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Allocation for Wireless Powered Dense Vehicle

Area Network with Energy Recycling
Chi Jin, Student Member, IEEE, Fengye Hu, Senior Member, IEEE, Zhuang Ling, Student Member, IEEE,

Zhi Mao, Student Member, IEEE, Zheng Chang, Senior Member, IEEE, and Cheng Li, Senior Member, IEEE

Abstract—The wireless-powered communication paradigm
brings self-sustainability to the on-vehicle sensors by harvesting
the energy from radiated radio frequency (RF) signals. This
paper proposes a novel transmission and resource allocation
strategy for the scenario where multiple wireless powered vehicle
area networks (VAN) co-existed with high density. The considered
multi-VAN system consists of a remote master access point
(MAP), multiple on-vehicle hybrid access points (HAPs) and
sensors. Unlike previous works, we consider that the sensors
can recycle the radiated radio frequency energy from all the
HAPs when HAPs communicate with MAP, so the dedicated
signals for energy harvesting (EH) are unnecessary. The proposed
strategy can achieve simultaneous wireless information and
power transfer (SWIPT) without complex receiver architecture
requirements. The extra EH and interference caused by the
dense distribution of VANs, which are rarely explored, are
fully considered. To maximize the sum throughput of all the
sensors while guaranteeing the transmission from HAPs to the
MAP, we jointly optimize the time allocation, system energy
consumption, power allocation, and receive beamforming. Due
to the non-convexity of the formulated problem, we address
the sub-problems separately through the Rayleigh quotient,
Frobenius norm minimization and convex optimization. Then
an efficient iterative algorithm to obtain sub-optimal solutions.
The simulation results and discussions illustrate the proposed
scheme’s effectiveness and advantages.

Index Terms—Dense network, Energy harvesting, Throughput
maximization, Wireless powered network.

I. INTRODUCTION

W IRELESS power transfer (WPT) is considered one of
the critical technologies to boost the development of

sustainable Internet of Things (IoT) and has become a crucial
component of the sixth-generation wireless communication
(6G) [1], [2]. Integrated the WPT with the low-power sens-
ing devices, the resulted wireless powered sensing network
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(WPSN) has its potential for environmental monitoring, health
care, and intelligent cities [3]–[6], in which WPT can realize
the stable power supply for wireless sensors [7]–[9]. Especially
in the field of intelligent vehicles, it is expected that a large
number of onboard sensors will be equipped on future vehicles
to enhance intelligence. In order to eliminate the inconve-
nience caused by battery charging and tangled wires, WPT
has gained unprecedented interest. Compared with traditional
energy harvest schemes, such as solar and mechanical energy
conversion, WPT is ubiquitous, sustainable and controllable
[10]. In practice, vehicle area networks (VANs) are usually
densely distributed, and a single VAN can be modelled as
a hybrid access point (HAP) and several onboard sensors.
In a multi-VAN system (e.g., vehicles on the street), sensors
can harvest energy from HAPs in neighbouring VANs, while
the transmissions to the HAPs suffer interference as well.
We extensively reviewed related works and found that they
mainly concentrate on the single network, and there are few
references for the multi-network scenario. Moreover, most of
them ignore either the extra energy or the interference, which
is irrational. Therefore, this work is devoted to studying a
proper transmission strategy for the dense VANs, which is
expected to fully utilize the benefit of energy harvesting (EH)
and suppress the interference.

The investigation of simultaneous wireless information and
power transfer (SWIPT) plays a vital role [11]–[17]. SWIPT
enables sensors to decode information and harvest energy from
the same radio frequency (RF) signal through time switching
(TS) and/or power splitting (PS), which effectively avoids the
delay induced by the separate energy transmission process.
However, a relatively complex receiver architecture is required
to support TS and PS [18]. The wireless powered communi-
cation network (WPCN) in [19] is another practical network
paradigm that is regarded as a particular case of SWIPT. The
research on the WPCN has also received increasing interest
over the past few years [20], [21]. WPCN avoids complex
receiver design and adopts the time division multiple access
(TDMA) based ”harvest-then-transmit” (HTT) protocol, mak-
ing it more attractive for on-board devices. However, WPCN
does not make full use of the WEH phase.

Although there has been much research based on SWIPT
or WPCN, they only consider the scenario where the net-
work includes a single HAP. Their proposed strategies, such
as relaying, PS/TS optimization, and energy allocation, are
unsuitable for the multi-network scenario, where the received
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signal is more complicated at both the HAP and the sensors.
Particularly, in [22] the EH is optimized only for a single
user with the consideration of the Rician fading channel. In
[23], the authors maximize the weighted sum throughput for a
similar system. Then, in [24], the minimum throughput among
different sensors in a single network is maximized for fair-
ness.In [25], the authors design a transmission security scheme
for a single-AP multi-user. In [26], the power consumption is
minimized to achieve maximum energy efficiency. In [27], the
user pairing scheme is considered, where users close to the
source harvest energy with the PS or TS strategy and act as
relays for remote users.

Some joint optimization methods can provide reference for
the optimization of multi-network system. In [28], a joint op-
timization scheme with uplink and downlink beamforming is
investigated to make full use of multiple antennas. The authors
of [29] improve the energy efficiency by jointly optimizing the
beamforming, transmission power, and PS ratio. Combined
with lightweight artificial intelligence (AI) technology, the
authors realize dynamic management and power control during
the energy harvesting process in [30]. The author of [31]
proposes an intra-group cooperative strategy that converts the
multiple input single output (MISO) system into a multiple
input multiple output (MIMO) system through the cooperation
of single-antenna users and realizes the transmit beamforming
at the sensor side.

All the strategies above are only devised for a single
VAN with one HAP. To date, only a few practical works
have been done for the multi-AP network [32]–[37]. Either
extra harvested energy or adjacent interference is ignored in
most related studies. The authors of [33] design the power
allocation and wireless backhaul bandwidth allocation strategy
in heterogeneous small cell networks but assume the sensors
have sufficient power. Under similar assumption, wireless
resource allocation is carried out for APs with overlapping
coverage to save power in [34]. A cooperative transmission
scheme for clustered wireless sensor networks is studied in
[35], but the interference is not considered. The authors in [36],
[37] investigate the energy gain and interference cancellation
in the multi-AP scenarios, with the consideration that each
HAP can serve only one user.

