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Abstract: Lithium-rich layered oxide (LLO) are considered high-capacity cathode materials for next-
generation lithium-ion batteries. In this study, LLO cathode materials were synthesized via the
hydroxide coprecipitation method followed by a two-step lithiation process using different lithium
contents and lithium sources. The effects of lithium content and lithium source on structure and
electrochemical performance were investigated. This study demonstrated the clear impact of Li/TM
ratio on electrochemical performance. Lower Li/TM ratio reduced the irreversible capacity loss in
the first cycle and provided better cycling stability among all samples. The best results exhibited
an initial discharge capacity of 279.65 mAh g−1 and reached a discharge capacity of 231.9 mAh g−1

(82.9% capacity retention) after 30 cycles. The sample using Li2CO3 as lithium source exhibits better
electrochemical performance than the sample using LiOH as lithium source. Therefore, it is important
to choose the appropriate lithium source and optimal lithium content for improving structural
properties and electrochemical performance of LLO.

Keywords: lithium-ion battery; cathode material; lithium-rich layered oxides; coprecipitation; lithium
content; lithium source

1. Introduction

Nowadays, exhaustion of fossil fuel, climate change, and environmental pollution are
global challenges facing mankind. Sustainable and affordable energies have attracted much
attention in the past decades [1,2]. Rechargeable lithium-ion batteries (LIBs) are considered
to be the key technology to reduce carbon dioxide emissions from transportation, power,
and industry sectors, and to enable low-carbon or zero-carbon society [3,4]. However, the
energy density of commercialized cathode materials still limits large-scale application of
electric vehicles and grid-scale energy storage. To meet the demands, advanced LIBs with
high energy density, long cycle life, good thermal stability, low-cost and environmental
compatibility are needed [5–7]. Lithium-rich layered oxide (LLO) are considered one of the
most promising cathode materials for next-generation LIBs [3,8,9]. LLO cathode materials
can deliver a specific capacity of over 250 mAh g−1 and an energy density of approximately
1000 Wh kg−1 at room temperature [4,5,10]. Currently, commercialized cathode materials
have layered LiCoO2, spinel LiMn2O4, olivine LiFePO4, and layered mixed transition-metal
oxides LiNixCoyMn1-x-yO2 and LiNi1-x-yCoxAlyO2 [6,10]. These conventional cathode mate-
rials are limited to their practical capacities of around 120–200 mAh g−1 [4,5,10]. Compared
with these common cathode materials, LLO has the advantages of high discharge capacity,
a wide operating voltage plateau, cost-effectiveness, and environmental friendliness [7,11].

The history of the development of LLO cathode materials goes back to the 1990s.
Thackeray et al. [12] demonstrated that lithium manganese oxide Li2−xMnO3−x/2 serves
as cathode material in LIBs. The electrochemically active Li1.09Mn0.91O2 was synthesized
via chemical leaching of Li2O from Li2MnO3 under the acid treatment method. In 1997,
Numata et al. [13,14] identified a layered solid solution of the LiCoO2-Li2MnO3 system as
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cathode material. In 1999, Kalyani et al. [15] first demonstrated that Li2MnO3 could be elec-
trochemically activated at a voltage of approximately 4.5 V without acid treatment. In 2001,
Lu et al. [16] synthesized layered Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 using the hydroxide
coprecipitation method, which provided a discharge capacity of about 200 mAh g−1 in the
range of 2.0–4.6 V. From 2001 to 2004, many studies reported that LLO cathode materials
provided a high discharge capacity over 200 mAh g−1 in the range of 2.0–4.8 V [7,10,17,18].
In 2005, Thackeray et al. [8] introduced the concept of Li- and Mn-rich layered oxides as
high-capacity cathode materials for next-generation LIBs. Since that time, LLO cathode ma-
terials have attracted much attention; many studies have focused on revealing their crystal
structure and reaction mechanisms and developed modification strategies for improving
electrochemical performance [8,19–23].

