06 
40 6.18 4.49 6.43 3.85 6.26 3.72 6.19 3.72 6.16 4.01 6.14 3.96 
50 6.19 4.39 6.43 3.98 6.26 3.83 6.19 3.75 6.16 4.02 6.14 3.94 
60 6.21 4.41 6.43 3.97 6.26 3.73 6.19 3.73 6.15 4.01 6.14 4.00 
70 6.22 4.18 6.43 3.79 6.25 3.78 6.18 3.84 6.15 4.06 6.13 4.05 
80 6.23 4.09 6.43 3.89 6.25 3.73 6.18 3.79 6.15 3.97 6.13 3.98 
90 6.24 4.03 6.43 4.01 6.25 3.77 6.18 3.91 6.15 4.07 6.13 4.09 
100 6.26 4.04 6.43 3.8 6.25 3.76 6.18 3.9 6.15 4.08 6.13 4.08 

sk_rank_svd_xxx 
Method CD 006 007 008 009 010 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 

10 6.17 3.98 6.17 3.98 6.17 4.01 6.17 3.99 6.17 3.99 6.17 4.1 
20 6.15 4.19 6.14 4.07 6.13 4.18 6.13 4.18 6.13 4.27 6.14 4.24 
30 6.17 4.41 6.14 4.19 6.13 4.21 6.13 4.28 6.13 4.39 6.13 4.31 
40 6.18 4.49 6.14 4.21 6.13 4.21 6.12 4.35 6.12 4.39 6.12 4.44 
50 6.19 4.39 6.13 4.09 6.12 4.13 6.12 4.3 6.12 4.26 6.11 4.29 
60 6.21 4.41 6.13 4.2 6.12 4.22 6.11 4.37 6.11 4.35 6.11 4.22 
70 6.22 4.18 6.12 4.14 6.12 4.27 6.11 4.44 6.11 4.3 6.1 4.44 
80 6.23 4.09 6.12 4.05 6.12 4.11 6.11 4.31 6.1 4.35 6.1 4.28 
90 6.24 4.03 6.13 4.07 6.11 4.26 6.11 4.32 6.1 4.33 6.1 4.3 
100 6.26 4.04 6.12 4.11 6.12 4.13 6.11 4.41 6.1 4.18 6.1 4.32 
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Table S21. Process time in seconds for Census at reference point percentages [10%, 100%] for Cholesky 

Decomposition (CD) and for random SVD with remaining rank percentages [1%, 10%]. Bolded numbers 

differ statistically from Cholesky Decomposition. 

sk_rank_svd_xxx 
Method CD 001 002 003 004 005 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x102 1x103 1x102 1x102 1x102 1x103 1x102 1x103 1x102 1x102 1x102 1x103 

10 0.2 0.003 0.19 0.03 0.28 0.01 0.4 0.001 0.51 0.01 0.65 0.01 
20 0.67 0.08 0.39 0.08 0.53 0.01 0.68 0.02 0.83 0.69 1.06 0.15 
30 1.48 0.77 0.7 1.14 0.84 0.06 1.08 0.2 1.27 3.45 1.52 0.46 
40 2.33 0.67 1.01 2.02 1.25 0.32 1.65 0.72 1.8 11.58 2.03 1.32 
50 4.02 2.73 1.51 6.99 1.94 1.58 2.52 1.07 2.53 23.02 3.00 2.56 
60 6.04 2.82 2.28 22.99 3.00 1.84 3.46 1.75 3.46 31.76 4.03 2.98 
70 7.86 10.91 3.19 72.58 3.68 8.36 4.12 7.32 4.12 82.01 4.67 8.93 
80 9.58 3.44 3.26 12.22 3.69 1.85 4.27 2.56 4.21 9.97 4.83 1.91 
90 12.87 5.73 4.01 3.44 4.46 1.54 5.13 2.1 5.09 2.31 5.82 2.04 
100 15.72 8.17 4.75 21.91 5.07 1.45 5.65 1.83 5.78 2.39 6.46 1.61 

sk_rank_svd_xxx 
Method CD 006 007 008 009 010 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x102 1x103 1x102 1x103 1x102 1x102 1x102 1x103 1x102 1x103 1x102 1x103 

10 0.2 0.003 0.78 0.03 0.93 0.74 1.08 0.16 1.25 0.25 1.44 0.45 
20 0.67 0.08 1.24 0.28 1.43 4.02 1.64 0.64 1.86 1.03 2.11 1.27 
30 1.48 0.77 1.76 0.82 1.98 9.53 2.27 1.55 2.56 2.24 2.84 3.06 
40 2.33 0.67 2.37 2.42 2.52 19.17 2.89 2.97 3.21 4.12 3.61 5.66 
50 4.02 2.73 3.28 3.03 3.46 31.41 3.73 4.37 3.98 4.64 4.65 6.47 
60 6.04 2.82 4.39 4.36 4.41 53.18 4.78 6.23 5.2 6.49 5.84 6.27 
70 7.86 10.91 5.04 10.24 5.24 93.42 5.54 9.31 6.21 13.84 6.76 19.2 
80 9.58 3.44 5.03 1.13 5.44 12.35 5.76 1.24 6.16 2.4 6.69 2.29 
90 12.87 5.73 6.15 2.15 6.4 5.86 6.96 1.67 7.45 2.22 8.00 2.83 
100 15.72 8.17 6.82 1.17 7.21 5.36 7.72 0.87 8.28 1.78 8.74 1.79 
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Table S22. RMSE for Mnist at reference point percentages [10%, 100%] for Cholesky Decomposition (CD) 
and for random SVD with remaining rank percentages [1%, 10%]. Bolded numbers differ statistically 

from Cholesky Decomposition. 

sk_rank_svd_xxx 
Method CD 001 002 003 004 005 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x10−2 1x10−6 1x10−1 1x10−6 1x10−1 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 

10 9.33 1.6 1.19 1.64 1.06 1.56 10.11 1.65 9.86 1.57 9.69 1.59 
20 8.67 1.62 1.18 1.78 1.05 1.65 9.95 1.49 9.62 1.51 9.42 1.55 
30 8.32 1.61 1.18 1.54 1.05 1.38 9.89 1.62 9.53 1.66 9.3 1.61 
40 8.08 1.63 1.18 1.48 1.05 1.47 9.85 1.54 9.49 1.77 9.23 1.52 
50 7.91 1.67 1.18 1.71 1.04 1.55 9.83 1.66 9.46 1.69 9.19 1.73 
60 7.77 1.75 1.18 1.57 1.04 1.49 9.83 1.56 9.44 1.71 9.17 1.68 
70 7.66 1.76 1.18 1.61 1.04 1.65 9.81 1.59 9.43 1.58 9.15 1.6 
80 7.56 1.69 1.18 1.48 1.04 1.68 9.81 1.53 9.41 1.71 9.13 1.55 
90 7.48 1.73 1.18 1.62 1.04 1.73 9.8 1.56 9.41 1.46 9.12 1.59 
100 7.41 1.71 1.18 1.61 1.04 1.59 9.8 1.71 9.41 1.69 9.11 1.67 

sk_rank_svd_xxx 
Method CD 006 007 008 009 010 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 1x10−2 1x10−6 

10 9.33 1.6 9.57 1.6 9.48 1.59 9.42 1.63 9.36 1.62 9.33 1.6 
20 8.67 1.62 9.27 1.55 9.16 1.57 9.07 1.52 9.00 1.52 8.95 1.6 
30 8.32 1.61 9.13 1.6 9.01 1.59 8.91 1.63 8.84 1.56 8.77 1.59 
40 8.08 1.63 9.06 1.46 8.92 1.54 8.82 1.55 8.73 1.52 8.66 1.48 
50 7.91 1.67 9.00 1.68 8.86 1.58 8.75 1.6 8.66 1.64 8.59 1.59 
60 7.77 1.75 8.97 1.73 8.82 1.55 8.7 1.61 8.61 1.65 8.53 1.59 
70 7.66 1.76 8.94 1.63 8.79 1.56 8.67 1.63 8.57 1.63 8.49 1.57 
80 7.56 1.69 8.92 1.56 8.76 1.55 8.64 1.55 8.53 1.6 8.45 1.51 
90 7.48 1.73 8.91 1.54 8.74 1.5 8.61 1.59 8.51 1.54 8.42 1.52 
100 7.41 1.71 8.89 1.56 8.73 1.51 8.59 1.58 8.48 1.56 8.4 1.42 



Version November 12, 2020 submitted to Mach. Learn. Knowl. Extr. S15 of S36 

Table S23. Process time in seconds for Mnist at reference point percentages [10%, 100%] for Cholesky 

Decomposition (CD) and for random SVD with remaining rank percentages [1%, 10%]. Bolded numbers 

differ statistically from Cholesky Decomposition. 

sk_rank_svd_xxx 
Method CD 001 002 003 004 005 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x103 1x106 1x103 1x104 1x103 1x104 1x103 1x104 1x103 1x104 1x103 1x104 

10 0.33 0.00001 0.27 0.002 0.41 0.01 0.57 0.03 0.74 0.09 0.98 0.24 
20 1.34 0.003 0.79 1.05 1.01 1.12 1.28 2.04 1.52 3.33 1.84 6.28 
30 3.08 0.01 1.48 1.82 1.75 1.23 2.05 1.41 2.38 3.64 2.77 5.88 
40 5.68 0.03 2.42 3.18 2.76 3.56 3.14 2.48 3.51 4.44 4.03 8.6 
50 9.5 1.41 3.91 51.79 4.26 36.16 4.62 24.57 5.03 14.91 5.6 16.25 
60 14.73 3.66 5.4 52.39 5.93 64.04 6.54 89.37 7.17 117.21 7.87 135.29 
70 20.25 3.81 6.82 49.46 7.37 30.29 8.09 84.25 8.77 120.31 9.46 113.56 
80 27.08 2.96 8.32 0.34 9.00 0.53 9.66 1.23 10.36 2.03 11.12 3.58 
90 43.64 131.52 12.36 1167.41 13.02 1133.69 14.34 1660.08 14.79 1646.39 15.23 1575.86 
100 52.6 138.29 13.51 225.74 14.14 147.14 14.89 182.74 15.84 230.71 16.81 219.76 

sk_rank_svd_xxx 
Method CD 006 007 008 009 010 

x σ x σ x σ x σ x σ x σ 
RefP / coef. 1x103 1x106 1x103 1x105 1x103 1x105 1x103 1x105 1x103 1x105 1x103 1x105 

10 0.33 0.00001 1.39 0.06 1.72 0.15 2.06 0.2 2.37 0.28 2.75 0.5 
20 1.34 0.003 2.25 1.25 2.7 1.47 3.18 2.26 3.71 2.75 4.38 4.74 
30 3.08 0.01 3.27 1.15 3.79 1.33 4.23 1.82 4.89 2.49 5.52 3.49 
40 5.68 0.03 4.6 1.61 5.17 1.57 5.85 2.96 6.38 3.54 7.15 5.29 
50 9.5 1.41 6.21 4.53 6.86 6.12 7.5 9.34 8.18 8.19 9.19 16.37 
60 14.73 3.66 8.62 22.9 9.56 30.78 10.37 37.53 10.99 39.53 12.11 50.69 
70 20.25 3.81 10.26 15.76 11.1 15.99 12.04 31.91 13.09 43.39 14.00 34.44 
80 27.08 2.96 11.94 0.82 12.81 1.15 13.69 1.32 14.59 1.49 15.69 1.75 
90 43.64 131.52 16.12 150.63 16.96 107.47 18.4 162.85 20.02 184.62 20.93 136.39 
100 52.6 138.29 17.74 32.43 18.78 20.1 19.83 20.77 21.2 28.97 22.41 29.42 
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11 4. Deep neural network results 

12 Tables S24 and S25 report the mean, standard deviation and the best (minimum) RMSE and process 
13 time taken of the used DNN on the studied datasets. 

Table S24. RMSE for neural networks. 

FNN-4 FNN-2 
x σ x σ 

Dataset / coef. 1x10−2 1x10−3 1x10−2 1x10−3 

BreastCancer 25.7 22.88 25.52 22.9 
BostonHousing 10.23 10.33 9.86 11.09 
AirplaneCompanies 6.89 4.4 7.19 4.29 
ComputerActivity 2.48 0.62 2.49 0.62 
Census 6.7 1.99 6.71 2.00 
Mnist 6.1 3.28 8.28 1.54 
AuN2-4k 3.18 1.00 3.42 0.83 
AuN2-8k 2.67 0.68 2.97 0.73 
AuN2-12k 2.15 0.73 3.42 0.83 
AuN10-4k 1.17 0.45 1.21 0.47 
AuN10-8k 0.85 0.21 0.88 0.29 
AuN10-12k 1.4 6.22 15.49 207.22 
AuN100-4k 1.96 1.35 38.75 156.31 
AuN100-8k 1.83 1.28 37.6 193.52 
AuN100-12k 1.96 1.35 38.75 156.31 

Table S25. Process time (s) for neural networks. 

FNN-4 FNN-2 
x σ x σ 

Dataset / coef. 1x103 1x102 1x103 1x102 

BreastCancer 0.06 0.01 0.06 0.01 
BostonHousing 0.15 0.02 0.13 0.03 
AirplaneCompanies 0.23 0.02 0.18 0.06 
ComputerActivity 2.4 0.51 2.22 0.21 
Census 4.54 1.08 3.97 1.3 
Mnist 28.4 23.94 43.36 9.47 
AuN2-4k 1.05 0.36 1.00 0.4 
AuN2-8k 2.22 0.51 2.15 0.34 
AuN2-12k 3.53 0.44 1.00 0.4 
AuN10-4k 1.86 1.24 1.39 1.22 
AuN10-8k 4.21 1.87 3.16 1.41 
AuN10-12k 18.74 108.95 3.34 23.19 
AuN100-4k 24.03 61.34 6.16 7.29 
AuN100-8k 47.11 82.71 10.35 30.74 
AuN100-12k 24.03 61.34 6.17 7.13 

