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INTRINSIC RECTIFIABILITY VIA FLAT CONES
IN THE HEISENBERG GROUP

ANTOINE JULIA AND SEBASTIANO NICOLUSSI GOLO

Abstract. We give a geometric criterion for a topological surface in the first
Heisenberg group to be an intrinsic Lipschitz graph, using planar cones instead
of the usual open cones.

Introduction

We identify the first Heisenberg group H with the manifold R3 endowed with the
group operation

(x, y, z)(x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

xy′ − x′y
2

)
.

The inverse of (x, y, z) is (−x,−y,−z). If E ⊂ H and p ∈ H, we write pE for the set
{pe : e ∈ E}. The elements of the one-parameter family of group automorphisms
δλ : (x, y, z) 7→ (λx, λy, λ2z) are called dilations.

In recent years, intrinsic Lipschitz graphs in H have gained more attention, see
[7,8,11] and [3–6]. Indeed, these graphs yield a robust notion of rectifiable set in the
Heisenberg group, and more generally in Carnot groups. The definition of intrinsic
Lipschitz graphs is inspired by the Euclidean characterization of Lipschitz graphs
by cones. Here, a cone is a set E ⊂ H with δλ(E) = E for all λ > 0. A set is an
intrinsic Lipschitz graph if it has the following full cone property.

Definition 1 (Full cone property). A set S ⊂ H has the full cone property if there
is an open cone C with −C = C, C ∩ {z = 0} 6= ∅ and, for all p ∈ S,

C ∩ p−1S = ∅.

An example of open cone, for some α > 0, is the α-full cone:

C(α) :=
{

(x, y, z) : |y| < α|x|, |z| < αx2/2
}
.

In this paper, we consider flat cones

fC(α) := {(x, y, 0) : |y| < α|x|}.

Our aim is to compare the full cone property with a flat cone property defined as
follows.

Definition 2 (Flat cone property). A set S ⊂ H has the α-flat cone property if for
all p ∈ S

fC(α) ∩ p−1S = ∅.
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Note that, if C is an open cone with −C = C and C ∩ {z = 0} 6= ∅, then there
exists α > 0 such that C(α) ⊂ C, up to a rotation around the z-axis. Recall that
rotations around the z-axis are isomorphisms of the homogeneous structure of H
given by left-translations and dilations. Noting that fC(α) = C(α) ∩ {z = 0}, it is
then clear that intrinsic Lipschitz graphs also have the flat cone property, up to a
rotation around the z-axis. We will prove the inverse implication for topological
surfaces.

Theorem. If S ⊂ H is a topological surface with the flat cone property, then it is
locally a Lipschitz intrinsic graph. Quantitatively, the α-flat cone property implies
locally the α/4-full cone property.

Remark 3. If S is a topological surface with the flat cone property, then it is an
intrinsic graph and horizontal curves on S are Lipschitz with uniformly bounded
slope. The Theorem is thus a geometric version of [2, Theorem 1.2] in the first
Heisenberg group.

Remark 4. The topological surface

{(0, y, z), 0 < y < 1, z < 0} ∪ {(1, y, z) : 0 < y < 1, y < 2z}

has the flat cone property, but is not an intrinsic Lipschitz graph in the direction of
the x-axis. It is not hard to modify this set to make it into a connected topological
surface without losing the flat cone property. This example shows that the word
“locally” in the statement of the Theorem is necessary.

Remark 5. The hypothesis in the Theorem that S is a topological surface is crucial.
We register two examples where our strategy fails and that we consider prototypical.
The first one has the flat cone property, but not the full cone property at 0 in the
direction of the x-axis:

{(x, 0, x3), x ∈ [ 0, 1 ]}.
Another example is the following set, which has the flat cone property, but is not
an intrinsic Lipschitz graph:

{(0, 0, 0)} ∪ {(x, y, z) : x = 1}\{(1, s, 0) : |s| < 1}.

However, these sets are clearly intrinsic 1-codimensional-rectifiable in the sense of
[7, Definition 3.16]. We do not know whether the flat cone property does imply
intrinsic rectifiability.