Generally, LLO cathode materials can be presented as xLi2MnO3· · · (1-x)LiMO2 or
Li1+xM1-xO2, where M is transition metals, 0 < x < 1 [5,8,24]. The studied M includes single
transition metals or a combination of several transition metals, such as Mn, Co, Cr, Ti, Zr,
Mn-Cr, Mn-Fe, Mn-Co, Ni-Mn, Ni-Co-Mn, etc. [9,13,14,16–18]. The common LLO cathode
materials have Ni-Mn oxides, such as Li1.2Ni0.2Mn0.6O2, and Ni-Mn-Co oxides, such as
Li1.2Mn0.54Ni0.13Co0.13O2 [6,10]. LLO cathode materials consist of a monoclinic layered
Li2MnO3 phase with the space group C2/m and a trigonal layered LiMO2 phase with
the space group R3m [10,22]. The synergistic effects of Li2MnO3 and LiMO2 deliver a
high discharge capacity over 250 mAh g−1 within a wide voltage range of 2.0–4.8 V [6,10].
The high-capacity LLO cathode materials result from TM ion redox reactions and oxygen
anion redox reactions [11]. Lithium ions are extracted from LiMO2 accompanied by the
oxidation of Ni2+/Ni3+ to Ni4+ and Co3+ to Co4+ in the range of 2.0–4.4 V [10,25]. In this
region, Li2MnO3 can stabilize the structure but does not contribute to capacities [26]. The
Li2MnO3 component will be activated in the range of 4.4–4.8 V, leading to irreversible
removal of Li+ and O2- to form Li2O and electrochemically active MnO2 [8]. Therefore, LLO
cathode materials suffer from a high irreversible capacity loss of 40–100 mAh g−1 and a low
Coulombic efficiency of approximately 80% during the initial charge–discharge cycle [6,10].
Moreover, LLO cathode materials have the drawbacks of voltage and capacity fading due
to irreversible layered-to-spinel structural changes and undesirable side reactions on the
electrode interface [5,7,10]. The poor rate capability of LLO cathode materials is related to
the low kinetic diffusion of Li+ ions and the low electronic conductivity of Li2MnO3 [7,10].
To overcome these challenges and improve electrochemical performance, various modifica-
tion strategies have been employed, such as chemical activation, optimizing the synthesis
method, surface coating, ion doping, and the use of nanosized materials [7,10,27,28]. It is
also necessary to better understand the properties and electrochemical performance of LLO
cathode materials.

In this study, LLO cathode materials were synthesized using the hydroxide coprecipi-
tation method followed by a two-step lithiation process. The impacts of different lithium
contents and lithium sources on structure and electrochemical performance were examined.
This study provides a new understanding of the relationship between synthesis conditions
and the electrochemical performance of LLO cathode materials.

2. Materials and Methods
2.1. Material Synthesis

As Figure 1 shows, the LLO cathode materials were synthesized using a two-step
process: (i) the synthesis of Mn0.675Ni0.1625Co0.1625(OH)2 precursors via coprecipitation and
(ii) the blending of the precursors with lithium sources (LiOH or Li2CO3) to synthesize
final products via calcination at high temperature [29,30].
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Figure 1. Schematic diagram of the synthesis of LLO cathode materials.

