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Abstract: The present synthetic strategy involves the synthesis of indolyl-triazolo-thiadiazole het-
erocyclic ring systems 8–13 from the condensation of 4-amino-5-(1H-indol-2-yl)-3H-1,2,4-triazole-
3-thione 1 with the aromatic carboxylic acid derivatives 2–7 in presence of POCl3 for 1 h. All com-
pounds were obtained in very good yields and have been well-characterized using spectroscopic
techniques. Exclusively, good quality crystals from the target organic hybrid 8-(1H-indol-2-yl)-5-
(p-tolyl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 9 were obtained and found suitable for X-ray single
crystal diffraction measurement, which is used to confirm and analyze the molecular and supramolec-
ular structure aspects of 9. The solid-state structure of the synthesized molecule 9 agrees very well
with other characterizations. The packing of 9 is dominated by the N . . . H, S . . . H, C . . . C and
S . . . C non-covalent interactions, which agree with the Hirshfeld surface analysis. The percentages
of these contacts are calculated to be 20.3%, 5.4%, 9.4% and 4.3%, respectively.

Keywords: fused heterocycle; triazole; thiadiazole; computational study

1. Introduction

Indole chemistry is a wonderful area of research and has gained a lot of attention
from researchers for centuries. This fused heterocycle pharmacophore ring exists in many
biological hits, which makes this unit a privileged molecule [1]. The indole core structure is
found in alkaloid polycyclic compounds and has shown broad-spectrum actions in many
pharmacological applications. Among their biological activities, these compounds have
been applied as targeting enzyme inhibitors in cancer research, specifically PARP-1 and
EGFR inhibitors [2–4], α-glucosidase inhibitor [5] and anti-HIV (anti-human immunod-
eficiency virus) [6], and have also exhibited other activities, including anti-microbial [7],
anti-inflammation [8], anti-vascular [9], ischemia/reperfusion injury [10], and anti-malarial
potential [11].

On the other hand, the 4-amino-1,2,4-triazole-3-thione motif is an interesting scaffold
that can be utilized for the synthesis of heterocyclic compounds via annulation or Schiff
base formation because it has good functionality. This pharmacophore showed interesting
biological patterns, including anti-tumor [12], anti-malarial [13], anti-microbial [14], anti-
convulsant [15], and anti-proliferative behaviors [16]. Additionally, it has been used as an
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enzyme inhibitor, such as for protein tyrosine phosphatase 1B [17], AChE enzyme [18],
urease enzymes [19] and dizinc metallo-β-lactamase [20]. L. Gavara et al. have designed
and synthesized a new Schiff base derived from the 4-amino-1,2,4-triazole-3-thione core
structure, which showed high efficacy and more selectivity against metallo-β-lactamases
(MBLs) [21]. Recently, Boraei et al. [22] utilized this synthon combined with indole moiety
for annulation, and yielded a new triazolo/thiadiazole heterocycle with a confirmed
molecular structure, which makes this scaffold interesting and will lead to further research.
Triazole and fused rings have shown great biological importance in the medical chemistry
and drug discovery research fields [23–27].

The chemical insights yielded by the newly synthesized molecules have attracted the
attention of many researchers. One of the most powerful tools that can provide insights
into the intermolecular interactions in molecular crystals is Hirshfeld surface analysis.
The shape- and size-based Hirshfeld surface analysis approach allows the quantitative
and qualitative exploration and visualization of the intermolecular contacts in crystalline
molecules. In this context, based on the findings mentioned above and in continuation of
our research program focused on heterocyclic chemistry [28–30], we have synthesized new
fused triazolo/thiadiazole heterocycles combined with an indole scaffold. The molecular
structures of the desired molecules are fully characterized based on spectrophotometric
tools, in addition to single-crystal X-ray diffraction (SCXRD) analysis. Hirshfeld surface
analysis has also been performed.

