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Abstract: We assume a spatial blind source separation model in which the observed multivariate spatial data is a

linear mixture of latent spatially uncorrelated random fields containing a number of pure white noise components.

We propose a test on the number of white noise components and obtain the asymptotic distribution of its statistic

for a general domain. We also demonstrate how computations can be facilitated in the case of gridded observation

locations. Based on this test, we obtain a consistent estimator of the true dimension. Simulation studies and an

environmental application in the Supplemental Material demonstrate that our test is at least comparable to and often

outperforms bootstrap-based techniques, which are also introduced in this paper.

Key words and phrases: Asymptotic distribution; kernel function; multivariate spatial data; signal number; spatial

bootstrap.

1. Introduction

With the advance of technology, massive amounts of multivariate spatial data can be collected. As

one example, researchers may use these datasets to investigate various issues in geographical, eco-

logical (Legendre and Legendre, 2012) or atmospheric (Von Storch and Zwiers, 2001) sciences.

From a domain experts perspective proper analysis of such multivariate spatial data is carried out

by at least investigating and interpreting pmaps (for the pmeasured variables) which might be con-
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taminated by various sources of noise, such as measurement inconsistencies or errors. Moreover,

the interpretation of the raw data might be complicated as the original variable reflect a mixture

of physical processes which are actually of interest. As such also dependencies between measure-

ments need to be investigated. From a statisticians perspective these spatially correlated datasets

contain dependencies both within and among the individual data processes, which makes statistical

modeling of the multivariate spatial data a challenge. The difficulty of modeling is further inten-

sified when the dimensionality p is large. With a dataset of size n, it takes a total of cppp ` 1q{2

parameters to describe the full covariance and cross-covariance structure of the model, where c is

the number of characteristic parameters per covariance and cross covariance. Further, it requires

a computational cost of Opn3p3q for prediction using optimal linear predictors and for Gaussian

likelihood evaluation, see Cressie (1993, Section 3) and Legendre and Legendre (2012).

One way to approach the problems arising from spatial cross-dependencies is to use the spatial

blind source separation (SBSS) framework see Nordhausen et al. (2015) and Bachoc et al. (2020).

Blind source separation (BSS) is a well-studied multivariate procedure used to recover latent vari-

ables when only a linear mixture of them is observed; see for example Comon and Jutten (2010)

and Nordhausen and Oja (2018). A common assumption for BSS is that the latent variables are

second-order stationary and uncorrelated. That is, we assume xpsq “ Ωzpsq, where xpsq P Rp

is the observed p-variate measurement at location s P Rd, zpsq P Rp is a latent second-order sta-

tionary p-variate source with uncorrelated components, and Ω P Rpˆp is an unknown full-rank

mixing matrix. To estimate the unmixing matrix Γ, i.e. Ω´1, Nordhausen et al. (2015) have pro-

posed an estimator based on the simultaneous diagonalization of two scatter matrices, and Bachoc

et al. (2020) have extended this method to jointly diagonalize more than two scatter matrices for

multivariate spatial data. Pre-processing the data with such a SBSS method is appealing from a
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1 INTRODUCTION

practitioners perspective as the latent components more likely reflect the physical nature of the

processes that generated the data. For example Nordhausen et al. (2015) found six physical mean-

ingful latent components in a geostatistical dataset which were not easily detectable in the original

data. Moreover, it suffices to investigate only p maps as the resulting latent components are spa-

tially uncorrelated. From a statisticians perspective common tasks such as modeling of the spatial

covariance or predictions of the original data are again modified as the statistical analysis can be

carried out with univariate tools on the latent components. The analysis results of the latent com-

ponents can be simply transferred back to the original data by using the fact that the transformation

is linear in its nature. Muehlmann et al. (2021) investigate this procedure in the context of geo-

statistical prediction. Avoiding the task of building one multivariate model in favor of p univariate

ones simplifies the given tasks significantly. Nevertheless, if the dimension p is still high a further

reduction is desirable. This reduction can be obtained by the fact that not all of the p components

might be of interest.

The SBSS model of Nordhausen et al. (2015) gives no preference to any of the latent compo-

nents, with all p of them being basically of equal interest from a statistical perspective. However,

in practical cases of BSS, it is often assumed that only a few components are of interest and to be

regarded as the signal, while the remaining components are discarded as noise. This can be trans-

lated in the statistical BSS model by supposing that the latent components consist of two parts,

z “ pzTs , z
T
wq

T , where zs P Rq is the signal, and zw P Rp´q is the noise. Matilainen et al. (2018),

Virta and Nordhausen (2021) and Nordhausen and Virta (2018) all consider components with serial

dependence as signals in a time series context. Identifying and discarding the noise part leads to

less components which need to be investigated by practitioners and modeled by statisticians which

in turn simplifies the desired analysis.
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In this paper, we consider SBSS in which signals are characterized as components having

second-order spatial dependence. We derive a test for the signal dimension q based on the joint

diagonalization of two or more scatter matrices that are specified by kernel functions. We then

provide the asymptotic distribution of the test statistic. This asymptotic result enables to extend

the framework of Bachoc et al. (2020), to the case where the signal and noise components are not

all asymptotically identifiable, as well as where their distributions are not necessarily Gaussian.

We develop new proof techniques to obtain these two extensions. In particular, the first extension

is based on generalizing arguments made by Virta and Nordhausen (2021) to a spatial setting. The

second one is based on extending arguments in Bachoc et al. (2020) beyond the case of transformed

Gaussian processes.

In addition, we demonstrate that introducing new scatter matrices compared to the one used by

Bachoc et al. (2020) enables the obtainment of a neater asymptotic distribution of the test statistic

(see Remark 1). Based on the test, we then provide a consistent estimator of the unknown signal

dimension. Furthermore, the detection of the noise components results in a drastic computational

cost reduction for subsequent multivariate spatial modeling where then only the signal components

are used.

We put forward several bootstrap versions of the test. For both the asymptotic and bootstrap

tests, we demonstrate that computational gains are obtained when the observation locations are

gridded. In an extensive simulation study, we then show that the various tests already have lev-

els close to the nominal one, for small to moderate sample sizes. We also observe an accurate

estimation of the signal dimension. We conclude that the asymptotic test is comparable to and

often outperforms the bootstrap ones while being less computationally demanding. Employing

an environmental application, we then show that our methods enable the reduction of the dimen-
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sion of a multivariate spatial data set, retaining the most interpretable and informative estimated

independent components and discarding the unusable ones as noise.

The remainder of the paper is organized as follows. In Section 2, we introduce the statisti-

cal setting of the problem and present our test statistic. The methods and main results are then

described in Section 3 and the simulation results are reported in Section 4. We finally discuss

some concluding remarks in Section 5. The proofs of the theoretical results and the environmental

application are presented in the Supplemental Material.

2. Setup and Model

Suppose our data consists of a p-dimensional multivariate random field xpsq “ tx1psq, ¨ ¨ ¨ , xppsqu
T ,

s P S, where S Ď Rd is a region of interest. The covariance and cross-covariance functions of

x, defining its second-order structure, are some of its central characteristics. We can refer, for

instance, to De Iaco et al. (2013), Genton and Kleiber (2015) and Gneiting et al. (2010) for an

introduction and various approaches to modeling these.

Here, the second-order structure of x is assumed to obey an SBSS model:

xpsq “ Ωzpsq, (2.1)

where Ω is a p ˆ p unknown invertible matrix, and zpsq “ tz1psq, ¨ ¨ ¨ , zppsqu
T is the latent field

having independent components with Covpzpsqq “ Ip for all s P S. It is interesting to see the

connection of the SBSS model to one very popular multivariate covariance model, namely the

linear model of coregionalization (LMC) which writes as

CLMC
phq “

r
ÿ

m“1

Tmρmphq.

Here, Tm are non-negative definite pˆ p coregionalization matrices and ρmphq are univariate sta-

tionary correlation functions. Details on the LMC can be found in for example Goulard and Voltz
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(1992); Schmidt and Gelfand (2003); Emery (2010). Dimension reduction in the LMC literature

is carried out by firstly fitting an LMC and then decreasing the number of terms r or finding a

lower rank representation of the coregionalization matrices. The former is achieved by an eigende-

composition of the coregionalization matrices. If the system of eigenvectors is equal across a few

summands this hints that these matrices are proportional. This is referred to as intrinsic correlation,

details are provided by Wackernagel (1994). The latter is addressed by Goulard and Voltz (1992)

which describe that the coregionalization matrices arise from a scalar product matrix of latent vari-

ables. Variants of a principal component analysis (PCA) of the coregionalization matrices lead to

a lower dimensional representation of these latent variables. This is denoted as regionalized PCA,

see also (Wackernagel, 2003, Chapter 27) for details.