The synthesis of Mn0.675Ni0.1625Co0.1625(OH)2 precursors was conducted in a batch
process. Distilled water (800 mL) containing a concentration of 10 g/L NH3·H2O as the
starting solution was fed into a continuous stirred-tank reactor with a capacity of 4 L.
Stoichiometric amounts of MnSO4·H2O, NiSO4·6H2O, and CoSO4·7H2O (molar ratio of
Mn/Ni/Co = 0.675:0.1625:0.1625) were dissolved in distilled water to prepare a 2M TM
solution. Then, the 2M TM solution, with a feed rate of 4 mL/min, and 2M NaOH as a
precipitant, with a feed rate of 7.4 mL/min, were continuously pumped into the reactor.
Simultaneously, 2M NH3·H2O as a chelating agent was pumped into the reactor at a feed
rate of 1.2 mL/min. The pH was controlled with the addition of 2M NaOH to maintain
the pH of the solution system at 11.5. The process was conducted at 55 ◦C and with a
stirring speed of 800 rpm for 4 h under an N2 atmosphere. After the coprecipitation process,
the mixture solution was filtered, washed with distilled water a few times, and dried in
a vacuum at 60 ◦C overnight under N2. Then, the obtained hydroxide precursors were
blended with a stoichiometric amount of the lithium source, Li2CO3 or LiOH. The final
products were obtained by preheating at 500 ◦C for 5 h and then by calcination at 850 ◦C
for 12 h with a heating rate of 5 ◦C min−1 under an air atmosphere. A 10 wt% excess of
Li2CO3 or LiOH was added to compensate for lithium loss during the lithiation process.

2.2. Material Characterization

The particle size distributions were analyzed using a Mastersizer 3000 (Malvern
Panalytical, Almelo, The Netherlands) particle analyzer with an attached Hydro EV sample
100 dispersion unit. The refractive-index and absorption-index values were 1.7 and 0.006
for the precursors and 3.0 and 0.02 for the LLO cathode materials, respectively. The
tapped density of the precursors and LLO cathode materials was measured using an
Erweka SVM222 tapped density device following the ISO EN 787/11 standard. The
chemical composition of Li, Ni, Mn, and Co in the synthesized materials was measured
via inductively coupled plasma-optical emission spectroscopy (ICP-OES; Agilent 5110
VDV). ICP-OES analysis was performed on solid precipitates, and the corresponding
Li:Ni:Co:Mn ratio was confirmed. Microwave digestion was used to dissolve these samples
completely without any leaching residue. This was performed using nitric acid based on the
EPA3051A standard: hydrochloric acid as a solvent with a ratio of 3:1. The morphology of
the cathode materials was characterized using Zeiss Sigma field emission scanning electron
microscopy (Carl Zeiss Microscopy GmbH, Jena, Germany) at the Centre for Material
Analysis, University of Oulu. X-ray diffraction (XRD) patterns were recorded with a
PANalytical X’Pert Pro XRD diffractometer (Malvern Panalytical, Almelo, The Netherlands)
using monochromatic CuKα1 radiation (λ = 1.5406 Å) at 45 kV and 40 mA. Diffractograms
were collected in the 2θ range of 15–90◦ at 0.017◦ intervals. The crystalline phases and
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structures were analyzed using HighScore Plus software version 4.0 (PANalytical B. V.,
Almelo, The Netherlands) using the Rietveld analysis method.

2.3. Electrochemical Measurements

The slurry of cathode materials was prepared by 80 wt% cathode materials, 10 wt%
carbon black (Timcal Super C45), and 10 wt% polyvinylidene fluoride (Kureha #1100). The
mixture was dissolved in the appropriate amount of N-methyl-2-pyrrolidone (Alfa Aesar,
anhydrous 99.5%) and was mixed in a slurry mixer to obtain a uniform slurry. The slurry
consisted of approximately 40 wt% solid matter. The uniform slurry was coated on the
aluminum foil current collector with 100-µm applicators and dried in a vacuum at 120 ◦C
overnight. The dried cathode material was pressed via calendering pressing. The coin cells
(type 2016) were assembled with cathode material, a lithium metal reference electrode, a
separator, and an electrolyte under dry room conditions. The electrolyte consisted of 1 M
lithium hexafluorophosphate (LiPF6; Novolyte Technologies) dissolved in ethylene carbonate
(EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) (1:1:1 vol% ratio) (EC: Sigma-
Aldrich, anhydrous 99%; DEC: Sigma-Aldrich, anhydrous 99%; DMC: Novolyte Technologies,
99% sealed under nitrogen). The active material loading of electrodes was maintained at
around 5.0 mg cm−2. The electrochemical performance of the assembled coin cells was tested
using a Maccor battery tester in constant-current mode at 25 ◦C. The testing program was
performed on the first cycle at 0.03 C and following 30 cycles at 0.1 C in the range of 2.0–4.8 V.
The theoretical capacity used to calculate the C-rate was 200 mAh g−1.

