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Abstract
Current real-time technologies for Linux require par-
titioning for running RTOS alongside Linux or ex-
tensive kernel patching. The Offline Nanovisor is a
minimal real-time library OS in a lightweight hyper-
visor under Linux. We describe a Nanovisor that ex-
ecutes in an offline processor. An offline processor is
a processor core removed from the running operating
system. The offline processor executes userspace code
through the use of a hyplet. The hyplet is a Nanovisor
that allows the kernel to execute userspace programs
without delays. Combining these two technologies
offers a way to achieve hard real-time in standard
Linux. We demonstrate high-speed access in various
use cases using a userspace timer in frequencies up to
20 kHz, with a jitter of a few hundred nanoseconds.
We performed this on a relatively slow ARM proces-
sor.
Keywords: Hypervisor; real-time; ARM; Virtual-
ization; Embedded Linux.

1 Introduction
Obtaining predictable latency while processing data
is a challenging task. That is especially true
in general-purpose operating systems (GPOS). In
GPOS the program becomes less predictable, in many
cases, due to cache and TLB misses Ekman et al.

[2002]; Bennett and Audsley [2001]. Software archi-
tects handle this unpredictability with various tech-
niques. Such techniques include microkernels, micro-
visors and partitioning or real-time extensions to the
GPOS. Other solutions include auxiliary processors,
such as DSPs and even GPUs.
This paper offers an alternative approach to the
above for multi-processor machines. By virtually re-
moving a processor from the operating system and
running a single program in it, it is possible to achieve
predictable latency in a GPOS. Removing a process
from the GPOS scheduler and assigning it to a single
task is referred by Ben-Yehuda and Wiseman [2013]
as the ’offline scheduler’. A difficulty with the offline
scheduler design is that it can only run kernel code -
in what we refer to as an ’offlet’.
We evolve the offline scheduler to process hyplets as
introduced in Ben Yehuda and Zaidenberg [2018]. In-
stead of running in kernel mode, the offlet executes
in hypervisor mode. Hyplet technology is an excel-
lent fit for the offline scheduler because both provide
complementary real-time advantages. Furthermore,
both run without interrupts, so it was easy to com-
bine them.
Microcontrollers trap real-world events. These micro-
controllers send interrupts to the GPOS processor to
inform about incoming events. Thus, the accuracy of
the data also relies on the rate of the interrupts pro-
cessed by the GPOS processor. In this context, there-
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fore, we demonstrate the offline scheduler as a tech-
nique to acquire data from external devices through
high-speed data sampling. We construct test cases
in which the physics changes so fast that without a
tight loop to access the data, it is not possible to ob-
serve these changes. For example, we show that we
can measure the beginning and the return of an ultra-
sonic wave more accurately than a standard Debian
Linux. Another essential use we demonstrate is a 20
kHz software timer. High-speed timers are widely
used in many real-time applications and usually re-
quire hardware and software. An interrupt triggers
the system’s timer and, on Linux, the interrupt usu-
ally wakes a userspace process; this entire chain of
events causes latency. While the hyplet eliminates
kernel-to-user latency, the Offline Nanovisor elimi-
nates the offlet-to-user latency. This motivates us
to escalate privileges.
Therefore, we provide a hard real-time library in a
Linux GPOS and a fast access to sensors that can-
not generate interrupts, i.e. sensors that need to
be polled. In the Offline Nanovisor, the kernel runs
with interrupts disabled. Thus, the Offline Nanovi-
sor guarantees latency as long as the program does
not wait for another program or overflow the proces-
sor’s L1 caches. An executing program never leaves
the processor, and it is up to the programmer to
yield the processor. As we show later, as long as
the code and data remain in the processor’s cache,
real-time responsiveness is guaranteed. Furthermore,
if the data size surpasses the processor’s cache size,
we can pre-fetch it (or part of it). The pre-fetch is
possible because there is no other program in the pro-
cessor. Therefore, it possible to predict which buffers
are needed and when.
The outline of this paper is as follows:

• Section 2 describes hyplet and offlet technolo-
gies and their combination.

• Section 3 presents the Offline Nanovisor and its
programming model.

• Section 4 is an evaluation.

• Section 5 demonstrates some use cases for the
Offline Nanovisor.

• Section 6 provides an overview of related work.

• Section 7 presents a summary.

2 Background
This section describes the offline scheduler and
presents ARM’s permission model.

2.1 The offline scheduler
In many Linux devices today, unplugging a processor
is a way to reduce power consumption and heat. An
unplugged processor is stripped out of any resources
it controls, such as memory and scheduling system,
and then is moved to sleep mode. In Intel architec-
tures, the unplugged processor runs a loop of the halt
instruction. In ARM, the processor switches to EL3,
the TrustZone, which relaxes the processor or exe-
cutes the WFI (Wait For Interrupt) instruction. At
this point, the offline scheduler appears. The pro-
cessor invokes a kernel driver procedure instead of
shifting to a relax mode. We depict offline schedul-
ing in Algorithm 1. This kernel driver is the offline

Algorithm 1: Offline scheduler typical main loop
..Drop the processor procedure;
while Processor in offline mode do

user_callback();
pause();

end

scheduler. The offline scheduler cyclically assigns the
processor a single task. The offline CPU operates
without interrupts and can access the entire kernel
address space natively. Thus, a program executing
in an offline mode may access most native APIs of
the Linux kernel as long as these APIs do not rely
on the processor to be online. For example, it is not
possible to use the standard kernel memory alloca-
tion (kmalloc), but freeing memory is possible. The
offline scheduler, depicted in Figure 1, shows that the
offline processor, CPU3, can access the entire address
space in the operating system like a program in the
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online processors. The online processors, in the light
gray area, run the GPOS while the offline processor,
in the darker gray area, does not run the GPOS. The
GPOS does not control CPU3 in the gray area. In
Linux, it is possible to unplug no more than N-1 pro-
cessors in an N processors computer.