As pointed out by Bachoc et al. (2020) the SBSS model is a special case of the LMC where

r “ p, Tm “ ωmω
J
m (ωm is the m-th column of the mixing matrix Ω) leading to rank-one

corregionalization matrices and the ρmphq correspond to the univariate correlation functions of

the entries of the latent field zpsq. Although there is a connection between the LMC and SBSS

the advantage of SBSS lies in the fact that estimating the unmixing matrix (or equivalently the

coregionalization matrices) is done without estimating or specifying a model for the covariances

of the latent field components. Moreover, our approach in dimension reduction is different in the

sense that we test if some latent components are white noise. This leads to a reduction of r.

Next we present how to estimate the unmixing matrix Γ, i.e. Ω´1, and propose our test statistic

for the signal dimension of the SBSS model (2.1). Let Ip¨q denote the indicator function throughout

this paper and consider the kernel functions f0, f1, ¨ ¨ ¨ , fk, with f` : Rd Ñ R for ` “ 0, ¨ ¨ ¨ , k, and

with f0psq “ Ips “ 0q. Note that we call f0, f1, ¨ ¨ ¨ , fk kernels, similarly as the past references

Bachoc et al. (2020); Muehlmann et al. (2022), and for instance analogously to kernel smoothing,
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2 SETUP AND MODEL

but f0, f1, ¨ ¨ ¨ , fk should not be confused with the covariance functions of the components of x or

z. For f P tf0, f1, ¨ ¨ ¨ , fku, let

Fn,f “
1

n

n
ÿ

i,j“1

f 2
psi ´ sjq,

where ts1, . . . , snu Ď S is the set of two-by-two distinct observation points. Notice that Fn,f0 “ 1.

Let f P tf1, ¨ ¨ ¨ , fku. The population local covariance (or scatter) matrices are then defined as,

Mpfq “
1

n
a

Fn,f

n
ÿ

i“1

n
ÿ

j“1

fpsi ´ sjqE
`

xpsiqxpsjq
T
˘

(2.2)

and Mpf0q “
1

n

n
ÿ

i“1

E
`

xpsiqxpsiq
T
˘

,

and the corresponding sample local covariance matrices are defined as

M̂pfq “
1

n
a

Fn,f

n
ÿ

i“1

n
ÿ

j“1

fpsi ´ sjqxpsiqxpsjq
T (2.3)

and M̂pf0q “
1

n

n
ÿ

i“1

xpsiqxpsiq
T .

Remark 1. The normalizing quantity nF 1{2
n,f in (2.2) and (2.3) is slightly different from that in

Bachoc et al. (2020), where simply n is used. Here, the introduction of F 1{2
n,f enables us to obtain a

simple and elegant asymptotic distribution of the test statistic for the number of noise components

(see Proposition 1).

The k ` 1 sample local covariance matrices M̂pf0q, M̂pf1q, ¨ ¨ ¨ , M̂pfkq are used to estimate

the unmixing matrix Γ as

Γ̂ P arg max

Γ:ΓM̂pf0qΓT“Ip
Γ has rows γT

1 ,¨¨¨ ,γ
T
p

p
řk

`“1tγ
T
j M̂pf`qγju

2qj“1,¨¨¨ ,p are in descending order

k
ÿ

`“1

p
ÿ

j“1

tγTj M̂pf`qγju
2. (2.4)

The unmixing matrix should “diagonalize” all k local covariance matrices and we let for ` “

1, ¨ ¨ ¨ , k,

D̂` “ Γ̂M̂pf`qΓ̂
T
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where all D̂` should be close to a diagonal matrix. Note that for finite data exact diagonalization

is usually possible only for k “ 1. Further, by definition,
řk
`“1 D̂

2

`,1,1 ě ¨ ¨ ¨ ě
řk
`“1 D̂

2

`,p,p. We

are now interested in the case in which there are q “real” continuous random fields in z, while the

remaining p´ q components are white noise.

For q P t0, ¨ ¨ ¨ , p´ 1u, we are interested in testing the following hypothesis

H0q : There are exactly p´ q white noise processes in z.

This hypothesis is formalized in the following two conditions:

Condition 1. For a “ 1, ¨ ¨ ¨ , p´ q, the covariance function of zq`a is given by

Covpzq`apuq, zq`apvqq “ Ipu´ v “ 0q.

Condition 2. For ` “ 1, ¨ ¨ ¨ , k, f` is symmetric and satisfies f`p0q “ 0. For a “ 1, ¨ ¨ ¨ , q, we have

lim inf
nÑ8

k
ÿ

`“1

”

`

Ω´1Mpf`qΩ
´T

˘

a,a

ı2

ą 0.

Note that in Conditions 1 and 2, we assume that the sources are ordered such that the q sig-

nal components come first and are followed by the p ´ q noise components. As the order of the

sources is not identifiable, this assumption comes without loss of generality. The fulfillment of

Condition 2 means that the correlation in the signal fields z1, ¨ ¨ ¨ , zq is sufficient for these signals

to be asymptotically separated from the noise fields zq`1, ¨ ¨ ¨ , zp. It should also be noted that we

do not need to consider the stronger assumption that the q vectors of the a-th diagonal elements in

Ω´1Mpf1qΩ
´T , ¨ ¨ ¨ ,Ω´1MpfkqΩ

´T , for a “ 1, ¨ ¨ ¨ , q, for the signal random fields, are asymp-

totically distinct (see Assumption 9 in Bachoc et al. (2020)) and non-zero.

We remark that when Condition 2 is satisfied by f1, . . . , fk, it is likely to be also satisfied

with the single kernel f1 ` ¨ ¨ ¨ ` fk. This means that using a single kernel can be sufficient to
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2 SETUP AND MODEL

obtain the various asymptotic results of Section 3 on the test statistic below. Nevertheless, the

flexibility of allowing several kernels is beneficial here. Indeed, after having tested (or estimated)

the signal dimension, the user may be interested in estimating individually some of the first (most

important) signal components. As shown in Bachoc et al. (2020), this usually requires multiple

kernels, both for theoretical guarantees and practical efficiency. Using the same set of kernels for

these two studies (signal dimension and components) can be desirable for the user, for instance for

interpretability reasons. For more details on joint diagonalization in multivariate methods see also

Nordhausen and Ruiz-Gazen (2022).

Conditions 1 and 2 motivate the following block decompositions for ` “ 1, ¨ ¨ ¨ , k:

M̂pf`q “

¨

˚

˚

˝

M̂pf`qqq M̂pf`qq0

M̂pf`q0q M̂pf`q00

˛

‹

‹

‚

and D̂` “

¨

˚

˚

˝

D̂`,qq D̂`,q0

D̂`,0q D̂`,00

˛

‹

‹

‚

where the blocks M̂pf`qqq and D̂`,qq have size qˆ q and the blocks M̂pf`q00 and D̂`,00 have dimen-

sion pp´ qq ˆ pp´ qq.

Then our test statistic is

tq “
n

2

k
ÿ

`“1

||D̂`,00||
2, (2.5)

where || ¨ || is the Frobenius norm. The test statistic is then expected to be bounded under the null

hypothesis, and to diverge when one of zq`1, . . . , zp is spatially correlated. The test will reject

the null hypothesis H0q if tq is larger than a certain threshold, in which case the dataset provides

indications that more than q signal components are present. For a nominal level α P p0, 1q, the

threshold will be set to the quantile 1 ´ α of the asymptotic distribution of Proposition 1 or 2 or

Corollary 1, depending on the context.
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3. Theory and Methodology

3.1 Asymptotic Tests for Dimension

Assume now that x satisfies Model (2.1). Then, let q denote the true value of the signal dimension

(i.e., H0q is true) and consider the limiting distribution of tq. To establish the asymptotic results,

we need to introduce a few technical conditions.

Condition 3. The random fields z1, ¨ ¨ ¨ , zp are independent, centered and stationary.