3. Results and Discussion
3.1. Effect of Lithium Content on Structure and Electrochemical Performance

Lithium is one of the most essential elements in LLO cathode materials. Lithium
content affects the structure and electrochemical performance of LLO cathode materi-
als [5,10,31]. The theoretical lithium content used in the synthesis of typical LLO cathode
materials is Li1.2Mn0.54Ni0.13Co0.13O2 with an Li/TM ratio of 1.5:1 [29]. In this study, the
LLO cathode materials were synthesized with a variety of Li/TM ratios. Table 1 presents
the chemical composition of samples L10–L13. The impacts of various Li/TM ratios on
structure and electrochemical performance were investigated.

Table 1. Chemical composition of samples L10–L13 prepared by various Li/TM ratios.

Sample Experimental Li/Mn/Ni/Co Molar Ratio
Li/TM Ratio Chemical FormulaLi Mn Ni Co

L10 1.31 0.57 0.15 0.15 1.52 Li1.31Mn0.57Ni0.15Co0.15O2
L11 1.31 0.53 0.14 0.14 1.64 Li1.31Mn0.53Ni0.14Co0.14O2
L12 1.23 0.47 0.12 0.12 1.73 Li1.23Mn0.47Ni0.12Co0.12O2
L13 0.89 0.32 0.08 0.08 1.86 Li0.89Mn0.32Ni0.08Co0.08O2

Figure 2a shows the XRD patterns of samples L10–L13. All the major peaks were well
indexed to a hexagonal α-NaFeO2 layered structure with the R3m space group (ICDD file
04-023-1600), except for the small peaks between 20◦ and 25◦, which are characteristic of
Li2MnO3 with the C2/m space group (ICDD file 01-082-2663) [19]. In L10–L13, the clear
splitting peaks of (006)/(012) and (018)/(110) were sharp and intense, which indicated
that well-layered structure materials were successfully synthesized [31]. In addition, the
weak peaks between 20◦ and 25◦ provided evidence of existing Li2MnO3 phases in the
synthesized materials. These characteristic peaks of Li2MnO3 were indexed to a monoclinic
structure with the C2/m space group [19,26]. No other impurities or spinel-phase peaks
were observed in the prepared materials. The XRD results demonstrated that the prepared
samples L10–L13 had good crystallinity, a well-layered structure, and a high-purity phase.
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Figure 2. (a) XRD patterns of samples L10–L13; (b) Magnified rectangle region in (a): superlattice
peaks of C2/m Li2MnO3 in the 2θ range of 20–25◦.

However, samples L10–L13 exhibited slight differences in peak intensity between 20◦

and 25◦, as Figure 2b shown. The superlattice peaks of (020) and (110) for L10 were sharper
and more intense than those of L11, L12, and L13. Broad peaks were observed in L11,
L12, and L13, which may have been associated with the presence of less Mn content in
the samples, resulting in insufficient Mn to form the LiMn6 superstructure in the Li2MnO3
phase [32]. Moreover, the refined lattice parameters of the monoclinic Li2MnO3 phase
in samples L10–L13 are compared in Table 2. The ideal lattice parameters of monoclinic
Li2MnO3 with the C2/m space group are a = 4.937 Å, b = 8.532 Å, c = 5.030 Å, α = γ = 90◦,
and β = 109.46◦ [19]. It can be seen that the values of L10 were the closest to the ideal lattice
parameter of Li2MnO3, which indicated that L10 had a higher crystallinity than L11, L12,
and L13. Different degrees of broadening peaks between 20◦ and 25◦ were observed in
L10–L13. The existence of defects and stacking faults usually leads to the weakening and
broadening of superlattice peaks [33–35]. L11 had weaker peak intensities of (020) and
(110), which may have been caused by the smaller c value of 5.017 Å than that of L10, L12
and L13. It was found that the disordered stacking ordering along the c-axis may have
resulted in weak or broad superlattice peaks, even if the arrangement of Li+ and Mn4+ in
TM layers was ordered [33,34]. Furthermore, the stacking faults may have been due to the
existence of Ni2+ and Co3+ in TM layers [35]. Boulineau et al. [34] suggested that different
levels of stacking faults can be roughly estimated by comparing the intensity ratios of
(110) and (020) peaks (I(110)/I(020)) in Li2MnO3. The experimental results indicated that
increasing the synthesis temperature during calcination may have decreased the degree of
stacking faults but that it could not entirely eliminate them [34].