Bearing in mind the features of a multi-VAN system, we
focus on the development of multi-AP WPSN. In the system,
the HAP can deliver wireless power to the sensors and receive
data from them. It is noteworthy that due to the insufficient
computing resources, HAPs in the considered scenario upload
data to the remote master access point (MAP) for fusion,
computing, or other functions. Such uplink transmission can
be carried out in the downlink WEH phase. Meanwhile,
sensors can also recycle the RF signals for EH instead of the
dedicated energy signal. This transmission protocol integrates
the advantages of WPCN and SWIPT, and is more suitable
for a multi-VAN system with low-power devices. The main
contributions of this paper can be summarized as follows:
• A multi-VAN system is considered. The extra EH and

interference caused by adjacent networks, which have
been rarely studied, are thoroughly considered when
optimizing the system performance. A TDMA-based

transmission protocol that enables the HAPs to power
up sensors while communicating with the remote MAP is
designed. A transmission strategy is proposed to optimize
the system energy consumption (E), time segment factor
(τ ), transmission power (PAp), energy allocation weights
(W ), and receive beamforming (B).

• In order to maximize the system throughput, {E, τ , PAp,
W , B} are optimized separately at first. The objective
function is monotonic about E and τ but non-convex on
B and W . Various constraints are considered explicitly,
andW is jointly shared by all sensors, so the optimization
problem is challenging to solve. The Rayleigh quotient,
Frobenius norm minimization, convex optimization and
an efficient alternating approach are adopted for investi-
gating the optimal transmission strategy π∗.

• A high-quality sub-optimal solution is obtained through
the proposed algorithm. Extensive simulations are con-
ducted, and some crucial characteristics observed in the
simulation results are illustrated. Moreover, we further
investigate the effect of each variable under different con-
straints, of which some key findings on the transmission
strategy design are concluded.

The rest of this paper is organized as follows. The system
model is introduced in Section II. The optimization problem
is formulated, and the strategy is discussed in Section III.
Numerical results and insights are presented in Section IV.
Finally, Section V concludes the work.

TABLE I
LIST OF NOTATIONS

Symbol Definition
APi The HAP in the ith VAN
Sij The jth sensor in the ith VAN
Ŝi,t The sensor that transmit at slot t in the ith VAN
NV Total number of VANs/HAPs
Mi Total number of sensors in the ith VAN
x̂iAp Transmitted signal of APi

x̂ijS Transmitted signal of Sij

yiAp Received signal of APi

yijS Received signal of Sij

Hij
k Channel from APk to Sij

Gk
ij Channel from Sij to APk

Ui Channel from APi to MAP
Vi MRT weight for signals from APi to MAP
P i
Ap Transmission power of APi

P ij
S Transmission power of Sij

τ Time segment factor
E Rated energy consumption per time block
W Power allocation weights for HAPs
Bit Receive beamforming for signals from Ŝi,t to APi

II. SYSTEM MODEL

As shown in Fig. 1, we consider a multi-VAN system with
NV VANs and a distant MAP. Each VAN contains a single
HAP denoted by APi ( i = 1, 2, · · · , NV ) and Mi wirelessly
powered sensors denoted by Sij (j = 1, 2, · · · ,Mi). It is
assumed that the vehicles are densely distributed, and the
distances between HAPs and MAP are much farther than
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Fig. 1. Wireless powered multi-VAN overlapping system.
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Fig. 2. Transmission scheme.

the distance among HAPs. The HAPs gather the perception
data from sensors and forward the data in the following
transmission block to the MAP. The MAP is responsible for
data fusion, decision, and control functions. The RF energy
radiated during the communication phase between HAP and
MAP is recycled by the sensors. The HAPs and MAP are
equipped with A and AM (≥ NV ) antennas and sufficient en-
ergy resources. Each sensor has a single antenna and performs
the transmission with the harvested energy. All devices operate
in half-duplex mode.

The channels from HAPs to MAP and sensors are indepen-
dent of each other. It is assumed that the channels are quasi-
static fading, where channel status remains constant during
each transmission time block but varies from one block to
another. It is further assumed that the HAPs and MAP know
channel status perfectly at the beginning of each block.

As shown in Fig. 2, a FTDMA-based transmission scheme
is presented. We set the time block length as T and the time
segment factor as τ . Each time block is divided into two
phases: the wireless EH (WEH) phase and the wireless infor-
mation transmission (WIT) phase. HAPs transmit information
(such as the perception data uploaded by sensors) to MAP
simultaneously with different carrier frequencies. Sensors can
recycle the radiated RF energy from HAPs. The recycled
energy is stored in a supercapacitor for the following data
transmission. In the WIT phase, time is divided equally into
NT (≥Mi) slots and each slots has the length of (1−τ)T/NT .
It should be aware that a sensor may be assigned with multiple
time slots rather than only a single. The carrier frequencies of
sensors uploading data in the same time slot may be the same,
partially the same, or completely different.

A. WEH Phase

The system energy consumption per time block is denoted
as E, andW = [w1, · · · , wNV ] is the energy allocation weight
vector for HAPs (i.e., WWH = 1). Thus, the transmission
energy assigned for APi is w2

iE, and the total transmission
power of APi is given by

P iAp =
w2
iE

τT
= w2

i P, (1)

where we define P = E/(τT ). Pmax is the maximum
transmission power for HAPs, so P iAp ≤ Pmax is necessary.

Suppose MAP allocates only a single receiving antenna per
HAP, and the channel from APi to MAP can be expressed as

Ui =
[
ui1, ui2, . . . , uiA

]H
. (2)

For element uiA, the subscript iA indicates the source (APi’s
Ath antenna). In order to improve the throughput perfor-
mance, the maximal ratio transmission (MRT) method is
adopted at the HAP side. MRT is a widely used antenna
diversity technology that enables the receiver to achieve the
highest signal-to-noise ratio and effectively resist multipath
fading [38], [39]. According to MRT, the transmission weight
vector for the A antennas of APi can be obtained by
Vi = Ui/|Ui| = [vi1, vi2, · · · , viA]

H . Furthermore, we have
V = [V1,V2, · · · ,VNV ]

H , and the transmitted signal is

x̂iAp = V H
i

√
P iApx

i
Ap = V H

i

√
Pwix

i
Ap. (3)

xiAp is the normalized information signal, i.e., E[|xiAp|2] = 1,
where E[·] stands for the expectation operator.

