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Abstract

It is imperative that quantum computing devices perform floating-point
arithmetic operations. This paper presents a circuit design for floating-point
square root operations designed using classical Babylonian algorithm. The
proposed Babylonian square root, is accomplished using Clifford+T opera-
tions. This work focuses on realizing the square root circuit by employing
the bit Restoring and bit Non-restoring division algorithms as two differ-
ent approaches. The multiplier of the proposed circuit uses an improved
structure of Toom-cook 2.5 multiplier by optimizing the T-gate count of the
multiplier. It is determined from the analysis that the proposed square root
circuit employing slow-division algorithms results in a T-count reduction of
80.51% and 72.65% over the existing work. The proposed circuit saves a sig-
nificant number of ancillary qubits, resulting in a qubit cost savings of 61.67
% When compared to the existing work.
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1. Introduction

Quantum computing is one of the most promising emerging and upcoming
computing constructs, with applications in cryptography[1, 2, 3, 4], image
processing [5, 6, 7] scientific information processing [8, 9, 10, 11], and in
finding the solution of system of linear equations [12, 13, 14]. Quantum
square root circuit can be used to solve Hamiltonian equations, quadratic
congruence, Poisson equations, and to solve trigonometric functions [15]. As
the qubits are inherently unstable, physical quantum computing devices are
highly susceptible to noise errors. [16, 17, 18, 19, 20]. In the circuit model,
fault-tolerant Clifford+T quantum gates or quantum error correction codes
can be used to handle noise-intolerant quantum circuits. A spy quantum
circuit is required to build circuits that use quantum error correcting codes,
which can result in a more complicated overall circuit [21, 7]. The overhead
of quantum T gates and number of qubits is accompanied by a noise-tolerant
quantum circuit built with fault-tolerant quantum gates [22, 23, 21]. The
performance of a fault-tolerant quantum circuit can be analysed using three
distinct parameters namely,

1. Qubits: The total number of qubits including the ancillary qubit em-
ployed in the quantum circuit

2. rredT-depth: The count of quantum T-gate layers in the quantum
circuit

3. redT-count: The number of T-gates utilized in total to implement the
unitary

Because of the increased cost of recognising the T gate, T-count has be-
come an important performance measure for fault tolerant quantum circuit
design. Furthermore, existing machines have few qubits, and humongous ma-
chines are hard to fathom. As a necessary consequence, the total amount of
qubits and T-count required by a quantum circuit is an essential measurable
statistic.A critical aspect of gaining computing benefit from a quantum com-
puting machine is reducing the amount of resources required to implement
a quantum algorithm. This work aims to reduce the physical cost associ-
ated with T-gates and qubits in implementing quantum algorithms by using
Clifford+T gates [24, 25]. The list of fault-tolerant Clifford+T logic gates is
provided in Table 1. Clifford+T quantum gates are fault-tolerant gates, but
quantum CCNOT (Controlled-controlled NOT) or Toffoli gates are excluded.
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Table 1: Gates for Clifford +T quantum systems

S.No Gate Matrix Symbol

1 Pauli-x

[
0 1
1 0

]
X or

⊕
2 Hadamard 1√

2

[
1 1
1 −1

]
H

3 CNOT (Controlled-Not)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


4 T-Gate

[
1 0
0 eiπ/4

]
T

5 T-Gate Hermitian Transpose or T †
[
1 0
0 e−iπ/4

]
T−1

6 Phase Gate

[
1 0
0 i

]
S

7 Phase Gate Hermitian Transpose

[
1 0
0 −i

]
S−1 or S †

Considering the application of quantum CCNOT gates in quantum circuits,
decomposing the quantum Toffoli gate into Clifford +T gate sets has gained
widespread interest in the literature [26, 27, 28, 29]. In addition to the many
decomposition schemes available to decompose the Toffoli gate [26, 30, 31],
the Clifford+T solution is better realized as it has a reduced T- gate count
of 4 and a reduced T depth of 3 in Gidney’s adder (GA) [32] is shown in
Figure 1.

