

This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Suikkanen, Sara; Soukkio, Paula; Kautiainen, Hannu; Kääriä, Sanna; Hupli, Markku T.; Sipilä, Sarianna; Pitkälä, Kaisu; Aartolahti, Eeva; Kukkonen-Harjula, Katriina

Title: Changes in the Severity of Frailty Among Older Adults After 12 Months of Supervised Home-Based Physical Exercise: A Randomized Clinical Trial

Year: 2022

Version: Accepted version (Final draft)

Copyright: © 2022 AMDA - The Society for Post-Acute and Long-Term Care Medicine.

Rights: CC BY-NC-ND 4.0

Rights url: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the original version:

Suikkanen, S., Soukkio, P., Kautiainen, H., Kääriä, S., Hupli, M. T., Sipilä, S., Pitkälä, K., Aartolahti, E., & Kukkonen-Harjula, K. (2022). Changes in the Severity of Frailty Among Older Adults After 12 Months of Supervised Home-Based Physical Exercise: A Randomized Clinical Trial. Journal of the American Medical Directors Association, 23(10), 1717.e9-1717.e15.

https://doi.org/10.1016/j.jamda.2022.07.010

Journal: Journal of the American Medical Directors Association. 2022.

Title: Changes in the severity of frailty among older adults after 12 months of supervised home-based physical exercise – A randomized clinical trial

Authors: Sara Suikkanen^{a,b} MSc, Paula Soukkio^{a,b} MSc, Hannu Kautiainen^c BA, Sanna Kääriä^d PhD, Markku T. Hupli^a MD, PhD, Sarianna Sipilä^{b,e} PhD, Kaisu Pitkälä^c MD, PhD, Eeva Aartolahti ^f PhD, Katriina Kukkonen-Harjula^a MD, PhD

Affiliations: ^a Rehabilitation, South Karelia Social and Health Care District, Valto Käkelän katu 3, FI-53130 Lappeenranta, Finland. ^b Faculty of Sport and Health Sciences, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland. ^c Department of General Practice, University of Helsinki, and Unit of Primary Health Care, Helsinki University Hospital, Tukholmankatu 8 B, FI-00290 Helsinki, Finland. ^d Raatimiehet Oy, Raatimiehenkatu 18, FI-53100, Lappeenranta, Finland. ^e Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, FI-40700 Jyväskylä, Finland. ^f Institute of Rehabilitation, JAMK University of Applied Sciences, Piippukatu 2, FI-40100 Jyväskylä, Finland.

Corresponding author: Sara Suikkanen

sara.suikkanen@lab.fi,

tel. +358 50 5744 570

Faculty of Social Services and Health Care, LAB University of

Applied Sciences, Lappeenranta,

Yliopistonkatu 36, FI-53850, Lappeenranta, Finland

Running title: Physical exercise and severity of frailty

Key words: Frailty, older adults, physical exercise, rehabilitation

Funding: This work was supported by South Karelia Social and Health Care District

[register number 1236/00.01.05.01/2013]; the Social Insurance Institution of Finland [grant

numbers 94/331/2013, 17/26/2019]; and State Research Funding for Academic Health

Research (Ministry of Social Affairs and Health, Finland), through Helsinki University

Hospital (HUS) [grant numbers HUS 2016, HUS/2931/2017, HUS/2571/2017,

HUS/2631/2019, 864/2020].

Abstract word count: 291

Main text word count: 3000

Number of references: 50

Number of data elements: 4

Brief summary: The RCT showed differences between the exercise and usual care groups in

shifts between frailty states during a year as the severity of frailty was more often alleviated

in the exercise group.

Acknowledgement

Kaija Paajanen, RN and Virpi Äärimaa LPN, participant recruitment, and data collection

Role of funders: Funders played no role in the design, execution, analysis, or interpretation

of data, or writing of the study.

ABSTRACT

- 2 **Objective:** To investigate the effects of 12 months of physiotherapist-supervised, home-
- 3 based physical exercise on the severity of frailty and on the prevalence of the five frailty
- 4 phenotype criteria, using secondary analyses.
- 5 **Design:** Randomized clinical trial, with 1:1 allocation into 12-month home-based physical
- 6 exercise, or usual care. The multicomponent exercise sessions (60 minutes) were supervised
- 7 by physiotherapist and included strength, balance, functional, and flexibility exercises twice a
- 8 week at participants' homes.
- 9 Setting and Participants: Home-dwelling older adults aged 65+ who were frail (meeting 3–
- 5 criteria) or pre-frail (1–2 criteria) according to frailty phenotype criteria.
- 11 Methods: The severity of frailty (non-frail, pre-frail, frail) was assessed using frailty
- phenotype criteria, and the prevalence of each frailty criterion (weight loss, low physical
- activity, exhaustion, weakness, and slowness) were assessed at baseline and at 12 months.
- 14 **Results:** Two hundred ninety-nine persons were included in the analyses, of whom 184 were
- pre-frail and 115 were frail at baseline. Their mean age was 82.5 (SD 6.3) years, and 75%
- were women. There was a significant difference between the exercise and usual care groups'
- transitions to different frailty states from baseline to 12 months among those who at baseline
- were pre-frail (p=0.032) and frail (p=0.009). At 12 months, the mean number of frailty
- criteria had decreased in the exercise group (-0.27, 95% CI: -0.47 to -0.08) and remained
- unchanged in the usual care group (0.01, -0.16 to 0.18; p=0.042). The prevalence of the
- exhaustion (p=0.009) and the low physical activity (p<0.001) criteria were lower at 12
- 22 months in the exercise group than in the usual care group.

23 Conclusions and Implications: The severity of frailty can be reduced through 12-month

supervised home-based exercise training. Exercise should be included in the care of older

adults with signs of frailty.

