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DYNAMICS AND STATISTICAL MECHANICS OF NON-LINEAR SYSTEMS 

Abstract 

The exact partition function of the sine-Gordon field is calculated. 

This provides a complete thermal description of the system; as an example 

we have calculated the thermal densities of the soliton excitations. 

In the overlayers of adsorbed atoms the coupling of the displacement 

field of the atoms to the strain imposed on it is shown to preserve the 

continuous nature of the commensurate-incommensurate transition, with a 

shift in the transition temperature. The coup] ing is shown to produce a 

very inhomogeneous strain. The inclusion of thermal fluctuations in the 

transition is shown to produce a square-root dependence of the observed 

misfit parameters on the temperature (pressure). 

It is also shown that a crystalline order is established in the 

commensurate phase, but there is no true long-range order in the in­

commensurate phase. 

We present a theoretical model which predicts an insulator-to··mctal 

transition in doped trans-polyacetylene. An inhomogeneous charge dis­

tribution in the polyacetylene fibrils with a localisation depth of 5 A 

gives the experimentally observed critical dopant concentration of 

y* � 1 %. 
We present a thorough non-] inear analysis of the one-dimensional 

magnetic materials CsNiF
3 

and (CH
3

)
4

NMnCJ
3 

(TMMC). The neutron scattering 

data on CsNiF
3 

are interpreted as the first observation of a breather 

soliton. We give an argument which indicates that CsNiF
3 

is a quantum 

sine-Gordon system with a substantial quantum correction to the kink mass. 

The results are extended to TMMC. 
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1. INTRODUCTION

A large part of physics has traditionally been restricted to 

considerations only of small amplitude phenomena around the ground 

state of the system in question. Although some solutions to non-linear 

differential equations were obtained
l , Z) more than a hundred years ago,

as a peculiar class of particular solutions they were supposed to be 

a rare phenomenon. And the first observation 3) in 1834 of a non-

1 inear water wave was not generally appreciated. 

In fact, there was a generally accepted hypothesis that the 

presence of non-linearities in a system always leads to the sharing 

of the energy among all the linearized modes of the system. The 

failure of the attempts
4

•5
) 

to verify this hypothesis numerically in 

one dimension can be regarded as the starting point for the new 

developments in the treatment of non-linearities. The word "soliton" 

was introduced by Zabusky and KruskalS) for the particle-like solutions 

to the Korteweg - de Vries equation they found numerically. This work 

led Gardner, Greene, Kruskal and Miura
6) to the construction of the 

inverse scattering method for solving exactly the Korteweg - de Vries 

equation; later on the same method has been extended to a whole class 

of non-linear differential equations?) . An important step was the 

discovery by Zakharov and Faddeev
8) that the spectral transform of 

the inverse scattering method is in fact a canonical transformation 

to variables of an action-angle type. 

The entrance of solitons into condensed matter physics began 

with the work of Krumhansl and Schrieffer9) . They introduced the 

idea that any (non-1 inear) system is to be described in terms of 

non-linear sol iton-1 ike excitations and ordinary small-amp] itude 
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oscillations. These together form the non-1 inear "normal modes" of 

the system. In this connection the "soliton" is to be understood 

to mean a localized, finite energy solution to the equation governing 

the excitations of the system, with the remarkable additional property 

that each sol iton in coll is ion with another excitation appears to 

pass through it with essentially no interaction. It should be noted 

that sol iton solutions are frequently singular points of linear 

perturbation theory and cannot be reached by any finite-order pertur­

bation expansion. This fact motivated the attempts to build the non-

] inear modes into a starting model and only then consider small further 

b 
. 10) pertur at1ons .

This kind of approach has now been applied in almost every branch 

. 11 12) 
of condensed matter physics 

' 
. In many cases, however, non-

linearities do not play any major role, and new striking phenomena 

are not to be expected there. Perhaps the most important results so 

far are the discovery of non-linear spin excitations (see section 3.3) 

d k. d f f
. . 

l 
. 11 ' 12) . . . 

b an a 1n o con 1gurat1ona picture given 1n certain cases y

the sol itonic approach, and related to domain wall phenomena of various 

kinds (see section 3. 1). 

One of the major efforts has been the calculation of �tatistical 

mechanics of non-linear systems in terms of all the modes, including 

. 11 h l 
. l l ' 12) Th.

l f f h espec1a y t e non- 1near ones . 1s a so arms a part o t e 

present thesis. All the exactly soluble non-1 inear models except 

the Toda lattice are continuum models, and the statistical mechanics 

needed is that of non-linear classical fields. This means that we 

have to apply the method of functional integration. One of the 

questions under discussion has been how we are to include the residual 

interaction of the excitations of completely integrable Hamiltonian 
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f d . f. . 11 , 12) \·' . d 1 3) h systems oun 1n con 1gurat1on space . ,e cons1 er t e case

of the sine-Gordon field and base our calculation on the full separ­

ability of the Hamiltonian under the spectral transform. The result 

is a description of the statistical mechanics of the system in terms 

of each mode separately, including the breather mode. This calculation 

is reviewed in chapter 2. 

The other part of the thesis deals first with non-linear ground 

states in surface layers of adsorbed atoms14, l S) and in charge-density

14) wave s ys terns , 

16) density waves 

and secondly with non-linear excitations in charge­

and in quasi-one-dimensional spin systems12 , l ?).

In reference 14 we consider the coup] ing between the order 

parameter and elastic degrees of freedom (strain) near the commensurate­

incommensurate transition. We find that the transition remains a 

second-order transition and that the strain fol lows the spatial modula­

tion of the order parameter. In reference 15 we consider the effect 

of thermal fluctuations on the transition and find a square-root 

behaviour of the phase gradient as a function of pressure. Furthermore, 

we show in the appendix that a crystalline order is established in 

the commensurate phase, but there is no true long-range order in the in­

commensurate phase although large regions of a regular "soliton lattice" 

nature can occur near the transition. "Soliton lattice" means here a 

succession of one type of domain wall. These results form the contents 

of section 3.1. 

In reference 16 we present a model of the insulator-to-metal 

transition in doped polyacetylene. The extra charge carriers are 

assumed to go into localized states at the centre of the band gap; 

these states accompany local soliton-like deformations in the dimerized 

ground state of the polyacetylene chains. We find that the transition 
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is driven by an overlapping of these localized states. We also stress 

the likelihood of the inhomogeneous charge distribution in the poly­

acetylene fibrils. The analysis is reviewed in section 3.2. 

In references 13 and 17 we consider non-linear spin excitations 

in the quasi-one-dimensional magnetic materials CsNiF
3 

and (CH
3
)4NMnC1

3

(TMMC). We first justify, in the classical and continuum limits, the 

transformation of the appropriate spin Hamiltonian to a sine-Gordon 

form. We then calculate the dynamic correlation function for non-1 inear 

excitations of each kind including the breather excitation, and compare 

the results with the existing neutron scattering data on CsNiF
3
. We 

find that CsNiF
3 

cannot be considered as a pure classical sine-Gordon 

system within the current interpretation of the experimental data. 

If there is a restriction on the largest breather sizes, breather con­

tributions explain almost all of the available data. We also evaluate 

the quantum corrections to the energies of the excitations, find them 

sizable and discuss their effects on the observable properties. We 

stress the need for a quanta] analysis of the system. We also show the 

results of a similar kind of analysis of the TMMC compound and comment 

some qua] itative features which should be found in the planned neutron­

scattering experiments. The review of this part of the work is pre­

sented in section 3.3. 

The thesis is based mainly on the new results presented in the 

appendix and the publications referred to above, and these are the 

fol lowing: 
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2. STATISTICAL MECHANICS OF THE SINE-GORDON FIELD

In dimensionless units the sine-Gordon field is described by 

the Hamil ton i an 

H ( 2. 1) 

where y0 is the coupling constant and m is the elementary mass.

By �x 
we mean� = l'.t

X dX 
The elementary excitations of this system are 

governed by the sine-Gordon equation 

2 
m s In� . (2.2) 

18) These are therefore the kinks, antikinks, breathers and oscillatory 

wave, that is phonon-] ike, modes of this equation. Each of them has 

the soliton property: a solitary wave in coll is ion with another appears 

to pass through it with essentially no interaction. A single kink 

solution describes a localized change of the field from zero to 2rr 

(2n ➔ 0 for an antikink), and in the rest frame a single breather 

solution behaves like a standing wave modulated in space by a hyperbolic­

secant envelope. 