The independence assumption makes the study of the sources meaningful and the indepen-

dence of the noise components is used to obtain the asymptotic distribution of the test statistic in

Propositions 1 and 2 and Corollary 1, see specifically the computations of the proof of Proposition

1. The stationarity assumption is standard in spatial statistics, see for instance Shaby and Rup-

pert (2012); Bachoc et al. (2020). The zero mean assumption is replaced by a constant unknown

mean assumption in Section 3.4. For a “ 1, ¨ ¨ ¨ , p, we let za have stationary covariance function

Ka : Rd Ñ R with Covpzapsq, zaps` hqq “ Kaphq.

Condition 4. A fixed δ ą 0 exists such that, for all n P N and, for all i ‰ j, i, j “ 1, ¨ ¨ ¨ , n, ||si ´

sj|| ě δ.

Condition 4 implies that we are dealing with the increasing-domain asymptotic framework.

For examples, see Cressie (1993, Section 7.3) for an introduction and Bevilacqua et al. (2012) for

recent developments.

Condition 5. Fixed β ą 0 and α ą 0 exist such that, for all a “ 1, ¨ ¨ ¨ , q, for u, v P N, u ě 1,

v ě 1, u` v ď 4, for y1, . . . ,yu P Rd, for w1, . . . ,wv P Rd,

|Cov pzapy1q . . . zapyuq, zapw1q . . . zapwvqq| ď
β

1`∆2d`1`α
,

10



3.1 Asymptotic Tests for Dimension

where

∆ “ min
rPt1,...,uu
sPt1,...,vu

||yr ´ws||.

Condition 5 means that, for the q signal processes, two products of signal values between two

sets of input locations have a covariance that decays with the smallest distance between two points

of the sets. Hence, this condition can be interpreted as weak dependence and is mild in the sense

that only pairs of sets with a sum of four elements or less need to be considered.

In the special case where the signal processes are stationary Gaussian, the condition holds

when the covariance functions satisfy, for two constants 0 ă γ1, γ2 ă 8, for a “ 1, . . . , q, h P Rd,

|Kaphq| ď γ1 expp´γ2||h||q. This can be seen from the proof of Lemma 7 in Bachoc et al. (2020),

in the case where F there is the identity function. This latter condition on the covariance functions

holds for many standard ones in spatial statistics such as the spherical, Gaussian, exponential and

Matérn ones (Cressie, 1993, Section 2.3). Note that the exponential decay of the covariance could

also be weakened to a polynomial one, from direct arguments, to still yield Condition 5. We do

not elaborate on this for the sake of concision. Furthermore, Lemma 7 in Bachoc et al. (2020)

also shows that Condition 5 holds when the signal processes are non-Gaussian and obtained from

non-linear transformations of stationary Gaussian processes, under mild technical assumptions.

Note that when the signal and noise processes are stationary Gaussian, Condition 5 could be

replaced by the simpler condition that their covariance functions satisfy, for two constants 0 ă

γ1, γ2 ă 8, for a “ 1, . . . , q, h P Rd, |Kaphq| ď γ1{p1 ` ||h||
d`γ2q. With this replacement,

one could show that Propositions 1 to 4 and Corollary 1 would still hold, in particular since in

this case Lemmas 3 and 4 in the Supplemental Material directly hold from Theorem B.1 in the

supplementary material to Bachoc et al. (2020). We skip the details for the sake of brevity.
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Condition 6. For a “ 1, . . . , p ´ q, the random variables tzq`apyq; y P Rdu are independent.

Assuming Condition 5 holds, then for the same α ą 0, we have

max
a“1,...,p´q

sup
yPRd

E
`

|zq`apyq|
4`α

˘

ă 8. (3.6)

Condition 6 requires the noise values to be independent (not only decorrelated). The inde-

pendence assumption is important for the computation of the asymptotic distribution of the test

statistic, in particular to compute moments of order more than two (see the use of Lemma 6 in the

Supplemental Material) and to obtain a central limit theorem (see Lemma 4 in the Supplemental

Material). The condition in (3.6), when taken together with Condition 3 (stationarity) simply re-

quires a finite moment of order strictly more than four for the marginal distribution of the noise,

which is arguably mild.

Condition 7. Assuming Condition 5 holds, then for the same β ą 0 and α ą 0, we have, for

` “ 1, ¨ ¨ ¨ , k

|f`pyq| ď
β

1` ||y||d`α
.

A typical example of a function f P tf1, ¨ ¨ ¨ , fku for which Conditions 2 and 7 are satisfied is

the “ring” kernel:

Rpr1, r2qpsq “ Ipr1 ă ||s|| ď r2q, (3.7)

with 0 ă r1 ă r2 ă 8.

Condition 8. For ` “ 1, ¨ ¨ ¨ , k, we have

lim inf
nÑ8

Fn,f` ą 0.

Condition 8 is mild and simply requires that for ` “ 1, ¨ ¨ ¨ , k, the number of pairs of obser-

vation locations si, sj, i, j “ 1, ¨ ¨ ¨ , n, for which f`psi ´ sjq is non-zero is not negligible when

12



3.1 Asymptotic Tests for Dimension

compared with n.

Condition 9. For all `, `
1

“ 1, ¨ ¨ ¨ , k, ` ‰ `
1

, f`pyqf`1 pyq “ 0 for all y P Rd.

Condition 9 means that the supports of the kernels are disjoint. This enables us to have a

simple and elegant chi-squared asymptotic distribution of the test statistic. When Condition 9 does

not hold, we can still compute the asymptotic distribution of the test statistic (see Proposition 2),

which is less simple but still explicit. Hence, importantly, Condition 9 is not necessary to have an

asymptotically valid test where the quantiles from the asymptotic null distribution are simple to

approximate numerically. As discussed above, the kernels in Condition 9 are not the covariance

functions of x or z, so Condition 9 does not make any assumption on the covariance structures of

x and z.

Our first main result is on the asymptotic null distribution of our test statistic tq.

Proposition 1. Assume that Conditions 1-9 hold. Then, as nÑ 8,

tq
d
ÝÑ χ2

kpp´qqpp´q`1q{2.

In the next proposition, we show that when considering the same normalization as that consid-

ered by Bachoc et al. (2020) for the local covariance matrices, and when removing the assumption

of disjoint kernel supports, we still obtain an asymptotic distribution of the test statistic as the dis-

tribution of the squared Euclidean norm of a Gaussian vector. In this proposition, we consider a

metric dw generating the topology of weak convergence on the set of Borel probability measures

on Euclidean spaces (e.g., Dudley, 2018, p. 393).

Proposition 2. Assume that Conditions 1-7 hold. Let the test statistic t̃q be defined as tq, with

13
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M̂pfq replaced by

ĂMpfq “
1

n

n
ÿ

i“1

n
ÿ

j“1

fpsi ´ sjqxpsiqxpsjq
T

for f P tf1, ¨ ¨ ¨ , fku. Let Lt̃q ,n be the distribution of the test statistic t̃q, and let LV,n be the

distribution of
řk
`“1

řp´q
a,b“1 V2

`,a,b, where pV`,a,bq`“1,¨¨¨ ,k,a,b“1,¨¨¨ ,p´q is a Gaussian vector with mean

vector 0 and with covariance matrix defined by

CovpV`,a,b,V`1,a1,b1q “
1

2
Fn,f`,f`1 pIpa “ a1qIpb “ b1q ` Ipa “ b1qIpb “ a1qq

with

Fn,f`,f`1 “
1

n

n
ÿ

i,j“1

f`psi ´ sjqf`1psi ´ sjq,

for `, `1 “ 1, ¨ ¨ ¨ , k and a, b, a1, b1 “ 1, ¨ ¨ ¨ , p´ q. Then, as nÑ 8,

dwpLt̃q ,n,LV,nq Ñ 0.

In the following corollary, we show that if the supports of the kernels are disjoint, the test

statistic converges to a weighted chi-squared distribution. See e.g., Bodenham and Adams (2016)

for a presentation of the approximation procedures for this distribution.

Corollary 1. Consider the setting of Proposition 2 and assume additionally that Condition 9 holds.

Then, the limiting distribution LV,n in Proposition 2 is equal to the distribution of

k
ÿ

`“1

Fn,f`X 2
`

where X 2
1 , ¨ ¨ ¨ ,X 2

k are independent and are chi-squared distributed with pp ´ qqpp ´ q ` 1q{2

degrees of freedom.