User Program User space

Kernel spaceOnline Offline

cpu0 cpu1 cpu2 cpu3

CPU3 can access all ad-

dress space

Figure 1: Offline scheduler

Waiting for an event using a tight loop is consid-
ered to be a bad technique. There are several reasons
for this:

• The processor does not serve any other task,
which violates the multiprogram paradigm de-
scribed by Betz et al. [2009]. A single program
cannot keep either the CPU or the I/O devices
busy at all times.

• The processor’s temperature increases.

• The processor must go through a quiescent state,
as discussed in Bovet and Cesati [2005]. In op-
erating systems, a quiescent state is when the
program performs a system call or relinquishes
the processor. If the program does not relinquish
the processor, then the operating system would
get into an error state and might hang.

For these reasons, we decided to hot-unplug the
processor because unplugging relaxes some of the
above as the processor is not part of the operating
system kernel and, therefore, not subordinate to its
heuristics. To mitigate the heat problem, we called
the pause mnemonic instruction in x86 and its ARM
equivalent mnemonic, yield. The duration of the
delay instructions is measured so they can be used
accurately.
Historically, the first use of the offline scheduler was

as a real-time packet scheduler. We created the of-
fline scheduler as a component of a high-performance
video server. Thus we proposed a way to achieve
real-time alongside the GPOS. Our method does
not have the costs and efforts of an additional RTOS.

Ad hoc RTOS for power saving
Due to their nature, real-time operating systems
usually consume more power Shalan and El-Sissy
[2009]; Madhavapeddy et al. [2015]. Thus RTOS gen-
erates more heat than a general-purpose operating
system. Vendors deal with these problems through
the use of auxiliary processors such as DSPs and
GPUs and power-saving software Datta et al. [2012];
Paul and Kundu [2010] and hardware. The Offline
Nanovisor behaves like these auxiliary processors.
the GPOS manages the processor as long as there is
no need for real-time performance. In these periods
(when real-time performance is not required), the
processor is usually unplugged or running in reduced
frequency. Once there is a need for real-time, the
Offline Nanovisor unplugs the processor and executes
a hyplet in it. We refer to this process as ’offlet
booting’. Unplugging a processor takes about 100
milliseconds. For returning the CPU to the GPOS,
the Offline Nanovisor unmaps the hyplet and then
returns the processor to the GPOS. This process also
takes approximately 100 milliseconds.

Resource sharing
Resource sharing between two VM guests, a host and
a guest VM, or a complete unikernel with the GPOS
may be costly in terms of engineering effort (device
drivers) and synchronization (shared memory). The
Offline Nanovisor, however, constantly switches
between kernel mode and HYP mode. To utilize the
host’s services, the offlet accesses the entire Linux
system resources natively and securely. The same
applies for the hyplet, it also runs natively but in
the user process’s confined address space. In both
cases, the offlet and hyplet programs access variables
directly.

Learning Curve
The offline hyplet learning curve is small. It re-
sembles setting a UNIX signal sig [2020]; it does
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not require any special compilers or tools, and
communication between the Linux process to the
real-time context is not needed as they share address
space. In contrast, assimilating other RTOS systems
in some cases is a big engineering effort that requires
high expertise.

2.2 ARM permission model
ARM has a unique approach to security and priv-
ilege levels and is crucial to the implementation of
the hyplet. In ARMv7, ARM introduced the concept
of a secure world and a non-secure world, through
the implementation of TrustZone and, starting from
ARMv7-a, ARM presents four exception (permission)
levels.

• Exception Level 0 (EL0) refers to userspace
code. EL0 is analogous to ’ring 3’ on the x86
platform.

• Exception Level 1 (EL1) refers to operating
system code. EL1 is analogous to ’ring 0’ on the
x86 platform.

• Exception Level 2 (EL2) refers to HYP mode.
EL2 is analogous to ’ring -1’ or ’real mode’ on
the x86 platform.

• Exception Level 3 (EL3) refers to TrustZone.
A special security mode that can monitor the
ARM processor and may run a real-time secu-
rity OS. There is no direct x86 analogous mode,
Intel’s ME or SMM are related concepts in the
x86 platform.

Each exception level provides its own state of
special-purpose registers and can access these regis-
ters at the higher but not lower levels. The general-
purpose registers are shared. Thus, moving to a dif-
ferent exception level does not require the expensive
context switch associated with the x86 architecture.
ARMv8 architecture dictates distinct translation ta-
bles of the different exception levels; this separation
is the pillar of the hyplet.

3 The hyplet
ARM8v-a specifications offer to distinct between
user-space addresses and kernel space addresses by
the MSB (most significant bits). The user-space ad-
dresses of Normal World and the hypervisor use the
same format of addresses. These unique characteris-
tics are what make the hyplet possible. The nanovi-
sor can execute user-space position-independent code
without preparations. Consider the code snippet at
Figure 2. The ARM hypervisor can access this code’s
relative addresses (adrp), stack (sp_el0) etcetera
without pre-processing. From the nanovisor perspec-
tive, Figure 2 is a native code.
Here, for example, address 0x400000 might be used
both by the nanovisor and the user.