14 5. Au38Q RMSE and process time tables 

15 Tables S26–S35 report the normalized test RMSE of MLM on the variants of Au38Q dataset. Similarly 
16 Tables S36–S45 report the process time taken in OLS evaluation. 
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Table S26. Normalized RMSE mean, standard deviation and best result for Au38Q K = 10. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 3.27 1.54 2.97 2.39 7.67 2.23 1.89 6.22 1.76 
sk_rrSVD_001 5.3 1.98 4.9 4.46 7.15 4.32 3.93 9.44 3.71 
sk_rrSVD_002 4.56 1.62 4.08 3.7 7.61 3.5 3.09 7.59 2.96 
sk_rrSVD_003 4.17 1.49 3.79 3.22 8.77 2.97 2.61 6.96 2.45 
sk_rrSVD_004 3.91 1.55 3.5 2.92 8.44 2.64 2.32 7.5 2.15 
sk_rrSVD_005 3.7 1.5 3.33 2.72 8.2 2.5 2.16 7.04 1.98 
sk_rrSVD_006 3.54 1.52 3.19 2.59 7.65 2.4 2.05 7.02 1.89 
sk_rrSVD_007 3.43 1.56 3.09 2.51 8.04 2.33 1.98 6.48 1.85 
sk_rrSVD_008 3.35 1.61 3.04 2.45 7.81 2.28 1.94 6.37 1.8 
sk_rrSVD_009 3.3 1.55 3.00 2.42 7.95 2.24 1.91 6.38 1.78 
sk_rrSVD_010 3.27 1.54 2.97 2.39 7.67 2.23 1.89 6.25 1.76 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.99 7.85 1.85 1.52 5.48 1.41 1.21 3.2 1.13 
sk_rrSVD_001 2.94 9.79 2.75 2.47 5.92 2.34 2.17 4.22 2.1 
sk_rrSVD_002 2.59 9.94 2.41 2.12 5.14 2.00 1.8 3.17 1.71 
sk_rrSVD_003 2.39 9.04 2.24 1.94 4.65 1.85 1.61 3.03 1.55 
sk_rrSVD_004 2.26 8.76 2.13 1.81 4.91 1.74 1.49 2.98 1.39 
sk_rrSVD_005 2.19 8.61 2.01 1.72 5.47 1.6 1.4 3.15 1.32 
sk_rrSVD_006 2.13 8.36 1.96 1.65 5.16 1.56 1.34 2.95 1.27 
sk_rrSVD_007 2.08 8.26 1.94 1.6 5.51 1.49 1.29 3.15 1.22 
sk_rrSVD_008 2.04 7.81 1.91 1.57 5.41 1.45 1.25 3.24 1.18 
sk_rrSVD_009 2.01 7.92 1.88 1.54 5.5 1.42 1.22 3.18 1.15 
sk_rrSVD_010 1.99 7.85 1.85 1.52 5.48 1.41 1.21 3.2 1.13 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 2.00 7.5 1.83 1.53 5.15 1.45 1.21 3.56 1.15 
sk_rrSVD_001 2.98 8.82 2.8 2.5 6.08 2.37 2.17 4.83 2.08 
sk_rrSVD_002 2.61 8.22 2.44 2.13 5.57 2.01 1.8 4.32 1.68 
sk_rrSVD_003 2.4 7.94 2.26 1.95 5.27 1.85 1.61 3.62 1.52 
sk_rrSVD_004 2.28 7.44 2.13 1.83 4.45 1.74 1.49 3.54 1.41 
sk_rrSVD_005 2.19 7.55 2.03 1.73 4.79 1.66 1.4 3.51 1.31 
sk_rrSVD_006 2.13 7.72 1.96 1.67 4.94 1.58 1.33 3.58 1.25 
sk_rrSVD_007 2.08 7.33 1.92 1.62 5.2 1.53 1.28 3.55 1.22 
sk_rrSVD_008 2.05 7.38 1.9 1.58 5.02 1.51 1.25 3.52 1.19 
sk_rrSVD_009 2.02 7.71 1.85 1.55 5.21 1.47 1.22 3.56 1.16 
sk_rrSVD_010 2.00 7.5 1.83 1.53 5.15 1.45 1.21 3.56 1.15 
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Table S27. Normalized RMSE mean, standard deviation and best result for Au38Q K = 20. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 2.55 1.17 2.31 1.71 4.92 1.63 1.28 3.75 1.21 
sk_rrSVD_001 5.23 1.83 4.81 4.44 8.2 4.26 3.89 8.89 3.68 
sk_rrSVD_002 4.48 1.23 4.2 3.65 7.35 3.49 3.01 7.63 2.83 
sk_rrSVD_003 4.08 1.25 3.78 3.14 8.54 2.94 2.47 6.73 2.34 
sk_rrSVD_004 3.79 1.33 3.52 2.77 7.18 2.59 2.15 5.06 2.05 
sk_rrSVD_005 3.55 1.47 3.19 2.52 6.62 2.39 1.93 4.8 1.85 
sk_rrSVD_006 3.36 1.28 3.11 2.35 5.95 2.25 1.78 4.81 1.68 
sk_rrSVD_007 3.19 1.38 2.93 2.21 6.06 2.09 1.66 4.12 1.56 
sk_rrSVD_008 3.07 1.21 2.84 2.1 5.78 1.99 1.57 4.08 1.48 
sk_rrSVD_009 2.96 1.27 2.69 2.02 5.41 1.91 1.5 4.27 1.41 
sk_rrSVD_010 2.87 1.35 2.63 1.95 5.92 1.85 1.45 4.05 1.38 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.62 6.15 1.51 1.14 3.87 1.05 0.88 2.33 0.83 
sk_rrSVD_001 2.88 9.65 2.69 2.44 5.49 2.34 2.15 3.48 2.06 
sk_rrSVD_002 2.55 8.9 2.37 2.07 5.04 1.97 1.77 3.21 1.69 
sk_rrSVD_003 2.33 6.85 2.22 1.89 4.00 1.82 1.57 2.41 1.53 
sk_rrSVD_004 2.19 6.72 2.01 1.75 3.94 1.67 1.45 2.83 1.39 
sk_rrSVD_005 2.09 6.7 1.95 1.64 3.73 1.53 1.34 2.78 1.26 
sk_rrSVD_006 2.02 6.44 1.91 1.55 3.65 1.43 1.24 2.75 1.17 
sk_rrSVD_007 1.96 6.71 1.83 1.47 3.47 1.37 1.17 2.8 1.08 
sk_rrSVD_008 1.9 6.51 1.77 1.41 3.24 1.33 1.11 2.44 1.05 
sk_rrSVD_009 1.85 6.42 1.73 1.36 3.09 1.28 1.07 2.42 1.01 
sk_rrSVD_010 1.81 6.6 1.68 1.32 3.15 1.25 1.02 2.14 0.98 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.63 6.16 1.53 1.15 4.07 1.03 0.87 2.96 0.82 
sk_rrSVD_001 2.94 8.98 2.73 2.47 5.68 2.35 2.15 4.89 2.06 
sk_rrSVD_002 2.57 7.74 2.42 2.08 5.15 1.97 1.76 3.15 1.72 
sk_rrSVD_003 2.34 7.37 2.24 1.89 4.83 1.8 1.57 3.2 1.51 
sk_rrSVD_004 2.19 6.01 2.07 1.76 3.96 1.67 1.44 3.23 1.37 
sk_rrSVD_005 2.1 5.57 1.98 1.65 4.12 1.57 1.33 3.52 1.26 
sk_rrSVD_006 2.03 6.29 1.89 1.56 4.17 1.49 1.24 3.51 1.17 
sk_rrSVD_007 1.97 5.98 1.84 1.47 3.96 1.39 1.16 2.99 1.11 
sk_rrSVD_008 1.91 6.37 1.78 1.42 3.66 1.35 1.11 3.06 1.05 
sk_rrSVD_009 1.86 6.26 1.76 1.37 3.66 1.26 1.06 2.92 0.99 
sk_rrSVD_010 1.82 6.07 1.71 1.33 3.64 1.23 1.02 2.81 0.96 
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Table S28. Normalized RMSE mean, standard deviation and best result for Au38Q K = 30. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 2.17 0.93 1.99 1.4 4.73 1.29 1.02 3.4 0.94 
sk_rrSVD_001 5.2 1.97 4.73 4.4 8.09 4.27 3.88 8.11 3.7 
sk_rrSVD_002 4.46 1.33 4.14 3.62 6.94 3.52 2.99 8.03 2.78 
sk_rrSVD_003 4.06 1.43 3.74 3.11 7.1 2.97 2.42 6.16 2.32 
sk_rrSVD_004 3.74 1.18 3.51 2.71 6.88 2.54 2.09 5.49 1.96 
sk_rrSVD_005 3.52 1.16 3.26 2.44 5.66 2.33 1.87 5.13 1.76 
sk_rrSVD_006 3.32 1.12 3.11 2.28 5.73 2.15 1.7 4.22 1.6 
sk_rrSVD_007 3.12 1.19 2.83 2.13 5.24 2.00 1.56 4.36 1.48 
sk_rrSVD_008 2.97 1.16 2.7 2.02 3.98 1.93 1.46 3.58 1.39 
sk_rrSVD_009 2.85 1.14 2.6 1.92 5.27 1.8 1.39 3.31 1.33 
sk_rrSVD_010 2.74 1.08 2.48 1.84 4.75 1.74 1.33 3.51 1.26 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.42 4.34 1.34 0.96 2.91 0.9 0.72 1.66 0.68 
sk_rrSVD_001 2.86 9.84 2.67 2.43 4.53 2.35 2.14 3.99 2.05 
sk_rrSVD_002 2.52 7.88 2.4 2.06 4.6 1.96 1.76 3.01 1.7 
sk_rrSVD_003 2.31 6.66 2.19 1.87 4.31 1.79 1.57 2.67 1.51 
sk_rrSVD_004 2.17 6.33 2.07 1.74 4.14 1.64 1.43 2.81 1.37 
sk_rrSVD_005 2.06 6.52 1.96 1.62 3.25 1.53 1.32 2.57 1.25 
sk_rrSVD_006 1.99 5.95 1.89 1.52 3.2 1.45 1.22 2.68 1.13 
sk_rrSVD_007 1.92 6.79 1.82 1.44 2.51 1.37 1.14 2.21 1.06 
sk_rrSVD_008 1.87 6.31 1.74 1.37 2.76 1.31 1.08 2.23 1.02 
sk_rrSVD_009 1.81 5.81 1.68 1.31 2.33 1.26 1.02 1.93 0.96 
sk_rrSVD_010 1.76 6.23 1.65 1.27 2.23 1.22 0.97 1.75 0.92 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.43 5.27 1.34 0.96 2.64 0.88 0.72 2.16 0.68 
sk_rrSVD_001 2.9 7.49 2.69 2.46 5.57 2.34 2.14 4.28 2.05 
sk_rrSVD_002 2.54 7.74 2.38 2.07 4.5 2.00 1.74 3.66 1.69 
sk_rrSVD_003 2.3 6.01 2.21 1.88 3.41 1.81 1.55 3.11 1.49 
sk_rrSVD_004 2.16 5.44 2.04 1.74 3.58 1.66 1.42 3.31 1.36 
sk_rrSVD_005 2.07 5.31 1.97 1.63 3.27 1.56 1.31 3.03 1.24 
sk_rrSVD_006 2.00 4.8 1.91 1.53 2.8 1.48 1.21 2.93 1.15 
sk_rrSVD_007 1.93 4.97 1.85 1.44 3.24 1.39 1.13 2.47 1.09 
sk_rrSVD_008 1.87 5.68 1.77 1.38 2.92 1.32 1.07 2.39 1.02 
sk_rrSVD_009 1.82 5.62 1.73 1.32 2.46 1.26 1.01 2.34 0.96 
sk_rrSVD_010 1.77 5.66 1.68 1.27 2.46 1.22 0.96 2.37 0.9 
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Table S29. Normalized RMSE mean, standard deviation and best result for Au38Q K = 40. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.95 0.82 1.78 1.21 3.67 1.14 0.88 2.4 0.83 
sk_rrSVD_001 5.19 1.74 4.76 4.4 7.99 4.24 3.87 8.84 3.69 
sk_rrSVD_002 4.45 1.23 4.2 3.62 6.91 3.49 2.96 6.92 2.81 
sk_rrSVD_003 4.04 1.33 3.71 3.08 6.85 2.94 2.41 5.83 2.24 
sk_rrSVD_004 3.72 1.24 3.5 2.68 7.86 2.51 2.06 4.71 1.96 
sk_rrSVD_005 3.49 1.08 3.23 2.42 6.03 2.32 1.84 4.66 1.73 
sk_rrSVD_006 3.28 1.19 3.04 2.23 5.36 2.1 1.66 3.92 1.59 
sk_rrSVD_007 3.07 1.17 2.77 2.09 4.33 2.01 1.53 3.74 1.44 
sk_rrSVD_008 2.92 1.11 2.66 1.97 4.68 1.84 1.43 3.41 1.38 
sk_rrSVD_009 2.8 1.05 2.57 1.87 4.57 1.78 1.35 2.95 1.3 
sk_rrSVD_010 2.69 1.07 2.44 1.79 5.00 1.69 1.28 2.86 1.23 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.3 4.45 1.22 0.85 2.54 0.8 0.64 1.47 0.61 
sk_rrSVD_001 2.85 8.26 2.69 2.42 4.43 2.33 2.13 3.82 2.07 
sk_rrSVD_002 2.52 7.51 2.38 2.05 4.51 1.96 1.76 3.09 1.7 
sk_rrSVD_003 2.3 5.88 2.19 1.87 3.93 1.79 1.56 2.47 1.5 
sk_rrSVD_004 2.14 5.18 2.06 1.73 3.54 1.62 1.43 2.43 1.38 
sk_rrSVD_005 2.05 5.75 1.94 1.61 3.18 1.55 1.31 2.71 1.25 
sk_rrSVD_006 1.97 5.65 1.87 1.51 3.49 1.43 1.2 2.37 1.15 
sk_rrSVD_007 1.91 5.39 1.81 1.42 3.08 1.36 1.13 1.99 1.07 
sk_rrSVD_008 1.85 5.88 1.69 1.35 2.55 1.31 1.06 1.88 1.01 
sk_rrSVD_009 1.79 5.61 1.68 1.29 2.23 1.26 1.00 2.02 0.96 
sk_rrSVD_010 1.74 5.71 1.62 1.25 2.2 1.2 0.95 2.01 0.91 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.3 4.35 1.23 0.85 2.24 0.79 0.63 1.78 0.59 
sk_rrSVD_001 2.88 7.24 2.72 2.46 6.01 2.33 2.14 4.46 2.05 
sk_rrSVD_002 2.53 6.57 2.41 2.05 4.89 1.93 1.75 3.3 1.69 
sk_rrSVD_003 2.29 6.05 2.17 1.87 4.29 1.81 1.54 3.47 1.47 
sk_rrSVD_004 2.15 5.5 2.03 1.74 3.7 1.67 1.42 2.85 1.35 
sk_rrSVD_005 2.05 5.55 1.96 1.61 3.35 1.56 1.3 2.78 1.22 
sk_rrSVD_006 1.99 4.88 1.91 1.51 2.87 1.45 1.2 2.41 1.15 
sk_rrSVD_007 1.92 4.89 1.84 1.42 3.27 1.37 1.12 2.23 1.07 
sk_rrSVD_008 1.85 5.35 1.76 1.36 2.75 1.32 1.05 2.31 1.01 
sk_rrSVD_009 1.79 5.2 1.71 1.3 2.6 1.26 0.99 2.26 0.95 
sk_rrSVD_010 1.75 5.11 1.67 1.25 2.68 1.2 0.94 2.24 0.9 
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Table S30. Normalized RMSE mean, standard deviation and best result for Au38Q K = 50. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.79 0.71 1.67 1.09 3.2 1.04 0.8 2.07 0.76 
sk_rrSVD_001 5.18 1.71 4.76 4.38 7.36 4.2 3.87 7.28 3.71 
sk_rrSVD_002 4.43 1.44 4.1 3.61 6.63 3.49 2.96 7.24 2.81 
sk_rrSVD_003 4.02 1.32 3.67 3.07 6.98 2.94 2.4 5.94 2.26 
sk_rrSVD_004 3.71 1.32 3.46 2.66 6.07 2.5 2.05 4.3 1.93 
sk_rrSVD_005 3.47 1.17 3.18 2.4 6.05 2.25 1.82 3.95 1.75 
sk_rrSVD_006 3.26 1.23 2.95 2.21 5.64 2.06 1.64 3.14 1.59 
sk_rrSVD_007 3.07 1.11 2.78 2.07 4.45 1.96 1.51 3.05 1.44 
sk_rrSVD_008 2.9 1.07 2.6 1.96 3.81 1.87 1.41 2.67 1.34 
sk_rrSVD_009 2.76 0.99 2.53 1.84 3.96 1.76 1.32 2.56 1.27 
sk_rrSVD_010 2.65 1.02 2.39 1.76 3.68 1.66 1.26 2.71 1.21 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.21 4.34 1.11 0.78 2.14 0.75 0.6 1.29 0.58 
sk_rrSVD_001 2.83 7.67 2.68 2.42 4.46 2.32 2.14 3.76 2.06 
sk_rrSVD_002 2.52 6.51 2.37 2.05 4.92 1.96 1.75 3.18 1.7 
sk_rrSVD_003 2.28 6.11 2.18 1.87 3.94 1.79 1.56 2.55 1.5 
sk_rrSVD_004 2.14 5.36 2.05 1.73 3.71 1.64 1.42 2.08 1.38 
sk_rrSVD_005 2.04 4.99 1.93 1.61 2.88 1.54 1.3 2.62 1.24 
sk_rrSVD_006 1.97 5.46 1.86 1.5 3.25 1.43 1.2 2.55 1.14 
sk_rrSVD_007 1.9 5.4 1.78 1.41 2.84 1.35 1.11 2.11 1.07 
sk_rrSVD_008 1.84 5.65 1.73 1.34 2.52 1.29 1.05 2.07 1.00 
sk_rrSVD_009 1.77 5.64 1.65 1.28 2.07 1.24 0.99 2.28 0.93 
sk_rrSVD_010 1.72 4.93 1.62 1.23 1.93 1.19 0.94 1.89 0.9 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.21 3.84 1.15 0.79 2.26 0.73 0.58 1.61 0.54 
sk_rrSVD_001 2.89 8.37 2.71 2.45 5.12 2.36 2.14 3.78 2.06 
sk_rrSVD_002 2.52 6.48 2.4 2.05 5.03 1.95 1.74 2.83 1.69 
sk_rrSVD_003 2.29 6.04 2.13 1.86 3.93 1.8 1.54 3.08 1.48 
sk_rrSVD_004 2.14 4.69 2.03 1.72 3.86 1.64 1.42 2.69 1.37 
sk_rrSVD_005 2.05 5.29 1.96 1.61 3.79 1.56 1.3 2.39 1.25 
sk_rrSVD_006 1.97 4.54 1.88 1.51 3.01 1.45 1.19 2.6 1.14 
sk_rrSVD_007 1.91 5.09 1.79 1.42 3.07 1.35 1.11 2.14 1.06 
sk_rrSVD_008 1.85 4.62 1.75 1.34 2.83 1.3 1.05 2.15 1.00 
sk_rrSVD_009 1.78 4.41 1.71 1.28 2.81 1.22 0.99 2.13 0.94 
sk_rrSVD_010 1.73 4.86 1.66 1.23 2.53 1.19 0.93 2.11 0.89 
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Table S31. Normalized RMSE mean, standard deviation and best result for Au38Q K = 60. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.68 0.66 1.58 1.01 3.07 0.96 0.74 2.11 0.69 
sk_rrSVD_001 5.17 1.62 4.73 4.39 7.84 4.26 3.87 7.33 3.72 
sk_rrSVD_002 4.43 1.33 4.04 3.61 6.4 3.49 2.94 6.38 2.81 
sk_rrSVD_003 4.02 1.21 3.71 3.07 5.83 2.97 2.4 5.35 2.27 
sk_rrSVD_004 3.7 1.31 3.45 2.66 6.09 2.52 2.04 3.77 1.92 
sk_rrSVD_005 3.46 1.12 3.25 2.38 5.71 2.23 1.8 4.23 1.71 
sk_rrSVD_006 3.25 1.22 2.96 2.2 5.9 2.03 1.64 3.53 1.55 
sk_rrSVD_007 3.03 1.13 2.77 2.05 5.05 1.91 1.5 3.19 1.43 
sk_rrSVD_008 2.88 1.15 2.57 1.94 4.41 1.86 1.39 2.52 1.34 
sk_rrSVD_009 2.74 0.99 2.48 1.83 3.47 1.75 1.31 2.49 1.25 
sk_rrSVD_010 2.62 1.01 2.41 1.74 3.86 1.64 1.25 2.59 1.19 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.14 3.46 1.07 0.74 1.86 0.71 0.57 1.23 0.54 
sk_rrSVD_001 2.83 7.82 2.68 2.42 4.34 2.32 2.13 3.76 2.07 
sk_rrSVD_002 2.51 6.65 2.36 2.06 4.72 1.97 1.75 2.99 1.69 
sk_rrSVD_003 2.28 6.00 2.16 1.87 4.07 1.79 1.55 2.17 1.51 
sk_rrSVD_004 2.13 5.3 2.02 1.72 3.69 1.65 1.42 2.36 1.37 
sk_rrSVD_005 2.03 4.93 1.94 1.6 3.12 1.53 1.3 2.3 1.26 
sk_rrSVD_006 1.97 5.13 1.86 1.5 3.37 1.43 1.19 2.32 1.15 
sk_rrSVD_007 1.89 5.66 1.79 1.41 2.81 1.36 1.11 1.76 1.07 
sk_rrSVD_008 1.84 5.34 1.74 1.33 2.55 1.28 1.04 1.97 0.99 
sk_rrSVD_009 1.77 5.35 1.66 1.28 2.34 1.24 0.98 1.88 0.94 
sk_rrSVD_010 1.71 5.17 1.62 1.22 2.15 1.17 0.93 1.89 0.9 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.14 3.46 1.08 0.74 2.1 0.69 0.55 1.6 0.51 
sk_rrSVD_001 2.87 8.7 2.72 2.45 4.57 2.37 2.13 3.58 2.06 
sk_rrSVD_002 2.51 5.35 2.43 2.04 4.53 1.96 1.74 2.89 1.68 
sk_rrSVD_003 2.28 5.66 2.14 1.86 3.95 1.79 1.54 3.37 1.47 
sk_rrSVD_004 2.14 4.56 2.04 1.73 3.46 1.65 1.41 2.58 1.35 
sk_rrSVD_005 2.05 5.28 1.94 1.6 3.38 1.54 1.29 2.5 1.24 
sk_rrSVD_006 1.97 5.24 1.89 1.5 2.73 1.45 1.18 2.21 1.14 
sk_rrSVD_007 1.91 4.62 1.82 1.41 3.08 1.36 1.1 2.13 1.06 
sk_rrSVD_008 1.84 4.31 1.75 1.33 2.96 1.27 1.04 2.06 0.99 
sk_rrSVD_009 1.78 4.78 1.68 1.28 2.86 1.21 0.98 2.14 0.94 
sk_rrSVD_010 1.72 4.99 1.64 1.22 2.53 1.17 0.92 1.79 0.89 
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Table S32. Normalized RMSE mean, standard deviation and best result for Au38Q K = 70. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.59 0.62 1.47 0.95 2.86 0.89 0.7 1.78 0.66 
sk_rrSVD_001 5.18 1.57 4.9 4.37 7.85 4.16 3.86 6.43 3.71 
sk_rrSVD_002 4.43 1.51 4.08 3.6 6.61 3.41 2.96 7.09 2.84 
sk_rrSVD_003 4.03 1.17 3.79 3.05 7.3 2.82 2.39 4.83 2.3 
sk_rrSVD_004 3.68 1.26 3.44 2.64 5.43 2.51 2.03 4.5 1.91 
sk_rrSVD_005 3.46 1.19 3.21 2.37 5.49 2.25 1.8 3.97 1.73 
sk_rrSVD_006 3.24 1.23 3.00 2.19 5.6 2.04 1.63 2.95 1.56 
sk_rrSVD_007 3.02 1.33 2.72 2.05 4.44 1.96 1.49 3.1 1.42 
sk_rrSVD_008 2.86 1.09 2.65 1.92 4.02 1.82 1.39 2.98 1.33 
sk_rrSVD_009 2.72 0.99 2.53 1.81 3.63 1.73 1.3 2.31 1.25 
sk_rrSVD_010 2.61 0.96 2.41 1.73 3.72 1.65 1.24 2.74 1.18 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.09 3.5 1.03 0.71 1.78 0.68 0.55 1.05 0.53 
sk_rrSVD_001 2.82 8.33 2.68 2.42 4.25 2.34 2.13 3.87 2.06 
sk_rrSVD_002 2.51 6.51 2.4 2.06 4.5 1.97 1.75 3.01 1.67 
sk_rrSVD_003 2.27 5.83 2.17 1.87 3.42 1.8 1.55 2.35 1.5 
sk_rrSVD_004 2.13 4.9 2.04 1.72 3.49 1.66 1.42 2.07 1.38 
sk_rrSVD_005 2.04 4.92 1.95 1.6 3.37 1.5 1.3 2.04 1.26 
sk_rrSVD_006 1.97 5.62 1.86 1.5 3.27 1.42 1.19 2.13 1.14 
sk_rrSVD_007 1.89 6.35 1.75 1.4 3.12 1.33 1.1 1.87 1.06 
sk_rrSVD_008 1.83 5.33 1.72 1.33 2.83 1.26 1.04 1.79 1.00 
sk_rrSVD_009 1.76 5.01 1.66 1.27 2.26 1.23 0.98 1.75 0.95 
sk_rrSVD_010 1.7 4.72 1.61 1.22 2.06 1.18 0.93 1.86 0.89 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.09 3.41 1.02 0.71 1.89 0.66 0.53 1.54 0.49 
sk_rrSVD_001 2.88 7.6 2.72 2.44 4.74 2.35 2.13 3.58 2.07 
sk_rrSVD_002 2.52 5.42 2.44 2.04 4.18 1.97 1.73 2.85 1.65 
sk_rrSVD_003 2.27 5.46 2.15 1.86 3.62 1.78 1.53 3.23 1.47 
sk_rrSVD_004 2.14 5.22 2.06 1.72 3.34 1.64 1.41 3.03 1.34 
sk_rrSVD_005 2.04 4.82 1.95 1.6 3.18 1.54 1.29 2.47 1.24 
sk_rrSVD_006 1.97 5.2 1.88 1.49 2.49 1.43 1.18 2.12 1.15 
sk_rrSVD_007 1.9 4.23 1.83 1.4 2.54 1.34 1.1 2.06 1.05 
sk_rrSVD_008 1.84 4.65 1.75 1.33 2.76 1.27 1.03 2.01 0.99 
sk_rrSVD_009 1.77 4.27 1.7 1.27 2.37 1.22 0.98 1.94 0.94 
sk_rrSVD_010 1.72 4.79 1.63 1.22 2.58 1.17 0.92 1.85 0.88 
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Table S33. Normalized RMSE mean, standard deviation and best result for Au38Q K = 80. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.52 0.57 1.4 0.91 2.86 0.84 0.66 1.53 0.63 
sk_rrSVD_001 5.18 1.76 4.83 4.38 5.87 4.27 3.86 8.02 3.69 
sk_rrSVD_002 4.42 1.44 4.06 3.6 6.24 3.45 2.96 8.79 2.73 
sk_rrSVD_003 4.02 1.3 3.73 3.04 6.04 2.87 2.38 4.95 2.26 
sk_rrSVD_004 3.68 1.22 3.41 2.65 6.38 2.49 2.02 4.51 1.93 
sk_rrSVD_005 3.45 1.07 3.24 2.36 5.25 2.25 1.79 4.21 1.72 
sk_rrSVD_006 3.22 1.19 2.94 2.18 4.75 2.03 1.63 3.48 1.54 
sk_rrSVD_007 3.01 1.2 2.69 2.04 4.43 1.92 1.49 3.66 1.41 
sk_rrSVD_008 2.84 1.19 2.56 1.91 4.22 1.82 1.38 3.14 1.3 
sk_rrSVD_009 2.7 1.00 2.53 1.81 3.7 1.72 1.29 2.61 1.23 
sk_rrSVD_010 2.6 0.89 2.39 1.72 3.65 1.63 1.23 2.6 1.17 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.06 3.23 1.00 0.69 1.68 0.66 0.53 1.03 0.51 
sk_rrSVD_001 2.82 7.83 2.67 2.42 4.3 2.33 2.13 4.32 2.05 
sk_rrSVD_002 2.51 6.83 2.39 2.05 3.94 1.97 1.75 2.99 1.68 
sk_rrSVD_003 2.27 6.6 2.16 1.87 3.91 1.79 1.55 2.23 1.5 
sk_rrSVD_004 2.12 4.94 2.01 1.72 3.39 1.65 1.42 2.17 1.38 
sk_rrSVD_005 2.03 4.46 1.95 1.6 3.1 1.52 1.3 2.29 1.25 
sk_rrSVD_006 1.96 5.53 1.84 1.49 3.4 1.4 1.18 2.1 1.13 
sk_rrSVD_007 1.89 5.58 1.76 1.4 2.85 1.34 1.1 1.51 1.07 
sk_rrSVD_008 1.82 5.25 1.71 1.33 2.83 1.26 1.04 1.71 1.00 
sk_rrSVD_009 1.76 5.14 1.68 1.26 2.29 1.22 0.98 1.81 0.93 
sk_rrSVD_010 1.7 5.04 1.61 1.21 1.99 1.17 0.93 1.67 0.89 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.06 2.98 1.00 0.69 1.75 0.65 0.52 1.47 0.48 
sk_rrSVD_001 2.87 8.03 2.73 2.44 4.84 2.37 2.14 3.5 2.07 
sk_rrSVD_002 2.51 5.9 2.39 2.04 4.61 1.97 1.73 2.95 1.66 
sk_rrSVD_003 2.27 5.4 2.15 1.86 3.86 1.77 1.54 3.25 1.47 
sk_rrSVD_004 2.13 4.71 2.05 1.73 3.27 1.65 1.41 2.71 1.34 
sk_rrSVD_005 2.03 5.03 1.93 1.6 3.86 1.54 1.29 2.51 1.23 
sk_rrSVD_006 1.96 6.09 1.84 1.49 2.67 1.44 1.18 2.26 1.14 
sk_rrSVD_007 1.9 4.62 1.81 1.4 2.83 1.35 1.1 2.19 1.04 
sk_rrSVD_008 1.84 4.54 1.74 1.32 2.51 1.27 1.03 1.82 0.99 
sk_rrSVD_009 1.77 4.52 1.68 1.27 2.66 1.21 0.97 1.93 0.93 
sk_rrSVD_010 1.71 4.7 1.63 1.22 2.21 1.17 0.91 2.06 0.87 
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Table S34. Normalized RMSE mean, standard deviation and best result for Au38Q K = 90. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.47 0.6 1.35 0.87 2.68 0.81 0.64 1.55 0.61 
sk_rrSVD_001 5.18 1.72 4.83 4.38 7.6 4.13 3.86 8.15 3.64 
sk_rrSVD_002 4.42 1.4 4.13 3.6 7.06 3.42 2.96 8.12 2.77 
sk_rrSVD_003 4.02 1.22 3.73 3.04 5.78 2.93 2.37 5.35 2.26 
sk_rrSVD_004 3.69 1.24 3.4 2.63 5.82 2.47 2.02 4.46 1.89 
sk_rrSVD_005 3.44 1.2 3.18 2.36 5.25 2.2 1.79 4.23 1.7 
sk_rrSVD_006 3.21 1.13 2.94 2.18 4.32 2.04 1.62 3.37 1.54 
sk_rrSVD_007 3.02 1.07 2.81 2.03 4.1 1.93 1.48 3.5 1.39 
sk_rrSVD_008 2.84 1.12 2.63 1.9 4.27 1.8 1.38 3.19 1.32 
sk_rrSVD_009 2.69 1.04 2.48 1.8 3.98 1.71 1.29 2.35 1.23 
sk_rrSVD_010 2.59 0.95 2.4 1.71 3.59 1.63 1.22 2.49 1.18 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.03 3.02 0.97 0.67 1.64 0.64 0.51 0.97 0.5 
sk_rrSVD_001 2.82 8.04 2.67 2.42 4.14 2.33 2.13 3.9 2.04 
sk_rrSVD_002 2.49 7.29 2.32 2.05 3.98 1.98 1.75 3.01 1.67 
sk_rrSVD_003 2.26 5.83 2.18 1.87 3.69 1.8 1.55 2.31 1.49 
sk_rrSVD_004 2.12 5.36 2.03 1.72 3.85 1.64 1.42 2.25 1.37 
sk_rrSVD_005 2.03 5.08 1.96 1.6 2.91 1.51 1.3 2.1 1.25 
sk_rrSVD_006 1.96 5.62 1.86 1.49 3.34 1.41 1.18 2.37 1.14 
sk_rrSVD_007 1.89 5.66 1.78 1.4 2.82 1.33 1.1 1.52 1.06 
sk_rrSVD_008 1.82 5.37 1.72 1.32 2.97 1.28 1.04 1.56 1.00 
sk_rrSVD_009 1.75 4.86 1.66 1.26 2.38 1.22 0.97 1.7 0.94 
sk_rrSVD_010 1.69 4.73 1.61 1.21 1.91 1.17 0.92 1.54 0.89 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.03 2.88 0.98 0.66 1.85 0.62 0.5 1.43 0.47 
sk_rrSVD_001 2.87 7.04 2.7 2.45 5.06 2.36 2.14 3.11 2.07 
sk_rrSVD_002 2.5 5.91 2.38 2.04 4.14 1.95 1.73 3.4 1.65 
sk_rrSVD_003 2.27 5.29 2.16 1.86 3.45 1.8 1.53 3.16 1.47 
sk_rrSVD_004 2.12 4.36 2.06 1.72 3.57 1.64 1.41 2.77 1.34 
sk_rrSVD_005 2.02 4.8 1.93 1.6 3.54 1.53 1.29 2.31 1.24 
sk_rrSVD_006 1.96 5.39 1.83 1.49 3.14 1.44 1.18 2.08 1.14 
sk_rrSVD_007 1.9 4.77 1.8 1.39 3.11 1.34 1.09 2.25 1.04 
sk_rrSVD_008 1.84 4.77 1.73 1.32 2.41 1.28 1.03 1.76 1.00 
sk_rrSVD_009 1.77 3.91 1.69 1.26 2.31 1.2 0.97 1.79 0.94 
sk_rrSVD_010 1.71 4.65 1.63 1.21 2.67 1.17 0.91 1.87 0.88 
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Table S35. Normalized RMSE mean, standard deviation and best result for Au38Q K = 100. Bolded 

means x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x10−2 1x10−3 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.43 0.62 1.32 0.84 2.54 0.78 0.61 1.6 0.59 
sk_rrSVD_001 5.18 1.76 4.84 4.37 8.33 4.21 3.87 8.71 3.61 
sk_rrSVD_002 4.42 1.45 4.11 3.6 7.29 3.39 2.94 7.38 2.77 
sk_rrSVD_003 4.01 1.28 3.76 3.05 5.49 2.91 2.37 4.96 2.26 
sk_rrSVD_004 3.68 1.2 3.45 2.64 5.31 2.52 2.02 4.32 1.91 
sk_rrSVD_005 3.44 1.32 3.18 2.35 5.58 2.2 1.79 4.23 1.7 
sk_rrSVD_006 3.22 1.3 2.88 2.17 4.88 2.03 1.61 3.26 1.55 
sk_rrSVD_007 3.01 1.05 2.71 2.03 4.41 1.95 1.48 3.31 1.39 
sk_rrSVD_008 2.83 1.16 2.55 1.9 5.05 1.79 1.37 2.95 1.32 
sk_rrSVD_009 2.68 1.07 2.47 1.79 3.58 1.71 1.29 2.4 1.23 
sk_rrSVD_010 2.58 0.94 2.39 1.71 4.00 1.63 1.22 2.34 1.16 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.01 2.92 0.94 0.65 1.66 0.62 0.5 1.04 0.48 
sk_rrSVD_001 2.82 8.02 2.67 2.42 5.27 2.3 2.13 3.25 2.03 
sk_rrSVD_002 2.5 6.33 2.37 2.05 4.29 1.96 1.75 2.91 1.69 
sk_rrSVD_003 2.27 6.29 2.17 1.87 3.72 1.78 1.55 2.06 1.49 
sk_rrSVD_004 2.12 5.82 2.02 1.72 3.37 1.64 1.42 2.11 1.38 
sk_rrSVD_005 2.03 4.92 1.94 1.59 2.96 1.54 1.3 1.95 1.25 
sk_rrSVD_006 1.96 5.92 1.86 1.49 3.35 1.41 1.18 2.09 1.14 
sk_rrSVD_007 1.89 5.38 1.79 1.4 2.89 1.33 1.1 1.73 1.05 
sk_rrSVD_008 1.83 5.13 1.72 1.32 2.66 1.25 1.03 1.51 1.00 
sk_rrSVD_009 1.75 5.35 1.65 1.26 2.64 1.21 0.97 1.75 0.94 
sk_rrSVD_010 1.69 4.21 1.63 1.21 2.23 1.16 0.92 1.47 0.89 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 1x10−2 1x10−4 1x10−2 