Table 2. Lattice parameters of samples L10–L13 for existence of the monoclinic Li2MnO3 phase.

Sample a/Å b/Å c/Å Alpha/◦ Gamma/◦ Beta/◦

L10 4.937 8.534 5.028 90 90 109.64
L11 4.928 8.527 5.017 90 90 109.31
L12 4.916 8.518 5.033 90 90 109.46
L13 4.916 8.511 5.027 90 90 109.41

Figure 3a presents the initial charge–discharge curves of samples L10–L13 at 0.03 C in
the range of 2.0–4.8 V. All the samples had charge characteristics typical of LLO cathode
materials: the first sloping plateau extended from 3.8 to 4.4 V, and the second plateau
was above 4.4 V. The first plateau was associated with the extraction of lithium ions from
the LiMO2 component corresponding to Ni2+/Ni3+ to Ni4+ and Co3+ to Co4+ [10,25]. All
the samples delivered a TM redox capacity of approximately 70–120 mAh g−1 in the first
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plateau. The second plateau region exhibited a long plateau above 4.4 V that provided
additional charge capacities due to the extraction of lithium ions accompanied by O2 loss
from the Li2MnO3 component [10,25]. Therefore, a large, irreversible loss of capacities
in the initial cycle was observed in the prepared samples, which resulted mainly from
the irreversible removal of Li2O from the Li2MnO3 component. Inactive Li2MnO3 then
became electrochemically active MnO2 (Li2MnO3 → Li2O + MnO2). As Table 3 shows, the
initial charge/discharge capacities of L10, L11, L12, and L13 were 337.8/279.7 mAh g−1,
325.7/255.2 mAh g−1, 311.8/241.3 mAh g−1, and 348.28/221.44 mAh g−1, respectively.
L10, L11, and L12 had an irreversible capacity loss of around 20% in the first cycle, whereas
L13 had an irreversible capacity loss of approximately 40% in the first cycle. L10 deliv-
ered the highest initial Coulombic efficiency (82.8%), with an irreversible capacity loss of
58.12 mAh g−1. L13 exhibited the highest initial charge capacity (348.28 mAh g−1) but
had the lowest initial Coulombic efficiency (63.6%), with an irreversible capacity loss of
126.84 mAh g−1. The oxygen-loss plateau above 4.4 V disappeared in the second cycle,
which implied an irreversible structural evolution for the synthesized materials, as shown
in Figure 3b [8,10,25]. Figure 3c compared the voltage profiles of L10–L13 for the 3rd
discharge and 31st discharge. All samples exhibited continuous voltage fading during
cycling, whereas L13 display the most obvious voltage drop, shown in Figure 3d. It implied
that the structural changes from layered to spinel phases were due to lattice oxygen release
and transition metal migration during Li2MnO3 activation process [10,36].
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Figure 3. (a) Initial charge–discharge profiles of L10–L13 at 0.03 C within 2.0–4.8 V; (b) charge-
discharge profiles of L10–L13 for the 31st cycle at 0.1C within 2.0–4.8 V; (c) Voltage profiles of L10–L13
for comparison of 3rd discharge and 31st discharge; (d) Voltage profiles of L10 for comparison of the
1st discharge, 3rd discharge and 31st discharge.
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Table 3. Initial charge–discharge performance of samples L10–L13 at 0.03 C within 2.0–4.8 V.