24

26

INTRODUCTION

Frailty is a medical syndrome that occurs among older adults, more commonly among 27 women than men.^{1,2} A person with frailty has reduced physiological reserves which leads to 28 vulnerability to external stressors³ and causes a decline in functional capacity.⁴ Frailty is a 29 dynamic state that can fluctuate over time⁵⁻⁸ but is more likely to deteriorate.^{5,9} The 30 prevalence of frailty increases with age; among people over 50, the prevalence is around 31 12%¹⁰ and of people over 80, almost one third might be frail.² People with frailty are at a 32 higher risk of hospitalization, 11 longer hospital stays, 12 higher health care costs, 13 33 institutionalization, 14 and mortality. 5, 15 34 Yet, frailty is not assessed routinely in primary or secondary health care. ¹⁶ There is no 35 universal consensus or golden standard for how frailty should be assessed, ¹⁷ nor for how 36 frailty should be prevented or managed.² The concepts most often used to define frailty are 37 phenotypic physical frailty¹⁸ and deficit accumulative frailty. ¹⁹ In physical frailty, frailty is 38 seen as dysregulation of the stress-response, metabolism, and musculoskeletal systems. ²⁰ The 39 physical frailty phenotype consists of five criteria: weight loss, exhaustion, low physical 40 activity, slowness, and weakness. 18 A person is classified as frail if they fulfill three or more 41 criteria and pre-frail if they meet one or two. 18 In the deficit accumulative frailty, frailty is 42 seen as sum of different health deficits such as symptoms, signs, disabilities, and diseases, 43 and an index is calculated on the basis of whether a person has them or not.²¹ 44

Sedentary behavior is associated with more severe frailty²² and physical activity has been promising to reduce²³ and prevent²⁴ progression of frailty. Physical activity affects multiple physiological systems, and therefore might be the best option for prevention and treatment of physical frailty. ²⁰ Multicomponent physical exercise with resistance training is one recommended treatment option,²⁵ but there is still scarcity of evidence on supervised homebased exercise programs. Other things to consider on frailty treatment are proper nutrition, addressing polypharmacy, and tackling probable causes of exhaustion (e.g., depression, anemia).²⁵

The aim of these secondary analyses of the randomized controlled trial was to investigate the effects of a 12-month, physiotherapist-supervised, physical exercise program held twice a week at home on the severity of frailty of older adults with pre-frailty or frailty, and on the prevalence of the five phenotype criteria of physical frailty.

METHODS

Here we report the results of the secondary analyses of the randomized controlled trial with 1:1 allocation to the home-based physical exercise and the usual care groups. In November 2014, the study was approved by the coordinating ethics committee, and was registered to ClinicalTrials.gov (NCT02305433) in December 2014. The study protocol,²⁶ the results on the primary outcome days lived at home,²⁷ and on the secondary outcomes of utilization of social and health care, cost-effectiveness, quality of life,²⁷ and functioning²⁸ have been published earlier.

Participants

We recruited 300 home-dwelling older adults with signs of frailty from one region 68 (population 131,000), in Finland between December 2014 and August 2016. Persons were 69 recruited via advertisements in the local newspapers and by homecare personnel. Preliminary 70 eligibility was evaluated using the FRAIL questionnaire. ^{29,30} It contains five questions on 71 Fatigue, Resistance, Ambulation, Illnesses, and Loss of weight, and has scores of 0 or 1 and 72 the total score ranges from 0 to 5.29,30 A potential participant who scored at least one 73 advanced to the next phase of recruitment. 74 Next, a research nurse evaluated eligibility during a home visit. The person had to meet all 75 76 the inclusion criteria: age of ≥65 years, living at home, at least one of the physical frailty phenotype criteria, ¹⁸ a Mini-Mental State Examination (MMSE)³¹ score of ≥17, able to walk 77 indoors (walking aid allowed), and able to communicate in Finnish. Exclusion criteria were 78 living in 24/7 care, problems with alcohol/drug abuse, severe problems with hearing/eyesight, 79 a severe illness which is a contraindication for physical exercise (e.g., cardiovascular, 80 81 neurological, or pulmonary disease) or a terminal disease (e.g., cancer). All the eligible and willing participants signed their written informed consent. 82 83 Intervention The participants in the exercise group participated in one-hour physiotherapist-supervised 84 physical exercise sessions at their homes, twice a week, for 12 months. The physiotherapists 85 tailored the training to match individual participants' health and fitness status. The exercise 86 sessions consisted of warm-up, strength, balance, functional and flexibility exercises. 87

tailored the training to match individual participants' health and fitness status. The exercise sessions consisted of warm-up, strength, balance, functional and flexibility exercises.

Training intensity was evaluated at the end of each session using Borg's Ratings of Perceived Exertion (RPE) scale.³² Target intensity was from moderate (12) to vigorous (17), and the intensity of the next session was modified accordingly. Strength training was divided into approximately eight-week periods of endurance, strength, and power training. To enable

88

89

90

progression, proper training resistance was ensured with multiple-repetition maximum tests, and the numbers of sets and repetitions were altered during the year according to the strength cycle and targeted intensity.

Strength training mainly focused on the lower limbs. Exercises were based on the Otago exercise program,³³ and included knee extension and flexion, hip abduction, and ankle plantarflexion (up on toes) and dorsiflexion (back on heels). Resistance was added with ankle weights and weight vests. In addition, participants performed upper body exercises with dumbbells and kettlebells, and sessions included functional exercises such as chair rises, climbing stairs or hanging laundry. The physiotherapists gave brief guidance on proper nutrition and encouraged the participants to also be physically active outside the supervised exercise sessions. A more detailed description of the exercise program can be found elsewhere.^{26,28}

The usual care group continued to live their lives as usual. Both groups received any health or social care they needed during the year in accordance with the district's policies, including rehabilitation (e.g., physical, and occupational therapy).