The signal received from APi can be expressed as:

yM (i) = V H
i Ui

√
Pwix

i
Ap + niM , (4)

where niM ∼ CN (0, σ2
M ) represents the additive white Gaus-

sian noise at the antenna of MAP. The signal to noise ratio
(SNR) for signal from APi is expressed as

Γi =
Pw2

i |V H
i Ui|2

σ2
M

. (5)

Assuming that the uplink transmission bandwidth of APi is
`i, the throughput from APi to MAP can be given by

ri = `iτT log2

(
1 +

Pw2
i |V H

i Ui|2

σ2
M

)
. (6)

Given that Υi is the minimum throughput requirement for APi
to communicate with MAP, then ri > Υi should be satisfied,
and we have

wi ≥

√(
2

Υi
`iτT − 1

) σ2
M

P |V H
i Ui|2

= wlbi , (7)

where wlbi is the lower bound of wi. Substituting P = E/τT
into (6) and solving ri > Υi, we get

E ≥
(

2
Υi
`iτT − 1

) τTσ2
M

w2
i |V H

i Ui|2
= Elbi , (8)

τ ≥ − Fln(J)

FΩ(−J
−1/F ln(J)

F ) + ln(J)
= τ lbi , (9)
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Fig. 3. Comparison on linear and nonlinear EH model.

`i ≥ Υi

[
τT log2

(
1 +

Ew2
i |V H

i Ui|2

τTσ2
M

)]−1

= `lbi (10)

where `lbi , τ lbi and Elbi are the lower bounds of `i, τ and E.
The operator Ω(·) represents the product log function, and
F = Ew2

i |V H
i Ui|2/(Tσ2

M ), J = 2Υi/T`i .
Next, we analyze the EH process on the sensor side. The

channel from APk (k = 1, · · · , N ) to Sij is denoted as
Hij
k = [hijk1, h

ij
k2, · · · , h

ij
kA]H . For element hijkA, the subscript

kA indicates the source (APk’s Ath antenna) and the super-
script ij indicates the destination (Sij’s single antenna). At
slot k, the received signal at Sij can be expressed as

yijS (k) =

NV∑
k=1

A∑
a=1

hijkavka
√
Pwkx

k
Ap + nS

=

NV∑
k=1

A∑
a=1

ĥijka
√
Pwkx

k
Ap + nS

(11)

where nS ∼ CN (0, σ2
S) represents the additive white Gaussian

noise at the antenna of sensors.
The linear and non-linear energy harvest models are proved

to be approximately equivalent in low power scenarios [40].
The comparison curves are shown in Fig. 3. We denote the EH
model as a linear function: Pharvest = ηPreceive, η (0 < η <
1) is the energy conversion ratio. The total energy harvested
by Sij during the WEH phase can be expressed as

EijS = ητT

(
P
∣∣∣WĤij

∣∣∣2 + σ2
S

)
≈ ητTP

∣∣∣WĤij

∣∣∣2 (12)

Here item ητTσ2
S is ignored since it is rather smaller than the

front one in practice [41]. Ĥij = Hij � V and the operator
� represents the Hadamard product.

B. WIT Phase

In the WIT phase, sensors transmit information by us-
ing the energy harvested in the WEH phase. Let µ̂i =

[µi1, µi2, · · · , µiMi
] denote the numbers of time slots assigned

for sensors in subnet i, then the transmission power of Sij can
be written as

P ijS =
EijS

µij(1− τ)T/NT
=
ητNTP

∣∣∣WĤij

∣∣∣2
µij(1− τ)

. (13)

The signal transmitted at Sij is

x̂ijS =

√
P ijS x

ij
S , (14)

where xijS is the normalized information signal, i.e.,
E[|xijS |2] = 1. The channel from Skj to APi is denoted by
Gi
kj = [gi1kj , g

i2
kj , · · · , giAkj ]H , where the subscript indicates the

source (Skj) and the superscript iA indicates the destination
(APi’s Ath antenna).

To simplify the description, we use Ŝi,t to indicate the
sensor that uploads data in subnet i during slot t. Due to
the coexistence of multiple subnets, APi receives not only
the information signal from Ŝi,t at slot t, but also the in-
terference signal from Ŝk,t (k 6= i). To improve the SNR,
and Bit = [b1it, b

2
it, · · · , bAit] is designed as the receive weight

vector for APi at slot t. Therefore, the received signal of APi
can be given by

yiAp(t) = Bit

Mk∑
j=1

NV∑
k=1

ι̂kj,tκ̂
i
kj,tG

i
kj

√
P kjS xkjS + nAp

.
(15)

where nAp = [n1
Ap, n

2
Ap, · · · , nAAp]H represents the addi-

tive white Gaussian noise at antennas of HAP and naAp ∼
CN (0, σ2

Ap). ι̂kj,t is the indication for time slot allocation,
ι̂kj,t = 1 if sensor Skj transmits in time slot t (that is, Skj
can be be denoted as Ŝk,t), otherwise it is 0. κ̂ikj,t is the
interference factor. If Skj uploads data with the same carrier
frequency as Ŝi,t, then κ̂ikj,t = 1, otherwise it is 0. When APi
receives information signal from Ŝi,t, the SNR is expressed as

γit =

∑Mi

j=1 ι̂ij,tκ̂
i
ij,tP

ij
S

∣∣BitG
i
ij

∣∣2∑Mk

j=1

∑NV
k=1,k 6=i ι̂kj,tκ̂

i
kj,tP

kj
S

∣∣∣BitGi
kj

∣∣∣2 + |Bit|2σ2
Ap

.

(16)
We define Bi = [BH

i1 ,B
H
i2 , · · · ,BH

iNT
], and all Bis determine

the tensor B.
It is assuming that the uplink bandwidth of the sensor is

`S , which is equally divided into NSF frequency bands for
multiplexing. The co-channel interference can be avoided by
scheduling if NSF ≥ Min(NT , NV ), or it will inevitably
occur in some time slots or subnets. The operator Min(·)
means to take the minimum value. The sum throughput from
sensors to HAP in the ith VAN can be expressed as

Ci (W ,Bi, E, τ) = ˆ̀
S

NT∑
t=1

(1− τ)T

NT
log2(1 + γit). (17)

where ˆ̀
S = (`S − `∆S)/NSF , `∆S is the reserved bandwidth,

which can be used as frequency band gaps to avoid aliasing.
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III. PROBLEM FORMULATION AND OPTIMIZATION
STRATEGY

In this section, we first present the formulated problem and
investigate the optimization strategy. As one can see from (17),
the optimization variables are system energy consumption
E, time segment factor τ , transmission power PAp, energy
allocation weights W , and receive beamforming B. The
overall problem is formulated to maximize the sum-throughput
of sensors while guaranteeing the communication between
HAPs and MAP:

(P1) : max
W ,B,E,τ

NV∑
i=1

Ci(W ,Bi, E, τ)

s.t.

