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Abstract

This manual describes the PYTHIA 8.3 event generator, the most recent version of an
evolving physics tool used to answer fundamental questions in particle physics. The
program is most often used to generate high-energy-physics collision “events”, i.e. sets
of particles produced in association with the collision of two incoming high-energy par-
ticles, but has several uses beyond that. The guiding philosophy is to produce and re-
produce properties of experimentally obtained collisions as accurately as possible. The
program includes a wide ranges of reactions within and beyond the Standard Model,
and extending to heavy ion physics. Emphasis is put on phenomena where strong in-
teractions play a major role. The manual contains both pedagogical and practical com-
ponents. All included physics models are described in enough detail to allow the user
to obtain a cursory overview of used assumptions and approximations, enabling an in-
formed evaluation of the program output. A number of the most central algorithms are
described in enough detail that the main results of the program can be reproduced in-
dependently, allowing further development of existing models or the addition of new
ones. Finally, a chapter dedicated fully to the user is included towards the end, provid-
ing pedagogical examples of standard use cases, and a detailed description of a number
of external interfaces. The program code, the online manual, and the latest version of
this print manual can be found on the PYTHIA web page:

https://www.pythia.org/
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Part I

Introduction
This manual is organized into three major parts. This first part contains introductory material
about event generators in general and the basic technical details of event generation. The
second part presents a more detailed description of the physics implemented inside of PYTHIA.
The physics is divided according to how it appears in the program flow itself, though the lines
drawn can be fuzzy: the hard process (including external calculations); parton showering;
multiparton interactions; beam remnants; and hadronization. There are also dedicated sec-
tions on the DIRE and VINCIA parton showers, as well as the treatment of heavy-ion collisions.
Some of the details have not been thoroughly documented before, while others have appeared
in prior publications. The third part is about how the user interacts with PYTHIA. In many ap-
plications, PYTHIA is part of a code stack or work flow, with other programs calling into PYTHIA

or vice versa. This part describes both basic standalone usage and documents typical interfaces
in detail.
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1 Preliminaries

PYTHIA 8.3 [1] is a scientific code library that is widely used for the generation of events in
high-energy collisions between particles, where effects of the strong nuclear force, governed
by Quantum Chromodynamics (QCD), are of high importance. It is written mainly in C++ and
interweaves a comprehensive set of detailed physics models for the evolution from a few-body
hard-scattering process to a complex multi-particle final state. Parts of the physics have been
rigorously derived from theory, while other parts are based on phenomenological models, with
parameters to be determined from data. Currently, the largest user community comes from
the Large Hadron Collider (LHC) experimental collaborations, but the program is also used
for a multitude of other phenomenological or experimental studies in astro-, nuclear, and par-
ticle physics. Main tasks performed by the program include investigations of experimental
consequences of theoretical hypotheses, interpretation of experimental data — including es-
timation of systematic uncertainties and unfolding — development of search strategies, and
detector design and performance studies. It also plays an important role as a versatile vessel
for exploring new theoretical ideas and new algorithmic approaches, ranging from minor user
modifications to full-fledged developments of novel physics models.

1.1 What is an “event generator” ?

In particle physics, the outcome of a collision between two incoming particles, or of the isolated
decay of a particle, is called an “event”. At the most basic level, an event therefore consists of
a number of outgoing particles such as might be recorded in a snapshot taken by an idealized
detector, with conservation laws implying that the total summed energies and momenta of
the final-state particles should match those of the initial state, as should any discrete quantum
numbers that are conserved by the physics process(es) in question.

Due to the randomness of quantum processes, the number of outgoing particles and their
properties vary from event to event. The probability distributions for these properties can
be inferred by studying an ensemble of events in data. Conversely, given a set of theoreti-
cally calculated (or modelled) probability distributions, it is possible to produce ensembles of
simulated events to compare to data.

A numerical algorithm that can produce (or “generate”) random sequences of such simu-
lated events, one after the other, is called an “event generator”. The simulations can be based
on known or hypothetical laws of nature. This allows for the exploration and comparison of
competing paradigms, and studies of the sensitivity of proposed physical observables to the
differences. Only rarely do the algorithms represent exact solutions however, so a common
issue is to consider whether ansätze and approximations made, and the level of detail offered
by a given modelling, are adequate for the problem at hand. The detailed physics descriptions
contained in the main parts of this report are intended to assist with this task.

Returning to the structure of a high-energy physics event, in its crudest form, it is a list
of the sub-atomic particles produced in a collision along with a measure of the probability for
that event to occur. In PYTHIA, the list is referred to as the “event record”, and it includes the
four-momentum, production point, and many other properties of each particle, cf. section 9.4
for details. It typically also includes quite a bit of history information showing intermediate
stages of the event modelling. The measure of the relative probability of a given event within
a sample is given by the weight of that event relative to the sum of weights for the sample.
For the typical case of unweighted events, this is just the inverse of the total number of events
in the sample; cases that give rise to weighted events are summarized in section 9.8. The
total cross section for the sample is also computed, allowing for the conversion of relative
probabilities into cross sections.
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Note that, although the starting point is often a relatively simple cross section computed
in fixed-order perturbation theory, the total probability distribution for simulated events, fully
differentially in all relevant phase-space variables and quantum numbers of the produced set
of final-state particles, can typically not be expressed analytically. Instead, it is evaluated
directly, using numerical methods, with Markov Chain Monte Carlo (MCMC) algorithms based
on pseudo-random number generators as the main ingredient. The mathematical basis of the
main ones used in PYTHIA is covered in section 2.2.

The aim of the event generator is ambitious: to predict all of the observable properties
of a high-energy collision or decay process. The full properties of an event, however, cannot
currently be calculated from first principles alone. Many different, complex phenomena, which
are likely related, are described by a proliferation of models that each focus on a limited
dynamical range. As a result, the predictions of an event generator like PYTHIA 8.3 depend
upon O(100) parameters. The values of these parameters are inferred from comparisons to
data. A collection of such parameter values is referred to as a tune.

Event-generator predictions are useful, because they serve as a proxy for what an event
would look like before interacting with any measurement devices. As such, it can be used to
investigate the consequences of new and old phenomena, and study the loss, mismeasurement,
and misidentification of particles in experiments. Thus, it is an important tool for interpreting
collider data. Event generators are realized as computer codes. In modern times, most of the
larger projects are developed in the C++ programming language.

1.2 The structure of a simulated event

The main goal of PYTHIA is to simulate particle production in high-energy collisions over the
full range of energy scales accessible to experiments, in as much detail as possible. However,
hadron collisions and hadroproduction in particular are exceedingly complex, and no com-
prehensive theory exists currently that can predict event properties over this full range. For
practical purposes, the wide range of phenomena are factored into a number of components.
A natural division for these components is a time-ordering or, equivalently, an energy or trans-
verse momentum ordering, where the best understood physics is calculated at the shortest
time scales and largest energies, and the least understood physics is modelled at the longest
time scales and lowest energies. This division is well motivated and often underpinned by fac-
torization theorems, but it is not entirely unambiguous and sometimes is open to corrections.

The ordering in time is not completely intuitive, at least not in a directional sense from past
to future. We should rather speak of time windows centred on a hard collision that then expand
forwards and backwards in time, introducing successive phenomena, until we are left with a
pair of incoming protons from accelerator beams, for example, and a number of outgoing
particles. In momentum space, we normally speak of the “hardness” scale that characterizes
each (sub)process, and often use a measure of transverse momentum p⊥ to quantify this.

For simplicity, we will here concentrate on the sufficiently complex case of hadron-hadron
collisions, with an explicit schematic of a fully simulated pp → tt event given in fig. 1. The
radial coordinate illustrates hardness scales, starting with the hardest subprocess near the
centre (labelled dσ̂0), and ending with stable final-state particles and the incoming beam
particles at the periphery.

In our hardness- or time-ordered picture, the components of a high-energy collision are:

1. A hard scattering of two partons, one from each incoming hadron, into a few outgo-
ing particles. The initial partons are selected using parton distribution functions for the
incoming hadrons, and the kinematics of the outgoing particles are based on matrix el-
ements calculated in perturbation theory. Such calculations introduce a factorization
scale and a renormalization scale. Partons with momenta below these scales are not
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Figure 1: Schematic of the structure of a pp → tt event, as modelled by PYTHIA.
To keep the layout relatively clean, a few minor simplifications have been made: 1)
shower branchings and final-state hadrons are slightly less numerous than in real
PYTHIA events, 2) recoil effects are not depicted accurately, 3) weak decays of light-
flavour hadrons are not included (thus, e.g. a K0

S meson would be depicted as stable in
this figure), and 4) incoming momenta are depicted as crossed (p→−p). The latter
means that the beam remnants and the pre- and post-branching incoming lines for
ISR branchings should be interpreted with “reversed” momentum, directed outwards
towards the periphery of the figure; this avoids beam remnants and outgoing ISR
emissions having to criss-cross the central part of the diagram.

included in the hard scattering, but will be introduced by other stages of the event gen-
eration. In the current usage of PYTHIA, it is common to import the results of parton-level
calculations from external packages, though a number of simple processes are calculated
internally. Hard-scattering predictions depend on a few, universal input parameters that
are determined from data, such as the value of the strong coupling at the Z boson mass
and parton distribution functions.

