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Abstract—The increased, widespread, unwarranted, and un-
accountable use of Closed-Circuit TeleVision (CCTV) cameras
globally has raised concerns about privacy risks for the last
several decades. Recent technological advances implemented
in CCTV cameras, such as Artificial Intelligence (AI)-based
facial recognition and Internet of Things (IoT) connectivity, fuel
further concerns among privacy advocates. Machine learning and
computer vision automated solutions may prove necessary and
efficient to assist CCTV forensics of various types.

In this paper, we introduce and release the first and only
computer vision models are compatible with Microsoft common
object in context (MS COCO) and capable of accurately detecting
CCTV and video surveillance cameras in street view, generic
images, and video frames.

Our best detectors were built using 8,387 images, which
were manually reviewed and annotated to contain 10,419 CCTV
camera instances, and achieved an accuracy rate of up to 98.7%.
This work proves fundamental to a handful of present and
future applications that we discuss, such as CCTV forensics,
pro-active detection of CCTV cameras, providing CCTV-aware
routing, navigation, and geolocation services, and estimating their
prevalence and density globally and on geographic boundaries.

Index Terms—CCTV, cameras, computer vision, datasets,
machine learning, mapping, object detection, privacy, video
surveillance

I. INTRODUCTION

CCTV and video surveillance cameras are currently some

of the most ubiquitous technology, and it is almost impossible

to live through one day without entering the field of view of

at least one, if not dozens, of closed-circuit television (CCTV)

cameras [1], [2]. At present, CCTV cameras are an integral

part of any infrastructure (e.g., cities, buildings, streets, and

businesses), and it is expected that more than one billion

closed-circuit television (CCTV) cameras will be operating

globally by the end of 2021 [3]. In terms of cybersecurity,

CCTV cameras, digital video recorders (DVRs), and video

surveillance systems have already been the target of numerous

cyberattacks [4], and they were the main culprit behind the

legendary and massive attack by the Mirai Internet of Things

(IoT) botnet [5]. Both the CCTV forensics challenges [6], and

the privacy risks [7]–[11], associated with CCTVs are also well

known. There are several ways to overcome CCTV forensics

challenges and mitigate the privacy risks of CCTV cameras,

including their additional features, such as face recognition.

One way is to develop, provide and use appropriate high-tech
tools both for CCTV forensics applications [6] and against the

invasion of privacy by CCTV cameras [12]. Examples of such

tools include CCTV-aware route planning and navigation as

well as real-time early warning systems that alert users when

their video input-equipped mobile and embedded devices (e.g.,

wearables, smartphones, and drones) enter the potential field

of view of CCTV cameras. Some recently presented tools

can perform city-wide CCTV-aware privacy-oriented route

planning [12]. However, the authors primarily relied on manual

camera mapping, which is not a scalable approach given

the total number of cameras worldwide. Such tools require

accurate object detection and mapping, and localization and

computer vision are proven methods for performing these

tasks [13]–[15]. However, various foundational blocks are cur-

rently unavailable to implement such CCTV-aware technology.

We argue that one of the most crucial missing components is

an object detector for quick, accurate, and automated computer

vision detection of CCTV cameras.

Contributions.: In this paper, we develop a novel dataset

with high practical applicability [12], [16], [17]. From a

scientific method point of view, we use state-of-the-art CV

methods and toolsets to build, train and evaluate our models.

We also attempt to close the existing fundamental research

and technology gaps, as well as, to address the strong and

imminent need for such tools. During the experiments on real-

world data, our system achieved an accuracy rate of up to

98.7%, which is comparable to Google’s original automatic

system for the large-scale privacy protection of human faces

and car license plates in Google Street View [18].

1) To the best of our knowledge, since 2020, we have been

the first to research, implement, and evaluate Computer

Vision (CV) models to detect CCTV cameras 1 In street

view, images and video frames, with a emphasis on
privacy, anonymity, and anti-surveillance applications.