C1 : W �W lb,
C2 : WWH = 1,
C3 : Bit � 11×N ,
C4 : τ lb ≤ τ < 1,
C5 : P iAp ≤ Pmax,

(18)

where C1 guarantees successful communication from the
HAPs to the MAP. W lb = [wlb1 , w

lb
2 , · · · , wlbNV ] is given in (7)

as the lower bound of W . C2 limits the energy consumption
per time block as E. It is simplified from (

∑N
i=1 w

2
i P )τT = E

and indirectly bounds that wi < 1. C3 means the receive
weights must be less than 1 since the antennas cannot amplify
the received signals. C4 denotes the lower and upper bound of
time segment factors. τ lb equals Max(τ lbi ) since τ should be
greater than all τ lbi s as mentioned in (9). Here Max(·) means
to take the maximum value. C5 indicates that the transmission
power of HAPs cannot exceed the maximum transmission
power. In order to address the formulated problem, we devide
it into several sub-problems and present the corresponding
solutions.

A. Receive beamforming optimization

We first optimize B and fix variables W , E and τ as con-
stants. We defineDn

it(W , E, τ) =
∑Mk

j=1

∑NV
k=1 ι̂kj,tκ̂

i
kj,tNT η

E|WĤkj |2|Gi
kj |2/µkj+(1− τ)Tσ2

ApIA, Dd
it(W , E, τ) =∑Mk

j=1

∑NV
k=1,k 6=i ι̂kj,tκ̂

i
kj,tNT ηE|WĤkj |2|Gi

kj |2/µkj +(1 −
τ)Tσ2

ApIA, where IA is the A-order identity matrix, then the
sum-throughput can be written as

C(B) = ˆ̀
S τ̂

NV∑
i=1

NT∑
t=1

log2

(
BitD

n
it(W , E, τ)BH

it

BitDd
it(W , E, τ)BH

it

)
, (19)

which is the sum of NV ×NT logarithmic functions. Here τ̂ =
(1−τ)T/NT .B can be achieved by optimizingBit separately
since Bits are independent. Considering the monotonicity of
logarithmic function, (P1) can be transformed into NV ×NT
optimization problems as

(P2) : max
Bit

BitD
n
it(W , E, τ)BH

it

BitDd
it(W , E, τ)BH

it

s.t. Bit � 11×N .

(20)

According to generalized Rayleigh quotient theory, the op-
timal solution B∗it can be solved by calculating the normalized
eigenvector corresponding to the largest eigenvalue of matrix

Dit = (Dd
it)
−1Dn

it. We define this operator as Eigmaxv,
thus

B∗it = Eigmaxv(Dit). (21)

B. Energy allocation optimization

Analogously, variables B, E and τ are fixed to solve
W . We define that Qn

it(Bit, E, τ) =
∑Mk

j=1

∑NV
k=1 ι̂kj,tκ̂

i
kj,t

NTEη
∣∣∣BitG

i
kj

∣∣∣2 ∣∣∣Ĥkj

∣∣∣2 /µkj + (1− τ)T |Bit|2 σ2
ApINV ,

Qd
it(Bit, E, τ) =

∑Mk

j=1

∑NV
k=1,k 6=i ι̂kj,tκ̂

i
kj,tNTEη

∣∣∣BitG
i
kj

∣∣∣2
|Ĥkj |2/µkj + (1 − τ)T |Bit|2σ2

ApINV . The optimization
problem is given by

(P3) : max
W

ˆ̀
S τ̂

NV∑
i=1

NT∑
t=1

log2

(
WQn

it(Bit, E, τ)WH

WQd
it(Bit, E, τ)WH

)

s.t.
C1 : W �W lb,
C2 : WWH = 1,
C3 : W �W ub.

(22)

Here C3 is inferred from constraint P iAp ≤ Pmax and we

have W ub = [wub1 , wub2 , · · · , wubNV ] =
(√

PmaxτT/E
)

1×NV
.

The objective function is similar to (19), but W is shared
by
∑NV
i=1Mi addends unitedly. A global optimization method

based on vector similarity is proposed to extract the globally
optimalW ∗ from the individually optimalW ∗

its. We introduce
Wit = [w1

it, w
1
it, · · · , w

NV
it ] for Ŝi,t and divide (P3) into

NV ×NT optimization problems. The optimal weights for Ŝi,t
(i.e., W ∗

it) can be solved by Rayleigh quotient theory. Then
Frobenius norm is adopted to solve W ∗. In the following,
individual and global optimization methods are discussed
respectively.

1) Optimization for individual sensor: In the individual
optimization, we transform the optimization problem into
Rayleigh quotient maximization as

(P4) : max
Wit

WitQ
n
it(Bit, E, τ)WH

it

WitQd
it(Bit, E, τ)WH

it

s.t.
C1 : Wit �W lb,
C2 : WitW

H
it = 1,

C3 : Wit �W ub.

(23)

Theorem 1: Define Amlit as the element in row m, column
l (m, l = 1, . . . , NV ) of Ait, ϑl =

∑NV
m=1,m 6=lAmlit (kmit )∗,

and Qit = (Qd
it(Bit, E, τ))−1Qn

it(Bit, E, τ). The solution
of (P4) can be written as W ∗

it = K∗it(Q
d
it(Bit, E, τ))−1/2,

where K∗it = [(k1
it)
∗, (k2

it)
∗, · · · , (kNVit )∗] is given by

(klit)
∗ =


(klit)

ub w̃lit > wubl .

ϑl

β̂ −Allit
wlbl ≤ w̃lit ≤ wubl ,

(klit)
lb w̃lit < wlbl .