400610: foo:
400614: stp x16, x30, [sp,#-16]!
400618: adrp x16, 0x41161c
40061c: ldr x0, [sp,#8]
400620: add x16, x16, 0xba8
400624: br x17
400628: ret

Figure 2: A simple hyplet

So, if we map part of a Linux process code and
data to a nanovisor it can be executed by it.
When interrupt latency improvement is required, the
code is frequently migrated to the kernel, or injected
as the eBPF framework suggests Corbet [2018]. How-
ever, kernel programming requires a high level of pro-
gramming skills, and eBPF is restrictive. A different
approach would be to trigger a user-space event from
the interrupt, but this would require an additional
context switch. A context switch in some cases is
time-consuming. We show later that a context switch
is over 10 µs in our evaluation hardware. To make
sure that the program code and data are always ac-
cessible and resident, it is essential to disable evac-
uation of the program’s translation table and cache
from the processor. Therefore, we chose to constantly
accommodate (cache) the code and data in the hy-
pervisor translation registers Penneman et al. [2013]
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(Figure 3) in EL2 cache and TLB. To map the user-
space program, we modified the Linux ARM-KVM,
Dall and Nieh [2014] mappings infrastructure to map
a user-space code with kernel space data.

Process

EL0
EL1
EL2MMU EL2

MMU EL0,EL1

Two Exception Levels access
the same physical frame with
the same virtual address of
some process. However, the
page tables of the two excep-
tion levels are not identical.

Figure 3: Asymmetric dual view

Figure 3 demonstrates how identical addresses may
be mapped to the same virtual addresses in two sepa-
rate exception levels. The dark shared section is part
of EL2 and therefore accessible from EL2. However,
when executing in EL2, EL1 data is not accessible
without previous mapping to EL2. Figure 3 presents
the leverage of a Linux process from two exception
levels to three.
The natural way of memory mapping, depicted in
Figure 4, is that EL1 is responsible for EL1/EL0
memory tables and EL2 is responsible for its mem-
ory table, in the sense that each privileged exception
level accesses its memory tables.

EL1pagetable EL2pagetable

The boxes represent the page tables of
EL1/EL0 and EL2. Each page table is man-
aged by its exception level. The small box
represent the page that contain the page ta-
ble.

Figure 4: Memory Table access

However, this would have put the nanovisor at risk,
as it might overwrite or otherwise garble its page ta-
bles. As noted earlier, on ARM8v-a hypervisor has a
single memory address space. (unlike TrustZone that
has two, for kernel and user). The ARM architecture
does not coerce an exception level to control its mem-
ory tables. This makes it possible to map EL2 page
table in EL1 (Figure 5). Therefore, only EL1 can ma-
nipulate the nanovisor page tables. We refer to this
hyplet architecture as a Non-VHE hyplet. Also, to
further reduce the risk, we offer to run the hyplet in
injection mode. Injection mode means that once the
hyplet is mapped to EL2, the encapsulating process
is removed from the operating system kernel, but its
hyplet’s pages are not released from the nanovisor,
and the kernel may not re-acquire them. It is similar
to any dynamic kernel module insertion.

In processors that support VHE (Virtual Host
Extension), EL2 has an additional translation table
(Figure 6), that would map the kernel address space.
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EL1pagetable EL2pagetable

EL2 table

descriptors

The boxes represent the page tables of
EL1/EL0 and EL2. These page tables are
distinct. Here, however, EL2 page tables are
controlled by EL1 kernel. The small low box
in EL1 page table contains the page table of
EL2

Figure 5: Non-VHE hyplet

In a VHE hyplet, it is possible to execute the hyplet
in the user-space of EL2 without endangering the hy-
pervisor. Figure 6 shows how a hyplet of a Linux pro-
cess in EL0EL1 (EL0 is EL1 user-space) is mapped
to EL0EL2 (EL2 user-space). Also, the hyplet can’t
access EL2 page tables because the table is accessi-
ble only in the kernel mode of EL2. VHE resembles
TrustZone as it has two distinct address spaces, user
and kernel. Operating systems such as QSEE (Qual-
comm Secure Execution Environmen) Loftus et al.
[2017] and OP-TEE opt are accessed through an up-
call and execute the user-space in TrustZone. Unfor-
tunately, at the time of writing, only modern ARM
boards offer VHE extension Penneman et al. [2013]
(ARMv8.2-a) and therefore this paper demonstrates
benchmarks on older boards.

EL1kernelspace

EL0userpagetable

EL2kernelspace

EL0userpagetable

EL0EL2 table

RAM

0x400000

0x400000

hyplet

Normal world HYP world

Hyplet in VHE mode. The hypervisor’s
kernel maps the hyplet (virtual address
0x400000) from Normal mode to HYP user
mode. The nanovisor is secured.

Figure 6: VHE Hyplet Architecture

3.1 The hyplet security & Privilege es-
calation in RTOS

As noted, VHE hardware is not available at the time
of this writing, and as such we are forced to use soft-
ware measures to protect the hypervisor.

On older ARM boards it can be argued that a se-
curity bug at hypervisor privilege levels may cause
greater damages compared to a bug at the user pro-
cess or kernel levels thus poising system risk.

The hyplet also escalates privilege levels, from ex-
ception level 0 (user mode) or 1 (OS mode) to ex-
ception level 2 (hypervisor mode). Since the hyplet
executes in EL2, it has access to EL2 and EL1 special
registers. For example, the hyplet has access to the
level 1 exception vector. Therefore, it can be argued
that the hyplet comes with security cost on proces-
sors that do not include ARM VHE.
The hyplet uses multiple exception levels and esca-
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lates privilege levels. So, it can be argued that using
hyplets may damage application security. Against
this claim, we have the following arguments.