2) In the context of CCTV forensics and Privacy Enhancing

Technologies (PET), we identify and discuss a handful of

core challenges and applicative scenarios associated with

this research direction

3) We release, as open data, the models and datasets neces-

sary to validate our results as well as to further expand the

1At this stage, our core aim is the accurate, large-scale detection visible
CCTV cameras. Although our object detectors work well on certain edge-
cases (Figs. 4, 5), the camouflage attacks on object detectors (e.g., careful
placement, and decoration) is a separate emerging topic [19], [20].



datasets and the research field. To our knowledge, these

are the first, the largest, and the best-performing datasets

and models publicly released for solving the stated prob-

lems. The relevant artefacts (e.g., code, datasets, trained

models, and documentation) will be available at the

acceptance stage at: https://github.com/Fuziih.

II. RELATED WORKS

Lin et al. [21] proposed a novel dataset for general object

detection called Microsoft’s Common Objects in COntext

(COCO, or MS COCO). The most recent (2017) update of

MS COCO has a fully annotated training dataset contain-

ing 118000 images and a 5000 image validation dataset. In

addition, a 41000 image testing dataset is also available.

There are more than 80 different classes for state-of-the-art

object detector testing with the MS COCO [22], including

pedestrians, traffic lights, cars, and even teddy bears. However,

it does not contain object detection models for CCTV cameras,

though they are currently an indispensable part of any street

and city infrastructure, such as traffic lights and road signs.

The Mappilary Vistas work [23] presented a novel large-

scale dataset built from about 25,000 street-level images. The

images in the dataset were annotated into 66 object categories,

while 37 object classes also have additional instance-specific

annotations. However, this dataset contained less than 20

image instances of CCTV cameras, which is not enough to

build a reliable and representative CV model out of it. In

comparison, our CCTVCV dataset offers manually reviewed

and annotated 10,419 CCTV camera instances.

Recently, Sheng et al. [24] attempted to estimate the preva-

lence of surveillance cameras in 16 major cities. For this, they

built their CV models, which provided an accuracy rate of

0.93, which is almost 6% less accurate than our CCTVCV

model we developed one year before their work.

In a similar yet distinct direction, Buzzon [25] collected

images of CCTV surveillance warning signs. The author did

not build a CV model out of it; its main scope was an artistic-

perspective exploration of surveillance in modern society.

The ResNeSt split-attention networks was introduced in

April 2019 by H. Zhang et al. [26]. It features a novel building

block to improve the standard ResNet backbone structure,

originally developed for image classification rather than object

detection. The authors introduced the modular split-attention

block to enhance the performance of the ResNet architecture

and gear it toward more downstream object detection and seg-

mentation tasks. Their ResNeSt network consists of multiple

split-attention blocks stacked on the ResNet structure. Each

split-attention block generally divides the feature maps into

subgroups. The feature representation of the group is derived

from a weighted combination of even smaller feature divides

called splits. Zhang et al. [26] showcased their state-of-the-art

results using the ResNeSt backbone on cascade region-based

convolutional neural networks (R-CNN) model [27].

In June 2020, Qiao et al. [28] published a paper on De-

tectoRS, which features two distinct mechanisms to improve

object detection tasks. They propose inserting a Recursive

Feature Pyramid (RFP) on top of regular Feature Pyramid

Networks (FPN) [29] structure. The RFP features an increased

number of feedback connections from the FPN [29] to the

bottom-up backbone layers, which is a ”looking and thinking

twice ”design. The authors explained that this approach creates

more powerful feature representations [28]. Another distinct

feature of the DetectoRS is switchable atrous convolution

(SAC). It enables the backbone to adapt to different scales

of objects conditionally. The gist of SAC is that it does not

require previous retraining weights, as it can effectively adapt

standard convolutions to conditional convolutions [28]. Using

DetectoRS with the ResNet-50 and ResNeXt-101-32x4d back-

bones achieve state-of-the-art results in Microsoft Common

Objects in COntext (MS COCO) test-dev tasks [28].

