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Hölder regularity for stochastic processes with bounded
and measurable increments

Ángel Arroyo, Pablo Blanc, and Mikko Parviainen

Abstract. We obtain an asymptotic Hölder estimate for expectations of a quite general class of
discrete stochastic processes. Such expectations can also be described as solutions to a dynamic
programming principle or as solutions to discretized PDEs. The result, which is also generalized to
functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the
Krylov–Safonov regularity result in PDEs. However, the discrete step size " has some crucial effects
compared to the PDE setting. The proof combines analytic and probabilistic arguments.

1. Introduction

The celebrated Krylov–Safonov [15] Hölder estimate is one of the key results in the theory
of nondivergence-form elliptic partial differential equations with bounded and measurable
coefficients. The result, in addition to being important in its own right, also gives a flexible
tool in higher regularity and existence theory due to its very general assumptions on the
coefficients.

In this paper we study regularity of expectation of a quite general class of discrete
stochastic processes or, equivalently, functions satisfying the dynamic programming prin-
ciple (DPP)

u.x/ D ˛

Z
RN

u.x C "z/ d�x.z/C
ˇ

jB"j

Z
B".x/

u.y/ dy C "2f .x/; (1.1)

where f is a Borel measurable bounded function, �x is a symmetric probability measure
for each x with support in Bƒ, ƒ � 1, " > 0, and ˛ C ˇ D 1, ˛ � 0, ˇ > 0. From a
stochastic point of view, our processes are generalizations of the random walk where the
next step in the process is taken according to a probability measure that is a combination
of �x and the uniform distribution on B".x/ as described by the DPP (more details are
given in Sections 2.1 and 2.3).

It is important to notice that �x can vary quite freely from point to point. Under con-
tinuity or other assumptions not satisfied in our case, related results have been studied for
example in [7, 18, 21].

2020 Mathematics Subject Classification. Primary 35B65; Secondary 35J15, 60H30, 60J10, 91A50.
Keywords. Dynamic programming principle, local Hölder estimates, stochastic process, equations in
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The first of the two main results in this article is a Hölder estimate in the discrete setup
without any further continuity assumption on the measures �x .

Theorem 1.1. There exists "0 > 0 such that if u is a function satisfying (1.1) in B2R with
" < "0R, then

ju.x/ � u.z/j �
C

R

�
sup
B2R

juj CR2kf k1

�
.jx � zj C " /

for every x; z 2 BR, where C > 0 and  > 0 are constants independent of ".

The role of the discrete processes we study can be compared to the role of linear
uniformly elliptic partial differential equations with bounded and measurable coefficients
in the theory of PDEs.

The regularity techniques in PDEs (see [9, 15]) or in the nonlocal setting (see [7, 13])
utilize, heuristically speaking, the fact that there is information available in all scales. We
also refer to [11, 31] for similar results regarding nonlocal operators with nonsymmetric
kernels. For a discrete process, the step size sets a natural limit for the scale, and this
limitation has some crucial effects. Indeed, the value can even be discontinuous, and our
estimates are asymptotic. Such estimates suffice in many applications, for example in
passing to the limit with solutions to discretized PDEs or stochastic processes. Similar
results have been obtained on a grid in the context of difference equations with random
coefficients in [17]. See also [19], where regularity estimates for difference equations
arising from random walks are obtained using probabilistic techniques.

The proof uses a stochastic approach akin to the original proof of Krylov and Safonov
in [15] with some crucial differences. The first observation, as suggested above, is that
the function u in (1.1) can be presented as an expectation. The key estimate is then The-
orem 5.7 stating that we can reach any set of positive measure with a positive probability
before exiting a bigger cube. With this result at our disposal, the De Giorgi oscillation esti-
mate, Lemma 5.8, follows in a straightforward manner. Indeed, we can reach a level set
with a positive probability and use this in estimating the oscillation. The Hölder estimate,
Theorem 1.1, then follows by the De Giorgi oscillation lemma after a finite iteration.

The proof of Theorem 5.7 is nonstandard. In the proof we would like to construct a set
of cubes which is large enough and such that the set we want to reach has a high enough
density in the cubes. Both conditions, however, cannot always be satisfied simultaneously
in our setting. As suggested above, both the PDE and nonlocal techniques utilize the infor-
mation in all scales. Concretely, a rescaling argument is used in those proofs in arbitrary
small cubes. In contrast, in our case the step size " determines the limit for the scale. If
we simply drop all the cubes to smaller than of scale " in the usual Calderón–Zygmund
decomposition, we have no control on the size of the error. Therefore, the cubes of scale
" need to be taken into account separately both in the decomposition lemma, Lemma 5.4,
and in the proof of the key intermediate result, Theorem 5.7.

The proof of Theorem 5.7 is based on the "-version of the Alexandrov–Bakelman–
Pucci (ABP) estimate with bounded and measurable right-hand side, Theorem 4.7.
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However, the classical proof of the ABP estimate using the change of variables formula
for integrals to obtain a quantity that can be estimated by the PDE does not seem directly
applicable here. Instead, we adapt the nonlocal approach of Caffarelli and Silvestre [7]. A
second remark is that we directly apply the ABP estimate with a discontinuous right-hand
side, which is chosen to be a characteristic function of a level set. In this case, the stan-
dard ABP estimate having the LN -norm on the right-hand side is false (Example 4.6), and
therefore the statement of Theorem 4.7 is weaker, but sufficient for our purposes.

Our study is partly motivated by the aim of developing stochastic methods in con-
nection with the p-Laplace equation and other nonlinear PDEs; see Example 2.4 and
Remark 7.6. The Hölder estimate, Theorem 1.1, can be generalized to functions merely
satisfying the Pucci-type inequalities

u.x/ � ˛ sup
z2Bƒ

u.x C "z/C u.x � "z/

2
C

ˇ

jB"j

Z
B".x/

u.y/ dy C "2jf .x/j; (1.2)

u.x/ � ˛ inf
z2Bƒ

u.x C "z/C u.x � "z/

2
C

ˇ

jB"j

Z
B".x/

u.y/ dy � "2jf .x/j; (1.3)

later modified and shortened to the forms

LC" u � �jf j; L�" u � jf j:

This is our second main result.

Theorem 1.2. There exists "0 > 0 such that if u is a function satisfying (1.2) and (1.3) for
every x 2 B2R with " < "0R, then

ju.x/ � u.z/j �
C

R

�
sup
B2R

juj CR2kf k1

�
.jx � zj C " /

for every x; z 2 BR, where C > 0 and  > 0 are constants independent of ".

We refer the reader to Section 7 and in particular to Theorem 7.3 for a more detailed
description.

2. Preliminaries

As above, let ƒ � 1, " > 0, ˇ 2 .0; 1� and ˛ D 1 � ˇ. Every constant may depend on ƒ,
˛, ˇ and the dimension N . If a constant depends on other parameters we denote it.

Throughout this paper��RN denotes a bounded domain and, further,Br .x/D ¹y 2
RN W jx � yj < rº as well as Br D Br .0/. We construct an extended domain containing
all balls Bƒ".x/ with x 2 � as follows:

z�ƒ" WD
®
x 2 Rn W dist.x;�/ < ƒ"

¯
:
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We follow the conventionZ
u.x/ dx D

Z
RN

u.x/ dx and
«
A

u.x/ dx D
1

jAj

Z
A

u.x/ dx:

Further,

kf kLN .�/ D

�Z
�

jf .x/jN dx

�1=N
and

kf kL1.�/ D sup
�

jf j:

When no confusion arises we simply denote these as k � kN and k � k1, respectively.
For each x D .x1; : : : ; xn/ 2 RN and r > 0, we defineQr .x/ as the open cube of side

length r and center x with faces parallel to the coordinate hyperplanes. More precisely,

Qr .x/ WD ¹y 2 RN W jyi � xi j < r=2; i D 1; : : : ; nº:

In addition, if Q D Qr .x/ and ` > 0, for simplicity we denote `Q D Q`r .x/.

2.1. Dynamic programming principle and difference operators

We consider M.Bƒ/ the set of symmetric unit Radon measures with support in Bƒ and
�WRN !M.Bƒ/ such that

x 7!

Z
u.x C z/ d�x.z/ (2.1)

defines a Borel measurable function for every uWRN ! R Borel measurable. Then for
each x 2 RN we have a measure �x with support in Bƒ such that

�x.E/ D �x.�E/

for every measurable set E � RN .
It is worth remarking that hypothesis (2.1) on Borel measurability holds, for example,

when the �x are the pushforward of a given probability measure � in RN . More precisely,
if there exists a Borel measurable function hWRN �RN ! Bƒ such that

�x D h.x; �/#�

for each x, then

v.x/ D

Z
u.x C z/ d�x.z/

D

Z
u.x C h.x; y// d�.y/

is measurable by Fubini’s theorem.
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For each " > 0 we consider a generalized random walk starting at x0 2 �. Given the
value of xk , the next position of the process xkC1 is determine as follows. A biased coin is
tossed. If we get heads (probability ˛), a vector z is chosen according to �xk and we have
xkC1 D xk C "z. If we get tails (probability ˇ), xkC1 is distributed uniformly in the ball
B".xk/. More details are given in Section 2.3. Denote by � the exit time from the domain,
that is,

� D min¹n 2 N W xn 62 �º:

Given a Borel measurable bounded function gWRN n�! R, we can define

u.x0/ WD Ex0 Œg.x� /�;

where Ex0 stands for the expectation with respect to the process. We will prove in Sec-
tion 3 that uWRN ! R satisfies the homogenous DPP given by

u.x/ D ˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy

for x 2 �, and u.x/ D g.x/ for x 62 �. Moreover, u is the unique bounded function that
satisfies the DPP.

Moreover, given the running payoff f W�!R, a Borel measurable bounded function,
we can define

u.x/ WD Ex
�
"2
��1X
iD0

f .Xi /C g.X� /

�
:

In Section 3 we prove that u is the unique bounded function that satisfies the DPP

u.x/ D ˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy C "2f .x/ (2.2)

for x 2 � and u.x/ D g.x/ for x 62 �. For clarity, let us emphasize that (2.2) is what we
call the DPP in this paper. This also motivates the following definitions.

Definition 2.1. We say that a bounded Borel measurable function u is a subsolution to
the DPP if it satisfies

u.x/ � ˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy C "2f .x/

in �. Analogously, we say that u is a supersolution if the reverse inequality holds. If the
equality holds, we say that it is a solution to the DPP.

If we rearrange the terms in the DPP, we may alternatively use notation that is closer
to difference methods.

Definition 2.2. Given a Borel measurable bounded function uW RN ! R, we define
L"uWRN ! R as

L"u.x/ D
1

"2

�
˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy � u.x/

�
:

With this notation, u is a subsolution (supersolution) if and only if L"uC f � 0 (� 0).
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By defining ıu.x; y/ WD u.x C y/C u.x � y/ � 2u.x/ and recalling the symmetry
condition on �x we can rewrite

L"u.x/ D
1

2"2

�
˛

Z
ıu.x; "z/ d�x.z/C ˇ

«
B1

ıu.x; "y/ dy

�
: (2.3)

Our theorems actually hold for functions merely satisfying Pucci-type inequalities.
For expositional clarity we leave this to Section 7.

2.2. Examples

In this section we present some recent examples and applications. The list is by no means
exhaustive, and further examples could be obtained by discretizing partial differential
operators with bounded and measurable coefficients.