We claim that this is risk is superficial and an ac-
ceptable risk, for processors without VHE support.
Most embedded systems and mobile phones do not
include a hypervisor and do not run multiple operat-
ing system.

In the case where no hypervisor is installed, code
in EL1 (OS) has complete control of the machine. It
does not have lesser access code running in EL2 since
no EL2 hypervisor is present. Likewise code running
in EL2 can affect all operating systems running under
the hypervisor. Code running in EL1 can only affect
the current operating system. When only one OS is
running the two are identical.

Therefore, from the machine standpoint code run-
ning in EL1 when EL2 is not present has similar ac-
cess privileges to code running in EL2 with only one
OS running, as in the hyplet use case.

The hyplet changes the system from a system that
includes only EL0 and EL1 to a system that includes
EL0, EL1, and EL2. The hyplet system moves a code
that was running on EL1 without a hypervisor to EL2
with only one OS. Many real-time implementations
move user code from EL0 to EL1. The hyplet moves
it to EL2, however, this gains no extra permissions,
running rogue code in EL1 with no EL2 is just as
dangerous as moving code to EL2 within the hyplet
system. Additionally, it is expected that the hyplet
would be a signed code; otherwise, the hypervisor
would not execute it.

The hypervisor can maintain a key to verify the
signature and ensure that lower privilege level code
cannot access the key. This was shown by Resh and
Zaidenberg [2013] on Intel platform.
Furthermore, Real-time systems may eliminate even
user and kernel mode separation for minor perfor-
mance gains. We argue that escalating privileges for
real performance and Real-time capabilities is an ac-
ceptable on older hardware without VHE where hy-
plets might consist of a security risk. On current
ARM architecture with VHE support the hyplet do
not add extra risk.

3.2 Static analysis to eliminate secu-
rity concerns

Most memory (including EL1 and EL2 MMUs and
the hypervisor page tables) is not mapped to the hy-
pervisor. The non-sensitive part of the calling pro-
cess memory is mapped to EL2. The hyplet does not
map (and thus has no access to) kernel-space code
or data. Thus, the hyplet does not pose a threat of
unintentional corrupting kernel’s data or any other
user process unless additional memory is mapped or
EL1 registers are accessed.

Thus, it is sufficient to detect and prevent access to
EL1 and EL2 registers to prevent rogue code affecting
the OS memory from the hypervisor. We coded a
static analyzer that prevents access to EL1 and EL2
registers and filters any special commands.

We borrowed this idea from eBPF. The code an-
alyzer scans the hyplet opcodes and checks that are
no references to any black-listed registers or special
commands. Except for the clock register and general-
purpose registers, any other registers are not allowed.
The hyplet framework prevents new mappings after
the hyplet was scanned to prevent malicious code in-
sertions. Another threat is the possibility of the in-
sertion of a data pointer as its execution code (In
the case of SIGBUS of SEGFAULT, the hyplet would
abort, and the process terminates). To prevent this,
we check that the hyplet’s function pointer, when set,
is in the executable section of the program.
Furthermore, the ARM architecture features the
TrustZone mode that can monitor EL1 and EL2. The
TrustZone may be configured to trap illegal access at-
tempts to special registers and prevent any malicious
tampering of these registers.
Now, we present the Offline Nanovisor programming
model.

3.3 Programming model
The offline hyplet requires modifications in the na-
tive C code. A hyplet’ed program that interacts with
hardware devices accesses these devices through the
kernel in the offline processor. A common hyplet is
one that constantly exits the nanovisor to the kernel
and from the kernel back into the nanovisor. Another
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possibility is for programmers who are acquainted
with eBPF programming and can write an abstrac-
tion for the kernel part in eBPF. Thus, porting of a
real-time program includes kernel programming and
userspace programming. In general, whenever there
is need for an operating service, we exit the nanovisor
to the GPOS. Algorithm 2 demonstrates real porting;
it is the simplified implementation of the ultrasonic
sensor code we use later in this paper. The code ac-
cesses two different GPIOs ( general purpose I/O ),
so it needs to perform some system calls. To replace

Algorithm 2: Native C program for an ultra-
sonic sensor

// triggers the sound wave;
write(fd_trig, ”1”, 1)
do {
// Wait for the wave transmission

read(fd_echo, &in, 1) ;
t1 = get_time();

} while (in == 0);
do {
// Wait for the wave end of reception

read(fd_echo, &in, 1);
t2 = get_time();

} while (in == 0);
// Return the delta to the user program
return t2 - t1 ;

system calls, the nanovisor exits to the kernel and
performs the required service in kernel mode. An exit
to the kernel is done through the use of ERET and
the return back to the nanovisor is done by HV C.
Therefore, the programming model requires that the
program must change and be broken down to hy-
plets and offlets, which are then called sequentially,
thereby maintaining the program state. For instance,
in Algorithm 3, we perform the I/O in kernel mode in
an offlet and then return to the hyplet to process the
new data in user mode. Each line of code in Algo-
rithm 3 is prefixed with the exception level the pro-
cessor is in when it executes it. The programmer does
not need to perform ERET or HV C by themselves.
The programmer registers a user callback when they
write the kernel portion. When the callback returns,

Algorithm 3: Hyplet ultrasonic
EL2: long hyplet_timer(long ts) {
// stash the time stamp and wait ..
EL2: timestamps[i]=ts;
EL2: wait(N microseconds); // Exit the
nanovisor(EL2). Move to EL1;

EL2: }
...
EL1: long user_callback()
EL1 {
EL1: gpio_set_value(gpio_trig, val);
EL1: do {
EL1: val = gpio_get_value(gpio_echo);
EL1: t1 = get_time();
EL1: } while (in == 0);
EL1: do {
EL1: in = gpio_get_value(gpio_echo) ;
EL1: t2 = get_time();
EL1: } while(in == 1) ;
// The callback finished. The framework enters
the nanovisor and the arguments are passed to
the hyplet.