Remark 6. After this paper was submitted, we have learned that a similar result
for Carnot groups is contained in a recent work of E. Le Donne and C. Bellettini,
see [1, Proposition 2.29].

We present a detailed proof of the Theorem in the subsequent sections. However,
the expert reader could be satisfied with the following sketch.
Suppose p = 0 ∈ S: we want to find β > 0 and an open neighborhoodU ⊂ H of
0 such that C(β) ∩ (S ∩ U) = ∅. We start by considering the intersection S ∩ H,
where H = {z = 0} is the so called “horizontal plane”: for every y0 close to 0 there
is x ∈ [−y0/α, y0/α ] such that (x, y0, 0) ∈ S. Now, we notice a crucial fact: all
the left-translations {(x, y0, 0)H}x∈R, with y0 fixed, are affine planes containing a
common line, which turns out to be inside the plane {y = 0}. Therefore,⋂

x∈[−y0/α,y0/α ]

(x, y0, 0)fC(α)

is the union of two half lines in the plane {y = 0}. By construction, these two half
lines do not intersect S.
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If we then consider all y0 ∈ (−ε, ε) for some ε > 0 small enough, we get a family of
half lines in {y = 0} that do not intersect S: the union of such a family yields a
“vertical set” which, in a neighborhood of 0, coincides with C(α/2) ∩ {y = 0}.
Although promising, this is still not enough to get a full cone. However, the same
argument can be carried out in another system of coordinates (x′, y′, z′) for H in
which the x′-axis is slightly tilted with respect to the x-axis; in other words, we
consider x′ = x, y′ = y + tx, z′ = z, where t ∈ R. Indeed, for t small, S will
still have the (α/2)-flat cone property in the new coordinates and thus we obtain a
vertical set in {y′ = 0} that does not intersect S and coincides in a neighborhood
of 0 with C(α/4) ∩ {y′ = 0}.
The union of all these vertical sets coincides with C(α/4) near 0, as desired. This is
proved in Section 1. Of course, the arguments should be carried out in a uniform
way for p close to 0 in S, this is the scope of Section 2. The full proof of the
Theorem is in Section 3.

Acknowledgements. We thank Davide Vittone and Roberto Monti for inspiring
conversations.

1. Flat cones build up full cones

In this section, we show how we get truncated full cones from flat cones. It is
worth mentioning [10], where another strategy to pass from flat cones to full open
cones is discussed.

For r, β > 0, define the truncated full cone

C(β, r) :=
{

(x, y, z) : |y| < β|x|, |z| < βx2/2, |x| < r
}

and the vertical set

vC(β, r) =
{(
x, 0, ux2/2

)
: |u| < β, |x| < r

}
.

Remark 7. Note that if a set S satisfies C(β, r) ∩ p−1S = ∅, for all p ∈ S, then, for
each p ∈ S, the set S ∩ p{|x| < r/2} has the β-full cone property.

Lemma 8. Fix ε, β > 0, then

(1) vC

(
β

2
,

2ε

β

)
⊂
⋃
|η|<ε

⋂
|s|<β−1

(sη, η, 0)fC(β).

Proof. Pick (x, 0, ux2/2) ∈ vC(β/2, 2ε/β), and notice that |−ux| < ε . We will show
that (x, 0, ux2/2) ∈ (−sux,−ux, 0)fC(β), i.e. that (sux, ux, 0)(x, 0, ux2/2) ∈ fC(β),
for all s ∈ (−β−1, β−1). We have

(sux, ux, 0)(x, 0, ux2/2) = (x+ sux, ux, 0),

so we only need to prove that |ux| < β|x + sux|, which is clear as |u| < β/2,
|su| < 1/2 and thus

β|x+ sux| ≥ β|x|(1− |su|) ≥ β

2
|x| ≥ |ux|. �

For t ∈ R, define the map Mt(x, y, z) := (x, y+ tx, z), which is a group automor-
phism H→ H, with inverse M−1

t = M−t. An immediate consequence of the above
definitions is that, for all r, β > 0,

(2) C(β, r) =
⋃
|t|<β

Mt(vC(β, r)).
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2. Intrinsic graphs

Given Ω ⊂ R2 and φ : Ω→ R, the intrinsic graph of φ is the subset

Γφ :={(0, η, τ)(φ(η, τ), 0, 0) : (η, τ) ∈ Ω}
={(φ(η, τ), η, τ − ηφ(η, τ)/2) : (η, τ) ∈ Ω}.