2. The hard process may produce a set of short-lived resonances, such as Z or W± gauge
bosons or top quarks, whose decay to normal particles has to be considered in close
association with the hard process itself.

3. Fixed-order radiative corrections may be incorporated via (combinations of) matrix-
element corrections, matching, and/or merging strategies, cf. section 5. In fig. 1, the
violet shaded region surrounding the hard process represents the range of scales covered
by a (generic) matrix-element merging strategy active above some given p⊥min scale.
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4. Initial–State Radiation (ISR) of additional particles (partons, photons, and others) start-
ing from the scattering initiators using numerical resummation of soft and collinear
gluon emission. This (together with its final-state equivalent below) is commonly re-
ferred to as the parton shower.

5. Final–State Radiation (FSR) of additional particles from the hard scattering itself and
also from any resonance decays.

6. In competition with ISR and FSR, further scattering processes between additional par-
tons from the incoming beams may take place, in a phenomenon known as Multiple Par-
ton Interactions (MPI). This is not to be confused with “pileup”, which generally refers
to several distinct hadron-hadron collisions recorded in the same detector snapshot.

7. At some stage after the MPIs and perhaps before resonance decays, strings begin to form,
as the non-perturbative limit of colour dipoles. These dipoles, however, are typically de-
fined by colour connections that are assigned in the Nc →∞ limit, and are not unique for
Nc = 3. As discussed further in section 7.2, the associated colour-space ambiguities can
be modelled via Colour Reconnection (CR). It is also possible that long-range dynamical
interactions could physically alter the colour flow and/or change the configuration of
the expanding strings before they fragment. Depending on the characteristic timescales
involved (often not specified explicitly in simple CR models), such effects may also be
referred to as colour reconnections, but could also come under the rubric of string inter-
actions.

8. The strong interaction now results in the confinement of QCD partons into colour-singlet
subsystems known as strings or, in small-mass limiting cases, clusters. What is currently
left of the incoming hadron constituents are combined into beam remnants. In fig. 1,
the transition between the partonic and hadronic stages of the event generation is high-
lighted by the concentric annuli shaded blue.

9. The strings fragment into hadrons based on the Lund string model. Optionally, effects
of overlapping strings may be taken into account, e.g. by collecting them into so-called
“ropes” and/or allowing interactions between them.

10. Identical particles that are close in phase space may exhibit Bose-Einstein enhancements
(for integer-spin particles) or Fermi-Dirac suppressions (for half-integer-spin particles).

11. Unstable hadrons produced in the fragmentation process decay into other particles until
only stable particles remain (with some user flexibility to define what is stable).

12. In densely populated regions of phase space, the produced particles may rescatter, rean-
nihilate, and/or recombine with one another.

The introduction of heavy-ion beams introduces an additional layer of complexity wrapped
around this picture. Lepton-lepton collisions are much simpler, since they do not involve many
of the complications arising from hadron beams.

1.3 To what types of problems can PYTHIA be applied ?

PYTHIA can be applied to a large set of phenomenological problems in particle physics, and
to related problems in astro-particle, nuclear, and neutrino physics. Historically, the core of
PYTHIA is the Lund string model of hadronization. This model is most appropriate when the
invariant masses of the hadronizing systems are above 10 GeV or so. For lower-mass systems,
the model is less firmly reliable. Low-mass systems may still occur in PYTHIA, typically then
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as subsystems within a larger event, e.g., produced by heavy-flavour decays, colour reconnec-
tions, and/or hadronic rescattering. For the very lowest-mass systems, which produce just one
or two hadrons, a simple cluster-style model, called ministrings, is implemented, otherwise the
normal string fragmentation is applied. In addition to string hadronization, PYTHIA of course
also incorporates state-of-the-art models for a wide range of other particle-physics phenomena.
Here, we provide a non-exclusive list of various applications of the PYTHIA machinery.

We emphasize that the majority of these models are based on dedicated original work
done by authors, students, and sometimes external contributors, representing a significant
and sustained intellectual effort. When quoting results obtained with PYTHIA, we therefore
ask that users make an effort to cite, alongside this manual, such original works as would be
deemed directly relevant to the study at hand, i.e. without whose implementation in PYTHIA

the study could not have been done. Appropriate references can be found throughout the
manual.

• Lepton-lepton, lepton-hadron, and hadron-hadron collisions with configurable
beam properties, such as beam energies and crossing angles, to simulate one or many
Standard-Model processes encoded in PYTHIA. This is the standard application of
PYTHIA, but not the only one.

• The same as above, except using parton-level configurations for the hard process input
from an external source.

• Ordinary particle decays, where the particles are produced by another physics program.
This includes the limiting case of a particle gun (i.e. a single particle with user-defined
momentum).

• Beyond Standard Model (BSM) particle decays, including decay chains.

• Resonance decays including the effects of final-state parton showering and hadroniza-
tion.

• Hadronization of (colour-singlet) partonic configurations, as may arise from ordinary or
exotic particle decays.

• Generation of Les Houches Event (LHE) formatted files from the internal hard processes
for other physics studies.

• Ion-ion collisions for ion geometries well described with a Woods-Saxon potential (non-
deformed, A> 16) for

p
sNN > 10 GeV.

• Astro-particle phenomena like dark-matter annihilation into Standard-Model particles.

• User-inspired modifications of standard PYTHIA modules as allowed by the UserHooks
methods and those for semi-internal processes and/or semi-internal resonances.

As always, caveat emptor.

1.4 Historical evolution of the PYTHIA program

To bring some of the main development lines into context, we here provide a brief summary of
the historical evolution of the PYTHIA program and its ancestor, JETSET. Detailed descriptions
of the various physics components will be found in subsequent sections, including relevant
references; a more elaborate review of the historical evolution of PYTHIA can be found in [2].

In the late seventies the Lund group began to study strong interactions, and notably the
hadronization subsequent to a collision process. A linear confinement potential was assumed
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to be realized by a string stretched out between a pulled-apart colour–anticolour pair, as a
simple one-dimensional representation of a three-dimensional flux tube or vortex line. In order
to allow detailed studies, two PhD students were entrusted to code up this model, and also
include effects such as particle decays. This program was given the name JETSET. The model
and code were gradually extended to encompass more physics, in particular with reference
to e+e− physics. The key addition was a model for e+e− → qqg, wherein the colour field
was assumed to stretch as one string piece from the q end to the g and then as a second
piece on from the g to the q end, with no direct connection between the q and q. This model
received experimental support at PETRA in 1980 [3], thereby starting the success story of the
Lund event generators. The idea of subdividing the full colour topology into a set of colour–
anticolour dipoles rapidly prompted extensions also to other collision processes, notably to pp
ones, with the PYTHIA generator built on top of JETSET. Later, it also came to develop into
the dipole picture of parton showers, and to foreshadow related techniques for higher-order
matrix-element calculations.

In part, the continued evolution was driven by interactions with the experimental commu-
nities and their priorities. An early involvement in SSC studies led to an extension of the scope
of PYTHIA from QCD physics to encompass a wide selection of Standard Model (SM) processes,
notably those related to Higgs-boson signatures. At the same time, QCD processes needed to
be modelled better, which led to the development of new concepts, such as backwards evo-
lution to handle initial-state radiation, and multiparton interactions and colour reconnection
to describe underlying events and minimum-bias physics. When LHC physics studies began
in 1990, these capabilities helped PYTHIA play a prominent role in benchmarking the evolv-
ing design of the LHC detectors, and additionally many Beyond-the-Standard-Model scenarios
were included to cater to the demands of the community.

The Large Electron–Positron Collider (LEP) became the first operating collider where JET-
SET had been used from the early days of detector design, and the program came to play a
key role in most physics analyses carried out there. QCD phenomena were a primary focus of
experimental studies, and this led to an emphasis on issues such as parton-shower algorithms
and matrix-element corrections to them. The ARIADNE dipole shower [4] offered a successful
alternative to the more traditional internal JETSET one. With LEP 2, the emphasis shifted from
QCD towards electroweak processes such as W+W− pair production, which had already been
incorporated into PYTHIA. This led, naturally, to the integration of the JETSET capabilities into
PYTHIA, with PYTHIA maintaining the project name and legacy.