In thermal equilibrium kinks must be excited across the energy gap 

M 
-1 8my0 , but breathers of low enough energy in the breather band

0 < Mb � 2M can always be excited.

As Feynman first showed 19l , the partition function Z can be 

expressed as a functional integral over the field. In the classical 

limit we get 
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z (2 .3) 

where N is a normalising factor, V� is a formal notation for functional 

integration and H[�.�xj is given by eq. (2.1) without the time derivative.

This integral can be calculated by the transfer integral techniqueZO) 

or by a perturbation expansion
21) . The weakness of the former method 

is the fact that it does not separate the contributions of the various 

modes. When calculating observable quantities 1 ike correlation 

functions we i,1ou 1 d 1 i ke to know the the rma 1 density of each mode 

13' 
separately ! The latter· method is quite cumbersome and i ls use is

limited to the simplest kinds of excitation and to lovJ temperature 

expansions. 

For the evaluation of the partition function we suggest the 

Following procedure, which is efficient within the whole class of 

completely integrable Hamiltonian systems. We start with the 

Hamiltonian form22) for the propagator G, 

�=y t 

G( y,y0:t) f J V p V � exp { i· f [p� - H[p,fl] d t I (2 .4) 

<p=y o 0

which we have written in the single-particle case for notational 

simplicity; p is the momentum conjugate to�- The integral in the 

exponent in (2.1-1) is recognised as the classical action. It is easy 

to show by an integration over p that this propagator takes the 

familiar Feynman form when the Hamiltonian is quadratic in the momentum 

variable, H = p
2

/ 2m + V(�) . The partition function of the system 

described by H can be calculated in the usual way: 
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f dy G(y,y) 

�=y Sh 

ff V pV� exp{-t f [H[p,�] - ip�J d,}. 

�
=

yo o 

(2 .5) 

We are interested in the classical partition function, i.e. the limit 

of vanishing 1i. In this limit the "time" derivative� in eq. ( 2.5) 

vanishes because in the partition function we integrate over closed 

paths, �(G'f1) = �(O). Therefore, the classical partition function is 

z (2 .6) 

which is intuitively an evident result. In the case of the sine-Gordon 

field the Hamiltonian H[p,,p] is given by eq. (2.1) when �t is replaced 

by p. 

The form (2.6) for the partition function is attractive because it 

deals with canonical invariants. A canonical transformation leaves the 

phase space invariant, and if it provides a diagonal isation of the 

Hamiltonian the integrals in eq. (2.6) are greatly simplified. The 

spectral transform of the inverse scattering method provides?, lB) a 

canonical transformation which diagonalises the sine-Gordon Hamiltonian 

(2.1), and its diagonal form is 

H 
K 2 21 I< 2 21 
I (M + p.) 2 + I (M + p :) 2 

i=1 I 
i,,'.1 I 

+ f (m2 
+ p2)l p(p)dp '

0

K 

b 2 2 
+ I ( 4M sin 0 .

j=1 J
2 1 

+ p.) 2 + 

J 

(2.7) 
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-1 -
where Mis the kink mass M = 8y

0 
m, and K, K, and Kb are the numbers

of kinks, antikinks and breathers, respectively; the continuous part 

of the spectrum describes the small oscillations of the field. Only 

momenta appear in the Hamiltonian (2.7) which is thus in the action­

angle form. Notice that the momentum density p(p) of the small 

-1 
oscillations appears as a canonical momentum, and the momentum 4y0 0

j

is related to the internal oscillation of the breather. The phase 

spaces are IR x IR for the kinks, antikinks and the centre-of-mass 

motions of the breathers, [0,2rr]x[0,00) for the small oscillations, 

and \_0,8rr]x[0,2rry�
1 ] for the internal oscillations of the breathers.

Because of the canonically invariant nature of eq. (2.6) we can 

calculate the partition function of the sine-Gordon field starting 

from the Hamiltonian (2.7), which provides a natural definition for 

a canonical ensemble that can then be extended to a grand canonical 

one. A corresponding definition is not possible in the case of the 

original Hamiltonian (2.1), and this fac.t actually plagues all the 

transfer integral calculations20) based on it. Another thing worth 

noting here is the definition of an elementary excitation in the t1vo 

cases. For example, single kink solutions are elementary excitations 

in the configuration space of the Hamiltonian (2.1). They do not 

belong to the diagonal states of the system and feel a residual inter-

. 7 18 24)action which appears' ' as phase shifts in mutual collisions. 

However, these phase shifts are built into the excitations of the 

diagonal Hamiltonian (2.7) , and in this sense its excitations are 

different from the single-soliton states of eq. (2.1). The thermal 

properties of a system should not, of course, depend on the definition 

of the elementary excitations. 

The partition function of a canonical ensemble is thus 



z ff 
K 

dp.dq. 
VpVQ n-1_1

· 

i=l 

- 11 -

K 
dp.dq. 

fJ-1_1 
1 2rr 
i=l 

K
b dp.dq.d8.d<P. 

-SH
n 

j j _j___1_ (2 .8) 
2 

e 

j=l 
71 y 0 

in which H is given by eq. (2.7), and variables occur in canonically 

conjugated pairs. This factorizes into 

z (2.9) 

where we have separate contributions from "phonons", kinks, antikinks 

and breathers. Each of these can be calculated exactly in the sense 

of functional integration. 

We first calculate the soliton parts of the partition function. 

Since the Hamiltonian (2.7) depends only on the momenta, we can 

integrate immediately over the coordinates q
i

' each of which gives a 

factor L, the length of the system, and Lis infinite. We assume here 

that it is sufficient to carry the factors Lin a formal way and scale 

them out at the end to find thermodynamic quantities as densities. 

We finally calculate the partition function of the grand canonical 

ensemble, where 

(2. 10) 

and find for the kinks (antikinks) and breathers 

(2. 1 la) 
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(2 . 11 b) 

where I and K denote modified Bessel functions23) , and the expression 
V V 

for Zk is identical with eq. (2.11a). 

Every thermal quantity associated with soliton excitations can now 

be calculated from the partition function (2.9) by using equations (2 .11). 

In many applications the quantity of special interest is the density of 

each thermally excited species. The equilibrium densities n(T) per 

unit length are given by 

n(T) 

Thus we easily find 

-1 M /2TT -MS TT MK1(MS)s:;.;;_, 2TT MS
e , 

-1 -2--, 4My (MS)i3➔ 00 0 ' 

The "phonon" contribution to the partition function is 

jj VpVQ exp• - 13 j (m2 
+ p2)p(p)pdp ! 

0 

For this we fin d 

z 
ph 

lim (L/TTi3) n(n\)-l [mL/sinh(mL)J 1 1 2 , 
n ->-co 

(2. 12) 

(2. 13a) 

( 2 .13b) 

(2. 14) 

(2. 15) 
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where Lis again the length of the system. We have obtained exactly 

the same result for a field of harmonic oscillators described by the 

Hamil ton i an 

H ( 2 0 16) 

To be consistent with the results based on the spectral transform, 

which in the case of linear systems is reduced to an ordinary Fourier 

transform, we have used the Fourier transformed form of eq. ( 2.16): 

H J r 2 2 ~ 2 ~ 2 

2 L (k + m ) � + p ] dk. (2. 17) 

When the system is made discrete and finite the number of available 

modes is of course limited. We can take this fact into account in 

eq. ( 2 .15), but in the limit n ➔ 00 there is no effect from this 

1 i mi tat ion. 

When the system is quantised the only effect on the kinks is a 

l. . 24) mass renorma 1sat1on . The kink density ( 2.11a) should thus be 

satisfactory even when quantum effects are important. This seems indeed 

to be the case
25) . Breathers and "phonons" ar·e, however, great] y modi -

fied when the system is quantised. The phase space available for the 

internal oscillation mode of the breather is compact, and this produces 

a discrete breather band24) . Furthermore, the role of quantised phonons 

is taken over by the lowest-lying breather in the breather band24) , 

which has the same mass m as the phonons. Considerable changes in the 

thermal behaviour of the system are thus expected when the temperature 

-I approaches the value mk8 .

Perhaps the most important conclusion from the classical densities 

(2 .13) is that unless there is strong damping present lO ) , the breather 



density is actually much higher than the kink density at low enough 

temperatures. This is a feature which should be appreciated in every 

case where sine-Gordon like elementary excitations can be expected 

to contribute to the observable properties. 