cho_dec 1.01 2.85 0.96 0.64 1.82 0.6 0.49 1.45 0.45 
sk_rrSVD_001 2.87 7.59 2.72 2.44 4.65 2.34 2.14 3.74 2.07 
sk_rrSVD_002 2.5 5.47 2.4 2.04 4.41 1.96 1.73 3.11 1.65 
sk_rrSVD_003 2.26 5.00 2.13 1.87 3.62 1.79 1.53 2.8 1.48 
sk_rrSVD_004 2.13 4.41 2.05 1.72 3.33 1.65 1.41 2.81 1.34 
sk_rrSVD_005 2.02 5.05 1.92 1.6 3.48 1.53 1.29 2.28 1.24 
sk_rrSVD_006 1.96 4.81 1.83 1.49 3.16 1.44 1.18 2.35 1.12 
sk_rrSVD_007 1.9 5.04 1.81 1.39 3.18 1.34 1.09 1.94 1.05 
sk_rrSVD_008 1.83 4.6 1.74 1.32 2.57 1.26 1.03 1.84 0.99 
sk_rrSVD_009 1.76 3.81 1.66 1.26 2.58 1.2 0.96 1.61 0.93 
sk_rrSVD_010 1.71 4.43 1.62 1.21 2.59 1.17 0.91 1.79 0.88 
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Table S36. Process time (s) mean, standard deviation and best result for Au38Q K = 10. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x10−1 1x101 1x101 1x10−1 1x101 1x101 1x10−1 1x101 

cho_dec 1.05 0.38 0.98 3.76 3.49 3.43 0.55 2.39 0.53 
sk_rrSVD_001 0.95 1.06 0.88 1.95 3.92 1.64 0.51 7.04 0.46 
sk_rrSVD_002 1.12 1.12 1.06 3.06 7.71 2.59 0.81 10.63 0.72 
sk_rrSVD_003 1.62 1.47 1.54 4.63 9.72 3.94 1.13 15.28 1.01 
sk_rrSVD_004 2.04 1.73 1.97 5.98 12.23 5.18 1.42 14.28 1.3 
sk_rrSVD_005 2.53 1.79 2.44 7.56 15.93 6.45 1.72 14.32 1.62 
sk_rrSVD_006 2.96 1.13 2.83 8.68 13.3 7.74 1.94 8.11 1.89 
sk_rrSVD_007 3.43 1.29 3.32 9.65 11.19 8.89 2.3 6.78 2.25 
sk_rrSVD_008 3.85 0.62 3.75 10.6 5.12 10.11 2.72 8.88 2.63 
sk_rrSVD_009 4.4 3.15 4.22 11.9 8.65 11.27 3.21 14.08 3.04 
sk_rrSVD_010 4.79 3.38 3.00 13.05 5.41 12.53 3.44 4.63 3.38 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x10−1 1x101 1x101 1x10−1 1x101 

cho_dec 1.21 3.68 0.82 3.63 2.31 3.36 0.55 2.56 0.53 
sk_rrSVD_001 1.09 2.39 0.7 1.82 3.35 1.6 0.5 6.55 0.47 
sk_rrSVD_002 1.17 2.59 0.77 2.86 4.00 2.53 0.78 10.06 0.72 
sk_rrSVD_003 1.49 3.54 0.92 4.14 6.49 3.7 1.08 14.6 0.99 
sk_rrSVD_004 1.88 4.14 1.12 5.48 7.52 5.05 1.42 15.25 1.32 
sk_rrSVD_005 2.24 4.31 1.36 7.05 11.77 6.29 1.75 19.59 1.61 
sk_rrSVD_006 2.63 4.76 1.63 8.3 12.4 7.55 1.96 9.46 1.89 
sk_rrSVD_007 3.07 5.95 1.88 9.3 8.86 8.74 2.3 7.65 2.21 
sk_rrSVD_008 3.52 6.37 2.16 10.34 6.25 9.89 2.73 6.17 2.66 
sk_rrSVD_009 3.88 6.79 2.44 11.57 8.02 11.08 3.25 18.94 3.01 
sk_rrSVD_010 4.3 7.07 2.75 12.8 7.16 12.24 3.47 7.97 3.38 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 1.18 1.41 1.05 3.55 0.25 3.24 0.52 0.11 0.5 
sk_rrSVD_001 1.03 1.9 0.82 1.92 0.34 1.66 0.51 0.55 0.46 
sk_rrSVD_002 1.19 1.56 1.07 3.05 0.66 2.6 0.84 1.62 0.72 
sk_rrSVD_003 1.57 0.76 1.52 4.53 0.92 3.82 1.22 2.06 1.01 
sk_rrSVD_004 1.98 0.59 1.92 6.02 1.12 5.13 1.49 1.7 1.32 
sk_rrSVD_005 2.43 0.61 2.37 7.62 1.64 6.33 1.81 2.02 1.62 
sk_rrSVD_006 2.8 0.62 2.74 8.8 1.74 7.5 1.95 0.67 1.86 
sk_rrSVD_007 3.25 1.04 3.17 9.87 1.45 8.96 2.32 1.08 2.21 
sk_rrSVD_008 3.75 2.16 3.63 10.96 1.14 10.24 2.78 1.34 2.64 
sk_rrSVD_009 4.32 1.17 4.12 12.28 1.34 11.46 3.17 1.52 3.01 
sk_rrSVD_010 4.66 0.84 4.54 13.49 1.09 12.67 3.45 0.64 3.36 



Version November 12, 2020 submitted to Mach. Learn. Knowl. Extr. S28 of S36 

Table S37. Process time (s) mean, standard deviation and best result for Au38Q K = 20. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x10−1 1x101 

cho_dec 2.3 1.43 2.09 0.57 0.15 5.41 1.45 6.98 1.38 
sk_rrSVD_001 1.1 1.81 0.92 0.37 0.24 3.45 0.97 6.32 0.89 
sk_rrSVD_002 1.29 2.57 1.03 0.53 0.47 4.79 1.35 13.02 1.21 
sk_rrSVD_003 1.76 4.54 1.29 0.69 0.79 6.25 1.72 15.3 1.6 
sk_rrSVD_004 2.16 5.24 1.59 0.89 1.45 7.7 2.13 16.52 1.97 
sk_rrSVD_005 2.61 6.61 1.95 1.06 1.63 9.28 2.49 11.52 2.37 
sk_rrSVD_006 3.23 8.44 2.39 1.23 1.83 11.03 2.92 7.91 2.78 
sk_rrSVD_007 3.84 9.41 2.79 1.43 2.06 12.6 3.34 8.78 3.21 
sk_rrSVD_008 4.51 11.55 3.19 1.6 1.91 14.38 3.98 6.23 3.82 
sk_rrSVD_009 5.1 12.69 3.61 1.74 1.45 16.13 4.7 15.21 4.42 
sk_rrSVD_010 5.78 13.00 4.11 1.89 1.08 18.1 4.91 5.86 4.8 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 2.35 3.04 2.11 0.57 0.34 5.49 1.45 0.82 1.34 
sk_rrSVD_001 1.19 1.94 0.94 0.39 0.52 3.47 0.97 0.93 0.85 
sk_rrSVD_002 1.47 2.71 1.08 0.53 0.71 4.78 1.36 1.6 1.15 
sk_rrSVD_003 1.95 3.71 1.3 0.71 1.13 6.18 1.78 2.02 1.51 
sk_rrSVD_004 2.5 5.4 1.6 0.89 1.56 7.56 2.22 2.42 1.93 
sk_rrSVD_005 2.98 5.69 1.89 1.02 1.49 9.01 2.49 1.69 2.3 
sk_rrSVD_006 3.61 5.5 2.28 1.18 1.76 10.73 2.87 0.93 2.76 
sk_rrSVD_007 4.27 7.55 2.68 1.34 1.79 12.16 3.31 1.4 3.17 
sk_rrSVD_008 4.78 8.02 3.1 1.5 1.63 13.92 3.96 2.03 3.77 
sk_rrSVD_009 5.45 8.95 3.45 1.68 1.59 15.67 4.6 1.95 4.25 
sk_rrSVD_010 6.18 10.29 3.9 1.88 1.92 17.6 4.87 1.03 4.74 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 2.55 2.58 2.1 0.57 0.22 5.41 1.48 1.19 1.37 
sk_rrSVD_001 1.26 2.51 0.94 0.39 0.5 3.38 0.99 1.09 0.87 
sk_rrSVD_002 1.43 2.77 1.02 0.57 1.05 4.55 1.47 1.76 1.2 
sk_rrSVD_003 1.91 3.57 1.25 0.75 1.17 5.97 1.93 2.11 1.57 
sk_rrSVD_004 2.34 4.29 1.54 0.97 1.61 7.69 2.2 2.46 1.97 
sk_rrSVD_005 2.82 5.08 1.84 1.14 1.95 9.18 2.49 1.71 2.32 
sk_rrSVD_006 3.59 8.43 2.25 1.28 1.97 10.81 2.91 1.46 2.78 
sk_rrSVD_007 4.05 8.19 2.61 1.43 1.96 12.32 3.27 1.09 3.16 
sk_rrSVD_008 4.64 9.27 3.03 1.6 2.08 14.02 3.92 0.84 3.78 
sk_rrSVD_009 5.38 11.12 3.44 1.74 1.84 15.71 4.65 1.56 4.28 
sk_rrSVD_010 6.15 14.37 3.89 1.91 1.9 17.36 4.84 1.18 4.66 
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Table S38. Process time (s) mean, standard deviation and best result for Au38Q K = 30. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 2.43 1.64 2.21 1.04 1.06 0.97 2.91 0.88 2.79 
sk_rrSVD_001 1.32 0.93 1.22 0.55 0.67 0.5 1.51 1.44 1.38 
sk_rrSVD_002 1.54 1.9 1.39 0.8 1.63 0.65 2.02 2.22 1.8 
sk_rrSVD_003 2.07 3.8 1.79 1.02 1.91 0.83 2.49 2.52 2.2 
sk_rrSVD_004 2.46 4.86 2.08 1.2 1.8 1.00 2.93 2.13 2.71 
sk_rrSVD_005 2.96 6.37 2.46 1.34 1.98 1.16 3.32 1.88 3.18 
sk_rrSVD_006 3.58 9.08 2.97 1.56 2.2 1.39 3.8 1.47 3.64 
sk_rrSVD_007 4.14 9.72 3.41 1.72 1.95 1.55 4.28 1.45 4.09 
sk_rrSVD_008 4.83 11.74 3.92 1.9 1.53 1.76 5.05 1.7 4.84 
sk_rrSVD_009 5.26 13.11 4.35 2.09 1.74 1.95 5.75 1.9 5.42 
sk_rrSVD_010 5.33 8.51 4.88 2.29 1.57 2.17 6.04 1.14 5.86 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 2.57 2.29 2.18 1.04 0.59 1.00 2.98 1.75 2.83 
sk_rrSVD_001 1.48 1.13 1.22 0.56 0.56 0.51 1.6 1.78 1.37 
sk_rrSVD_002 1.81 1.99 1.47 0.8 1.41 0.66 2.12 2.5 1.76 
sk_rrSVD_003 2.37 2.97 1.77 1.03 1.66 0.84 2.5 1.99 2.24 
sk_rrSVD_004 2.99 3.73 2.09 1.22 1.64 0.98 2.98 2.44 2.74 
sk_rrSVD_005 3.58 4.44 2.45 1.4 1.89 1.13 3.42 2.08 3.19 
sk_rrSVD_006 4.34 6.41 2.99 1.58 2.29 1.34 3.9 1.65 3.66 
sk_rrSVD_007 5.04 6.65 3.44 1.77 2.32 1.51 4.36 1.51 4.14 
sk_rrSVD_008 5.71 7.14 3.91 1.87 1.69 1.73 5.2 1.82 4.86 
sk_rrSVD_009 6.59 9.17 4.37 2.08 1.83 1.91 5.97 2.79 5.49 
sk_rrSVD_010 7.15 10.85 4.89 2.25 1.52 2.1 6.32 2.59 5.95 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 2.62 2.79 2.18 1.03 0.81 0.97 2.88 0.39 2.81 
sk_rrSVD_001 1.54 1.98 1.27 0.58 0.75 0.5 1.43 0.81 1.35 
sk_rrSVD_002 1.81 3.46 1.39 0.83 1.47 0.66 2.04 2.44 1.72 
sk_rrSVD_003 2.45 5.5 1.7 1.13 1.86 0.84 2.5 2.19 2.23 
sk_rrSVD_004 2.91 5.69 2.00 1.3 1.89 0.99 2.94 1.83 2.74 
sk_rrSVD_005 3.56 7.07 2.37 1.44 1.87 1.14 3.24 1.22 3.12 
sk_rrSVD_006 4.25 7.43 2.9 1.64 2.11 1.36 3.73 1.32 3.58 
sk_rrSVD_007 4.83 7.87 3.29 1.75 2.1 1.54 4.19 1.2 4.03 
sk_rrSVD_008 5.54 9.28 3.76 1.89 1.69 1.72 4.87 1.29 4.72 
sk_rrSVD_009 6.25 11.01 4.36 2.07 1.56 1.9 5.66 1.5 5.32 
sk_rrSVD_010 6.66 12.71 4.83 2.3 1.77 2.12 5.9 1.21 5.81 
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Table S39. Process time (s) mean, standard deviation and best result for Au38Q K = 40. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 4.14 2.74 3.69 1.74 0.6 1.66 4.64 1.73 4.5 
sk_rrSVD_001 2.01 1.94 1.71 0.75 0.87 0.68 2.16 1.57 2.00 
sk_rrSVD_002 2.17 2.2 1.92 1.00 1.3 0.89 2.63 1.54 2.48 
sk_rrSVD_003 2.8 3.7 2.43 1.25 1.78 1.08 3.21 2.36 3.01 
sk_rrSVD_004 3.27 4.85 2.84 1.5 2.27 1.25 3.77 1.52 3.57 
sk_rrSVD_005 3.78 6.43 3.24 1.73 2.47 1.5 4.26 1.59 4.05 
sk_rrSVD_006 4.53 8.6 3.8 1.96 2.46 1.72 4.78 1.25 4.62 
sk_rrSVD_007 5.22 9.41 4.34 2.11 2.02 1.94 5.26 0.98 5.12 
sk_rrSVD_008 5.84 11.73 4.9 2.29 1.74 2.14 6.16 1.38 5.93 
sk_rrSVD_009 6.28 11.68 5.42 2.51 1.83 2.36 6.92 2.26 6.6 
sk_rrSVD_010 6.78 12.33 6.02 2.73 1.3 2.61 7.33 1.84 6.98 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 3.92 3.34 3.48 1.76 0.81 1.68 5.72 9.83 4.54 
sk_rrSVD_001 1.98 3.1 1.67 0.76 1.00 0.69 2.29 2.13 2.03 
sk_rrSVD_002 2.18 3.67 1.89 1.01 1.45 0.88 2.86 2.76 2.49 
sk_rrSVD_003 2.76 5.19 2.33 1.25 1.83 1.07 3.33 2.59 3.00 
sk_rrSVD_004 3.28 5.44 2.79 1.47 1.98 1.29 3.93 1.85 3.64 
sk_rrSVD_005 3.81 6.72 3.15 1.66 2.03 1.48 4.4 2.1 4.08 
sk_rrSVD_006 4.62 8.69 3.76 1.88 2.23 1.7 5.03 3.3 4.64 
sk_rrSVD_007 5.25 9.77 4.26 2.07 2.11 1.9 5.51 2.35 5.16 
sk_rrSVD_008 6.04 11.66 4.87 2.27 1.35 2.12 6.55 4.07 6.00 
sk_rrSVD_009 6.25 12.88 5.3 2.56 2.14 2.37 7.29 3.94 6.67 
sk_rrSVD_010 6.71 12.97 5.89 2.82 2.22 2.61 7.58 3.85 7.17 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 4.00 0.32 3.59 1.76 0.38 1.7 4.56 0.72 4.45 
sk_rrSVD_001 2.03 0.25 1.72 0.75 0.33 0.7 2.11 0.87 2.01 
sk_rrSVD_002 2.31 0.41 1.91 1.07 1.6 0.91 2.58 1.53 2.45 
sk_rrSVD_003 3.02 0.75 2.35 1.4 2.01 1.1 3.12 1.3 2.99 
sk_rrSVD_004 3.79 1.08 2.83 1.57 2.05 1.3 3.76 1.67 3.57 
sk_rrSVD_005 4.28 1.15 3.18 1.75 2.13 1.5 4.23 1.47 4.05 
sk_rrSVD_006 5.03 1.1 3.76 2.01 2.48 1.74 4.7 1.24 4.55 
sk_rrSVD_007 5.71 1.19 4.29 2.16 2.07 1.94 5.24 1.39 5.07 
sk_rrSVD_008 6.59 1.3 4.82 2.33 1.72 2.17 6.1 1.77 5.79 
sk_rrSVD_009 6.94 1.41 5.31 2.58 1.69 2.38 6.88 1.88 6.56 
sk_rrSVD_010 7.13 1.34 5.77 2.79 1.81 2.64 7.22 1.49 7.04 
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Table S40. Process time (s) mean, standard deviation and best result for Au38Q K = 50. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 5.66 2.42 5.37 2.54 0.89 2.43 7.43 7.86 6.62 
sk_rrSVD_001 2.33 1.23 2.21 1.07 1.95 0.91 2.92 2.43 2.65 
sk_rrSVD_002 2.74 3.44 2.51 1.39 2.22 1.15 3.51 2.35 3.18 
sk_rrSVD_003 3.59 4.05 3.18 1.61 2.06 1.37 4.06 2.31 3.8 
sk_rrSVD_004 4.2 6.04 3.53 1.81 2.07 1.58 4.68 1.85 4.41 
sk_rrSVD_005 4.62 6.89 4.00 2.03 2.01 1.79 5.21 1.98 4.93 
sk_rrSVD_006 5.29 8.84 4.44 2.27 2.03 2.08 5.78 1.66 5.56 
sk_rrSVD_007 6.03 9.56 5.09 2.45 1.64 2.31 6.44 2.52 6.14 
sk_rrSVD_008 6.51 10.00 5.63 2.69 1.17 2.55 7.35 1.87 7.02 
sk_rrSVD_009 7.32 13.03 6.22 2.94 1.6 2.81 8.23 2.63 7.74 
sk_rrSVD_010 7.76 12.23 6.95 3.2 1.41 3.05 8.69 2.2 8.41 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 5.74 4.82 5.21 2.54 0.69 2.45 8.95 15.29 6.65 
sk_rrSVD_001 2.41 3.36 2.15 1.05 1.86 0.89 3.28 5.62 2.68 
sk_rrSVD_002 2.87 4.34 2.43 1.41 2.04 1.17 3.52 2.69 3.17 
sk_rrSVD_003 3.65 7.86 3.00 1.66 1.78 1.38 4.27 5.82 3.79 
sk_rrSVD_004 4.32 9.18 3.42 1.86 2.24 1.57 4.88 3.31 4.42 
sk_rrSVD_005 4.83 8.62 3.83 2.07 2.39 1.77 5.49 3.6 5.04 
sk_rrSVD_006 5.65 10.22 4.48 2.28 2.17 2.04 6.1 3.63 5.62 
sk_rrSVD_007 6.46 11.91 5.01 2.51 2.18 2.28 6.96 4.38 6.23 
sk_rrSVD_008 6.98 13.82 5.68 2.73 1.88 2.51 8.17 8.69 7.13 
sk_rrSVD_009 7.02 9.81 6.25 2.96 1.85 2.79 8.86 7.59 7.73 
sk_rrSVD_010 7.6 11.53 6.81 3.17 1.65 3.04 9.18 6.24 8.41 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 6.01 5.99 5.49 2.55 0.74 2.45 6.76 0.8 6.63 
sk_rrSVD_001 2.58 3.66 2.21 1.02 1.4 0.9 2.8 0.92 2.69 
sk_rrSVD_002 3.37 6.01 2.66 1.49 2.59 1.13 3.37 1.84 3.16 
sk_rrSVD_003 4.12 7.87 3.24 1.7 2.12 1.38 3.94 1.83 3.75 
sk_rrSVD_004 4.65 8.63 3.67 1.92 1.74 1.61 4.65 2.00 4.37 
sk_rrSVD_005 5.35 9.5 4.16 2.13 2.14 1.85 5.16 1.87 4.93 
sk_rrSVD_006 6.15 11.17 4.79 2.42 2.51 2.08 5.69 1.94 5.42 
sk_rrSVD_007 6.96 12.09 5.32 2.55 2.23 2.33 6.21 1.27 6.02 
sk_rrSVD_008 7.56 12.58 6.06 2.74 1.99 2.53 7.21 1.91 6.91 
sk_rrSVD_009 8.21 16.73 6.54 2.99 2.33 2.76 8.1 2.09 7.74 
sk_rrSVD_010 8.6 14.9 7.09 3.19 1.3 3.02 8.45 1.33 8.2 
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Table S41. Process time (s) mean, standard deviation and best result for Au38Q K = 60. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 7.95 5.44 7.29 3.34 0.85 3.23 10.79 11.17 9.22 
sk_rrSVD_001 3.27 1.79 2.79 1.2 1.03 1.09 3.7 1.79 3.52 
sk_rrSVD_002 3.59 5.4 3.23 1.64 2.23 1.39 4.35 1.98 4.13 
sk_rrSVD_003 4.62 7.08 3.99 1.88 2.1 1.63 5.03 2.07 4.78 
sk_rrSVD_004 5.01 8.86 4.4 2.1 2.04 1.86 5.79 1.88 5.5 
sk_rrSVD_005 5.76 8.66 4.71 2.36 2.17 2.12 6.41 1.62 6.14 
sk_rrSVD_006 6.41 9.51 5.51 2.62 2.07 2.42 7.06 2.02 6.74 
sk_rrSVD_007 7.25 9.66 6.06 2.84 1.5 2.7 7.81 2.95 7.39 
sk_rrSVD_008 7.74 9.3 6.64 3.06 1.16 2.89 8.83 2.63 8.3 
sk_rrSVD_009 8.34 11.04 7.34 3.33 1.39 3.16 9.69 2.78 9.17 
sk_rrSVD_010 8.87 10.29 7.99 3.61 1.44 3.46 10.25 3.84 9.65 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x10−1 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 7.83 5.32 7.31 3.38 0.61 3.28 11.65 1.9 9.37 
sk_rrSVD_001 3.12 3.21 2.72 1.19 1.38 1.1 4.43 0.89 3.54 
sk_rrSVD_002 3.38 3.78 3.1 1.57 1.62 1.42 4.62 0.52 4.09 
sk_rrSVD_003 4.39 5.54 3.8 1.81 1.7 1.67 5.67 0.82 4.75 
sk_rrSVD_004 4.87 5.71 4.39 2.09 1.92 1.87 6.51 1.06 5.47 
sk_rrSVD_005 5.58 6.94 4.9 2.33 2.26 2.09 6.67 0.57 6.15 
sk_rrSVD_006 6.42 10.7 5.42 2.6 2.01 2.41 8.03 1.13 6.75 
sk_rrSVD_007 7.19 10.25 5.98 2.87 2.1 2.66 8.22 0.72 7.42 
sk_rrSVD_008 7.41 10.74 6.69 3.13 1.44 2.96 10.15 1.39 8.33 
sk_rrSVD_009 8.04 10.98 7.19 3.36 1.67 3.18 10.65 1.19 9.37 
sk_rrSVD_010 8.65 11.43 7.82 3.62 0.93 3.49 11.48 1.31 9.85 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 8.43 0.93 7.61 3.36 0.67 3.27 9.47 1.91 9.25 
sk_rrSVD_001 3.58 0.38 3.21 1.19 1.01 1.11 3.66 1.51 3.49 
sk_rrSVD_002 3.98 0.46 3.37 1.68 2.76 1.39 4.32 2.26 4.07 
sk_rrSVD_003 5.44 1.00 4.39 1.89 2.31 1.64 4.9 1.97 4.67 
sk_rrSVD_004 6.13 1.17 4.57 2.14 2.35 1.86 5.65 1.81 5.39 
sk_rrSVD_005 6.83 1.2 5.24 2.36 2.45 2.1 6.15 1.2 6.01 
sk_rrSVD_006 7.58 0.87 5.92 2.64 2.05 2.42 6.88 2.1 6.62 
sk_rrSVD_007 8.89 1.5 6.57 2.82 1.78 2.59 7.5 1.84 7.28 
sk_rrSVD_008 9.49 1.62 7.19 3.06 1.62 2.91 8.54 2.16 8.2 
sk_rrSVD_009 10.07 1.87 7.72 3.29 1.27 3.13 9.38 1.87 9.04 
sk_rrSVD_010 10.36 1.53 8.36 3.56 1.24 3.4 9.87 1.48 9.53 
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Table S42. Process time (s) mean, standard deviation and best result for Au38Q K = 70. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 10.82 1.14 9.94 4.34 1.25 4.23 13.14 8.68 12.44 
sk_rrSVD_001 3.89 0.52 3.5 1.48 1.24 1.39 4.82 3.09 4.48 
sk_rrSVD_002 4.56 0.74 3.96 1.82 1.53 1.69 5.48 2.12 5.09 
sk_rrSVD_003 5.64 0.8 4.69 2.1 1.4 1.96 6.22 2.8 5.78 
sk_rrSVD_004 6.57 1.15 5.46 2.37 1.4 2.24 6.96 2.24 6.55 
sk_rrSVD_005 7.29 1.25 5.95 2.68 1.92 2.52 7.55 2.09 7.25 
sk_rrSVD_006 8.07 1.14 6.44 3.02 1.94 2.83 8.34 2.36 7.95 
sk_rrSVD_007 9.13 1.63 7.07 3.28 1.77 3.06 9.02 2.74 8.67 
sk_rrSVD_008 9.59 1.44 7.65 3.55 1.81 3.36 10.26 3.02 9.78 
sk_rrSVD_009 9.98 1.65 8.42 3.82 1.6 3.66 11.09 3.5 10.58 
sk_rrSVD_010 10.8 1.82 9.03 4.12 1.64 3.94 11.78 5.73 11.3 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 10.37 0.67 9.57 4.77 5.2 4.26 14.24 1.49 12.39 
sk_rrSVD_001 3.88 0.45 3.53 1.54 1.48 1.36 5.2 0.65 4.48 
sk_rrSVD_002 4.75 1.05 4.04 1.89 1.49 1.71 5.69 0.34 5.06 
sk_rrSVD_003 5.85 1.07 4.87 2.15 1.8 1.97 7.21 1.4 5.89 
sk_rrSVD_004 6.69 1.3 5.33 2.41 2.05 2.2 7.59 1.22 6.53 
sk_rrSVD_005 7.15 1.12 5.84 2.63 1.37 2.51 8.2 1.11 7.25 
sk_rrSVD_006 8.17 1.45 6.49 2.96 1.15 2.82 9.41 1.47 7.94 
sk_rrSVD_007 8.68 1.37 7.11 3.35 1.72 3.13 10.04 1.22 8.81 
sk_rrSVD_008 9.33 1.57 7.85 3.62 2.26 3.4 11.75 1.76 9.72 
sk_rrSVD_009 10.19 1.96 8.42 3.88 1.65 3.71 12.88 1.8 10.7 
sk_rrSVD_010 10.35 1.39 9.01 4.23 1.44 4.03 13.73 1.99 11.41 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 11.28 1.2 9.91 4.59 4.9 4.24 14.18 1.73 12.2 
sk_rrSVD_001 4.19 0.6 3.61 1.46 0.73 1.38 4.92 0.68 4.4 
sk_rrSVD_002 5.14 0.86 4.14 1.84 1.56 1.67 5.51 0.47 5.02 
sk_rrSVD_003 6.93 1.31 4.92 2.12 1.47 1.94 6.56 1.02 5.67 
sk_rrSVD_004 7.94 1.34 5.56 2.38 1.44 2.22 7.21 0.96 6.35 
sk_rrSVD_005 8.63 1.23 6.05 2.65 1.82 2.49 7.66 0.75 6.85 
sk_rrSVD_006 9.52 1.37 6.61 2.97 1.75 2.8 8.53 0.8 7.83 
sk_rrSVD_007 10.68 1.68 7.3 3.35 2.07 3.1 9.48 1.04 8.48 
sk_rrSVD_008 11.22 1.82 8.04 3.57 2.06 3.37 10.79 1.27 9.63 
sk_rrSVD_009 11.71 2.04 8.72 3.79 1.72 3.52 11.67 1.07 10.41 
sk_rrSVD_010 11.75 1.92 9.4 4.12 1.7 3.93 12.63 1.56 11.12 
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Table S43. Process time (s) mean, standard deviation and best result for Au38Q K = 80. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 13.32 0.8 12.55 5.72 2.28 5.54 16.84 5.41 16.11 
sk_rrSVD_001 4.38 0.44 4.03 1.84 0.88 1.73 5.75 1.86 5.5 
sk_rrSVD_002 5.21 0.98 4.53 2.23 1.34 2.05 6.53 1.65 6.25 
sk_rrSVD_003 6.66 1.02 5.63 2.57 1.47 2.37 7.24 1.96 6.91 
sk_rrSVD_004 7.37 1.14 6.23 2.83 1.57 2.69 8.15 2.24 7.84 
sk_rrSVD_005 8.23 1.36 6.87 3.14 1.6 2.99 8.87 2.08 8.57 
sk_rrSVD_006 9.22 1.49 7.41 3.51 1.97 3.33 9.67 2.57 9.26 
sk_rrSVD_007 9.85 1.43 8.34 3.75 1.59 3.61 10.4 2.26 9.98 
sk_rrSVD_008 10.54 1.64 8.81 4.02 1.03 3.9 11.65 2.35 11.19 
sk_rrSVD_009 11.04 1.66 9.45 4.31 0.91 4.17 12.58 2.33 12.15 
sk_rrSVD_010 12.01 2.02 9.98 4.71 1.39 4.53 13.25 2.17 12.85 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 1x101 