Also at HERA, the Lund-based programs came to play a prominent role from the onset,
with codes such as LEPTO [5], ARIADNE and LDC [6] built on top of JETSET. Photon physics
was introduced into PYTHIA to handle γp at HERA and γγ at LEP 2.

A further area of study is heavy-ion collisions, where early on the FRITIOF [7] program
came to be widely used. Some of these ideas have been revived, updated, and implemented
in the PYTHIA 8.3/ANGANTYR model. It is worth noting, also, that many heavy-ion collision
models, used notably at the Relativistic Heavy Ion Collider (RHIC), have been based on PYTHIA.

The separation above, by collider, gives one way of describing the evolution of the code(s).
Underlying it is a belief in universality, that many aspects of particle collisions are the same,
independent of the beam type. Therefore, physics developments made in one context can also
be applied to others. This is why one single code has found such widespread use.

The early codes were all written in FORTRAN 77. With the CERN decision to replace that
language by C++ for LHC applications, PYTHIA underwent a similar transformation in 2004 –
2008. A new organizational structure was put in place for the new PYTHIA 8, in an attempt to
clean up blemishes incurred during the years of rapid expansion, but deep down most of the
physics algorithms survived in a new shape.

One area where the evolution has overtaken PYTHIA is that of matrix elements. Before it
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was possible for most users to perform matrix-element calculations on computers, such expres-
sions were published in articles and hard-coded from these. Now, with the physics demand
for higher final-state multiplicities and higher-order perturbative accuracy, that is no longer
feasible. For all but the simplest processes, we therefore rely on separate, external matrix-
element codes to provide the hard interactions themselves, e.g. via the Les Houches interfaces,
to which we then can add parton showers, underlying events, and hadronization. Also parton
distribution functions are obtained externally, even if a few of the more commonly used ones
are distributed with the code.

The program has continued to expand also after the transition to C++. Some developments
are done from the onset within the PYTHIA code, such as the machinery for matching and merg-
ing between matrix elements and parton showers, or the PYTHIA 8.3/ANGANTYR framework
for heavy-ion collisions, or the space–time picture of hadronization and hadronic rescattering.
Other have come by the integration of externally developed packages, such as the VINCIA and
DIRE alternatives to the existing simpler parton showers already in place.

In total, the JETSET/PYTHIA manuals have more than 35 000 citations by now, attesting
to its widespread use. That use also includes possible future projects such as ILC, FCC, CLIC
and EIC. The counting of code citations does not include the numerous articles describing the
development and application of the physics content in the programs. This is harder to count,
with many borderline cases, but the order of magnitude is comparable with the one for the
code itself.

2 Program structure and basic algorithms

The PYTHIA 8.3 general-purpose Monte-Carlo event generator’s structure reflects the different
physics descriptions and models needed to generate fully exclusive final states as they can be
detected at collider experiments. The first part of this section gives a brief overview of the
program structure, while the latter parts describe basics of Monte Carlo (MC) techniques and
process generation employed by PYTHIA 8.3.

2.1 Program structure and overview

Internally, PYTHIA 8.3 is structurally divided into three main parts: process level, parton level,
and hadron level. This reflects the components of an event as introduced in section 1.1.

The process level represents the hard-scattering process, including the production of short-
lived resonances. The hard process is typically described perturbatively, with a limited number
of particles, typically at high-energy scales.

The parton level includes initial- and final-state radiation, where various shower models
are available. Multiparton interactions are also included at this stage, along with the treatment
of beam remnants and the possibility of the colour-reconnection phenomenon. At the end of
the parton-level evolution, the event represents a realistic partonic structure, including jets
and the description of the underlying event.

The hadron level then takes care of QCD confinement of partons into colour-singlet sys-
tems. In PYTHIA 8.3, the hadronization is described by QCD strings fragmenting into hadrons.
Furthermore, other aspects like the decay of unstable hadrons and hadron rescattering are
dealt with at the hadron level. The physics models of hadronization are typically
non-perturbative, and thus require modelling and the tuning of parameters. The output of
the hadron level is then a realistic event as it can be observed in a detector.

On top of this general structure, a significant number of shared objects and cross talk is
passed between these levels: PDFs are relevant in both the process level and ISR, the matching
and merging machinery works on the interface between parton showers and process level, and
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The User

Input Main Program Output

Settings
LHA...
LHEF

Event process Event event

Info
Pythia8Rivet
HepMC
Hist

ProcessLevel
ProcessContainer
PhaseSpace
SLHAinterface
ResonanceDecay

PartonLevel
TimeShower
SpaceShower
Dire, Vincia
MultipleInteractions
BeamRemnants

HadronLevel
StringFragmentation
StringInteractions
ParticleDecays
BoseEinstein
LowEnergySigma

Merging
BeamParticle
SigmaProcess
SigmaTotal

Vec4, Rndm, ParticleData, PhysicsBase, UserHooks, HeavyIons, ...

Pythia 8.3 event generator

Figure 2: Simplified picture of the PYTHIA 8.3 structure, showing some of the impor-
tant classes in bold. The main program itself creates one or more Pythia objects,
and provides input in terms of Settings and potentially-perturbative event input.
The main physics components are grouped into ProcessLevel, PartonLevel, and
HadronLevel, with additional structure to complement and interconnect them.

the Info object is used throughout all levels to store and access central information. Under
certain circumstances, like the analysis of heavy-ion collisions using the PYTHIA 8.3/ANGANTYR

model, multiple parton-level objects can be used for separate subcollisions, which are then
combined for hadronization.

From the user’s perspective, PYTHIA 8.3 is a C++ library. The actual executable is imple-
mented by the user, based on the requirements regarding input, output, features, and analysis,
and many examples come with the PYTHIA 8.3 package. For detailed information on how to
install and use PYTHIA 8.3, both standalone and with external interfaces, see part III. Figure 2
gives a rough overview of the PYTHIA 8.3 program structure.

2.2 Monte-Carlo techniques

Real events observed in particle colliders are stochastic. To emulate this, event generators sam-
ple from probability distributions using pseudo-random numbers. Naively, a pseudo-random
number (between 0 and 1) is compared to a cumulative distribution function to determine an
effect, e.g. the angle of a particle in a decay, the type of particle produced in hadronization,
etc. Since real cases are rarely this simple, we use this section to describe some of the technical
details of how pseudo-random numbers are used within the program.

2.2.1 Random-number generation

At the core of all Monte-Carlo methods lies the access to a random number generator. Truly
random numbers require special equipment and are difficult to obtain at the required pace, so
in practice pseudo-random numbers are used, where deterministic computer algorithms are
used to emulate a random behaviour. This also allows a user of the code to reproduce a given
event sample, simply by setting the same random-number seed. Nevertheless, the numbers
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must appear to be random, e.g. evenly distributed between 0 and 1, have no detectable cor-
relations, and have a long period before they start to repeat. Many pseudo-random number
generators once thought to exhibit no internal correlations, have later been revealed to have
flaws, so care is needed.

A review of several current generators is found in [8]. Common for them is that they can
be viewed as having an N -dimensional state vector x , living in a N -dimensional hypercube
with periodic boundary conditions such that each number is in the range between 0 and 1. A
new state is obtained by a matrix multiplication x i+1 = A× x i , where A is a N × N matrix of
integers. There is some sophisticated theory involved in the choice of A, involving concepts
such as Kolmogorov–Anosov mixing and the Lyapunov exponent. Some of the key results are
that A should have determinant unity, with complex eigenvalues away from the unit circle,
and additionally that multiplication with it should require a minimal amount of operations so
as to keep speed up.

The RANMAR default in PYTHIA is based on the Marsaglia–Zaman algorithm [9], but im-
plemented in double precision with N = 97. There remains some tiny correlations 97 numbers
apart, which could be fixed by multiplication by A several times between each set of 97 random
numbers actually used [10], but this is not a necessity for event generators, where typically
one is in a completely different part of the code 97 random numbers later. The RANMAR al-
gorithm can be initialized to run one of more than 900 000 000 different sequences, each with
a period of more than 1043. By default, the same sequence is always run, which is useful for
checks and debug purposes.

The MIXMAX alternative [11] is also provided as an option, and additionally there is an
interface allowing the user to link in an external algorithm of choice.

2.2.2 Some standard techniques

The Monte Carlo techniques employed in PYTHIA can be generally categorized into two types.
Both use pseudo-random numbers to select or reject a value for some variable based on a
probability distribution. In the methods described here, the only consequence of rejecting
a variable is its effect on the efficiency for generating the desired distribution. In the veto
algorithm, discussed in the following section, the rejection step is a key element.