The method applied here to the sine-Gordon field can easily be 

extended to the whole class of non-linear fields which can be diagonal­

ised via the spectral transform. Essentially the only defect of the 

method is that a functional integral can only be defined as a limit 

of a discrete (multi-dimensional) integral; and so far it has not 

been proved that the diagonal form (2.7) of the sine-Gordon Hamiltonian 

is valid also in the discretised version of the system. The Toda 

lattice is the only discrete system which is known to have a spectral 

transform. A continuum limit of the Toda lattice is the Korteweg -

de Vries field which belongs to the class of exactly soluble models, 

too. This pair of systems can thus be used for testing the effects 

of discretisation, and this analysis we hope to provide shortly. 
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3. APPEARANCE OF NON-LINEAR FEATURES IN PHYSICAL SYSTEMS

As was pointed out already in the introduction, there is a wealth 

of applications of the non-linear methods to physical systems
11) . The 

range of applications is, however, limited to systems which can be 

considered as one- or two-dimensional, and even the truly two-dimesional 

systems have offered severe difficulties. The reason for this lies in 

the fact that the systematic method for treating genuinely non-1 inear 

solutions has so far been limited to one space dimension only]) . There 

are computer solutions and some special solutions to non-linear equations 

in more than one space dimension
11) , and these show that similar kinds 

of mode appear also in higher dimensions. In the absence of systematic 

method it is, nevertheless, quite difficult to find the line of general­

isation. Furthermore, it is apparent that effects of non-linear·ities 

are most striking in one-dimensional systems. 

A further limitation is the field nature of the soluble models. 

WP have to work in the continuum approximation, thus neglecting the 

short-wave-length phenomena. For other reasons too, as indicated in 

chapter 2, it would be desirable to find spectral transforms for the 

discretised versions of the models. The Hamiltonians used for describ-

ing various physical systems must be considered as being 

enological nature, but nevertheless it is possible
12

•
1 7) 

of a phenom-

to compare 

the theoretical results for spin excitations with the experimental 

observations in great detail and essentially without any adjustable 

parameters. 
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3.1. The commensurate-incommensurate transition 

Many physical systems undergo transformations to periodic ordered 

phases which are incommensurate with the underlying lattices, i.e. the 

wave vectors describing the modulation cannot be formed by simple 

rational fractions of the reciprocal lattice vectors. The incommesurate 

structure may be a condensed charge-density wave (CDW), a static dis-

. 
· 1 · 

25)
Th 

. 
d . .

1 tort1on or even a separate atomic att1ce . e per10 1c potent1a 

of the underlying lattice causes complicated non-1 inear distortions of 

the condensed wave and may eventually drive a separate phase transition 

where the ordered phase becomes commensurate with the lattice. 

Physically, the "lock in" at the commensurate wave vector is a con­

sequence of the competition between local "Umklapp" terms in the 

Hamiltonian, which favour the commensurate phase, and the remaining 

Lerm� which must favou1· a wave vector slightly different from the 

commensurate one. 

McMillan
26) has devised a Landau-Ginzburg type of phenomenological 

theory to describe the observed commensurate-incommensurate (C-1) tran­

sition in charge-density wave systems. He showed that the change in 

the electron density of the disordered phase can be taken as the real 

part of the order parameter. He further assumed that the absolute 

value of the order parameter is almost constant near the transition 

and allowed changes only in the phase of the order parameter. Physi­

cally this means that a change in the amplitude of the charge-density 

modulation costs much more energy than a change in its wave vector. 

As a result of a numerical minimisation of the free energy the 

theory predicts that the incommensurate phase near the phase transition 
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consists of regions which are almost commensurate with the underlying 

lattice, separated by relatively narrow domain walls or "discommensur­

ations" where the phase of the commensurate ordering changes rapidly. 

The theory was subsequently analysed by Bak and Emery27l , who 

found that the discommensurations in fact appear as the solutions of 

the sine-Gordon equation, i.e. as solitons. Furthermore, the density 

of solitons may now serve as the order parameter of the transition, 

and this goes smoothly to zero in the transition which is thus of second 

order. Later on Bruce et al . 28) considered the coupling of the phase

order parameter to a uniform strain in the case of one-dimensional 

modulation. They found that such a coupling will necessarily drive the 

transition first order. 

We consider 14) the coupling when the strain is allowed to change 

in space and find that the strain is actually of a very inhomogeneous 

nature and the transition remains of second order. Our starting point 

is McMillan's free-energy density 

F(x) (3. 1) 

where q0 is the incommensurate wave vector, V the strength of the

"commensurable potential", p the degree of commensurability, and <j, = <j,(x) 

is the phase of the order parameter. The strain n is coupled l inearly28) 

to the phase giving rise to additional terms in the free-energy density 

F (x)
n 

1 2. d 2 wn<J,x + 2 en + 2 nx ( 3 .2.) 

where n = n(x) and w and c are parameters depending on the elastic 

constants of the system. 
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Minimisation of the resulting total free energy 

L/2 

F 1 r 
L J F(x)dx (3.3a) 

-L/2

where 

vJq,\ V [ 1 - cos(pq,)] , (3.3b) 

leads to coupled non-1 inear differential equations which cannot be 

solved exactly. We therefore approximate the potential V[q,] by a 

periodic parabolic potential 

1 2 2 
2 

vp tj, (x) 1 rtj, 2 (x) '2 

which al lows an exact solution. This approximation does not change the 

physical picture because it provides the same answer to the non-coupled 

problem as the original sine-Gordon potential. Furthermore, Lhe actual 

form of the periodic potential imposed on the system by the underlying 

lattice is not known; the cosine potential of eq. (3.3b) can be con­

sidered as the first term in the Fourier series of that potential. 

With this potential the Euler equations determining the extrema 

of the free energy functional are 

q,"(x) - rq,(x) + wn' (x) = 0 

dn"(x) - cn(x) - wq,' (x) = D. (3 .5) 
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\-/hen the condition w < lfc - ✓ref[ is satisfied, these equations have 

the solutions 

where 

<jl(x) A sinh (Kx), -L/2 < x < L/2 , 

<jl(x + L) <p (x) + 2TT/p 

n(x) B cosh (Kx), -L/2 < x < L/2 , 

n(x + L) n (x) , 

2 K 

A 

B 

1 2 2 2 
1
1 /2 

2d {c + rd - w - [ (c + rd ·- w ) - 4rdc_ , 

rr/p si nh (KL/2) , 

(3 .6) 

(3. 7) 

The solutions (3.6) describe a soliton lattice formed by the phase <jl(x) 

and an accompanying strain field n(x) which also forms a soliton-like 

pattern peaked at x = ± L/2, ±3L/2, ... where the gradient of <jl(x) is 

largest. The strain is thus of very inhomogeneous nature and follows 

the changes in the phase <jl(x). The length L gives the spacing of the 

soliton lattice and K-l is the width of each soliton. 

When the condition for w is not satisfied, i.e. the coupling to 

the strain is strong, there is no solution of the form (3.6), and 

this we interpret to mean that the phase soliton picture breaks down. 

When the solutions (3.6) are substituted back in eq. (3.3) we find 

the free energy as a function of the average soliton density q = 2Tr/pl: 
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F (3 .8) 

2 where u = r + d (KB/A) . Sol i ton density can be taken as the order 

parameter and its value is found by minimising the free energy (3.8). 

As a result we find 

_, :j, qo < Q

q 

where Q = nu/2pK and b = 2nK/p. There follows a transition from a 

commensurate (� = 0) to an incommesurate (� i 0) phase. The transition 

pressure (temperature) is given by q0 = Q where q0 is the experimentally

varied quantity. In the transition q goes smoothly to zero and the 

transition, therefore, remains of second order. The only effect of 

the coupling is to change the transition pressure (temperature) and the 

sol i ton width K-l. 

q describes the average wave vector of the incommesurate phase, 

which is observed, for example, in a neutron scattering experiment. 

Since thermal fluctuations will modify the behaviour, the prediction 

given by eq. (3.9) is not expected to be exact. The main result, 

however, i.e. the behaviour of the system is not changed due to not 

too strong a coupling to the strain, is not affected by the inclusion 

of fluctuations. One reservation we have to make; a transverse strain 

component is not allowed to change in the modulation direction and 

coupling to this will cause a first order transition as predicted by 

28) Bruce and Cowley . If we include transverse strain components,

however, we should make a proper two-dimensional analysis, and this is 
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still to be done. 