Define the projection π : H→ R2, (x, y, z) 7→ (y, z+xy/2). Notice that if (η0, τ0) =
π(x0, y0, z0), then (x0, y0, z0) = (0, η0, τ0)(x0, 0, 0).

Proposition 9. If S is a topological surface with the flat cone property, then it is
the intrinsic graph of a continuous function defined on an open subset of R2.

Proof. Since {(ξ, 0, 0) : ξ ∈ R \ {0}} ⊂ fC(α), the map π|S : S → R2 is injective.
Thus, S = Γφ for some φ : π(S) → R. As S is a topological surface and by the
Invariance of Domain Theorem, π(S) is open and φ is continuous. (An elementary
proof of the Invariance of Domain Theorem can be found in [9].) �

As we explained in the introduction, in order to apply Lemma 8, we will use the
fact that for every y0 close to 0 there is x ∈ [−y0/α, y0/α ] such that (x, y0, 0) ∈ S.

Proposition 10. Fix η0, τ0, β > 0 and let ψ : [−η0, η0 ] × [−τ0, τ0 ] → R be con-
tinuous, such that ψ(0) = 0 and Γψ has the β-flat cone property. Then, letting
ε := min{η0,

√
τ0β}, for all η ∈ [−ε, ε ], there exists s ∈ [−β−1, β−1 ] with

(sη, η, 0) ∈ Γψ.

Proof. Consider the function ζ(η, τ) := τ − ηψ(η,τ)
2 (yielding the third coordinate

of the point (0, η, τ)(ψ(η, τ), 0, 0)). Notice that, since fC(β) ∩ Γψ = ∅, we have

{(η, τ) : ζ(η, τ) = 0} ⊂ R2 \ π(fC(β)) = {(η, τ) : η2 ≥ 2β|τ |}.
Moreover, by the choice of ε, for η ∈ [−ε, ε ], there holds η2 < 2βτ0 and therefore
ζ(η,±τ0) 6= 0. Since ζ is continuous, and ζ(0, τ0) = τ0 > 0 > −τ0 = ζ(0,−τ0), we
have for all η ∈ [−ε, ε ]

(3) ζ(η, τ0) > 0 > ζ(η,−τ0).

Using once again the continuity of ζ, it follows that for every η ∈ [−ε, ε] there is
τ ∈] − τ0, τ0 [ with ζ(η, τ) = 0 and thus a point (sη, η, 0) ∈ Γψ. By the β-flat cone
property of Γψ, either η = 0 (and we can take s = 0) or there holds |s| ≤ β−1. �

We want to apply Proposition 10 and Lemma 8, not only to S but also to
Mt(p

−1S) for p in a neighborhood of 0 and t in a compact interval. Lemma 12
allows us to do this.

Remark 11. Notice that, for t ∈ [−α/2, α/2 ], there holds fC(α/2) ⊂ MtfC(α). In
particular, if S has the α-flat cone property, then for such t, Mt(p

−1S) has the
α/2-flat cone property, for every t ∈ [−α/2, α/2 ] and p ∈ H.

Lemma 12. Let S ⊂ H be a topological surface with the α-flat cone property
and 0 ∈ S. Then there are η0, τ0 > 0 such that, defining V0 := π−1([−η0, η0 ] ×
[−τ0, τ0 ]), for all t ∈ [−α/2, α/2 ] and p ∈ S∩V0, there exists a continuous function
φt,p : [−η0, η0 ]× [−τ0, τ0 ]→ R such that

Γφt,p = Mt(p
−1S) ∩ V0.