Outcomes

The severity of frailty was assessed using a slightly modified version of Fried's frailty phenotype criteria. These five criteria were weight loss, low physical activity, exhaustion, weakness, and slowness. The person's severity of frailty was classified according to the number of criteria met (0, non-frail; 1–2, pre-frail; and 3–5, frail). A research physiotherapist or a research nurse assessed the criteria at the participant's home at baseline and at 12 months. The assessors were not blinded for the allocation, but they did not participate in the implementation of the exercise intervention.

Weight was measured using an Omron HN289 scale (Japan). The frailty criterion of weight 116 loss was met if the participants had unintentionally lost over 5% of their weight during the 117 previous year. At baseline, the previous year's weight was elicited from the participant and 118 checked in electronic medical records, if available. 119 Low physical activity criterion was assessed by asking "How often do you do some physical 120 activities such as walking, calisthenics, dancing etc.?" If the person was physically active less 121 than once a week, 30 minutes at a time, they met the modified low physical exercise criterion. 122 The modified criterion for low physical activity was based on a validated physical activity 123 question from the FROP-Com (Falls Risk for Older People in the community) 124 questionnaire.34 125 126 The exhaustion criterion included two questions from the Center of Epidemiology Studies Depression scale (CES-D):³⁵ "How often during the past week did you feel, that a) you could 127 not get going? and b) everything you did was an effort?" The criterion was met if the person 128 answered "most of the time" or "almost all the time" to either of the questions. 129 The slowness criterion was assessed by the time taken to walk four meters at the participant's 130 usual pace from a standing start. If 4.0 m was impossible at the participant's home, 2.44 m 131 was used instead. Walking aids (e.g., cane, rollator) were allowed. The person had two 132 attempts and the better result was used. The lowest fourth of the Short Physical Performance 133 Battery (SPPB)³⁶ was used as the cutoff to enable validated and comparable times for both 134 4.0 and 2.44 meters. The person met the modified slowness criteria if they walked slower 135 than 0.46 m/s (walking time >8.7 sec for 4 m and >5.2 sec for 2.44 m). 136 The weakness criterion was determined by handgrip strength, measured using the Saehan 137 dynamometer (Sh5001, Masan, South Korea). The measurement was taken in a seated 138 position, with the elbow unsupported at a 90-degree angle next to the body, and the wrist in a 139

neutral position. The best value of three attempts with the dominant hand was used. The cutoff values were defined by body mass index (BMI) and sex. ¹⁸ Cutoffs for women were ≤17 kg (BMI ≤26.0); ≤18 kg (BMI 26.1-29.0); ≤21 kg (BMI >29.0), and for men ≤29 kg (BMI ≤24.0); ≤30 kg (BMI 24.1-28.0); ≤32 kg (BMI >28.0). As background information, a Charlson comorbidity index ³⁷ (CCI) was calculated on the basis of medical record information, and alcohol consumption with AUDIT-C-questionnaire ³⁸, smoking habits and nutrition with Mini Nutritional Assessments ³⁹ (MNA) were queried.

Allocation

After the baseline assessments, the participants were randomized without stratification into a home-based physiotherapist-supervised physical exercise intervention group (n=150) and a usual care group (n=150). The computer-generated, random sequence allocation program included varying block size from 2 to 10 and was created by a statistician who did not participate in either the conduction or analyses of this trial. One person in the research group who had not met the participant used the randomization program and telephoned them of their allocation result.

Statistical analysis

The sample size was calculated according to the primary outcome of days lived at home over 24 months. 27 In brief, to detect a difference (α (alpha) 0.05, β (power) 80%) of the hypothesized 180 (SD 431) days between the physical exercise and usual care groups, a sample size of 91 people was needed in each group (simulation-based effect size was 0.40). To allow for discontinuation (estimated as 15%) and death (20%) of participants over 12 months, our targeted sample size was 300 participants.

All analyses were performed according to the intent-to-treat principle. Descriptive statistics of the participants are presented as means with standard deviations (SD), or as frequencies with percentages (%). The relationship between the randomization groups and frailty status at baseline was evaluated using a two-way analysis of variance (ANOVA) and logistic model. Models include main effects of randomization group and frailty status and their interaction. Changes (transition frequencies) in the states of severity of frailty (defined as non-frail, prefrail, frail, dead) were analyzed over 12 months using conditional fixed-effects multinomial logit models. Changes in single frailty criteria were analyzed using the Generalized Estimating Equation (GEE). If the assumptions were violated, a bootstrap-type or permutation test was used. Hommel's adjustment was applied to correct the levels of significance for multiple testing, if appropriate. The normality of variables was evaluated graphically and using the Shapiro–Wilk W test. The Stata 17.0, StataCorp LP (College Station, TX, USA) statistical package was used for the analyses.

RESULTS

There were 299 participants (Figure 1) in the analyses, 150 in the exercise group and 149 in the usual care group, as one participant withdrew from the trial after allocation to the usual care group and refused to allow the use of her data. At baseline, the mean age was 82.5 (SD 6.3, range 65 to 98) years, 75% of the participants were women, and 184 participants were classified as pre-frail, and 115 as frail (Table 1).