As a further result we can calculate the macroscopic measurable 

strain n: 

n 
1 
L 

L/2 

f n(x)dx

-L/2 

(B/KA)q. ( 3. 1 D) 

The macroscopic strain is thus proportional to the soliton density, 

and in principle this result makes it possible to measure soliton 

density by a measuring stick. 

In ref. 15 the non-coupled problem is extended to the case where 

the other dimension of the overlaye1· is also included and thermal 

fluctuations around the ground state are allowed. The free energy is 

given now by 

(3. 11 a) 

describing one-dimensionally modulated displacements of the adatoms; 

µ is an elastic constant. 

It is well known
29) that the thermodynamic free energy 

F (3.11b) 

where Fc[fl is given by eq. (3.11) with q0 � D, is equal to the ground 

state energy of the quantum sine-Gordon Hamiltonian, provided that the 

coupling constant of the latter problem is chosen to be an appropriate 

function of the temperature appearing in eq. (3.12). Furthermore, the 

correlation functions of the two problems are also equivalent with the 
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identification t +->- iy. The time evolution in the quantum problem 

thus produces the other dimension in the classical problem, and the one­

dimensional quantum fluctuations correspond to the two-dimensional 

phase fluctuations. 

Now we have the extra factor q
0

, but it is easily seen to 

multiply a quantity which gives the soliton density in the system, 

and thus plays the role of chemical potential. This property is 

carried over to the quantum version of the problem which is described 

by the Hamiltonian 

H (3.12) 

in which� and TI are canonical variables, and g = (k8
T/µ)

112
.

30) 
The quantum sine-Gordon problem can again be mapped onto the 

massivP. luttin9P.r model which is a one-dimensional fermion problem. 

The transformation formulas are given by eq. (A.9) in the appendix. 

The fermion problem can be solved exactly only with a single value 

2 4 f h l . 3o) d. f. d g TT o t e coup 1ng constant , correspon 1ng to a 1xe tempera-

ture in the original problem. At that special temperature the fermions 

are not interacting and the eigenvalue spectrum is easily found; it 

consists of two bands separated by a gap V (see appendix). In the 

ground state the "valence" band is completely filled and the "conduction" 

band is empty. It is easy to show that the chemical potential of the 

quantum sine-Gordon Hamiltonian (3.12) is mapped onto the chemical 

potential of the fermion problem within a constant multiplying factor. 
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This formulation of the problem al lows a pictorial description of 

the C-1 transition. The average soliton density can again be taken as 

the order parameter, i.e. the average fermion density above the filled 

valence band. The quantity q0 is the one which is varied in the

experiments by changing the pressure of the gas providing the adatoms 

of the overlayer, and this corresponds to changing the chemical 

potential in the fermion problem. When the pressure is increased 

nothing happens, i.e. the system remains in the commensurate phase, 

until the chemical potential reaches the edge of the conduction band. 

At this value fermions begin to appear in the conduction band and the 

system goes into the commensurate phase. Furthermore, the density of 

states has a square-root singularity at the band edge in the one­

dimensional fermion problem, and this integrates to a square-root 

behaviour of the fermion density. This is the experimentally observed 

quantity, so we expect the kind of behaviour 

= 0, < qo(observed) (3.1 3) q 
, 

(
-2 

- V2):l_, V,. "' qo qo 
> 

' 

1 /2where q0 = (n/2) q0. This kind of behaviour is actually observed,

and the observed power l aw31) is not too far from O ,5. 

Above the special temperature\ = 4npk;1 at which the problem 

was solved, the fermion problem cannot be solved exactly, but we can 

argue that the behaviour is qualitatively similar because the excita­

tion spectrum of the sine-Gordon version of the problem is known to 

be the same. The value of the gap is naturally changed, and it has 

been shown30) to be proportional to v11(2 -g ;4n). This argument holds

until we 2 reach the temperature TA= 2Tc (g = 8n), which is a singular

point of 
?Q n) 

the sine-Gordon theoryJ ,J� . Above this temperature only the
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commensurate phase is possible. 

We have also shown that if we consider the two-dimensionally 

modulated overlayer in the case of a rectangular lattice, the two 

displacement fields decouple in the approximation used, i.e. we take 

into account only the first component from the Fourier series of the 

periodic potential imposed on the overlayer by the underlying lattice 

(cosine potential). The same analysis can now be made of the two 

fields separately. 

The method described above can be used for calculating other 

quantities of interest, too. We have calculated in the appendix the 

phase-phase correlation function 

G (x,y) 
2 

< \cp (x, y) - cp ( 0, 0)] > • ( 3. 14) 

In the commensurate phase (q
o :: V) this is shown to approach a constant

at large distances, which means33l that a crystal line order is 

established. In the i ncommens u rate phase near the transition, the 

correlation function behaves in the direction of the modulation as 

G(x,U) - G (x,U) ~C 

, -2 2 
' q X ' 

l n (2qx),

--1
X << q 

--1
X >> q 

(3.15) 

where q is given by eq. (3.13) and G is the corresponding expression 
C 

in the commensurate phase. This result tells us that, first of all, at 

-1
very small distances comparable to V , the incommesurate correlation 

cannot be distinguished from the commensurate one. At distances x 

� q there is a distinguishable ingredient which can be recognised as 

representing a regular soliton lattice, which is the ground state given 

by mean field theories. Near the C-1 transition, q << 1, the range of 
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regularity is quite large. The logarithmic behaviour at large 

enough distances shows33) that there is no true long-range order, 

however. 

3.2. Insulator-to-metal transition in doped polyacetylene 

Polyacetylene is a simple linear conjugated polymer with a simple 

chain structure. The thermodynamically stable trans configuration is 

a dimerized structure consisting of alternating single and double bonds. 

Because of the possibility of two degenerate structures, which trans­

form to each other by interchanging the single and double bonds, one 

expects the appearance of domain wall kinds of excitation separating 

these types of structures. Excitations of this kind were suggested to 

explain the results of spin resonance experiments34) in the undoped 

polymer. 

Recent experiments35 ) have demonstrated that doping with various

acceptor and donor species is possible in a wide range while control] ing 

the electrical properties of the polyacetylene samples at the same time. 

Measurements in lightly doped samples36) led to the suggestion that

doping may proceed through formation of charged domain walls. Sub­

sequent phenomenological calculations37• 38) showed indeed that it is

energetically more favourable for an extra electron or hole to go into 

the localized state at the centre of the band gap produced by the 

domain-wall distortion than into the available TI-electron band states. 

The experiments on polyacetylene films35 ) also revealed that when

these films are doped, an Insulator-to-metal transition occurs at 
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dopant concentrations y,::: 1 %. We have extended16) the idea of

charged-domain-wall formation under doping to take into account an 

arbitrary number of carriers. We base our model on two assumptions: 

(1) Slowly varying spatial and temporal deformations in the

amplitude u(x) of the bond alternation are governed by the classical 

Lagrangian density 

L(x) = const. + C [± 2 1 2 2 1 u2 2
]u - - c u - - V (1 --) t 2 Q X 8 Q 2 ' 

uo
(3. 16) 

where C and v0 are known constants depending on the parameters of the

system, c0 is the characteristic velocity, ahd u0 is the uniform bond

alternation amplitude of regular polyacetylene. The form of the 

potential is suggested by the presence of the two degenerate structures 

in the polyacetylene chains. 

(2) In order to accommodate carriers the polyacetylene chains

develop a periodic distortion in u. 

Minimization of the Lagrangian leads to the equation 

0 (3 .17) 

for the amplitude u(x) . The required periodic solution to this equation 

i S 

u (x)

where 

u(k) 

9, (k) 

uol2k2
/(1 

+ 
k

2)] 1 /2 

9,0[2(1 + k2)] 1 /2 
'

(3. 18) 

(3.19) 
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sn(z;k) i S the Jacobian e 11 i pt i C sine function 23) , 
XO 

i S an arbi trar·y 

in it i a 1 phase, and io 
= co/wo where w0 is the optical phonon frequency

of the sys tern. The modulus k i S fixed by the magnitude of the extra 

charge carrier concentration y: 

(3. 20) 

where K(k) denotes the complete elliptic integral of the first kind23) , 

and a is the lattice constant. 