2. Materials and Methods
2.1. General

Melting points were measured via a melting point apparatus (SMP10) with open capil-
laries and are inclded uncorrected. Nuclear magnetic resonance (1H-NMR and 13C-NMR)
spectra were determined using DMSO-d6 on Bruker AC 300 and 400 MHz spectrometers,
respectively, in the presence of tetramethylsilane as an internal standard. Chemical shifts
are described in δ (ppm) and coupling constants are given in Hz. Elemental analysis was
performed on a Flash EA-1112 instrument. A Finnigan MAT 95XP was used to record the
mass spectra of HREI experiments. A Jeol JMS HX110 mass spectrometer was used to
capture the FAB-MS data.

2.2. General Procedures

A mixture of 3.0 mmol of appropriate aromatic carboxylic acid derivative 2–7 (3.0 mmol)
was refluxed in 10 mL phosphorus oxychloride for 1 h, then left to cool to room temperature,
before being poured over ice water. The formed precipitates were collected by filtration,
dried and recrystallized from DMF to produce the pure compounds 8–13. Only 8-(1H-
indol-2-yl)-5-(p-tolyl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 9 was obtained in a sufficient
crystal form for SCXRD measurement.

8-(1H-Indol-2-yl)-5-phenyl-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 8
Yield: 87%, m.p. > 300 ◦C; 1H NMR (DMSO-d6, 300 MHz) δ 7.09 (dd, J = 7.8, J = 7.2 Hz,

1H), 7.22 (dd, J = 7.2, J = 7.8 Hz, 1H), 7.47–7.72 (m, 6H), 8.13 (d, J = 6.6 Hz, 2H), 12.13 (br.s,
1H); 13C NMR (DMSO-d6, 75 MHz) δ 102.67, 111.97, 119.88, 121.00, 122.27, 123.27, 127.30,
127.58, 128.95, 129.63, 132.95, 137.15, 141.13, 153.45, 167.01; HRMS (EI) calcd for C17H11N5S
(M+): 317.0715. Found: 317.0726.

8-(1H-Indol-2-yl)-5-(p-tolyl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 9
Yield: 83%, m.p. > 300 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ 2.42 (s, 3H), 7.08 (dd,

J = 8.0, J = 7.5 Hz, 1H), 7.22 (dd, J = 7.5, J = 8.4 Hz, 1H), 7.45–7.51 (m, 4H), 7.71 (d, J = 8.0 Hz,
1H), 7.99 (d, J = 8.0 Hz, 2H), 12.08 (br.s, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 21.19, 102.69,
112.04, 119.95, 121.09, 122.94, 123.33, 126.31, 127.29, 127.66, 130.24, 137.21, 143.52, 167.13;
HRMS (FAB +ve) calcd for C18H14N5S (M + 1): 332.0970. Found: 332.0955.

3-(1H-Indol-2-yl)-6-(4-methoxyphenyl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 10
Yield: 82%, m.p. > 300 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ 3.91 (s, 3H), 7.11 (t,

J = 7.5 Hz, 1H), 7.18–7.31 (m, 3H), 7.40–7.58 (m, 2H), 7.73 (d, J = 7.9 Hz, 1H), 8.10 (d,
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J = 8.8 Hz, 2H), 12.14 (s, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 56.19, 103.15, 112.51, 115.57,
120.45, 121.56, 123.40, 123.53, 128.10, 129.70, 137.62, 141.51, 162.90, 163.40; elemental analysis
calculated for [C18H13N5OS]: C, 62.23; H, 3.77; N, 20.16; S, 9.23. Found: C, 62.34; H, 3.86; N,
20.08; S, 9.35.

8-(1H-Indol-2-yl)-5-(4-chlorophenyl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 11
Yield: 92%, m.p. >300 ◦C; 1H NMR (DMSO-d6, 300 MHz) δ 7.09 (dd, J = 8.1, J = 7.2 Hz,

1H), 7.22 (dd, J = 7.2, J = 8.4 Hz, 1H), 7.46 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.69–7.76 (m, 4H),
8.16 (d, J = 8.4 Hz, 2H), 12.13 (br.s, 1H); 13C NMR (DMSO-d6, 75 MHz) δ 102.74, 111.96,
119.96, 121.06, 122.81, 123.36, 127.61, 127.88, 129.12, 129.77, 137.20, 137.66, 141.18, 153.60,
165.97; HRMS (FAB +ve) calcd for C17H11N5SCl (M+1): 352.0424. Found: 352.0441.