Among those who were pre-frail at baseline, in the exercise group, the status changed to non-frail in 15 participants, to frail in 7, and 5 died. In the usual care group, the status changed to

non-frail in 8 participants, to frail 20, and 7 died (Figure 2A). The transition frequencies from

the pre-frailty status were significantly different (p=0.032) in the exercise and the usual care 185 groups over 12 months. 186 187 Among the participants who were frail at baseline, in the exercise group 35 became pre-frail and 3 non-frail. In the usual care group, 17 became pre-frail, 1 non-frail and 3 died. The 188 189 transition frequencies from the frailty status over the 12 months were significantly different 190 (p=0.009) in the exercise and the usual care groups (Figure 2B). The mean number of frailty criteria met at baseline was 2.2 (SD 1.1) in the exercise group 191 192 and 2.2 (1.0) in the usual care group (p=0.82) (Table 1). After 12 months, the change was -0.27, (95% CI -0.47 to -0.08) in the exercise and 0.01, (95% CI -0.16 to 0.18) in the usual 193 care group and the difference was significant (p=0.042). As regards the single frailty criterion 194 195 at baseline, the three most often met were exhaustion (62%), weakness (60%), and low physical activity (54%) (Table 1). After 12 months, one third of the participants in the 196 exercise group and half of those in the usual care group met the exhaustion criterion 197 (p=0.009) (Figure 3). The prevalence of the low physical activity criterion decreased to 14% 198 in the exercise group, whereas it remained unchanged in the usual care group (p<0.001). 199 200 There were no differences between the groups in weight loss, slowness, or weakness criteria at 12 months, and no changes in the prevalence within groups (Figure 3). 201 The median number of completed exercise sessions was 96 (IQR 89, 99). The majority of 202 participants reported mild and transient muscle soreness (58%) or mild joint pain (71%) after 203 some exercise sessions. One fall led to mild injury. Eighteen participants took nitroglycerin 204 205 during the session. On five occasion the participants needed acute medical care (unrelated to exercise) at the arrival of the physiotherapist. 206

DISCUSSION

The 12-month home-based, physiotherapist-supervised, physical exercise program slowed down or reversed the progression of frailty in older persons with at least one of the frailty phenotype criteria at baseline. With regard to the single frailty criteria, physical exercise most prominently decreased the prevalence of low physical activity and of exhaustion in comparison to usual care.

Our 12-month exercise intervention slightly reduced the mean number of frailty criteria met. Compared to the usual care group, more participants in the exercise group maintained their pre-frail state or reversed to non-frailty, and fewer participants advanced to frailty. Earlier studies have shown that the severity of frailty can naturally fluctuate over time, but the transition is more likely to be towards worse than better. A study using the frailty index found that natural fluctuations increased with age and frailty levels among community-dwelling older adults. Previously, six months of supervised, center-based physical exercise five times a week, and a 12-month program with individually tailored supervised and unsupervised physical exercise, nutrition counseling and social interaction sessions have lowered the severity of physical frailty among people who were already frail. The severity of physical frailty also diminished among sedentary older adults after a 12-month physical activity intervention in comparison to participants in a health education group. Among sedentary older adults, an intervention using center- and home-based physical activity did not reduce the overall risk of developing frailty, measured using the SOF frailty index, over 24 months, in comparison to a health education group.

In terms of the single frailty phenotype criterion, participation in our 12-month supervised home-based exercise significantly lowered the prevalence of the low physical activity and the exhaustion criterion. Other studies using 12-month exercise interventions have also reported lower prevalence of the low physical activity criterion, but not of the exhaustion criterion

among people with frailty⁴² and among sedentary older adults.⁴³ In general, pre-frail and frail people have fewer social networks than the non-frail, 45 and loneliness and social isolation increase the risk of more severe frailty. 46,47 Many of our participants lived alone, and the physiotherapist's visits provided regular social contact for them. Our participants' physical performance²⁸ also improved after the 12-month intervention, which may reduce the feeling of exhaustion. Over 12 months, there were no differences between the study groups in the prevalence's of slowness, weakness, or weight loss criteria. In contrast to our findings concerning the slowness criterion, an earlier study⁴² found a significant difference between their usual care and the exercise groups' walking speeds after 12 months in favor of the exercise group. We used a slightly modified slowness criterion to enable validated, comparable cutoff values at distances of 2.44 and 4 m, ³⁶ which enabled the option of shorter walking distance in small homes. This change may have made our participants less frail than they would have been if the original frailty phenotype walking speed's cutoff¹⁸ had been used. There was no difference between the grip strength of our groups at 12 months. An earlier study found that 24-week resistance exercise had no effect on grip strength among pre-frail and frail older adults, although it did increase physical performance and maximum leg strength. 48 With regard to the weight loss criterion, other randomized physical exercise intervention studies have also detected no change in the prevalence. 41-44 One of the strengths of our trial was that it followed a rigorous randomized design, and both groups had good compliance. We were able to recruit the targeted amount of physically prefrail and frail people, ⁴⁹ which enabled us to analyze the change in the severity of frailty as planned. Our participants had varied socioeconomical backgrounds and were from both cities

and rural areas. In addition, all measurements, assessments, and the exercise intervention

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

were performed at the participants' homes and were free of charge to our participants, which made the program more accessible.

As for limitations, frailty was not our primary outcome, and we used a slightly modified version of the frailty phenotype criteria to assess frailty. Phenotype criteria are one of the most commonly used tools in research to assess physical frailty, ¹⁸ and modifications to the criteria are not uncommon. ⁵⁰ However, this may influence the comparability of studies. In addition, we only assessed the severity of frailty at baseline and at 12 months and did not follow the participants' severity of frailty further. A third limitation was that neither participants nor assessors were blinded for the allocation.

CONCLUSIONS AND IMPLICATION

Our findings support the concept that frailty is a reversible condition, and the home-based physiotherapist-supervised 12-month physical exercise regimen seemed to slow down and reverse frailty progression. Our exercise program was most effective in reducing exhaustion and low physical activity. Exercise should be included as part of the care of older adults with signs of frailty.

Conflicts of interest disclosure: Authors declare no conflicts of interest.