3.2 Regular Domain as a Special Example

When the data are observed in a regular-grid domain, i.e., S Ď Zd, the kernel functions can be

based on the natural notion of a spatial neighborhood on the grid, which simplifies our technique.
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3.2 Regular Domain as a Special Example

A location s0 “ ps1, ¨ ¨ ¨ , sdq P Zd has 2d one-way lag-h neighbors, ps1 ˘ h, ¨ ¨ ¨ , sdq, ps1, s2 ˘

h, ¨ ¨ ¨ , sdq, ¨ ¨ ¨ , ps1, ¨ ¨ ¨ , sd´1, sd ˘ hq. For example, if d “ 2 and h “ 1, the 4 one-way lag-1

neighbors of s0 are “left” ps1´1, s2q, “right” ps1`1, s2q, “up” ps1, s2`1q and “down” ps1, s2´1q.

Therefore, we could define the one-way lag-1 population and sample local covariance matrices as

M “
1

a

n
řn
i“1 |Nsi |

n
ÿ

i“1

ÿ

sjPNsi

E
`

xpsiqxpsjq
T
˘

and M̂ “
1

a

n
řn
i“1 |Nsi |

n
ÿ

i“1

ÿ

sjPNsi

xpsiqxpsjq
T (3.8)

where, for x P Zd,

Nx “ ts P ts1, . . . , snu; |x´ s| “ 1u,

with |u| “ |u1| ` ¨ ¨ ¨ ` |ud| for u “ pu1, . . . , udq P Rd. The matrices M and M̂ are of the form

Mpfq and M̂pfq in (2.2) and (2.3) for fpsq “ Ip||s|| “ 1q, s P Rd.

Similarly, if d “ 2 a location s0 “ ps1, s2q P Z2 has 4 two-way lag-1 neighbors that are of

the form ps1 ˘ 1, s2 ˘ 1q. In general, for m,h P N, 1 ď m ď d, the m-way lag-h population and

sample local covariance matrices can be defined as:

M “
1

b

n
řn
i“1 |Nm

h,si
|

n
ÿ

i“1

ÿ

sjPNm
h,si

E
`

xpsiqxpsjq
T
˘

and M̂ “
1

b

n
řn
i“1 |Nm

h,si
|

n
ÿ

i“1

ÿ

sjPNm
h,si

xpsiqxpsjq
T , (3.9)

where, for x P Zd,

Nm
h,x “ ts P ts1, . . . , snu; s “ ψJpx, ζJpxq ` hvq, for some J P Am,v P t´1, 1umu,

with Am “ tJ “ pi1, ¨ ¨ ¨ , imq P Nm; 1 ď i1 ă ¨ ¨ ¨ ă im ď du, that is |Am| “
`

d
m

˘

and

for J “ pi1, ¨ ¨ ¨ , imq P Am,y “ py1, ¨ ¨ ¨ , ymq P Zm, ζJpxq “ pxi1 , ¨ ¨ ¨ , ximq, ψJpx,yq “

px1, ¨ ¨ ¨ , xi1´1, y1, xi1`1, ¨ ¨ ¨ , xim´1, ym, xim`1, ¨ ¨ ¨ , xdq.
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In general, in Equations (2.2) and (2.3) the m-way lag-h population and sample local covari-

ance matrices M and M̂ can also be written in the form Mpfq and M̂pfq, with fpsq “ Ips P

t´h, 0, hud, |s| “ hmq, s P Rd.

Consequently, for the similarly defined test statistic tq, the same limiting conclusions can be de-

rived. By exploiting the neighborhood structure in the regular domain case, we can also shorten the

computation time for other techniques, such as the proposed asymptotic test or spatial bootstrap,

with the greatest time improvement being achieved for the latter (see Sections 3.5 and 4.3).

3.3 Estimation of the Number of Signal Components

In this section, we investigate an estimator of the signal number q based on the asymptotic tests.

Now we wish to test the null hypothesis, for r P t0, ¨ ¨ ¨ , p´ 1u,

H0r : There are exactly p´ r white noise processes in z.

This hypothesis states that the signal dimension is r. Similar to Section 2, for r “ 0, . . . , p´ 1, we

can partition, for ` “ 1, . . . , k,

pD` “

¨

˚

˚

˝

pD`,rr
pD`,r´r

pD`,´rr
pD`,´r´r

˛

‹

‹

‚

where the block pD`,rr has size rˆr and the block pD`,´r´r has size pp´rqˆpp´rq. Then, consider

the test statistic:

tr “
n

2

k
ÿ

`“1

||pD`,´r´r||
2.

We now use the test statistic tr, r “ 0, 1, ¨ ¨ ¨ , p ´ 1 for the estimation problem and derive a

number of useful limiting properties in the following proposition.

Proposition 3. Assume the same conditions as in Proposition 1. Then,
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• If r ě q, then tr is bounded in probability.

• If r ă q, then there exists a fixed b ą 0 such that tr{n ě b` opp1q.

A consistent estimate q̂ of the unknown signal dimension q ď p ´ 1 can then be based on the

test statistic tr as the following proposition states.

Proposition 4. Assume the same conditions as in Proposition 1. Let pcnqnPN be a sequence of

positive numbers such that cn Ñ 8 and cn “ opnq as nÑ 8. Let

q̂ “ min tr P t1, . . . , p´ 1u | tr ď cnu ,

with the convention min∅ “ p. Then, q̂ Ñ q in probability as nÑ 8.

Specifying the sequence cn is however not obvious in practice and still an open problem in or-

der determination using hypothesis tests based on eigenvalues as can be done similarly in principal

component analysis (PCA), sliced inverse regression or independent components analysis, see for

example Bura and Cook (2001); Nordhausen et al. (2017, 2022) and reference therein. Neverthe-

less, an estimator q̂ can also be found by applying a suitable strategy to perform successive tests.

Later, in the simulations we will always test for simplicity at the same significance level and apply

a divide-and-conquer strategy for the testing.

Remark 2. One can check that Propositions 3 and 4 still hold if the setting of Proposition 1 is

replaced by that of Proposition 2.

3.4 General Mean

The previous results were derived under the assumption that Epzpsqq “ 0. In the next proposition,

we show that the conclusions of Propositions 1, 2, 3, and 4 and of Corollary 1 are unchanged when

17



Muehlmann, Bachoc, Nordhausen, and Yi

z has a non-zero unknown constant mean function and when the observations are empirically

centered for the computation of the local covariance matrices.

Proposition 5. Assume that for a “ 1, ¨ ¨ ¨ , p, za has constant mean function µa P R. Let, for

f P tf1, ¨ ¨ ¨ , fku,

Mpfq “
1

n
a

Fn,f

n
ÿ

i“1

n
ÿ

j“1

fpsi ´ sjqpxpsiq ´ x̄qpxpsjq ´ x̄qT

and Mpf0q “
1

n

n
ÿ

i“1

pxpsiq ´ x̄qpxpsiq ´ x̄qT , (3.10)

with x̄ “ p1{nq
řn
i“1 xpsiq.

Then, the conclusions of Propositions 1, 2, 3, and 4 as well as that of Corollary 1 still hold under

the same assumptions, except that M̂pfq is everywhere replaced by Mpfq.

For the remainder of the paper, we assume that the mean is unknown.

3.5 Bootstrap Tests for Dimension

The above derived noise dimension test based on the large sample behavior of the introduced test

statistic is efficient to compute, but a large sample size may be needed for the finite sample level

to match the asymptotic one. As an alternative for smaller sample sizes, we can formulate noise

dimension tests based on the bootstrap.

In its original form, the bootstrap is a non-parametric tool for estimating the distribution of

an estimator or test statistic by re-sampling from the empirical cumulative distribution function

(ECDF) of the sample at hand. It has had good performance in many statistical problems by

theoretical analysis as well as simulation studies and applications to real data. See Chernick et al.

(2011) or Lahiri (2003) for a more detailed discussion.
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3.5 Bootstrap Tests for Dimension

Again, we assume that the observed random field is following the SBSS model given by Equa-

tion (2.1) and want to test H0r given an SBSS solution of Equation (2.4) for a certain kernel setting

and the corresponding test statistic seen in Equation (2.5). In the following, we formulate a method

for re-sampling from the distribution of Model (2.1) by respecting the null hypothesis H0r. In line

with the ideas presented by Matilainen et al. (2018) this is achieved by leaving the hypothetical

signal part of the estimated latent field ẑpsq “ Γ̂xpsq untouched and manipulating only the hypo-

thetical noise parts pẑpsqqi for i “ r ` 1, . . . , p and all s P ts1, . . . , snu in one of the following

ways.