III. APPLICATIONS

We believe our present work, CCTVCV, can enable more

future CCTV forensics applications and address some of its

imminent challenges [6]. For example, OSRM-CCTV [30]

and CCTV-Exposure [30] systems, building over CCTVCV

can be used to analyze both future predictions and past

retrospects, if a particular navigation route went nearby any

CCTV cameras. This can help, in turn, investigate criminal,

humanitarian, and insurance cases, e.g., by quickly identifying

the subset of CCTV cameras that would be most interesting

to capture evidence for the case. Overall, an ML/CV-based

system (such as CCTVCV) that can automatically detect and

mark CCTV cameras in street view imagery and video footage,

will be required, or at least be highly beneficial, in any

CCTV forensics applications, given that the number of CCTV

cameras is growing fast beyond 1 billion and manual efforts

are unlikely to scale with that.

IV. METHODOLOGY AND EXPERIMENTAL SETUP

As with any CV object detector, we followed a two-

phase approach. First, we trained multiple models for object

detection using training sets and additional validation sets for

internal self-validation during model training. To train the CV

object detectors, we split the phase into four parts: dataset

gathering (Section IV-A), image annotation (Section IV-C),

and model training (Section IV-E). Once the model training is

completed, we evaluate each trained model against a testing

set.

A. Dataset compiling and definitions

When we began compiling the dataset, we made a practical

decision to classify cameras into at least two distinct sub-

classes based on their shape: directed cameras and round
cameras. This information enables us to model the cameras’

3D field of view coverage more accurately in future work. The

algorithm can decide whether a particular point in space (e.g.,

sidewalk, street, or street corner) provides adequate privacy for

an individual. However, it is essential to note that, from the

viewpoint of MS COCO annotations [21] and CV/ML training,

we treat all the CCTV cameras as a single camera category,

regardless of whether they are annotated as directed or round.



This is in line with the MS COCO [21] approach, where, for

example, the cars category is represented as a single category

regardless of the actual car’s properties (e.g., shape, make, or

color). In Table I, we compare our dataset to MS COCO per

class basis.

Directed cameras include box- and bullet-shaped cameras,

and we assume such cameras record a limited field of view

in the direction they are pointed. Some of them are motorized

(e.g., via pan-tilt-zoom [PTZ] hardware and protocols) and

therefore have a mobile field of view (in theory, up to 360◦).

However, it is challenging, if not impossible, to detect PTZ

elements with computer vision on static and low-resolution

images.

Round cameras include dome- and sphere-shaped cameras,

and we assume that such cameras potentially record a 360◦

field of view. Although some dome- and sphere-shaped cam-

eras have an internal static and directed camera sensor, it is

usually difficult to determine because of the reflective glass.

Therefore, to simplify our experiments and future geomapping

modeling, we assume for now that such cameras record a 360◦

field of view.

B. Datasets overview

a) DatasetAll.: Our latest and most complete dataset is

DatasetAll, which is the core of this paper. It was obtained

by merging Dataset0, Dataset1, and Dataset2 and

applying de-duplication, cleanup, and quality checks after the

merging process. It is important to note that due to the complex

nature of the merging process, the counts in DatasetAll
are not just a plain sum-up of all the individual counts

from Dataset0, Dataset1, and Dataset2. After the

merging process was completed, the DatasetAll training

set contained 8, 387 images with 10, 419 camera instances

(6, 137 directed and 4, 282 round), while its validation set

had 533 images with 647 camera instances (379 directed

and 268 round). We used DatasetAll to train our most

recent models, namely ResNeSt-200 and DetectoRS: Cascade

+ ResNet-50.

b) Dataset2.: Dataset2 was collected in late Septem-

ber 2020 using a crowd-sourcing effort by eight contributors.

We used our own annotation tool (see Section IV-C). This

dataset contains 4, 167 images with 5, 380 camera instances

(3, 325 directed and 2, 055 round). The images were captured

mostly from Google Street View [31], but Flickr [32] and

Baidu Maps [33] were also used. This dataset was never

used as is for model training and evaluation. However, all

of the images captured in this dataset were used to create

the training, validation and testing sets of our most complete

dataset, DatasetAll.

c) Dataset0, Dataset1.: Our first dataset, which we call

Dataset0, was originally collected in January-February

2020 by contributor Person0 HT. The images were collected

from Flickr [32], 500px [34], Unsplash [35] and Google Maps

Street View [31]. All the images in this dataset were annotated

using Wada’s Labelme standalone annotation tool [36] by

contributor Person0 HT. The Dataset0 training set con-

tained 3, 401 images with 3, 986 instances (2, 244 directed

and 1, 742 round) and the validation set had 528 images with

617 instances (348 directed and 269 round) respectively. The

Dataset0 also featured a small testing set of 186 images

with 231 instances (126 directed and 105 round) 2.