cho_dec 13.31 0.83 12.68 5.93 5.85 5.49 17.1 10.55 15.85 
sk_rrSVD_001 4.31 0.3 4.04 1.93 2.17 1.72 5.66 1.82 5.41 
sk_rrSVD_002 5.23 0.91 4.61 2.31 2.09 2.09 6.43 2.29 6.09 
sk_rrSVD_003 6.85 1.57 5.6 2.59 1.93 2.38 7.18 2.7 6.83 
sk_rrSVD_004 7.61 1.42 6.11 2.83 1.82 2.65 8.07 2.51 7.7 
sk_rrSVD_005 8.3 1.3 6.67 3.12 1.73 2.91 8.76 2.35 8.41 
sk_rrSVD_006 9.44 1.69 7.36 3.41 0.94 3.3 9.58 3.18 9.07 
sk_rrSVD_007 10.14 1.87 7.98 3.71 1.15 3.57 10.3 2.3 9.88 
sk_rrSVD_008 10.37 1.67 8.71 4.06 1.54 3.92 11.65 4.51 11.02 
sk_rrSVD_009 10.69 1.69 9.31 4.34 1.35 4.18 12.49 3.22 11.7 
sk_rrSVD_010 11.24 1.72 9.97 4.73 1.38 4.48 13.22 5.07 12.61 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x101 

cho_dec 1.34 0.7 12.8 6.09 7.36 5.48 1.92 2.75 16.05 
sk_rrSVD_001 0.45 0.38 4.15 1.86 1.2 1.72 0.6 0.56 5.45 
sk_rrSVD_002 0.61 1.65 4.79 2.26 1.63 2.05 0.68 0.85 6.14 
sk_rrSVD_003 0.77 1.59 5.72 2.64 1.97 2.39 0.81 1.32 6.94 
sk_rrSVD_004 0.84 1.47 6.18 2.95 2.28 2.62 0.89 1.4 7.7 
sk_rrSVD_005 0.95 1.73 6.71 3.22 2.35 2.9 0.94 1.17 8.47 
sk_rrSVD_006 1.02 1.7 7.57 3.51 2.25 3.24 1.07 1.49 9.31 
sk_rrSVD_007 1.12 1.67 8.41 3.74 1.67 3.48 1.13 1.5 10.01 
sk_rrSVD_008 1.21 1.82 9.32 4.01 1.73 3.83 1.35 1.85 11.19 
sk_rrSVD_009 1.29 2.14 10.06 4.35 1.7 4.11 1.41 1.69 12.29 
sk_rrSVD_010 1.26 1.72 10.86 4.68 1.63 4.45 1.53 2.13 12.74 
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Table S44. Process time (s) mean, standard deviation and best result for Au38Q K = 90. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x102 

cho_dec 15.73 0.41 15.18 6.9 3.12 6.55 2.14 8.02 2.05 
sk_rrSVD_001 4.89 0.38 4.67 2.16 1.93 1.96 0.7 1.74 0.66 
sk_rrSVD_002 5.98 1.06 5.24 2.53 1.52 2.32 0.79 2.36 0.75 
sk_rrSVD_003 7.4 1.32 6.34 2.81 1.53 2.62 0.87 2.71 0.83 
sk_rrSVD_004 8.01 0.79 7.18 3.16 2.29 2.95 0.96 2.8 0.9 
sk_rrSVD_005 8.85 1.31 7.65 3.48 2.06 3.26 1.03 1.8 0.99 
sk_rrSVD_006 9.82 1.55 8.21 3.95 2.19 3.7 1.12 2.23 1.07 
sk_rrSVD_007 10.1 1.29 8.85 4.16 1.46 3.98 1.2 2.1 1.16 
sk_rrSVD_008 11.06 1.65 9.58 4.5 2.03 4.26 1.34 3.35 1.28 
sk_rrSVD_009 11.78 1.78 10.27 4.79 1.83 4.53 1.44 3.13 1.34 
sk_rrSVD_010 12.63 2.27 10.95 5.02 0.93 4.87 1.51 1.95 1.46 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x102 

cho_dec 1.56 1.00 14.73 7.24 8.73 6.61 2.21 17.12 2.02 
sk_rrSVD_001 0.5 0.72 4.56 2.17 1.74 1.94 0.69 1.93 0.66 
sk_rrSVD_002 0.6 1.13 5.17 2.64 2.34 2.35 0.78 2.25 0.74 
sk_rrSVD_003 0.77 1.69 6.3 2.88 1.69 2.66 0.87 4.44 0.82 
sk_rrSVD_004 0.86 1.51 6.82 3.18 1.65 2.99 0.94 2.27 0.91 
sk_rrSVD_005 0.92 1.62 7.36 3.5 2.2 3.27 1.02 2.45 0.97 
sk_rrSVD_006 1.05 1.89 8.25 3.96 2.2 3.67 1.11 3.18 1.05 
sk_rrSVD_007 1.1 1.94 8.98 4.23 1.71 4.00 1.19 2.89 1.15 
sk_rrSVD_008 1.17 2.18 9.64 4.53 1.78 4.31 1.32 4.05 1.27 
sk_rrSVD_009 1.2 1.74 10.37 4.86 1.9 4.62 1.45 6.13 1.37 
sk_rrSVD_010 1.29 1.99 11.09 5.15 1.3 4.97 1.52 8.41 1.42 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x102 

cho_dec 1.59 0.72 15.2 7.45 10.6 6.54 2.59 4.12 2.04 
sk_rrSVD_001 0.5 0.7 4.6 2.22 2.26 1.96 0.75 0.95 0.67 
sk_rrSVD_002 0.64 1.39 5.23 2.63 2.17 2.35 0.81 0.58 0.73 
sk_rrSVD_003 0.82 1.78 6.36 2.88 1.62 2.63 0.96 1.56 0.82 
sk_rrSVD_004 0.89 1.72 6.92 3.16 1.75 2.97 1.06 1.59 0.92 
sk_rrSVD_005 1.03 1.72 7.72 3.49 2.05 3.26 1.1 1.33 0.99 
sk_rrSVD_006 1.07 1.47 8.46 3.97 1.98 3.66 1.28 2.17 1.06 
sk_rrSVD_007 1.2 1.84 9.1 4.22 2.02 3.98 1.31 1.87 1.13 
sk_rrSVD_008 1.26 1.77 9.79 4.44 1.49 4.2 1.55 2.23 1.28 
sk_rrSVD_009 1.36 2.15 10.46 4.83 1.63 4.61 1.67 2.24 1.38 
sk_rrSVD_010 1.4 1.83 11.17 5.14 2.16 4.84 1.71 2.68 1.45 
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Table S45. Process time (s) mean, standard deviation and best result for Au38Q K = 100. Bolded means 

x differ statistically from Cholesky decomposition. 

Dataset AuN2-4k AuN2-8k AuN2-12k 
x σ min(x) x σ min(x) x σ min(x) 

Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x102 

cho_dec 1.94 0.91 18.61 8.55 3.65 8.16 2.71 11.00 2.58 
sk_rrSVD_001 0.57 0.52 5.28 2.57 1.97 2.37 0.83 1.53 0.8 
sk_rrSVD_002 0.67 0.92 5.97 2.93 1.28 2.81 0.91 2.08 0.88 
sk_rrSVD_003 0.86 1.48 7.4 3.32 2.21 3.08 1.00 2.37 0.97 
sk_rrSVD_004 0.94 1.65 8.11 3.69 1.94 3.51 1.1 2.56 1.06 
sk_rrSVD_005 1.01 1.73 8.62 3.94 1.56 3.76 1.19 1.99 1.14 
sk_rrSVD_006 1.09 1.93 9.22 4.39 1.78 4.21 1.28 2.56 1.24 
sk_rrSVD_007 1.17 1.85 9.94 4.64 1.06 4.48 1.36 1.99 1.33 
sk_rrSVD_008 1.29 2.22 10.75 5.11 1.85 4.82 1.51 3.39 1.47 
sk_rrSVD_009 1.37 2.22 11.57 5.4 1.72 5.15 1.61 2.39 1.56 
sk_rrSVD_010 1.4 1.86 12.4 5.74 1.82 5.47 1.69 4.38 1.65 
Dataset AuN10-4k AuN10-8k AuN10-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x102 

cho_dec 1.89 0.6 17.95 8.73 6.14 8.13 2.85 24.1 2.55 
sk_rrSVD_001 0.53 0.18 5.06 2.57 2.03 2.37 0.82 2.01 0.79 
sk_rrSVD_002 0.64 0.86 5.8 2.99 1.96 2.77 0.9 3.3 0.86 
sk_rrSVD_003 0.83 1.61 6.93 3.4 2.32 3.17 1.01 11.4 0.94 
sk_rrSVD_004 0.91 1.34 7.64 3.71 2.27 3.49 1.08 3.91 1.04 
sk_rrSVD_005 1.03 1.79 8.11 3.98 2.26 3.75 1.18 3.13 1.13 
sk_rrSVD_006 1.14 1.8 9.12 4.46 2.01 4.22 1.28 5.59 1.23 
sk_rrSVD_007 1.19 1.81 9.8 4.73 1.52 4.53 1.35 2.87 1.3 
sk_rrSVD_008 1.29 1.96 10.56 5.2 1.94 4.87 1.53 8.67 1.45 
sk_rrSVD_009 1.38 2.08 11.5 5.48 1.76 5.24 1.63 9.23 1.52 
sk_rrSVD_010 1.46 2.32 12.21 5.73 1.76 5.48 1.72 10.91 1.62 
Dataset AuN100-4k AuN100-8k AuN100-12k 

x σ min(x) x σ min(x) x σ min(x) 
Method / coef. 1x101 1x101 1x101 1x101 1x101 1x101 1x102 1x101 1x102 

cho_dec 1.9 0.52 18.48 8.57 6.57 8.11 3.15 5.56 2.54 
sk_rrSVD_001 0.56 0.45 5.23 2.56 2.06 2.37 0.9 1.5 0.79 
sk_rrSVD_002 0.76 1.72 5.92 2.99 1.71 2.78 1.00 1.75 0.87 
sk_rrSVD_003 0.91 1.64 7.03 3.36 1.92 3.13 1.17 2.57 0.94 
sk_rrSVD_004 1.05 1.87 8.16 3.67 2.19 3.42 1.25 2.35 1.05 
sk_rrSVD_005 1.06 1.39 8.58 3.97 2.14 3.75 1.29 1.86 1.13 
sk_rrSVD_006 1.2 2.11 9.26 4.41 2.06 4.2 1.51 2.67 1.23 
sk_rrSVD_007 1.23 1.78 10.12 4.7 2.06 4.48 1.51 2.4 1.3 
sk_rrSVD_008 1.37 2.2 10.83 5.11 1.84 4.79 1.78 3.02 1.44 
sk_rrSVD_009 1.41 1.88 11.77 5.42 2.09 5.12 1.88 2.55 1.58 
sk_rrSVD_010 1.5 2.2 12.56 5.71 2.3 5.43 1.91 3.03 1.64 
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Feature selection (FS) may improve the performance, cost-efficiency, and understandability of supervised 
machine learning models. In this paper, FS for the recently introduced distance-based supervised 
machine learning model is considered for regression problems. The study is contextualized by first pro-
viding an umbrella review (review of reviews) of recent development in the research field. We then pro-
pose a saliency-based one-shot wrapper algorithm for FS, which is called MAS-FS. The algorithm is 
compared with a set of other popular FS algorithms, using a versatile set of simulated and benchmark 
datasets. Finally, experimental results underline the usefulness of FS for regression, confirming the utility 
of certain filter algorithms and particularly the proposed wrapper algorithm. 
� 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// 

creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Dissimilarity has a central role in unsupervised learning, but the 
increased popularity of using distance-based models for super-
vised problems (e.g., [1–4]) illustrates how the gap between unsu-
pervised and supervised learning tasks is diminishing. In fact the 
dissimilarities among a set of prototypical observations can be 
used as features with any predictive model [5,6]. Further, the his-
tory of distance-based supervised models can be traced back to the 
radial basis function networks [7,8] with a linear kernel [9,10]. The 
latter references, as noted in [Remark 1] [4], provide proof for the 
universal approximation capability of the linear distance-
regression model. The scope of this article is to consider dimension 
reduction, specifically feature selection (FS) for this distance–based 
learning machine [4]. Compared to its sibling method, feature 
extraction (FE), FS keeps the features as they are while removing 
those considered unnecessary. FE, on the other hand, aims to 
reduce the number of features for example, through projections 
[11]. In this way, FE mixes information of the original features. 

The need for FS stems from increasingly complex and demand-
ing datasets where the number of features may become detrimen-
tal to the practical operation of a machine learning model [12–14]. 
FS refers to the identification and selection of a subset of relevant 
features for a data-based model. Therefore, it is basically a search 
problem, which can generally be addressed using many techniques 

⇑ Corresponding author. 

(e.g., forward or backward search, exhaustive search, branch-and-
bound, evolutionary approaches) and multiple feature assessment 
criteria (information, distance, dependency, consistency, and accu-
racy measures) [15]. The FS process has three main goals [16]: 
improve the model performance, provide faster and more cost-
effective models, and improve the understanding of the data gen-
eration process. However, the last goal cannot be fully addressed 
when working with an already featurized, secondary dataset. The 
classical division of the main types of features is given in [17,18]: 
irrelevant, weakly relevant, and strongly relevant. The weakly rele-
vant features were further categorized in [19] as redundant or 
non-redundant. 

The main branches of FS techniques are filter and wrapper 
approaches [17], depending on whether the intended machine 
learning model itself is used in the FS process. Usually, this means 
that a filter approach is faster, and a wrapper approach is more 
accurate [18]. Filters usually contain two main steps [20]: 1Þ rank-
ing of features according to importance scoring; and 2Þ selection of 
most important features based on step 1Þ. Hybrid [21–24] or 
embedded methods [25,26] perform FS by using another model 
or an untrained model to assess feature relevancy. Embedded 
methods that rank and select features during the construction of 
the predictive model include decision trees [27] and ensemble 
learning methods, most prominently, random forests [28,29]. 

For wrappers, the search phase of the used features means mul-
tiple repetitions of training, i.e., the estimation of the model’s 
parameters. Therefore, one aspect of categorizing different wrap-

https://doi.org/10.1016/j.neucom.2022.11.023 
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pers is given by the number of model trainings needed during the 
search of the final feature subset. This number can be very large, 
for instance, when optimization-based methods and metaheuris-
tics are used to search the features (see Section 2.4). Here, we pro-
pose a one-shot wrapper: rank the features using scores computed 
from a trained distance-based model with the full feature set and, 
through a threshold, select the most important ones for the 
reduced model. The entire endeavor to determine the final model 
then requires two training rounds — initially with the original fea-
ture set and finally with the selected feature set. In between, the 
full feature set model is used to compute feature importances for 
the thresholding. It should be noted that if the feature ranking 
based on the full model is computationally not more expensive 
than training the model, then this one-shot approach does not 
add any computational complexity to the (unavoidable) model 
training. 

Feature scoring and ranking is actually a specific technique to 
quantify and improve the understandability of a model, to explain 
its behavior [30]. Indeed, interpretable machine learning refers to 
the ability to understand the work logic of machine learning mod-
els and algorithms [31]. A branch of techniques for this purpose 
uses the saliency of features to rank their explanatory power as a 
post hoc explainability approach [32,33]. For neural networks 
(NN), one measure of saliency is the input sensitivity, i.e., the par-
tial derivative of the network’s output with respect to its input. For 
shallow networks, feature assessment originating from this idea 
was proposed in [34] and, since then, many similar FS techniques 
have been considered [35]. Use of a partial derivative method 
was rediscovered within the context of deep neural networks in 
[36], where the first-order Taylor’s expansion was used to generate 
an image-specific saliency map for visual interpretation of a convo-
lutional neural network classifier. 

In this work, we provide a wide-ranging overview of earlier FS 
research, noting that explorations of FS for distance-based regres-
sion methods have been scarce. Thus, we aim to fill this gap by 
proposing and evaluating a new FS algorithm for this learning task. 
Our main contributions are as follows: 

an umbrella review of recent reviews on FS 
derivation of a one-shot FS approach for distance-based 
regression 
extensive experimental comparison of filter and wrapper FS 
algorithms, ensuring the viability of the proposed algorithm 
and its building blocks. 

The rest of the paper is organized as follows. Section 2 presents 
the umbrella review. Section 3 introduces the proposed FS algo-
rithm and the necessary mathematical foundations. Section 4 
describes the used synthetic datasets as well as presents the used 
open access datasets. In addition, it presents the evaluation criteria 
used in measuring the gained results. Section 5 details the experi-
ments and results while also presenting the related discussion. The 
data tables with the results discussed in Section 5 are in the appen-
dix. Finally, Section 6 discusses and concludes the work. 

2. Umbrella review on FS techniques 

FS is a particular instance of model selection for which a consid-
erable number of techniques have been depicted and experi-
mented with over the years [37]. Therefore, the full coverage of 
the development and current status of the FS field of research from 
primary studies, after the influential classical works like 
[38,39,15,16], is out of the scope of this article. However, in order 
to position our work in the research field, the recent developments 
of FS research will be summarized through an umbrella review, the 
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purpose of which is to locate and consider different views and per-
spectives on a broad area of interest [40]. Here, instead of address-
ing the primary studies in the field, the already undertaken surveys 
and reviews and their summarization are considered [41]. Further, 
the umbrella review is a common practice in the medical research 
domain where summarizing the vast amount of knowledge from 
primary articles is a tedious task. However, while this type of 
review is rarely used in the machine learning field, there was one 
such recent study related to deep learning [42]. Similar to the deep 
learning field, there exist many recent reviews for FS, which indi-
cates the need for conducting an umbrella review for FS as well. 

For this purpose, we used Google Scholar on December 9–10, 
2021, with the search term ”feature selection review” and checked 
the first 500 returned links. Of these links, 32 high-quality reviews 
and summaries on FS for supervised learning, published since 2013 
in journals by leading publishers (IEEE, ACM, Elsevier, Springer, 
Wiley), were identified to be summarized next. The final paper of 
the search that was included in the summary, [43], had an entry 
number of 475. This was the only hit for the last 50 checked papers. 
The annual number of reviews and summaries identified was as 
follows: one paper from 2013, three from 2014, two from 2015, 
three from 2016, three from 2017, seven from 2018, four from 
2019, seven from 2020, and two from 2021. The numbers indicate 
an increasing trend in summarizing the overall research achieve-
ments of the research field. 

The narrative review of the papers is primarily organized in a 
chronological order. From the first paper [44] onward, we have 
not repeated the shared contents but tried to provide only new, 
relevant information from the chronologically subsequent papers. 
However, reviews addressing a common topic are presented 
together, and this defines the subtitle structure used below. The 
subtitles are ordered according to the publication year of the first 
review article of the topic, although a review of general FS reviews 
is presented first. Due to the abundance of abbreviations in the 
umbrella review, we have included Table 1, in which they are 
listed. 

2.1. General reviews 

A general review on FS in classification was provided in [43]. 
Correlation criterion and MI-based criteria were depicted for filter 
methods. Wrapper methods were classified into Sequential Selec-
tion Algorithms (backward search) and Heuristic Search Algo-
rithms (use of a GA) to identify a subset of features. For 
embedded methods, MI and weights of a classifier were depicted 
as feature assessment criteria. As classifiers, SVM and RBFN were 
introduced. Experiments with six datasets (Breast cancer, Diabetes, 

Table 1 
List of abbreviations used in the umbrella review. 

ANN Artificial Neural Network Mb Markov blanked 
BNS Bi-Normal Separation MB Markov boundary 
CBM Correlation-Based Methods MCO MultiCriteria Optimization 
DBM Deep Boltzmann Machine MD Maximum Discrimination 
DF Document Frequency MH MetaHeuristic 
DT Decision Tree MI Mutual Information 
ELM Extreme Learning Machine MLM Minimal Learning Machine 
EMLM Extreme MLM MLP MultiLayered Perceptron 
FS Feature Selection NB Naive Bayes 
GA Genetic Algorithm RBFN Radial Basis Function 

Network 
IG Information Gain RF Random Forest 
kNN k-Nearest Neighbors SVM Support Vector Machine 
LR Linear Regression SVR Support Vector Regression 

techniques 
LRR Logistic Ridge Regression TF- Term Frequency-Inverse DF 

IDF 
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Ionosphere, Liver disorder, Medical, Fault mode) demonstrated 
the usefulness of FS but did not provide any methodological 
rankings. 

The second general review encountered was [45]. However, 
after introducing eight different algorithms for FS including 
maximum variance, Laplacian score, spectral regression, sparsity 
favoring, etc. approaches, the experiments were only performed 
for unsupervised FS. Therefore, we did not consider this work 
further. 

In [46], a large and very comprehensive FS review organized 
from a data perspective, mainly for ranking the features or identi-
fying feature subsets through sparsity-favoring linear learning, was 
given. The different cases for FS were defined as follows: tradi-
tional FS and FS with structured features for conventional data; 
FS with linked data, multi-source FS, and multi-view FS for 
heterogenous data; and FS with streaming data or streaming fea-
tures for streaming data. For conventional data, five similarity-
based score criteria (Laplacian Score, SPEC, Fisher Score, Trace 
Ratio, and ReliefF) were introduced. Then, nine information theory 
-based methods (IG, MI, Minimum Redundancy Maximum Rele-
vance, Conditional Infomax, Joint MI, Conditional MI, Interaction 
Capping, Double Input Symmetrical Relevance, and a Correlation-
Based Filter) were depicted. Third category of methods for conven-
tional data favored sparsity. Their construction was based on a 
suitable loss function with nonconvex regularization using the 
k � kp-norm for 0 6 p 6 1 or  k � kp;q-norm for p > 1 and 0 6 q 6 1 

with both vector- or matrix-valued unknowns. The Actual formula-
tions for different methods are given in [Section 2.3][46]. In statis-
tical methods, the features with low variance or t-score or Chi-
square score or with a high Gini index are eliminated. In 
Correlation-based FS (CFS), one searches a feature subset which 
has a strong correlation with class labels but weak inter correla-
tions. FS with structured features included Group Lasso, and its 
sparse and overlapping variants. For tree structured features, a 
Tree-guided Group Lasso was introduced, and for graph structure, 
a Graph-Lasso with two additional variants (GFLasso and GOSCAR) 
was defined. For linked data, FS using graph regularized least-
squares, user-post relationship regularizer, and unsupervised tech-
niques encoding latent and low-rank representations were 
depicted. Multi-source FS could be addressed using Geometry-
Dependent Covariance Analysis and multi-view scenarios, which 
refer to FS from different feature spaces simultaneously by using 
linear least-squares with specially constructed desired outputs, 
constraints, and sparsity favoring regularizers [Section 4.3] [46]. 
For streaming data with feature streams, assuming a constant 
number of instances for e.g., Grafting Algorithm (Lasso-like 
method) and Alpha-Investing Algorithm (a statistical threshold 
technique) were described. For actual data streams, a particular 
online FS algorithm and an unsupervised least-squares approach 
were introduced. Entire sections in the review were dedicated to 
the evaluation of different FS approaches and open problems in 
the field. This paper was clearly one of the most comprehensive 
reviews that was found, even though it should be noted that the 
linkage between a particular FS technique and the form of data is 
not a function but a relation: many FS techniques are suitable or 
modifiable for use with many forms of data. 