Parametric: Here, it is assumed that each noise part is independent and identically distributed

(iid) Gaussian, as is usual for white noise processes. This leads to bootstrap samples pz˚psqqi „

Np0, 1q for i “ r ` 1, . . . , p and corresponding to each s P ts1, . . . , snu.

Permute: Here, we assume that each noise component is still iid but that it does not necessarily

follow a Gaussian distribution. Therefore, bootstrap samples are drawn from the ECDF of the

joint noise components: pz˚psqqi „ ECDFppẑps1qJqŵ, . . . , pẑpsnqJqŵq, with i “ r ` 1, . . . , p,

s P ts1, . . . , snu and where ŵ denotes the noise components (r ` 1 to p) of ẑ.

After replacing the hypothetical noise part by a bootstrap sample in one of the former ways,

the goal of sampling from Model (2.1) under H0r is achieved. However, so far the uncertainty of

estimating the signal has not been considered in the bootstrap test. Therefore, an optional second

step in the whole re-sampling procedure is devoted to drawing a spatial bootstrap sample from

the already manipulated sample as follows. We suggest the application of spatial bootstrapping as

discussed in Lahiri (2003), and in the following we summarize the main ideas. Let us recall that the

set of sampling sites C “ ts1, . . . , snu lies inside the d-dimensional spatial domain S, which can be

viewed as the “sample region” and hence C Ď S Ď Rd. S is divided into non-overlapping blocks
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of size md that lie partially in S, formally B “ tbi “ pi ` p0, 1sdqm X S : pi ` p0, 1sdqm X S ‰

H, i P Zdu, and overlapping blocks that lie fully in S, written as Bbs “ tbj “ j ` p0, 1sdm :

j` p0, 1sdm Ď S, j P Zdu. The bootstrapped spatial domain S˚ is formed by replacing each block

bi P B with a randomly with replacement sampled block bj P Bbs that is trimmed to the shape of

bi by bj X pbi ´ im ` jq. Hence, the trimmed version of bj remains at the original location of bj,

while the shape changes to that of bi, taking care of the boundary blocks that do not fully lie within

S. Finally, the bootstrapped version of the random field writes as z˚ “ tzpsq : s P S˚ X Cu. Note

that in each spatial bootstrap iteration, the shape of S˚ and therefore the bootstrapped sampling

sites differ. This in turn makes the computation of the local covariance matrices a demanding task,

as it relies on the distances between all sampling sites, which need to be newly computed in each

iteration. For regular data, this can be avoided by using a slightly different bootstrap regime as

follows.

Nordman et al. (2007) have suggested a slightly different approach for sampling sites located

on a regular grid, meaning that the sampling sites satisfy ts1, . . . , snu Ď SXZd. Again, the domain

S is divided into blocks of sizemd that are either non-overlapping or overlapping but lie completely

inside S, leading to B “ tpi ` p0, 1sdqm : pi ` p0, 1sdqm Ď S, i P Zdu and Bbs, as defined above.

The key difference is that the bootstrap sample is drawn at the level of the random field values,

whereas the former bootstrap version operates at the level of the spatial domain. Specifically, for

each block bi P B the values tzpsq : s P bi X Zdu are replaced by tzpsq : s P bj X Zdu for a

randomly with replacement chosen block bj P Bbs. This procedure keeps the bootstrapped spatial

domain and sampling sites equal in all iterations, namely the unison of all blocks from B. This

in turn simplifies the computation of local covariance matrices, as only the random field values

change. We will compare the computation times of the former two approaches in the simulation
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3.5 Bootstrap Tests for Dimension

study presented in Section 4.3.

Algorithm 1 Testing H0r : q “ r

Set the number of resamples B, the observed sample X “ pxps1q, . . . ,xpsnqq
J, the flag

spatial resampling and optionally the block size m;

Compute the SBSS solution and get Γ̂ and Ẑ “ pΓ̂XJqJ and compute test statistic t “ trpXq;

for k P t1, . . . , Bu do

Replace the last p´ r columns of Ẑ by either a parametric or bootstrap sample to get Z˚k;

if spatial resampling = TRUE then
Replace Z˚k by a full spatial bootstrap sample. See text for details.;

Compute X˚k Ð Γ̂Z˚k and tk Ð trpX
˚kq;

Return the p-value: r#ptk ě tq ` 1s{pB ` 1q;

Algorithm 2 Divide and Conquer
Set lower, upper and α;

middle “ tpupper ´ lowerq{2u;

while pmiddle! “ lowerq && pmiddle! “ upperq do
p “ test functionpr “ middleq;

if p ă alpha then
lower “ middle;

else
upper “ middle;

middle “ tpupper ´ lowerq{2u;
Return q̂ “ middle` 1;

Algorithm 1 summarizes the formerly discussed bootstrap strategy to test for one specific value

of signal dimension r. To estimate the signal dimension, a sequence of tests for different signal

dimensions r at a given significance level α are carried out. A number of different test sequences

are possible, but we rely on a divide-and-conquer strategy outlined in Algorithm 2. Here, the

test function could be either one of the bootstrap test variants seen in Algorithm 1 or the asymp-

21



Muehlmann, Bachoc, Nordhausen, and Yi

totic test outlined above.

4. Simulation

To validate the performance of the methods introduced above, we carried out five extensive sim-

ulation studies in R 3.6.1 R Core Team (2019) with the help of the packages SpatialBSS

from Muehlmann et al. (2020), JADE from Miettinen et al. (2017), sp from Bivand et al. (2013),

raster from Hijmans (2020), gstat from Gräler et al. (2016) and RandomFields from

Schlather et al. (2015).

4.1 Simulation Study 1: Hypothesis Testing

In this part of the simulation, we explored the performance of hypothesis testing. For all the

following simulations, we considered the SBSS model, as shown in Equation (2.1), where without

loss of generality we set µa “ 0 for a “ 1, . . . , p and assume the mean to be unknown. For the

latent signal part we used two different three-variate random field model settings. Therefore, the

true dimension is always q “ 3. All the random fields were Gaussian and followed a Matérn

correlation structure, and the a-th random field za thus had its covariance function value at u,v P

Rd, given by:

Kaph; ν, φq “
1

2ν´1Γpνq

ˆ

h

φ

˙ν

Kν

ˆ

h

φ

˙

, h “ ||u´ v||,

where ν ą 0 is the shape parameter, φ ą 0 is the range parameter, Kν is the modified Bessel

function of second kind with shape parameter ν, Γ is the gamma function. The parameters used

were pν, φq P tp3, 2q, p2, 1.5q, p1, 1qu and tp3, 2q, p2, 1.5q, p0.6, 0.6qu for model setting 1 and 2

respectively, which are depicted in Figure 1. Model setting 2 can be viewed as a low-dependence

version of model setting 1. The noise part always consists of iid samples drawn from N2p0, I2q,
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4.1 Simulation Study 1: Hypothesis Testing

Table 1: Rejection rates for model setting 1 based on 2000 simulation repetitions at a significance level of α “ 0.05.