(24)

Here Ait = Qit � P1
it � · · · � P

NV
it , and β̂ ensures

W ∗
it(W

∗
it)
H = 1. The operator � represents the Hadamard

product. Klb
it = [(k1

it)
lb, (k2

it)
lb, · · · , (kNVit )lb] is defined as
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Algorithm 1 Individual optimal solution

1: Input: Qit(Bit, E, τ). i = 1, . . . , NV , t = 1, . . . , NT ;
2: Output: W ∗

it;
3: for i = 1 to NV , do
4: for t = 1 to NT , do
5: Compute W̃it with (25);
6: for l = 1 to NV , do
7: if w̃lit < wlbl or w̃lit > wubl
8: Set ς lit = (klit)

lb or (klit)
ub, zlit = 0,

compute P lit, and update Ait;
9: else
10: Set ς lit = 0, zlit = 1;
11: end if
12: end for
13: Compute Eit = Eigmaxv(Ait),

and set Ẑit = Zit � Eit;
14: Scale Ẑit with |Ẑit|2 + |Sit|2 = 1,

and set K∗it = Ẑit + Sit;
15: Compute W ∗

it = K∗it(Q
d
it(Bit, E, τ))−1/2;

16: end for
17: end for

W lb(Qd
it)

1/2, Kub
it = W ub(Qd

it)
1/2. We define W̃it =

[w̃1
it, w̃

2
it, · · · , w̃

NV
it ] as

W̃it =
Eigmaxv(Qit)(Q

d
ii)
−1/2

|Eigmaxv(Qit)(Qd
it)
−1/2|2

. (25)

P lit is an all-one matrix when W̃it �W lb. If there is w̃lit <
wlbl (w̃lit > wubl ), P lit multiplies its lth row by kl/(klit)

ub (or
kl/(k

l
it)
lb) and the lth column by (klit)

ub/kl (or (klit)
lb/kl).

Proof. Please see Appendix A.

Algorithm 1 solves W ∗
it according to Theorem 1. Kit,

Zit, Ẑit and Sit are 1 × N auxiliary vectors composed of
elements klit, z

l
it, ẑ

l
it and ς lit. Algorithm 1 can be summa-

rized as: First, calculate the eigenvector corresponding to
the largest eigenvalue of the matrix Qit. Second, compute
W̃it with (25) and compare with W lb and W ub. Next, fix
the corresponding element in Kit (i.e., klit) as (klit)

lb if
w̃lit < wlbl or (klit)

ub if w̃lit > wubl . Then, calculate P lit and
get the modified matrix Ait. Besides, keep the aforementioned
fixed elements unchanged, scale Eigmaxv(Ait) partially with
|Eigmaxv(Ait)| = 1, and denote the result as K∗it. Finally,
calculate W ∗

it with W ∗
it=K

∗
it(Q

d
it(Bit, E, τ))−1/2.

2) Global Optimization: Given the optimal energy allo-
cation weights W ∗

it for all single sensors, we adopt global
optimization to solve the optimal weight W ∗ for the entire
system. Our goal is to find the vector with the highest
similarity with the individual optimal solutions. We define the
given W ∗

its as vector set V and take the sum distances from
W ∗ to V as the cost function. Then, W ∗ can be achieved
by minimizing the cost. Considering that sensors contribute
differently to the sum throughput, ρit is introduced as the

contribution factor for Ŝi,t. The global optimization problem
is formed as:

(P5) : min
W

NV∑
i=1

NT∑
t=1

||ρit (W −W ∗
it)||

2
F

s.t.
C1 : W �W lb,
C2 : WWH = 1.
C3 : W �W ub

(26)

We utilize the Frobenius norm to represent vector distances
(or similarity) since it is effective in low-rank approximation
[42], [43]. The Rayleigh quotient can be transformed into the
quadratic form by scaling the denominator, and the throughput
is a logarithmic function. We define

λit =
W ∗

itQnit(W ∗
it)
H

W ∗
itQdit(W ∗

it)
H
, (27)

where Qnit and Qdit are normalized Qn
it(Bit, E, τ) and

Qd
it(Bit, E, τ). A judicious contribution factor can be denoted

as ρit =
√
log2(λit).

Theorem 2: Defining ρ =
∑NV
i=1

∑NT
t=1 ρ

2
it and Rk =∑NV

i=1

∑NT
t=1(wkit)

∗ρ2
it, then the solution of (P5) can be written

as

w∗k =



wlbk ϕ ≥ Rk
wlbk
− ρ,

Rk
ρ+ ϕ

Rk
wubk
− ρ < ϕ <

Rk
wlbk
− ρ,

wubk ϕ ≤ Rk
wubk
− ρ,

(28)

where the ϕ is parameter that enables W ∗(W ∗)H = 1.

Proof. Please see Appendix B.

C. Time segment factor optimization

To optimize τ , we define χit =
∑Mk

j=1

∑NV
k=1,k 6=i ι̂kj,tκ̂

i
kj,t

ENT η
∣∣∣BitG

i
kj

∣∣∣2 ∣∣∣WĤkj

∣∣∣2 /µkj , ψit =
∑Mi

j=1 ι̂ij,tκ̂
i
ij,tENT

η
∣∣BitG

i
ij

∣∣2 ∣∣∣WĤij

∣∣∣2 /µij and ξit = T |Bit|2σ2
Ap, the opti-

mization problem on τ can be written as

(P6) :
ˆ̀
ST

NT
max
τ

NV∑
i=1

NT∑
t=1

(1− τ)log2

(
1 +

ψit
χit + (1− τ)ξit

)
s.t.

C1 : τ lb ≤ τ < 1,

C2 : Max(
w2
iE

TPmax
) ≤ τ.

(29)

f(τ) = (1− τ)log2

(
1 + ψ

χ+(1−τ)ξ

)
is monotonic decreasing

over τ since its first derivative is negative when τ ∈ [0, 1].
Thus the objective function, which is the non-negative sum
of f(τ), is monotonic decreasing as well. Obviously, τ∗ =

Max(τ lb,
w2
iE

TPmax
) if it is less than 1.
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Algorithm 2 Joint alternating optimal solution

1: Input: H , G, Pmax, η, and Υi

2: Output: W ∗, B∗, E∗ and τ∗;
3: for itera = 1 to 20, do
4: Obtain W ∗

it according to Algorithm 1;
5: Obtain W ∗ according to (28), and update feasible

region of τ and E according to (29), (30);
6: Set τ∗ as Max(τ lb,

w2
iE

TPmax
)

7: Set E as Min(PmaxτT
w2
i

).
update W lb according to (7);

8: Obtain B∗ with (21);
9: Calculate throughput Titera;
10: if (Titera − Titera−1 ≤ δ)
11: Return W ∗, B∗, E∗, τ∗ and terminate;
12: end if
13:end for

D. Rated energy consumption optimization

We define the constants θit =
∑Mk

j=1

∑NV
k=1,k 6=i ι̂kj,tκ̂

i
kj,t

NT η
∣∣∣BitG

i
kj

∣∣∣2 ∣∣∣WĤkj

∣∣∣2 /µkj , $it =
∑Mi

j=1 ι̂ij,tκ̂
i
ij,tNT η∣∣BitG

i
ij

∣∣2 ∣∣∣WĤij

∣∣∣2 /µij , and κit = (1− τ)T |Bit|2σ2
Ap, the

optimization problem on E can be written as

(P7) : max
E

ˆ̀
S τ̂

NV∑
i=1

NT∑
t=1

log2

(
1 +

$itE

θitE + κit

)
s.t.