EL1: }
...
EL2: long hyplet_timer(long ts) { // stash the
time stamp and wait...
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the framework returns to the nanovisor that runs the
next hyplet.

The hyplet framework offers the following APIs:

• Memory mapping
hyp_map(address,size)
hyp_map_all()
hyp_unmap(address)
Maps or unmaps regions of code or data. It is
also possible to map the entire process’s address
space, but we discourage it because usually the
address space grows during the process life.

• Stack assignment
hyp_set_stack(addr,size)
A user should map some memory chunk as a
stack.

• vma mapping
hyp_map_vma(addr, size)
Maps an address only if it is a vma. A vma (vir-
tual memory area) is a virtual contiguous mem-
ory Bovet and Cesati [2005] with the same prop-
erties (read/write/execute).

• Offlet activation
hyplet_drop_cpu(cpu_id)
Unplugs a processor from the kernel. Uses Linux
standard hotplugging API, i.e. we utilize Linux
sysfs to remove a processor.

• Hyplet assignment
hyp_assign_offlet(cpu_id, user function)
hyp_unassign_offlet(user function)
The userspace provides a function as an hyplet
to execute in cpu cpu_id. Once the hyplet is
assigned to the offline processor, it would run.

• Synchronisation
hyp_lock(spinlock),hyp_unlock(spinlock)
In cases where the programmer wishes to pro-
tect a resource from concurrent access from EL0
and EL2 or concurrent access from two offlined
processors.

• Get time
hyp_gettime()
Returns the current time in nanoseconds. It is

the value of the cntvct_el0 register that holds
the current clock value.

• Printing
hyp_print(const char* fmt,...)
Prints in hyplet context.
print_hyp()
Records the print string and the values to a tem-
porary buffer in EL2. When the program is in
EL0, it should call print_hyp to print the data
to the program’s standard output as if it were a
regular C’s printf(3).

• Event
hyp_wait()
Waits for the completion of the offlet.
hyp_wait() is similar to the UNIX wait(2)
system call. There is no restriction on the
number of callers.

EL1 data are passed to and from the hyplet
through the function’s arguments.
When the process exits, the hyplet is automatically
removed from the nanovisor. At this point, the pro-
cessor remains offline, waiting for a new assignment.
while (offlet_assigned == 0) {

pause();
}

In the kernel, the offlet API uses struct hyp_wait
that contains the user callback and some additional
context information. We provide two APIs for
offlets: offlet_regiser(hyp_wait, cpu_id) and of-
flet_unregister(hyp_wait, cpu_id). These two APIs
may be used after a processor is unplugged or before.

Delicate mapping
There are times when we want to map only certain
global variables and functions to the nanovisor. For
this, we used gcc sections. For example:
__attribute__ ((section("hyp"))) unsigned int a = 0;
unsigned int b = 0;

In this case, we want only to map the variable ’a’
and not ’b’. So, we grab the ELF (Executable Link-
able Format) section ’hyp’ and map it to the nanovi-
sor. The Offline Nanovisor offers a library that reads
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the program ELF structure and maps the required
sections. For example, the below maps section ’hyp’.

Elf_parser_load_memory_map("myprogram")
get_section_addr("hyp", &hyp_sec, &sec_size);
hyplet_map_vma((void *)hyp_sec, cpu_id)

3.4 Runaway hyplet
If the hyplet is locked in an endless loop, We need
to intervene in the code executing in the processor.
For this, we offer to write on the entire EL2 user-
mapped code through a different processor an opcode
that generates an abort. Once the offline processor
executes this code, the processor aborts, records the
program counter and exits gracefully from EL2. For
the programmer to understand an infinite loop exists,
the hyplet calls a function that increments a counter.
This counter is shared between the EL2, EL1 and
EL0. The value of this counter and the value of the
program counter are visible through the Linux procfs
file system. So, if this counter is not updated, the
programmer can quickly locate the infinite loop and
its position in the program. The claim that a hyplet
may change its own MMU tables is correct, but for
the hyplet to access restricted data, the hyplet must
know which pages to access and for this it usually
needs access to the kernel.

3.5 Soft microcontroller
The Offline Nanovisor is a software microcontroller.
Instead of having the operating system kernel serve
an interrupt from an external microprocessor, the hy-
plet is the one that decides whether or not to inter-
rupt the user process. In the phase of research and
development, a soft microprocessor can be used dur-
ing a proof-of-concept phase and before the electron-
ics design, thus reducing costs.
Furthermore, some devices do not have any inter-
rupts at all. Instead of receiving an interrupt, the
device driver cyclically accesses the device. However,
there is no way to know when data are available ex-
cept by regularly accessing it in a tight loop. Cyclic
pulling of the device data implies jitter when per-
formed by the GPOS because we may not write a
tight loop un-interrupted as noted previously.

3.6 AMP cache thrashing
AMP, or Asymmetric Multiprocessing Architecture,
is when the system cores run different operating sys-
tems (a notable example is the Jailhouse microvisor
Blackham et al. [2011]). AMP cache thrashing oc-
curs when a GPA (guest physical address) for two
different guests is mapped to different host physical
addresses. The GPA might map to the same L2 or
L3 cache lines due to cache associativity. Because the
two guests do not have the same data in the GPA,
they disturb each other, which degrades performance.
This problem does not happen in the Offline Nanovi-
sor because the hyplets use EL2 cache lines and not
EL1’s, and the offline processor is not virtualised.