Uniform Skew

Kernel Setting 1 Kernel Setting 2 Kernel Setting 1 Kernel Setting 2

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30ˆ 30

Asym 1.000 0.041 0.006 1.000 0.042 0.007 1.000 0.042 0.004 1.000 0.029 0.003

Sp Param 1.000 0.048 0.006 1.000 0.058 0.001 1.000 0.059 0.004 1.000 0.051 0.000

Sp Perm 1.000 0.050 0.006 1.000 0.059 0.000 1.000 0.058 0.004 1.000 0.052 0.001

Param 1.000 0.042 0.006 1.000 0.044 0.006 1.000 0.050 0.008 1.000 0.039 0.005

Perm 1.000 0.045 0.008 1.000 0.051 0.006 1.000 0.049 0.008 1.000 0.035 0.005

40ˆ 40

Asym 1.000 0.055 0.004 1.000 0.048 0.005 1.000 0.045 0.002 1.000 0.040 0.005

Sp Param 1.000 0.056 0.005 1.000 0.066 0.000 1.000 0.056 0.003 1.000 0.064 0.002

Sp Perm 1.000 0.063 0.005 1.000 0.061 0.000 1.000 0.055 0.004 1.000 0.065 0.002

Param 1.000 0.052 0.007 1.000 0.055 0.003 1.000 0.050 0.007 1.000 0.048 0.005

Perm 1.000 0.056 0.007 1.000 0.052 0.004 1.000 0.048 0.008 1.000 0.050 0.004

50ˆ 50

Asym 1.000 0.049 0.005 1.000 0.040 0.010 1.000 0.040 0.006 1.000 0.044 0.009

Sp Param 1.000 0.052 0.004 1.000 0.053 0.002 1.000 0.047 0.006 1.000 0.064 0.002

Sp Perm 1.000 0.050 0.005 1.000 0.053 0.002 1.000 0.045 0.005 1.000 0.061 0.002

Param 1.000 0.052 0.007 1.000 0.049 0.007 1.000 0.042 0.007 1.000 0.054 0.007

Perm 1.000 0.050 0.008 1.000 0.050 0.006 1.000 0.042 0.010 1.000 0.054 0.008

60ˆ 60

Asym 1.000 0.052 0.006 1.000 0.048 0.010 1.000 0.044 0.004 1.000 0.045 0.004

Sp Param 1.000 0.056 0.006 1.000 0.058 0.003 1.000 0.048 0.005 1.000 0.060 0.000

Sp Perm 1.000 0.055 0.007 1.000 0.057 0.002 1.000 0.052 0.004 1.000 0.058 0.000

Param 1.000 0.049 0.009 1.000 0.054 0.006 1.000 0.043 0.006 1.000 0.048 0.004

Perm 1.000 0.053 0.009 1.000 0.050 0.008 1.000 0.046 0.006 1.000 0.048 0.004
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Table 2: Rejection rates for model setting 2 based on 2000 simulation repetitions at a significance level of α “ 0.05.

Uniform Skew

Kernel Setting 1 Kernel Setting 2 Kernel Setting 1 Kernel Setting 2

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30ˆ 30

Asym 1.000 0.051 0.005 1.000 0.052 0.004 1.000 0.048 0.006 1.000 0.033 0.003

Sp Param 1.000 0.053 0.005 1.000 0.062 0.000 1.000 0.058 0.005 1.000 0.055 0.002

Sp Perm 1.000 0.052 0.006 1.000 0.065 0.001 1.000 0.056 0.006 1.000 0.051 0.001

Param 1.000 0.052 0.011 1.000 0.058 0.003 1.000 0.059 0.011 1.000 0.043 0.004

Perm 1.000 0.048 0.011 1.000 0.060 0.002 1.000 0.061 0.012 1.000 0.044 0.003

40ˆ 40

Asym 1.000 0.060 0.004 1.000 0.052 0.005 1.000 0.050 0.004 1.000 0.038 0.007

Sp Param 1.000 0.063 0.002 1.000 0.060 0.000 1.000 0.060 0.004 1.000 0.054 0.002

Sp Perm 1.000 0.055 0.002 1.000 0.062 0.000 1.000 0.058 0.002 1.000 0.057 0.002

Param 1.000 0.056 0.006 1.000 0.056 0.004 1.000 0.052 0.008 1.000 0.045 0.005

Perm 1.000 0.058 0.005 1.000 0.053 0.004 1.000 0.054 0.006 1.000 0.045 0.005

50ˆ 50

Asym 1.000 0.045 0.004 1.000 0.047 0.004 1.000 0.044 0.005 1.000 0.044 0.004

Sp Param 1.000 0.048 0.002 1.000 0.056 0.000 1.000 0.053 0.002 1.000 0.058 0.001

Sp Perm 1.000 0.049 0.002 1.000 0.053 0.001 1.000 0.050 0.005 1.000 0.055 0.001

Param 1.000 0.045 0.004 1.000 0.050 0.002 1.000 0.048 0.007 1.000 0.051 0.004

Perm 1.000 0.044 0.007 1.000 0.048 0.003 1.000 0.046 0.009 1.000 0.052 0.004

60ˆ 60

Asym 1.000 0.048 0.004 1.000 0.059 0.008 1.000 0.047 0.004 1.000 0.042 0.006

Sp Param 1.000 0.052 0.005 1.000 0.072 0.002 1.000 0.050 0.004 1.000 0.059 0.000

Sp Perm 1.000 0.056 0.003 1.000 0.068 0.002 1.000 0.050 0.004 1.000 0.057 0.000

Param 1.000 0.047 0.009 1.000 0.063 0.004 1.000 0.046 0.005 1.000 0.052 0.003

Perm 1.000 0.048 0.010 1.000 0.063 0.006 1.000 0.048 0.005 1.000 0.050 0.005

24



4.1 Simulation Study 1: Hypothesis Testing

leading to a total latent field dimension of p “ 5 for both model settings. As SBSS is affine

equivariant (for details see Bachoc et al. (2020) and the Supplement) we chose the mixing matrix

to be the identity matrix, i.e., Ω “ I5, without loss of generality.

We focused on squared spatial domains r0, ns ˆ r0, ns (also written in the following as n ˆ n)

of different sizes n P t30, 40, 50, 60u. For a given domain, we considered two different sample

location patterns: uniform and skewed. For the uniform pattern, n2 pairs of px, yq-coordinates

were randomly drawn from a uniform distribution Up0, 1q and then multiplied by n, leading to a

constant sampling location density over the entire domain. We followed the same approach for the

skewed pattern, with the only difference being that the x coordinate values were drawn from a beta

distribution βp2, 5q, resulting in a denser arrangement of samples in the left half of the domain.
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Figure 1: Left: Matérn correlation functions for model setting 1, which consists of the signal random field pz1, z2, z3,1q

with parameters pν, φq P tp3, 2q, p2, 1.5q, p1, 1qu and model setting 2 formed by the signal random field pz1, z2, z3,2q

with parameters pν, φq P tp3, 2q, p2, 1.5q, p0.6, 0.6qu. Middle and right: uniform (middle) and skewed (right) coordi-

nate sample pattern for a spatial domain of size 30 ˆ 30 with three circles of radii p2, 4, 6q representing ring kernel

functions.

For the local covariance matrices (2.3), we used two different kernel function settings. Kernel

setting 1 used only one ring kernel function (3.7) with parameters pr1, r2q “ p0, 2q, while kernel

setting 2 used three ring kernel functions with parameters pr1, r2q P tp0, 2q, p2, 4q, p4, 6qu. Figure 1

depicts a simulation example for each of the uniform and skewed coordinate patterns, where the
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circles represent the different ring kernel radii.

For each of the four simulation settings, we carried out 2000 repetitions, and in each repe-

tition we tested three different null hypothesis (H02, H03, and H04) with the following five test

approaches: asymptotic test (Asym), noise bootstrapping with option parametric (Param), noise

bootstrapping with option permute (Perm), full spatial bootstrapping with option parametric (Sp

Param), and full spatial bootstrapping with option permute (Sp Perm). For all bootstrap ap-

proaches, we fixed the number of re-samples to be B “ 200, and for the full spatial bootstrap,

the block size was equal to m “ 10.

Rejection rates based on a significance level of α “ 0.05 for all simulation settings are pre-

sented in Tables 1 and 2. Overall, all the test methods appeared to maintain the expected rejection

rates, which were 1.00 for H02, 0.05 for H03, and ă 0.05 for H04 based on α “ 0.05. Only for

small samples sizes (30ˆ 30) did the asymptotic test show a too small rejection rate for kernel set-

ting 2 and the skewed sample location pattern. Thus, for practical applications, smaller numbers

of kernel functions might be preferable for the asymptotic test. For bootstrapping, the full spatial

variants and those relying only on manipulating the hypothetical noise part performed equally well.

Considering the computation time, the latter bootstrap variant might be preferable, as explored in

more detail in Section 4.3.