A general FS review was provided in [47], where the techniques 
were not directly introduced but discussed through a Problem–S 
olution-Discussion contents presentation model. Many of its 
themes coincided with those in [46] as summarized in the previous 
paragraph, so we only depict the additional topics covered: dis-
tributed algorithms for FS (utilizing, e.g., MPI, MapReduce, and 
peer-to-peer networks), multi-label FS (of which a dedicated 
review was provided in [48] and summarized in Section 2.6), 
privacy-preserving FS (where the overall privacy degree of the cho-
sen features is controlled), and adversarial techniques for FS (based 
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on currently popular adversarial network architectures and attacks 
on the classification model). 

In [49], FS in machine learning was addressed on a general level. 
However, this high quality review was superseded by the even 
more extensive exposure in [46] summarized above. Nevertheless, 
in relation to wrappers, clustering-based unsupervised techniques, 
GAs, and particle swarm optimization methods were presented, for 
which a thematic overview is given below in Section 2.4. Semi-
supervised FS, which was more thoroughly summarized in [50] 
as depicted in Section 2.5, was also examined. Future challenges 
were linked to the properties of data (small, large, imbalanced) 
and ensemble or online FS techniques. 

The FS for ensemble-based machine learning models was 
reviewed in [51]. The basic relation between ensembles and FS is 
composed on the triplet of {base learners} {feature subsets} 
{observation subsets}. Clearly, we can link filters, wrappers, or 
embedded FS methods to all learners or perform FS individually 
in the base learners. Interestingly, RF, which is truly a prototypical 
feature-subset based FS method, was not addressed explicitly in 
this review. However, a comprehensive depiction of the existing 
FS tools and techniques that are available on the commonly used 
software platforms was presented. 

In [52], causality-based FS was reviewed, and a new open-
source library was proposed and tested. Instead of co-
occurrences and correlations within a set of features and targets 
(usually labels), causality refers to the identification of cause-
and-effect relationships typically using graph-based graphical 
models such as the Bayes/Bayesian Networks with Markov blanket 
(Mb) or Markov boundary (MB). For MB, which is the minimal set 
of Mb referring to a subset of variables containing all necessary 
information to infer a random variable, this review first classified 
(into five categories of learning) and described 30 different 
constraint-based FS algorithms. Similarly, three categories with 
eight algorithms for score-based (scoring or the actual cost func-
tion and how it is searched) identification of MB were described. 
Furthermore, four categories of 18 algorithms to separate features 
of direct causes (parents) from those with only direct effects (chil-
dren) were depicted. The new toolbox, CausalFS, was then pre-
sented with a list of future challenges regarding form and quality 
of data (see Section 2.3), causal effect estimation, and causal FS 
for NNs. 

The most recent review in our umbrella review was [53], which 
provided a clear introduction to search methods and mechanisms 
in FS. The measures which originated from four categories (statis-
tics, probability, similarity, and sparsity) were a proper subset of 
those provided in [46]: evolutionary FS algorithms are described 
in the individual reviews in Section 2.4, and the additional SVM-
RFE method mentioned is already part of the first review in here 
[44]. However, compared to Section 2.5, the body of domains 
where FS is needed was enlarged to cover natural language pro-
cessing, emotion recognition, speech processing, sentiment analy-
sis, and biometrics. These and other domains were carefully linked 
to primary publications, datasets, evaluation measures, and future 
challenges. 

2.2. Filter methods 

One of the most popular class of methods for FS filters are the 
information-theoretic methods that utilize MI. These techniques 
were reviewed in [54]. The basics of information theory and key 
concepts of filters (relevance, redundancy, and complementarity) 
were presented. The main results of the work were a unifying 
framework and a list of open problems without any empirical 
experiments. 

The similarity of the FS techniques, especially the rankings they 
provided were compared using the Kuncheva index averaged over 
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all pairwise comparisons in [55]. Five univariate (v2, IG, Symmetri-
cal Uncertainty, Gain Ratio, and OneR) and three multivariate 
(ReliefF, SVM-ONE, and SVM-RFE, the latter two both with linear 
kernel) FS methods were considered for 16 classification datasets 
with the number of features ranging from 1559 to 10 458. Similar 
behavior was observed for the three first univariate methods, 
whereas different behavior of Gain Ratio was witnessed. Difference 
of multivariate methods compared to the univariate ones was also 
observed, together with the sensitivity of SVM-related methods on 
their internal parameters concerning the number/portion of fea-
tures discarded at each iteration. In this respect, ReliefF had the 
most stable and consistent behavior. 

In [56], structured, sparsity-inducing methods are presented by 
separating vector-based and matrix-based FS. However, even 
though the work provides a comprehensive survey, it is superseded 
by the even more extensive exposure [46] already summarized 
above. 

One of the most commonly used filters, as also demonstrated by 
this umbrella review, are Relief-based algorithms (RBAs), which 
were comprehensively depicted and reviewed in [57]. Altogether, 
21 variants of RBAs from four general branches were presented, 
and among them, from our perspective, the most important being 

the regression-oriented ReliefF with O N2n computational costs 

for the number of observations N and the number of features n. 
Because feature scoring in Relief is based on the feature value dif-
ferences between a target and its neighboring observations, this fil-
ter is particularly relevant to our experiments presented in 
Sections 4 and 5. 

A large comparison of filters for classification, utilizing 16 high-
dimensional datasets and a specific R-package mlr, was presented 
in [58]. The 22 filters, also visible in other papers of this umbrella 
review, originated from statistical tests, feature variance, univari-
ate predictive performance, feature importance with RF, and MI. 
The classifiers were kNN, LRR, and SVM. In the analysis, similarity 
of feature scores for ranking was first assessed, by identifying three 
groups of similar filter methods. The actual comparison for (data, 
model,filter)-triplets was generally concluded as follows ‘‘no filter 
method is better than all the other methods on all data sets,” and 
‘‘there is no subset of filter methods that outperforms all other fil-
ter methods.” Because of these conclusions, it was recommended 
to test all filters in a particular context if computational resources 
suffice. 

2.3. FS for particular forms of data 

The use of synthetic data allows for rigorous comparison 
between the selected features and accuracies of the reduced fea-
ture models. In [44], FS for synthetic data classification was 
reviewed. Altogether, seven filters (correlation-based method, 
consistency-based filter, the Interact algorithm, IG, ReliefF-
algorithm, the mRMR method, and the Md filter), two embedded 
methods (SVM-RFE for SVM and FS-P for Perceptron), and two 
wrappers (Wrapper-C4.5 and Wrapper-SVM using the Wrap-
perSubsetEval algorithm) were applied over eleven synthetic data-
sets (CorrAL, CorrAL-100, XOR-100, Parity3 + 3, LED-25, LED-100, 
Monk3, SDI1–3, and Madelon), which included irrelevant and 
redundant features, noise, and various interaction patterns. More-
over, four classifiers were used (NB and IB1 in addition to C4.5 and 
SVM). In this work, the challenges were pointed out in the thresh-
old selection for methods that produce feature importance values 
and, therefore, allow ranking of individual features. They con-
cluded that ReliefF and SVM-RFE with nonlinear kernel were the 
best methods, and recommended the former because of its inde-
pendence on the classification model and computational efficiency. 
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Additionally, the difficulties in comparing and ranking wrapper 
methods were also noted. 

Online settings provide a special context on the availability of 
data for feature construction. In [59], FS for streaming data classi-
fication was considered, with the full or only a partial subset of fea-
tures being accessible for each arriving new instance (decided by 
the learner). Next, three novel algorithms, a truncated perceptron, 
a sparse projection approach, and learning with partial inputs, 
were presented. The experimental comparison was performed 
using nine smaller datasets (magic04, svmguide3, german, splice, 
spambase, a8a, RCV1, and two topic pairs from 20Newsgroup) 
and five larger datasets (KDDCUP08, ijcnn1, codrna, covtype, and 
KDDCUP99), focusing on the average number of mistakes made 
by the algorithms. Further, real word applications of image classi-
fication in computer vision and microarray gene expression analy-
sis in bioinformatics were also demonstrated. The overall 
conclusion was that the proposed online algorithms turned out 
to be scalable and more efficient than some state-of-the-art batch 
FS techniques. However, upon taking a closer look, this paper 
turned out to be a primary study. 

A particular focus on online FS with streaming features — a sub-
topic also covered in the extensive review [46] summarized in Sec-
tion 2.1 — was undertaken in [60]. The additional FS techniques 
compared to [46] contained MI-based SAOLA and Group-SAOLA 
(Scalable and Accurate OnLine Approach), uncertainty-
minimizing GFSSF (Group FS with Streaming Features), and 
Lasso-oriented OGFS (Online Group FS). Experiments with several 
(over 10) benchmark data sets did not provide methodological con-
clusions or rankings but, instead, generated a list of challenges 
related to multi-label cases (reviewed separately, e.g., in [48] as 
summarized in Section 2.6), quality of data in real-world applica-
tions, and the need to distribute computational efforts. 

2.4. Optimization-based FS techniques and metaheuristics 

A general approach for FS is to cast the problem of identifying a 
subset of features as an optimization problem. Such an approach 
needs the definition of a cost function that measures the goodness 
of a feature subset, typically through the accuracy of a classifier. 
However, the strict convexity and differentiability of such cost 
functions might be difficult to establish, so derivative free opti-
mization methods provide a natural family of optimizers in these 
settings. Clearly, both the necessity of the metalevel fitness and 
the search that finds arguments of its extremums causes a signifi-
cant increase in the computing time. 

In [61], nature-inspired metaheuristics including GAs and ant 
colony optimization were reviewed for FS. Further, a taxonomy 
of such approaches consisting of stochastic algorithms, physical 
methods, evolutionary approaches, immune systems, and swarm 
intelligence were also depicted. Then, the elements and basic con-
stituents of population-based approaches, memetic algorithms 
incorporating local searchers, clonal selection, harmony search, 
simulated annealing, tabu search, and swarm algorithms (artificial 
bee colony, ant colony, firefly algorithm, and particle swarm) were 
given. Experiments with 12 UCI datasets and C4.5 and NB classi-
fiers concluded the capabilities of all tested algorithms in finding 
good solutions. Similar to [44] as shown above, in some cases, 
filter-based evaluators had better results as compared to the more 
complex FS approaches. 

Years 2020–2021 were characterized by multiple FS reviews 
addressing optimization-based techniques. The latest is [62], 
which focused on nature-inspired MH techniques from both map-
ping (how much and what kind of publications) and review (what 
techniques and results) perspectives. Among others, the large 
number of nature-inspired MH techniques was summarized: 29 
were inspired by insects and reptiles, 15 by birds, 13 by animals, 
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seven by sea creatures, five by plants, six by humans, and 25 other 
techniques. Altogether, 21 actual FS-MH algorithms were then 
listed, which were further divided into chaotic (utilizing various 
forms of randomness) and binary (strict inclusion/exclusion of fea-
tures) variants. Moreover, the review [62] superseded a few other 
recent, more specific FS reviews: the grey wolf optimizer treated in 
[63,64] which considered the Dragonfly algorithm. Moreover, 
swarm optimization, which was examined in [65], introduced six 
different algorithms, which were all contained in five categories 
and 12 instances of ”swarm” presented in [62]. Differently from 
[62], the chaotic category there was replaced with continuous rep-
resentation of features. The review in [65] was summarized with 
the observation that MHs are typically applied to identify both 
the features and predictive model’s parameters, and that FS prob-
lems with binary presentation need further studies. 

Another perspective on optimization-based FS was detailed in 
[66], where a systematic review on the use of MCO was presented. 
In all the introduced cases, the multiple criteria were reduced to 
two basic objectives: minimal number of features with maximal 
classification performance. Contents of 38 papers were summa-
rized, where the twofold nature noted above meant that most of 
the papers depicted wrappers and only five filters. Because of the 
computational costs of MCO algorithms, the mentional classifiers 
included rather simple techniques like kNN, NB, DT, and linear 
SVM, but also SVM, RF, ELM, MLP (i.e., shallow feedforward net-
work), DBM, and Deep NN. Notably, this review also summarized 
38 different datasets that were used to evaluate the methods. 

2.5. FS in particular application domains 

Gene expression data, which was focused on in [50], is charac-
terized by a high ratio of the number of features to that of samples: 
there can be up to hundreds of thousands of features but only a 
small sample size. In this paper, a thorough introduction to feature 
evaluation and selection methods was given along with compre-
hensive summaries of the prediction accuracy vs. number of 
selected features for dozens of studies with five popular datasets. 
Expectedly for such problems, the usefulness of filters and the 
potential of semi-supervised FS methods integrating unsupervised 
FS from larger unlabelled data with supervised construction of 
classifiers was concluded. Similarly, the potential of hybrid FS 
methods combining multiple filter and/or wrapper approaches 
was emphasized. 

FS in the multimedia context, covering, for example, texts, 
images, videos, audios, animations, etc. as formats and forms of 
data, was reviewed in [67]. The basics of FS methods and search 
strategies were depicted with summaries of their use in super-
vised, semi-supervised, and unsupervised FS techniques for multi-
media data based on 70 original papers in 2001–2017. 
Interestingly, compared to our paper, years 2013 and 2014 were 
identified as the most active times of publications especially 
through the emergence of various heuristics. A special emphasis 
in the current review was given to interactive, active learning -
based approaches. However, with both these techniques as well 
as in the whole research field, several open issues and challenges 
were identified. Additionally various metrics to evaluate the per-
formance of FS methods with multimedia data were presented. 

FS in the application domain of renewable energy was consid-
ered in [68]. This was chronologically the first study where regres-
sion problems had an explicit role. This was illustrated in the more 
detailed FS reviews on the following: iÞ Wind Energy Prediction 
using NN, Gaussian Process, kNN, ELM, SVR, RF, Boosting machine, 
and Nonlinear Auto-Regressive models, where FS was performed 
via optimization-based methods (see Section 2.4), and Empirical 
Mode Decomposition, iiÞ Solar Energy Prediction using correlations, 
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Lasso, and optimization-based but mainly intrinsic (i.e., domain 
and data-specific) FS methods for NNs, Deep NNs, SVMs, and ELMs; 
iiiÞ Marine Energy Prediction using rule- and optimization-based FS 
methods mainly for ELMs, and ivÞ Energy-Related Problems in gen-
eral using, again, optimization-based FS methods with ELMs and 
SVMs, RReliefF with NNs, and entropy-based filters with, for e.g., 
RF and NNs. Over half (18) of the 32 reviewed papers used wrap-
pers for FS. 

Genomic big data, similar to [50] as shown above, was 
addressed in the systematic review in [69]. Most of the identified 
papers proposed new methods, architectures, and tools for pro-
cessing genomic data, thus overlapping with other reviews men-
tioned in this paper. A terminological exception was the 
Integrative FS methods, which depicted multiple hybrid 
approaches with different datasets and/or FS methods as a prepro-
cessing step before the actual training of a model (with or without 
FS). 

A systematic review on FS for forecasting spatiotemporal traffic 
data (how much traffic, where) was presented in [70]. From the FS 
perspective, the categorization of the identified literature followed 
the normal model except for the division of filters into so-called 
Exogenous and Endogenous feature filtering methods. The latter 
encapsulated the typical filters like correlation and sparse linear 
regression-based methods. Whereas the former referred to the 
use of external data and knowledge to limit possibilities and useful 
features, such as, knowing that a car is moving in a specific direc-
tion at a certain speed. Additionally, optimization-based wrappers, 
and embedded methods using, for e.g., deep learning techniques 
were listed. In 211 papers from 1984–2018, a versatile pool of 
prediction methods were found including the following: Feedfor-
ward shallow and deep ANNs; time-delayed, recurrent, long 
short-term memory, convolutional, autoregressive exogenous 
ANNs; Deep belief and Bayesian networks; kNN; autoregres-
sive models; Gaussian Process regression; RF and Regression tree; 
and Tensor decomposition models. It was concluded that urban 
traffic forecasting in particular needs further empirical FS 
studies. 

Text classification and FS were the scope of the review in [71]. 
In this application domain, the starting point is the numerical 
encoding of texts and documents by using, for instance, the classi-
cal bag-of-words representation. This is a particularly interesting 
domain from the point of view of the distance-based methodology 
because of the key role of similarity of documents especially in 
unsupervised scenarios. The classifiers summarized in the review 
are the common ones: kNN method, NB, relevance-based Rocchio, 
multivariate regression models, DTs, SVMs, NNs, graph 
partitioning-based approach, and GA-based methods to train the 
models. From the FS perspective, the text domain is very similar 
to the genomic data due to the number of features being large 
when compared to the number of observations in both. Filters in 
the field result from preprocessing-like techniques such as DF 
and TF-IDF, as well as more tradional CBM, MI, IG, Term-
Relatedness, v2, MD, LR techniques, BNS along with a few special 
filters. However, wrappers and embedded methods were only 
briefly addressed in this review. Interestingly and independently, 
the review was concluded with summarizing some recent FS cate-
gories using almost the same topical division as in our umbrella 
review. 

FS in image analysis was considered in [72]. In this domain, one 
can distinguish low-level, mid-level, and high-level techniques, 
where the first refers to pixel-/voxel-level tasks like classification 
and segmentation, the second to the derivation of features and 
characteristics from images (typically for low-level tasks), and 
the last, for e.g., to image annotation, i.e., identification of objects 
and/or their labels. The actual methods and techniques summa-
rized in the review are mostly the same as those already addressed 

348 



�

�

J. Linja, J. Hämäläinen, P. Nieminen et al. 

in many other papers in this umbrella review, with notable excep-
tions concerning multiple mentions of fuzzy-rough set FS. Out of c. 
50 papers reviewed, more than half referred to the use of filters, 13 
to embedded techniques, and 11 to wrappers. This review also 
depicted the main available datasets for FS and performed a small 
(four datasets times four methods) experiment with the following 
overall conclusions: results were dependent on all aspects, the 
classifier, the FS method, and the dataset, with the recommenda-
tion to use the subset FS methods with SVM or RF. 

2.6. FS in multi-label classification problems 

FS in multi-label classification (MLC) problems that are poten-
tially characterized by many simultaneously active labels per 
instance was presented in [48] using a systematic literature review 
process. The authors first noted that the use of the straightforward 
Binary Relevance (BR) method allows for the usage of all single-
label FS methods in MLC cases. In the paper, another feature con-
struction method to build binary variables taking into account cor-
relations between multiple labels was depicted. Experiments with 
10 MLC datasets, a multi-label extension and the adaptation of 
kNN-classifier as well as the IG -based filter with BR were pre-
sented. The proposed method showed competitive performance 
with slightly increased computational costs. Finally, the literature 
review of 99 papers concluded that 70 applied a filter approach 
in FS. 

Another review that focused solely on FS in MLC problems 
(MLC-FS) was [73]. The MLC-FS was considered from a taxonomy 
of four perspectives: label, search strategy, interaction with the 
learning algorithm, and data format. As a whole, this review basi-
cally linked the different problem transformation and algorithm 
adaptation methods of MLC problems with different existing clas-
sification models and FS techniques already covered above (for 
instance, the supervised, semi-supervised, and unsupervised treat-
ment in [67]). In conclusion, the popularity of filters was observed. 

Additionally, another review on MLC-FS was undertaken in [74]. 
Again, the characteristics of addressing MLC problems and a large 
catalog of existing FS methods were addressed through the analy-
sis of primary publications. The developed taxonomy embeds the 
known triplet of filter, wrapper, and embedded FS methods into 
a MLC-specific hierarchy, consisting of direct and transformation-
based approaches; the latter was further divided into single and 
internal/external BR categories. 

2.7. Summary 

Let us briefly summarize our findings. First, the years covered in 
different reviews varied substantially, naturally depending on 
when particular techniques (search- and optimization techniques, 
classifiers, etc.) actually emerged: for e.g., [70] covered years 
1984–2018 and [62] 1983–2019, whereas [63] covered 2012– 
2020. 

Next, we did not find any reviews even mentioning distance-
based ML models or focusing solely on FS in regression problems, 
although [68] mainly considered regression tasks. Regarding clas-
sification tasks (see, e.g., [45]), as compared to regression prob-
lems, the existence of labels opens up possibilities for both filter 
methods (e.g., statistical tests to assess how strongly features sep-
arate the classes) and for embedded and hybrid methods (e.g., 
using one classification model for FS and another one as the actual 
classifier [75]). 

Interestingly, many papers noted the existence of cases where 
filter methods performed either equally or even better than the 
more complex approaches (e.g., [44,61,50]). Further, for filters, 
the importance of threshold detection was emphasized in [76]. 
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In general, FS using optimization means the generation of a 
higher-level search process, which inevitably increases the compu-
tational complexity. Other forms of filter and wrapper methods can 
be more direct: if they can provide a ranking on the importance of 
the given set of features, then the FS problem reduces to finding a 
rule that identifies the ranks that are large enough to be included 
and those that should be omitted from the final model. This is 
the exact method that is proposed next: Through construction 
and analysis of the feature importances of the predictive model 
(one feature sensitivity formula) and the direct generation of the 
inclusion/exclusion rule means no increase in the overall computa-
tional complexity and no addition, iterative search procedure. 

To conclude this umbrella review — as readily stated in the first 
included article, [44], and confirmed (for filters) in one of the last 
reviewed papers [58] — there does not exist one, single ‘‘best meth-
od” for FS as different methods have their own strengths and weak-
nesses [61]. Therefore, identifying a good method for a specific 
problem setting drives the development of the research field, and 
in this article, our focus is on FS for regression problems. Our 
umbrella review shows a major research gap in recent years relat-
ing to FS for regression when compared to FS for classification. 
Therefore, our contributions in this paper seem timely and essen-
tial towards filling this gap. 

3. Distance-based one-shot wrapper 

In this section, we summarize the essence of the distance-based 
regression model and derive the one-shot wrapper. 

3.1. EMLM 

EMLM is a supervised distance-based machine learning method. 
It combines the regularized ridge regression-type learning charac-
teristics of the ELM [77,78] with the distance-based feature map 
used in the MLM [1,79]. It was proposed by Kärkkäinen [4] and 
due to its origins, this technique is referred to as EMLM. This model 
has a structural resemblance to RBFNs with a linear kernel [9,10]. 
However, the algorithms that select most or even all observations 
as reference points for the distance-based kernel [4,79] differenti-
ate the overall technique from the RBFNs: reference points for 
MLM and EMLM are always selected from among observations; 
not, e.g., as cluster centers. Therefore, the EMLM incorporates only 
one metaparameter — the number of reference points — and when 
used with the RS–maximin [79] reference point selection algorithm, 
it provides a deterministic and simple-to-use supervised learning 
method [4]. 

The RS-maximin method has its origin in the K-means seeding 
approach [80] known as maximin or the furthest point selection. 
This seeding approach, in turn, originated from the traveling sales-
man problem, where it is known as the greedy permutation [81]. 
The RS-maximin approach selects the first reference point as the 
closest point to the input data mean and then adds the rest of 
the reference points deterministically with the farthest-first-
traversal algorithm. For regression problems, maximizing the input 
space reference points’ pairwise distances is known to improve the 
MLM’s generalization performance [79]. MLM was also found to 
have the tendency not to overlearn [4,79,82,83]. 

The training phase of the EMLM is depicted in [Algorithm 3] [4]. 
Construction of the distance-based regression model starts by 

computing the distance matrix H 2 Rm N as 

H xjjj2; ð1Þð Þij ¼ jjri i ¼ 1; . . . ; m; j ¼ 1; . . . ; N; 

where ri 2 Rn is the i:th selected reference point and xj 2 Rn 

denotes the j:th observation. Here, n is the number of features, m 
denotes the number of selected reference points, and N specifies 
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the number of observations in the training set. Distance regression 
weights W 2 Rp m are then solved from the linear problem 

W HHT þ aN 
I ¼ YHT ; ð2Þ 

m 

where Y 2 Rp N (in the datasets used in this paper, p ¼ 1) contains 
the desired output vectors in its columns, and I 2 Rm m is the iden-
tify matrix whose multiplier includes the fixed regularization pffiffiffi 
parameter a ¼ e corresponding to the square root of machine 
epsilon e. The predicted output y of a trained EMLM for a given 
input x is y ¼ WH , where H ¼ kri x k i ¼ 1; . . . ; m.ð Þ  Thei1 2; 
usage of a trained EMLM model consists of computing the distances 
between new inputs and fixed reference points as shown in (1) and 
multiplying by the weight matrix W to calculate the predicted out-
put. The dimensions of W depend on the number of targets in a 
dataset. In this paper, we use datasets with single targets, so W is 
a row vector of length m. 

3.2. Feature scoring using mean absolute sensitivity 

Next, we delineate the wrapper approach for the distance-based 
model. It should be noted that a sampling-based technique for fea-
ture scoring and selection with EMLM, similar to [28,29], was pro-
posed and tested in [84]. 