As our most immediate goal was to detect cameras from

street-level imagery, our next effort to improve the dataset

was to focus on street-view imagery in the dataset’s content.

Therefore, Dataset1 only included street view-images from

Dataset0 and some new images contributor Person6 TL
captured during May 2020 from Google Street View [31]. The

Dataset1 training set contained 2, 457 images with 3, 101
instances (1, 554 directed and 1, 547 round), and the validation

set had 270 images containing 354 instances (178 directed and

176 round). The testing set was the same as with Dataset0.

C. Image annotation

Since we used supervised training at this stage, we had to

label and annotate the images in our datasets.
a) Dataset0, Dataset1.: To annotate the images in these

datasets, we used the standalone Wada’s Labelme tool [36].

Wada’s Labelme [36] allows annotation with polygon seg-

ments that can be used in object segmentation architectures,

such as Mask-RCNN [37] and CenterMask [38]. When using

object segmentation, the outlines of the objects can be iden-

tified more precisely, instead of a mere bounding box placed

around the object of interest.
b) Dataset2.: To enable rapid and straightforward crowd-

sourced contribution, especially for completing the work in

this article, we designed and developed a novel annotation tool

implemented as a highly flexible and MS COCO-compatible

browser-only extension [16]. It requires minimal setup and

configuration effort and is ready to use out of the box, even

by novice contributors. The browser extension was written in

JavaScript and came with a set of more than ten distinctive

features.

D. Datasets details

1) Training and validation datasets: As for the dataset,

we settled on a training dataset with 3,401 images containing

2,244 directed class instances and 1,742 round class instances.

The validation dataset contained 528 images with 348 directed

class instances and 269 round class instances marking about

15.5% split between training and validation datasets. MS

COCO format dataset made it easy to use several architectures

out of the box and allowed instance segmentation detection

due to polygon annotation possibility.

Our training dataset contains 3, 401 images for a total of

2, 244 directed class instances and 1, 742 round class instances.

Our validation dataset contains 528 images for a total of 348
directed class instances and 269 round class instances, marking

about 15.5% split between training and validation datasets.

For the datasets, we used the MS COCO format as this

made it easy to use several object detection architectures out

2Later on, this testing set was replaced with improved alternatives.



of the box (see Section IV-E), and it also allowed instance

segmentation detection thanks to the polygon annotation pos-

sibility.

2) Testing dataset: For evaluation purposes (see Section V),

we gathered a separate test dataset. The test dataset contained

only street-level imagery sources such as OpenStreetCam [39]

and Google Street View [31]. The test dataset is intended to

serve as an indicator of how well our trained models will

work as CCTV camera detectors specifically for street-level

imagery sources since such sources are the primary use case

proposed for future work. Our test dataset contains 186 images

for a total of 126 instances of directed cameras class and 105
instances of the round cameras class. In Table II, we disclose

the statistics of our dataset iterations in detail.

TABLE I: Comparison: our datasets vs. MS COCO 2017.

Dataset Name
Total

Categories
Total

Instances

Median
Instances
per categ.

Increase
(vs. Median
MS COCO)

MS COCO (train) 80 860001 6097 1x
DatasetAll (train) 1 10,419 10,419 1.70x
Dataset0 (train) 1 3,986 3,986 0.65x

MS COCO (val) 80 36781 265 1x
DatasetAll (val) 1 647 647 2.44x
Dataset0 (val) 1 617 617 2.32x

TABLE II: High-level statistics for the datasets (training set).