In the limit of a vanishing carrier (dopant) concentration y ➔ 0, 

the single domain wall (soliton) description of refs. 37 and 38 is 

obtained. As y approaches the critical value y* = a//2n,Q,0, then k ➔ 0,

and consequently the amplitude of the bond alternation vanishes. This 

means that the gap in the electron spectrum vanishes and an insulator­

to-metal transition results. The transition may be viewed physically 

as resulting from an overlapping of localized electron states described 

by the solution as a "soliton lattice". 

It has been estimated37, 3B) that 9,0
/a = 10 for polyacetylene,

and this leads to the estimate y* = 9 % for the critical carrier con­

centration. The experimentally studied films of polyacetylene consist 

of loosely packed fibrils36) of diameter � 200 A, and rather large 

dopant species adhere mainly to the surfaces of the fibrils39 l. This

leads to the localization of the charge in the surface layers of the 

fibrils. If we take this effect into account, our estimate for y* is 

in agreement with the experimentally observed value y* � 1 % with a 

localization depth of = 5 A. 
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3.3. Non-linear spin excitations in the one-dimensional magnetic systems 

Some of the quasi-one-dimensional magnetic materials are considered 

as being among the best candidates for exhibiting sol iton-l ike excita-· 

tions. Neutron scattering experiments40) on CsNiF3 have revealed a

quasi-elastic central peak which cannot be explained with linear spin 

waves. Mikeska41) showed that the excitations are governed by the sine­

Gordon equation (2.2) to a good approximation. Following him a number 

40-44) of attempts have been made to explain the observations in terms of

the kink solution to that equation. This is, however, only one of the 

non-linear "normal modes" which are present in a sine-Gordon system. 

In refs. 12 and 17 we report the results of the first throrough analysis 

of CsNiF3 and a partial analysis of TMMC, including especially the

breather excitations. 

Studies45) of CsNiF3 show that it consists of ferromagnetic chains

of Ni
++ 

ions along the t-axis of a hexagonal structure with weak anti­

ferromagnetic coupling between the chains. Above the three-dimensional 

ordering temperature Tc� 2.7 K the system can be considered one-

J i 111e 11 s i cma 1 , wh i l s t for T < 11 I( the s pi n s (which have S = 1 ) a re nca r l y 

confined to the xy plane by a single-ion anisotropy. Thus for T � 3 K, 

and in a transverse magnetic field B, the Hamiltonian is believed to be 

H 

-1
with classical values Jk8 

(3. 21) 

-123.6 K, Ak
8 

o, 5 Kand g = 2.4.

In the long-wave-length and classical limits, when T '.S 11 K, the 

Hamiltonian (3.21) can.be linearised in¥- 8(z): 8(na) measures 
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th + . the deviation of the n spin from the c-ax1s; the lattice spacing is a.

The spin commutation relations imposed on (3.21) mean in the classical 

limit that with h = 1 and gµ8B << 2A, the spin angles satisfy

,1, 2AS (� - 8) 'I' t 2 

2 -1 [ 2 ·1 c (2AS) -(j, + m sin(j, ,zz (3 . 22a) 

where c
2 

= a2
s

2
(2AJ), m2 

= gµ8B/JSa2 , and� is the azimuthal spin angle.

This is essentially the sine-Gordon system with momentum IT conjugate 

to 0, IT= a-l s(f - 0). In units chosen so that h = c =a= 1 we then

find 

(3. 22b) 

in which yO = (2A/JS
2

) 
112 � 0.65 is a dimensionless coup] ing constant,

-1 ll= (cyO
) (j,t' {(j,t,(j,} = cyOo(z - z'), and the e(]uation of motion is

precisely the sine-Gordon equation with this bracket. The mass m is the 

mass of the linear spin waves. The energy scale is set to (2AJS
2

) 112 

� 15.4 K. The spin excitations are thus given by the sine-Gordon

equation (2 . 2) which has the kink(+) and antikink(-) solution

(j, ( z' t) -1 
c ·  J4tan exp ± my(z - ut - z

O
) 

and the breather solution 

q, (z, t) 
_1.. sin[wby(t - uz - t

O
)]

4tan · tane 

(3. 23) 
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Y:c (1 - 2)-112 w w cosG is the frequency of the internalu ' b = 0 
2 -1 

oscillation of the breather, and w0 is the frequency m (= me ·h ) .

In the neutron scattering experiments the measured quantity is 

essentially the in-plane dynamical correlation function 

S (q ,w) f d t d z e 1 ( q z-w t) < qi ( z , t ) qi ( O , O) >

➔ ➔ 

(3.25) 

Parallel to B the component qi= 1 - coscjJ; transverse to B, qi= sincjJ. 

In a dilute gas approximation, which takes for qi the asymptotic form 

of the multi sol iton solutions of the sine-Gordon equation, we find for 

the kinks and antikinks that 

S 
II • J (q ,ui) k 

J
oo 2 2 1/2 oo 

N ' d p e -B ( p + fj ) f d t · 

(3.26) 

in which N' is a number and Gt'\q) is the Fourier transformation of 

qi(z - ut) for a single kink (antikink) solution, 

G II (q) k 
2 -1 4nq[m ysinh(nq/2my)l , (3.27) 

and in the transverse component sinh is replaced by cosh. If parallel 

and transverse components are given equal weight we thus find 

-1 2 
N(49mq) r exp(-MSf') (nq/2mr) ·

-2 -2 · [sinh (nq/2mr) + cosh (nq/2mr)] , (3.28) 

where r - (1 - w2;q2)~l/2 and N is a number (different from N').
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The "non-relativistic" approximation to (3.28) coincides with the 

result derived by Mikeska41) when y0 1.

For B = 5 kG, the kink energy M � 35 Kand there is an energy gap, 

but Mb = 2Msin8 for the breather and these can always be excited for

T: Tc. The internal oscillation of the breathers give more structure

to S(q,w) : there is a central peak contribution overlapping the form 

(3.19) due to the centre-of-mass motion and additional side bands 

associated with each value of wb. II Only the parallel component Sb(q,w) 

contains a central peak contribution. In addition to the kink and 

breather contributions, there are spin wave side bands which at q = 0 

lie at ± w0.

In a dilute gas approximation we find for the breathers 

TI/2 

sb(q,w) Nb f de

0 

·
e i (qu - wh f dz 

J dp 

eiqz

e 
2 2 . 2 1/2-s(p + 4M sin 8) 

f dz'.

·«rb(z + z', t' - t )<!> (z', t - t0)> 0 b t0

f d
,·

(3 .29) 

where Nb is a number,,= t - t', <!>b(x - ut,t) is the parallel or

transverse component for the single breather solution (3.24) , and 

means an average over the initial phase of the internal oscillation. 

The parallel component is given by 

{ 

cosh ( yms i nBx) 

1) 
. 

2 2r-1 ~I 2 1 
tan 8 sin 1y wb(t - t0) + cosh (ymsinex)

2 

(3.30) 
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If the quantity inside the curly 

on t0, the only factor entering 

Since 

bracket in eq. (3.30) did not depend 

2 -1 
the average would be sin [Y wb(t - t0)J. 

-1 1 1 (e2iy %, 
) = 4 

+ 
76 

+ c.c. , (3.31 ) 

the result for the central peak contribution given by the term¾ in 

eq. (3.3 1) is equivalent to replacing sin
2

(-) by its average of}. 

This actually applies to the whole formula (3.30) because by expanding 

the denominator in the curly bracket in powers of cos [2y-1wb ( t - t0)] 

one will generate only further side bands labelled by± 4wb
' ± 6wb

, ... In 

the transverse component only sidebands labelled by± wb,±3wb, ... appear. 

where 

For the central peak contribution of the breathers we thus find 

\(q,w) 

F(q,w) 

TT/2 

Nfq -1 f 

0 

4 -1 detan e(sine) exp(-2 SMfsin8) · 

- 1 2 -3/2 
2 rr(tan8) (2 + tan e) sin(TTqb/mrsine) + 

+ TTq[mr sin8(2 + tan
2

e)]-1 cos(TTqb/mrsine) , 

(3.32) 

( 3 -33) 

and b = ln [tane + (2 + tan
2

e) 112J - l ln 2. The constant multiplicative 
2 

factor N, which is the same as in eq. (3. 2 8), is the only free parameter 

setting the absolute scale, which is not known anyway. The last inte­

gration left in eq. (3.32) we have done numerically. The total contri­

bution to the central peak S(q,w) = \(q,w) + s\(q,w) is found to be 
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totally dominated by breathers when q 2 0.05 TI, and the kink and 

breather contributions are fo�nd to be roughly of equal weight when 

0.05 TI 5 q 5 0.1 TI. The peak flattens quickly as q is increased. 

Th. . . . I h . l · l 46 ) 1s 1s 1n agreement w1t1 t e recent computer s1mu at1on resu ts . 