One form of the classical Taylor’s formula as given in [Lemma 
4.1.5] [85] reads as follows: in the neighborhood of a point 
x0 2 Rn , there exists z 2 lðx; x0Þ (a line segment connecting the 
two points) such that for y ¼ x x0, 

ð Þ ¼ f x0 r x0 
T 1 

z y;f x ð Þ þ  f ð Þ y þ yT r2f ð Þ  ð3Þ
2 

where rf ð Þ denotes the gradient vector at x0 and r2f ð Þz the Hes-
sian matrix at z, respectively. Usually, this formula is used to under-
lay a linear approximation or second-order optimization algorithm. 
Analogous to the latter case, we note that a small value of an indi-
vidual gradient component r ð Þ is linked to the weak relevance 

x0 

if x0 

of the ith feature in depicting the function’s local behavior. This 
observation suggests the inclusion of a feature importance criterion 
FI 2 Rn in [35,86], which was based on Mean Absolute Sensitivity 
(MAS) of the training data: 

X1 N @M 
FI ¼ ; ð4Þ

N
j¼1 

@xj 

where M denotes the output of the distance-based regression 
model. Note that the use of the Cityblock distance makes FI both 
robust and independent between the features (see [87]). The ana-
lytic derivative of the output with respect to the input vector xj is 
straightforward to compute, yielding a penalized expression similar 
to that of the unsupervised case in [formula (3)] [88]: 

@

@ 
M 
xj 

¼ WDT ; 

where the i:th column di of D is defined as 

ri xjdi ¼ ; i ¼ 1; . . . ; m: 
max e; jri xjj 

Remark 1. It should be noted that it is not completely clear, 
especially in the context of FS, whether a distance-based feature 
map would benefit from a separate bias term. The theoretical basis 
behind EMLM does not require this [Remark 1] [4], and its 
omission has also been recommended for the ELM [89]. However, 
a separate bias is known to enforce an unbiased regression 

estimate [90], and it could be included in the model simply by 

enlarging H into 
1 
H 

where 1 denotes the unit matrix of size 

R1 N . We conducted a brief experimental pursuit of the question— 
which has not been reported here—and concluded that a separate 
bias term added no value. Therefore, the use of the original 
formulation was confirmed. 

Remark 2. MAS-formula (4) to quantify feature importance is 
independent of the model M; one only needs the model’s deriva-
tive with respect to features. Basically, this can be obtained using 
finite differences or automatic differentiation but here we confine 
ourselves to analytic formulae. A preliminary work with MAS and 
the analytic derivative of a feedforward neural network (FNN) 
model, with two transformation layers, was presented in [35]. In  
order to enable more extensive testing of the MAS-based wrapper 
approach, we include here the MAS formula for FNNs with any 
number of layers. The calculus is omitted because it can be per-
formed similarly to [90]. For convenience and building from the 
previous remark, we assume that the training data has been scaled 
into ½  1; 1 , the FNN does not contain bias nodes, and that tanh-
functions tanhð Þx ¼ 2 1 are used as the activation func-1þexpð 2xÞ 

tions throughout (note that the activation functions need to be dif-
ferentiable which rules out the use of ReLU). Then, a layerwise 
formalism for the input–output mapping of any FNN with weights n oL 
Wl (i.e., weights of layers stored in matrices from the first 

l¼1 

layer W1 up to the last layer WL) can be represented using a diag-
onal function matrix F ¼ Fð Þ ¼ Diagff ið Þg mi¼1, where f i tanh, as 
follows 

ðL 1Þo ¼ oL ¼ M x o ; ð5Þð Þ ¼ WL 

where o0 ¼ x (a given input vector) and 

ol ¼ Fl ¼ F Wloðl 1Þ forl ¼ 1; . . . ; L 1. The analytic derivative of 

such mapping with respect to the input features reads as 

Y@M 1 

¼ WL ðF0ÞlWl: ð6Þ 
@x 

l¼L 1 

Algorithm1 Distance-based one-shot wrapper 

Input: Input data xj 2 Rnjj ¼ 1; . . . ; N , target data n o 
yj 2 Rjj ¼ 1; . . . ; N 

Output: Indices of most important features 
1: Train EMLM model using (2) with the full set of features 
2: Compute FI using (4) 
3: Sort FI 
4: Using Kneedle, find kneepoint of sorted FI at feature 
index k 

5: Keep features that satisfy fi jFIi P FIk; 1 6 i 6 ng 

3.3. Threshold selection 

Once the features are ranked according to their score, there 
needs to be a way to decide how many of them are retained and 
on what basis. Because the scores, sorted according to their rank, 
define a 1D curve, the classical knee-point could be used to identify 
a change in the characteristic behavior [91]. A widely used tech-
nique for knee-point detection is to maximize the curvature, for 
which explicit formula is given in [92]. This is realized in a readily 
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implemented kneepoint detection algorithm, Kneedle [93], which 
f 00ð Þxidentifies the cutoff point of a smoothed curvature 1:5.2ð1þf 0ð Þx Þ 

The proposed one-shot FS algorithm is detailed in Algorithm1. 
Fig. 1 illustrates the use of a kneepoint and Kneedle for FS with 
the EMLM and the MAS formula (4). In the figure, the mean valida-
tion error and the standard deviation for it is shown using blue, 
while the MAS-values representing each number of features is 
shown in orange. The simulated dataset for the demonstration is 
defined in Section 4.1. 

4. Experimental setup 

In this section, we detail our experimental design related to 
selected datasets, compared methods, and evaluation metrics. 
We also compare our proposal 1 with popular FS methods using a 
representative set of synthetic and benchmark datasets. We utilize 
the area under the receiver operating characteristic curve as an eval-
uation metric with the synthetic datasets and the root-mean-square 
error with the benchmark datasets. 

4.1. Datasets 

Here, we present the datasets used in the experiments. The use 
of readily available benchmark datasets is augmented by the use of 
synthetic data, which is similar to [94]. 

Synthetic. We created a set of synthetic datasets to analyze the 
goodness of feature importance scoring. We can utilize ranking-
based evaluation metrics when the ground truth features are avail-
able. Therefore, with the synthetic datasets, we can focus on the 
primary problem of FS independently from the thresholding of 
the feature importance score. We used two sets of synthetic data-
sets: one (denoted YRx) that has already been used in other studies 
[94] and a set inspired by the first (denoted YAx). The functions 
used to generate the synthetic datasets are presented in Table 2. 
The last row containing YR4 consists of two equations forming a 
spiral equation. The datasets YA1; YA3; YA4; YA5, and YA6 have pro-
gressive complexity. The YA2 dataset is the most challenging, since 
it mostly represents incoherent noise. However, it can show if a 
feature ranking algorithm will find results that are not practically 
there. Thus, it functions as a sanity check. For the YA1-YA6 datasets, 
half of the features are true ones, while for the YR1-YR4 datasets, 
there are only one to four true features. For each synthetic dataset, 
we generated 1000 observations with 200 features 
(N ¼ 1000; n ¼ 200). For datasets YA1-YA6 and YR1-YR3, the features 
were randomly generated as defined in 

xi ¼ U½0; 1Þ i 2 ½ 0; ; n 1 : ð7Þ 

For dataset YR4; Y ¼ U½0; 20Þ. After the target of a synthetic data-
set has been calculated, the dataset target is augmented with Gaus-
sian noise of zero mean and unit variance, which is augmented by 
normalizing it with the maximum difference to prevent egregious 
”measurement errors.” 

Benchmark datasets. A group of openly available datasets, also 
mentioned in the umbrella review in Section 2, were used to get 
comparable results. The benchmark datasets’ characteristics are 
presented in Table 3, where the column headers #Obs., #Feat., 
#Trgt. refer to the numbers of observations, features and targets, 
respectively. Column #Un.Trgt. refers to the number of unique val-
ues found in the target vector, while header T. refers to the dataset 
type (regression R, classification C) and Src to the source of the 
dataset. We have used the first target when the dataset had more 
than one target. 

1 Source codes available at: https://gitlab.jyu.fi/hnpai-public/extreme-minimal-
learning-machine/ 
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Fig. 1. Example of the cutoff point given by MAS kneepoint (in green) using the 
synthetic dataset YA1 and the computed and sorted MAS values. The MAS-kneepoint 
provided the correct set of features that minimized the validation error. 

Table 2 
Synthetic datasets. Column FT represents the number of true features, while column 
FF represents the number of false features. 

Function FT FF 

P99YA1 ¼ i¼0 99ð iÞxi þ Nð0; 1Þ 100 100 P99YA2 ¼ i¼0 sin 2p 99ð ð iÞxiÞ þ Nð0; 1Þ 100 100 P99YA3 ¼ i¼0 99ð iÞx2 
i þ Nð0; 1Þ 100 100 P99YA4 ¼ i¼0 99ð iÞx6 
i þ Nð0; 1Þ 100 100 P99YA5 ¼ i¼0 99ð iÞexi þ Nð0; 1Þ 100 100 P99YA6 ¼ i¼0 99ð 

: 

iÞ log 1ð xiÞ þ Nð0; 1Þ 100 100 

YR1 ¼� 2 sin 2x0ð  Þ þ x2 
1 þ x2 þ ex3 þ Nð0; 1Þ 4 196 

YR2 ¼ x0e2x1 þ x2 
2 þ Nð0; 1Þ 3 197 

YR3 ¼ sin 2px0ð  Þ þ N 0; 0:1ð Þ 1 199 8 < x0 ¼ YR4 sin YR4ð  Þ þ Nð0; 1Þ 
x1 ¼ YR4 cos YR4ð  Þ þ Nð0; 1Þ 

2 198 

It should be noted that due to a lack of benchmark regression 
datasets for FS, we also used a set of classification datasets (see 
Table 3) in a separate experiment. The aim was to observe how 
our proposed FS algorithm would function with datasets for which 
it was not designed. 

4.2. Compared ranking and FS method 

The quality of the MAS score was first compared to the most 
common ranking algorithms of filters and embedded methods. 

Table 3 
Benchmark datasets. 

Dataset #Obs. #Feat. #Trgt. #Un.Trgt. T. Src 

StudentTest 
ATP1D 
COIL 
Madelon 
Outdoor 
ThyroidAnn 
OptDigits 
SatImage 
COIL2000 
RF2 
ComputerActivity 
SCM1D 
Census 

258 5 1 4 C [95] 
337 411 6 83 R [96] 
1800 21 1 100 C [95] 
2000 500 1 2 C [95] 
2400 21 1 40 C [95] 
3772 21 1 3 C [95] 
3823 64 1 10 C [95] 
4435 36 1 6 C [95] 
5822 85 1 2 C [95] 
7679 576 8 515 R [96] 
8192 21 1 56 R [97] 
9803 280 16 1092 R [96] 
22784 8 1 2045 R [97] 
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Here, we used RreliefF, SpearmanR, Mutual-Info, Fisher-score and 
Mean Absolute Difference (MAD) as non-model-based comparisons. 
We also included model-based comparisons, namely DT and RF. 
Both model based ones were used only to gain a rank for each fea-
ture in the feature ranking experiment. 

The quality of the distance-based regression model after feature 
ranking and one-shot selection was then compared to a selected 
group of well-known reference models, which have commonly 
been referenced in the literature. The selected group consisted of 
linear models, Linear Regression, Ridge Regression, and Lasso as well 
as tree-based models, Decision Tree and Random Forest and finally 
SVR. The methods are all readily available in the Python library 
Scikit-Learn [98]. 

4.3. Evaluation criteria 

The quality of feature ranking and selection were assessed with 
multiple evaluation criteria, which are discussed next. The starting 
point for the evaluation is the existence of a separate validation 
dataset that can be used to assess FS performance and the resulting 
data-driven models. Moreover, since the specific true features of 
the synthetic datasets are known, we can directly count the num-
ber of true and false features. However, due to random number 
generation being involved in data generation, these counts may 
differ from the intended ground truth in rare occasions, which 
must be considered when looking at evaluation results. The used 
evaluation criteria are as follows: 

Root Mean Square Error (RMSE) is a standard way to compute 
the validation error of a regression model [99]: rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi PP 

i¼0 iðy yi Þ2 

RMSE ¼ P ,where P is the number of observations in 

the validation set, yi is the predicted validation target, and yi is 
the true validation target. 

Kruskal–Wallis H test is a well-known statistical significance 
test between two data groups [100]. Because the test is non-
parametric, data does not need to be from a normal distribution. 
We used significance level 0:05 for the H test. Any p-value lower 
than 0:05 indicates that the two tested groups have significant dif-
ferences. In our results, we took the best achieved result and com-
pared the other results to it in a pairwise manner. 

According to Table 3 of the review by Solorio-Fernández et al. 
[14], there is no proper consensus on how to verify that a feature 
ranking algorithm works. Consequently, we have opted to use a 
couple of different measures for verification purposes. Area under 
receiving operating characteristic (AUROC) is another way to 
measure and quantify the quality of a feature ranking, when the 
true features are known for a dataset. Teisseyre [101] defined the 
receiving operating characteristic curve (ROC) as 
ðFPRð Þk ; TPRð Þk Þ; wherek ¼ 1; . . . ; m refers to the top k selected fea-
tures, FPR = false positive rate among the top k selected features 
and TPR = true positive rate among the top k selected features. 
When the ROC is paired with the area under curve, we get a single 
number describing the performance of a feature ranking algorithm. 
The measurement intuitively explains a performance. The more 
correctly the features are ranked, the closer the score is to 1. Scores 
close to 0:5 indicate random selection, while scores close to 0 mean 
that correct features are specifically not selected. 

Number of features for best validation error, nsel, is what the 
name implies. The number of features in the subset of features that 
provide the lowest validation error is taken, and the mean is calcu-
lated from the achieved numbers of features. This allows the obser-
vation of what portion of features are required by a feature ranking 
algorithm to reach its best-achieved result. Since the goal of FS is to 
remove as many features as possible, a smaller feature subset is 
preferable. 

Neurocomputing 518 (2023) 344–359 

4.4. Feedforward Neural Networks 

In addition to comparing EMLM–based MAS-FS to the popular 
feature selection methods, we also performed experiments with 
the MAS for FNNs (see Remark 2). We used two versions of Sequen-
tial model from Tensorflow [102]: A single hidden layer + linear 
output layer (denoted as FNN-2) and three hidden layers + linear 
output layer (denoted as FNN-4). Sizes of the Tensorflow’s dense-
layers were fixed to: 

FNN 2 ¼ dð ns =2e; 1Þ; 
FNN 4 ¼ dð ns =2e; dns =4e; dns =8e; 1Þ; 

where ns is the number of features (after dataset preprocessing (re-
moval of constant features). 

5. Experiments and results 

In this section, we present the experiments and their results 
based on the datasets and evaluation criteria depicted in the previ-
ous section. The discussion follows the steps of the overall MAS-
based FS algorithm (MAS-FS) for the distance-based EMLM as fol-
lows: feature ranking component, testing against commonly 
known algorithms, and finally testing against RF. 

The experiments were run on a local computation cluster on a 
single node (2x Intel Xeon Gold 6148) using Python 3.8. We used 
the following library versions: iÞ NumPy: 1.20.1 [103]; iiÞ SciPy: 
1.6.1 [104]; iiiÞ Scikit-learn: 0.24.1 [98]; and ivÞ Kneed: 0.7.0 [93]. 

5.1. Assessing the quality of feature scores and rankings 

Our first step was to compare the MAS scoring with a represen-
tative set of other techniques depicted in Section 4.2. Using the 
synthetic datasets presented in Table 2, we compared the FS algo-
rithms’ ability to generate feature scores and the corresponding 
ranking to correctly order the features. 

We randomly split each synthetic dataset 30 times into training 
and validation partitions, where 33% of the generated dataset com-
posed the validation set. Each of the 30 training partitions were 
input to a feature ranking algorithm. The features were scored 
and ordered, which with the known ground truth allowed us to 
then use AUROC (presented in Section 4.3) to compute a quality 
measure. 

In addition, we computed the validation error for each subset of 
the ordered features in each of the 30 splits. Specifically, we used 
EMLM (85% of data used as reference points) to compute the val-
idation error Evalð Þ1 for the rank #1 feature, Evalð Þ2 for rank #1 and 
#2 features, . . . ; Evalð Þn for all features. Then, we found the number 
of features for minðEvalÞ. Finally, we reported the mean and stan-
dard deviation for each AUROC value and each minðEvalÞ. The 
results are shown in Table A.4. 

The best values, the highest AUROC (denoted in table as AUC), 
and the lowest nsel, are in bold for each dataset. In addition, we 
used r to show that a value is statistically close to the designated 
best value (using the Kruskal–Wallis H test). 

We will discuss the results presented in Table A.4 in the order of 
feature ranking algorithms. 

MASvec achieved the lowest number of features in seven cases 
out of 10 and the lowest mean validation errors in eight cases 
out of 10. With these results, it had the best performance among 
the tested feature ranking algorithms. Further, it is the only algo-
rithm that did not select extra features for datasets A1 A6 from 
the false feature pool, as it did not return more than 100 features. 
However, it slightly missed the intended number of features with 
datasets R1; R2, and R4. 
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RreliefF is a traditional feature ranking algorithm that is often 
praised. However in our experiments, RreliefF failed to impress. 
Regarding datasets A1 A6 and R3, RreliefF performed as if it was 
a random selector. While the algorithm found better results with 
datasets R1; R2 and R4, overall its performance was found lacking. 
Thus, it can concluded that the algorithm is not suited for datasets 
where the input features closely resemble each other. 

SpearmanR performed best in datasets R1 R4 and relatively 
well in datasets A1 A6, excluding A2. This indicates that it is bet-
ter suited to datasets where there are relatively few correct 
features. 

MI is a popular ranking algorithm. In our experiments, it per-
formed better than RreliefF, but was still surprisingly close to a ran-
dom selector with datasets A1 A6. However, MI is one of the 
three tested algorithms that managed to find the correct number 
of features with dataset R4. Dataset R4 has spiral-like data, and 
we expect the form of the dataset to play a role in the performance 
of MI. 

Based on the AUROC values, DT performed in a similar manner 
to MI: it was surprisingly close to random selection with datasets 

Table A.4 
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A1 A6 and performed significantly better with datasets R1 R4. 
As DT is an iterative method, it may require more training time 
than what is provided by the default settings to be able to properly 
handle a situation with more than a few correct features. 

RF is the third of the three that found the correct number of fea-
tures with dataset R4, and it performed similar to MI and DT. We  
expect that RF Ranker has the same needs as DT and would require 
changes to the default settings. 

Fisher-score was the worst–performing feature ranking algo-
rithm that we tested. Unlike other methods that resembled ran-
dom selection at their worst, it actively selected wrong features 
in the A1 A6 datasets. However, the same effect was not present 
with datasets R1 R4, even though Fisher-score was closer to ran-
dom selection with datasets R1 and R2. Thus, we must conclude 
that Fisher-score is not suitable for datasets like A1 A6 and 
R1 R4. 

Mean Absolute Difference (MAD) mostly resembled a random 
selector, with the exceptions being with datasets R1 R4. Espe-
cially of note is the result for dataset R4, since it completely failed 

Feature-ranking algorithm results for the eight feature ranking algorithms and for the 10 synthetic datasets. The best mean value per dataset has been highlighted in bold. The 
results where the population median is the same as for the best mean value according to the Kruskal–Wallis H test are marked using r. 

Algorithm MASvec RreliefF SpearmanR Mutual-Info 

Dataset Var x d x d x d x d 

A1 AUC 0:93 0:01 0:50 0:05 0:80 0:02 0:57 0:05 
nsel 86:67 3:57 198:00 2:21 141:13 18:67 169:63 30:47 

A2 AUC 0:49 0:03 0:49 0:03 0:50r 0:04 0:51r 0:05 

nsel 78:83r 80:62 51:03r 41:12 54:07r 48:60 49:57r 35:36 

A3 AUC 0:91 0:01 0:50 0:04 0:79 0:01 0:58 0:04 
nsel 80:20 3:96 198:57 1:94 131:53 20:87 142:77 20:22 

A4 AUC 0:87 0:02 0:50 0:03 0:79 0:02 0:59 0:04 
nsel 65:53 5:00 197:17 3:53 77:50 17:43 144:93 19:59 

A5 AUC 0:93 0:01 0:50 0:04 0:81 0:02 0:55 0:04 
nsel 85:27 3:93 197:87 2:80 145:37 27:68 167:93 27:99 

A6 AUC 0:86 0:01 0:49 0:04 0:77 0:02 0:57 0:05 
nsel 74:87 10:26 197:63 2:66 106:27 20:69 147:90 25:73 

R1 AUC 0:99 0:00 0:80 0:10 0:99r 0:00 0:97 0:03 

nsel 4:93r 1:06 98:50 57:89 5:00r 0:97 23:00 21:29 

R2 AUC 0:99 0:00 0:79 0:11 0:99r 0:00 0:99 0:00 

nsel 3:13 0:34 20:13 28:71 3:13r 0:43 3:93 1:39 

R3 AUC 0:99 0:00 0:44 0:27 0:99r 0:00 0:99r 0:00 

nsel 1:00 0:00 69:80 52:54 1:00r 0:00 1:00r 0:00 

R4 AUC 0:95 0:03 0:90 0:09 0:96 0:01 0:99 0:00 
nsel 5:37 4:21 7:83 5:77 5:17r 4:89 2:00 0:00 

Algorithm DecisionTree RandomForest Fisher-score MAD 

Dataset Var x d x d x d x d 

A1 AUC 0:58 0:04 0:74 0:03 0:21 0:05 0:48 0:03 
nsel 195:13 8:07 174:00 21:21 197:07 4:87 199:80 0:40 

A2 AUC 0:51r 0:04 0:52 0:03 0:19 0:04 0:50 0:02 

nsel 62:00r 49:82 61:93r 55:80 57:60r 47:92 42:13 27:41 

A3 AUC 0:56 0:04 0:76 0:02 0:20 0:05 0:46 0:02 
nsel 197:13 3:19 161:40 21:66 197:67 4:56 198:90 1:14 

A4 AUC 0:57 0:03 0:76 0:02 0:22 0:08 0:52 0:02 
nsel 195:37 5:38 80:80 18:67 194:53 7:01 197:40 5:09 

A5 AUC 0:56 0:03 0:74 0:02 0:19 0:06 0:49 0:02 
nsel 196:03 6:13 167:40 22:49 197:70 4:09 198:53 1:61 

A6 AUC 0:57 0:04 0:74 0:03 0:20 0:04 0:50 0:02 
nsel 195:67 6:19 134:33 34:96 196:30 4:38 197:37 4:59 

R1 AUC 0:99r 0:00 0:99r 0:00 0:52 0:05 0:35 0:07 

nsel 4:87 0:88 5:00r 1:03 128:53 7:66 179:00 17:40 

R2 AUC 0:99r 0:00 0:99r 0:00 0:58 0:07 0:40 0:10 

nsel 3:30r 0:64 3:27r 0:51 126:33 16:63 132:53 40:06 

R3 AUC 0:99r 0:00 0:99r 0:00 0:86 0:22 0:64 0:24 

nsel 1:03r 0:18 1:00r 0:00 27:40 46:68 71:00 50:85 

R4 AUC 0:99r 0:00 0:99r 0:00 0:66 0:10 0:00 0:00 

nsel 2:00r 0:00 2:00r 0:00 11:00 32:60 52:83 37:17 

353 



� � � �
� � � �
� � � �
� � � �

� �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� �
� �
� �
� �
� �
� �
� �
� �

J. Linja, J. Hämäläinen, P. Nieminen et al. 

to find the correct feature. We can conclude that MAD does not 
work well with a spiral-like dataset. 

Based on the results, we can conclude that MAS-FS ranked first 
in the test. This confirms its basic utility to be used for feature 
ranking with the distance-based EMLM. Moreover, it should be 
noted that all ranking methods had problems with the YA2 dataset. 
This was expected as it mostly resembles random noise and is the 
most difficult of the synthetic datasets. 

5.2. Comparison of Algorithm1 to reference algorithms with regression 
datasets 

In order to assess the entire FS algorithm given in Algorithm1, 
we compared it to other approaches using publicly available 
regression datasets, which are presented in Section 4.1. Similar to 
experiments in Section 5.1, each dataset had 30 different training/-
validation splits (with validation partition using 33% of the whole 
data). Because the number of reference points has a quadratic 
effect on the computational effort of EMLM, we provide results 
with two reference point percentages for the results presented in 
Appendix B, 65% and 85%, and additionally with 100% for the 
results presented in Appendix C. We were interested in observing 
how much accuracy might be lost with a reduced number of refer-
ence points. 

Results of these experiments are given in Table B.5. MAS-FS was 
included with two reference point percentages. In almost all cases, 
the results between 65% and 85% were close to each other based 
on the Kruskal–Wallis test, the exception being ComputerActivity 
dataset, where the result for 65% was better than it was for 85%. 
This indicates that between the two, the higher reference point 
percentage did not have a meaningful effect on the outcome of 
the FS. This indicates that for the purposes of FS, MAS-FS is robust 
enough that a lower reference point percentage is recommended. 
This is also because the lower reference point percentage requires 
fewer computations. We point out that this conclusion is given in 
the context of FS: after selecting the final feature set, the portion of 
reference points for the corresponding EMLM model can be 
selected independently. MAS-FS had either the best RMSE value 
or was close to the best RMSE value based on the Kruskal–Wallis 
test in four datasets out of five, thus coming out on top of the 
tested FS methods. Altogether, MAS-FS was the best or statistically 
equally good as the best in 3/5 cases. RF had the best value or was 
statistically similar to the best value in two datasets out of five. 
Lasso did not receive the best RMSE values, but it is noteworthy 
that Lasso had the lowest standard deviation in the RMSE values 
in four datasets out of five, indicating that it was the most consis-
tent of the tested FS methods. Of the tested methods, no other clear 
noteworthy results were gained. 

5.3. Algorithm1 with FNN on synthetic and regression datasets 

Next we conclude the experiments where FNN and the corre-
sponding feature sensitivity formula were used in Algorithm1. This 
simply means that the EMLM and the FI formula in Steps 1 and 2 
of Algorithm 1 were replaced with the FNNs as defined in Sec-
tion 4.4 and the sensitivity formula given in (6). Each dataset had 
30 different training/validation splits (with validation partition 
using 33% of the whole data). The results of these experiments 
are given in Tables C.6 and C.7. As can be seen from Table C.6 
and Table C.7, the mean RMSE validation errors (e in tables) indi-
cates that the EMLM-based MAS-FS is able to achieve lower errors 
than either of the tested FNN version. Another noteworthy obser-
vation, although expected, is that the deeper model FNN-4 
achieves better accuracy than FNN-2 in all cases. We can also point 
out that the result for FNN-4 begins to approach the result for 
EMLM with Census dataset. From the data-driven model construc-
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tion perspective, use of FNN and EMLM have significant differences. 
Whereas selection of the portion of reference points is sufficient for 
EMLM, with FNN one could tune the number of epochs and the size 
of batches per epoc in training, the number of hidden layers, the 
number of neurons in each layer, the activation function in each 
neuron etc. In addition, EMLM is fully deterministic but FNN is 
not and may require multiple training rounds in the hopes of 
improving the model. Thus, we assume that the FNN results could 
be improved by significantly increasing the amount of time used in 
hyperparameter optimization and assessing different models. 
However, these results show that the feature sensitivity based FS 
can be generalized to completely different models compared to 
the kernel-like EMLM and that the generalization capability of 
the EMLM-MAS-FS algorithm compared to FNN-based versions is 
promising. 