The task considered here is to select a value for a variable x from a known distribution
function f (x) such that the probability to select x in a small interval dx around a given x is
∝ f (x)dx . We require f (x) to be non-negative in the desired x range xmin ≤ x ≤ xmax.

In the simplest case, a primitive function F(x) can be found with an inverse F−1(x) that
can be calculated analytically. In this case, x can be sampled using the following algorithm:

∫ x

xmin

f (x)dx = R

∫ xmax

xmin

f (x)dx ,

=⇒x = F−1(F(xmin) + R (F(xmax)− F(xmin))) . (1)

Here, and in the following, R denotes a (pseudo-)random number, evenly distributed between
0 and 1, obtained from the random number generator (cf. section 2.2.1). If a primitive func-
tion and its inverse can be obtained, using this method is desirable, as it is the most efficient
generation method possible.

In most cases encountered, a primitive function or its inverse cannot be found. In this case,
the simplest sampling method is known as hit-or-miss. It requires knowledge of a maximum
fmax of f (x) in the considered x range. The hit-or-miss method requires two numbers, x and
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y , to be chosen according to:

x = xmin + R1 (xmax − xmin) ,

y = R2 fmax . (2)

The process is repeated until a y fulfilling y < f (x) (where x is the selected x) is selected.
Equivalently, the selected x can be accepted with probability f (x)/ fmax, without the explicit
construction of a y . The accepted x value is then distributed uniformly in the area below f (x).
On average, the acceptance probability for x (called the efficiency) is

∫

f (x)dx

fmax(xmax − xmin)
. (3)

This method can also be used to estimate the definite integral of f (x) in the desired range:

∫ xmax

xmin

f (x)dx ≈ (xmax − xmin)
1

ntry

ntry
∑

i=1

f (x i) , (4)

where x i runs over all x values tried, whether accepted or not. This is the principle of Monte
Carlo integration. Note that there is no restriction on the dimensionality of x , so that multi-
dimensional integrals can be handled. The error on the integral decreases like 1/

p

ntry. Other
numerical integration methods usually converge faster in one dimension, but slower in higher
dimensions. A variable transformation of x can be applied to increase the efficiency of the
algorithm when an integrand has peaks or, in some cases, even to find an fmax to allow for the
use of simple hit-or-miss.

The importance sampling method is related to the idea of variable transformation. This
method is beneficial when a function g(x) can be found that overestimates f (x) ( f (x)≤ g(x))
over the considered x range and has a primitive function G(x) with an inverse G−1(x). Then
the methods above can be combined:

x = G−1(G(xmin) + R1 (G(xmax)− G(xmin))) ,

y = R2 g(x) . (5)

This is repeated until a y < f (x) is selected. Note that the first step selects (x , y) uniformly in
the area below g(x), whereas the second half is to accept those that also are below f (x). Using
an acceptance probability f (x)/g(x) again removes the need to introduce an intermediate y .

In some cases, it is not possible to find a g(x) that both covers all spikes of f (x), and also
has an invertible primitive function. In such cases, a multichannel sampling method [12] can
be applied. Rather than relying on a single g(x), the overestimating function is picked as a sum
of non-negative functions with invertible primitives g(x) =

∑

i gi(x), where still f (x) ≤ g(x)
over the considered interval. Multichannel sampling then extends on the importance-sampling
prescription, by using the relative size of the integrals Ii =

∫

gi(x)dx to each time pick a new
gi for the x selection in eq. (5). The y selection and the accept/reject works as before, since
it is easy to see that the weighted usage of the different gi(x) adds up to g(x).

In addition to the methods presented above, it should be noted that it is sometimes possible
to apply a particularly ingenious transformation, to allow selection from an otherwise tricky
distribution. The textbook example is the Box–Muller transformation, allowing sampling from
a Gaussian. While a single Gaussian exp(−x2) does not have a simple primitive or inverse, the
product of two do, by transforming to plane-polar coordinates:

e−(x
2+y2) dx dy = e−r2

rdr dϕ∝ e−r2
dr2 dϕ , (6)
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which gives

x =
Æ

− ln R1 cos(2πR2) ,

y =
Æ

− ln R1 sin(2πR2) , (7)

i.e. two Gaussian-distributed numbers are obtained from two random ones. Another such trick
is that a judicious choice of convolutions can be used to show that f (x) = xn−1 e−x/(n− 1)!
can be obtained by x = −

∑n
i=1 ln Ri = − ln

�∏n
i=1 Ri

�

.

2.2.3 The veto algorithm

A broad class of stochastic evolution algorithms, including ones describing radioactive decays,
parton showers, and also PYTHIA’s modelling of MPI, involve the generation of ordered se-
quences of state changes (transitions), where the ordering parameter is typically a measure of
time and/or resolution scale.

For probability distributions (and/or domains) that are complicated to handle analytically,
the veto algorithm offers a convenient and mathematically exact approach by which simple
overestimates can be used instead of the original functions that are then reimprinted via a
veto step. This circumvents the need for costly and delicate numerical integrations and root
finding, and the overestimating functions and domains can be tailored to the problem at hand
for maximum efficiency.

Before describing the algorithm itself, however, let us first clear up a point of semantics.
In the context of parton showers, the veto algorithm is the main way by which Sudakov form
factors (see below) and related quantities are calculated. One therefore occasionally sees the
phrase “Sudakov veto algorithm”, but this risks giving the mistaken impression that Sudakov
invented the veto algorithm. To avoid this, the terms “veto algorithm” and “Sudakov (form)
factor” are kept separate in this work, with the former referring to the broad numerical sam-
pling method described in this section and the latter being an (important) example of a physical
quantity that can be calculated with it.

Consider a stochastic process that is ordered in some measure of evolution scale. E.g. for
nuclear decay, the ordering measure could be time (in the rest frame of the decaying nucleus),
while for PYTHIA’s evolution algorithms, which are formulated in momentum space, the order-
ing is normally done in a measure of transverse momentum, from high to low. This ensures
that infrared and collinear divergences of the corresponding transition amplitudes are asso-
ciated with vanishing resolution scales, or equivalently with asymptotically late times in the
algorithmic sense.

Starting from a given initial value, u, for the evolution scale, the probability for the next
transition (e.g. a nuclear decay, or a shower branching) to happen at a lower scale t < u, is
given by

p(t|u) = f (t)Π(u, t) , (8)

where f (t) is the probability (sometimes called the “naive” probability) for a transition to
occur at the scale t under the implicit condition that the state still exists at t. The latter is
made explicit by the survival probability, Π(u, t) ∈ [0, 1], which represents the probability that
the state remains unchanged over the interval [u, t]. Analogously to nuclear decay, Π(u, t) is
given by a simple exponential of the integrated naive transition rate,

Π(u, t) = exp

�

−
∫ u

t
dτ f (τ)

�

, (9)

such that

p(t|u) =
∂Π(u,τ)
∂ τ

�

�

τ=t . (10)
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Sample t from g(t)Πg(u, t)

Accept trial with probability f (t)
g(t)

Done

Set u= t

Figure 3: Flowchart representation of the veto algorithm. The red and green arrows
refer to rejection and acceptance of the trial scale t respectively.

The survival probability Π(u, t) is often referred to as the Sudakov form factor. We note that
the two are only strictly identical for final-state showers, while for initial-state showers they
are related via ratios of parton distribution functions, and in the context of MPI one can really
only talk about a Sudakov-like factor. In this section, only the survival probability itself, which
we denote by Π(u, t), will be of interest.

It is worth pointing out that the ordered probability density p(t|u) remains well-behaved
and bounded by unity even if the integrated naive transition rate exceeds unity. In fact, due to
the aforementioned collinear and soft singularities, f (t) typically diverges for t → 0, in which
case the total probability for at least one-state change becomes

∫ u

0

dτ p(τ|u) = 1− exp (F(0)− F(u))→ 1 . (11)

That is, since F(0)→−∞ for a divergent kernel, the probability for at least one-state change
simply saturates at unity. This reflects the unitarity of the shower algorithm, which is also
manifest in eq. (10). If the naive probability does not diverge, or if the evolution is stopped
at a finite cutoff tcut > 0, then there is a non-zero probability, given by Π(u, tcut), to have no
state change at all.

Starting from eq. (8), probabilities for two or more ordered transitions can easily be con-
structed as well, e.g. for two successive branchings with t < u< v:

P(t|u|v) = f2(t) f1(u)Π2(v, u)Π1(u, t) , (12)

where f1(u) is the naive transition rate at the scale of the “first” transition, and that of the
“second” transition is f2(t). Note that we do not assume f1 = f2 since the state undergoes
a change at the intermediate scale τ = u (and the phase space is generally also different).
This is also emphasized by the presence of two separate survival probabilities with different
subscripts instead of a single combined Π(v, t).