Sample Initial Charge
Capacity/mAh g−1

Initial Discharge
Capacity/mAh g−1

Irreversible
Capacity/mAh g−1

Initial Coulumbic
Efficiency/%

L10 337.77 279.65 58.12 82.8
L11 325.66 255.23 70.43 78.4
L12 311.75 241.34 70.41 77.4
L13 348.28 221.44 126.84 63.6

Figure 4a shows the cycling performance of samples L10–L13 for 30 cycles in the
range of 2.0–4.8 V. During the second cycle, all samples decreased the discharge capacities
of 30–40 mAh g−1 when the current rates changed from 0.03 C to 0.1 C. L10 displayed
better cycling performance than L11, L12 and L13. L12 has slightly fluctuated and slowly
increased the discharge capacity during cycling. The Li2MnO3 component in L12 may not
be entirely activated in the first cycle, which led to the discharge capacity’s continuous
increase with increasing cycle numbers. In addition, sample L13 had lower discharge
capabilities than those of L10, L11, and L12 for 30 cycles. This is probably related to the
presence of lower lithium and TM content in sample L13, which increased metal vacancies
and lithium vacancies in the crystal structure, resulting in L13’s decreased structural
stability and poor cycling performance [31,37]. Moreover, these results suggested that coin
cells could be tested for three cycles under low current density to fully activate Li2MnO3
component. This could help to improve the cycling stability of LLO cathode materials.
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After 30 cycles, the discharge capacities of L10, L11, L12, and L13 were 231.9 mAh g−1,
213.1 mAh g−1, 216.2 mAh g−1, and 196.7 mAh g−1, respectively. Overall, given L10’s
low Li/TM ratio, it exhibited the highest discharge capacity, lowest initial irreversible
capacity loss, and good cycling stability among the four samples, as Figure 4b shown. This
was in good agreement with the XRD results for L10, which indicated a good crystalline
structure and fewer defects in the Li2MnO3 structure. With increasing lithium content and
TM content, the discharge capacities and cycling stability of samples L10–L13 increased. As
the lithium content and TM content decreased in L13, the charge and discharge capacities
decreased, and more vacancies were generated in the structure of the material. These
vacancies may have increased the diffusion rate of lithium ions and led to an unstable
structure and reduced cycling stability [31]. The results suggested that lithium content
can optimize electrochemical performance by adjusting the proportion of Li2MnO3 in LLO
cathode materials [10,31]. For example, Shunmugasundaram et al. [38] confirmed that
a lower Li/TM ratio could reduce irreversible capacity loss in the first cycle. A suitable
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Li2MnO3 proportion can stabilize the crystal structure and cycling performance. In addition,
excessive lithium content causes a large initial irreversible capacity loss, increased residual
lithium on the surface, and deterioration of electrochemical performance [10,31].

3.2. Effect of Lithium Sources on Structure and Electrochemical Performance

Different lithium sources exert different effects on the structure and electrochemical
properties of LLO cathode materials. Li2CO3 and LiOH, the most common lithium sources,
are used in cathode material for LIBs [30]. The effects of lithium sources on structure and
electrochemical performance were investigated. The LLO cathode materials L12 and L15
were prepared using different lithium sources (Li2CO3 and LiOH, respectively). Table 4
presents the chemical composition of L12 and L15.

Table 4. Chemical composition of samples L12 and L15 prepared by different lithium sources.