4.2 Simulation Study 2: Hypothesis Testing for Different Signal and Noise Distributions

In this part of the simulations we compare the quality of the introduced tests for data distributions

that are non-Gaussian. To do so we keep the exact same simulation outline and the same model

settings as in the former section, but we consider a Gaussian and a non-Gaussian distribution for

the latent field. The latent field of the Gaussian setting (as in the former section) has a three-variate
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Table 3: Rejection rates for model setting 1 with Gaussian and non-Gaussian distribution and the uniform sample

location pattern based on 2000 simulation repetitions at a significance level of α “ 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30ˆ 30

Asym 1.000 0.047 0.007 1.000 0.044 0.006 1.000 0.045 0.005 1.000 0.043 0.005

Sp Perm 1.000 0.050 0.006 1.000 0.056 0.005 1.000 0.068 0.001 1.000 0.059 0.002

Perm 1.000 0.050 0.009 1.000 0.040 0.008 1.000 0.058 0.005 1.000 0.048 0.005

40ˆ 40

Asym 1.000 0.038 0.002 1.000 0.040 0.002 1.000 0.048 0.006 1.000 0.042 0.008

Sp Perm 1.000 0.043 0.002 1.000 0.044 0.002 1.000 0.056 0.000 1.000 0.056 0.002

Perm 1.000 0.038 0.006 1.000 0.046 0.007 1.000 0.049 0.003 1.000 0.046 0.005

50ˆ 50

Asym 1.000 0.043 0.005 1.000 0.045 0.004 1.000 0.040 0.007 1.000 0.044 0.010

Sp Perm 1.000 0.052 0.005 1.000 0.050 0.004 1.000 0.046 0.002 1.000 0.051 0.001

Perm 1.000 0.048 0.009 1.000 0.046 0.004 1.000 0.043 0.005 1.000 0.050 0.006

60ˆ 60

Asym 1.000 0.052 0.007 1.000 0.050 0.006 1.000 0.052 0.006 1.000 0.044 0.005

Sp Perm 1.000 0.054 0.006 1.000 0.048 0.005 1.000 0.058 0.002 1.000 0.051 0.000

Perm 1.000 0.053 0.010 1.000 0.045 0.008 1.000 0.051 0.005 1.000 0.048 0.004

signal part and two-variate standard normal noise part. The non-Gaussian setting has a three-variate

t-distributed signal part with degrees of freedom of 5, 6 and 7 and the two-variate noise part follows

an exponential distribution (with zero mean and unit variance). The Gaussian and the non-Gaussian

settings have equal second-order spatial dependence but the distributions are different, therefore,

differences in the performance of the tests is a result of the different distributions. Moreover, we do

not consider the parametric bootstrap tests for these simulations as they are designed for Gaussian

distributions.

Tables 3 - 6 summarize the rejection rates based on 2000 simulation repetitions for a signifi-
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Table 4: Rejection rates for model setting 1 with Gaussian and non-Gaussian distribution and the skewed sample

location pattern based on 2000 simulation repetitions at a significance level of α “ 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30ˆ 30

Asym 1.000 0.047 0.004 1.000 0.035 0.007 1.000 0.040 0.004 1.000 0.051 0.005

Sp Perm 1.000 0.060 0.004 1.000 0.046 0.007 1.000 0.066 0.001 1.000 0.074 0.001

Perm 1.000 0.050 0.008 1.000 0.040 0.009 1.000 0.049 0.004 1.000 0.062 0.005

40ˆ 40

Asym 1.000 0.044 0.005 1.000 0.040 0.004 1.000 0.034 0.004 1.000 0.048 0.007

Sp Perm 1.000 0.057 0.004 1.000 0.053 0.004 1.000 0.053 0.001 1.000 0.063 0.001

Perm 1.000 0.051 0.007 1.000 0.048 0.007 1.000 0.040 0.004 1.000 0.053 0.006

50ˆ 50

Asym 1.000 0.043 0.004 1.000 0.043 0.002 1.000 0.044 0.006 1.000 0.040 0.008

Sp Perm 1.000 0.054 0.006 1.000 0.054 0.002 1.000 0.058 0.002 1.000 0.060 0.001

Perm 1.000 0.047 0.009 1.000 0.045 0.006 1.000 0.049 0.006 1.000 0.048 0.005

60ˆ 60

Asym 1.000 0.048 0.006 1.000 0.034 0.008 1.000 0.040 0.006 1.000 0.051 0.007

Sp Perm 1.000 0.056 0.007 1.000 0.038 0.009 1.000 0.052 0.001 1.000 0.065 0.001

Perm 1.000 0.048 0.011 1.000 0.039 0.011 1.000 0.046 0.004 1.000 0.057 0.004

cance level of α “ 0.05 for model setting 1 and 2 with uniform and skewed coordinate patterns.

In the same fashion as the former results these simulations show again the desired rejection rates

of 1.00 for H02, 0.05 for H03, and ă 0.05 for H04 based on α “ 0.05. The difference between

the rejection rates for the Gaussian and non-Gaussian cases are most of the time only in the third

decimal place. This means that the tests still keep their good performance even for heavy-tailed

non-Gaussian signal and noise distributions, thus, we carry out the subsequent simulations only

for the Gaussian case.
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4.3 Simulation Study 3: Computation Time Comparison

Table 5: Rejection rates for model setting 2 with Gaussian and non-Gaussian distribution and the uniform sample

location pattern based on 2000 simulation repetitions at a significance level of α “ 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30ˆ 30

Asym 1.000 0.040 0.003 1.000 0.044 0.007 1.000 0.046 0.005 1.000 0.050 0.005

Sp Perm 1.000 0.044 0.003 1.000 0.049 0.006 1.000 0.054 0.001 1.000 0.062 0.001

Perm 1.000 0.044 0.007 1.000 0.047 0.011 1.000 0.053 0.004 1.000 0.056 0.004

40ˆ 40

Asym 1.000 0.042 0.005 1.000 0.046 0.005 1.000 0.046 0.008 1.000 0.058 0.006

Sp Perm 1.000 0.045 0.004 1.000 0.053 0.005 1.000 0.054 0.001 1.000 0.070 0.001

Perm 1.000 0.044 0.008 1.000 0.048 0.006 1.000 0.051 0.006 1.000 0.060 0.004

50ˆ 50

Asym 1.000 0.050 0.004 1.000 0.046 0.006 1.000 0.053 0.007 1.000 0.048 0.005

Sp Perm 1.000 0.050 0.004 1.000 0.050 0.004 1.000 0.061 0.002 1.000 0.053 0.000

Perm 1.000 0.050 0.005 1.000 0.046 0.008 1.000 0.058 0.004 1.000 0.049 0.004

60ˆ 60

Asym 1.000 0.043 0.006 1.000 0.062 0.004 1.000 0.048 0.007 1.000 0.052 0.010

Sp Perm 1.000 0.047 0.005 1.000 0.058 0.003 1.000 0.054 0.000 1.000 0.057 0.001

Perm 1.000 0.046 0.008 1.000 0.057 0.007 1.000 0.051 0.004 1.000 0.052 0.004

4.3 Simulation Study 3: Computation Time Comparison

In this simulation, we investigated the computation times for the various test methods. As an

illustrative example, we again considered a five-variate latent random field with model setting 1

and bivariate Gaussian noise components. In addition, we kept the same spatial domain sizes,

though the sampling sites were changed to be regular defined as r0, ns ˆ r0, ns X Z2. H03 was

tested using the five former mentioned test methods with the same number of bootstrap samples

and block sizes. The key difference is that each test was carried out with code designed for irregular

sample locations as well as code that takes into account simplifications made possible by the fact

that the sample locations were regular (e.g., the simplified spatial bootstrap algorithm). Two ring
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Table 6: Rejection rates for model setting 2 with Gaussian and non-Gaussian distribution and the skewed sample

location pattern based on 2000 simulation repetitions at a significance level of α “ 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30ˆ 30

Asym 1.000 0.042 0.007 1.000 0.040 0.004 1.000 0.038 0.005 1.000 0.043 0.004

Sp Perm 1.000 0.050 0.007 1.000 0.048 0.002 1.000 0.051 0.002 1.000 0.066 0.001

Perm 1.000 0.049 0.009 1.000 0.044 0.006 1.000 0.048 0.006 1.000 0.057 0.004

40ˆ 40

Asym 1.000 0.053 0.005 1.000 0.053 0.006 1.000 0.032 0.005 1.000 0.042 0.004

Sp Perm 1.000 0.068 0.004 1.000 0.062 0.005 1.000 0.050 0.002 1.000 0.056 0.002

Perm 1.000 0.058 0.010 1.000 0.052 0.006 1.000 0.040 0.005 1.000 0.050 0.005

50ˆ 50

Asym 1.000 0.040 0.004 1.000 0.051 0.004 1.000 0.040 0.007 1.000 0.048 0.004

Sp Perm 1.000 0.051 0.004 1.000 0.055 0.002 1.000 0.054 0.002 1.000 0.064 0.001

Perm 1.000 0.043 0.009 1.000 0.054 0.004 1.000 0.048 0.006 1.000 0.055 0.005

60ˆ 60

Asym 1.000 0.045 0.009 1.000 0.039 0.004 1.000 0.048 0.008 1.000 0.043 0.007

Sp Perm 1.000 0.053 0.006 1.000 0.042 0.004 1.000 0.061 0.002 1.000 0.057 0.001

Perm 1.000 0.048 0.010 1.000 0.040 0.006 1.000 0.053 0.006 1.000 0.044 0.004

kernel functions with parameters pr1, r2q P tp0, 1q, p1,
?