The Clifford+T gate set is a universal set, as the T gate is expensive to
fault-tolerantly implement, it’s crucial to minimize the T gates usage in a
fault-tolerant quantum system. Compared to integer arithmetic [33, 34, 22,
35, 36, 37, 38] the design of quantum circuits for floating-point arithmetic has
received less importance in the literature [39, 23, 37]. Dutta et.al [40] pro-
posed a quantum circuit model to realize square root for both fixed point and
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Figure 1: Clifford+T realization of Temporary logic AND [32]

floating-point number using an iterative method that employs two variables.
The existing design employs high T-costs because the adder used in the de-
sign is the Cuccaro adder (CUA) [41], which has a high T-count. This work
focuses on developing a quantum circuit to perform square root operations
on single-precision floating-point numbers using the classical Babylonian al-
gorithm. The proposed quantum circuit employs a division circuit in two
ways: Restoring division algorithm (RDA) and Non-restoring division algo-
rithm (NRDA). Section 2 describes the preliminary stages of a square root
computing circuit using the traditional Babylonian approach. In Section 3,
the resource estimation calculation for the proposed quantum circuit model
is discussed and compared to previous work. The conclusion of the proposed
work is presented in section 4.

2. IEEE- 754 standard Floating-point square root Computation

According to IEEE-754 standard, floating-point numbers can be repre-
sented as either single precision or double precision according to the bits size.
Figure 2 illustrates a typical representation of a single-precision floating-point
number. As complex values are not allowed in IEEE-754 floating-point num-

SIGN EXPONENT MANTISSA

24 Bits including hidden bit

8 Bits

1 Bit

Figure 2: Single-precision IEEE 754 Floating-point standard
bers, the square root algorithm is exclusively designed for positive floating-
point numbers. If the exponent is even, the exponent is decreased to its half
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to perform the square root operation. If the exponent is odd, exponent must
be increased by one and accordingly mantissa is aligned. The square root is
calculated on the fraction and the exponent is adjusted to match the bias.
The algorithm to solve square root problem is shown in Algorithm 1.

Algorithm 1: Floating-point square root algorithm

Input: Input SaEaMa

Result: square root of Input SrErMr

Sr = Sa

if Ea = odd then
IEr1 = Ea + 1
IEr = IEr1/2
Align Mantissa

else
IEr = Ea/2

Er = IEr +Bias

Mr =
√
Ma

The quantum circuit model performs floating-point square root operation
as directed by the Algorithm 1 is shown in Figure 3.

2.1. Babylonian square root Algorithm

One of the oldest ways for determining the square root of a number is
the Babylonian square root algorithm. Despite its age, the technique is one
of the most efficient for computing square roots, and it is used by many
modern computing system [42]. The Babylonian procedure for computing
the square root of an integer assumes an initial guess of a positive number
that is much greater than the square root of the input. The iteration begins
after assuming the initial guess, and the hardware of each iteration includes
two integer division circuits, one adder circuit, and one multiplier circuit. To
ensure the accuracy of the result, the iteration is repeated until a very low
relative error is obtained between the current output and the previous output
state. The procedure to perform square- root computation using Babylonian
method is illustrated in Algorithm 2. The top level overview quantum cir-
cuit for computing integer square root using Babylonian algorithm is shown
in Figure 4. Each iteration involves the use of two quantum division and
three quantum addition circuits. The quantum addition circuit can be used
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Figure 3: Top level overview of quantum floating-point square root circuit

Algorithm 2: Babylonian algorithm to compute square root

Input: Input fractional number Mx

Result: square root of the number Mr

Assign G1 = b >
√
Mx

for i = 1toN

Gi+1 =
1
2
∗ (Gi +

Mx

Gi
)

ϵ= Gi+1 −Gi

if ϵ = 000000000000000000000011
Mr = Gi+1

else
i = i+ 1
end
end

to perform subtraction and comparisons between the two input qubits. In
each iteration, the first quantum division block computes the quotient of
Mx/Gi, the following quantum adder circuit computes Gi +Mx/Gi, and the
second division circuit reduces the adder circuit’s result to half its value. The
quantum subtractor circuit computes the difference in output between the
current and previous output. The quantum comparator circuit aids in the
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termination of iterations until the desired accuracy is achieved.