Sample Lithium Source
Experimental Li/Mn/Ni/Co Molar Ratio

Chemical FormulaLi Mn Ni Co

L12 Li2CO3 1.23 0.47 0.12 0.12 Li1.23Mn0.47Ni0.12Co0.12O2
L15 LiOH 1.24 0.49 0.12 0.12 Li1.24Mn0.49Ni0.12Co0.12O2

Figure 5a shows the XRD patterns of L12 (using Li2CO3 as a lithium source) and
L15 (using LiOH as a lithium source). For samples L12 and L15, all the major peaks
could be indexed to a hexagonal α-NaFeO2 layered structure with the R3m space group
(ICDD file 04-023-1600) [19]. Superlattice peaks between 20◦ and 25◦ were observed in
the two samples, which could be indexed to monoclinic Li2MnO3 with the C2/m space
group (ICDD file 01-082-2663) [19,26]. The materials synthesized by Li2CO3 and LiOH
had a similar peak intensity of (020) and (110), as Figure 5b shows. The refined lattice
parameter of the Li2MnO3 phase in these two samples is described in Table 5. L12 and
L15 had a crystallinity similar to that of the Li2MnO3 phase. The two samples exhibited
certain defects in the crystal structure of the Li2MnO3 phase compared to the ideal lattice
parameters of monoclinic Li2MnO3. The lattice parameters of monoclinic Li2MnO3 are
a = 4.937 Å, b = 8.532 Å, c = 5.030 Å, α = γ = 90◦, and β = 109.46◦ [19]. Clear splitting peaks,
of (006)/(012) and (018)/(110), and no impurity peaks were observed. The XRD results
indicated that the two samples synthesized by Li2CO3 and LiOH had good crystallinity, a
well-layered structure, and a high-purity phase [30,31]. In addition, the SEM images of L12
and L15 are compared in Figure 6. Both samples exhibited irregular morphology and small,
round-edged primary particles, which contained a substantial agglomeration of particles.
The morphology of the two samples was unaffected by the lithium source with which they
were prepared.

Table 5. Lattice parameters of samples L12 and L15 for existence of the monoclinic Li2MnO3 phase.

Sample Lithium Source a/Å b/Å c/Å Alpha/◦ Gamma/◦ Beta/◦

L12 Li2CO3 4.916 8.518 5.033 90 90 109.46
L15 LiOH 4.920 8.516 5.035 90 90 109.41
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Figure 7a shows the initial charge–discharge curves of L12 and L15, prepared using
the lithium sources of Li2CO3 and LiOH, respectively, in the range of 2.0–4.8 V. The two
typical plateaus of LLO cathode material were observed in the initial charging curves for
L12 and L15. During the initial charging process, the first plateau, from 3.8 to 4.4 V, was
related to the reversible extraction of Li+ from the LiMO2 component corresponding to
the oxidation of Ni2+/Ni3+ to Ni4+ and Co3+ to Co4+ [10,25]. At the first plateau, L12 and
L15 had a similar TM redox capacity of around 90 mAh g−1. The second long plateau,
above 4.4 V, corresponded to the irreversible extraction of Li+ and O2− as Li2O from the
Li2MnO3 component. The electrochemically active MnO2 was formed and the long plateau
disappeared after the first cycle, which implied irreversible changes of structure for the
synthesized materials [8,30]. In the range of 2.0–4.8 V, the initial charge and discharge
capacities of L12, prepared using Li2CO3 as a lithium source, were 311.8 mAh g−1 and
241.3 mAh g−1, respectively. L15, prepared using LiOH as a lithium source, exhibited an
initial charge capacity of 311.7 mAh g−1 and an initial discharge capacity of 230.9 mAh g−1.
As Table 6 shows, the irreversible capacity losses of L12 and L15 were 70.4 mAh g−1 and
80.8 mAh g−1, respectively. The initial Coulombic efficiency of L12 was 77.4%, whereas
that of L15 was 74.1%. Also, L12 and L15 exhibited similar voltage profiles by comparison
of the 1st discharge, 3rd discharge, and 31st discharge, as shown in Figure 7b.
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Table 6. Initial charge–discharge performance of L12 and L15 at 0.03 C in the range of 2.0–4.8 V.