3.7 Concurrency
Linux supports unplugging multiple processors.
Thus, it is possible to load the Offline Nanovisor
on multiple processors concurrently. The Offline
Nanovisor API provides a synchronisation primitive,
a spinlock, for the case where a process is shared be-
tween multiple processors’ cores.

4 Evaluation
We demonstrate different types of experiments. The
first is a software timer in which we show the accuracy
of the Offline Nanovisor. In the next two sections, we
demonstrate how some systems today do not reflect
accurately enough the natural non-discrete physical
world. The two experiments show that even when we
use microcontrollers connected to a small computer
that runs Linux, we lose accuracy due to the nature
of the Linux operating system. We conduct our ex-
periment with off-the-shelf devices, many of which
are used in real products and can be reproduced.
We conducted measurements on a Raspberry Pi3 run-
ning a standard Linux OS. For practical reasons, we
compare the Offline Nanovisor only to Linux and
to technologies available in ARM. Dune Belay et al.
[2012] and Rump Kernels Kantee and others [2012]
are not available on ARM at the time of writing;
RTAI (last released in Feb 2018) is not available for
PI and not for 64-bit ARM.
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Table 1 summarizes the Raspberry Pi3 main specifi-
cations:

Soc Broadcom BCM2837
CPU 4 cores, ARM Cortex A53, 1.2GHz
RAM 1GB LPDDR2 (700 MHz)
Oscillator 19.2 Mhz

Table 1: Pi3 Specifications

It is also important to note that the Pi’s clock in-
accuracy is up to 140 ppm.

4.1 Latency
Linux handles interrupts Regnier et al. [2008] in two
parts:

top half that acknowledges the interrupt

bottom half that handles the interrupt

So, before we start with the experiments, we first
need to understand the variation in the Pi3 inter-
rupt's latency before acknowledgement of the inter-
rupt itself, i.e. the top half. As the source of the in-
terrupt, we used an Invensense mpu6050 Fitriani et
al. [2017] IMU (inertial measurement unit) to the Pi,
and configured it to work in the i2c protocol. In i2c,
for every 8 bits of data, there is an acknowledgement
signal that generates an interrupt to the Pi. The ac-
knowledgement signal is sent on the SDA line (the
data line of the i2c) and received by the operating
system kernel. We wanted to measure the time in-
terval between the moment of the i2c ACK and the
moment the processor runs the main interrupt rou-
tine. Therefore, we connected a logic analyzer probe
to the SDA of the IMU device. We programmed one
of the Pi’s GPIOs to trigger a signal in the kernel’s
main interrupt routine. The results were an aver-
age of 3.9 µs, a maximum 9µs and a minimum 1.7
µs. Therefore, interrupts reach the service routine at
varying times. Our results emphasise the fact that
there are occasions when we cannot rely on an in-
terrupt to reach the kernel in a predictable time. In
other words, while a jitter of 10 µs in a 1 ms cycle

may be considered tolerable in some cases, in a 100
µs cycle it is not.

5 Use cases
Next, we demonstrate several use cases.

5.1 Timer
We first evaluate other real-time operating system
technologies for ARM and check their jitter at 1
kHz tick rate. We evaluate seL4 Wang et al. [2015]
and Xvisor Patel et al. [2015] because they offer
RTOS for ARM, Linux RT_PREEMPT RTOS, a
standard Debian Linux and the Offline Nanovisor.
Standard Linux is an off-the-shelf Debian Linux with-
out any kernel modifications. The test is a simple
1-millisecond timer program written in C for each
operating system.
In Figure 7, other than seL4 and the hyplet (the Of-
fline Nanovisor), none of the other solutions can han-
dle hard real-time. We note that we performed this
test on an idle system without any real load, and took
time samples from the system clock.
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Figure 7: Maximum jitter in µs in idle mode of vari-
ous operating systems

We did not continue the evaluations in higher fre-
quencies, such as 20 kHz, because at these rates
the operating systems are not responsive. We now
want to evaluate the Offline Nanovisor. The Offline
Nanovisor latency must resemble a real microcon-
troller latency. For example, Renesas MCU (micro-
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controller unit) MC16C/62P, has a 24 MHz proces-
sor, and according to Anh and Tan [2009], when it
uses uTkernel, its latency from interrupt to task is
about 1 µs. So, to be a competitive substitute, we
aim for a few microseconds interrupt to task latency.
As we will soon see, we reach this goal.
The offlet-hyplet test program is a timer function in
HYP mode that waits for the time to expire, returns
to EL1 to toggle a GPIO in EL1 and then returns to
EL2 to wait again.
We measured latencies at various intervals. We con-
structed each test in two modes: An idle mode -
While the processors are mostly idle and a busy mode.
When in busy mode we flooded the network interface
card (100 MbE) with network traffic to disturb the
processors and consume bus cycles. The rate of inter-
rupts was 3000 INTR/second, whereas in idle mode
the network generates about 300 INTR/second.
We used an oscilloscope to achieve nanosecond ac-
curacy. Figures 8 and 9 present the jitter in sub-
microseconds.
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Figure 8: Maximum jitter in µs in idle mode

As noted, we toggle a GPIO for the measurements
in EL1. From Figure 8, it appears that the transition
from EL2 to EL1 and the GPIO toggle takes about
0.5 µs. Next, in Figure 9, we loaded the system by
flooding the network card in order to examine the
efficiency of the isolation.
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Figure 9: Maximum jitter in µs in busy mode

From Table 9 it is evident that a load in these fre-
quencies is substantial. In the frequency of 20 kHz
the worst case was 9.5 µs, which is nearly 20% of the
cycle. The reason for the jitter is the error of the os-
cillator, which is 140 ppm and it is sensible that it is
more observed at high frequencies. Table 2 presents
some additional measures in busy mode.