2quwere considered for the irregular code,

and kernels of the form fpsq “ Ip||s|| “ hq with h P t1,
?

2u were considered for the regular

code (one-way and two-way lag-1 local covariance matrices). This choice ensured that the same

neighbors were selected for both versions of the code and thus that the qualitative results of the

tests were equal up to random effects of the bootstrap sampling procedures.

Figure 2 shows the median computation time based on five simulation repetitions carried out

on a Windows machine with an Intel i5 CPU. The computation times revealed that asymptotic tests

are fastest, as the SBSS solution needs to be computed only once, whereas bootstrap algorithms

30



4.3 Simulation Study 3: Computation Time Comparison

compute the SBSS solution B times.
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Figure 2: Median running times of the five different test methods for different domain sizes with regular sampling

sites based on five simulation repetitions. Computations were carried out with code designed for regular and irregular

sampling sites.

Of greater interest is the overall difference in the computation time between regular and ir-

regular code. This might be explained by the fact that the code for regular sampling sites does

not rely on distances between sampling sites as the irregular code does. Specifically, the selection

of neighbors for local covariance matrices can be implemented by shifting the coordinate system

appropriately for the regular code, whereas in the irregular code this is based on looping over the

distance matrix among all coordinates. This difference should also explain the different scaling of

the computation time with increasing sample size, as looping through the distance matrix depends

on the actual number of locations, while coordinate shifting does not.

Further, there was a larger computation time difference between the full spatial bootstrap and

the one that manipulates only the hypothetical noise for the irregular code compared with the reg-

ular one. This might be the impact of the simplified spatial bootstrap variant for regular sampling

sites. As explained above, for the irregular code the distance matrix has to be computed again for

every new iteration because the spatial bootstrap changes sampling sites for each iteration, which

is not the case for the regular code, for which the sampling sites remain equal for each bootstrap
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iteration.

Overall, this simulation strongly indicates that regular sampling sites should be computation-

ally treated as such. In addition, considering the overall similar performances of the tests in the

former simulation, the spatial bootstrapping step for the irregular data might be discarded, as it

significantly increases the computation time.

4.4 Simulation Study 4: Power of the Test

In this part of the simulation we investigate the power of the introduced tests. To do so, we keep

the signal part of model setting 1 and the second entry of the noise (z5) untouched, but replace the

first entry of the noise part (z4) by a signal following a Matérn correlation structure with ν “ 0.5

and varying range parameter φ P r0, 0.8s. Note that the case φ “ 0 is technically forbidden in the

Matérn covariance function, hence, we treat it simply as white noise. Expect for the case of φ “ 0

this setting has a true signal dimension q “ 4, thus, we always test the wrong hypothesis H03 and

the test should be able to detect the true signal dimension more efficiently with increasing range

parameter. The hypothesis is tested by the asymptotic test and the parametric bootstrap test without

full spatial bootstrapping as the performances of all tests in the hypothesis testing simulations were

similar but those two test strategies showed a low computation time which makes these simulations

feasible.

Figure 3 depicts the test rejection rates at a significance level of α “ 0.05 as a function of

the range parameter based on 2000 simulation iterations for uniform and skewed sample location

pattern. For lower sample sizes all tests show a desired rejection rate of one at a range parameter of

0.5 which is decreased to 0.3 when the simple size is highest. Interestingly, it seems that there are

no differences between the skewed and uniform sample location pattern and the two considered
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Figure 3: Rejection rates of the asymptotic and parametric bootstrap tests for H03 for different kernel settings as a

function of the range parameter of the first entry of the signal part at a test significance level of 0.05 (indicated by the

dashed line). The results are based on 2000 repetitions.

kernel function settings. Furthermore, this simulation shows no significant difference between the

asymptotic and the bootstrap test which again favors the asymptotic one for practical considera-

tions.

4.5 Simulation Study 5: Estimation of the Signal Dimension

The former simulations investigated only hypothesis tests for one specific value of the hypothetical

signal dimension. In this section, we explore the use of hypothesis tests for signal dimension

estimation. We considered the exact same simulation settings as in Section 4.1 but increased the

dimension of the noise part to seven leading to a total latent random field dimension of p “ 10,
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while the true signal dimension remained q “ 3. Estimation of the signal dimension was based on

the divide-and-conquer strategy described above. As before, all hypothesis tests were carried out

using the asymptotic test method and the parametric bootstrap without full spatial bootstrapping.

This choice is justified by the similar performance in signal dimension testing of all bootstrap test

variants and the fact that the full spatial bootstrap is computationally unfeasible for such a large

simulation.
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Figure 4: Frequencies of the estimated signal dimension for model setting 1.

Figures 4 and 5 depict the estimated dimensions for 2000 simulation repetitions for a signifi-

cance level of α “ 0.05. Overall, the estimation was highly accurate, with the estimated dimension

being equal to the true one in approximately 95% of the cases. Interestingly, the signal dimension

was never underestimated, while it was overestimated in approximately 100 of the simulation it-

erations, reflecting the significance level α “ 0.05. For all settings, the asymptotic test performed

better than the bootstrap test. This was especially true for low sample sizes, which is a counter-

intuitive result. However, it may be due to the fact that, as the former simulations show, for low

sample sizes the asymptotic test never met the theoretical rejection rate, which is simply the sig-
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Figure 5: Frequencies of the estimated signal dimension for model setting 2.

nificance level when the null is actually true for small sample sizes (Tables 1 and 2). Therefore,

the true null is more often accepted leading to a better performance when estimating the signal

dimension.

5. Concluding Remarks

In this paper, we propose and study testing and estimation methods for the number of latent signal

components in the SBSS model. The asymptotic null distributions of the test statistic are given un-

der various conditions without assuming the domain is necessarily regular. A consistent estimator

of the dimension based on the sequential tests is also introduced. For small sample cases, different

bootstrap strategies are suggested. Besides the theoretical results, the five simulation studies pre-

sented in Section 4 demonstrate that our asymptotic tests are comparable to the bootstrap ones in

terms of hypothesis testing and estimation. In terms of computation time, our asymptotic method

is much faster than the bootstrap ones. When a regular domain structure is used, the computation

time can be significantly decreased.
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Our proposed dimension tests in the SBSS context might be very useful for further analysis

of the latent fields, including for various forms of spatial prediction. Indeed, the components

of the latent field are uncorrelated, and thus predictions can be carried out on each latent field

independently, leading to a reduction from building a single multivariate model to building several

univariate ones. This procedure was already investigated and found to be useful by Muehlmann

et al. (2021). As an additional step, one of our proposed dimension tests can be carried out before

the spatial prediction, leading to a reduction of the latent field dimension, which results in the need

for even fewer univariate models to be built.

However as it is not clear how to obtain in a data-driven way the sequence mentioned in Propo-

sition 4 leading to a consistent estimate we plan in further research to develop a ladle estimator

(Luo and Li, 2016, 2021) for this setting which will be based either on bootstrapping or data aug-

mentation. Other future ideas for future research are to develop similar approaches for spatiotem-

poral data and study the fixed-domain asymptotic properties (Stein, 1995; Cressie, 1993, Section

5.8) of SBSS. Also the SBSS model might be interesting to study in a high-dimension framework,

where we could transfer SBSS to a spiked model when both n and p goes to infinity. The problem

of identifying the number of spikes has been studied for example in Passemier and Yao (2014).

When p ă n is diverging, Zhang et al. (2022) proposed recently a new way to estimate the mixing

matrix for a SBSS model. So, combining the two methods might provide an insight to select the

high-dimensional signal. But we suspect it to be quite hard to investigate the limiting behavior of

eigenvalues in a spatial setting.

Supplemental Material

The Supplemental Material contains all technical proofs as well as an environmental data example.
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