- 1. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in
- community-dwelling older persons: a systematic review. J Am Geriatr Soc.
- 2012;60:1487-1492. doi:10.1111/j.1532-5415.2012.04054.x
- 2. Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty:
- implications for clinical practice and public health. Lancet. 2019;394:1365-1375.
- doi:10.1016/S0140-6736(19)31786-6
- 3. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people
- [published correction appears in Lancet. 2013 Oct 19;382:1328]. Lancet.
- 283 2013;381:752-762. doi:10.1016/S0140-6736(12)62167-9
- 4. Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med
- Dir Assoc. 2013;14:392-397. doi:10.1016/j.jamda.2013.03.022
- 5. Xue Q-L, Bandeen-Roche K, Tian J, Kasper JD, Fried LP. Progression of physical
- frailty and the risk of all-cause mortality: is there a point of no return? J AM Ger Soc.
- 288 2020;69:908-915. doi: 10.1111/jgs.16976
- 6. Gill TM, Gahbauer EA, Allore HG, Han L. Transitions between frailty states among
- community-living older persons. Arch Intern Med. 2006;166:418-423.
- doi:10.1001/archinte.166.4.418
- 7. Kojima G, Taniguchi Y, Iliffe S, Jivraj S, Walters K. Transitions between frailty
- states among community-dwelling older people: A systematic review and meta-
- analysis. Ageing Res Rev. 2019;50:81-88. doi:10.1016/j.arr.2019.01.010

295	8.	Ofori-Asenso R, Lee Chin K, Mazidi M, et al. Natural regression of frailty among
296		community-dwelling older adults: A systematic review and meta-
297		analysis. Gerontologist. 2020;60:e286-e298. doi:10.1093/geront/gnz064
298	9.	Stenholm S, Ferrucci L, Vahtera J, et al. Natural course of frailty components in
299		people who develop frailty syndrome: Evidence from two cohort studies. J Gerontol
300		A Biol Sci Med Sci. 2019;74:667-674. doi:10.1093/gerona/gly132
301	10	. O'Caoimh R, Sezgin D, O'Donovan MR, et al. Prevalence of frailty in 62 countries
302		across the world: a systematic review and meta-analysis of population-level
303		studies. Age Ageing. 2021;50:96-104. doi:10.1093/ageing/afaa219
304	11	. Chang SF, Lin HC, Cheng CL. The relationship of frailty and hospitalization among
305		older people: Evidence from a meta-analysis. J Nurs Scholarsh. 2018;50:383-391.
306		doi:10.1111/jnu.12397
307	12	. Cunha AIL, Veronese N, de Melo Borges S, Ricci NA. Frailty as a predictor of
308		adverse outcomes in hospitalized older adults: A systematic review and meta-
309		analysis. Ageing Res Rev. 2019;56:100960. doi:10.1016/j.arr.2019.100960
310	13	. Kojima G. Increased healthcare costs associated with frailty among community-
311		dwelling older people: A systematic review and meta-analysis. Arch Gerontol Geriatr.
312		2019;84:103898. doi:10.1016/j.archger.2019.06.003
313	14	. Kojima G. Frailty as a predictor of nursing home placement among community-
314		dwelling older adults: A systematic review and meta-analysis. J Geriatr Phys Ther.
315		2018;41:42-48. doi:10.1519/JPT.00000000000000097

316	15. Shamliyan T, Talley KM, Ramakrishnan R, Kane RL. Association of frailty with
317	survival: a systematic literature review. Ageing Res Rev. 2013;12:719-736.
318	doi:10.1016/j.arr.2012.03.001
319	16. Walston J, Bandeen-Roche K, Buta B, et al. Moving frailty toward clinical practice:
320	NIA Intramural Frailty Science Symposium Summary. J Am Geriatr Soc.
321	2019;67:1559-1564. doi:10.1111/jgs.15928
322	17. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical
323	practice: A review. Eur J Intern Med. 2016;31:3-10. doi:10.1016/j.ejim.2016.03.007
324	18. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a
325	phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146-M156.
326	doi:10.1093/gerona/56.3.m146
327	19. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy
328	measure of aging. Sci World J. 2001; Aug 8;1:323-336.doi:10.1100/tsw.2001.58
329	20. Fried LP, Cohen AA, Xue QL, Walston J, Bandeen-Roche K, Varadhan R. The
330	physical frailty syndrome as a transition from homeostatic symphony to cacophony.
331	Nat Aging. 2021 Jan;1(1):36-46. doi: 10.1038/s43587-020-00017-z.
332	21. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J
333	Gerontol A Biol Sci Med Sci. 2007;62:722-727. doi:10.1093/gerona/62.7.722
334	22. Kehler DS, Hay JL, Stammers AN, et al. A systematic review of the association
335	between sedentary behaviors with frailty. Exp Gerontol. 2018;114:1-12.
336	doi:10.1016/j.exger.2018.10.010

337	23. Negm AM, Kennedy CC, Thabane L, et al. Management of frailty: A systematic
338	review and network meta-analysis of randomized controlled trials. J Am Med Dir
339	Assoc. 2019;20:1190-1198. doi:10.1016/j.jamda.2019.08.009
340	24. Oliveira JS, Pinheiro MB, Fairhall N, et al. Evidence on physical activity and the
341	prevention of frailty and sarcopenia among older people: a systematic review to
342	inform World Health Organization physical activity guidelines. J Phys Act Health.
343	2020;17:1247-1258. doi: 10.1123/jpah.2020-0323
344	25. Dent E, Morley JE, Cruz-Jentoft AJ, et al. Physical frailty: ICFSR international
345	clinical practice guidelines for identification and management. J Nutr Health Aging.
346	2019;23:771-787. doi:10.1007/s12603-019-1273-z
347	26. Soukkio P, Suikkanen S, Kääriä S, et al. Effects of 12-month home-based
348	physiotherapy on duration of living at home and functional capacity among older
349	persons with signs of frailty or with a recent hip fracture - protocol of a randomized
350	controlled trial (HIPFRA study). BMC Geriatr. 2018;18:232. doi:10.1186/s12877-
351	018-0916-y [Reference omitted for blind review]
352	27. Suikkanen SA, Soukkio PK, Aartolahti EM, et al. Effects of home-based physical
353	exercise on days at home and cost-effectiveness in pre-frail and frail persons:
354	randomized controlled trial. J Am Med Dir Assoc. 2021;22:773-779.
355	doi:10.1016/j.jamda.2020.06.005 [Reference omitted for blind review]
356	28. Suikkanen S, Soukkio P, Aartolahti E, et al. Effect of 12-month supervised, home-
357	based physical exercise on functioning among persons with signs of frailty -
358	randomized controlled trial. Arch Phys Med Rehabil. 2021;102:2283-2290.
359	doi:10.1016/j.apmr.2021.06.017. [Reference omitted for blind review]