Freq kHz Avg Stddev
1 1000165 170
2 500082 162
10 100016 150
20 50008 162

Table 2: Offline hyplet jitter (nanoseconds)

We see that bus sharing should be avoided as much
as possible. Even if the process is entirely isolated
from the GPOS there is still degradation in perfor-
mance. The maximum jitter increases in general by
4 in low rates (up to 10 kHz). We also understand
that the oscillator ppm deviation must be taken into
consideration in high frequencies.

5.2 Ultrasonic distance
In this test, we used an ultrasonic sensor to measure
the distance between the sensor (a consumer-grade
HC-SR04) and an object. The sensor reports when
the ultrasonic signal hits the echo sensor. Thus, by
measuring the time elapsed between sending and re-
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ceiving an ultrasound signal, we can deduce the dis-
tance. For this reason, it is important to measure
the time as accurately as possible. Figure 10 shows
an object located 30 cm from the sensor. The dis-
tance was chosen so that the duration would surpass
1 millisecond.

Figure 10: Ultrasonic schema

The speed of an ultrasonic sound wave is 34, 300 cm
s .

Thus, assign the following:
∆t as the time elapsed between triggering and receiv-
ing.
d as the distance from the sensor to the object.
The calculation of d is:
d = ∆t× 34, 300/2
To measure a distance with a sensor, we applied this
relation in Algorithm 4, and implemented a program
as an offline hyplet and as a native C userspace code.
Table 3 displays the results of the native C program
in RT_PREEMPT and in a hyplet mode. In this
experiment, we did not impose any CPU load.

Test Average Stdev Min Max
RT_PRPT 30.2 1.2 29.2 32.4
hyp-offlet 30.4 0.04 30.3 30.4

Table 3: Ultrasonic, idle mode (in cm)

Now, we repeat the test but with disturbances. As
in the timer test, we generate a large number of inter-
rupts while performing the test (3000 INTR

sec ). Table

Algorithm 4: Ultrasonic distance algorithm
GPIO.Output(GPIO_TRIGGER) = True;
Sleep 100 us;
GPIO.Output(GPIO_TRIGGER) = False;
Result: Transmit for a 100us
StopTime = StartTime = time();
Result: Take start time
while(GPIO.input(GPIO_ECHO) == 0) {

StartTime = time();
}
Result: When the echo GPIO is 1 the

transmission began
while (GPIO.input(GPIO_ECHO) == 1) {

StopTime = time();
}
Result: When ECHO is 0 again then the

ECHO signal is received completely
TimeElapsed = StopTime - StartTime;
distance = (TimeElapsed * 34300) / 2;

4 shows the averages and standard deviations.

Test Average Stdev Min Max
RT_PRPT 30.8 1.86 27.4 32.6
hyp-offlet 30.4 0 30.4 30.4

Table 4: Ultrasonic, busy mode (in cm)

The offset from 30 cm is probably due to the HCR
sensor itself. Its oscillator is 40 kHz (25 µs), so
the expected deviation is at most 0.000025 × 343 =
0.00875 ≈ 9mm.

The Offline Nanovisor overcomes RT_PREEMPT.

5.3 Infrared sensor
An infrared sensor setup is composed of a light trigger
and an echo object. Usually, the sensor is connected
to a GPIO , and the program reads it constantly.
To evaluate the accuracy of the Offline Nanovisor,
we designed the experiment depicted in Figure 11. A
beam is projected to a photo-resistor connected to a
GPIO pin in a Raspberry Pi, which reads the digital
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value of the photo-resistor. In this experiment, we
measured the interval between the moment we turn
on the beam and the moment the photo-resistor raises
the GPIO input to ’high’. It is hard to estimate the
actual theoretical value of the expected result. We
placed the beam projector 2 mm from the resistor.
Light travels nearly at 300mm in 1 nanosecond. So,
in theory we should have seen numbers less than one
nanosecond; however, the actual numbers we got are
much higher due to the PI’s microcontroller delay.
But we do see that the standard deviation differs.

Figure 11: Infrared schema

Table 5 presents the difference between the native
C program and its hyplet variant.

Test Average Stdev Min Max
RT_PRMPT 2077 20.5 2118 2056
hyp-offlet 2122 0.5 2122 2123

Table 5: Infrared (in µs)

Again, it is evident that the offline hyplet’s pro-
grams are more accurate than native programs.

6 Related Work
Many groups have researched real-time operating sys-
tems (RTOS). Under the ARM architecture, other
than RT_PREEMPT, we can find Jailhouse Barysh-
nikov [2016], Xen Barham et al. [2003], seL4 and