2.2. Proposed Quantum circuit to identify even and odd exponent

To calculate the resultant exponent of square root computation circuit,
an even or odd identifying circuit is required. The algorithm for determining
the exponent is even or odd is shown in the Algorithm 3. The output Rx is
generated by an array of CCNOT gates, by performing logical And operation
on the input exponent qubit and constant qubits |00000001⟩. If the output
Rx generated is |00000001⟩ it indicates the exponent is odd else the exponent
input is concluded as an even exponent. Figure 5 depicts the quantum circuit
used to determine whether an exponent is even or odd. Table 2 summarizes
the resource use of the proposed even or odd identifying quantum circuit that
is built for eight qubit input . The uncomputation circuit of the temporary
And gate does not contain a T-gate, hence the restoration circuit does not
serve to the count of excess T gates in the proposed circuit [32].

Algorithm 3: Algorithm to Identify Even or Odd Exponent

Input: Input Ex

Result: Ex is even or odd
Assign X = 0to7
Assign YX = 00000001
RX = YX&00000001
XX = ¬(RX

⊕
00000001)

Equal = EX&EX−1&EX−2&...&E0

if Equal = 1
EX => odd
else
EX => even
end

Table 2: Estimation of resources in the proposed Odd or Even number identification circuit

Design T-count T-depth Ancilla

Proposed Circuit 52 26 14

2.3. T-count optimized Toom-Cook 2.5 multiplier

Many researchers have previously investigated quantum multiplication us-
ing a variety of algorithms with a time complexity of O(n2) [22, 23, 43, 44].
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Multiplication that has a less time complexity is Toom-cook multiplier that
reports a complexity of O(n1.465). The procedure to perform multiplication
of two integers using Toom-cook 2.5 algorithm is shown in Algorithm 4. The
final product computation requires only four multiplications and each mul-
tiplications is performed between bit-width of l

2
and l

3
where l is the length

of the input bit sequence. This technique must be performed recursively so
that we have smaller problems of size l

6
after the second stage. The existing

Toom-cook multiplier [40] quantum circuit model uses CUA, whose T-count
is 14n − 7, [41]. Here in this paper,a Toom-cook multiplier is implemented
utilising GA, which reported a lower T-gate count of 4n for n qubit addition
[32].

Algorithm 4: Toom-cook 2.5 multiplication algorithm

Input: Multiplier M and Multiplicand N
Result: Product P
Decompose M and N into two or three equal parts
Assign k=2.5

Assign x = max{
⌈ ⌈log2M⌉

K

⌉
,
⌈ ⌈log2M⌉

K

⌉
}

Assign N = N22
2x +N1

2x +N0

Assign M = M12
x +M0

Assign A = M0N0

Assign B = (M0 +M1)(N0 +N1 +N2)
Assign C = (M0 −M1)(N0 −N1 +N2)
Assign D = M1N2

Assign E = D
Assign F = A+ 1

2
B + 1

2
C

Assign G = 1
2
B − 1

2
C −D

Assign H = A
P = E23x + F22x +G22x +H
end

3. Estimation of the resource requirements for the proposed quan-
tum floating-point Babylonian square root unit

The number of qubits and T gates for each stage of the floating-point
square root circuit are used to determine resource efficiency of the proposed

10



quantum circuit. Total T-count and qubits are calculated by adding the T-
count and qubit usage at each level of the quantum circuit. The proposed
floating-point square root unit design uses the same multiplication circuit for
both the approaches, hence the resource usage of the proposed Toom-cook
multiplier is evaluated.

3.1. Resource estimation of Modified Quantum Toom-cook 2.5 multiplier

Toom-cook multiplier is realized using 4l multiplications and l bit addi-
tion for the computation of product of two l bit numbers. To calculate the
intermediate outputs A,B,C, and D from Algorithm 4 four recursive calls has
to be made on Toom-cook multiplier that computes the product of bits each
of length l

2
and l

3
respectively. To compute the intermediate outputs four

adders of size l
2
and six adders of size l

3
are required. Finally, to compute

A,B,C, and D four 5 l
6
adders are required. Based on the recursive analysis,

the Toffoli gate count to implement the Toom-cook multiplier is shown in
the following Equations 1,2,3,4,5.