360	29. Abellan van Kan G, Rolland Y, Bergman H, Morley JE, Kritchevsky SB, Vellas B.
361	The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J
362	Nutr Health Aging. 2008;12:29-37. doi:10.1007/BF02982161
363	30. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL)
364	predicts outcomes in middle aged African Americans. J Nutr Health Aging.
365	2012;16:601-608. doi:10.1007/s12603-012-0084-2
366	31. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for
367	grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189-
368	198. doi:10.1016/0022-3956(75)90026-6
369	32. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc.
370	1982;14:377-381.
371	33. Gardner MM, Buchner DM, Robertson MC, Campbell AJ. Practical implementation
372	of an exercise-based falls prevention programme. Age Ageing. 2001;30:77-83.
373	doi:10.1093/ageing/30.1.77
374	34. Russell MA, Hill KD, Blackberry I, Day LM, Dharmage SC. The reliability and
375	predictive accuracy of the falls risk for older people in the community assessment
376	(FROP-Com) tool. Age Ageing. 2008;37:634-639. doi:10.1093/ageing/afn129
377	35. Orme JG, Reis J, Herz EJ. Factorial and discriminant validity of the Center for
378	Epidemiological Studies Depression (CES-D) scale. J Clin Psychol. 1986;42:28-33.
379	doi:10.1002/1097-4679(198601)42:1<28::aid-jclp2270420104>3.0.co;2-t
380	36. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
381	prognostic comorbidity in longitudinal studies: development and validation. J Chronic
382	Dis. 1987;40:373-383. doi:10.1016/0021-9681(87)90171-8 s

383	37. Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent
384	disability: consistency across studies, predictive models, and value of gait speed alone
385	compared with the short physical performance battery. J Gerontol A Biol Sci Med
386	Sci. 2000;55:M221-M231. doi:10.1093/gerona/55.4.m221
387	38. Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT alcohol
388	consumption questions (AUDIT-C): an effective brief screening test for problem
389	drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Arch Intern
390	Med. 1998;158:1789-95. doi: 10.1001/archinte.158.16.1789.
391	39. Vellas B, Villars H, Abellan G, Soto ME, Rolland Y, Guigoz Y, et al. Overview of
392	the MNA® – Its history and challenges. J Nutr Health Aging. 2006;10:456-65.
393	40. Stolz E, Mayerl H, Freidl W. Fluctuations in frailty among older adults. Age Ageing.
394	2019;48:547-552. doi:10.1093/ageing/afz040
395	41. Tarazona-Santabalbina FJ, Gómez-Cabrera MC, Pérez-Ros P, et al. A
396	multicomponent exercise intervention that reverses frailty and improves cognition,
397	emotion, and social networking in the community-dwelling frail elderly: a
398	randomized clinical trial. J Am Med Dir Assoc. 2016;17:426-433.
399	doi:10.1016/j.jamda.2016.01.019
400	42. Cameron ID, Fairhall N, Langron C, et al. A multifactorial interdisciplinary
401	intervention reduces frailty in older people: randomized trial. BMC Med. 2013;11:65.
402	Published 2013 Mar 11. doi:10.1186/1741-7015-11-65
403	43. Cesari M, Vellas B, Hsu FC, et al. A physical activity intervention to treat the frailty
404	syndrome in older persons-results from the LIFE-P study. J Gerontol A Biol Sci Med

Sci. 2015;70:216-222. doi:10.1093/gerona/glu099

406	44. Trombetti A, Hars M, Hsu FC, et al. Effect of physical activity on frailty. Secondary
407	analysis of a randomized controlled trial. Ann Intern Med. 2018;168:309-316.
408	doi:10.7326/M16-2011
409	45. Hoogendijk EO, Suanet B, Dent E, Deeg DJ, Aartsen MJ. Adverse effects of frailty
410	on social functioning in older adults: Results from the Longitudinal Aging Study
411	Amsterdam. Maturitas. 2016;83:45-50. doi:10.1016/j.maturitas.2015.09.002
412	46. Sha S, Xu Y, Chen L. Loneliness as a risk factor for frailty transition among older
413	Chinese people. BMC Geriatr. 2020;20:300. Published 2020 Aug 24.
414	doi:10.1186/s12877-020-01714-5.
415	47. Gale CR, Westbury L, Cooper C. Social isolation and loneliness as risk factors for the
416	progression of frailty: the English Longitudinal Study of Ageing. Age Ageing.
417	2018;47:392-397. doi:10.1093/ageing/afx188
418	48. Tieland M, Verdijk LB, de Groot LC, van Loon LJ. Handgrip strength does not
419	represent an appropriate measure to evaluate changes in muscle strength during an
420	exercise intervention program in frail older people. Int J Sport Nutr Exerc Metab.
421	2015;25:27-36. doi:10.1123/ijsnem.2013-0123
422	49. Suikkanen S, Soukkio P, Pitkälä K, et al. Older persons with signs of frailty in a
423	home-based physical exercise intervention: baseline characteristics of an RCT. Aging
424	Clin Exp Res. 2019;31:1419-1427. doi:10.1007/s40520-019-01180-z [Reference
425	omitted for blind review]
426	50. Theou O, Cann L, Blodgett J, Wallace LM, Brothers TD, Rockwood K. Modifications
427	to the frailty phenotype criteria: Systematic review of the current literature and
428	investigation of 262 frailty phenotypes in the Survey of Health, Ageing, and
429	Retirement in Europe. Ageing Res Rev. 2015;21:78-94. doi:10.1016/j.arr.2015.04.001

Table and Figure titles and legends

Table 1. Baseline characteristics in usual care and physical exercise groups, and in subgroups of pre-frail and frail. Means (SD) or frequencies (%).