Before comparing the results with the available neutron scattering 

data we recall that, in a first comparison based on kinks alone4o, 47) , 

a good qua] itative fit was found in all respects40) except that the 

integrated intensity l(q;T) = f S(q,w) dw dropped much too rapidly47) 

as a function of q (at fixed temperature and magnetic field) . This is 

-1 -1 -1 control led by the parameter m (= m c h) , the measure of the width

of the kink, and the experimental curve was fitted47) by using twice 

the theoretical value in the field B = 5 kG. However, the theoretical 

48) value of m is in good agreement with the spin wave data , and the 

conclusion is that the widths of the kinks are much smaller than is 

predicted by theory. 

We have taken the theoretical value for m and fitted the results 

from a numerical integration of eq. (3.32) added to eq. (3.28) to all 

the available data4o, 47)_ We find the agreement actually worse than 

that obtained from kinks alone. An example is curve (a) of fig. 1 

which shows the temperature dependence of l(q;T) for q = 0.1 TI and 

B = 5 kG; the number N appearing in the formulas is scaled to the 

topmost experimental point. On the other hand if we retain the same 

theoretical value for m but fix sine= (1 2 -2
)

112 · the sech- wb wb In 

envelope of the breather (3.24) close to unity, we obtain curve (c) 

of fig. 1, which is in excellent agreement with the observations. 
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Fig. 1. Plots of I (q;T) /k
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vs. T for q = 0.1 TI and B = 5 kG. 

The circles are observed data due to Kjems and Steiner
40) , 

curve (a) is the exact numerical result, curve (b) gives the 

kinks alone plot, curve (c) results from the approximation on 

widths of breathers, all scaled to the topmost experimental 

point, and curve (d) is the best fit given by eq. (3.34) . 
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The approximation has the consequence of excluding the very large 

breathers; an equivalent natural analytical approximation enables us to 

derive a closed formula for l(q;T) which at q = 0.1 TI takes the form 

I (0. 1 TI;T) 

where nk = nk and nb are the thermal densities of the kink, antikink

and breather excitations given by eq. (2.11) , and C is a constant. 

The curve (3.34) retraces curve (c) of fig. when C is fitted to the 

topmost point, and the best fit gives curve (d) which is in exceptional 

agreement with the observations. 

We have not made a detailed perturbation analysis of CsNiF3 to find 

a physical mechanism for reduction of breather widths, but there is one 

we can think of producing this kind of effect. If we add an extra 

periodic potential-;i.[1 - cos(<j,/2) ] to the Hamiltonian (3.22), the oscil­

latory solution49) of the resulting double sine-Gordon equation, viewed

as a perturbed breather of the sine-Gordon equation, persists over a 

range of initial data until a maximum size is reached. Beyond this 

maximum initial size an unbinding into kink-antikink pairs happens. 

It is evident from the phase planes of the corresponding field equations 

that this property is not restricted to the case of double sine-Gordon, 

but will equally well appear for any potential cos(<j,/n) , n = 2,3, .... 

Interaction between adjacent chains in the hexagonal structure of CsNiF3

may thus produce a reduction of maximum breather widths. 

40) The other observational data reported for che central peak are 

all well fitted by the approximated correlation function. But although 

the approximation greatly improves the fit for l(q;T) against q, the 

predicted fall with q in the range 0.05 TI 2 q � 0.1 TI is stil 1 twice as 



rapid as is observed
4?) . Although a fit is possible by adjusting m 

we believe there must be another explanation for this anomalous 

behaviour. One point is the method adopted to remove the background 

scattering due to Cs ions
40) . This is estimated by determining the 

scattering for B = 30 kG and T = 3.1 K. The kink contribution is now 

irrelevant, but this does not remove the contribution of the Ni
++ 

because breathers can still be excited. If, furthermore, the system 

is quantised, and we suggest below that it is, the lowest-lying 

breather level is greater than zero and lies at m :::  6.9 K. This level 

can be sufficiently excited at T = 3.1 K. The precise contribution 

of quantised breathers is still to be evaluated, but if a steeply q­

dependent part is subtracted with the background a great deal of the 

anomaly can be removed. 

In conclusion from the above analysis we can say that CsNiF
3 

is 

not a pure classical sine-Gordon system. However, quantum corrections 

may be important to the measured function. In the following we develop 

an argument leading to the right quantum value of the coupling constant 

y
0

, and this enables us to estimate the size of quantum corrections. 

It is well knownSO) that the one-dimensional Heisenberg chain with 

single-ion anisotropy and with arbitrary spin does not have a gap in 

its excitation spectrum but that a 

magnetic field is applied. In the 

gap appears when a transverse 

S = l case it has been shown30) 
2 

how the Heisenberg Hamiltonian can be mapped to a quantised free scalar 

field problem when the plane perpendicular to the chain direction, the 

xy plane, is a plane of rotational symmetry, and how an asymmetry in 

that plane leads to a quantised sine-Gordon type mass term. 

Scalapino51) have shown that the continuum limit of the S = 

Luther and 

xy 

Hamiltonian with single-ion anisotropy has the quantised free field as 
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the equation of motion. They show that in the continuum limit a set 

of equal time commutation relations can be assigned so that S
x 

= C cos(,ry��) and sY = C sin(/y��), where y0 plays the role of the

coup! ing constant in the theory. They further show that inclusion 

of an interaction term which leads to the appearance of a sine-Gordon 

type mass term does not affect the commutation relations. 

We can therefore conjecture that the S = 1 Heisenberg chain with 

single-ion anisotropy can be mapped to a quantum sine-Gordon problem. 

Notice that the re is only one gap in the argument; we have not proved 

h dd. -J\'s 2s 2 

t at a Ing l n n+l

equation of motion in the 

field equation of motion. 

to the xy Hamiltonian does not change the 

continuum limit from the quantised free 

That this is so is suggested strongly by 

the gapless spectrum in the Heisenberg case (the value of y0 will

change) . 

The spectrum under consideration can thus be quantised by 

quantising the sine-Gordon Hamiltonian we got as a classical approxi­

mation. From Coleman3�we know that for the quantised sine-Gordon 

system at T = 0 the correlation function is 

h - 2/,, w ere a - y0 �TT. 

(3.35) 

Si nee y O does not depend on the mass m cc 8
2

, i t 

fol lows that the same result must arply in the limit B + 0. On the 

other hand, Mikeska and Patzak52) have calculated the T = 0 quanta] 

correlation for the Hamiltonian (3. 2 1 ) with B = 0 in the form (3. 35) , 

and find the exponent 
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a = /t,. J 1 + -1- l/6 + ( 1 + 6) (f - a re tan rt.)]}, 
nS L11rS 

where 6 = A/4 J and 

with 

This 

y//21r given 

has 

y' 0

still to 

-
s

by 

be 

= [S(S+1)] 
112.

the sine-Gordon 

renormal i zei4) 

0.49 . 

We can now equate this 

theory, and we find y0

to get the true quanta] 

(3.36) 

resul t53) 

: 0.48. 

value 

This is to be compared with the classical value y0
: 0.65. We note

that the quanta] value of the coupling constant can be achieved with 

the naive "quantum substitution'' S + [s(S+ 1)] 112, which gives Yo� 0.4 7. 

In this way we get the quantum corrected masses m c 3.4 Kand M; 57. 5 K 

at B = 5 kG, to be compared with m; 2.8 Kand M � 35 K given by the 

classical calculation. 

Unfortunately the classically found integrated intensity is quite 

insensitive to the actual energies54) and it is difficult to identify

observable quantum features that way. The large corrections indicate, 

however, that l(T,q) may be considerably affected by quantum corrections. 

And perhaps after further analysis experiments can still be devised 

which probe the kink energy directly. 

In conclusion we can say that a fully quantum mechanical evaluation 

of the dynamic correlation function is now very much needed. The 

quanta] results may turn out to be compatible with the observations 

with Far fewer modifications than the classical ones. 