Example 2.3 (Convergence to the solution of the PDE). Let � 2 C 2.�/. We can use
the second-order Taylor expansion of � to obtain an asymptotic expansion for L"�.x/.
Indeed, observe that

ı�.x; "y/ D "2 Tr¹D2�.x/ � y ˝ yº C o."2/

holds as "! 0 for every y 2 Bƒ, where a ˝ b stands for the tensor product of vectors
a; b 2 Rn, that is, the matrix with entries .aibj /ij . Hence, by the linearity of the trace,

L"�.x/ D
1

2
Tr
²
D2�.x/ �

�
˛

Z
z ˝ z d�x.z/C ˇ

«
B1

y ˝ y dy

�³
C o."0/

D
1

2
Tr
²
D2�.x/ �

�
˛

Z
z ˝ z d�x.z/C

ˇ

N C 2
I

�³
C o."0/:

On the other hand, since every measure �x 2M.Bƒ/ defines a matrix

A.x/ WD
˛

2

Z
z ˝ z d�x.z/C

ˇ

2.N C 2/
I;

we get
lim
"!0

L"�.x/ D Tr¹D2�.x/ � A.x/º;

which is a linear second-order partial differential operator. Furthermore, for ˇ 2 .0; 1�, the
operator is uniformly elliptic: given � 2 RN n ¹0º,

hA.x/ � �; �i D
˛

2

Z
jhz; �ij2 d�x.z/C

ˇ

2.N C 2/
j�j2;

and estimating the integral we have

ˇ

2.N C 2/
�
hA.x/ � �; �i

j�j2
�
˛ƒ2

2
C

ˇ

2.N C 2/
:
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It also holds, using Theorem 1.1 (cf. [26, Theorem 4.9]), that under suitable regularity
assumptions, the solutions u" WD u to the DPP converge to a viscosity solution v 2 C.�/
of

Tr¹D2v.x/ � A.x/º D f .x/;

as "! 0.

Similar convergence results also hold in the following examples.

Example 2.4 (p-Laplacian). In [22, Section 3.2], the following process that is covered by
Theorem 1.1 was considered. Let u be a p-harmonic (with 2 � p <1) function whose
gradient vanishes at most at a finite number of points. When at x 2� such thatru.x/¤ 0,
we define a probability measure

�x;1 D ˇLB".x/ C
1 � ˇ

2

�
ı
xC"

ru.x/
jru.x/j

C ı
x�"

ru.x/
jru.x/j

�
;

where LB".x/ denotes the uniform probability distribution in B".x/ � RN and ıx the
Dirac measure at x. Then we choose the next point according to the probability measure

�x D

´
�x;1 if jru.x/j > 0 and

LB".x/ if jru.x/j D 0:

There is a classical well-known connection between Brownian motion and the Laplace
equation. This example is related to so-called tug-of-war games introduced in Peres,
Schramm, Sheffield and Wilson [27] in connection with the infinity Laplace operator.
Similarly, a connection exists between the p-Laplacian, 1 < p <1, and different vari-
ants of tug-of-war games with noise [20, 26, 28].

There are several regularity methods devised for tug-of-war games with noise: the
above papers contain a global approach, and a local approach is developed in [24] as well
as [23]. However, none of these methods seem to directly apply to the present situation.
Moreover, later we prove Theorem 7.3 which applies to solutions of the DPP associated
to tug-of-war games with noise and the p-Laplacian; see Remark 7.6.

Example 2.5 (Ellipsoid process). A particular case of the stochastic process considered
in this paper is the so-called ellipsoid process (see [2]). This process arises when �x is the
uniform probability measure on Ex n B1, where Ex denotes an ellipsoid centered at the
origin such that B1 � Ex � Bƒ. Then

˛�x.A/C ˇ
jA \ B1j

jB1j
D
jA \Exj

jExj

for every measurable set A � RN , ˛ D jExnB1j
jEx j

and ˇ D jB1j
jEx j

. Hence, replacing this in
(2.2) with f D 0 we get that the expectation related to the ellipsoid process satisfies the
DPP

u.x/ D

«
Ex

u.x C "y/ dy:
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An asymptotic Hölder estimate was obtained in [2] under certain assumptions on the ellip-
ticity ratio of the ellipsoids. Now Theorem 1.1 implies the Hölder estimate for u without
any additional assumptions and thus improves the result in [2]. Such a mean value property
over ellipsoids has been studied by Pucci and Talenti in connection with smooth solutions
to PDEs in [29].

2.3. Stochastic process

Next we define the stochastic process related to the DPP (2.2). Let x0 2 � be the initial
position of the process. We equip RN with the natural topology, and the � -algebra B of
the Borel measurable sets. We consider along with the positions of the process the results
of the coin tosses, so our process is defined in the product space

H1 D ¹x0º � .¹0; 1º �RN / � .¹0; 1º �RN / � � � � :

For ! D .x0; .c1; x1/; .c2; x2/ : : : / 2H1, we define the result of the kth toss Ck.!/D ck
and the coordinate processesXk.!/D xk . If CkC1D 0 (probability ˛), the next position of
the processXkC1 is distributed according to �xk . And for CkC1 D 1 (probability ˇ),XkC1
is uniformly distributed in B".xk/. That is, we have the following transition probabilities:

�.x0; .c1; x1/; : : : ; .ck ; xk/; ¹cº � A/ D

8̂̂<̂
:̂
˛�xk

�A � xk
"

�
if c D 0;

ˇ
jA \ B".xk/j

jB"j
if c D 1;

where A 2 B.
Let ¹Fkºk denote the filtration of � -algebras F0 � F1 � � � � defined as follows: Fk is

the product � -algebra generated by cylinder sets of the form

¹x0º � A1 � � � � � Ak �RN �RN � � � �

with Ai 2 P .¹0; 1º/ �B. We have that Ck and Xk are Fk-measurable random variables.
By the Kolmogorov extension theorem, the transition probabilities determine a unique
probability measure Px0 inH1 relative to the � -algebra F1 D �.

S
k Fk/. We denote by

Ex0 the corresponding expectation.
We consider � the exit time from the domain, that is � D min¹n 2 N W Xn 62 �º. We

define TA as the hitting time for A and �A the exit time, that is,

TA D min¹k 2 N W Xk 2 Aº and �A D min¹k 2 N W Xk 62 Aº:

2.4. Stochastic estimates

In this section we establish some estimates related to � and other stochastic results. We
will prove that Ex0 Œ� � is of order 1="2. Moreover, we will prove that the second moment
of "2� is bounded. We start with a rough estimate needed as a first step.
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Lemma 2.6. The process leaves the domain almost surely and moreover

Ex0 Œ� � < C1

for every x0 2 �.

Proof. We fix x0 2 �. We will prove that there exist � < 1 and n 2 N such that

Px0.� > nC kj� > k/ � � (2.4)

for every k 2 N and x 2 �. Then inductively Px0.� > nk/ � �k and we get

Ex0 Œ� �D
1X
iD0

Px0.� > i/D
1X
kD0

n�1X
jD0

Px0.� > j C nk/ � n
1X
kD0

Px0.� > nk/ � n
1X
kD0

�k ;

which is finite.
Thus, it remains to prove (2.4). We choose n such that n "

2
> diam�. We consider

the event E of n steps after the kth one to be uniformly distributed, and where the first
coordinate increases at least "

2
. That is,

E D ¹ckC1 D � � � D ckCn D 1 and �1.xi � xi�1/ > "=2 for i D k C 1; : : : ; k C nº;

where �1 denotes the projection to the first coordinate. Observe that

Px0.E/ D
�
ˇ
j¹x W �1.x/ > "=2º \ B"j

jB"j

�n
> 0

is independent of k.
Assuming E we have jxkCn � xkj � n "2 , hence since n "

2
> diam�, it must be the

case that � � nC k. Therefore (2.4) holds for � D 1 � Px0.E/ < 1.

Now we construct two sequences of random variables. They will allow us to obtain
bounds for the growth of the expected value of the square of the distance from the starting
point x0.

Lemma 2.7. The sequence of random variables ¹jXk � x0j2 �Ck"2ºk is a supermartin-
gale for C D ˛ƒ2 C ˇ

ª
B1
jxj2 dx.

Proof. Observe that

Ex0 ŒjXkC1 � x0j
2
jFk �.!/ D ˛

Z
jxk C "z � x0j

2 d�xk .z/C ˇ

«
B".xk/

jx � x0j
2 dx:

By the symmetry of �xk and the ball B" we can write

Ex0 ŒjXkC1 � x0j
2
jFk �.!/ D ˛

Z
jxk C "z � x0j

2 C jxk � "z � x0j
2

2
d�xk .z/

C ˇ

«
B"

jxk C x � x0j
2 C jxk � x � x0j

2

2
dx:
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Employing the parallelogram law we get

Ex0 ŒjXkC1 � x0j
2
jFk �.!/ D ˛

Z
jxk � x0j

2
C j"zj2 d�xk .z/

C ˇ

«
B"

jxk � x0j
2
C jxj2 dx

� ˛.jxk � x0j
2
C "2ƒ2/C ˇ

�
jxk � x0j

2
C "2

«
B1

jxj2 dx

�
� jxk � x0j

2
C "2

�
˛ƒ2 C ˇ

«
B1

jxj2 dx

�
;

where we have used that �xk is supported in Bƒ.
Therefore, for C D ˛ƒ2 C ˇ

ª
B1
jxj2 dx we have

Ex0 ŒjXkC1 � x0j
2
� C.k C 1/"2jFk � � jXk � x0j

2
C C"2 � C.k C 1/"2

D jXk � x0j
2
� Ck"2;

as we wanted to show.

Lemma 2.8. The sequence of random variables ¹jXk � x0j2 � Ck"2ºk is a submartin-
gale for C D ˇ

ª
B1
jxj2 dx.

Proof. As in the previous lemma we have

Ex0 ŒjXkC1 � x0j
2
jFk �.!/ D ˛

Z
jxk � x0j

2
C j"zj2 d�xk .z/

C ˇ

«
B"

jxk � x0j
2
C jxj2 dx:

By dropping the j"zj2 term we get

Ex0 ŒjXkC1 � x0j
2
jFk �.!/ � ˛jxk � x0j

2
C ˇ

�
jxk � x0j

2
C

«
B"

jxj2 dx

�
D jxk � x0j

2
C ˇ"2

«
B1

jxj2 dx:

Therefore, for C D ˇ
ª
B1
jxj2 dx we have

Ex0 ŒjXkC1 � x0j
2
� C.k C 1/"2jFk � � jXk � x0j

2
C C"2 � C.k C 1/"2

D jXk � x0j
2
� Ck"2;

as claimed.

We are ready to prove that Ex0 Œ� � is of order 1="2.
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Lemma 2.9. There exist C1; C2 > 0 such that

C1 dist.x0; @�/2 � Ex0 Œ"2�� � C2.diam�C 1/2

for " < 1
ƒ

.

Proof. We consider the supermartingale Mk D jXk � x0j
2 � Ck"2 from Lemma 2.7.

Since the increments of Mk are bounded and Ex0 Œ� � < C1 we can apply the optional
stopping theorem. We obtain Ex0 ŒM� � � 0 and hence

dist.x0; @�/2 � Ex0 ŒjX� � x0j
2� � C"2Ex0 Œ� �

as desired. The other inequality can be obtain by considering the submartingale from
Lemma 2.8. In fact, we get

C"2Ex0 Œ� � � Ex0 ŒjX� � x0j
2� � .diam�Cƒ"/2;

where we have used that x� is at a distance of at most ƒ" from x��1 2 � and therefore
jx� � x0j � diam�Cƒ".