6-(2-Bromophenyl)-3-(1H-indol-2-yl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 12
Yield: 73%, m.p. 296–297 ◦C; 1H NMR (400 MHz, DMSO) δ 7.11 (d, J = 7.2 Hz, 1H),

7.24 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 1.4 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.84–7.62 (m, 4H),
8.25 (dd, J = 7.7, 1.7 Hz, 1H), 12.18 (s, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 103.30, 112.53,
120.47, 121.61, 121.88, 123.20, 123.93, 128.08, 129.09, 129.88, 132.87, 134.27, 134.71, 137.70,
141.60, 150.53, 165.88; elemental analysis calculated for [C17H10BrN5S]: C, 51.53; H, 2.54; Br,
20.16; N, 17.67; S, 8.09. Found: C, 51.70; H, 2.55; Br, 20.18; N, 17.61; S, 8.13.

3-(1H-indol-2-yl)-6-(pyridin-3-yl)-[1,2,4]triazolo [3,4-b][1,3,4]thiadiazole 13
Yield: 77%, m.p. >300 ◦C; 1H NMR (DMSO-d6, 400 MHz) δ 7.19 (m, 2H), 7.52 (s, 2H),

7.73 (d. J = 7.5 Hz, 2H), 8.55 (s, 1H), 8.90 (s, 1H), 9.35 (s, 1H), 12.16 (s, 1H); 13C NMR
(DMSO-d6, 100 MHz) δ 103.50, 112.56, 120.48, 121.58, 123.24, 123.89, 124.95, 128.17, 135.59,
137.78, 148.31, 153.76, 162.82, 165.17; elemental analysis calculated for [C16H10N6S]: C,
60.36; H, 3.17; N, 26.40; S, 10.07. Found: C, 60.41; H, 3.13; N, 26.32; S, 10.11.

2.3. X-ray Structure Determinations

The technical procedure for the chemical structural elucidation of compound 9 via X-
ray single-crystal diffraction analysis is given in the Supplementary Materials (The protocol
and refinement crystal data Tables S1–S6). Crystal data were refined using the software
from [31–34]. Table 1 lists the data regarding the synthesized crystals of compound 9.

Table 1. Crystal data for 9.

9

CCDC 2239222
empirical formula C18H13N5S
fw 331.39
temp. (K) 120(2) K
λ(Å) 0.71073 Å
cryst syst Monoclinic
space group P21/n
a (Å) a = 7.8707(2) Å
b (Å) b = 15.9681(4) Å
c (Å) c = 11.9798(4) Å
β (deg) 100.283(3)◦

V (Å3) 1481.44(7) Å3

Z 4
ρcalc (Mg/m3) 1.486 Mg/m3

µ(Mo Kα) (mm−1) 0.228 mm−1

No. reflns. 7305
Unique reflns. 3997
Completeness to θ = 25.242◦ 100%
GOOF (F2) 1.031
Rint 0.0213
R1

a (I ≥ 2σ) 0.0454
wR2

b (I ≥ 2σ) 0.1095
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.
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2.4. Hirshfeld Surface Analysis

The Crystal Explorer 17.5 program was used to perform the topology analysis of
studied compound 9 [35].

3. Results and Discussion
3.1. Chemistry and Characterizations

4-Amino-5-(1H-indol-2-yl)-3H-1,2,4-triazole-3-thione 1 was mixed separately with
benzoic acid, p-toluic acid, anisic acid, p-chlorobenzoic acid, o-bromobenzoic acid and
nicotinic acid 2–7 in POCl3 for 1 h; this afforded the indolyl-triazolo-thiadiazoles 8–13,
respectively, in excellent yields (Scheme 1). 1H- and 13C-NMR exhibited the characteristic
signals of aromatic protons, between 7.08 ppm and 8.28 ppm, whereas the aromatic carbons
were found at 102.0–167.0 ppm. In addition, the NMR study of compound 9 showed the
proton for the methyl group at 2.42 ppm, and the carbon of the methyl group at 21.19 ppm.
Moreover, the NMR of compound 10 revealed methoxy protons at 3.91 ppm and methoxy
carbon at 56.19 ppm. Crystals suitable for the X-ray single-crystal analysis of compound 9
were obtained via recrystallization from DMF.
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Scheme 1. Synthesis of the target fused heterocycles.