Figure 1. Flowchart of study.

Figure 2. A) Status at 12 months for those who were pre-frail at baseline by randomization groups (physical exercise and usual care). Transition frequencies (%) from pre-frailty to the status of non-frail, pre-frail, frail, and death; mean with 95% confidence interval whiskers. Statistical significance of transition frequencies between the randomization groups p=0.032. B) Status at 12 months for those who were frail at baseline by randomization groups (physical exercise and usual care). Transition frequencies (%) from frailty to the status of non-frail, pre-frail, frail, and death; mean with 95% confidence interval whiskers. Statistical significance of transition frequencies between the randomization groups p=0.009.

Figure 3. Prevalence (frequency percentages, %) of the participants meeting the five frailty phenotype criteria (weight loss, low physical activity, exhaustion, weakness, and slowness) at baseline and at 12 months, by randomizations groups (usual care and physical exercise) Means with 95% confidence interval whiskers. Hommel's multiple comparison procedure was used to correct significance; only statistically significant p-values are presented.

Table 1. Baseline characteristics in usual care and physical exercise groups, and in subgroups of pre-frail and frail. Means (SD) or frequencies (%).

л	_	1
4	ר	≺
┰	_	J

	Usual care	Physic al exercis e	Usual care		Physical exercise		p-values [†]		
	All	All	Pre- frail*	Frail	Pre- frail*	Frail	Main	effects	Interaction
Characteristi	n=149	n=150	n=92	n=57	n=92	n=58	Grou	Frailt	011
cs							p	у	
Women, n	110 (74)	114	66	44	68	46	0.68	0.29	0.98
(%)		(76)	(72)	(77)	(74)	(79)			
Age, years,	83 (6)	82 (6)	82	84	82	82	0.31	0.32	0.29
mean (SD)			(7)	(5)	(6)	(7)			
BMI [‡] , mean	28.6	28.4	28.7	28.5	28.0	29.2	0.98	0.46	0.28
(SD)	(6.1)	(5.5)	(6.2)	(5.8)	(5.8)	(4.9)			
Walking	0.64(0.2	0.62	0.73	0.50	0.71	0.49	0.58	< 0.00	0.84
m/s, mean	4)	(0.24)	(0.21)	(0.22)	(0.22)	(0.21)		1	
(SD)))))			
Handgrip									
strength, kg,									
Women,	17.8	17.1	18.6	16.6	18.7	14.8	0.51	< 0.00	0.90
mean (SD)	(5.7)	(6.5)	(6.1)	(4.9)	(5.3)	(7.4)		1	
Men, mean	30.0	28.5	32.8	24.5	29.1	27.3	0.82	0.010	0.028
(SD)	(7.5)	(7.5)	(6.6)	(6.3)	(8.4)	(5.3)			
Living	86 (58)	88 (59)	43	43	54	34	0.56	0.013	0.013
alone, n (%)			(47)	(75)	(59)	(58)			
MMSE§,	24.6	24.2	24.9	24.0	24.8	23.4	0.32	0.001	0.58
mean (SD)	(3.2)	(3.1)	(3.3)	(2.9)	(3.0)	(3.0)			
CCI [∥] , mean	2.0(1.7)	2.0	1.8	2.3	1.9	2.1	0.67	0.090	0.41
(SD)		(1.7)	(1.6)	(1.8)	(1.4)	(1.9)			
Current	3 (2)	9 (6)	2(2)	1(2)	5 (5)	4 (7)	0.09	0.98	0.74
smoking, n							4		
(%)									
AUDIT-C**,	1.0 (1.3)	11	1.1	1.0	0.9	1.3	0.51	0.33	0.13
mean (SD)		(1.1)	(1.3)	(1.5)	(1.1)	(1.3)			
MNA ^{††} ,	22.7	23.3	23.7	21.4	23.8	22.6	0.06	< 0.00	0.13
mean (SD)	(3.4)	(3.1)	(2.7)	(3.9)	(3.1)	(2.9)	9	1	
Frailty									
criteria, n									
(%)									
Weight	27 (18)	26 (17)	7(8)	20	9	17	0.98	< 0.00	0.41
loss	` '	` /	. ,	(35)	(10)	(29)		1	
Low	83 (56)	77 (51)	30	53	32	45	0.10	< 0.00	0.075
physical	()	()	(33)	(91)	(35)	(76)		1	
activity			` /	` /	` /	` /			

Exhaustion	96 (64)	90 (60)	56	40	37	53	0.28	< 0.00	< 0.001
~1	22 (22)	40 (00)	(62)	(69)	(41)	(90)	0.00	1	0.00
Slowness	33 (22)	48 (32)	4 (4)	29	11	37	0.02	< 0.00	0.30
				(50)	(12)	(63)	0	1	
Weakness	85 (57)	94 (63)	37	48	49	45	0.68	< 0.00	0.25
			(41)	(83)	(54)	(76)		1	
Frailty							0.69	-	-
score ^{‡‡} , n									
(%)									
1	48 (32)	44 (29)	48	-	44	-			
			(52)		(48)				
2	44 (30)	48 (32)	44	-	48	-			
	, ,	,	(48)		(52)				
3	42 (28)	40 (27)	-	42	-	40			
	` /	. ,		(74)		(69)			
4	13 (9)	13 (9)	-	13	-	13			
	· /	` /		(23)		(22)			
5	2(1)	5 (3)		2(3)		5 (9)			