Now we obtain an estimate for the random variable "2� necessary to bound its second
moment in the subsequent corollary. We follow [4, Lemma 3.6]. The key point here is that
the process is memoryless.

Lemma 2.10. There exist C > 0 and � D �.diam�/ > 0 such that

Px0."2� � t / � Ce��t

for " < 1
ƒ

.

Proof. By Lemma 2.9 there exists zC D zC.diam�/ > 0 such that Ex0 Œ"2�� � zC . Then,
by Markov’s inequality, we have

Px0."2� � t / �
Ex0 Œ"2��

t
�
zC

t

for t > 0 and every x0 2 �. Observe that

Px0."2� � "2nC t j"2� � "2n/ � sup
xn2�

Pxn."2� � t / �
zC

t
:

So, for n; k 2 N, applying this bound multiple times we obtain

Px0."2� � "2nk/ D Px0."2� � "2nkj"2� � "2n.k � 1//

� Px0."2� � "2n.k � 1/j"2� � "2n.k � 2//

� � � � � Px0."2� � "2n/

�

� zC
"2n

�k
: (2.5)
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We define ı D zCe C 1 and observe that

Px0."2� � t / � Px0
�
"2� � "2

j ı
"2

kj t
ı

k�
:

By (2.5) choosing n D b ı
"2
c and k D b t

ı
c we get

Px."2� � t / �
� zC

"2b ı
"2
c

�b t
ı
c

�

� zC

ı � "2

� t
ı
�1

� e�
t
ı
C1;

where we have estimated "2b ı
"2
c� ı� "2� zCe. The result holds forC D e and�D 1

ı
.

Corollary 2.11. There exists C D C.diam�/ > 0 such that

Ex0 Œ."2�/2� � C

for " < 1
ƒ

.

Proof. By Lemma 2.10 there exist zC > 0 and � D �.diam�/ > 0 such that

Px0.."2�/2 � t / D Px0."2� � t1=2/ � zCe��t
1=2

:

Then we can bound

Ex0 Œ."2�/2� D

Z 1
0

Px0.."2�/2 � t / dt �

Z 1
0

zCe��t
1=2

dt D
2 zC

�2
:

3. Dynamic programming principle: Existence and uniqueness

Recall that � � RN is a bounded domain and gWRN n�! R and f W�! R are mea-
surable bounded functions. We define

u.x/ WD Ex
�
"2
��1X
iD0

f .Xi /C g.X� /

�
;

where � is the exit time from �. In this section we prove that u is the unique bounded
solution to the DPP (2.2) given by

u.x/ D ˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy C "2f .x/

for x 2 �, and u.x/ D g.x/ for x 62 �. For related arguments, see [25], and [1,14,30] as
well as [5].

In the following lemma we prove that subsolutions are uniformly bounded. We have
required subsolutions to be bounded, which is necessary as shown by Example 3.5 below,
but here we prove that there is a bound that only depends on the parameters of the problem
and not the solution itself.



Hölder regularity with bounded and measurable increments 227

Lemma 3.1. There exists C D C.diam�; f; g; "/ > 0 such that u � C for every subso-
lution u to the DPP with boundary values g.

Proof. We consider the space partitioned along the xN -axis in strips of width "
2

. We define
Sk D ¹y W yN < k"=2º,

A D
j¹y 2 B".x/ W yN < xN �

"
2
ºj

jB"j
D
j¹y 2 B1 W yN < �1

2
ºj

jB1j
;

and K D "2 sup� f . We have

u.x/ � ˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy C "2f .x/

� ˛ supuC ˇA sup
yWyN<xN�

"
2

u.y/C ˇ.1 � A/ supuCK

D ˇA sup
yWyN<xN�

"
2

u.y/C .1 � ˇA/ supuCK:

We define pDˇA and consider k 2Z: for x 2SkC1 we have ¹y W yN <xN � "
2
º �Sk .

Therefore we obtain

sup
SkC1

u � p sup
Sk

uC .1 � p/ supuCK:

Then, inductively, we get

sup
SnCk

u � ..1 � p/ supuCK/
n�1X
iD0

pi C pn sup
Sk

u: (3.1)

We assume without loss of generality that � � ¹y W 0 < yN < Rº for some R > 0.
Then, since u D g in RN n� � S0, we have supS0 u D supS0 g � supg. We assume that
sup u � sup g (if not then sup g is an upper bound for u and the proof is finished) and
consider n such that n "

2
> R; then � � Sn and we have supSn u D supu. We apply (3.1)

for such n and k D 0 to get

supu � ..1 � p/ supuCK/
n�1X
iD0

pi C pn supg

D ..1 � p/ supuCK/
1 � pn

1 � p
C pn supg

D .1 � pn/ supuCK
1 � pn

1 � p
C pn supg;

from where we finally get the upper bound

supu � K
1 � pn

pn.1 � p/
C supg:
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Lemma 3.2. There exists u0 a subsolution to the DPP with u0 D g on RN n�.

Proof. We consider v.x/ D K C Ljxj2 where we will choose K 2 R and L > 0 in what
follows. Since it is convex we have

v.x/ �

Z
v.x C "z/ d�x.z/:

Even more, since it is strictly convex,

v.x/ <

«
B".x/

v.y/ dy;

and therefore for L large enough we get

v.x/ � ˛

Z
v.x C "z/ d�x.z/C ˇ

«
B".x/

v.y/ dy � "2kf k1

for every x 2 �.
We choose K small enough such that v � g in z�ƒ". Then u0 given by u0 D v on �

and u0 D g on RN n� is a subsolution.

Proposition 3.3. There exists a solution to the DPP with boundary values g.

Proof. We construct the solution by Perron’s method. We consider � the set of subsolu-
tions, that is,

� D
®
uWRN ! R W L"uC f � 0 in � and u � g in RN n�

¯
:

The set is not empty by Lemma 3.2. We define

Nu.x/ D sup
u2�

u.x/

for each x 2 RN . By Lemma 3.1 we have that the function Nu is bounded. We will show
that Nu is a solution to the DPP.

The function u0 given by Lemma 3.2 belongs to � ; therefore Nu � u0. Since u0 also
takes the right boundary values, we have that Nu D g on RN n�.

For every u 2 � we have that u � Nu and hence

u.x/ � ˛

Z
Nu.x C "z/ d�x.z/C ˇ

«
B".x/

Nu.y/ dy C "2f .x/:

If we take the supremum over all u 2 � in the left-hand side, we obtain that Nu is a subso-
lution.

We consider vWRN ! R given by

v.x/ D ˛

Z
Nu.x C "z/ d�x.z/C ˇ

«
B".x/

Nu.y/ dy C "2f .x/
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for x 2 � and v D g in RN n�. Since Nu is a subsolution we have Nu � v. Then

v.x/ � ˛

Z
v.x C "z/ d�x.z/C ˇ

«
B".x/

v.y/ dy C "2f .x/;

and hence v is a subsolution, which proves that v � Nu. Thus v D Nu and we conclude that
Nu is a solution to the DPP.

Theorem 3.4. The function

u.x/ D Ex
�
"2
��1X
iD0

f .Xi /C g.X� /

�
is the unique bounded solution to the DPP with boundary values g.

Proof. Given a solution v to the DPP, we have that ¹v.Xk/ C "2
Pk�1
iD0 f .Xi /ºk is a

martingale. Indeed,

Ex0
�
v.XkC1/C "

2

kX
iD0

f .Xi /

ˇ̌̌̌
Fk

�
.!/

D ˛

Z
v.xk C "z/ d�xk .z/C ˇ

«
B".xk/

v.y/ dy C "2
kX
iD0

f .xi /

D v.xk/C "
2

k�1X
iD0

f .xi /:

Then, by Doob’s stopping time theorem (recall that v and f are bounded), we have

v.x/ D Ex
�
v.X� /C "

2

��1X
iD0

f .Xi /

�
:

Hence, since v.x/D g.x/ for x 62�we obtain v.x/DEx Œg.x� /C "2
P��1
iD0 f .xi /�. Thus

vD u, and we have proved that u is a solution to the DPP and that every solution coincides
with it, so there is a unique solution.

Example 3.5. The uniqueness fails if we do not assume that solutions to the DPP are
bounded. For � D .�2; 2/ � R we consider the process given by " D 1, ˛ D ˇ D 1=2
and �x the uniform probability distribution on B1 for every point x 2 � except those in
the set ¹ 1

2k
ºk2N . There we set

� 1

2k
D

ı 1

2kC1
C ı 3

2kC1

2
:

In this case the DPP has multiple solutions: the function u � 0 and

v.x/ D

´
4k ; x D 1

2k
; k 2 N;

0 otherwise;

which is not bounded. This is why the solutions to the DPP are required to be bounded.
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4. "-ABP estimate

Regarding the classic theory of elliptic PDEs, one of the key inequalities in the Krylov–
Safonov proof of Hölder regularity is the so-called Alexandrov–Bakelman–Pucci estimate
(ABP estimate for short), which guarantees a pointwise bound for subsolutions of LuC
f D 0 by means of the LN -norm of f . Namely, if f is a continuous bounded function in
� and u 2 C.x�/ satisfies

Tr¹A.x/ �D2u.x/º C f .x/ � 0; x 2 �;

then there exists a constantC >0 depending only onN , diam� and the uniform ellipticity
of A.x/ such that

sup
�

u � sup
@�

uC Ckf kLN .�/:

See [9, Chapter 3] for the ABP estimate for viscosity solutions and [12, Section 9.1] for
strong solutions.

Given a subsolution u, one of the key ideas in the proof of the classical ABP estimate
was the use of the concavity properties of u at the set of points where the graph of u can
be touched from above by tangent hyperplanes. This set of points (known as the contact
set and denoted by Ku) turned out to carry all relevant information about the subsolution.
To be more precise, if we denote by � the concave envelope of u, the ABP estimate is
obtained by studying the behavior of � at those points in � where � and u agree. Using
the concavity of � , the first main step in the proof consisted in obtaining an estimate of
sup� u in terms of jr�.�/j. It is worth noting that the structure of the PDE does not play
any role in the proof of this first estimate, which was obtained using exclusively geometric
arguments.

In a second step, and in addition to the concavity of � , it turned out that � is C 1;1 in
the contact set so, by virtue of Rademacher’s theorem, � is indeed C 2 a.e. in Ku. This
fact and a change of variables formula gives an inequality of the form

jr�.�/j �

Z
�

j detD2�.x/j dx;

which allowed the equation to be used to estimate the right-hand side and, consequently,
to obtain the ABP estimate.

However, in the case of the DPP, the nonlocal nature of the setting forces us to also
consider noncontinuous subsolutions of the DPP, so the corresponding concave envelope
� might not be C 1;1 as in the classical setting. In addition, there is no PDE to connect with
the right-hand side of the previous inequality, and therefore we follow a different strategy
in order to estimate jr�.�/j. The idea is to cover the contact setKu by a finite collection
of balls of radius "=4, and then to estimate jr�.B"=4.x//j by means of the oscillation of
� with respect to a supporting hyperplane touching the graph of � from above at x 2 Ku.
This oscillation, in turn, is estimated by using the DPP, which yields the desired "-ABP
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estimate. It is also interesting to note that one can recover the classical ABP estimate by
taking limits as "! 0.

In this section we adapt the ideas from [7, Section 8], where an ABP-type estimate
was obtained for continuous solutions of nonlocal integro-differential equations (see also
[8,10] for similar approaches). Further references are [17] for an ABP estimate for elliptic
difference equations and [13], where an ABP-type estimate is obtained using a general-
ization of the concept of a concave envelope as a nonlocal fractional envelope.