Dataset0 Dataset1 Dataset2 DatasetAll

Total counts

Total collected images 3, 401 2, 457 4, 167 8, 387
Total annotated camera instances 3, 986 3, 101 5, 380 10, 419

Images grouped by source

Google (Street View,
Images Search)

1,906 2,457 3873 6,598

Baidu street view - - 269 269
Flickr 935 - 25 960
500px 482 - - 482
Unsplash 78 - - 78

Instances grouped by sub-type

Directed camera instances 2,244 1,554 3, 325 6,137
Round camera instances 1,742 1,547 2, 055 4,282

Instances grouped by pixel area

Small (¡ 32x32 px) 685 762 1455 2,331
Medium (32x32 – 96x96 px) 2,247 2,147 3345 6,397
Large (¿ 96x96 px) 1,054 193 580 1,691

E. Model training

To date, it has taken the equivalent of at least three person-
months of effort to perform all the model training experiments

with trial and error. It also took the equivalent of at least 600
GPU hours of computing effort using the described hardware

configurations.

1) Initial models: Our first efforts with Dataset0 in-

cluded three detectors with with total of six models. We trained

CenterMask2 [38], [40] with VoVNet-V2 [41] as the backbone

using the V-57-eSE, V-99-eSE, V-39-eSe (lightweight) vari-

ants. For ATSS [42], we used ResNet-50 [43] and ResNeXt-

101 [44] backbones with multi-scale training and deformable

convolutions and for TridentNet [45], we used ResNet-

101 [43] C4 backbone. As previously mentioned, we achieved

excellent results with Dataset0, with 95.6% and 91.1%
accuracy rates for the validation and testing sets, respectively.

Although the results were satisfactory, as our model use-cases

began to realize and given the peer-reviewed received, we

decided to create a larger dataset with more variance in the

images. Object detection is evolving quickly, so we substituted

our detectors for more promising ones.

2) Latest models: Therefore, for DatasetAll we used

two state-of-the-art object detection frameworks to train our

models, FAIRs detectron2 [46] and MMdetection [47] by

Multimedia Laboratory, CUHK. Our ResNeSt [26] model used

detectron2 [48], and the DetectoRS [28] model was trained

on MMDet [47]. Both of the frameworks are equipped to

handle our COCO-style dataset by default and feature dataset

evaluators using the pycocotools library.

a) ResNeSt.: For ResNeSt [26], we chose a huge 200-

layer-deep backbone with the Cascade R-CNN [27] method.

Standard settings were primarily used therefore, the models

feature FPN [29], SyncBN [49] and image scale variation that

randomizes the short side of the input image between 640 and

800 pixels. We changed the class number to two and used

the same training schedule as our previous experiments. We

first set the maximum iterations to 45,000 (i.e., 0.5x of the 1x

learning rate schedule, which translates to 90,000 iterations

by default). However, we achieved even better results with

20,000–40,000 iterations. Therefore, we set our schedule to

36,000 maximum iterations, lowering steps to 30,000 and

34,000. Our base learning rate was 0.02.

b) DetectoRS.: For DetectoRS [28], we chose the

ResNet-50-based backbone. The images were input at 800

pixels short-size, and the learning rate was set at 0.01. We

set the number of classes to two, and the scheduler remained

at 12 epochs. Our dataset and the setting at two samples per

worker resulted in 4,195 iterations per epoch, totaling 50,340

iterations. The learning rate automatically stepped to one-tenth

of the previous at the beginning of epochs nine and twelve.

Table III show the training iteration count for each model

that provided the best performance for the whole training

session. Additionally, these tables present the timings for

training and inference under each detection model. For detailed

structure and workflow of the standard models, we reference

the interested readers to the corresponding papers [26], [28].

V. ANALYSIS OF RESULTS

We tested all the models separately with the validation

dataset and a separate testing dataset (see Section IV-A). As

mentioned earlier, the testing dataset mainly features images

from street-level maps since this corresponds to the intended

use for the detector model.

TABLE III: Final configuration, iterations count, training and inference times
with training detectors on DatasetAll.

Detector
Best-result
iterations

(count [set])

Weights
file size
(MB)

Avg. train
time / iter.