The classical analysis described above is easily extended to the 

TMMC compound. Its structure45) resembles that of CsNiF3, but the

coupling between the chain ions (Mn
++) is antiferromagnetic. Thus the
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Hamiltonian appropriate for TMMC is given by eq. (3.21) with a negative 

J. In the classical and continuum limits a partial summation over odd

(even) spins reduces the Hamiltonian to the sine-Gordon form (3.22).

The angle� is now related to the original azimuthal spin angle�• by 

. -2 1/2 The coupling constant 1s y0 = 4(A/JS ) 1.34 and 

-1 m = 2µ6B/44.5 K; the kink mass M = 8y0 m = 5.97 m. The contribution 

to the central peak of S(q,w) = \lq,w) + \lq,w) is

where 

-1 - -2 Nr(96q) exp(-SMr) [_cosh (11q/2mr + 

2 -2 2-+ 0.4 m q f1 ] , 

11/2 

-
1 

f 
4 [ 

2 1 4 1-1 
Nrq de tan e sin e (1 + tan e + 2 tan e) · 

exp (-2SMrs i ne) · f; 

-1 -1 1 - 11q(2mr) [sinh (11q/2mr)] , 

sin (qb/mrsine) [sinh (11q/2mT'sine)J-1 , 

(3. 38a) 

(3.38b) 

(3. 39a)

(3.39b)

which are to be compared with eqs. (3.28) and (3.32) where the same 

symbols appear. The phase shift 1r/2 means that the para] lel and trans­

verse components exchange their roles. A numerical analysis of eq. 

(3.38) shmvs that the width of the central peak is almost a linear

function of T and q; l(q;T) behaves much as for CsNiF3 as a function
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of T, and falls rapidly with increasing q. 

Neutron scattering experiments on TMMC have been started
SS) 

and 

will subsequently allow a detailed check on these various results. 



4 . SUMMARY AND DISCUSSION 

In this thesis we have demonstrated that many physical systems 

display soliton-like excitations in accordance with the new9) concept 

of non-1 inear normal modes. As the best example we can consider the 

quasi-one-dimensional ferromagnet CsNiF
3

, whose neutron scattering 

data
4 o

,

47) we interpret as the first observation of a breather sol i ton. 

This conclusion is based on the first thorough non-linear analysis of 

the compound, which we have presented in refs. 13 and 17. Especially, 

we have made the first calculation of the breather contribution to the 

observable properties of the sine-Gordon systems. We have extended
l?) 

our results to the TMMC. compound, which is also a sine-Gordon system, 

and a more detailed account of the results will be reported later. 

We briefly mention a couple of aspects of the theory which deserve 

further study. At higher temperatures the single-ion anisotropy is not 

important and, consequently, there should be a crossover to an isotropic 

Heisenberg chain behaviour. We can apply our mehtod to that system, 

too, because a spectral transform for the classical continuous isotropic 

· 56- 60) Heisenberg chain has also been found . Secondly, we have the 

whole area of quantum behaviour to be explored. Unfortunately, the 

dynamical correlation functions of interest can be calculated exactly 

only with a single value of the coupling constant (see sect. 3. 1 and 

the appendix) , 1,hich allm,s the transforn1ation to a non-interacting 

fermion problem or, equivalently, the exact summation of the pertur-

b . . 61) . 
at1on expansion 1n V. Faddeev and coworkers

62
•

63) have recently

developed a quantum version of the inverse scattering method, and this 

may provide new possibilities. 
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In sect. 3.1 we have considered the commensurate-incommensurate 

(C-1) transition which occurs in overlayers of adsorbed atoms and also 

in charge-density wave systems. First we considered the coupling of 

the order parameter to the strain and showed that, if the coupling is 

not very strong, the transition remains of second order; only the 

transition temperature is changed. We also found that the strain is 

of a very inhomogeneous nature. A related problem was subsequently 

l d b G d d V. l l . 64) ana yse y or on an I a1n . They concluded that only the longi-

tudinal strain plays a significant role in the case of overlayers, and 

thus our conclusions are appropriate for these systems. The situation 

is different in three-dimensional charge-density wave systems, where 

h l. 28) 
t e coup Ing to a constant transverse strain will drive the transi-

tion in first order. 

In the same section 3.1 we further considered the effect of thermal 

fluctuations on the C-1 transition. The problem can be solved exactly 

at a special temperature Tc' where it is equivalent to a one-dimensional

quantum problem of non-interacting fermions. We found that the transi­

tion is of second order, and the observed "misfit parameter" has a 

square-root behaviour near the transition. We conjectured that these 

results are valid in the temperature range Tc < T < 2Tc. From the

behaviour of the phase-phase correlation function we further concluded 

that a crystal] ine order is established in the commensurate phase, but 

there is no true long-range order in the incommensurate phase; large 

areas of "soliton-lattice" kinds of structures can occur near the 

transition, though. The results were extended to the case of two­

dimensional modulations on a rectangular lattice; the two displacement 

fields decouple in this case. Pokrovsky and Talapov65) have considered 

a similar problem, but they include the possibility of different orien-



tations of the overlayer and the substrate (orientational epitaxy). 

They showed that an orientati9nal order can be present also in the 

incommensurate phase. 

The insulator-to-metal transition in the doped trans-polyacetylene 

was analysed in sect. 3.2. The extra charge carriers (electrons or 

holes) are assumed to go into localized states at the centre of the 

band gap. Each localized state is related to a distortion in the 

dimerized ground state of the chain of carbon atoms, and the dimerization 

amplitude is chosen to be the order parameter for the system. We showed 

that, if the distortions feel a "<J,-four" potential, there follows a 

transition from an insulating to a metallic state at a critical dopant 

concentration y
* 

= 9 %. If we take into account the inhomogeneous 

charge distribution in the polyacetylene fibrils, the experimentally 

observed value y
*

: 1 % is consistent with a charge localisation depth 

of 5 Ji.. 

In chapter 2 we have considered the classical thermodynamics of 

the sine-Gordon field. We have used the exact diagonalisation of the 

sine-Gordon Hamiltonian achieved via the spectral transform of the 

inverse scattering method, and the partition function was calculated 

exactly as a functional integral. All the thermal properties can now 

be calculated, and we have shown the results for the thermal densities 

of the soliton excitations. The same method can be used to calculate 

the thermal properties of every member of the class of totally integrable 

Hamiltonian systems. It also provides a natural definition for any 

suitable ensemble. In contrast to this, the transfer integral tech-

. 20) "f h "b 
. 

f d"ff d F h n1que cannot spec1 y t e contr1 ut1ons o 1 ·erent mo es. urt er·-

more, the existing transfer integral calculations use periodic boundary 

conditions, which are not appropriate for the �pectral transform. 



There is another approach66l to the thermodynamics of non-linear

fields which resembles our method, except that a part of the phonon 

contribution is used to "dress" the kink (breather) mass. This method 

makes use of periodic boundary conditions for phonons, but as we noted 

above, these are not appropriate for the spectral transform. If we 

work consistently67l in periodic boundary conditions, the excitations 

are different from those used in chapter 2. The method provides agree­

ment with the transfer integral results if the kink excitations are 

included, but this agreement is lost if the breather excitations are 

also included. 
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APPENDIX 

Calculation of the phase-phase correlation function 

G(x,y) 2 <[<J>(x,y) - <j,(0,0)] >

As was described in sect. 3.1, the statistical mechanics properties 

of the classical two-dimensional sine-Gordon problem are given by a 

one-dimensional fermion problem. We do not go step by step through the 

. 29, 30) 
transformations involved, because they can be found in the literature 

We start with the fermion Hamiltonian 

(A.1) 

valid in the special case when the coupling constant is g
2 

= 4TT. 

Different indices are used for right (1) and left (2) going particles. 

With the transformation 

(A.2) 

the Hamiltonian (A.l) can be diagonalized, and we find 

(A.3) 



where 

V 
k 
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(A.4) 

(A.5) 

The equa tions of motion of the Hamiltonian (A.3) are easily solved: 

a 1 k ( t) a 1 k (0)

a 2k ( t) a2k (0) 

e-i(Ek+qO)t

-i(-E + q )te k 0 

and corresponding results for the creation operators. 

(A.6) 

The correlation function needed is given by the corresponding 

correlation function of the quantum sine-Gordon system 

G (x, t) 
2 

<lcp(x,t) - cp(o,o)J >,

and the essential quantity to be calculated is 

r (x, t) <cj)(x,t)cp(0,0)>. 