Let uWRN ! R be a bounded function and let � be the concave envelope of uC WD
max¹u; supRN n� uº in z�ƒ", that is,

�.x/ WD

´
inf
®
`.x/ W for all hyperplanes ` � uC in z�ƒ"

¯
if x 2 z�ƒ";

supRN n� u if x … z�ƒ":

Since u is not necessarily continuous, we define the “contact” set as

Ku WD
®
x 2 x� W lim supy!x u

C.y/ D �.x/
¯
: (4.1)

Since uC � � , then Ku is a closed subset, and thus compact. Moreover, observe that in
the particular case of u being an upper semicontinuous function in �, then Ku D x� \
¹uC D �º.

As we have already pointed out, one of the key steps in the proof of our ABP-type
estimate is the construction of a suitable cover of the contact set Ku by balls of radius
"=4. For this purpose, before stating the main result of this section we introduce the fol-
lowing notation. Given " > 0, we denote by Q".RN / a grid of open cubes of diameter "=4
covering RN . Take for instance

Q".R
N / WD

®
Q D Q "

4
p
N
.x/ W x 2 "

4
p
N

ZN
¯
:

In addition, if A � RN , we write

Q".A/ WD
®
Q 2 Q".R

N / W xQ \ A ¤ ;
¯
; (4.2)

so
A �

[
Q2Q".A/

xQ:

We stress that, while not needed in the proof of the main "-ABP estimate, the assump-
tion of Q" being a grid is needed later in the proof of Theorem 4.7.

Now we are in condition to state the main theorem of this section. We use the notation
L"u C f for convenience in some of the proofs, but this is equivalent to the DPP and
stochastic notation as we recall at the end of the section.

Theorem 4.1 ("-ABP estimate with continuous f ). Suppose that u is a bounded Borel
measurable function satisfying

L"uC f � 0
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in� for f 2 C.x�/. Let � be the concave envelope of uC in z�ƒ" and let Q D Q".Ku/ be
the grid of pairwise disjoint open cubes Q of diameter "=4 defined in (4.2). Then

sup
�

u � sup
RN n�

uC
2NC3

ˇ
.diam�Cƒ"/

� X
Q2Q

.sup
Q

f C/N
�1=N

": (4.3)

After proving this theorem we relate the result to the stochastic process and in The-
orem 4.7 we obtain a version of the estimate where the continuity hypothesis for f is
removed.

In what follows we can assume without loss of generality that f � 0 in x� and
supRN n� u D 0. Then uC D max¹u; 0º.

It turns out that in order to prove Theorem 4.1 we only need to use the information of
the concave envelope in the set of contact points Ku. Indeed, since

ıu.x; y/ � ı�.x; y/C 2Œ�.x/ � u.x/�;

inserting this inequality in (2.3) we get

L"u.x/ � L"�.x/C
1

"2
Œ�.x/ � u.x/�:

Since � is concave, then � is continuous and for any fixed x0 2 Ku we have

lim inf
x!x0

L"u.x/ � L"�.x0/:

Hence, if f � 0 is a continuous function in x� and u is a bounded function satisfying´
L"uC f � 0 in �,

u � 0 in RN n�,
(4.4)

then
L"� C f � 0 in Ku: (4.5)

Therefore, in what follows, we will use (4.5) instead of (4.4).
Before stating the first lemma of this section, we need to define the superdifferential

of � at x 2 z�ƒ" as the set

r�.x/ WD
®
� 2 RN W �.z/ � �.x/C h�; z � xi for all z 2 z�ƒ"

¯
: (4.6)

Since � is a concave function in z�ƒ", then r�.x/ ¤ ; for every x 2 z�ƒ". Moreover,
given a set S � z�ƒ", we denote r�.S/ D

S
x2S r�.x/.

In addition, if S is a compact subset of x�, then r�.S/ is closed. Indeed, if ¹�nºn �
r�.S/ is a sequence converging to �0 2 z�ƒ", by definition there exists ¹xnºn � S (which
by compactness we can assume converges to some x0 2 S by passing to a subsequence)
such that �.z/ � �.xn/C h�n; z � xni for each z 2 z�ƒ". Since � is concave (and thus
continuous), taking limits we get that �0 2 r�.x0/ � r�.S/. In consequence, r�.S/ is
a Lebesgue measurable set.
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Lemma 4.2. Let uWRN ! R be a bounded function such that u � 0 in RN n�. Then

sup
�

u � .diam�Cƒ"/

�
jr�.Ku/j

jB1j

�1=N
; (4.7)

where Ku is the contact set defined in (4.1).

Proof. Let us assume that sup� u > 0 (otherwise (4.7) would follow trivially) and define

� WD
sup� u

diam�Cƒ"
> 0:

Since � is the concave envelope of uC and sup u D sup � , then for every j�j < � there
exists ` a supporting hyperplane of � in z�ƒ" such that r`� � . Fix any � 2 B�. We claim
that � 2 r�.x0/ for some x0 2 Ku. To see this, let

� WD sup
z2z�ƒ"

®
uC.z/ � h�; zi

¯
and define `.z/ D � C h�; zi for every z 2 z�ƒ". Then ` � � � uC in z�ƒ". Moreover, by
the definition of � , for each n 2 N, there exists xn 2 z�ƒ" such that

uC.xn/C
1

n
� `.xn/ � �.xn/:

On the other hand, by the definition of `, for any z 2 � we have

uC.z/ � `.z/ D `.xn/C h�; z � xni

� `.xn/C j�j.diam�Cƒ"/

D `.xn/C
j�j

�
sup
�

uC

for each n 2 N, where in the inequality we have used that xn 2 z�ƒ" and z 2 �, and the
definition of � has been recalled in the last equality. Taking the supremum for z 2 � we
obtain �

1 �
j�j

�

�
sup
�

uC � `.xn/ � u
C.xn/C

1

n

for each n 2 N. Hence, since j�j < � and sup� u
C > 0, we can assume that xn 2 x� for

every n 2 N. Otherwise, since u � 0 in RN n� by assumption, if xn 2 z�ƒ" n x� for each
sufficiently large n 2N, letting n!1 we would obtain a contradiction. Furthermore, by
a compactness argument, we can assume without loss of generality that xn converges to a
point x0 2 x�. Thus, since � is continuous, taking limits we get

lim sup
y!x0

uC.y/ � lim sup
n!1

uC.xn/ � �.x0/:

Finally, since uC � � , we have in particular that x0 2Ku and � 2r�.x0/. In consequence
B� � r�.Ku/, so jB1j�N � jr�.Ku/j and (4.7) follows.



Á. Arroyo, P. Blanc, and M. Parviainen 234

The idea is to estimate the term jr�.Ku/j in the right-hand side of (4.7) by covering
the contact setKu with balls of radius "=4 and estimating jr�.B"=4.x//j. This is done by
obtaining an upper bound for the gradients of the concave function � in B"=4.x/ which
depends on the oscillation of � with respect to a supporting hyperplane touching the graph
of � at x.

Lemma 4.3. Let �W z�ƒ" ! R be a concave function. Then

jr�.B"=4.x//j

jB"j
�

� 2
"2

osc
y2B"=2

¹�.x/ � �.x C y/C h�; yiº
�N

(4.8)

for every x 2 � and � 2 r�.x/.

Proof. Fix x 2 � and any � 2 r�.x/ and define the auxiliary function ˆWB"=2 ! R by

ˆ.y/ WD �.x C y/ � �.x/ � h�; yi

for every y 2 B"=2. Since � is a concave function, then ˆ is also concave in B"=2, so

rˆ.y/ D
®
� 2 RN W ˆ.y C z/ � ˆ.y/C h�; zi for all z s.t. y C z 2 B"=2

¯
¤ ;

for every y 2B"=2. Let us fix any y 2B"=4 and any � 2 rˆ.y/. Sinceˆ is concave,ˆ� 0
and ˆ.0/ D 0 we have

j�j �
oscB"=2nB"=4 ˆ

"=2
�
2

"
osc
B"=2

ˆ DW �: (4.9)

On the other hand, by the definition ofˆ and r�.xC y/ in (4.6), for any � 0 2 r�.xC y/
we have

ˆ.y C z/ �ˆ.y/ � h� 0 � �; zi D �.x C y C z/ � �.x C y/ � h� 0; zi � 0

for every z such that z C y 2 B"=2, so � 0 � � 2 rˆ.y/. Then, since j�j � � for every
� 2 rˆ.y/ by (4.9), we get that � 0 2 xB�.�/ for every � 0 2 r�.xC y/. Thusr�.xC y/�
xB�.�/ for every y 2 B"=4, so jr�.B"=4.x//j � jB1j�N and (4.8) follows.

The following lemma shows that the graph of � stays quadratically close to a tan-
gent hyperplane in a neighborhood of any point in which the inequality L"� C f � 0 is
satisfied. It is noteworthy to mention that this is the only result where the DPP is used.

Lemma 4.4. Suppose that � is a concave function and x0 2 x� satisfies L"�.x0/ C

f .x0/ � 0. Then, for any w > 0, the following holds:ˇ̌®
y 2 B" W �.x0/ � �.x0 C y/C h�; yi > w

¯ˇ̌
jB"j

�
f .x0/"

2

wˇ
; (4.10)

where � is any vector in r�.x0/. Furthermore,

osc
y2B"=2

¹�.x0/ � �.x0 C y/C h�; yiº �
2NC2

ˇ
f .x0/"

2: (4.11)
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Proof. First observe that, since � is concave in z�ƒ", then ı�.x0; y/ � 0 for every y 2
Bƒ". Thus, we can estimate by zero the ˛-term in (2.3), so we obtain

L"�.x0/ �
ˇ

2"2

«
B"

ı�.x0; y/ dy: (4.12)

Since f .x0/ � �L"�.x0/ by assumption, using the definition of ı�.x0; y/ and the sym-
metry of the ball we can estimate

f .x0/"
2

ˇ
� �

1

2

«
B"

ı�.x0; y/ dy

D

«
B"

.�.x0/ � �.x0 C y// dy

D

«
B"

.�.x0/ � �.x0 C y/C h�; yi/ dy

for any fixed � 2 r�.x0/. Let us define the auxiliary function ˆWB" ! R by

ˆ.y/ D �.x0/ � �.x0 C y/C h�; yi:

Observe that, for the sake of convenience, the sign of ˆ has been changed with respect to
the previous proof. Notice that ˆ � 0 due to the concavity of � . We split the ball B" in
two sets and we study the integral of ˆ over each of them. ThenZ

B"

ˆ.y/ dy D

Z
B"\¹ˆ>wº

ˆ.y/ dy C

Z
B"\¹ˆ�wº

ˆ.y/ dy

�

Z
B"\¹ˆ>wº

w dy

D wjB" \ ¹ˆ > wºj;

where in the inequality we used that ˆ � 0 to estimate the second integral over B" \
¹ˆ � wº. Then (4.10) follows by combination of the previous estimates.

Now we prove (4.11). If f .x0/D 0, then (4.10) yields thatˆ�w a.e. for everyw > 0.
Then, since ˆ is continuous and ˆ � 0, we get that ˆ � 0, so the oscillation in (4.11) is
zero as desired.