C1 : E ≥Max(Elbi ),
C2 : E ≤Min(PmaxτT

w2
i

),

(30)

where C1 is given in (8) and C2 draws from P iAp ≤ Pmax.

The function f(E) = log2

(
1 + $E

θE+κ

)
is monotonic increas-

ing over E since its first derivative is positive when E ∈
[0,∞). Thus the objective function is monotonic increasing as
well. It is obvious that the optimal E equals to Min(PmaxτT

w2
i

)

if it is greater than Max(Elbi ).

E. Joint optimization

Based on the above inferences, we propose a joint al-
ternating optimization algorithm as shown in Algorithm 2.
It can be summarized as optimizing and updating variables
alternately until convergence. δ is the convergence threshold.
Although it is difficult to prove that the objective function
is jointly concave strictly, an approximately optimal solution
can be obtained. In practice, Pmax and η are determined
by the circuit, H and G can be estimated or modelled,
and Υi depends on the traffic of APi. Based on the above
information, a high-quality sub-optimal transmission strategy
{E∗, τ∗,P ∗Ap,W ∗,B∗} is available for the wireless powered
multi-network overlapping system.

The computational complexity of Algorithm 2 is dominated
by the calculation of the M × N eigenvectors in (P2) and
(P4), and the computational complexity is O(A2) and O(N2)
respectively. Thus, the total complexity of Algorithm 2 can be
approximately expressed as O(MN(A2 +N2)).

IV. NUMERICAL RESULTS

In this section, simulations are conducted to demonstrate
our presented scheme in Section III. The performance of
the proposed joint alternating optimization is discussed and
compared with the separate optimizations. Then we make
insight into the impact of diverse parameters and analyze the
characteristics of the curves.

Without loss of generality, we assume that channel coeffi-
cients are modelled according to Rician fading in which the
complex channel is given by

h=

[√
m

m+ 1
hLoS+

√
1

m+ 1
hNLoS

]√
c0

(
d

d0

)−v
,

where hLoS is the line-of-sight (LoS) deterministic component
with |hLoS |2 = 1, hNLoS is a Gaussian random variable with
zero mean and unit variance representing non-LoS Rayleigh
fading component, m denotes the Rician factor, c0 is a constant
attenuation due to the path-loss at a reference distance d0

, v is a path loss exponent and d is the distance between
the transmitter and the receiver [45], [46]. Throughout the
simulation, we consider m = 3, c0 = −20dB, d0 = 1, and
v = 3.

We set N = 10, Mi = 30, A = 5 and T = 1 in the
simulation. The convergence threshold δ is set as 0.01. To
simulate the actual spatial locations, the distances from APi
to Sij , Skj (k 6= i) and MAP are randomly generated with
uniform distribution U(10, 40), U(30, 60) and U(900, 1000).
We assume that the traffic (Υi) between all HAPs and MAP
is the same, thus can be denoted as Υ. The energy conversion
ratio η = 0.7, and the power of noise σ2

M , σ2
Ap and σ2

S is -
110 dBm. As a contrast, BR is an equal-weight receive vector,
WR and τR are randomly generated. Note that we identify the
curves as Curve A ∼ Curve Z according to the legend from
top to bottom for a simpler description.

A. The comparison between separate and joint optimization

Fig. 4 depicts the relationship between sum-throughput and
the energy consumption E. In Fig. 4 (a), it is observed that
Curve D ∼ Curve F keep rising as E increases until
reaching the right boundary and is truncated then. The right
boundary is caused by the maximum transmission power con-
straint P iAp ≤ Pmax. At the jump point, Max(P iAp) = Pmax
holds, and it is inadvisable to keep increasing E. Curve A ∼
Curve C avoid the truncation with the optimization of τ ,
they show a trend of rising first and falling then. Thus there
is a peak point at which the sum throughput of the system is
maximized. The downward trend reflects the consequences of
keeping increasing E forcibly after reaching the sub-optimal
rated energy consumption (E∗). By comparing Fig. 4 (a) to
Fig. 4 (c), it is apparent that with the increase of Υ, the
peak value of CurveA ∼ CurveC keeps decreasing, and the
corresponding energy consumption increases gradually, which
is consistent with cognition. Particularly, when Υ rises from
2 to 5, the left boundary appears in Fig. 4 (b), which can be
explained as the increase of Υ causes the constraint ri ≥ Υi

unsatisfiable in the low energy area. As Υ increases, the
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Fig. 4. Sum throughput in VANs versus the energy consumption E when Pmax = 2 W, τR = 0.5, Υ equals 2, 5, and 10 Kbit respectively.
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Fig. 5. Lower bounds and sub-optimal value of τ versus the energy consumption E when Pmax = 2 W, τR = 0.5, Υ equals 2, 5, and 10 Kbit respectively.

feasible range of E is further reduced. Furthermore, Curve A
in Fig. 4 (c) reflects that W enables the system to work with
lower energy consumption in the joint optimization when Υ
is high.

In brief, the proposed strategy always performs best in
the entire interval. τ and B can effectively optimize the
throughput. W performs poorly when optimized separately
but is significant in joint optimization. τ and W can expand
the feasible range of E. Besides, there is a suitable E∗ that
maximizes the throughput, and excessive energy will cause
performance degradation.

B. The tendency of sub-optimal τ∗

In this section, we investigate how the boundary and sub-
optimal value of τ changes with E. τ lb and τp are two lower
bounds of τ that guarantee ri ≥ Υi and P iAp ≤ Pmax re-
spectively. Fig. 5 illustrates the tendency of τ∗ as E increases
when Υ = 2, 5, and 10. The τ∗ corresponding to the given
E can be observed from the curves as well. It is noticed that
τ lb decreases, and τp increases gradually with E. On the left
of the intersection, the lower bound of τ depends on τ lb. τ
is limited to guarantee the necessary throughput from HAPs
to MAP. As E increases, τ∗ reaches the valley value at the
intersection. In this case, at least one HAP transmits signals at
Pmax and the valley points here correspond to the peak points
in Fig. 4. On the right of the intersection, τp determines the
lower bound of τ . The HAPs keep transmitting signals with
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Fig. 6. Sum throughput versus τ when Pmax = 0.5 W, E = 5 mJ, Υ = 1
Kbit, σ2 equals to −110, −100, and −90 dBm respectively.