3.2. Crystal Structure Description

Figure 1 shows the molecular structure of compound 9, obtained by single-crystal X-ray
diffraction analysis. Table 1 lists some of the selected bon angles and bond distances of the
desired compound. The monoclinic system was observed in the crystallized compound and
centrosymmetric P21/n space group, with lattice parameters a = 7.8707(2) Å, b = 15.9681(4) Å,
c = 11.9798(4) and β = 100.283(3)◦. The asymmetric unit contained one molecule, while
the unit cell comprised four molecules. The crystal density was 1.486 Mg/m3 and the
unit cell volume was 1481.44(7) Å3. The molecule comprised a number of aromatic ring
systems, which were perfectly planar but showed some twists. The phenyl group of the
aryl moiety was twisted from the mean plane of the fused aromatic ring system (A) by only
2.85◦. The two fused ring systems A and C were nearly coplanar with one another. The
twist angle between the mean plane of the two fused ring systems was only 0.60◦. Selected
bond lengths and angles are depicted in Table 2.
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Table 2. Bond lengths (Å) and angles (◦) of 9.

Bond Length/Å Bond Length/Å

S(1)-C(10) 1.7275(18) N(3)-C(10) 1.306(2)
S(1)-C(11) 1.7734(17) N(4)-C(10) 1.360(2)
N(1)-C(7) 1.376(2) N(4)-C(9) 1.370(2)
N(1)-C(8) 1.381(2) N(4)-N(5) 1.3747(19)
N(2)-C(9) 1.324(2) N(5)-C(11) 1.304(2)
N(2)-N(3) 1.402(2)

Bonds Angle/◦ Bonds Angle/◦

C(10)-S(1)-C(11) 87.61(8) N(1)-C(7)-C(6) 130.16(16)
C(7)-N(1)-C(8) 108.31(14) N(1)-C(7)-C(2) 107.94(15)
C(9)-N(2)-N(3) 109.54(14) N(1)-C(8)-C(9) 120.90(15)
C(10)-N(3)-N(2) 104.79(14) N(2)-C(9)-N(4) 107.75(14)
C(10)-N(4)-C(9) 105.87(14) N(2)-C(9)-C(8) 127.46(16)
C(10)-N(4)-N(5) 118.88(14) N(4)-C(9)-C(8) 124.79(15)
C(9)-N(4)-N(5) 135.17(14) N(3)-C(10)-N(4) 112.04(15)
C(11)-N(5)-N(4) 107.48(14) N(3)-C(10)-S(1) 138.55(14)
N(5)-C(11)-S(1) 116.67(13) N(4)-C(10)-S(1) 109.37(12)
C(1)-C(8)-N(1) 109.98(15) N(5)-C(11)-C(12) 123.27(15)

The molecular units of this compound are controlled by a range of weak non-covalent
interactions, including the N . . . H, S . . . H and C . . . C interactions. The molecules are
connected to each other by N1-H1 . . . N2, N1-H1 . . . N3 and C14-H14 . . . S1 interactions
(Table 3). The different N . . . H and S . . . H contacts are shown in Figure 2A, while
the resulting packing scheme is presented in Figure 2B. Additionally, the packing of 9
is controlled by different levels of C . . . C interactions, which are kinds of π–π stacking
interactions (Figure 2C). The shortest C . . . C interactions are depicted in Table 4.

Table 3. Hydrogen bonds for 9 (Å and ◦).

D-H . . . A d(D-H) d(H . . . A) d(D . . . A) <(DHA)

N1-H1 . . . N2#1 0.85(2) 2.12(2) 2.959(2) 169(2)
N1-H1 . . . N3#1 0.85(2) 2.60(2) 3.292(2) 139(2)

C14-H14 . . . S1#2 0.95 2.905 2.905 179.35
Symm. codes: #1 −x + 1, −y + 1, −z and #2 −1/2 + x, 1.5−y, −1/2 + z.
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Table 4. The shortest C . . . C for π–π stacking interactions.