(seconds [batch size])

Avg. inference
time / 800px image

(seconds)

ResNeSt 24,999 [test] / 19,999 [val] 1,009 1.6 [batch 8] 0.171
DetectoRS 37,750 (epoch 9) [test, val] 989 0.66 [batch 2] 0.13



A. Evaluation metrics

To evaluate our models, we used pycocotools and the MS

COCO evaluator built into the frameworks. For all the models

trained, we used the same evaluator. The metrics we used and

will present in this paper are modified from the standard MS

COCO [21] evaluation metrics to suit our goals. We offer the

modifications and the arguments for them. We also present an

F1 score for our results, a metric derived from the average

precision and recall. For the F1-score, we measure with 0.5

IoU and 100 detections per image threshold. We also list the

average precision rate per category (directed and round).

To evaluate the detector for the detection performance, MS

COCO employs 12 characterizing metrics. With MS COCO,

average precision (AP) essentially represents the mean aver-
age precision (mAP), which is the average precision rate across

all classes with localization accuracy built in. MS COCO’s

standard measurements are primarily average precision (AP)
and average recall (AR), where the average is taken on 10

intersection-over-union (IoU) threshold from 0.5 to 0.95 with a

0.05 interval. The AP across scales includes the area of pixels

within the segmentation mask or the bounding box. In this

context, based on the pixel size of the detected segmentation

mask or the bounding box, small objects are up to 32x32
pixels, medium objects are between 32x32, and large objects

are greater than 96x96 pixels in size.

We argue that the small objects category is not represen-

tative or required for our model use cases (i.e., detection in

street-view images). We discuss that considering the varying

quality of street-view images, the resolution we want to run the

images at and with computer-collected images, objects under

the 32x32 pixel threshold are subject to unnecessary false

detections. Therefore, we omit the small category from our

results and further use it with our models. We prefer to create a

more intelligent image-capturing algorithm for better coverage

of the captured streets. Our datasets still contain instances of

the small category, their detection can be enabled or disabled

at will.

With our main and immediate use-cases, pixel-precise lo-

calization is unnecessary; hence, the average precision with

0.5 IoU (i.e., AP@0.5 metric) is most relevant in our case.

Therefore, we scaled all of our results to the 0.5 IoU threshold.

B. Numerical results

In Table IV, we present the metrics (bounding box detec-

tion) for the testing dataset with 800-pixel short-side images.

The results are outstanding. Cutting the tiny samples from

the detections increased our percentages substantially. Our F1

scores with both models are quite high, suggesting the lack

of false detections in the larger detection categories. Directed

samples seem to be more difficult to detect in our testing

dataset. We are also pleased with our localization accuracy,

as the difficult 0.5:0.95 IoU category is in the 70th-percentile

range. Large samples are no issue for our models, and the

large sample size seems adequate.

In Table V, we show the detection metrics (bounding box

detection) for the validation dataset. The results are excel-

lent. The scores are high for all categories. Cross-referencing

the testing set and validation set scores, we could argue a

slight overfitting issue exists, especially with the DetectoRS

model. In comparison, the directed subcategory also takes a

hit in detection precision. Therefore, we will argue that our

validation dataset needs another revision to improve detection

generalization. We are pleased with the results, including the

tougher 0.5:0.95 IoU localization tests.

In Table VI, we present the segmentation detection results

for the ResNeSt-model. In comparison, we can see that the

segmentation results are not far off from the bounding box

results. In a few categories, the results are even slightly

better. This suggests great localization precision and a great

beginning for the more accurate detection of camera types, as

the model can detect shapes more accurately.

Input image resolution is a debatable topic. Should we input

images in their native resolution or training image size? The

ideal case would be if there were no discrepancies between the

two. As our testing dataset contains slightly higher resolution

images than our testing set, we also tested the testing set with

1,200-pixel short-side input images. We present the results in

Table VII.