Toffolicountl = 16Toffoli l
6
+ 40Adder l

6
+ 22Adder l

6
+ 4Adder l

2
+ 4Adder 5l

6

(1)
The base case multiplication of two one bit numbers can be done by a Toffoli
gate and hence the value of Toffoli l

6
is equated to one. There are totally

log6n terms in each summation. On evaluating the summation using Geomet-
ric progression and doubling the cost that is consumed in the uncomputing
section the Toffolicount is evaluated as,

Toffolicountl = 16log6lToffolicount1 + 40(Adder l
6
+ 16Adder l

36
+ ...)

+22(Adder l
3
+ 16Adder l

18
+ ...)

+4(Adder l
2
+ 16Adder l

12
+ ...)

+4(Adder 5l
6
+ 16Adder 5l

36
+ ...)

(2)

Toffolicountl = 2(16log6l + 23.2l[((
16

6
)log6l − 1] (3)

Toffolicountl ≤ 49llog616 (4)

The T-count of a Toffoli gate that performs addition is 4 in the computation
section and T-count of the uncomputation section is zero. Thus, the T-count

11



and T-depth of the entire multiplication circuit is calculated as shown in
Equations, 5, 6,

Tcountl ≤ 196llog616 (5)

Tdepthl ≤ 98llog616 (6)

Along with the input qubits, the auxiliary qubits are included in the total
number of qubits. The number of Toffoli counts corresponds to the number
of ancilla qubits in the proposed multiplier, as shown in Equations 6 and 7.

Qubits ≤ 49llog616 + l (7)

3.2. Resource estimation of RDA

The resource usage estimation of the quantum circuits model using RDA
is discussed in this section. The algorithm to perform division using RDA is
shown in Algorithm 5. The quantum circuit model to construct a two qubit
restoring division is shown in Figure 6 [22]. The quantum subtractor and
quantum controlled addition circuit are two crucial components of an RDA
division circuit. The value of Z = A−Ay is computed using the subtraction

Algorithm 5: Algorithm to perform RDA [22]

Input: Two input numbers Ax and Ay

Result: Quotient Q, Remainder Rx

Assign Q = Ax

Initialize R = 0x−10x−2...0100
for i = 1tox− 1
Z = Rx−1−iRx−2−i...R1R0Qx−1...Qx−i

Z = Z − Ay
if Y < 0
Z = Z + Ay

end
Rx−i = Not(Rx−1−i)
end
Q = Q− Ay

if Q < 0
Q = Q+ Ay

end
R0 = Not(Qx−1)
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Figure 6: Two qubit RDA circuit

circuit. The value of Q is computed using a quantum controlled addition
circuit. By calculating the inverse of the quotient output, the Pauli-X gate
generates the remainder of the divider inputs. This method is performed n
times for n input qubits, and the quotient and remainder outputs are stored
in registers Q and R, respectively, after the nth iteration. The T-count and
qubit of the quantum RDA circuit for a single iteration(SI) for n input qubits
is calculated as shown in Equation 8,9, 10 and 11 respectively,

Resource− countSI = Resource− countSubtraction+

Resource− countctrl−add

(8)

T − countSI = 4n+ 18n (9)

T − depthSI = 2n+ 8n (10)

QubitsSI = 2nSubtraction + 4nCtrl−add + 2nancilla (11)

3.3. Resource estimation of NRDA

The NRDA is less complex than the RDA because quotient restoration
is not included. The algorithm to perform division using NRDA is shown in
Algorithm 6. The quantum circuit model to generate quotient and remainder
output using NRDA is shown in Figure 7. The quantum subtractor circuit
is responsible for computing Q, the Adder-Subtractor circuit computes the

13



Algorithm 6: Algorithm to perform NRDA [22]

Input: Two input numbers Ax and Ay

Output: Quotient Q, Remainder Rr

Initialize R = 0x−10x−2...0100
Initialize Q = 0x−10x−2...0100AXn−1AXn−2...AX1AX0

Q = A−My

for i = 1tox− 1
Qx−i = Not(Qx−i)
Y = Qx−1−i...Q0

if Qx−i = 0
Z = Z + Ay

else Z = Z − Ay

end
end
If R < 0
R = R + Ay

end
Q0 = Not(Q0)

output Z based on the value of Q. The remainder output is calculated using
the final adder-subtractor circuit.