OKL4 Heiser and Leslie [2010], Xenomai and RTAI,
and many others. Of the six, OKL4 is a closed-source
microvisor not available to us and we do not discuss
it.
As noted earlier, this paper does not claim that hy-
plets or the Offline Nanovisor are kernels but rather a
nanovisor extension to the GPOS. Moreover, the Of-
fline Nanovisor may share the same computer with
other technologies, such as seL4, as long as they do
not use the same core. Nevertheless, we do provide
some overview of related technologies, starting with
the microkernel. A microkernel is defined as the min-
imum set of functionalities needed to implement an
operating system. Jochen Liedtke best describes it:
’A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e., permitting compet-
ing implementations would prevent the implementa-
tion of the system's required functionality’.
SeL4 is a microkernel for ARM8, ARM7, ARM6 and
x86, and in some cases it is implemented as a micro-
visor. SeL4 architecture evolved from Liedtke’s L4
microkernels family Elphinstone and Heiser [2013].
SeL4 provides a minimal set of functions to access
a physical address space, interrupts, and processing
time. It is also considered to be the only formally
verified operating system Klein et al. [2009]. In gen-
eral, seL4 is considered the fastest microkernel. Its
support for SMP is considered experimental. SeL4
offers real-time Blackham et al. [2011] and security
Sewell et al. [2011]. The weak part of seL4 is, how-
ever, its assimilation to existing hardware. It requires
mastering CAmkES Kuz et al. [2007], a software com-
ponent for microkernel-based embedded systems and
a framework to build an operating system.
Jailhouse is a microvisor created by Siemens™. It
uses partitioning to split the hardware into isolated
compartments, or ’cells’. These cells are dedicated to
executing programs called “inmates” Jailhouse does
not emulate any device. Devices and processors are
statically assigned to Jailhouse on creation. Unfortu-
nately, Jailhouse, like KVM, does not run on Rasp-
berry PI3. In Jailhouse, a single processor is assigned
to perform the hard real-time tasks while the other
processors are assigned to run Linux. Jailhouse is
implemented as a Linux kernel driver and is a type-
2 hypervisor, like the hyplets. Sebou Soltesz et al.
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[2007] show that Jailhouse’s performance surpasses
Xen’s. This is mainly due to its simple design.
Other known open-source real-time operating sys-
tems for Linux, are Xenomai Gerum [2004] and RTAI
Mantegazza et al. [2000]. Both technologies employ
a microkernel architecture, meaning that the Linux
kernel is merely a background task. Both technolo-
gies run on most processor architectures, e.g. x86,
ARM7 and Power ISA. According to Barham et al.
[2003], these two technologies perform somewhat the
same while RTAI is a bit faster. However, as noted
earlier, RTAI is not available on Raspberry PI and,
as such, we feel that its development lags.
Dune Belay et al. [2012] is a system that provides
a process rather than a machine, an abstraction
through virtualisation. Dune offers a sandbox for
untrusted code, a privilege separation facility and a
garbage collector and is implemented on the Intel ar-
chitecture. It is intended more for security than for
RTOS. We believe we can port hyplets to Dune for
ARMv8-a and ARMv7-a.
Rump kernels Kantee and others [2012] are virtual
lightweight containers for drivers in NetBSD Mew-
burn [2001]. Rump kernels run on top of the hyper-
visor and are processes running in hypervisor mode,
and wrapped by containers that enable driver opera-
tions such as threads and synchronisation primitives.
Rump kernels are designed for running drivers with
little if any modification and still leave the kernel
monolithic.
The Extended Berkeley Packet Filter, also known as
eBPF Corbet [2018] Borkmann [2016] is described as
an in-kernel virtual machine that provides the abil-
ity to attach a program to a certain tracepoint in
the kernel. Whenever the kernel reaches the trace-
point, the program is executed without a context
switch. eBPF is undergoing massive development
and is mainly used for packet inspection, tracing and
probing. EBPF supports x86 architectures and ARM
(although we failed to compile eBPF for ARMv8-a).
It runs in kernel mode, which is considered unsafe,
but uses a verifier to check for illegal accesses to ker-
nel areas or the tampering of registers. Access to the
userspace is done through memory maps.
EBPF uses LLVM, requires clang to generate a JIT
code and has a quite small instruction set. As a con-

sequence, eBPF has substantial limitations as only a
subset of the C language can be compiled into eBPF.
EBPF has no loops, no native assembly, no static
variables, no atomics, may not take a long time and
is restricted to 4,096 instructions. Each eBPF in-
struction is 64-bit, so the biggest eBPF program may
reach the size 4096 * 8 = 32 KB. But this is a byte
code. Thus, in addition to the program size, there is
also the overhead of LLVM. The hyplet runs native
opcodes. Numerous vulnerabilities in an eBPF pro-
gram might jeopardize the operating system. This is
not the case with hyplets. The hyplet is not a pro-
gram that executes in the kernel’s address space but
in the user’s address space. Hence, there is no need
for maps to share data between the user and the ker-
nel. Hyplets do not require any particular compiler
extensions, are much less restricted (what mapped
prematurely can be accessed). Hyplets are meant to
propagate events to a userspace program and process
them in real-time, not just collect data as in eBPF.

7 Summary
The approach of embedding two distinct instances of
two or more operating systems in a single computer
has many justifications. However, this approach has
some flaws. First, these operating systems require
the programmers to master at least two operating
systems: Linux and the microkernel’s RTOS. The
learnability of an operating system, its maintainabil-
ity and portability are what make RT_PREEMPT
so popular. RT_PREEMPT is easy and it is Linux.
Just to shed some light, the RT_PREEMPT patch
was evaluated (and thus promoted) by Cerqueira and
Brandenburg [2013]; Regnier et al. [2008]; Arthur et
al. [2007]; Mossige et al. [2007] , and is known to-
day as the operating system taught in universities
McLoughlin and Aendenroomer [2007].
Second, when we embed two operating systems on
the same machine, we do that for a certain pur-
pose. For instance, to have a GPOS that can run
a GUI (graphical user interface) program that con-
sumes data from the RTOS. Therefore some form of
communication between the two operating systems
is required. The communication between the two
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operating system needs to be maintained and syn-
chronized. Thus, programmers need to be careful
that it does not jeopardize the RTOS responsiveness.
The Offline Nanovisor is intended to ease these chal-
lenges.
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