Pmax and τ goes up to consume all energy. When Υ rises,
Curve B moves up, and the intersection moves to the right.

In short, the τ∗ depends on its two lower bounds. It
decreases first and then increases with E. The coordinates of
the intersection point are τ∗ and E∗, which corresponds to the
peak throughput.
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Fig. 8. Available peak throughput and sub-optimal τ versus the maximum transmission power Pmax when E = 1J, Υ = 3 Kbit.

C. The impact of time segment factor τ
In Fig. 6, the available sum throughput versus the time

segment factor τ is studied. We set E = 5 mJ, Pmax = 2W
and Υ = 1 Kbit in the simulation. Consistent with the
theoretical derivation, the objective function is monotonic
decreasing in the range [0, 1] and reaches 0 when τ = 1. When
we set the single antenna noise power σ2 = σ2

S = σ2
Ap = σ2

M

as −90, −100, and −110 dBm, τ gets the sub-optimal value
τ∗ = 0.42, 0.14 and 0.09 respectively, which are the lower
bound of τ as well. Note that the curve on the left of τ∗ is
only plotted to verify the monotonicity, the values less than
τ∗ are inaccessible in practice.

The results suggest that optimizing τ is significant in im-
proving the performance since the sum throughput decreases
almost linearly with τ , which also leads to the fact that some
curves appear to be approximately linear in our simulation
results.

D. The impact of throughput constraint Υ

Fig. 7. (a) illustrates the main characteristics of the through-
put performance as the function of E under different Υ. When

Υ increases from 5 to 14, there is an apparent decrease in
sum throughput and more energy is required to reach the
peak throughput. The relationship between the sub-optimal
energy and Υ is shown more intuitively in Fig. 7. (b), where
the influence of maximum transmission power Pmax is also
considered. In practice, the maximum available energy should
also be considered. If there is an energy upper bound as shown
by the green dotted line in Fig. 7. (b), the Pmax and E should
be set reasonably rather than increasing indefinitely.

In general, the more energy is required to obtain the
peak throughput. The sum throughput and energy increase
or decrease approximately linearly. Increasing E and Pmax
simultaneously is an effective method to improve the sum
throughput under high Υ constraints.

E. The impact of maximum transmission power Pmax
Fig. 8 illustrates the trend of sum throughput and time

segment factor with Pmax. We set Υ = 3 Kbit and E = 1J. It
is observed that τp is inversely proportional to Pmax, and τ lb

is a constant independent of Pmax. When Pmax < 0.125, even
if HAPs transmit signals with Pmax, the given energy cannot
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Fig. 9. The sum throughput and improvement ratio versus Υ, joint optimiza-
tions with and without W are compared.

be completely consumed in single time block, so τp exceeds
the upper bound τ = 1. Thanks to the joint optimization,
Curve A starts to rise earlier than others and always performs
best. The sum throughput increases with Pmax until Pmax
reaches 0.625. It should be noted that CurvesB and C show
the same trend, but due to their lack of optimization on W ,
higher Pmax values are required to reach their performance
upper bounds. After that, the lower bound of τ is determined
by τ lb, which is unrelated to Pmax, so increasing Pmax does
not work anymore. Moreover, Curve B and Curve C begin
to rise from zero at P = 0.15 with the optimization of τ , and
a higher Pmax is required for Curve D ∼ Curve F . The
minimum acceptable Pmax for the system is Max(w2

iE/T ).
It can be inferred that Pmax has to exceed a certain threshold

that enables the system to work. The sum throughput increases
continuously with Pmax, and increasing Pmax is no longer
effective after τ lb > τp.

F. The impact of energy allocation weight W in joint opti-
mization

As reflected in Section A and Section E, W is well-
performed in expanding the feasible interval of E and Pmax.
In Fig. 9, the joint optimizations with and without W are
compared to investigate their effect on improving the sum
throughput. The improvement ratio in Curve E is defined
as (Curve A−Curve C)/Curve C. We notice that the sum
throughput declines slower with the optimization of W , and
its improvement ratio is more remarkable with the increase
of Υ. Besides, when Υ = 10 and Pmax decreases from 1
to 0.25, the improvement ratio increases from 47% to 97%.
Both increasing Pmax and optimizing W can slow down
the decreasing trend of optimal throughput, and the effect
obtained by optimizing W is more prominent under the preset
parameters.

The above phenomena indicate that W has a more notice-
able effect under severe conditions (e.g., lower E, Pmax, and
higher Υ).
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Fig. 10. The sum throughput and improvement ratio versus Υ, FA and CA
are compared.

G. Comparison with related works

To further verify the effectiveness of the proposed algorithm
(PA), we compare it with the algorithm (CA) [47] under
different noise parameters. The improvement ratio in Curve A
is defined as (Curve C−Curve D)/Curve D. It can be seen
from Fig. 10 that under different constraints Υ, PA always
has better performance than CA. The reason for the decrease
in performance improvement ratio is that the increase of Υ
shrinks the value range of optimization variables, and the op-
timal solutions of PA and CA tend to be similar, resulting in a
gradual weakening of the effect of optimization. In addition, by
observing the performance improvement ratio, it can be found
that when the noise power is higher, the improvement ratio
of PA is more gradual, which further verifies the performance
stability of the proposed algorithm under harsh conditions.

In brief, Fig. 10 illustrates the effectiveness of the proposed
algorithm from double perspectives by changing the indepen-
dent variables Υ and σ2.

V. CONCLUSION

This paper investigates the transmission strategy for a
wireless powered multi-VAN system, which enables vehicles
to transfer the power to the sensors while communicating
with the remote MAP. Sensors recycle the RF energy from
HAPs and then transmit sensing data to the intended HAP
via FTDMA. Both the extra energy and interference induced
by multiple VANs are considered. We jointly optimize the
energy consumption (E), time segment factor (τ ), transmission
power (PAp), energy allocation weights (W ), and receive
beamforming (B) to maximize the sum-throughput of all the
sensors. High-quality sub-optimal strategy π∗ ={E∗, τ∗, P ∗Ap,
W ∗, B∗} is obtained by the alternating optimization method.
Simulation results illustrate the advantages of the proposed
scheme.