If f .x0/ > 0, we choosew > 0 so that 0�ˆ.y/�w holds for every y 2B"=2. Notice
that, as we already mentioned, ˆ � 0 follows directly from the concavity of � . To check
thatˆ�w, observe that the inclusionB"=2.y/�B" holds for every y 2B"=2. Then (4.10)
yields ˇ̌®

z 2 B"=2 W ˆ.y C z/ > w
¯ˇ̌

jB"=2j
� 2N

jB" \ ¹ˆ > wºj

jB"j
� 2N

f .x0/"
2

wˇ
:

In particular, choosing w D 2NC2

ˇ
f .x0/"

2, we get that the left-hand side of the previous
inequality is bounded by 1=4, and thus there exists z 2 B"=2 such that

ˆ.y ˙ z/ � w D
2NC2

ˇ
f .x0/"

2:
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Combining the inequalities for z and �z we obtain

1

2
ˆ.y C z/C

1

2
ˆ.y � z/ � w;

so ˆ.y/ � w follows from the convexity of ˆ and this completes the proof.

Now we are in position to prove the main result of this section.

Proof of Theorem 4.1. Let us consider the pairwise disjoint collection of open cubes
Q".Ku/ defined in (4.2). Then the following conditions are satisfied:

(1) diamQ D "=4;

(2) xQ \Ku ¤ ; for each Q 2 Q".Ku/;

(3) Ku �
S
Q2Q".Ku/

xQ.

Since Ku is bounded, we can label the cubes in Q".Ku/ as Q1; : : : ; Qn, where n D
n."/ 2 N. Furthermore, we select a point xi 2 Ku \Qi for each i D 1; : : : ; n so that
Qi � B"=4.xi /. From the above considerations we can estimate

jr�.Ku/j �

ˇ̌̌̌ n[
iD1

r�. xQi /

ˇ̌̌̌
�

nX
iD1

jr�. xQi /j �

nX
iD1

jr�.B"=4.xi //j:

Combining this with the estimates from Lemmas 4.3 and 4.4 we obtain

jr�.Ku/j � jB1j
�2NC3

ˇ

�N� nX
iD1

f .xi /
N

�
"N :

Moreover, since xi 2 Qi , we can estimate f .xi / � supQi f for each i D 1; : : : ; n. Then
the result follows by replacing this in the estimate from Lemma 4.2.

As we saw in Section 3, solutions to the DPP can be interpreted as expected values.
Thus the "-ABP extends to this setting as well.

Corollary 4.5. Given f 2 C.x�/ such that f � 0 and the family Q D Q".�/ of pairwise
disjoint open cubes Q of diameter "=4 defined in (4.2), there exists C > 0 such that

Ex
�
"2
��1X
iD0

f .Xi /

�
� C.diam�Cƒ"/

� X
Q2Q

�
sup
Q

f
�N�1=N

": (4.13)

More precisely, C D 2NC3=ˇ.

Proof. We consider uWRN ! R,

u.x/ D Ex
�
"2
��1X
iD0

f .Xi /

�
:

By Theorem 3.4 we have that L"u D �f in � and u D 0 in RN n�. The result follows
by applying Theorem 4.1 to u.
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Let us observe that the "-ABP estimate (4.3) yields the classical ABP estimate after
taking limits as "! 0. Since eachQ in Q".Ku/ has diameter "=4, then "D 4

p
N jQj1=N

and thus� X
Q2Q".Ku/

�
sup
Q

f C
�N�1=N

" D 4
p
N

� X
Q2Q".Ku/

�
sup
Q

f C
�N
jQj

�1=N
:

Furthermore, letting "! 0 the size of the cubes in Q".Ku/ converges to zero, and since
f is continuous, we obtain the LN .Ku/-norm of f C as the limit of Riemann sums, that
is,

lim
"!0

� X
Q2Q".Ku/

�
sup
Q

f C
�N�1=N

" D 4
p
N kf CkLN .Ku/;

where

kf CkLN .Ku/ WD

�Z
Ku

f C.x/N dx

�1=N
:

Thus, replacing this in the "-ABP estimate (4.3) we get

sup
�

u � sup
RN n�

uC
2NC5

p
N diam�

ˇ
kf CkLN .Ku/ C o."

0/;

which is the classical ABP estimate plus an error term vanishing when "! 0.
Observe that the error depends on f ; moreover it does not vanish uniformly on f .

Also observe that the ABP estimate requires f to be continuous. The standard version of
the ABP estimate in the context of PDEs is with theLN -norm of f on the right-hand side.
Unfortunately, such an inequality does not hold in our setting. That is, for a general f , an
inequality such as

Ex
�
"2
��1X
iD0

f .xi /

�
� Ckf kN

does not hold, as the next example shows.

Example 4.6. Let us consider � D B2, " D 1, and f D 1QN , for which

kf kN D 0:

Let � be given by

�x D
ıvx C ı�vx

2
;

where vx is such that x C vx 2 QN . It follows that Ex Œf .xi /� �
˛
2

for any x. Then since
E0Œ"2�� � c we have

E0
�
"2
��1X
iD0

f .xi /

�
�
c˛

2
:
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We overcome the difficulty of the previous example in the following theorem, where
we obtain a weaker version of the result. Fortunately it is enough for our purposes; see
Lemma 5.1.

Theorem 4.7 ("-ABP estimate with measurable f ). Given f W� ! R a nonnegative
bounded measurable function, there exists C > 0 (depending only on N ) such that

Ex
�
"2
��1X
iD0

f .Xi /

�
� ."2 C ˛Ex Œ"2��/kf k1 C C.diam�Cƒ"/kf kN :

Proof. First we extend f W�! R outside � defining f .x/ D 0 for every x 2 RN n�.
Then we define Qf WRN ! R as the function given by

Qf .x/ D

«
B".x/

f .y/ dy

for every x 2 RN , so Qf is continuous in RN and, in particular, Qf 2 C.x�/. For i � 1 we
have

Ex Œf .Xi /jFi�1�.!/ D ˛

Z
f .xi�1 C "z/ d�xi�1.z/C ˇ

«
B".xi�1/

f .y/ dy

� ˛kf k1 C ˇ Qf .xi�1/: (4.14)

Since Ex Œf .Xi /� D Ex ŒEx Œf .Xi /jFi�1�� we obtain

Ex
�
"2
��1X
iD0

f .Xi /

�
D Ex

�
"2f .X0/C "

2

��1X
iD1

Ex Œf .Xi /jFi�1�

�
� "2kf k1 C Ex

�
"2
��1X
iD1

.˛kf k1 C ˇ Qf .Xi�1//

�
;

where we used (4.14). Rearranging terms we get

Ex
�
"2
��1X
iD0

f .Xi /

�
� "2kf k1 C ˛Ex Œ"2.� � 1/�kf k1 C ˇEx

�
"2
��2X
iD0

Qf .Xi /

�
� ."2 C ˛Ex Œ"2��/kf k1 C ˇEx

�
"2
��1X
iD0

Qf .Xi /

�
:

Observe that since Qf 2 C.x�/ and Qf � 0 we can apply Corollary 4.5. We obtain

Ex
�
"2
��1X
iD0

Qf .Xi /

�
�
2NC3

ˇ
.diam�Cƒ"/

� X
Q".�/

�
sup
Q

Qf
�N�1=N

": (4.15)
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For any fixed Q 2 Q".�/, let x0 denote the center of Q, so Q D Q "

4
p
N
.x0/. Since

diamQ D "=4, then jx � x0j < "=8 for every x 2 xQ. Then

Q � B".x/ � B"Cjx�x0j.x0/ � B9"=8.x0/ � Q9"=4.x0/ D 9
p
NQ "

4
p
N
.x0/ D 9

p
NQ:

Let `D `.N / 2N be the unique odd integer such that `� 2 < 9
p
N � `. In consequence,

Q � B".x/� `Q for every x 2 xQ. Since Qf is continuous in RN , there exists some Nx 2 xQ
such that Qf . Nx/ D supQ Qf and thus�

sup
Q

Qf
�N
D

�«
B". Nx/

f .y/ dy

�N
�

«
B". Nx/

f .y/N dy �
1

jB"j

Z
`Q

f .y/N dy;

where in the first inequality we have recalled Jensen’s inequality for convex functions.
Moreover, since the cubes in Q".�/ form a grid, it turns out that `Q can be expressed
as the union of the cubes Q0 such that Q0 2 Q".�/ and Q0 � `Q. Since any particular
Q0 2Q".�/ belongs to card¹Q 2Q".�/ WQ

0 � `Qº D `N number of cubes `Q, we can
estimate the overlap and getX

Q2Q".�/

�
sup
Q

Qf
�N
�

1

jB"j

X
Q2Q".�/

Z
`Q

f .y/N dy

D
1

jB"j

X
Q02Q".�/

card
®
Q 2 Q".�/ W Q

0
� `Q

¯ Z
Q0
f .y/N dy

D
`N

jB"j

X
Q02Q".�/

Z
Q0
f .y/N dy

D
`N

jB"j

Z
�

f .y/N dy;

where the last equality comes from the fact that f � 0 outside�. Taking the N th root we
finally obtain � X

Q".�/

�
sup
Q

Qf
�N�1=N

�
`

jB1j1=N "

�Z
�

f .y/N dy

�1=N
;

and the result follows after inserting this in (4.15).

5. De Giorgi oscillation lemma

The main goal of this section is to prove Lemma 5.8, a version of the classical De Giorgi
oscillation lemma.

We follow the Krylov–Safonov argument in [15, 16]; see also [3, Chapter V, Section
7]. However, our case is partly discrete and " sets a natural limit for the scale that can be
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used in the proofs. This causes considerable changes. The key result is Theorem 5.7 where
we prove that a set of positive measure is reached by the process with positive probability.
This then implies the De Giorgi oscillation lemma in a straightforward manner by using a
level set as the set of positive measure.

One of the key steps in this section is the use of an adapted version of the Calderón–
Zygmund decomposition, Lemma 5.4. The main difference from the classical version is
that we do not consider cubes of scale smaller than ". If we simply stop the decomposition
once we reach cubes of scale ", then we would lose control between the original set and
the union of cubes in the decomposition. Therefore we need a subtle additional condition
in the decomposition for cubes of size ".

The first step in our argument is to prove that sets of “large density” are reached by the
process with positive probability. This is done in the following lemma. There we employ
the "-ABP estimate, Theorem 4.7, with the characteristic function of A as a right-hand
side, and further estimates from Section 2.4. Recall that TA denotes the hitting time for A
and �A the exit time, that is,

TA D min
®
k 2 N W Xk 2 A

¯
and �A D min

®
k 2 N W Xk 62 A

¯
:

Lemma 5.1. There exist "1 > 0, � > 0 and c > 0 such that if 0 < " < "1, x 2 Q1=2,
A � Q1 and jQ1 n Aj < � then

Px.TA < �Q1/ � c:

Proof. We denote � D �Q1 and Ac D Q1 n A. We write

Ex Œ"2�� D Ex Œ"2�1¹TA<�º�C Ex Œ"2�1¹TA��º�

� Ex Œ."2�/2�
1
2Px.TA < �/

1
2 C Ex

�
"2
��1X
iD0

1Ac .Xi /

�
; (5.1)

where we have used the Cauchy–Schwarz inequality and that
P��1
iD0 1Ac .Xi / D � when

TA � � . By Theorem 4.7 we have

Ex
�
"2
��1X
iD0

1Ac .Xi /

�
� "2 C ˛Ex Œ"2��C C jAc j1=N :

Combining this inequality with (5.1) we obtain

Ex Œ"2�� � Ex Œ."2�/2�
1
2Px.TA < �/

1
2 C "2 C ˛Ex Œ"2��C C�1=N

and, rearranging terms,

ˇEx Œ"2�� � Ex Œ."2�/2�
1
2Px.TA < �/

1
2 C "2 C C�1=N :

By Lemma 2.9 (observe that dist.x;RN n Q1/ � 1=4) and Corollary 2.11 there exist
c1; c2 > 0 such that c1 � Ex Œ"2�� and Ex Œ."2�/2�

1
2 � c2. Therefore

ˇc1 � c2P
x.TA < �/

1
2 C C�1=N C "2

and the result follows for " and � small enough.
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In the following lemma we prove that sets of positive measure are reached by the
process with positive probability when "0=2 � " < "0. By performing a scaling of the
space and step size we later use the result for cubes of size comparable to " in Theorem 5.7;
see Remark 5.3.