Proof. By Remark 11 and Proposition 9, for all p ∈ S and t ∈ [−α/2, α/2 ],
Mt(p

−1S) is an intrinsic graph over π(Mt(p
−1S)).

Denote by Dr the disk of radius r in R2. Let Φ : D1 → S be a local chart with
Φ(0, 0) = (0, 0, 0). For p ∈ Φ(D1) and t ∈ [−α/2, α/2 ], define

ft,p : D1 → R2, ft,p(v) = π(Mt(p
−1Φ(v)).
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Notice that, since Mt(p
−1S) is an intrinsic graph, the ft,p are homeomorphisms

onto their images. Define

(4) Ω :=
⋂

p∈Φ(D̄1/2)

⋂
|t|≤α/2

ft,p(D1).

We claim that Ω is a neighborhood of (0, 0). We argue by contradiction. Sup-
pose that there exists a sequence gn → 0 in R2, along with pn in Φ(D̄1/2) and
tn ∈ [−α/2, α/2 ], with gn /∈ ftn,pn(D1). By compactness, we can suppose that
pn → p∞ ∈ Φ(D̄1/2) and that tn → t∞ ∈ [−α/2, α/2 ]. Since the ft,p are home-
omorphisms onto their images, there is r > 0 such that D2r ⊂ ft∞,p∞(D1). Since
ftn,pn → ft∞,p∞ uniformly, there holds ftn,pn(∂D1)∩Dr = ∅ for n large enough. In
particular, as 0 ∈ ftn,pn(D1), we have Dr ⊂ ftn,pn(Dr0), however, as gn → 0, for n
large enough there also holds gn ∈ Dr, a contradiction. This proves the claim.

Finally, if η0, τ0 > 0 are such that [−η0, η0 ] × [−τ0, τ0 ] ⊂ Ω, then we have all
the properties stated in the lemma. �

3. Proof of the Theorem

Let α > 0 and S ⊂ H be a topological surface with the α-flat cone property.
We will show that S has locally the (α/4)-full cone property, that is, that for every
o ∈ S there is an open neighborhood U ⊂ H of o such that, for all p ∈ S ∩ U

C(α/4) ∩ p−1(S ∩ U) = ∅.

It suffices to work for o = 0.
By Lemma 12, there are η0, τ0 > 0 such that, defining V0 := π−1([−η0, η0 ] ×

[−τ0, τ0 ]), for all t ∈ [−α/2, α/2 ] and p ∈ S∩V0, there exists a continuous function
φt,p : [−η0, η0 ]× [−τ0, τ0 ]→ R such that

Γφt,p
= Mt(p

−1S) ∩ V0.

Fix p ∈ S ∩ V0, t ∈ [−α/2, α/2 ] and set ε := min{η0,
√
τ0α/2}. Applying

Proposition 10 to φt,p, for each η ∈ [−ε, ε ] there exists s ∈ [−2/α, 2/α ] such that
(sη, η, 0) ∈ Γφt,p

. Therefore, as Γφt,p
⊂ Mt(p

−1S) and since Mt(p
−1S) has the

(α/2)-flat cone property by Remark 11, there holds

Mt(p
−1S) ∩

⋂
s∈[−2/α,2/α ]

(sη, η, 0)fC(α/2) = ∅, ∀η ∈ [−ε, ε ].

Taking the union over η ∈ [−ε, ε ] and applying Lemma 8 yields

(5) Mt(p
−1S) ∩ vC(α/4, 4ε/α) = ∅,

which holds for all p ∈ S ∩ V0 and t ∈ [−α/2, α/2 ]. Apply M−t and the left
translation by p to (5), then take a union over t ∈ [−α/2, α/2 ] and use (2) to get

S ∩ p C(α/4, 4ε/α) = ∅,

which holds for all p ∈ S ∩ V0. Remark 7 implies that S ∩ V0 has the (α/4)-
cone property in a neighborhood of 0. Thus, S has locally the (α/4)-full cone
property. �
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