5.4. Comparison of Algorithm 1 to reference algorithms with 
classification datasets 

For our last experiment, we compared the MAS-FS-based FS to 
the available implementation of RF for a regression task. Similar 
to experiments in Section 5.1, each dataset had 30 different train-
ing/validation splits (with validation partition using 33% of the 
whole data). Some of the classification datasets came with their 
own validation dataset. For these, the provided validation dataset 
was first combined with the rest of the data and then split into 
train/validation sets as was done with the other datasets. 

The results for the mean RMSE validation error are given in 
Table D.8. The table contains results for three different reference 
point percentages for MAS-FS, as  RF does not have the same 

Table B.5 
Comparison of MAS-FS to reference ML models using regression datasets. Header e 
denotes the mean validation error calculated with RMSE and header d its standard 
deviation. Best mean validation error per dataset has been marked with bold text. 
Results where the population median is the same as for the best mean value (Kruskal– 
Wallis H test) are marked with r. 

Dataset ATP1D RF2 

Algorithm e d e d 

MAS-FS, 65% 9:42e 2 4:02e 3 7:70e 2r 6:21e 3 

MAS-FS, 85% 9:40e 2 4:40e 3 7:68e 2 6:17e 3 
DecisionTree 8:65e 2 2:28e 3 1:16e 1 1:45e 2 
Lasso 1:06e 1 1:00e 4 1:76e 1 3:62e 3 
LinearRegression 5:13e2 2:76e3 4:39e 1 1:07e 1 
RandomForest 5:97e 2 1:33e 3 8:10e 2 6:42e 3 
Ridge Regression 8:55e 2 5:63e 4 8:80e 2 7:55e 3 
SVM 7:67e 2 7:58e 4 9:25e 2 5:06e 3 

Dataset SCM1D ComputerActivity 

Algorithm e d e d 

MAS-FS, 65% 3:32e 3r 3:45e 4 2:69e 2 3:41e 3 

MAS-FS, 85% 3:29e 3 3:51e 4 3:33e 2 1:28e 2 
DecisionTree 1:12e 2 3:62e 3 3:74e 2 2:09e 3 
Lasso 2:09e 1 1:16e 4 1:86e 1 3:80e 5 
LinearRegression 1:79e 2 1:14e 3 9:80e 2 3:07e 3 
RandomForest 7:84e 3 2:26e 3 2:53e 2 9:24e 4 
Ridge Regression 2:27e 2 6:58e 4 9:80e 2 2:20e 3 
SVM 5:29e 2 6:98e 4 4:76e 2 2:00e 3 
Dataset Census 

Algorithm e d 

MAS-FS, 65% 3:70e 2r 1:27e 3 

MAS-FS, 85% 3:64e 2 1:35e 3 
DecisionTree 5:64e 2 1:97e 3 
Lasso 1:46e 1 1:07e 3 
LinearRegression 5:05e 2 1:07e 3 
RandomForest 4:00e 2 1:17e 3 
Ridge Regression 4:94e 2 1:07e 3 
SVM 5:20e 2 1:02e 3 
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parametrization, it has one result per dataset. Additionally for the same conclusion as was made with MAS-FS in Section 5.2. 
MAS-FS, we show the remaining number of features after FS as a The dataset properties as well as the number of observations, fea-
percentage as well as the standard deviation for it. Of the eight tures, and unique features do not provide indications on whether 
classification datasets, MAS-FS has the best RMSE error in five there is a pattern to the observed differences in terms of the mean 
cases. In general, the three different reference point percentages validation errors between MAS-FS and RF. The type of the input (in-
for MAS-FS produced similar mean validation errors, leading to teger/float) did not provide any insight either. Thus, n% was added 

Table C.6 
Comparison of FNN-based ranking to EMLM-based ranking using regression datasets. Header e denotes the mean validation error calculated with RMSE and header d its standard 
deviation. Best mean value per dataset has been marked with bold text. Results where the population median is the same as for the best mean value (Kruskal–Wallis H test) are 
marked with r. 

EMLM 85% FNN-2 FNN-4 

Dataset 

A1 
A2 
A3 
A4 
A5 
A6 
R1 
R2 
R3 
R4 

e 

4:51e 
8:48e 
4:14e 
5:75e 
4:52e 
5:57e 
7:42e 
6:63e 
1:59e 
1:53e 

2 
2 
2 
2 
2 
2 
2 
2 
1 
1 

d 

1:20e 
2:84e 
8:96e 
4:49e 
1:07e 
7:14e 
6:45e 
8:77e 
3:69e 
3:03e 

2 
3 
3 
3 
2 
3 
3 
3 
3 
3 

e 

1:91e 
1:84e 
1:84e 
1:84e 
1:91e 
1:93e 
1:93e 
1:83e 
2:26e 
2:20e 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

d 

2:82e 
2:16e 
2:06e 
2:45e 
3:20e 
2:61e 
2:86e 
2:33e 
1:94e 
1:99e 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

e 

1:10e 
1:04e 
1:05e 
1:08e 
1:14e 
1:07e 
1:06e 
1:07e 
1:67e 
1:65e 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

d 

1:52e 
1:31e 
1:52e 
1:64e 
1:41e 
1:43e 
1:16e 
1:26e 
9:23e 
9:55e 

2 
2 
2 
2 
2 
2 
2 
2 
3 
3 

Table C.7 
Comparison of FNN-based ranking to EMLM-based ranking using regression datasets. Header e denotes the mean validation error calculated with RMSE and header d its standard 
deviation. Best mean value per dataset has been marked with bold text. Results where the population median is the same as for the best mean value (Kruskal–Wallis H test) are 
marked with r. 

EMLM 85% FNN-2 FNN-4 

Dataset e d e d e d 

ATP1D 
RF2 
SCM1D 
ComputerActivity 
Census 

3:85e 
1:71e 
1:78e 
1:45e 
3:56e 

2 
3 
2 
2 
2 

2:98e 
2:34e 
6:22e 
3:78e 
4:64e 

3 
4 
4 
3 
3 

2:31e 
5:06e 
3:35e 
1:49e 
5:16e 

1 
2 
2 
1 
2 

8:65e 
1:50e 
3:65e 
3:84e 
4:81e 

2 
2 
3 
2 
3 

1:52e 
2:38e 
2:95e 
8:99e 
4:86e 

1 
2 
2 
2 
2 

6:78e 
4:32e 
1:68e 
2:31e 
4:35e 

2 
3 
3 
2 
3 

Table D.8 
Results of the comparison between MAS-FS and RF. The same notations from the tables above are used with the addition of n% (percentage of features remaining after FS) and dn% 

(standard deviation for n%). 

Algorithm MAS-FS RandomForest 

Dataset RefP e d n% dn% e d 

StudentTest 65 

85 

100 

6:55e 

6:56e 
6:48e 

2r 

2r 

2 

8:74e 

8:31e 

7:31e 

3  

3  

3  

47% 

43% 

41% 

9% 

7% 

5% 

7:19e 

-

-

2 7:44e 

-

-

3 

COIL 65 
85 
100 

7:67e 
7:53e 
7:46e 

2 
2 
2 

3:10e 
3:37e 
3:22e 

3 
3 
3 

57% 
59% 
57% 

10% 
13% 
10% 

7:30e 
-
-

2 3:23e 
-
-

3 

Madelon 65 
85 
100 

5:18e 
5:18e 
5:19e 

1 
1 
1 

4:81e 
5:18e 
5:32e 

3  
3  
3  

88% 
89% 
87% 

5% 
6% 
6% 

3:94e 
-
-

1 5:78e 
-
-

3 

Outdoor 65 
85 
100 

9:52e 
8:84e 
8:90e 

2 
2 
2 

8:24e 
8:59e 
7:70e 

3 
3 
3 

66% 
70% 
65% 

17% 
18% 
20% 

1:06e 
-
-

1 4:97e 
-
-

3 

OptDigits 65 
85 

100 

8:10e 

7:93e 
7:88e 

2 

2r 

2 

1:74e 
1:89e 

1:82e 

3  
3  

3  

91% 
91% 

91% 

5% 
5% 

5% 

1:05e 
-

-

1 3:93e 
-

-

3 

ThyroidAnn 65 
85 
100 

1:00e 
1:00e 
1:00e 

1 
1 
1 

4:69e 
4:68e 
4:67e 

3  
3  
3  

10% 
10% 
10% 

0% 
0% 
0% 

3:93e 
-
-

2 6:25e 
-
-

3 

SatImage 65 

85 

100 

1:04e 

1:03e 
1:03e 

1r 

1r 

1 

3:10e 

3:57e 

4:00e 

3 

3 

3 

70% 

70% 

71% 

20% 

19% 

18% 

1:14e 

-

-

1 3:71e 

-

-

3 

COIL2000 65 
85 
100 

2:58e 
2:65e 
2:71e 

1 
1 
1 

4:41e 
6:28e 
4:83e 

3  
3  
3  

83% 
77% 
82% 

26% 
31% 
27% 

2:61e 
-
-

1 3:32e 
-
-

3 
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in a bid to provide an explanation for the results, but a clear corre-
lation was not found. However, as some of the results indicate (see 
Madelon), the kneepoint detection algorithm Kneedle can behave 
conservatively, leaving a large set of features to the obtained 
model. This suggests that, in some cases, it could be beneficial to 
repeat the algorithm to the once-reduced feature set. On the other 
hand, this works to the strengths of the distance-based EMLM 
since it is robust and is capable of handling extra features without 
a loss of accuracy. 

5.5. Summary of the experimental results 

Here we discuss the experimental results as a whole. Overall, 
our proposed FS algorithm performed well. On a more specific 
note, the feature ranking component in MAS-FS was able to deter-
mine the feature importance rather accurately, which then allowed 
the kneepoint detection algorithm to perform the actual FS. In the 
extensive experimental comparison, it was shown that the pro-
posed method was better than the RF with both regression and 
classification datasets. Moreover, MAS-FS with EMLM can deter-
mine the scores and rankings of features for both the original, full 
set of features as well as the final, selected feature subset. 

Of the synthetic datasets, YA2 was the most problematic for all 
tested feature ranking algorithms, which we expected due to 
how the dataset is formed. Further, the AUROC-score revealed that 
except for the Fisher-score, the features in YA2 were basically 
selected randomly. For the YA1 YA6 datasets, the AUROC values 
for the Fisher-score are below 0:25, implying that reversing the fea-
ture ranking would improve performance. 

We included two versions of our algorithm for the regression 
dataset tests, for which we used two different reference point per-
centages and three versions for the classification dataset tests. 
Based on the results, that show that the performance between 
the reference point percentages was so similar, we recommend 
using 65% for feature ranking and selection as it is computationally 
lighter than 85%. After the ranking process, we recommend select-
ing as high a reference point percentage as possible due to the ten-
dency of EMLM to not overlearn [4]. The comparison between MAS-
FS using EMLM vs. FNN provided the knowledge that using our 
MAS-FS algorithm performs better with EMLM at its core at similar 
levels of researcher setup. 

6. Conclusions 

In FS, filters are used due to their speed and simplicity even if 
they often do not possess the best possible accuracy. Meanwhile, 
wrappers are used for their accuracy, but they require a search 
component that makes them slow and computationally expensive. 
A common practice is to combine the two by first applying a filter 
to quickly reduce the workload and then finishing with a wrapper. 
Our FS algorithm is a wrapper since it uses the distance-based 
model of EMLM, but it is a wrapper without a search component. 
This makes our algorithm simple, straightforward, and efficient. 
Since there is no search component, there is no iterative compo-
nent either, implying that the feature importance scoring is con-
ducted using a one-shot procedure. 

We discovered that regression benchmark datasets for FS (espe-
cially with the ground truth features) are rarely available in the lit-
erature. Therefore, we presented a group of synthetic datasets 
(YA1 YA6), which were designed to have easily understandable 
relations between the feature importances. This allows them to 
function as a sanity check for a FS algorithm and as an assurance 
that the algorithm works properly. Moreover, the availability of 
ground truth features allows for the usage of feature ranking based 
performance measures. Indeed, current literature seldom discusses 
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FS in the regression context and has not discussed it in relation to 
distance-based ML models. We have positioned our umbrella 
review to provide a thorough background into the topic of this 
paper. 

This paper proposed a new FS approach for a distance-based 
supervised machine learning model referred to as the EMLM. Sub-
sequently, we evaluated the proposed method with an extensive 
set of synthetic and real datasets and compared it to popular 
approaches. In addition, we presented a thorough umbrella review, 
which is the first, on the topic of FS. 

Our experimental results for a representative set of synthetic 
datasets showed that the regression model sensitivity-based fea-
ture importance scoring outperformed other methods in terms of 
feature ranking quality. Further, the proposed method can identify 
underlying non-linear, input–output data relations hidden in a 
large set of noisy features. The experimental results for the real 
datasets also showed that the proposed one-shot wrapper 
approach, which straightforwardly utilizes the model’s 
sensitivity-based feature ranking outperformed (although with a 
slight margin) the popular methods like the RF. 

In order to adapt the proposed FS method to other machine 
learning models, we derived a general MAS-FS formula for those 
FNN architectures which are differentiable with respect to fea-
tures. We performed an experimental comparison with two off-
the-shelf DL architectures, which demonstrated the adaptability 
of the proposed FS approach. However, the experimental results 
showed that the distance-based method with the one-shot wrap-
per outperformed these DL architectures. These results indicate 
that the DL architectures require more fine-tuning of parameters 
and data to obtain the same level of accuracy as this distance-
based method. 

As for future work, a natural extension of our study would be 
the application of the FS techniques to reduce features from the 
distance regression model in the first phase of the MLM [1,79]. 
Similarly, the encouraging initial assessment of MAS-based feature 
scoring and ranking for classification tasks, as given in [86], is to be  
extended to the full FS framework along the lines of this article. 
This is a prime example of a multi-output problem [105] where 
use of the MAS technique can produce individual sensitivities for 
each output variable. This would then allow for the usage of dedi-
cated and different feature subsets for each output. 
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Appendix A. Comparison of feature ranking algorithms 

See Table A.4. 

Appendix B. MAS-FS comparison to reference methods 

See Table B.5. 

Appendix C. EMLM-MAS-FS comparison to FNN-MAS-FS 

See Tables C.6 and C.7. 

Appendix D. Tests with classification datasets 

See Table D.8. 
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Abstract 

Molecular-level understanding of the interactions between the constituents 
of an atomic structure is essential for designing novel materials in various 
applications. This need goes beyond the basic knowledge of the number 
and types of atoms, their chemical composition, and the character of the 
chemical interactions. The bigger picture takes place on the quantum level 
which can be addressed by using the Density-functional theory (DFT). Use 
of DFT, however, is a computationally taxing process, and its results do 
not readily provide easily interpretable insight into the atomic interactions 
which would be useful information in material design. An alternative 
way to address atomic interactions is to use an interpretable machine 
learning approach, where a predictive DFT surrogate is constructed and 
analyzed. The purpose of this paper is to propose such a procedure 
using a modification of the recently published interpretable distance-based 
regression method. Our tests with a representative benchmark set of 
molecules and a complex hybrid nanoparticle confirm the viability and 
usefulness of the proposed approach. 

Introduction 

Machine learning (ML) has a potential to provide novel insights into quantum-
mechanical properties of atomic systems [1]. Better availability of ML methods 
influences natural sciences in general, by improving material design and charac-
terization, and through accelerating ab initio simulations [2, 3]. As stated in [4], 
“the synergistic application of machine learning and traditional atomistic model-
ing continues to serve as an accelerator of discovery”. Density-functional theory 
(DFT) is one of the most commonly used methods to simulate the electronic struc-
ture of matter. Even if it requires significant amounts of computational power, it 
is still more efficient than, for example, Hartree-Fock or Quantum Monte Carlo 
methods. Hence, it is able the generate enough data to enable the use of ML to 
better understand the properties and dependencies of molecular systems, and 
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to augment and integrate both simulation-based and experimental studies [5]. 
Especially in DFT-based computational materials science with applications like 
materials discovery, drug design, renewable energy, and catalysis, the emergence 
of the data-driven science paradigm has provided great improvements [6]. 

DFT provides an accurate physics-based calculator able to solve the electronic 
structure of a molecule or a nanoparticle. DFT is, however, computationally 
taxing, which is why there have been numerous studies which attempt to form a 
surrogate of the DFT calculator using machine learning models [7, 8, 9, 10, 11, 
12, 13, 14, 15]. Construction of a data-driven surrogate model is done through 
the use of a descriptor. Depending on the descriptor, the number of features 
it provides ranges from tens to thousands [2, 3, 16, 17]. In addition to being 
mere surrogates to taxing computations, such datasets of descriptive features 
generated from atomic configurations can provide a fertile ground to explore 
the possibilities of automated methods that weigh and compare the necessity 
and relative importance of each of the descriptive features with respect to the 
physical behavior of materials. 

Knowledge discovery, in general, is a stepwise process comprising data gen-
eration and selection, model or pattern construction, and interpretation of the 
constructed model to provide knowledge useful in an application area [18, 19]. 
In this paper, we examine data of atomic structures generated using DFT and 
descriptors. We then construct a regression model that predicts DFT energies 
from the descriptors. Finally, useful knowledge regarding atomic interactions 
comes from examining feature importance scores that are obtained using our 
proposed algorithm. 

Interpretable machine learning is a field of research, where improved un-
derstanding of the working logic of machine learning models and algorithms 
is addressed and advanced [20]. This can be done in a model-agnostic (MA) 
or model-specific (MS) way, where the former refers to the use of separate 
explanation techniques and the latter means direct interpretation of the actual 
model [21]. An example of a model-agnostic approach to better understand gold 
nanocluster synthesis was given in [22], where the decision tree technique was 
used to extract rule-based knowledge from a graph convolutional neural network 
model. Indeed, the MA approach might be the only possible one if we are using 
completely black box models and algorithms provided as components or services, 
whereas the MS approach is viable if we can access and analyze the ML model 
itself. If applicable, the MS interpretation can be more transparent and accurate, 
thus providing more potential for novel insight and new discoveries [23]. 

A popular technique for interpreting an ML surrogate is the post-hoc investiga-
tion of the saliency of features, i.e., evaluation of feature importances [21, 24, 25]. 
This technique is behind the most well-known MA techniques like LIME and 
SHAP [26, 27]. For the distance-based learning machines proposed in [28, 29, 30], 
the model-specific feature importance formulation Mean-Absolute-Sensitivity 
(MAS) was proposed and thoroughly experimented in [31]. Indeed, these distance-
based methods can be used to construct deterministic and accurate regression 
models for general and atomic datasets, which scale to high-dimensional feature 
and target spaces, are tolerant against noisy and irrelevant features, have theo-
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retical guarantees through the universal approximation results, and can provide 
better generalization results compared to off-the-shelf deep neural networks 
[12, 29, 30, 31, 32]. Furthermore, as noted in [31], calculation of feature scores 
to represent their importances can be seen as two sides of the same coin: one to 
select features and the other to perform knowledge discovery. 

In this paper, we examine two different kinds of atomic structures: molecules 
and a protected metal nanocluster. We study the output of the Many-body Tensor 
Representation (MBTR) descriptor through the use of a distance-based feature 
selection algorithm, showing that features can be removed while simultaneously 
providing information on the studied atomic structures as described by the 
descriptor. 

The purpose of this article is three-fold: 

i) we extend our earlier feature selection method by proposing a new rule to 
determine the most important feature scores; 

ii) we extend the comparative assessment of the MAS-based method from [31] 
by considering new datasets; 

iii) we provide a proof-of-concept on how the developed feature scoring and 
ranking method can be used to extract novel knowledge from atomic 
structures like molecules and hybrid nanoparticles. 

To reach these goals, we employ a representative set of atomic structures arising 
from benchmark molecular datasets and one particular hybrid nanoparticle 
dataset, which serve both as validation data of the proposed approach and as 
the proof-of-concept in the atomic structure realm. 

The main contributions of this paper are the proposed feature selection 
algorithm and the showcase of applying it to data from atomic structures and 
analysis of the results. The analysis reveals that the algorithm is able to detect 
the most meaningful features, which agree with chemical intuition, from the vast 
amount of information encoded into MBTR. These features are directly related 
to the bonding nature of the systems, thus they could be used to distinguish 
specific characteristics of the molecules, nanoparticles or other atomic systems. 

In Section 2 we describe the theoretical background and present the proposed 
feature selection algorithm. Section 3 presents the datasets and experimental 
setup. This is followed by the results in Section 4. Finally, the paper is concluded 
in Section 5. 

Methods 

In this section, we provide the relevant information on the existing and new 
methods used in the experiments. We consider the regression problem, where 
it is assumed that, for a set of N atomic structures {Ai}Ni=1, their potential 
energies have been calculated using DFT. This desired regression output data 
for a surrogate is denoted with {yi}N 

i=1. 
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2.1 Descriptors and Many-body Tensor Representation 

Descriptors are a way to translate an atomic structure into a format understood 
by a machine learning model [33]. For a descriptor to be functional, it needs to 
be invariant to the translation and rotation of the described system as well as 
to the permutations of atom listing [34]. It also needs to be unique for a given 
structure and continuous, as the descriptor should be able to capture even the 
smallest changes of the compounds [34]. 

Descriptors are divided into two main categories, local descriptors and global 
descriptors [33]. Local descriptors focus on describing the environment of a 
single atom, whereas global descriptors simultaneously describe the entire atomic 
structure. Another way to categorize descriptors is whether or not they are able 
to handle periodic environments [34]. 

Musil et al. [33] presented the families of descriptors as atom density fields, 
potential fields, symmetrized local fields, atom centered distributions, sharp and 
smooth density correlation features, internal coordinates, atomic symmetry func-
tions, permutation invariant polynomials, distance histograms, sorted distances, 
sorted eigenvalues and molecular graphs. The focus in this paper is on a global, 
non-periodic (in this case), distance histogram-family descriptor. 

Many Body Tensor Representation (MBTR) by Huo et al. [35] is a global 
descriptor, which relies on Gaussian broadened geometric properties (distances 
and angles) grouped according to the atomic numbers. It is invariant with 
respect to translations, rotations, and permutations, which are crucial properties 
of a descriptor. Without these properties, for example, the indexing of atoms in 
an atomic system has an effect on the training of the model. 

MBTR has description settings known as ”k1”, ”k2”, and ”k3” which refer 
to the level of details taken into account in the atomic interactions. The 
representation is based on the following density distributions as presented by 
Himanen et al in [34] (with Z denoting an atomic number): 

• k1: the number of elements, 

|Z1|� 
FZ1 wl Dl(x) =  1(x), where1 1 

l 

(x−g1(Zl))
2 

2σ2 
1D1 

l (x) =  √ 
1 

e 
− 

,
σ1 2π 

g1(Zl) =  Zl, the atomic number, 
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• k2: inverse distances between each element pair, 

|Z1| |Z2|�� 
FZ1,Z2 l,mDl,m (x) =  w (x), where2 2 2 

l m 

(x−g2(Rl,Rm))2 
1 −

Dl,m 2σ2
(x) =  √ e 2 ,2 

σ2 2π 

g2(Rl, Rm) =  
1 

, and  |Rl − Rm| 

• k3: angle between each element triple, 

|Z1| |Z2| |Z3|��� 
Z1,Z2,Z3 l,m,nDl,m,n F (x) =  w (x), where3 3 3 

l m n 
2(x−g3(Rl,Rm,Rn))

Dl,m,n(x) =  √ 
1 

e 
− 

2σ3
2 

,3 
σ3 2π 

g3(Rl, Rm, Rn) = cos  ∠ (Rl − Rm, Rn − Rm) . 

Here Ri denotes the position of an atom i. The weighting functions wk can be 
used to prioritize features if desired [34]. In the context of this paper, w1 = 1 and, 
for w2 and w3, we used the exponential weighting functions which are the default 
settings given by the DScribe implementation of MBTR [34]. The described 

Z1,Z2 Z1,Z2,Z3three feature sets can be expressed together as F1,2,3 = FZ1 , F , F .1 2 3 
The column vector F1,2,3 forms the descriptor used in this paper. Put together, 
F1,2,3 forms high-dimensional data. Ranging from 1100 features to 5400 features 
with the used datasets. 

0.4 

0.3 

0.2 

0.1 

0.0 

� �

Figure 1: Example of an MBTR descriptor (k1+k2+k3) for Benzene. Each 
individual atomic interaction is labeled and given dashed vertical lines as borders. 
The first two, #H and #C, represent k1, the following three (H-H, H-C, and 
C-C) represent k2, and the remaining interactions represent k3. 
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Used together, F1,2,3 describes the number of atoms in an atomic structure, 
their distances to each other and the angles between them, forming an extensive 
description of the structure. This description can then be used to study both 
feature selection and feature importance-based knowledge discovery. In Figure 1, 
we provide an example of using MBTR with the dataset Benzene (presented in 
Section 3.1), including also a visualization of the molecule. The x-axis in the 
figure groups together the different interaction types as presented by the MBTR 
and the y-axis depicts mean MBTR: mean over the observations of the whole 
Benzene dataset. The interaction C-C-C has been highlighted in red in Figure 1. 
This interaction is taken as an example of how the descriptor is formed. All 
possible angles between carbon atoms have been marked with red lines and angle 
notations in the inset molecule image of Figure 1. For each descriptor, these 
angles are calculated for each carbon atom individually, and the combination 
then forms the C-C-C line highlighted with red. The way to read the notation is 
that if we were to have an angle A-B-C between atoms A, B and C, it would 
read as the angle between vectors B-A and B-C. 