Lemma 5.2. Given 0 < "0 � 1, there exists  D ."0/ > 0 such that if "0=2 � " < "0,
x 2 Q1, A � Q1, we have

Px.TA < �Q
10
p
N
/ �  jAj:

Proof. We define N0 D d2
p
N
"0
e C 1 and consider the event E of the first N0 movements

to be uniformly distributed. That is E D ¹c1 D � � � D cN0 D 1º. We have

Px.TA < �Q
10
p
N
/ � Px.TA < �Q

10
p
N
jE/P .E/:

Observe that P .E/D ˇN0 . If a uniform random step occurs, then the step size is at most ".
Hence, after N0 uniform random steps the token is at a distance of at most

N0" � N0"0 <
�2pN
"0
C 2

�
"0 � 2

p
N C 2 � 4

p
N

from the starting point. Therefore, we have that all the steps until time N0 are inside
Q
10
p
N

and we have Px.TA < �Q
10
p
N
jE/ � Px.XN0 2 AjE/. We have proved that

Px.TA < �Q
10
p
N
/ � Px.XN0 2 AjE/ˇ

N0 :

We consider Ui a sequence of independent random variables uniformly distributed in B1.
And we define Y D

PN0
iD1 Ui . Let f denote the density of Y ; it is a radial decreasing

function strictly positive in the ball of radius N0. Given x0 D x 2Q1 and y 2Q1 we can
bound

fXN0 jE .y/ D
1

"n
f ..y � x/="/ �

1

"n0
f .
p
N="/ �

1

"n0
f .2
p
N="0/:

Since 2
p
N
"0

< N0 we have f .2
p
N="0/ > 0.

Finally we obtain

Px.TA < �Q
10
p
N
/ � Px.XN0 2 AjE/ˇ

N0 �
1

"n0
f .2
p
N="0/jAjˇ

N0 :

Therefore the result holds for  D 1
"n0
f .2
p
N="0/ˇ

N0 .

Remark 5.3. Given a cube Q there exists an affine transformation h.x/ D ax C b such
that h.Q/ D Q1. Given the process Xk we can consider the process h.Xk/. Observe that
this new process is of the type that we are considering for Q"D a" and the pushforward mea-
sure Q� given by Q�x.A/ D �h�1.x/.A/. Then results established for Q1 such as Lemma 5.2
can be applied to cubes of any size. Moreover, if "0=2 � Q" < "0, then the constant  only
depends on "0.
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Now we state our version of the Calderón–Zygmund lemma. In the discrete setting, the
" sets a natural limit for the scale. To control the error when stopping the decomposition
at the level ", we introduce an additional condition. When applying the decomposition, a
careful choice of the parameters allows us to guarantee the two opposite goals: there are
enough cubes in the decomposition and the share of A in measure is still large enough.

First we introduce some notation. We denote by D` the family of dyadic open sub-
cubes of Q1 of generation ` 2 N. That is, D0 D ¹Q1º, D1 is the family of 2N dyadic
open cubes obtained by dividing Q1, and so on. Given ` 2 N and Q 2 D` we define
pre.Q/ 2 D`�1 as the unique dyadic cube in D`�1 containing Q.

Let 0 < Qı < ı < 1 and A � Q1 a measurable set, such that

jAj � ı:

Next we will construct a collection of (open) cubes QB , containing subcubes from gener-
ations D0;D1; : : : ;DL, and a set

B WD
[
Q2QB

Q:

By the assumption we first observe that

jQ1 \ Aj � ıjQ1j:

Then we split Q1 into 2N dyadic cubes D1. For those dyadic cubes Q 2 D1 that satisfy

jA \Qj > ıjQj; (5.2)

we select pre.Q/ into QB .
For other dyadic cubes that do not satisfy (5.2) and are not contained in any cube

already included in QB , we keep splitting, and again repeat the selection according to
(5.2). We repeat splitting L 2 N times. At level L, in addition to the previous process, we
also select those cubes Q 2 DL (not the predecessors) into QB for which

ıjQj � jA \Qj > QıjQj (5.3)

and are not contained in any cube already included in QB . Now the following lemma
holds.

Lemma 5.4 (Calderón–Zygmund). Let A � Q1, 0 < Qı < ı < 1, L 2 N and B be as
above. It holds that

jAj � ıjBj C Qı:

Proof. Observe that for pre.Q/ selected according to (5.2) into QB , it holds that

jA \ pre.Q/j � ıj pre.Q/j
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since otherwise we would have stopped splitting already at the earlier round. Also for
cubes Q selected according to (5.3) into QB , it holds that jA \Qj � ıjQj. Summing up,
for all the cubes Q 2 QB , it holds that

jA \Qj � ıjQj: (5.4)

Moreover, by construction, the cubes in QB are disjoint.
We define GL as a family of cubes of DL that coversQ1 nB a.e. It immediately holds

a.e. that
A � Q1 D

[
Q2QB

Q [
[
Q2GL

Q:

By this, using (5.4), as well as observing that jA\Qj � QıjQj by (5.3) for every Q 2 GL,
we get

jAj D
X
Q2QB

jA \Qj C
X
Q2GL

jA \Qj

�

X
Q2QB

ıjQj C
X
Q2GL

QıjQj

� ıjBj C Qı:

Before proceeding to the main result, we need to show that if the stochastic process
starts in a certain cube, it will reach any subcube in the next level of the dyadic decom-
position with positive probability. We also need to show that for any starting point in Q1,
the process reaches Q1=2 with positive probability. We obtain these results as a corollary
of the following lemma.

Lemma 5.5. Given 0 < R1 < R2 < R3, there exist "2 D "2.R1; R2; R3/ > 0 and p D
p.R1; R2; R3/ > 0 such that for x 2 BR2 we have

Px.TBR1 < �BR3 / � p

for " < "2.

Proof. For c > 0 we consider the radial increasing function '.x/ D �jxj�c . For x 2
BR3 n BR1 we have

ˇ

«
B".x/

'.y/ dy C ˛

Z
'.x C "z/C '.x � "z/

2
d�x.z/

� '.x/C
ˇ"2

2.N C 2/
�'.x/C ˛"2ƒ2 sup

zWjzjD1

hD2'.x/z; zi C o."2/;

where we have used the second-order Taylor expansion for ' in BR3Cƒ"2 n BR1�ƒ"2 .
Observe that ' is smooth in that region for "2 small enough.
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Figure 1. The inclusions of balls and cubes defined in Corollary 5.6 in the case that P D Q1 \

¹x W xi > 0 for i D 1; : : : ; N º.

We consider s D jxj and �.s/D '.x/. Recall that for a radial function the eigenvalues
of D2' are �00.s/ with multiplicity 1 and �0.s/=s with multiplicity N � 1. We obtain

ˇ

«
B".x/

'.y/ dy C ˛

Z
'.x C "z/C '.x � "z/

2
d�x.z/

� �.s/C "2
��ˇ.N � 1/
2.N C 2/

C ˛ƒ2
��0.s/

s
C

ˇ

2.N C 2/
�00.s/

�
C o."2/: (5.5)

We have �0.s/ D cs�c�1 and �00.s/ D �c.c C 1/s�c�2. Therefore, the right-hand
side in (5.5) is smaller than '.x/ for every x 2 BR3 nBR1 for c large enough and "2 small
enough. Hence, '.xn/ is a supermartingale.

If q D Px.TR1 < �R3/, we obtain

'.R3/.1 � q/C '.R1 �ƒ"2/q � Ex Œ'.x�BR3 nBR1
/� � '.x/ � '.R2/:

Hence q � '.R3/�'.R2/
'.R3/�'.R1�ƒ"2/

> 0.

Corollary 5.6. There exist "2 > 0 and p > 0 such that if " < "2, x 2 Q1 and P � Q1 is
a cube of side length 1=2, we have

Px.TP < �Q
10
p
N
/ � p:

Proof. For y the center of P , R1 D 1=4; R2 D 3
p
N=2 and R3 D

p
N.5
p
N C 1=4/,

we have
BR1.y/ � P � Q1 � BR2.y/ � Q10

p
N
� BR3.y/;

as shown in Figure 1.
Since BR1.y/ � P and Q

10
p
N
� BR3.y/ we have

Px.TP < �Q
10
p
N
/ � Px.TBR1 .y/ < �BR3 .y//:

As x 2 Q1 � BR2.y/, the result follows from Lemma 5.5.
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We are ready to prove our main result, that a set of positive measure is reached by
the process with positive probability. The idea is the following: given a suitable set A we
construct B using the Calderón–Zygmund lemma such that B is larger than A in measure.
Using this, we prove that the process reaches B (estimate (5.7) below) and then A by
considering two alternatives (estimates (5.9) and (5.10) below).

Theorem 5.7. There exist "0 > 0 and a nondecreasing function 'W .0; 1/! .0; 1/ such
that for every " < "0, A � Q1, jAj > 0 and x 2 Q1, we have

Px.TA < �Q
10
p
N
/ > '.jAj/:

Proof. We define "0 Dmin¹"1; "2; 1ºwhere "1 and "2 are given by Lemma 5.1 and Corol-
lary 5.6, respectively. We also define

'.�/ D inf
®
Px.TA < �Q

10
p
N
/ W �; " < "0; A � Q1; jAj � � and x 2 Q1

¯
for � 2 .0; 1/. Observe that '.�/ is nondecreasing since for a larger � the set where the
infimum is taken is smaller. We set

q0 WD inf
®
� 2 .0; 1/ W '.�/ > 0

¯
: (5.6)

Since we want to prove that q0 D 0, we suppose, aiming for a contradiction, that q0 > 0.
First, observe that

Px.TA < �Q
10
p
N
/ � Px.TQ 1

2

< �Q
10
p
N
/ inf
y2Q1=2

Py.TA < �Q1/:

By Corollary 5.6 we have that Px.TQ 1
2

< �Q
10
p
N
/ is positive and by Lemma 5.1 we have a

positive lower bound for Py.TA < �Q1/ for y 2Q1=2 whenever jQ1 nAj is small enough.
Therefore the probability Px.TA < �Q

10
p
N
/ is uniformly bounded from below for A such

that jQ1 n Aj is small enough. We get 1 > q0.
By the previous observation, we may choose q > q0 such that .qC q2/=2 < q0. Thus,

for � WD .q � q2/=2 we have

q � � D
q C q2

2
< q0 < q:

Given A � Q1 with q � jAj > q � �, we consider the union of cubes B constructed in
Lemma 5.4 for ı D q, Qı D � and L 2 N such that 2L" < "0 � 2

LC1". Observe that L
depends on ", that is, the depth of the Calderón–Zygmund decomposition depends on ".
This is what allows us to have the smaller cubes in the decomposition of side length
comparable to ". All the other constants are independent of ". With these choices, by the
Calderón–Zygmund lemma, Lemma 5.4, we have jAj � qjBj C �, that is

jBj �
jAj � �

q
�
q � 2�

q
D
q � .q � q2/

q
D q:
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Hence, by the definition of ' and (5.6), we have

Px.TB < �Q
10
p
N
/ � '.q/ > 0; (5.7)

since by the choice of q we had q > q0. We can estimate

Px.TA < �Q
10
p
N
/ � Px.TB < �Q

10
p
N
/ inf
y2B

Py.TA < �Q
10
p
N
/: (5.8)

Now we estimate Py.TA < �Q
10
p
N
/, separating into two cases depending on y 2 B .