Note. *Participants were classified as pre-frail if they met one or two of the frailty criteria and frail if they met three or more; †A two-way analysis of variance (ANOVA) and logistic model including main effects of randomization groups and frailty status and their interaction.
‡BMI, Body Mass Index (kg/m²); §MMSE, Mini-Mental State Examination³¹; CCI, Charlson Comorbidity Index³¹; *AUDIT-C, Alcohol Use Disorders Identification Test³³; †MNA, Mini Nutritional Assessment³9; ‡‡Number of frailty criteria fulfilled

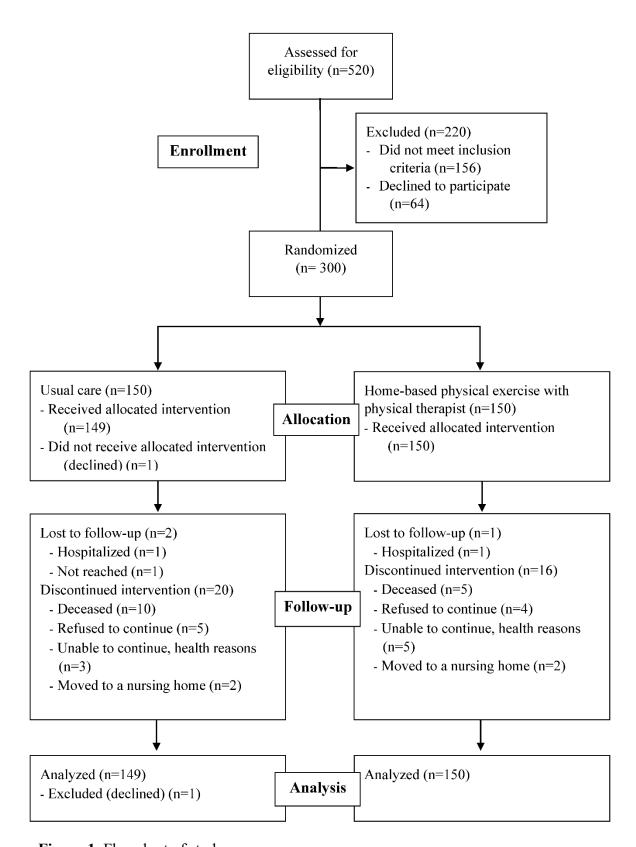
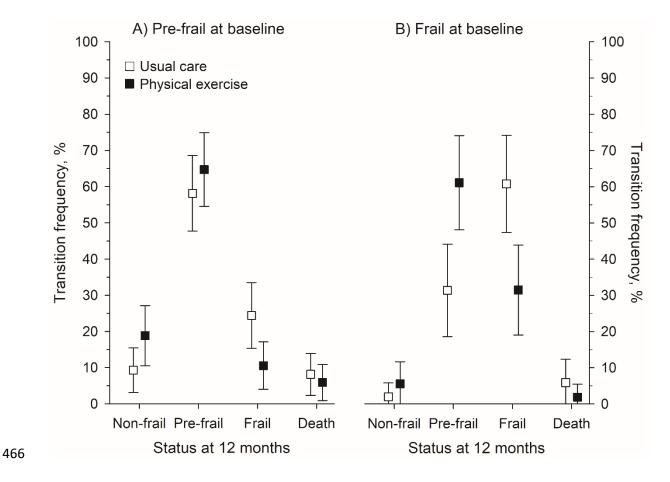
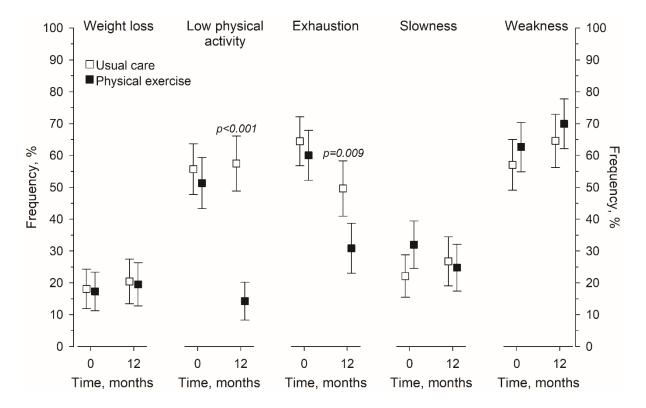




Figure 1. Flowchart of study.

Figure 2. A) Status at 12 months for those who were pre-frail at baseline by randomization groups (physical exercise and usual care). Transition frequencies (%) from pre-frailty to the status of non-frail, pre-frail, frail, and death; mean with 95% confidence interval whiskers. Statistical significance of transition frequencies between the randomization groups p=0.032. B) Status at 12 months for those who were frail at baseline by randomization groups (physical exercise and usual care). Transition frequencies (%) from frailty to the status of non-frail, pre-frail, frail, and death; mean with 95% confidence interval whiskers. Statistical significance of transition frequencies between the randomization groups p=0.009.

Figure 3. Prevalence (frequency percentages, %) of the participants meeting the five frailty phenotype criteria (weight loss, low physical activity, exhaustion, weakness, and slowness) at baseline and at 12 months, by randomizations groups (usual care and physical exercise) Means with 95% confidence interval whiskers. Hommel's multiple comparison procedure was used to correct significance; only statistically significant p-values are presented.