The results show that our DetectoRS-model benefits from

the increased input resolution and achieves the highest scores

with the testing set. However, our ResNeSt-model suffers

from increased input resolution and lower scores than smaller

images. ResNeSt benefits from images that are close to

the training resolution. The results imply that testing the

models with varying resolutions is beneficial, and keeping

the resolution constant will yield stable results. As transfer-

training of these models is not excessively time-consuming,

creating specialized models for each task with different image

properties is most likely beneficial.

C. Visual result samples

In this section, to understand our detectors’ successes,

failures, and challenges, we present a selection of relevant

samples and some comments.

Figs. 1, 2, 3 are perfect examples of our excellent results –

all TPs are found, and nothing else is detected. Furthermore,

the confidence levels on these samples are high (i.e., the lowest

is 80%).

Fig. 1: Visual results (Ground Truth - 4 TP) (left to right): ResNeSt - 4 TP
(3x100% and 80%); DetectoRS - 4 TP (3x100% and 95%)

Figs. 4 and 5 are examples of how DetectoRS edges out

on some of the samples. In Fig. 4, the camera blends into



TABLE IV: Results for bounding box detection with the DatasetAll testing set, 800px short side images, bold=best

Detector AP@0.5 AP@0.5:0.95 APm APl AR 100 ARm ARl F1
AP@0.5

(directed type)
AP@0.5

(round type)

ResNeSt 92.0% 71.4% 91.5% 96.0% 94.5% 93.7% 100% 93.2% 89.2% 94.8%
DetectoRS 91.5% 68.9% 91.1% 93.9% 93.1% 92.6% 95.5% 92.3% 89.1% 93.9%

TABLE V: Results for bounding box detection with the DatasetAll validation set, 800px short side images, bold=best

Detector AP@0.5 AP@0.5:0.95 APm APl AR 100 ARm ARl F1
AP@0.5

(directed type)
AP@0.5

(round type)

ResNeSt 97.3% 80.1% 96.8% 98.7% 98.4% 98.0% 99.6% 97.8% 98.0% 96.5%
DetectoRS 98.7% 83.4% 99.2% 98.8% 99.5% 99.7% 99.1% 98.5% 98.6% 98.7%

TABLE VI: Results for ResNeSt segmentation detection with the DatasetAll testing and validation sets, 800px short-side images

Set AP@0.5 AP@0.5:0.95 APm APl AR 100 ARm ARl F1
AP@0.5

(directed type)
AP@0.5

(round type)

Test 91.5% 70.2% 90.9% 96.2% 94.0% 93.2% 100% 92.7% 89.3% 93.8%
Val 97.0% 80.8% 96.5% 98.8% 98.1% 97.5% 99.6% 97.5% 97.3% 96.8%

TABLE VII: Results for bounding box detection with the DatasetAll testing set, 1200px short-side images, bold=best

Detector AP@0.5 AP@0.5:0.95 APm APl AR 100 ARm ARl F1
AP@0.5

(directed type)
AP@0.5

(round type)

ResNeSt 90.1% 71.9% 90.8% 87.0% 94.0% 93.7% 95.5% 92.0% 88.3% 92.0%
DetectoRS 92.6% 72.8% 92.4% 93.3% 95.4% 95.3% 95.5% 94.0% 90.0% 95.2%

Fig. 2: Visual results (Ground Truth - 4 TP) (left to right): ResNeSt - 4 TP
(4x100%); DetectoRS - 4 TP (2x100%, 99% and 96%)

Fig. 3: Visual results (Ground Truth - 1 TP) (left to right): ResNeSt - 1 TP
99%; DetectoRS - 1 TP 100%

the white wall in the sunlight, and Fig. 5 is quite dark.

The ResNeSt-model cannot detect the cameras, but DetectoRS

finds them and achieves good confidence in the TPs.

Fig. 6 is the worst sample on our testing set. ResNeSt

finds two FPs on the two lamps, but it also finds the camera.

DetectoRS only finds a single FP. Confidence levels on the

FPs are worryingly high.

Fig. 7 showcases an FN on both models. The directed

Fig. 4: Visual results (Ground Truth - 1 TP) (left to right): ResNeSt - 1 FN;
DetectoRS - 1 TP 95%

Fig. 5: Visual results (Ground Truth - 1 TP) (left to right): ResNeSt - 1 FN;
DetectoRS - 1 TP 81%

camera in the upper corner of the image is undetected. How-

ever, the lower round-type camera is found in high confidence

(99%).