We now turn to how to actually sample from eq. (8). The branching kernel f (t) is typi-
cally not simple enough to allow for the use of inversion sampling as described in the previous
section. Fortunately, the veto algorithm [13–17] (and its antecedents, see the “thinning algo-
rithm” [18, 19]) enables sampling from eq. (8) in a quite efficient and flexible manner. This
algorithm relies on the existence of an overestimating “trial” function g(t)≥ f (t) that is sim-
ple enough for samples to be drawn from eq. (8) directly, with f replaced by g. A flowchart
representation of the veto algorithm in its simplest form is shown in fig. 3.

To confirm that this algorithm produces eq. (8), we follow along and write out its proba-
bility distribution q(t|u) to find

q(t|u) =
∫ u

0

dt ′g(t ′)Πg(u, t)
�

f (t ′)
g(t ′)

δ
�

t − t ′
�

+
�

1−
f (t ′)
g(t ′)

�

p
�

t|t ′
�

�

, (13)
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where the first term describes the probability to accept the proposed trial scale t ′, and the
second term gives the probability to reject the trial scale. Note that eq. (13) explicitly displays
the Markovian nature of the veto algorithm, with every recursive step only depending on the
previous one. Equation (13) may be solved by considering the differential equation

∂

∂ u
q(t|u) = f (u)δ(t − u)− f (u)q(t|u) , (14)

which is found by application of Leibniz’s rule for differentiation to eq. (13). We can find a
solution by using an ansatz q(t|u) = q̂(t|u)e−F(u), which after integration leads to

q(t|u) = f (t)Π f (u, t)Θ(t −σ) + q0(t,σ) . (15)

The scale σ in the step function Θ(t −σ) and the function q0 appear because information is
lost in converting eq. (13) to eq. (14), but they are easily understood by reconsidering the
structure of the algorithm. Mathematically, no other scale σ was introduced at any point,
so eq. (15) cannot depend on it. As a result, σ must equal zero and the function q0 must
vanish, recovering eq. (8). In practice, however, the infrared cutoff on the shower evolution
does introduce a scale σ. In that case, the algorithm shown in fig. 3 is stopped whenever t
drops belowσ. The function q0 then represents the superfluous probability of sampling a scale
below the cutoff, which is not associated with any change of state.

Many extensions of the veto algorithm are possible and are often used, of which we only
discuss a few. Further details may be found in [13,15–17,20].

One can replace the acceptance probability f (t)/g(t) by some other r(t) ∈ [0, 1] and
compensate by modifying the event weight by a multiplicative factor f (t)/g(t)r(t) in case the
scale is accepted and (1− f (t)/g(t))/(1−r(t)) in case it is rejected. Writing out the probability
distribution again, we find

q(t|u) =
∫ u

0

dt ′g(t ′)Πg(u, t ′)
�

r(t ′)δ
�

t − t ′
� f (t ′)

g(t ′)r(t ′)
+
�

1− r(t ′)
�

p
�

t|t ′
� 1− f (t ′)/g(t ′)

1− r(t ′)

�

,

(16)
where the weights appear as multiplicative factors. It is then straightforward to see that
eq. (16) reduces to eq. (13). This modification enables sampling from eq. (8) in cases where
it is difficult to find a g(t) ≥ f (t), or even in cases where f (t) may be negative. However, in
both cases events with negative weights will appear.

Applying eq. (16), shower uncertainties can be efficiently incorporated as event weights. In
that case, r(t) represents the baseline acceptance probability, while f (t) is a modified branch-
ing kernel that parameterizes the uncertainties through variations of the renormalization scale,
its non-singular components, or choice of parton distribution function for initial state showers.
If g(t) overestimates both the baseline and the modified branching kernels, the event weights
stay positive. This is also the basis for generating biased emissions of rare splittings. More
details can be found in section 4.1.5.

We complete this section by discussing some variations of the veto algorithm in the context
of competition between channels. In most cases, multiple branching kernels fi(t) contribute
to the total parton-shower probability distribution, which may then be written as

p̃(t|u) = f̃ (t)Π f̃ (t, u) where f̃ (t) =
n
∑

i=1

fi(t) . (17)

One way to handle competition is to apply the veto algorithm to all channels individually, and
then select the channel with the highest scale t i . A flowchart representation of this procedure
is shown in fig. 4.
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Set u1 = u

Sample t1 from g1(t1)Πg1
(u1, t1)

Accept with probability f1(t1)
g1(t1)

Set u1 = t1

Set u2 = u

Sample t2 from g2(t2)Πg2
(u2, t2)

Accept with probability f2(t2)
g2(t2)

Set u2 = t2

...

Set un = u

Sample tn from gn(tn)Πgn
(un, tn)

Accept with probability fn(tn)
gn(tn)

Set un = tn

Select highest scale t i

Done

Figure 4: Flowchart representation of the first competition veto algorithm.

Sample t1 from g1(t1)Πg1
(u1, t1) Sample t2 from g2(t2)Πg2

(u2, t2) ... Sample tn from gn(tn)Πgn
(un, tn)

Set u= t i
Select highest scale t i

Accept with probability fi(t)
gi(t)

Done

Figure 5: Flowchart representation of the second-competition veto algorithm. This
algorithm is used to to interleave initial-state and final-state radiation with multi-
ple parton interactions, and is more efficient when branching-kernel evaluation is
expensive, such as for matrix-element corrections.

It may be shown to yield eq. (17) as follows:
� n
∏

i=1

∫ u

0

dt i fi(t i)Π fi
(u, t i)

� n
∑

j=1

�

∏

k 6= j

Θ
�

t j − tk

�

�

δ
�

t − t j

�

=
n
∑

i=1





∏

j 6=i

∫ t i

0

dt j f (t j)Π f j
(u, t j)





∫ u

0

dt i fi(t i)Π fi
(u, t i)δ (t − t i)

=
n
∑

i=1

fi(t)Π fi
(u, t)

∏

j 6=i

Π f j
(u, t) = p̃(t|u) . (18)

Equivalently, the result of eq. (18) may be used with overestimates gi(t i) in place of fi(t i),
then selecting the highest scale before proceeding to the acceptance step. A flowchart rep-
resentation of this procedure is shown in fig. 5, and produces the same result. This algo-
rithm is used to interleave initial-state and final-state radiation with multiple parton interac-
tions. Furthermore, it is more efficient when branching-kernel evaluation is expensive, such
as for matrix-element corrections. A third option is available, where instead a single scale is
drawn according to the sum of overestimates g̃(t) and a channel is selected with probability
gi(t)/ g̃(t) for the acceptance step. A flowchart representation of this procedure is shown in
fig. 6 and again produces eq. (17). This procedure is used in a few specific places, in particular
when the overestimates of several channels are very similar. Examples include quark-flavour
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Sample t from g̃(t)Π g̃(u, t)

Select a channel with probability gi(t)
g̃(t)

Accept with probability fi(t)
gi(t)

Done

Set u= t

Figure 6: Flowchart representation of the third-competition veto algorithm. Use-
ful in situations where multiple channels have similar overestimates, like for quark-
flavour selection in g→ qq splittings and the efficient sampling of the large number
of branchings in VINCIA’s electroweak shower.

selection in g→ qq splittings and the efficient sampling of the large number of branchings in
VINCIA’s Electroweak (EW) shower. It is important to note that these algorithms may also be
combined, for instance by grouping several channels for use with the algorithm depicted in
fig. 6, and further combining them with the algorithms depicted in fig. 4 or fig. 5. In fact, the
different shower models available in PYTHIA often use different procedures to optimize code
structure and performance.

2.2.4 Phase space (M-generator and RAMBO)

One standard task is to distribute the momenta of final-state particles uniformly according
to Lorentz Invariant Phase Space (LIPS), on top of which then later dynamical aspects can be
added. (Non-uniform sampling methods, used e.g. when resonances are present, are discussed
separately, in section 2.3.) The relevant phase-space density is

dΦn(P; p1, p2, . . . , pn) = (2π)
4 δ(4)

�

P −
n
∑

i=1

pi

� n
∏

i=1

d3pi

(2π)3 2p0
i

, (19)

where P is the total four-momentum, and pi , i ≥ 1 are the n different outgoing four-momenta.
Usually the process is initially considered in the rest frame of the system, P = (M ;0), and later
boosted to the relevant frame of the whole event.