Sample Lithium Source Initial Charge
Capacity/mAh g−1

Initial Discharge
Capacity/mAh g−1

Irreversible
Capacity/mAh g−1

Initial Coulumbic
Efficiency/%

L12 Li2CO3 311.75 241.34 70.41 77.4
L15 LiOH 311.66 230.86 80.80 74.1

Figure 8a shows the cycling performance of L12 and L15 in the range of 2.0–4.8 V. These
samples had a similar capacity loss for charge–discharge curves in the first and second
cycles. This process may be related to oxygen release during Li2MnO3 activation in the
first cycle and may lead to structural rearrangement at 0.1 C during the second cycle [8,39].
The charge–discharge curves of L12 and L15 gradually became stable with increasing
cycle numbers. However, L12 exhibited a more stable cycling performance and a higher
capacity retention after 30 cycles. L12 maintained a discharge capacity of 216 mAh g−1 and
a capacity retention of 89.6%, whereas L15 had a discharge capacity of 201.2 mAh g−1 and
a capacity retention of 87.1%. In addition, the cycling performance of L12 and that of L15
were compared in the two ranges of 2.0–4.8 V and 2.0–4.6 V, as Figure 8b shows. In the range
between 2.0 and 4.6 V, L12 and L15 delivered lower initial charge/discharge capacities
of 240.31/176.63 mAh g−1 and 277.96/223.99 mAh g−1, respectively. After the first cycle,
the discharge capacity of both samples, but especially of L12, gradually increased with
increasing cycle numbers. This revealed that a range of 2.0–4.6 V could not entirely active
Li2MnO3 during the first cycle. The continuous activation of the Li2MnO3 component
increased discharge capacity in the subsequent cycles. However, the discharge capacity of
L12 and L15 after 30 cycles in the range of 2.0–4.6 V was still lower than that in the range of
2.0–4.8 V. Therefore, an optimized range of 2.0–4.8 V was used to effectively activate the
Li2MnO3 component and improve cycling stability in the subsequent studies. L12 exhibited
a higher capacity retention than L15 in both the 2.0–4.8 V and 2.0–4.6 V ranges. These
results suggested that the material prepared using Li2CO3 as a lithium source exhibited
better electrochemical performance.
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4. Conclusions

The precursors of lithium-rich manganese-based cathode materials were prepared
using hydroxide coprecipitation. A two-step calcination process was used to synthesize
LLO cathode materials. The first stage consisted of preheating at 500 ◦C for 5 h to ensure
a homogenous lithiation of precursors and lithium sources. The second step consisted of
calcination at 850 ◦C for 12 h, which completed the lithiation reaction. The XRD results
confirmed that the selected calcination temperature and time enabled the synthesis of
well-layered materials and ensured that the materials had no impurities. The crystal
structure of the prepared LLO cathode materials exhibited certain defects or stacking
faults. Furthermore, the material prepared using the lithium source Li2CO3 and that
prepared using LiOH had similar structural properties. The material associated with
Li2CO3 exhibited better electrochemical performance than that associated with LiOH.
Lithium content had a significant impact on the structure and electrochemical performance
of LLO cathode materials. In this study, L10 had a good crystalline structure and delivered
the best electrochemical performance. L10 reached the highest initial discharge capacity
(279.65 mAh g−1) and initial Coulombic efficiency (82.8%) at 0.03 C. It delivered a discharge
capacity of 231.9 mAh g−1 and a capacity retention of 82.9% at 0.1 C after 30 cycles. All
samples had an irreversible capacity loss of approximately 20% in the first cycle and could
reach a discharge capacity of over 200 mAh g−1 after 30 cycles.

In summary, the synthesized LLO cathode materials had some drawbacks, including
undesired morphology, low tap density, irreversible capacity loss in the first cycle, and volt-
age fading during cycling. To improve electrochemical performance, further work on the op-
timization of synthesis conditions in coprecipitation and chemical composition is necessary.
Research needs to provide advanced characterization techniques for in-depth understand-
ing of the relationship of synthesis conditions/composition/structure/electrochemical
behaviors. Moreover, research work focused on improvement of LLO cathode materials to
accelerate industrialization, but also giving consideration to both cost-effectiveness and
environmental compatibility, is significant.
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