Because of the construction of B we know that one of the following must hold:

• There exists a dyadic cubeQ with side length equal to 1=2L such that y 2Q � B and
jA \Qj > QıjQj D �jQj, or

• there exists a dyadic cube Q with side length larger than or equal to 1=2L such that
y 2 pre.Q/ � B and jA \Qj > ıjQj D qjQj.

In the first case, by scaling the cube Q to Q1 (see Remark 5.3) we obtain a process
for Q" with "0=2 � Q" D 2L" � "0. By applying Lemma 5.2 we obtain for y 2 Q � B ,

Py.TA < �Q
10
p
N
/ � �."0/: (5.9)

Observe that  depends on "0 but not on ".
In the second case we scale pre.Q/ to Q1 and obtain a version of the process for

Q" � "0 and some Q�. We may assume that the scaled version ofQ is P DQ1 \ ¹x W xi > 0
for i D 1; : : : ; N º. We can bound the probability of reaching P by Corollary 5.6 and then
the probability of reaching A using that jA \Qj > qjQj. By the choice of q, we obtain
for y 2 pre.Q/ � B ,

Py.TA < �Q
10
p
N
/ � p'.q/ > 0: (5.10)

Using (5.9), (5.10) and (5.7) in (5.8), we conclude that

Py.TA < �Q
10
p
N
/ � '.q/min¹�; p'.q/º > 0:

Hence, '.�/ > 0 for every � > q � �, which is a contradiction.

Now we state a version of the classical De Giorgi oscillation lemma for the subsolu-
tions of the DPP.

Lemma 5.8 (De Giorgi oscillation lemma). There exist k > 1 and C; "0 > 0 such that for
every R > 0 and " < "0R, if u is a subsolution to the DPP in BkR with u � M in BkR
and

jBR \ ¹u � mºj � � jBRj;

for some � > 0 and m;M 2 R, then there exists � D �.�/ > 0 such that

sup
BR

u � .1 � �/M C �mC CR2kf k1:
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Proof. Recall that u is a subsolution, that is,

u.x/ � ˛

Z
u.x C "z/ d�x.z/C ˇ

«
B".x/

u.y/ dy C "2f .x/:

We define Qu.x/ D u.2Rx/; we have

Qu
� x
2R

�
� ˛

Z
Qu
�x C "z

2R

�
d�x.z/C ˇ

«
B".x/

Qu
� y
2R

�
dy C "2f .x/:

We consider Qx D x
2R

and define Q" D "
2R

, Q� such that �x D Q� Qx and Qf such that "2f .x/ D
Q"2 Qf . Qx/. We get

Qu. Qx/ � ˛

Z
Qu. Qx C Q"z/ d Q� Qx.z/C ˇ

«
BQ". Qx/

Qu.y/ dy C Q"2 Qf . Qx/:

That is, Qu is a subsolution to the DPP in Bk=2 for Q", Q� and Qf as defined above. We consider
the value of "0 given by Theorem 5.7. Observe that Q"D "

2R
< "0. Also observe that Qu�M

in Bk=2 and
jB1=2 \ ¹ Qu � mºj � � jB1=2j:

We have B1=2 � Q1. We take k D 2.5N C ƒ"0/, such that X�Q
10
p
N
2 Bk=2. We

define A D B1=2 \ ¹ Qu � mº and consider the stopping time

T D min¹TA; �Q
10
p
N
º:

For every Qx 2 Q1, we have

Qu. Qx/ � E Qx
�
Qu.XT /C Q"

2

T�1X
iD0

Qf .Xi /

�
� E Qx Œ Qu.XT /jTA < �Q

10
p
N
�P Qx.TA < �Q

10
p
N
/

C E Qx Œ Qu.XT /jTA > �Q
10
p
N
�.1 � P Qx.TA < �Q

10
p
N
//C k Qf k1E Qx ŒQ"2T �

�MP Qx.TA < �Q
10
p
N
/Cm.1 � P Qx.TA < �Q

10
p
N
//C Ck Qf k1;

where the first inequality holds since Qu is a subsolution to the DPP and we have bounded
E Qx ŒQ"2T � by Lemma 2.9.

Observe that inf Qx2B1=2 P Qx.TA < �Q
10
p
N
/ is positive as stated in Theorem 5.7. Also

observe that k Qf k1 D .2R/2kf k1. Therefore, we have proved the result since bounding
Qu. Qx/ for every Qx 2 B1=2 � Q1 is equivalent to bounding u.x/ for every x 2 BR.

Observe that the values of k and � do not depend on " nor R. And an analogous
statement holds for supersolutions.
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6. Proof of the Hölder estimate

The Hölder estimate follows from the De Giorgi oscillation lemma, Lemma 5.8, after a
finite iteration. We include the details here as we have to take special care of the role of "
in the arguments.

Given a function u we define

M.R/ D sup
BR

u; m.R/ D inf
BR
u and O.R/ DM.R/ �m.R/:

We also define
osc.A/ D sup

A

u � inf
A
u:

Observe that osc.BR/ D O.R/.

Lemma 6.1. There exist �< 1 and k > 1 such that for every solution u to the DPP defined
in BkR we have

O.R/ � �O.kR/C CR2kf k1

for every R and " < R"0.

Proof. We can assume that O.kR/ ¤ 0 where k is given by Lemma 5.8. We consider
l D .M.kR/Cm.kR//=2. Either

j¹u � lº \ BRj � jBRj=2

or
j¹u � lº \ BRj � jBRj=2:

Suppose that the first holds (the proof is completely analogous in the other case); then
since u � m.kR/ and l D m.kR/C O.kR/

2
, Lemma 5.8 implies that

m.R/ � m.kR/C �
O.kR/

2
� CR2kf k1

for some � D �.1
2
/ > 0. Then, since M.R/ �M.kR/, we have

O.R/ DM.R/ �m.R/

�M.kR/ �m.kR/ �
�

2
O.kR/C CR2kf k1

D

�
1 �

�

2

�
O.kR/C CR2kf k1:

Thus, the statement holds for � D 1 � �=2.

By iterating the oscillation estimate from Lemma 6.1 we can obtain the Hölder regu-
larity. To that end we prove the following lemma.



Hölder regularity with bounded and measurable increments 249

Lemma 6.2. If O.s/ � 0 is a nondecreasing function and O.s/ � �O.ks/C Cs2kf k1
for every s > � for some � 2 .0; 1/, k > 1 and � > 0 such that �k2 > 1, then

O.�/ �
1

�

� �
R

�
.O.R/C CR2kf k1/

for every R � � > � where  D log 1
�

logk .

Proof. Since k > 1 there exists a unique m 2 N0 such that

km �
R

�
< kmC1:

By repeatedly using that O.s/� �O.ks/CCs2kf k1, for sD R
km
; R
km�1

; : : : ; R
k

we obtain

O.�/ � O
� R
km

�
� �O

� R

km�1

�
C C

� R
km

�2
kf k1

� �2O
� R

km�2

�
C �C

� R

km�1

�2
kf k1 C C

� R
km

�2
kf k1

� �mO.R/C CR2kf k1

��m�1
k2
C � � � C

�

k2.m�1/
C

1

k2m

�
D �mO.R/C CR2kf k1�

m
� 1

�k2
C � � � C

1

.�k2/m�1
C

1

.�k2/m

�
� �mO.R/C CR2kf k1�

m 1

�k2 � 1
:

Observe that we have used the hypothesis for values larger than �, in fact

R

k
�
R

k2
� � � � �

R

km
� � > �:

We have

log
R

�
< .mC 1/ log k;

log R
�

log k
< .mC 1/;

�
log R�
logk > �mC1:

Thus, the inequality follows since

�m D
1

�
�mC1 <

1

�
�

log R�
logk D

1

�

� �
R

�
:



Á. Arroyo, P. Blanc, and M. Parviainen 250

Observe that Lemmas 6.1 and 6.2 prove that, given u a solution to the DPP defined in
BR.x/,

osc.B�.x// �
1

�

� �
R

��
osc.BR.x//C CR2kf k1

�
for " < �"0. We are ready to prove the Hölder estimate.

Proof of Theorem 1.1. Given x; z 2 BR we consider � D jx � zj.
If � � R, we have

ju.x/ � u.z/j � 2 sup
B2R

juj
jx � zj

R
:

If � < R and " < �"0, we employ the previous lemma and obtain

ju.x/ � u.z/j � osc.B�.x//

�
1

�

� �
R

��
osc.BR.x//C CR2kf k1

�
�
1

�

� �
R

��
osc.B2R/C CR2kf k1

�
�
2 supB2R juj C CR

2kf k1

R�
jx � zj :

In the case " � �"0 then we can estimate osc.B�.x// by osc.B�0.x// for �0 D "
"0

. We
get

ju.x/ � u.z/j � osc.B�.x//

� osc.B�0.x//

�
1

�

��0
R

��
osc.BR.x//C CR2kf k1

�
�
1

�

��0
R

��
osc.B2R/C CR2kf k1

�
�
1

�

� "

"0R

�
2
�

sup
B2R

juj C CR2kf k1

�
:

Observe that we have �0 � R since " < "0R.

7. Generalization to Pucci-type operators and inequalities

Here we explain how to modify our arguments to include solutions to Pucci-type operators
and inequalities. Our method is robust and essentially the same arguments remain valid.

We start by defining the operator and then a stochastic process associated to it.
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Definition 7.1. Let uWRN ! R be a bounded Borel measurable function. We define the
maximal Pucci-type operator

LC" u.x/ WD
1

2"2

�
˛ sup
�2M.Bƒ/

Z
ıu.x; "z/ d�.z/C ˇ

«
B1

ıu.x; "y/ dy

�
D

1

2"2

�
˛ sup
z2Bƒ

ıu.x; "z/C ˇ

«
B1

ıu.x; "y/ dy

�
;

where ıu.x; "y/ D u.x C "y/ C u.x � "y/ � 2u.x/ for every y 2 Bƒ; L�" is defined
analogously, just replacing sup by inf.

For related operators, see [6].
For each " > 0 we consider a stochastic process starting at x0 2 RN . The process

is driven by a controller. Given the value of xk , the next position of the process xkC1
is determined as follows. A biased coin is tossed. If we get heads (probability ˛), the
controller chooses z 2 Bƒ and we have xkC1 D xk ˙ "z, each with probability 1=2. If
we get tails (probability ˇ), xkC1 is distributed uniformly in the ball B".xk/.

To be more precise, a strategy S for the controller is a measurable function defined on
the partial histories, that is,

S.x0; x1; : : : ; xk/ D z 2 Bƒ:

Then the process is moved according to this choice. That is, given A 2 B and c D 0 or 1,
we have the following transition probabilities:

�S .x0; .c1; x1/; : : : ; .ck ; xk/; ¹cº � A/ D

8̂̂<̂
:̂
˛
ız C ı�z

2

�A � xk
"

�
if c D 0;

ˇ
jA \ B".xk/j

jB"j
if c D 1;

where z D S.x0; x1; : : : ; xk/.
For a fixed strategy we have a process as before. The only difference is that now the

measure � may depend not only on x but S (this does not introduce any difference into
our arguments). For a fixed S we can consider Ex0S , the corresponding expectation. All the
estimates obtained for Ex0 hold for Ex0S and are independent of S .