Figs. 8 and 9 showcases how the angle of the image can

affect the results. Regardless of the angle, both models find

the TPs; however, at another angle, both models find a single

FP. With ResNeSt, the confidence of the FP is quite high

(93%), compared to 74% in the DetectoRS case, which could

be rooted out with confidence limiting. We could also use



sensor fusion here to limit the possibility of FPs.

Fig. 6: Visual results (Ground Truth - 1 TP) (left to right): ResNeSt - 1 TP
88%, 2 FP (99% and 96%); DetectoRS - 1 FN, 1 FP 95%

Fig. 7: Visual results (Ground Truth - 2 TP) (left to right): ResNeSt - 1 TP
99%, 1 FN; DetectoRS - 1 TP 99%, 1 FN

Fig. 8: Visual results (Ground Truth - 2 TP) (left to right): ResNeSt - 2 TP
(2x100%); DetectoRS - 2 TP (2x100%), 1 FP 74%

Fig. 9: Visual results (Ground Truth - 2 TP) (left to right): ResNeSt - 2 TP
(2x100%), 1 FP 93%; DetectoRS - 2 TP (100% and 96%)

In Fig. 10, both models find the TPs easily with high

confidence. However, both models also find a single FP with

the lamp. The confidence of these FPs is still lower than usual

(78% and 73%).

Next, we present some examples and results where we

applied image alteration techniques to improve confidence

levels and achieve TP/TN/FP values as close as possible to

the Ground Truth (GT). Figs. 11 and 12 showcase the result

of image alterations with the ResNeSt model. In Fig. 11, we

find improvements as an FN is turned into a TP in exposure

and equalizer tests. In Fig. 12, the results are mixed. On the

exposure test, we remove a single FP, but the confidence level

of the TP camera is hindered, and a single FP is still present.

Fig. 10: Visual results (Ground Truth - 2 TP) (left to right): ResNeSt - 2 TP
(2x100%), 1 FP 78%; DetectoRS - 2 TP (100% and 99%), 1 FP 73%

Fig. 11: Visual results (Ground Truth - 1 TP) (left to right): Original - 1 FN;
Contrast - 1 FN; Equalizer - 1 TP 73%; Exposure - 1 TP 79%; Saturation -
1 FN

Fig. 12: Visual results (Ground Truth - 1 TP) (left to right): Original - 1 TP
88%, 2 FP (99% and 96%); Contrast - 1 TP 97%, 2 FP (99% and 96%);
Equalizer - 1 TP 93%, 2 FP (99% and 80%); Exposure - 1 TP 65%, 1 FP
99%; Saturation - 1 TP 52%, 2 FP (96% and 92%)

VI. CONCLUSION

In this paper, we presented the first computer vision-

based object detectors to accurately identify CCTV cameras

in images and video frames. To build our system, we used

and evaluated several state-of-the-art computer vision frame-

works and backbones in parallel. Our best detectors were

built using 8,387 images that were manually reviewed and

annotated to contain 10,419 CCTV camera instances, and

achieve an accuracy of up to 98.7%. We believe our present

work, CCTVCV, can enable more future CCTV forensics

applications and address some of its imminent challenges [6].

For example, OSRM-CCTV [30] and CCTV-Exposure [30]

systems, building over CCTVCV can be used to analyze

both future predictions and past retrospects, if a particular

navigation route went nearby any CCTV cameras. This can

help, in turn, investigate criminal, humanitarian, and insurance

cases, e.g., by quickly identifying the subset of CCTV cameras

that would be most interesting to capture evidence for the case.

Overall, an ML/CV-based system (such as CCTVCV) that can

automatically detect and mark CCTV cameras in street view,

imagery and video footage will be required, or at least be

highly beneficial, in any CCTV forensics applications, given

the number of CCTV cameras, are growing fast beyond 1

billion and manual efforts are unlikely to scale with that.
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