A common special case is two-body final states, where the Centre of Mass (CM)-frame
expression reduces to

dΦ2 =
|p|

16π2M
dΩ=

|p|
16π2M

d cosθ dϕ . (20)

That is, the direction of one of the outgoing particles has to be picked uniformly on the unit
sphere, with the other moving out in the opposite direction. The three-momentum length is

|p|= |p1|= |p2|=

q

λ
�

M2, m2
1, m2

2

�

2M
, (21)
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where the Källén λ function can be written in a number of equivalent ways

λ(a2, b2, c2) = a4 + b4 + c4 − 2a2 b2 − 2a2c2 − 2b2c2

= (a2 − b2 − c2)2 − 4b2c2

= (a2 − (b+ c)2)(a2 − (b− c)2)

= (a+ b+ c)(a− b− c)(a− b+ c)(a+ b− c) . (22)

The energies are given by

p0
1 =

q

m2
1 + p2 =

M2 +m2
1 −m2

2

2M
,

p0
2 =

q

m2
2 + p2 =

M2 +m2
2 −m2

1

2M
. (23)

For three or more final particles, PYTHIA implements two different generic methods, the
older M-generator [21] and the newer RAMBO [22] one, but approaches tailor made for the
specific situation are also common, e.g. in parton showers. RAMBO is the best choice for the
case of massless products, whereas the situation is less obvious once the masses constitute a
significant fraction of the full energy.

The basic idea of the M-generator strategy is to view the full event as arising from a se-
quence of fictitious two-body decays. Thus a four-body decay 0→ 1+2+3+4, as an example,
is viewed as a sequence 0→ 123+4→ 12+3+4→ 1+2+3+4, where 123 and 12 represent
intermediate states. By a suitable insertion of a unit factor

1= δ(4)(p12 − p1 − p2)d
4p12δ(m

2
12 − p2

12)dm2
12 = δ

(4)(p12 − p1 − p2)
d3p12

2p0
12

dm2
12 , (24)

and a similar one for p123, the four-body phase space can be reformulated as

dΦ4

�

P; p1, p2, p3, p4

�

∝ dΦ2

�

P; p123, p4

�

dm2
123 dΦ2 (p123; p12, p3) dm2

12 dΦ2 (p12; p1, p2) .
(25)

The mass-dependent parts can be collected and simplified to
q

λ(m2
0, m2

123, m2
4)

m0
dm123

q

λ(m2
123, m2

12, m2
3)

m123
dm12

q

λ(m2
12, m2

1, m2
2)

m12
. (26)

The (m123, m12) phase space can easily be sampled within allowed borders, but the rest of the
expression then becomes a weight that has to be taken into account by hit-and-miss Monte
Carlo. This is where the algorithm can be slow. Once the intermediate masses have been
selected, two-particle kinematics are constructed in a sequence of rest frames for 1+2, 12+3
and 123+ 4, interleaved with Lorentz boosts between them.

The RAMBO algorithm provides an alternative sampling of n-body phase space, which by
construction has constant (uniform) weight for arbitrary n in the massless limit. The starting
point is the following identity for massless four-vectors,

∫

d4qδ(q2)exp(−q0) =

∫ ∞

0

q0

2
exp(−q0)

∫

dΩ= 2π . (27)

A four-momentum q distributed according to the integrand of the left-hand side of this identity
can be generated via the steps

q0 = − log(R1R2), cosθ = 2R3 − 1, ϕ = 2πR4 , (28)
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=⇒ q = (q0, q0 sinθ sinϕ, q0 sinθ cosϕ, q0 cosθ ) . (29)

RAMBO repeats this process n times to produce a set of momenta qi that initially
have

∑

i qµi ≡ Qµ. The final momenta pi are then constructed by applying a boost
Λ
µ
ν to the CM frame of Q and scaling by an overall factor x = M/

p

Q2, so that
Pµ ≡

∑

pµi = x(ΛµνQν) = (M ,0).
To illustrate that this leads to momenta distributed according to eq. (19), we may start

from n multiples of eq. (27) and unitarily transform the momenta as

(2π)n =
n
∏

i=1

∫

d4qi δ(q
2
i )exp(−q0

i )

× d4Qδ4

�

Q−
n
∑

i=1

qi

�

d x δ

�

x −
M
p

Q2

�

×
n
∏

i=1

d4pi δ
4(pi − x (Λqi)) . (30)

Identifying the phase-space measure eq. (19) in eq. (30) and integrating over the other vari-
ables then leads to

∫

dΦn(P; p1, p2, . . . , pn) =
�π

2

�n−1 M2n−4

(n− 1)!(n− 2)!
, (31)

which is indeed the n-body massless phase-space volume [22]. RAMBO thus samples the
massless phase space isotropically, with constant weight given by eq. (31).

For massive particles, no equivalent general expression for the phase-space volume exists.
However, the massless RAMBO algorithm may be adapted to the massive case at the cost of
introducing variable event weights, which translates to a reduced efficiency at the unweighted
level. Starting from the massless momenta pi , massive momenta ki are obtained through

ki = ypi , k0
i =

q

|ki|2 +m2
i . (32)

The momenta ki are on-shell and preserve momentum conservation as long as the rescaling
parameter y is given by the solution of the equation

n
∑

i=1

q

y2|pi|2 +m2
i = M . (33)

Since eq. (33) is a monotonic function of y with a solution 0 ≤ y ≤ 1, the value of y may
be determined easily using the Newton–Raphson method. Through a similar procedure as the
one followed in eq. (30), the event weight may be determined to be

w=
�π

2

�n−1 1
(n− 1)!(n− 2)!

� n
∏

i=1

|ki|
k0

i

�

 

n
∑

j=1

|k j|2

k0
j

!−1 n
∑

j=1

|k j|

!2n−3

, (34)

which is bounded from above by the massless weight, eq. (31), so that the distribution can be
unweighted by accepting the generated massive phase-space point with the probability

Paccept =

<1
︷ ︸︸ ︷

n
∏

i=1

|ki|
k0

i







∑

j |k j|
∑

j
|k j |2

k0
j







<1
︷ ︸︸ ︷

�
∑

j |k j|

M

�2n−4

, (35)

which (by construction) tends to unity in the massless limit.
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2.3 Process-generation basics

Particle-physics cross sections can crudely be divided into two categories: perturbative and
non-perturbative. Both kinds of processes play crucial roles in PYTHIA. The former can be
computed order by order in perturbation theory, e.g. based on Feynman-diagram rules. For
the electroweak sector, the couplings are sufficiently small that higher-order corrections should
offer a rapidly converging series. The exception is the enhanced emission of soft or collinear
photons, but this is a well-understood issue. For the strong sector, on the other hand, the large
αs coupling leads to a slower convergence. It can still work well for QCD processes involving
large momentum transfers. In the opposite limit, at low momentum transfers, the perturbative
coupling diverges and perturbation theory breaks down. Therefore the total cross section in
hadron-hadron collisions, which is dominated by such low scales, can only be described in
terms of effective, phenomenological models. The same applies for its main components —
elastic, diffractive and nondiffractive cross sections — which therefore are classified as non-
perturbative processes.

In the current section, the focus will be on perturbative processes, introducing how these
are defined and generated inside PYTHIA. Non-perturbative processes are discussed separately
in section 6. There are also components that partly bridge the gap between the two, such as
multiparton interactions (MPIs), hard diffraction, and photoproduction processes. These are
also discussed in section 6, along with further aspects specific to simulating cross sections in
heavy-ion collisions.

To begin the discussion of perturbative process generation, consider a process a+ b→ fn,
where a and b are two incoming particles that together create a final state f consisting of n
particles. The differential cross section can then be written as

dσ̂
dΦn

=
|M|2

2
q

λ(ŝ, m2
a, m2

b)
≈
|M|2

2ŝ
, (36)

where ŝ = (pa+ pb)2 is the squared invariant mass of the collision system. Usually ma and mb
are negligible in comparison with

p
ŝ, and then the last expression is obtained. The process-

specific physics is encapsulated in the matrix element M, which we shall assume can be cal-
culated perturbatively. The |M|2 expression also has to be averaged over incoming spin and
colour configurations, and summed over outgoing spin and colour configurations, where rel-
evant.