APPENDIX A
PROOF OF THE PROPOSITION 1

First, we abbreviate Qd
it(Bit, E, τ) and Qn

it(Bit, E, τ) as
Qd
it and Qn

it. For generalization, we omit all subscripts (i.e.,
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it) later, and the number of HAPs (NV ) is shortened as N . The
objective function of (P4) is a generalized Rayleigh quotient.
Defining that K = [k1, k2, · · · , kN ] = W(Qd)1/2 and Q =
(Qd)−1Qn, then (P4) can be written in standard form

(P8) : max
K

KQKH

KKH

s.t.
C1 : K �W lb (Qd)1/2,
C2 : KKH = ζ,
C3 : Kub �W ub (Qd)1/2.

(31)

The Lagrangian function of (P8) and its KKT conditions
are given by

L (K,α,%, β) =
1

ζ
KQKH−α

[
K−W lb(Qd)1/2

]H
+ %

[
K −W ub(Qd)1/2

]H
− β

[
KKH

ij − ζ
]
,

(32)

QK∗ − β̂K∗ − α̂+ %̂ = 01×N , (33)

K∗ −W lb(Qd)1/2 � 01×N , (34)

K∗ −W ub(Qd)1/2 � 01×N , (35)

K∗(K∗)H = ζ, (36)

α � 01×N ,% � 01×N , (37)

α
[
K∗ −W lb(Qd)1/2

]H
= 0, (38)

%
[
K∗ −W ub(Qd)1/2

]H
= 0, (39)

where α,%, β are Lagrangian coefficients, and α̂ = αζ/2
%̂ = %ζ/2, β̂ = βζ.

According to (33)-(39), the conditions for sub-optimal so-
lution K∗ can be simplified as: K∗ −W lb(Qd)1/2 � 01×N ,
W ub(Qd)1/2 − K∗ � 01×N and QK∗ − β̂K∗ = 01×N .
We solve QK∗ = β̂K∗ first and get the solution K̃ =
Eigmaxv(Q). To avoid calculating ζ, we transfer K̃ to W̃
temporarily. W̃ = [w̃1, w̃2, · · · , w̃N ] is defined as

W̃ =
K̃(Qd)−1/2

|K̃(Qd)−1/2|2
. (40)

Klb = [klb1 , k
lb
2 , · · · , klbN ] = W lb(Qd)1/2 and Kub =

[kub1 , kub2 , · · · , kubN ] = W ub(Qd)1/2 are the lower and upper
bounds of K according to (26). Then we consider the follow-
ing cases: First, if W lb � W̃ � W ub, there is K∗ = K̃.
Second, if W̃ � W lb or W̃ � W ub, K∗ is unsolvable
since (34) or (35) cannot be satisfied at all events. Otherwise,
we fix element ki∗ as klbi if w̃i < wlbi or kubi if w̃i > wubi
(same as done in the water-filling algorithm [44]). Then, other
elements of K∗ can be calculated with the modified matrix
A via Eigmaxv(A). The conversion process from Q to A is
as follows:

First, we express QK = β̂K in matrix form
q11 q12 · · · q1N

q21 q22 · · · q2N3

...
...

. . .
...

qN1 qN2 · · · qNN



k1

k2

· · ·
kN

 = β̂


k1

k2

· · ·
kN

 . (41)

Considering the case that only the first element needs to be
fixed as klb1 , we give the equivalent expression as

q11 q12
klb1
k1
· · · q1N

klb1
k1

q21
k1

klb1
q22 · · · q2N

...
...

. . .
...

qN1
k1

klb1
qN2 · · · qNN



klb1
k2

· · ·
kN

= β̂


klb1
k2

· · ·
kN

. (42)

We express (42) as K̂A = β̂K̂ and define A = Q�P1. Here
the operator � represents the Hadamard product. Pi is an all-
one matrix if W lb � W̃ �W ub. Otherwise, multiply the ith
row by ki/kubi (or ki/klbi ) and the ith column by kubi /ki (or
klbi /ki ) if w̃i < wlbi (w̃i > wubi ). Here is an example for case
w̃1 < wlb1 .

P1 =


1 k1

klb1
· · · k1

klb1
klb1
k1

1 · · · 1
...

...
. . .

...
klb1
k1

1 · · · 1

 . (43)

Denote the element at column i, row m of A as Ami. k∗i can
be present as (

∑N
m=1,m 6=iAmik∗m)/(β̂ −Akk) if wlbi ≤ w̃i ≤

wubi , wlbi if w̃i < wlbi and wubi if w̃i > wubi according to (42).

APPENDIX B
PROOF OF THE PROPOSITION 2

The Lagrangian function of (P5) and its KKT conditions
are given by

L (W ,ν, ϕ)=

N∑
i=1

M∑
j=1

||ρit (W−W ∗
it)||

2
F + ν

(
W ub −W

)H
+ γ

(
W −W lb

)H
+ ϕ

(
WHW − 1

)
,

(44)N∑
i=1

M∑
j=1

2ρ2
it (W ∗−W ∗

it)− ν + γ + 2ϕW ∗ = 01×N , (45)

W lb −W ∗ � 01×N , (46)

W ub −W ∗ � 01×N , (47)

ν∗ � 01×N ,γ
∗ � 01×N , (48)

W ∗(W ∗)H = 1, (49)

ν∗
(
W lb −W ∗)H = 0, (50)

γ∗
(
W ub −W ∗)H = 0, (51)

where ν, ϕ are Lagrangian coefficients. Considering (45)-
(51), the conditions for W ∗ can be described as:∑N
i=1

∑M
j=1 2ρ2

it (W ∗ −W ∗
it) + 2ϕW ∗ = 01×N , W ∗ −

W lb � 01×N and W ub − K∗ � 01×N . Defining Rk =∑N
i=1

∑M
j=1(wkit)

∗ρ2
it and ρ =

∑N
i=1

∑M
j=1 ρ

2
it, the solution

can be expressed as

w∗k =



wlbk ϕ ≥ Rk
wlbk
− ρ,

Rk
ρ+ ϕ

Rk
wubk
− ρ < ϕ <

Rk
wlbk
− ρ,

wubk ϕ ≤ Rk
wubk
− ρ,

(52)
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