We consider a game where the controller is paid g.x� / at the end and therefore it is
their goal to maximize that value. The expectation for earnings is given by

u.x0/ D sup
S

Ex0S Œg.x� /�;

where Ex0S stands for the expectation with respect to the process and S is the strategy
adopted by the controller. The function uWRN ! R satisfies the DPP given by

u.x/ D ˛ sup
z2Bƒ

u.x C "z/C u.x � "z/

2
C ˇ

«
B".x/

u.y/ dy

for x 2 �, and u.x/ D g.x/ for x 62 �.
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We can consider a version of the game where whenever the token leaves a point xi ,
the controller is paid "2f .xi /. In this case the expectation for earnings is given by

u.x/ D sup
S

ExS

�
"2
��1X
iD0

f .Xi /C g.X� /

�
: (7.1)

It turns out, as will be shown below, that u is the unique bounded Borel measurable func-
tion that satisfies

u.x/ D ˛ sup
z2Bƒ

u.x C "z/C u.x � "z/

2
C ˇ

«
B".x/

u.y/ dy C "2f .x/ (7.2)

for x 2 � and u.x/ D g.x/ for x 62 �. Or equivalently LC" uC f D 0.
The existence of a solution to equation (7.2) can be seen as before. Next we prove the

equivalent to Theorem 3.4.

Theorem 7.2. The function u given by (7.1) is the unique bounded solution to equation
(7.2) with boundary values g.

Proof. Let v be a solution to equation (7.2). Given a strategy S0 we have

Ex0S0

�
v.XkC1/C "

2

kX
iD0

f .Xi /

ˇ̌̌̌
Fk

�
.!/

� ˛ sup
z2Bƒ

v.xk C "z/C v.xk � "z/

2
C ˇ

«
B".xk/

v.y/ dy C "2
kX
iD0

f .xi /

D v.xk/C "
2

k�1X
iD0

f .xi /:

Thus ¹v.Xk/C "2
Pk�1
iD0 f .Xi /ºk is a supermartingale. Then, by Doob’s stopping time

theorem (recall that v and f are bounded), we have

v.x/ � ExS0

�
v.X� /C "

2

��1X
iD0

f .Xi /

�
:

Since this holds for every strategy and v.x� / D u.x� /, we get

v.x/ � sup
S

ExS

�
v.X� /C "

2

��1X
iD0

f .Xi /

�
D u.x/:

On the other hand, given � > 0 we consider a strategy S0 that almost maximizes the
right-hand side of (7.2), that is, S0.x0; : : : ; xk/ D Qz 2 Bƒ such that

v.xk C " Qz/C v.xk � " Qz/

2
� sup
z2Bƒ

v.xk C "z/C v.xk � "z/

2
� �2�.kC1/:
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The strategy can be taken measurable similarly to [25, Lemma 3.1].
We have

Ex0S0

�
v.XkC1/C "

2

kX
iD0

f .Xi / � �2
�.kC1/

ˇ̌̌̌
Fk

�
.!/

� ˛ sup
z2Bƒ

v.xk C "z/C v.xk � "z/

2
C ˇ

«
B".xk/

v.y/ dy

C "2
kX
iD0

f .xi / � �2
�.kC1/

� �2�.kC1/

D v.xk/C "
2

k�1X
iD0

f .xi / � �2
�k :

Thus ¹v.Xk/C "2
Pk�1
iD0 f .Xi / � �2

�kºk is a submartingale. Then

v.x/ � � � ExS0

�
v.X� /C "

2

��1X
iD0

f .Xi / � �2
��

�
� sup

S

ExS

�
v.X� /C "

2

��1X
iD0

f .Xi /

�
D u.x/:

Since this holds for every � > 0 we conclude that v � u. Thus v D u, and we have proved
that u is a solution to (7.2) and that every solution coincides with it, so there is a unique
solution.

Finally, we state Theorem 1.2 again, which is our main result of this section: one only
needs Pucci-type inequalities in order to obtain the regularity result.

Theorem 7.3. Let f be a bounded Borel function. There exists "0 > 0 such that if u
satisfies

LC" u � �jf j; L�" u � jf j (7.3)

in B2R where " < "0R, there exist  > 0 and C > 0 such that

ju.x/ � u.z/j �
C

R

�
sup
B2R

juj CR2kf k1

�
.jx � zj C " /

for every x; z 2 BR.

Remark 7.4. Observe that the "-ABP estimate (Theorem 4.1), as well as all the results
from Section 4, is valid if we consider the maximal Pucci-type operator LC" instead of L".
This is due to the fact that (similarly to equations (4.4) and (4.5)), if u is a bounded Borel
measurable function satisfying LC" uC f � 0 in �, then LC" � C f � 0 in Ku, where �
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is the concave envelope of u and Ku is the set of contact points defined in (4.1). Hence,
using this together with the fact that the second differences satisfy ı�.x0; y/ � 0 for each
x0 2 Ku, we can estimate the ˛-term in LC" �.x0/, so

LC" �.x0/ �
ˇ

2"2

«
B"

ı�.x0; y/ dy:

This is analogous to inequality (4.12) in the proof of Lemma 4.4, and it is indeed the
cornerstone in all the estimates from Section 4.

With the analogous results of Sections 2 and 4 for LC" in hand, those of Section 5 fol-
low. However, there is a key modification needed in the analogous version of Lemma 5.8
where, after establishing some estimates related to the stochastic process, solutions to the
DPP are considered. Here we adapt our argument to functions satisfying (7.3).

Lemma 7.5. There exist k > 1 and C; "0 > 0 such that for every R > 0 and " < "0R, if
u satisfies LC" u � �jf j in BkR with u �M in BkR and

jBR \ ¹u � mºj � � jBRj

for some � > 0 and m;M 2 R, then there exists � D �.�/ > 0 such that

sup
BR

u � .1 � �/M C �mC CR2kf k1:

Proof. The function u satisfies LC" u � �jf j, that is,

u.x/ � ˛ sup
z2Bƒ

u.x C "z/C u.x � "z/

2
C ˇ

«
B".x/

u.y/ dy C "2jf .x/j:

We define Qu.x/ D u.2Rx/. We have

Qu
� x
2R

�
� ˛ sup

z2Bƒ

Qu.xC"z
2R

/C Qu.x�"z
2R

/

2
C ˇ

«
B".x/

Qu
� y
2R

�
dy C "2jf .x/j:

We consider Qx D x
2R

and define Q" D "
2R

and Qf such that "2f .x/ D Q"2 Qf . Qx/. We get

Qu. Qx/ � ˛ sup
z2Bƒ

Qu. Qx C Q"z/C Qu. Qx � Q"z/

2
C ˇ

«
BQ". Qx/

Qu.y/ dy C Q"2j Qf . Qx/j; (7.4)

where Qu is defined in Bk=2. We consider the value of "0 given by Theorem 5.7. Observe
that Q" D "

2R
< "0. Also observe that Qu �M in Bk=2 and

jB1=2 \ ¹ Qu � mºj � � jB1=2j:

Given � > 0 we consider the strategy S0 the almost maximizes the right-hand side of
(7.4), that is, S0.x0; : : : ; xk/ D Qz 2 Bƒ such that

u.x C " Qz/C u.x � " Qz/

2
� sup
z2Bƒ

u.x C "z/C u.x � "z/

2
� �2�.kC1/:
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As in the proof of Theorem 7.2 we get that ¹v.Xk/ C "2
Pk�1
iD0 f .Xi / � �2

�kºk is a
submartingale for E QxS0 .

We have B1=2 � Q1. We take k D 2.5N C ƒ"0/, such that X�Q
10
p
N
2 Bk=2. We

define A D B1=2 \ ¹ Qu � mº and consider the stopping time

T D min¹TA; �Q
10
p
N
º:

For every Qx 2 Q1 (and in particular for those in B1=2) we have

Qu. Qx/ � � � E QxS0

�
Qu.XT /C Q"

2

T�1X
iD0

j Qf .Xi /j � �2
�T

�
� E QxS0 Œ Qu.XT /jTA < �Q10pN �P

Qx
S0
.TA < �Q

10
p
N
/

C E QxS0 Œ Qu.XT /jTA > �Q10pN �.1 � P Qx.TA < �Q
10
p
N
//C k Qf k1E QxS0 ŒQ"

2T �

�MP QxS0.TA < �Q10pN /Cm.1 � P QxS0.TA < �Q10pN //C Ck
Qf k1;

where we have bounded E QxS0 ŒQ"
2T � by Lemma 2.9.

Observe that inf Qx2B1=2 P Qx.TA < �Q
10
p
N
/ is positive as stated in Theorem 5.7. Also

observe that k Qf k1 D .2R/2kf k1. Therefore, we have proved the result since bounding
Qu. Qx/ for every Qx 2 B1=2 is equivalent to bounding u.x/ for every x 2 BR. Finally since
the inequality holds for every � > 0 it holds without it.

Remark 7.6. Given nonempty subsets Mx � M.Bƒ/ for each x 2 RN with suitable
measurability requirements, we can consider solutions to the equation

u.x/ D ˛ sup
�2Mx

Z
u.x C "z/ d�.z/C ˇ

«
B".x/

u.y/ dy C "2f .x/:

Observe that such functions would satisfy (7.3) and therefore would be in the hypothesis
of Theorem 7.3.

Our results also cover tug-of-war games with noise. Indeed, the value functions satisfy

1

2"2

�
˛
�

sup
B".x/

uC inf
B".x/

u � 2u.x/
�
C ˇ

«
B1

ıu.x; "y/ dy

�
C f .x/ D 0: (7.5)

Since
sup
B".x/

uC inf
B".x/

u � sup
z2B1

.u.x C "z/C u.x � "z//

we have 0 � f CLC" u and similarly 0 � f CL�" u. Therefore, solutions to (7.5) satisfy
(7.3). Moreover, we can consider solutions to the DPP associated to the normalized p.x/-
Laplacian given by

u.x/ D
˛.x/

2

�
sup
B".x/

uC inf
B".x/

u
�
C ˇ.x/

«
B".x/

u.z/ dz C "2f .x/: (7.6)
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Let ˇ� WD infx2� ˇ.x/ > 0. Then we observe that

0 � f .x/C
1

2"2

�
˛.x/ sup

z2Bƒ

ıu.x; "z/C ˇ.x/

«
B1

ıu.x; "y/ dy

�
� f .x/C

1

2"2

�
.1 � ˇ�/ sup

z2Bƒ

ıu.x; "z/C ˇ�
«
B1

ıu.x; "y/ dy

�
:

Similarly,

0 � f .x/C
1

2"2

�
˛.x/ inf

z2Bƒ
ıu.x; "z/C ˇ.x/

«
B1

ıu.x; "y/ dy

�
� f .x/C

1

2"2

�
.1 � ˇ�/ inf

z2Bƒ
ıu.x; "z/C ˇ�

«
B1

ıu.x; "y/ dy

�
:

Thus solutions to (7.6) satisfy the hypotheses of Theorem 7.3.
In a similar way, there is a large family of discrete operators associated to different

PDEs that are in the hypothesis of our main result.
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