Contact Distance Symmetry Code

C1 . . . C18 3.371 1 − x,1 − y,1 − z
C3 . . . C13 3.342 1 − x,1 − y,1 − z
C9 . . . C15 3.288 2 − x,1 − y,1 − z

C10 . . . C17 3.349 2 − x,1 − y,1 − z

3.3. Hirshfeld Surface Analysis

The stability of crystalline materials is controlled by different intermolecular interac-
tions that occur among the adjacent molecules [36,37]. The types, strengths and weights
of the intermolecular interactions in the crystal structure could be simply analyzed using
Hirshfeld calculations. There are three important maps, which are the dnorm, shape index
and curvedness maps. A view of these surfaces is shown in Figure 3. In the dnorm map, the
presence of red regions indicates short contacts, which are considered of great importance
to crystal stability.

The decomposition of the fingerprint plot gives the weight of each contact in the
crystal structure, and also sheds light on the strength of each contact. The percentages of all
contacts contributing to molecular packing are presented in Figure 4. The most important
short contacts are the N . . . H, S . . . H, C . . . C and S . . . C interactions. Their percentages
are calculated to be 20.3%, 5.4%, 9.4% and 4.3%, respectively. Decomposed fingerprint plots
of these short contacts are shown in Figure 5. The majority of these interactions appeared
in the fingerprint plots as sharp spikes, which confirms that that these interactions are
important. A list of the short N . . . H, S . . . H, C . . . C and S . . . C contacts and their
corresponding interaction distances is presented in Table 5. Other contacts contributed to
a large extent in the molecular packing, including H . . . H and H . . . C interactions. The
percentages of these interactions are 38.3% and 18.3%, respectively.
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Table 5. Short contacts and the corresponding interaction distances.

Contact Distance Contact Distance

N2 . . . H1 1.963 C9 . . . C15 3.288
N3 . . . H1 2.483 C10 . . . C17 3.349
N3 . . . H6 2.512 C6 . . . S1 3.469
S1 . . . H14 2.772 C7 . . . S1 3.42

Another important feature of molecular packing is the π–π stacking interactions. The
presence of these types of intermolecular contact is indicated by the presence of short
C9 . . . C15 (3.288 Å) and C10 . . . C17 (3.349 Å) interactions. Additionally, the presence of
π–π stacking interactions is clearly implied by the presence of red/blue triangles and a flat
green area in the shape index and curvedness maps, respectively (Figure 3).

4. Conclusions

New heterocyclic systems including indole, triazole amd thiadiazole rings 8–13 were
synthesized from the reaction of 4-amino-5-(1H-indol-2-yl)-3H-1,2,4-triazole-3-thione and
benzoic acid derivatives in POCl3. The success of our strategy to design target compounds
is proven by our obtaining of the hybrid heterocycle 9 in a good crystalline form. Its
structure was revealed by measuring its X-ray single-crystal structure. The resulting X-ray
structure was used to analyze the molecular packing of the newly synthesized compound 9.
Additionally, the type, strength and weight of the intermolecular interactions in the crystal
structure were analyzed using Hirshfeld calculations. It was found that the N . . . H
(20.3%), S . . . H (5.4%), C . . . C (9.4%) and S . . . C (4.3%) non-covalent interactions were
the most important.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13030423/s1, X-ray determination protocol for compound 9 [31,33,34].
Table S1: Atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) for
9. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor; Table S2: Selected bond
lengths [Å] and angles [◦] for 9; Table S3: Bond lengths [Å] and angles [◦] for 9; Table S4: Anisotropic

https://www.mdpi.com/article/10.3390/cryst13030423/s1
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displacement parameters (Å2 × 103) for 9. The anisotropic displacement factor exponent takes the
form: −2p2[ h2 a*2U11 + . . . + 2 h k a* b* U12; Table S5: Hydrogen coordinates (×104) and isotropic
displacement parameters (Å2 × 103) for 9; Table S6: Torsion angles [◦] for 9.
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