2.2 Extreme Minimal Learning Machine 

Extreme Minimal Learning Machine (EMLM) is a distance-based machine learn-
ing model proposed by Kärkkäinen in 2019 [29]. EMLM is a combination of 
Extreme Learning Machine (ELM) [36, 37] and Minimal Learning Machine 
(MLM) [28, 30], combining the distance-based feature map of MLM to the way 
a regularized least-squares problem is solved in ELM. EMLM works by first 
constructing a distance matrix 

(H)ij = ||ri − xj ||2, i  = 1, . . . ,m; j = 1, . . . , N,  (1) 

between observations xj and a set of reference points ri. Here the reference points 
R = {ri}m are selected from the given set of N observations X = {xi}Ni=1, i.e.i=1 
R ⊆ X, and this selection procedure includes the only metaparameter of the 
method: number of reference points m. A full EMLM would use all observations 
as reference points (providing a parameter-free method) but a typical choice 
would be to apply a strategy, such as RS-maximin, which enables a smaller 
number of reference points to cover the X in a representative manner [38, 30]. 

In training of EMLM, the weights W are calculated using the distance matrix 
H, similarly to the classical ridge regression formula in linear regression: �   

W HHT + 
αN

I = yHT , (2)
m 

where y is the vector of DFT-outputs and αN I the least-squares (ridge regression) m√ 
regularization term. In the equation, α = where refers to machine epsilon. 
After the weights W have been obtained from (2), the model’s prediction of 
a new input vector x̃ is calculated by forming the distance matrix between 
the reference points and x̃ according to (1) and then multiplying this with the 
weights. 
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The strength of EMLM and other such distance-based models lies in their 
simplicity of use and robustness. Most importantly, a large and versatile pool of 
experiments confirm their repeated tendency not to overlearn [29, 30, 32, 12, 31]. 
From the DFT-surrogate construction perspective, this makes these techniques 
very different from the popular deep learning methods, which require tedious 
and extensive selection, tuning, and testing of architecture and metaparameters 
to manage model complexity and to prevent overlearning [39, 40]. 

2.3 Feature scoring methods 

The more complex a measured phenomenon is, the more features are usually 
required for a surrogate. Events in real world are quite often complex, with 
many variables. This produces datasets with large numbers of features. However, 
the assumption is that not all of the measured variables produce features which 
are actually necessary. 

Kohavi and John presented definitions for strong and weak relevance in [41], 
and noted that the relevance of a feature may not be directly correlated with the 
optimality of the feature (which clearly is related to what kind of data-driven 
model is to be constructed). Feature selection algorithms rely on feature scoring 
in order to assess their relevance or importance. Based on how the scores and/or 
determination of feature importances is realized, the actual feature selection 
algorithms can be divided into three main categories: i) Filters execute a rule 
by which they select a feature subset without data-driven model construction. 
ii) Wrappers, which use the machine learning model to assess the importance of 
features. and iii) Hybrids, which are in one way or another a combination of a 
filter and a wrapper (like decision trees and random forest). 

Based on the extensive experiments presented in [31], only the best two 
feature scoring, ranking, and selection algorithms are used and experimented 
further in this paper: Mean Absolute Sensitivity and Spearman R. 

Feature scoring using Mean Absolute Sensitivity 

The partial derivative of a neural network’s output with respect to its input to 
measure the input sensitivity was proposed in [42]. This technique was enlarged 
to feature selection in [43]. In order to generate an image-specific saliency 
map for visual interpretation of a convolutional neural network classifier, the 
input-output sensitivity was independently rediscovered and proposed in [44]. 

Formally, as depicted in [45], the derivative of a data-driven model M with 
respect to its features ∂M to assess feature importances emerges from the classical ∂x 
Taylor’s formula. Explicit formulae for the distance-based EMLM and also for 
a deep, feedforward neural network to calculate a model’s derivatives for an 
observation were given in [31]. Such calculation provides a pointwise information 
so that in order to assess the global importance, one can take mean of the 
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absolute sensitivities (MAS) over the data [43]: 

� � �1 
N � ∂M � � �MAS  = . (3) � �N ∂xii=1 

The actual formulae for the EMLM, for x̃ = xi were given in [31]: 

∂M ri − x̃ 
= WDT , where di = , i  = 1, . . . ,m.  (4)

∂x̃ max(α, ri − x̃ ) 

MAS can be calculated for any data-driven model which can be differentiated 
with respect to its features. For regression problems, the calculated MAS value 
of a feature estimates its importance in the construction of model M compared 
to other features, allowing thus MAS to function as a straightforward score for 
ranking and knowledge discovery purposes. 

Correlation-based feature scoring using Spearman R 

The premise of correlation-based feature assessment is that features can be 
ranked according to their correlation to the output, especially in regression 
problems [46]. A feature may be positively or negatively correlated, or neutral 
in respect of the output [47]. In general, features can be categorized into having 
a strong relevance or a weak relevance [41]. 

Spearman rank correlation coefficient is a statistical method, which is a 
non-parametric way to calculate the correlation between two groups of data [48]. 
In addition, Spearman R does not assume any distributions, which is important 
since a dataset cannot be expected to have normal distribution. The classical 
formula, for the correlation coefficient vector  , reads  as  �N 

(xi − x̄)(yi − ȳ)
 = � i=1 . �N �N

(xi − x̄)2 (yi − ȳ)2 
i=1 i=1 

Note that if no preprocessing is assumed then, similarly to (4), the denominator 
of the correlation should be safeguarded against the case of a constant feature. 

2.4 The developed algorithm 

The proposed feature scoring, ranking, selection algorithm is an extension on the 
idea of the one-shot wrapper presented by Linja et al. in [31]. The development 
was started by the discovery that there are cases when the features of a dataset 
are ranked and sorted, the curve formed by the ranking values is not suitable for 
a kneepoint detection. The problematic situation is illustrated in Figure 2. 

The proposed algorithm aims to fix the issue by calculating the slope of each 
line between the highest ranking value and the other ranking values. It then 
performs a curve fit to the slope values and uses the fitted curve to determine 
the selected features. The algorithm is presented in Algorithm 1. It’s function is 
illustrated in Figure 3. 
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Figure 2: The ranking values of Au38 data calculated with MAS and with 
Spearman R as well as the next step of the proposed feature selection algorithm 
to point out that the shape of the ranking values produces similar curve in both 
cases 

Figure 3: Illustration of the function of the proposed feature selection algorithm 

Figure 3 uses  the Au38 dataset as an example, showing the ranking values 
of features of MBTR k2 as calculated by MAS and set to descending order in 
subfigure 1. It also shows the validation errors of the model as well as the final 
cutoff point given by the last step in subfigure 4. Subfigure 2 shows the bound 
rolling slope which forms the curve in subfigure 3. Finally, subfigure 4 shows a 
curve fit of the curve in subfigure 3 and the cutoff point. 
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Algorithm 1 Feature Importance Detector - FID 

Input: Input data {xj ∈ Rn | j = 1, . . . , N}, target data {yj ∈ R | j = 1, . . . , N}, 
cutoff value {k ∈ R | 0 < k <  1}

Output: Feature score vector v, Ranking permutation p, and indices of the 
most important features F 

1: Score the n features of the input data by using a feature scoring algorithm 
—here Spearman R or MAS 

2: Sort the feature scoring values {vi}n into descending order and keep i=1 
permutation function p(i) which allows to return from sorted indices to 
original ones 

vi−v13: Calculate a slope value for each feature: si = , i  = 2, . . . , ni−1 
a4: Estimate a, b, c, d ∈ R by fitting the curve C(i) =  − + d to the points bi+c {si}

5: Define total increase of C(i) denoted as C∗ = C(n) − C(1) 
6: Return feature set F = {p(i) | C(i) < C(n) − k C∗, i  = 1, . . . , n} 
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3 Experimental Setting 

3.1 Datasets 

In this study, we used the following datasets of the atomic structures: all 
benchmark data from sGDML (Symmetric Gradient Domain Machine Learning) 
[49, 1, 50] and the hybrid nanoparticle dataset Au38QT, which originates from 
the simulations by Juarez-Mosqueda et al. [51]. Among the used datasets, 
Au38QT is of special interest because of its higher complexity and due to the 
interest nanoscience community and machine learning community are giving to 
nanoclusters, as well as our own interest in it [12, 32]. Its structure was first 
found experimentally by Qian et al in 2010 and an isomer for it was found by 
Tian et al in 2015 [52, 53]. As a monolayer protected cluster (MPC), it holds 
high levels of potential applications, such as biolabeling, catalysis, medicine, 
solar energy and display panels [54]. 

The datasets are presented in Table 1. Example images of the molecule or 
cluster of each dataset is presented in Appendix A. Each dataset is based on 
either a real–world molecule or a nanoparticle. The observations in each have 
been gained by simulating the atomic object in DFT-based molecular dynamics 
simulation. The target variable in each dataset is the potential energy of an 
observations configuration. 

3.2 Experimental setup 

In the molecular dynamics simulation data, each atom configuration was con-
verted into a set of descriptors using MBTR (k1+k2+k3). Using all three types 
of MBTR descriptors produces a vector which describes the elements, distances 
and angles of each atom configuration. Each dataset was split into subsets 
according to their target variable using distribution-optimal folding, DOP-SCV 
[55, 56]. The number of subsets was set to be 5 for datasets with less than 250000 
observations and 10 for the rest. For each subset, constant features and duplicate 
observations were removed. In addition, each subset was minmax-scaled to the 
interval [0, 1]. Then, the feature importance detection algorithm, Algorithm 1, 
was performed on each data subset. The following variables were measured: 

• baseline validation RMSE of a data subset, 

• the same after feature selection has reduced the number of features in the 
subset and 

• whether or not a feature was selected and if removed, the point in the 
algorithm when it was removed. 

In order to focus the experiments on model’s generalization instead of its scal-
ability, We performed cross-validation in reverse fashion, such that one subset 
was used as a training set and the rest of the subsets as validation sets. The 
RMSE error was calculated in electron volts (eV). 
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Table 1: Datasets used in this study. The number of features is determined by 
the used descriptor, described in Section 2.1 and Section 3.2. 

Dataset # Observations # Features # Elements 
Au38QT 28761 5400 H72,C24,S24,Au38 
Benzene2018 49863 1100 H6,C6 
DocosahexaenoicAcid 69753 2700 H32,C22,O2 
AlanineTetrapeptide 85109 5400 H22,C12,N4,O4 
Azobenzene 99999 2700 H10,C12,N2 
Paracetamol 106490 5400 H9,C8,N1,O2 
Uracil 133770 5400 H4,C4,N2,O2 
Aspirin 211762 2700 H8,C9,O4 
Salicylic Acid 320231 2700 H6,C7,O3 
Naphthalene 326250 1100 H8,C10 
Toluene 442790 1100 H8,C7 
Ethanol 555092 2700 H6,C2,O1 

We evaluated the feature selection capability of Algorithm 1 using two 
different feature scoring algorithms, MAS and Spearman R, and three different 
cutoff values: 10−1, 10−2 and 10−3 . In addition, we extracted information from 
MBTR regarding the relevance of each atomic interaction via a term frequency – 
inverse document frequency-type measurement [57], denoted here as ”interaction 
relevance” ι: 

� 
Z1,...,Zk 

1 NFS(d)
ι(F ) =  , (5)k ND Nres

d∈D 

Z1,...,Zkwhere F is the atomic interaction (as defined by MBTR, for example, k 
Z1,...,ZkH-C) ND is  the number of datasets in which  F appears in, D is a set ofk 

Z1,...,Zkdatasets in which F appears in, d ∈ D refers to a dataset, NFS is thek 
Z1,...,Zknumber of features that remains of the described F after feature selectionk 

and Nres is the resolution parameter of MBTR, i.e., the number of elements used 
by MBTR to describe each atomic interaction FZ1,...,Zk . The normalization over k 
datasets is necessary since not all atomic interactions are present in all datasets. 
Thus, ι defines the importance of an atomic interaction normalized over datasets 
which can then be further used for knowledge discover. 

4 Results 

In this section, we present and summarize the results of the experiments. 

4.1 Selection of ranking algorithm and cutoff value 

We report the generalizability and FS success with figures where the remaining 
number of features is on the x-axis and on the y-axis is the validation RMSE 
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after FS divided by the validation RMSE before FS. Figure 4 and Figure 5 show 
the results for the validation RMSE ratio (error after FS divided by error with a 
full set of features) as a function of the number of features remaining. This error 
ratio reflects an improvement in regarding model accuracy when it is less than 1. 
Higher values than 1 reflect that the reduced model accuracy is degenerated due 
to selected subset of features. 

From these figures, we can observe that the cutoff value 0.1 does not include 
enough features with either feature scoring algorithm. However, cutoff values 
0.01 and 0.001 provide at least as low validation errors as the base method but 
with a significantly reduced number of features. The second observation is that 
MAS has a more consistent behavior than Spearman R when cutoffs 0.01 and 
0.001 are considered. 

We used MAS with the cutoff 0.01 to produce figures for all datasets (Fig-
ures 6–17) where the MBTR (k2+k3) has been laid out with the kept features. 
The k1 part of these figures was removed since, in each case, they were constants 
that were removed in a preprocessing step. The MBTR figures with the selected 
features for the datasets (Figures 6–17) allow one to see what the machine 
learning model considers to be the most important interactions. At the same 
time, it also allows one to sanity check the function of the feature selection 
algorithm, provided one has understanding of the involved chemistry. 

Figure 6 presents the MBTR for the most complex object of the twelve 
datasets, a hybrid metal nanoparticle (a monolayer protected nanocluster). The 
nanoparticle consists of a cluster core composed of gold atoms, a sulfur interface 
and then 16 hydrocarbon chains in a protective shell around the cluster core. The 
difference of the importances of the features is immediately visible in Figure 6. 

Then, the choice was between MAS and Spearman R. Observing Figure 4 
and Figure 5 we can see that MAS produces lower validation errors in a more 
consistent manner. Due to these findings, the results reported in Section 4.2 and 
Section 4.3 are given with MAS using cutoff of 0.01. 

It should be noted, that the validation errors for datasets Docosahexaenoic 
Acid and AlanineTetrapeptide presented in Figure 4 have a higher validation 
error than what the other datasets have. Both Docosahexaenoic Acid and 
AlanineTetrapeptide are long molecule chains with many degrees of freedom, 
which results in a set of complicated movement during molecular dynamics 
simulation. 
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Figure 4: The number of features remaining after feature selection vs. feature 
selection success measured as model validation RMSE. 
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Figure 5: The number of features remaining after feature selection vs. feature 
selection success measured as model validation RMSE. 
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4.2 Selected features 

Figures 6–17 contain the mean MBTR for each dataset, along with the selected 
features (MAS and 0.01) as well as the number of times each selected feature 
was selected. As a general comment, the results presented here are in agreement 
with chemical intuition. The chemical bonds and interactions that one would 
expect to see are present in the figures. 

It is interesting that the most complex structure, Au38QT does not require 
the highest number of features. The most plausible cause of this characteristic 
is the structurally distinguishable three chemical environments: metallic core, 
metal–ligand interface and protecting ligands. In the simulation data for Au38QT, 
the cluster does break apart at high temperatures but even in those situations, 
the three main environments of the cluster remain. The outcome is that from 
the point of view of most individual atoms, the local environment remains the 
same. This lessens the need for describing features. In addition, the metal–ligand 
interface of Au38QT is one of the defining factors for the stability of the structure 
[51]. Therefore, it is expected that the three distinct chemical environments 
remain visible among the selected features, and as is seen in Figure 6, they 
remain visible. 

Figure 6: The mean MBTR (k2+k3) for dataset Au38QT with features selected 
by Algorithm 1 using MAS and cutoff of 0.01 

The rest of the datasets depict organic molecules which are significantly 
smaller than Au38QT. This generates a clear distinction between Au38QT and 
the organic molecules. In the case of the smaller molecules there are fewer atoms 
in total, which means that each atom has relatively larger contribution to the 
potential energy of the molecule. In addition to each atom having a relatively 
larger contribution, the smaller molecules themselves have less moving parts 
and thus potentially have less movement and higher stability, when compared to 
Au38QT. 

The remaining features and the MBTR descriptors of the organic molecules 
are presented in Figures 7–17. As mentioned earlier in this section, the organic 
molecules have generally demanded a high number of features. In the case of 
Benzene in dataset Benzene2018, very few features are needed since the molecule 
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is a stable ring. In the cases of Docosahexaenoic Acid and AlanineTetrapeptide 
in Figures 8 and 9, both are long chains with multiple and varying interactions. 
This means that each individual atom sees numerous local environments and 
that the molecule chain, as it can twist and turn or remain straight or anything 
in between, creates a complex potential energy surface. The complexity of the 
potential energy surface then requires a large number of features to work with. 

Figure 7: The mean MBTR (k2+k3) for dataset Benzene2018 with features 
selected by Algorithm 1 using MAS and cutoff of 0.01 

Figure 8: The mean MBTR (k2+k3) for dataset DocosahexaenoicAcid with 
features selected by Algorithm 1 using MAS and cutoff of 0.01 

Among the remaining molecules, Azobenzene in Figure 10, Uracil in Figure 12, 
Salicylic Acid in Figure 14 and Toluene in Figure 16 are similar to Benzene in 
the way that the molecules have stable structures and not a lot of movement. 
This results in them requiring fewer number of features. On the other hand 
are molecules Paracetamol in Figure 11, Aspirin in Figure 13, Naphthalene in 
Figure 15 and Ethanol in Figure 17 which required a larger number of features 
to be kept. Each (except Naphthalene) has molecular groups which are able to 
move, which may be the reason for their need for features. Naphthalene is an 
unexpected case, as the molecule does not have moving parts. The structure of 
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Figure 9: The mean MBTR (k2+k3) for dataset AlanineTetrapeptide with 
features selected by Algorithm 1 using MAS and cutoff of 0.01 

Naphthalene is however clearly visible in the selected features, the distances and 
angles have remained as expected. 

Figure 10: The mean MBTR (k2+k3) for dataset Azobenzene with features 
selected by Algorithm 1 using MAS and cutoff of 0.01 

The smaller organic molecules surprised with the number of features they 
required. A potential point of optimization would be to optimize the cutoff 
parameter to Au38QT and the organic molecules separately, instead of optimizing 
both at the same time. The expectation would be that due to the difference in 
chemistry, the cutoff points would differ in fully optimized situation. It would 
then affect the selected number of features. 
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Figure 11: The mean MBTR (k2+k3) for dataset Paracetamol with features 
selected by Algorithm 1 using MAS and cutoff of 0.01 

Figure 12: The mean MBTR (k2+k3) for dataset Uracil with features selected 
by Algorithm 1 using MAS and cutoff of 0.01 

Figure 13: The mean MBTR (k2+k3) for dataset Aspirin with features selected 
by Algorithm 1 using MAS and cutoff of 0.01 
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Figure 14: The mean MBTR (k2+k3) for dataset Salicylic with features selected 
by Algorithm 1 using MAS and cutoff of 0.01 

Figure 15: The mean MBTR (k2+k3) for dataset Naphthalene with features 
selected by Algorithm 1 using MAS and cutoff of 0.01 

Figure 16: The mean MBTR (k2+k3) for dataset Toluene with features selected 
by Algorithm 1 using MAS and cutoff of 0.01 
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Figure 17: The mean MBTR (k2+k3) for dataset Ethanol with features selected 
by Algorithm 1 using MAS and cutoff of 0.01 
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4.3 Interaction relevance 

The results here are a summarization of the chemical interactions present in 
the studied atomic structures. The results for the interaction relevance are 
presented in Figures 18 and 19 for organic molecules and Figure 20 for Au38QT. 
The results were split into figures this way due to the difference between the 
chemistry of an organic molecule and the chemistry of a hybrid nanoparticle. 

Considering the importance of carbon in organic molecules, it is not a surprise 
that interactions with carbon were the most important atomic bonds in the 
datasets in Figure 18. The apparent lack of importance for N-N bond distance 
is explained by the N-N bond in Azobenzene being a double bond and said N-N 
bond being the only example of N-N bond present in the datasets. It is an 
especially stable bond, thus in the eyes of feature selection, N-N bonds had little 
importance to the potential energy. We would expect the N-N bar to have more 
presence had the datasets contained N-N bonds that were more flexible. 

From the angles between atoms presented in Figure 19, the angle H-C-C has 
the highest relevance. This is again expected based on the nature of organic 
molecules. The same trend as in Figure 18 is seen in Figure 19, interactions 
containing carbon are ranked the most relevant. 

The results for  the  Au38QT are presented in Figure 20. One can clearly see 
the dominant effects of gold and sulfur in the interaction relevances. This is 
again expected based on knowledge of chemistry. An interesting note is that 
the highest relevances are given to gold–sulfur–gold and carbon–sulfur–gold. In 
other words, the interface between the gold core and the ligands. Au-S-Au and 
Au-S-C angles are generally around 90◦ , hence they have a clear local energy 
minimum configuration. Deviation from this angle is expected to have visible 
effect on the potential energy, which explains why they get high relevance. 

While the results presented here are mostly a confirmation that the proposed 
feature selection method works as intended, results like these could be used in 
the priorization of atom-atom parametrization. In other word, it is an automated 
way to print out what the machine learning model in combination with the 

Figure 18: Atomic interaction presence for all organic molecule datasets with 
MBTR k2 (inverse distances). Interactions with an empty bar were not present 
in the datasets after feature selection. 
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Figure 19: Atomic interaction presence for all organic molecule datasets with 
MBTR k3 (angle between a triple). Interactions with an empty bar were not 
present in the datasets after feature selection. 

Figure 20: Atomic interaction presence for dataset Au38QT with MBTR k2+k3. 
Interactions with an empty bar were not present in the datasets after feature 
selection. 

feature selection method has seen as the most relevant area of interest. 
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5 Conclusions 

The proposed feature selection algorithm was developed and tested with datasets 
based on molecular dynamics simulations on organic molecules and a hybrid 
nanoparticle. The Feature Importance Detector requires only a single hyperpa-
rameter when used with full EMLM (all of input data selected as reference points) 
and it was validated by using it with simulation data and the analysis of the 
selected features. The hyperparameter of FID was first searched by comparing 
Spearman R and MAS to each other. Other potential feature scoring algorithms 
were not used here due to the testing made earlier by Linja et al. in [31]. The 
FID was then used to select features from the used datasets. The results were 
analyzed with the use of domain knowledge. Finally, interaction relevance score 
was used to present another way to infer information from the combination of 
feature selection method, machine learning model, descriptor and molecular 
dynamics simulation data. 

The feature relevance metric was used to summarize the chemical information, 
as given by the molecular dynamics data, descriptor, EMLM and the proposed 
feature selection algorithm. It was used to aggregate the information in the 
organic molecules and single out the Au38QT. We conclude that the proposed 
feature selection algorithm functions as intended, as the results it gave were 
analyzable and verifiable through domain knowledge. 

As this work utilized a single descriptor, one future work would be to compare 
the result analysis to the result analysis of other descriptors. Jäger et al. [8] 
showed that there are situations where local descriptors are better than global 
descriptors. This naturally leads to a future work where local and global 
descriptors are used simultaneously with FID to see the relative importances 
of both. An additional avenue of research would be to focus more on different 
nanoclusters and attempt to analyze whether the features or the interaction 
relevances have common elements among the various nanoclusters. Another 
option would be to work on gaining a model from descriptor to 3D structure. 
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Appendix A 

(a) Au38QT (b) Benzene 

(c) Docosahexaenoic Acid (d) Alanine Tetrapeptide 

(e) Azobenzene (f) Paracetamol 

Figure 21: Example figures of the molecular structure of the first six datasets 
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(a) Uracil (b) Aspirin 

(c) Salicylic Acid (d) Naphthalene 

(e) Toluene (f) Ethanol 

Figure 22: Example figures of the molecular structure of the second six datasets 

ii 


	Advancing Nanomaterials Design using Novel Machine Learning Methods
	ABSTRACT
	TIIVISTELMÄ (ABSTRACT IN FINNISH)
	PREFACE
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Background and motivations
	1.2 Research questions
	1.3 Structure of the thesis

	2 NANOSCIENCE
	2.1 Current nanoscience
	2.2 Monolayer protected nanoclusters
	2.3 Computational nanoscience and -technology
	2.4 Feature extraction using descriptors
	2.4.1 Types of descriptors
	2.4.2 Many-body Tensor Representation


	3 MACHINE LEARNING
	3.1 Current machine learning
	3.2 AI vs. Machine Learning
	3.3 Feature selection
	3.4 Machine learning methods
	3.4.1 Distance-based machine learning methods
	3.4.2 Other machine learning methods
	3.4.3 On the evaluation of methods


	4 SUMMARY OF ARTICLES AND RESEARCH CONTRIBUTION
	4.1 PI: Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine Learning Methods
	4.2 PII: Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
	4.3 PIII: Feature selection for distance-based regression: An umbrella review and a one-shot wrapper
	4.4 PIV: Knowledge Discovery from Atomic Structures using Feature Importances
	4.5 Summary of the research contributions

	5 CONCLUSIONS AND DISCUSSION
	YHTEENVETO (SUMMARY IN FINNISH)
	REFERENCES
	ORIGINAL PAPERS
	MONTE CARLO SIMULATIONS OF AU38(SCH3)24 NANOCLUSTER USING DISTANCE–BASED MACHINE LEARNING METHODS
	DO RANDOMIZED ALGORITHMS IMPROVE THE EFFICIENCY OF MINIMAL LEARNING MACHINE?
	FEATURE SELECTION FOR DISTANCE-BASED REGRESSION: AN UMBRELLA REVIEW AND A ONE-SHOT WRAPPER
	KNOWLEDGE DISCOVERY FROM ATOMIC STRUCTURESUSING FEATURE IMPORTANCES



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