(A. 7) 

(A.8) 

The transformation from the quantum sine-Gordon field to the 

fermion problem is given by 

cp (x. t) 

IT (x, t) 

P. (k)
J 

- i

/,r 
=T

1 
= -

✓2 
I 
p 

/,r 
I l 

-ikx 
[p 1 ( k) + P 2 ( k)]

T 
e ' 

k k 

I 
-ikx 

[P l (k) - p2(k)] (A.9) e 
k 

+ 
a jk+p

a jp
'
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where L i s the length of the system; we have left out the cutoff 

wh i ch is necessary for the convergence of the Fourier transformation. 

Under th i s transformation the con·elation function r(x,t ) is trans-

formed to 

where 

X (k, t) 

in wh i eh 

d1 (k, p) 

d2(k,p) 

(A. 10) 

q-k -q 

l -
d1 (k,p) e i (Ek+p - EP )t + l dl (k,p ) e-i (Ek+p-Ep )t 

p=q p=-q-k 

Ql 

+ , d ( k ) i ( Ek +E ) t , d ( k ) -i ( Ek +E ) t , l 2 ,p e +p p + l 2 ,p e +p p 
p=-oo p=Q2 

1 ' .. 1 + sgn[p(k+p) j 2 

1 ( 
= 2' 1 - sqn [p (k+p )] 

p(k+p) + V  
2 

2 2 1 2 2 1 
( p +V ) 2 [ ( p+k ) +V 12 

p(k+p)+ V 
2 

2 2 1 2 2 1 
(p +V )2[(p+k) +V j2 

(A.11) 

Q1 -q + (2q - k)8(k - 2q)



Q2 
q - (k + 2q)O(-k - 2q) 

0 qo < V 

q (A. 1 2) 

(q2-v
2
):\ , qo > V0 

and 8(x) is the step function. 

111 the Following we work in the continuum limit, where 

We first calculate the result in the q0 0 case, which is also valid

when O < q0: V. We find 

X (k. t) 

X (k, t) 

0

2\ I dp[dl (k,p) 

-k 

_ d (I )] -is(k,p)t
2 <, P e 

+ J,_ r dp d (k ) -ic(k,p)t 
211 J 2 'p e 

' k > 0 , 

0 

J:_ r dpld,(k,p) - d
2
(-k,p)J e-id-k,p)t +

211 J 

+J:- r dp d (-k ) -id-k,p)t 
211 J 2 

'P e ' k < 0 , 

which can be combined to give 

(A. 13) 



X (k, t) 

where 

E: (k, p) 

L 
21T 
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0 

dp[dl(lkl,p) - d
2

(1kl,p)J e-idlkl,p)t + 

- kl

We further calculate the Fourier transform of x(k,t): 

x(k,w) f -i wt dt e x(k,t) + 

0 

0 

dp[dl(lkl,p) 

-lkl

f -iwt *( )d t e X -k, t 

(A. 14) 

(A. 15) 

+ 

(A. 16) 

where we have moved the poles into the complex plane in the usual way. 

This result is exactly the same as that obtained by Minnhagen, Rosengren 

d G · · 29) 
d · h l . f . . ' an r1nste1n , an gives t e corre at1on unction 1n t,1e commensurate 

phase. 

First we are interested in the nature of the incommensurate phase, 

given by the correlation function G(x,t) when q
0 

> V, i.e. q > 0. In

the case of one-dimensional modulation, the quantity of major interest 

is the correlation in the direction of modulation G(x,O): 



G(x, O) 
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f _ils_( 1 - cos x) x (k, 0) L 
k

2 

0 

(A. 17) 

The integrals in eq. (A.11) can be done exactly when t 0, and we find

where 

X r c (k , O) - x(k, O) - Xcommensurate(k ,
O)

A(k) 

l; [fl(q ) - f1(-q )] + 4\ Lf1(q-lkl) - f1(-q-lkl)J, lkl: 2q

(A. 18)

k k
2 

1) 1/2 

= 2V + (-+
4V2 

( 1 2 
1/2 

f
2

(x) , 1 
k v - ATi<T) 

t - VA( k) 2 

k 1 -

<f,(x) 

(�) V + 1

[A(k) l-4
' 

arc tan 1·V 
A(k)-l

],
V + A(k) 

(A. 19) 

and F(<t>lk) and E(<t>lk) are23) incomplete elliptic integrals of the first

and sedond kind, respectively. 

We examine the behaviour of the correlation function near the C-1 

transition in more detai.l. In this case q << V and we can use the 



lead ing terms in (A.18): 

L 
2n 

( I k I-

- 51 -

1/ _..9__ 

2V
2 

� - )

4
V

2 
, 

X IC (k' 0) \ l_ 
(2q _i 1/) 2q I k I 

21r 
- < 

v2 

By substituting th is into eq. (A.17) we get 

G I C(x, O ) - G(x, O ) - Gcommensurate
(x ,

O ) 

I k I < 2q 

<: \I 

C + ln(2qx ) - Ci (2qx) + (1 - cos 2qx) 

+ j qx [s i nVx - \/xC i (Vx)] 

- _9. [1 
- �inVx + l(1 - cosVx)·] V ·· Vx 2 

q 
2 

[
1 1 - cos2qx

l + (vl I - - 2 (2qx) ·· 
+ ... ' 

(A.20) 

(A.21) 

23) 
where C = 0,577 is the Euler-Mascheroni constant and Ci (x) is the 

cosine integral. 

To find the asymptot ic behaviour of G
1 C(x, O ) in the regions x << 

d 
--1 

h 
. 23) an x >> q we use t e ex pansions 

1 2 + lnx -
4 

x + ... , x << I 

C i (x) 

sinx 

X 
cosx --2-+ ... , 

·"-
X >> ] , 

(A.22) 

--1
q 



and the result 

G 1 C(x,O) Cc' 

is 

-2 2 
;3 q X '

) 

I 
-

\ l n (2qx), 

- 52 -

--1 
X << 

(A.23) 
--1 

X >> q 

The phys ical interpretation of these results is given in sect. 3.1. 

We can also examine the nature of order ing in the commensurate 

phase starting from the result (A.16). 30) As shown by Minnhagen et al.,

this result can be further s implified with the transformation 

p' 
2 2 2 2 1 2 2 1 1

-1·-· kp+p -V +(p +V)2f(p+k) +VJ2 
\ 2 

1 
·sgn(p +2 k),

under wh ich e q. (A.16) transforms to 

x(k.w) L f dp 211 
v2 

2 2 2 2 . k -w +4p +4V +10

(A.24) 

(A. 2 5) 

where we have dropped the pr imed notation. The correlat ion function 

G(x,t) can now be obtained as a two-dimensional Fourier transformation 

G (x, t) 

➔ ➔

I
1 e

ik ·r

J 2 2 - ➔2 2 2 
4p +4V k +4p +4� 

(A.26) 

where we have taken the �imit 8 ➔ 0 because the singularity is removed, 
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and k and J are to be understood as vectors (k,w) and (x,t) in a two-

dimensional Minkowski space, i.e. k
2 = k

2 
- w2 and r2 2 2

X - t . 

We can now make a "Wick rotation" w ➔ iq, t ➔ in, and obtain the 

ordinary two-dimensional Fourier transformation of G(x,y). In polar 

coordinates this reads 

G(x,y) 

a -l 211 

I f 
0 0 

4p2 + 4V2 

4l+4v2 +k2 

ikre 

where a-l is the momentum cutoff. 

(A. 27) 

For simplicity we consider the case V 
>> 1. Now the term multi­

plying the exponential in eq. (A. 27) can be set equal to one, and we 

obtain 

-1 a 

G(x,y) 1 
f [1 - Jo (kr)] k dk f 

v2 

dp (A. 28) " 
8TI 

-oo (/ +V2
) Z 

where Jv(x) is
23) a Bessel function. The second integral can easily be

done and the first integral can be calculated as an asymptotic series
23),

and we find 

2 2 1 /2 
where r = (x + y) . At large distances the correlation function

thus approaches a constant which is dependent on the cutoff procedure. 
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The result (A.29) gives the limiting value of G(x,y) at large 

distances. To get a feeling for the bahaviour of G(x,y) at small 

distances, we calculate its value at the origin: 

G(O,O) 

-1 a 211 j 
f 

kdkd
�

0 0 ( 211) 

-4

= 12011 
. (aV) '

(A.30) 

which is to be compared with (aV)-2;4811, the limiting value at large 

distances. 
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