In some rare cases a and b are the actual incoming beam particles. Normally, however,
a and b are constituents of the true beam particles, A and B. Then one needs to introduce
parton distribution functions (PDFs), f A

a (x ,Q2) (and f B
b (x ,Q2)), that to leading order describe

the probability to find a parton a inside the particle A, with a fraction x of the particle four-
momentum, if the hard-collision process probes the particle at a (factorization) scale Q2. The
cross section then reads

σ =

∫

dx1 f A
a (x1,Q2)

∫

dx2 f B
b (x2,Q2)

∫

dσ̂(ŝ,Q2)
dΦn

dΦn , (37)

where
ŝ = x1 x2s , with s = (pA+ pB)

2 . (38)

The nature of the PDFs varies depending on what kind of particle is concerned: hadrons, nu-
clei, leptons, photons, or pomerons. They will therefore be discussed further in the respective
beam context. The most commonly used and best studied are the proton PDFs, cf. section 3.12,
and for these we will omit the A and B superscripts.
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2.3.1 2→ 2 processes

Massless Kinematics: In a massless 2 → 2 subprocess a(p1) + b(p2) → c(p3) + d(p4) it is
conventional to write the cross section in terms of the Mandelstam variables

ŝ = (p1 + p2)
2 = (p3 + p4)

2 , (39)

t̂ = (p1 − p3)
2 = (p2 − p4)

2 = −
ŝ
2
(1− cos θ̂ ) , (40)

û= (p1 − p4)
2 = (p2 − p3)

2 = −
ŝ
2
(1+ cos θ̂ ) , (41)

where θ̂ is the scattering angle, defined as the polar angle of particle 3, in the rest frame
of the collision. Since dΦ2 ∝ dcos θ̂ ∝ d t̂ (assuming a trivial flat ϕ dependence, as is the
case unless the incoming beams are transversely polarized), it is common to recast eq. (37)
accordingly. Furthermore, dx1 dx2 = dτdy , where τ = x1 x2 = ŝ/s and y = (1/2) ln(x1/x2).
It is also standard to use x f (x) rather than f (x). In total this gives

σ =

∫∫∫

dτ
τ

dy d t̂ x1 f A
a (x1,Q2) x2 f B

b (x2,Q2)
dσ̂(ŝ, t̂,Q2)

d t̂
. (42)

The û variable is redundant since ŝ + t̂ + û = 0, but often symmetry properties of matrix
elements are apparent if it is used judiciously. In a frame where a and b come in back-to-back,
moving in the ±z directions, p̂2

⊥ = t̂ û/ŝ is the squared transverse momentum of the outgoing
c and d. A frequent choice is to put Q2 = p̂⊥ as the factorization scale.

The sampling ranges for each of the (τ, y, t̂) variables depends on whether phase-space
cuts are imposed at the process-generation level, cf. section 3.13. Generically, they are:

ŝmin

s
< τ <

ŝmax

s
, (43)

−
1
2
| lnτ|< y(τ) <

1
2
| lnτ| , (44)

√

√

√

1−
4p̂2
⊥max

τs
< |z(τ)|<

√

√

√

1−
4p̂2
⊥min

τs
, (45)

where t̂ has been replaced by z = cos θ̂ via eq. (40), and we emphasize that there are solutions
for both positive and negative z. The phase-space boundaries are set via the (user-specifiable)
parameters m̂min,max, p̂⊥min,max, and/or Q̂2

min, cf. section 3.13. To give some examples:

• For processes containing an s-channel resonance, it may be desirable to only generate
phase-space points within a specific range of m̂ values. Processes involving resonance
production and decay are discussed in more detail in section 2.3.3.

• A restriction like p̂⊥ > p̂⊥min, implying ŝmin = max(m̂2
min, 4p̂2

⊥min), is mandatory for
matrix elements that diverge in the p̂⊥ → 0 limit; this includes in particular massless
t-channel QCD processes. It may also be convenient for studies focusing on the high-p⊥
tail of “hard” 2→ 2 processes.

• The option to specify a Q2
min value is intended for t-channel DIS-type processes with

distinguishable final-state particles, cf. section 3.13, in which case ŝmin ≥Q2
min and

z(τ)≤ 1− 2Q2
min/(τs).

The selection of phase-space points (τ, y, z) is described in detail in [14], and remains
unchanged. The basic strategy is to use multichannel sampling in each of the three variables
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separately. Thus, for instance, the τ dependence is modelled as a mix of sampling according
to either 1/τ or 1/τ2. The normalization factors of the two possibilities are determined at
initialization, and would depend on the process, the choice of PDFs and αs, and the p⊥min cut.
That way an upper envelope is found for the real cross-section expression. The probability that
a trial phase-space point is retained is given by the ratio of the full differential cross section
to the multichannel overestimate, and the accepted events are assigned a standard weight of
unity. There is always the risk that the intended upper estimate of the cross section is exceeded
by the full expression in some corner of phase space, even if it is not common. Such points are
associated with a weight correspondingly above unity.

The cross section for a process is obtained in parallel with the generation of events, using
the multidimensional generalization of eq. (4). Thus the error decreases with the number of
events generated.

When several processes are to be generated simultaneously, an upper envelope is found
for each differential cross section separately. The size of integrated envelopes, i.e. the upper
estimate of the respective cross sections, is used as a relative weight when the next process is
selected. If the trial phase-space point is rejected then a new process choice is made. That is,
a larger overestimate will make a given process more likely to be picked, but then afterwards
also more likely to be rejected. In the end, all processes are generated in proportion to their
correct integrated cross sections.

Generation in (τ, y, z) is only one possible choice. It has the advantage that additional τ
terms can be used for the sampling of resonances in the cross section, cf. section 2.3.3. For the
generation of MPIs, however, it is essential to use p̂2

⊥ rather than t̂, cf. section 6.2. Then one
may instead note that

dx1

x1

dx2

x2
d t̂ =

dτ
τ

dy d t̂ = dy3 dy4 dp̂2
⊥ , (46)

where y3 and y4 are the rapidities of the two outgoing particles.

Massive Kinematics: So far we have considered massless kinematics. It is quite common
to have cases where one or both of the outgoing particles are massive, while the incoming
ones still are assumed massless. In some cases, such as elastic scattering, both incoming and
outgoing masses need to be taken into account. The fully general t̂ expression is

t̂ = −
ŝ2 − ŝ(m2

1 +m2
2 +m3

3 +m2
4) + (m

2
1 −m2

2)(m
2
3 −m2

4)−
q

λ(ŝ, m2
1, m2

2)λ(ŝ, m2
3, m2

4) cos θ̂

2ŝ
,

(47)
with û obtained by m2

3↔ m2
4 and cos θ̂ →− cos θ̂ , resulting in

ŝ+ t̂ + û= m2
1 +m2

2 +m3
3 +m2

4 . (48)

The limits t̂min < t̂ < t̂max (all negative or, for t̂max, zero) are obtained for cos θ̂ = ∓1. Often
t̂max is close to zero and a numerically safer recipe for it is obtained by noting that

t̂min t̂max = (m
2
3 −m2

1)(m
2
4 −m2

2) +
(m2

1 +m2
4 −m2

2 −m2
3)(m

2
1m2

4 −m2
2m2

3)

ŝ
. (49)

If m2
1 = m2

2 = 0 then t̂min t̂max = m2
3m2

4 and p̂2
⊥ = ( t̂ û−m2

3m2
4)/ŝ.

2.3.2 2→ 3 processes

In pure s-channel 2→ 3 processes, say (unpolarized) e+e−→ γ∗/Z→ qqg, cross sections fac-
torize into production and decay steps, and the decay phase space is easy to generate in terms
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of two energy variables and three angles. Such decays are not coded as explicit hard processes,
however, but instead are handled during the parton-level shower evolution. Three-body final
states such as e+e− → γ∗/Z→ qqg are then reached via showering from e+e− → γ∗/Z→ qq
(cf. section 2.3.3 on resonances and section 4 on parton showers), with matrix-element cor-
rections applied to the extent available and switched on, cf. section 5.

For 2→ 3 hard processes that do not factorize into resonance production and decay plus
shower, it becomes much more messy to set up phase space, since there are more possibilities
for peaks in different places. PYTHIA does not have a general-purpose machinery to handle
generic cross sections. Instead, the main assumption is that such processes are provided via
the Les Houches accord, cf. section 10.1.1, from external programs that have their own phase-
space generators.

There are a few internal 2→ 3 processes, however, for very specific tasks. These are gen-
erated according to one of three different prescriptions, tailored to the squared amplitudes for
massless QCD 2→ 3 processes, Vector Boson Fusion (VBF), and central diffractive processes,
respectively. These were developed separately and employ somewhat different notation in the
code, here relabelled for clarity. Note that all three assume a cylindrical symmetry with respect
to the collision axis.

Massless QCD a(p1)+b(p2)→ c(p3)+d(p4)+e(p5) cross sections contain divergences when
any of the final-state particles become collinear to the beam, collinear to each other, and/or
soft. It is therefore important to choose a set of phase-space variables that allows for the isola-
tion of these singularities. The parameterization used in PYTHIA is (y3, y4, y5, p2

⊥3, p2
⊥4,ϕ3,ϕ4).