The T-count and qubit estimation of the NRDA circuit for single iteration
is shown in Equations 12, 13, 14, and 15 respectively,

Resource− countSI = Resource− countSubtraction+

Resource− countAdder−Subtractor

(12)

T − countSI = 4n+ 4n (13)

T − depthSI = 2n+ 2n (14)

QubitSI = 4n+ 1 + 2nancilla (15)

3.4. Resource estimation of proposed Babylonian square root algorithm

Every iteration of the Babylonian square root algorithm uses two division
circuits, three adder circuits, a multiplier circuit, and a quantum comparator
circuit. The number of iterations needed to compute the square root of a
given number using the Babylonian square root algorithm depends on the

14
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input number and the initial guess. Typically, the resource-count of a single
iteration is used to calculate the entire resource estimation of a square root
circuit, and this can be extended to any number of qubits and is shown in
Equation 16,

Resource− countSI = Resource− count2∗Divider+3∗Adder+

Resource− countMultiplier+Comparator

(16)

The resource estimation of the proposed Babylonian square root algorithm
using RDA and NRDA algorithm for a single iteration is shown in Table
3, The proposed single precision Babylonian floating-point quantum square
root circuit is compared with the existing floating-point square root quantum
circuit design [37]. An even or odd identification circuit, two adders for
exponent qubits, a divider to calculate exponent of the input to its half,
and a square root computation circuit on mantissa are used in the resource
utilisation of square root computation on a floating-point number as shown
in Equation 17,

Resource− Count = Resource− countodd/evencircuit+Divider+ShiftRegister+

Resource− count2∗Adders+

Resource− countsquarerootcircuitSI

(17)

The Table 4 shows the T-count, T-depth, and ancilla estimation of the pro-
posed Babylonian square root algorithm to compute the square root of a

15



Table 3: Resource estimation of Proposed Babylonian square root algorithm on the man-
tissa part of the single precision floating-point number for single iteration using slow divi-
sion algorithms

Design T-count T-depth Ancilla

NRDA[23] 4416 2208 1104

RDA[23] 11638 5520 1104

Adder[32] 96 48 24

Modified Toom-cook multiplier 26068 13034 6517

Comparator[23] 96 48 24

Proposed Babylonian square root(NRDA) 35284 17642 8821

Proposed Babylonian square root(RDA) 49728 24266 8821

single precision floating-point input.

In Table 5, the proposed quantum circuit to determine the square root of
a floating-point input using the Babylonian square root method is compared
to the existing work [37]. When employing the NRDA and RDA algorithms,
the proposed quantum square root computing circuit for IEEE-754 standard
input saves a T-count of 80.51% and 72.65%, respectively. When compared
to the existing circuit model [37], the proposed circuit demonstrates a 61.67%
gain in conserving qubits.

4. Conclusion

An efficacious quantum circuit realization with less resource necessity
is a major challenge for solving real-time problems in scientific computing.
A fault-tolerant floating-point square root architecture for 32 qubits width
is proposed in this paper. The presented work outperforms state-of-the-
art result in a variety of performance metrics, including the number of T-
gates used and the number of qubits. The reduction of ancillary quantum
bits without increasing the size and complexity of the circuits would be an
intriguing future challenge. The proposed work is anticipated to get utilized
in quantum algorithms where reduction T-Count and T-depth are of primary
concern.
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Table 4: Resource estimation of Proposed Babylonian square root algorithm on 32 Qubit
floating-point number for single iteration using RDA and NRDA

Design T-count T-depth Ancilla

Odd or Even Check Circuit(8 Qubits) 52 26 14

NRDA(8 Qubits) 448 224 112

RDA(8 Qubits) 1232 560 112

Shift Register[45] Nil Nil 24

Adders(8 Qubits) 32 16 8

Mantissa square root circuit(NRDA) 35284 17642 8821

Mantissa square root circuit(RDA) 49728 24266 8821

Proposed Floating-point square root(NRDA) 35848 17642 8987

Proposed Floating-point square root(RDA) 50292 24884 8987

Table 5: Comparison of Proposed Babylonian square root algorithm with the existing
circuit

Design T-count T-depth Qubits

Floating-point square root circuit[37] 183946 NA 23535

Proposed Floating-point square root(NRDA) 35848 17642 9019

Proposed Floating-point square root(RDA) 50292 24884 9019
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