The rapidity sampling here is simple and consistent, while the p⊥ selection is not, unfortu-
nately. The p⊥5 is fixed opposite to the vector sum of the other two, and in the first instance
gets a different p⊥ spectrum than them. Notably, a requirement for all p⊥ > p⊥min can be im-
posed with full efficiency for two, but is inefficient for the third. It is also important to avoid
the collinear singularity by an additional cut on R=

p

(∆y)2 + (∆ϕ)2 for all outgoing pairs.
A process of special interest is vector-boson fusion to a Higgs boson, W+W−→ H and ZZ→ H
(and/or W+W+ → H++ in some BSM scenarios). Since the bosons are emitted from fermion
lines this results in 2→ 3 processes of the character f1(p1) + f2(p2)→ f3(p3) + f4(p4) +H(p5).
The variables chosen in this case are (τ, y, y5, p2

⊥3, p2
⊥4,ϕ3,ϕ4). Here, special care is taken in

the modelling of p2
⊥3 and p2

⊥4 which, unlike the QCD cross sections, have no p⊥→ 0 divergence
but instead are fairly flat out to the gauge-boson mass. Note that the physics of the process
here naturally singles out the Higgs p⊥ as having a different shape than the other two, again
different from the QCD case. The same machinery is also used for heavy-quark fusion to Higgs,
qq→ QQH and gg→ QQH, where top masses are selected with a Breit–Wigner shape.

Another special case is central diffraction, e.g. p(p1)+p(p2)→ p(p3)+p(p4)+X (p5), where
X is the central diffractive system. Here sampling in t1 = (p1−p3)2 and t2 = (p2−p4)2 is crucial
to impose an exponential fall-off in these variables. The energy fractions x1 and x2 taken from
the incoming proton defines m2

X = p2
5 = x1 x2s in the collinear limit t1, t2 → 0. Away from it

also the ϕ3 and ϕ4 angles play a role, and one requires a more elaborate definition of x1 and
x2.

2.3.3 Processes involving resonances

The term “resonance” has a specific meaning in PYTHIA and refers to particles whose decays
are considered to be part of the hard process. This enables PYTHIA to modify the total cal-
culated cross section depending on which decay channels are open or closed (including ef-
fects of sequential decays, such as t → bW+ followed by W+ → e+νe), and also provides a
natural framework for incorporating process-specific aspects such as spin correlations and/or
finite-width effects. Here, we focus aspects of phase-space generation common to all pro-
cesses involving resonances. Details on cross-section considerations, process-specific features,
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and some further sophistications are explained in section 3.11, while user implementations of
“semi-internal” resonances is described in section 9.7.3, and the handling of SUSY Les Houches
Accord (SLHA) decay tables is covered in section 10.1.2.

We focus first on the simplest treatment available in PYTHIA, with partial widths and branch-
ing fractions fixed to their on-shell values. Technically, in the code this corresponds to decay
channels that are assigned meMode = 100. Values of 101, 102, and 103 additionally include
some simple kinematic threshold effects, also discussed below. Lastly, we emphasize that the
default treatment often goes further than this, with most decay modes of SM resonances (and
some BSM ones) assigned meMode = 0 implying the use of dedicated matrix-element expres-
sions for branching fractions that can vary over a reasonably broad resonance peak; this is
covered separately in section 3.11; see further section 9.7.3 for user implementations of such
expressions.

Starting from a cross section computed in the zero-width approximation, i.e. for stable
final-state resonances, the simplest shape modelling available in PYTHIA is a relativistic Breit–
Wigner substitution of the type

1=

∫

δ(m2 −m2
0)dm2→

∫ m2
max

m2
min

1
π

m0Γ0

(m2 −m2
0)2 +m2

0Γ
2
0

dm2 , (50)

for each final-state resonance, where m0 and Γ0 are the nominal (on-shell) mass and widths of
the resonance, respectively, and m is allowed to vary in a range m ∈ [mmin, mmax] that can be
specified individually for each resonance in PYTHIA’s particle data table. Note that choosing a
small range will reduce the total cross sections accordingly.

The phase-space integral in eq. (42) is then extended to include integrations over m2 for
each resonance, and the sampled values1 for these masses are used instead of the on-shell
ones in the evaluation of dσ̂/d t̂ and also in the relations between kinematic variables such
as between t̂ and cos θ̂ . This offers a crude level of approximation to the expected mass
dependence of the full cross section, at least in the vicinity of the resonance(s) where the
resonant amplitudes can still be assumed to dominate over any (non-resonant) background
processes.

A complication arises for processes that involve pair production of the same kind of parti-
cle, such as tt, W+W−, or Z0Z0 production. For such processes, on-shell matrix elements are
phrased in terms of a single pole-mass value, while the procedure above produces two differ-
ent values, m3 and m4. For the specific case of double-vector-boson production, PYTHIA uses
4-fermion matrix elements that include the full mass dependence (as well as the full γ∗/Z in-
terference). However, for more general processes involving two of the same kind of resonance
(such as tt production), the choice made in PYTHIA is to use an average squared mass,

m̄2 =
m2

3 +m2
4

2
−
(m2

3 −m2
4)

2

4ŝ
, (51)

which is defined so that (ŝ, m2
3, m2

4) and (ŝ, m̄2, m̄2) correspond to the same CM-frame three-
momenta,

|p∗(ŝ, m̄2, m̄2)|2 = |p∗(ŝ, m2
3, m2

4)|
2 =

1
4ŝ

�

ŝ− (m3 +m4)
2
� �

ŝ− (m3 −m4)
2
�

. (52)

Analogous modified values for the t̂ and û variables are defined to correspond to the same

1See [14, sec. 7.4.2] for details on the sampling procedure.
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CM-frame scattering angle,

¯̂t = t̂ −
(m2

3 −m2
4)

2

4ŝ
= −

1
2

�

ŝ− 2m̄2 − 2|p∗|
p

ŝ cos θ̂
�

, (53)

¯̂u = û−
(m2

3 −m2
4)

2

4ŝ
= −

1
2

�

ŝ− 2m̄2 + 2|p∗|
p

ŝ cos θ̂
�

, (54)

and these variables (m̄, ¯̂t, and ¯̂u) are then used in the evaluation of the on-shell cross-section
formula. If in doubt whether full matrix elements or the mass-symmetrized approximation
represented by eqs. (51) to (54) is used for a given process, the corresponding sigmaKin()
method can be inspected in the code (with m̄2 then typically denoted s34Avg). We note that,
when gauge bosons are involved, the procedure is not guaranteed to be gauge invariant, nor
positive definite, and breakdowns should be expected if any resonance masses are far from
their on-shell values. The alternative would be to change to use full 4- or 6-body matrix
elements instead (as already done for double-vector-boson production), e.g. by interfacing
external hard-process generators, cf. section 10.1.

Be aware that, if a decay mode has been assigned meMode = 100 and mmin is such that
the decaying resonance can fluctuate down in mass to below the nominal threshold for the
given decay mode (i.e., mmin <

∑

j m j with m j the on-shell daughter masses for the decay
mode in question), it is assumed that at least one of the daughters could also fluctuate down
to keep the channel open. Otherwise the program will hit an impasse.

Alternatively, simple step functions Θ(m −
∑

j m j) can be applied to impose kinematic
thresholds; this is done for decay channels that are assigned meMode = 101. A slightly more
sophisticated alternative is to use a smooth threshold factor,

β =

√

√

√

�

1−
m2

1 +m2
2

m2

�2

− 4
m2

1m2
2

m4
, (55)

for two-body decay modes, and
√

√

√

1−

∑

j m j

m
, (56)

for multi-body ones, again with m j equal to the on-shell masses of the decay products for the
given mode. The former correctly encodes the shrinking size of the phase space near threshold
(but would still miss any non-trivial matrix-element factors) while the latter is only a crude
simplification. Two separate options exist for this, depending on whether the stored on-shell
branching fraction should be considered to already include this factor (meMode = 103) or
whether it should be modified by it (meMode = 102). In the former case (meMode = 103),
the actual factor applied is the ratio of the above to the corresponding value for m = m0,
with a safety limit imposed in case that denominator turns out to be very small, to avoid
unintentionally large rescalings at large m.

Among the options discussed thus far, only the no-threshold one (meMode = 100) allows
for purely off-shell decay modes, i.e. ones for which the on-shell daughter mass values exceed
m0; as noted above one or more of the daughters must then be able to fluctuate down in mass,
or there will be trouble. The remaining options (meMode = 101 – 103) are all restricted to
phase-space points satisfying

∑

m j < m, with m j the on-shell daughter-mass values.
Currently, the only higher level of sophistication available in PYTHIA is to go all-in and im-

plement dedicated decay-rate calculations specific to each given resonance and decay mode;
this is obtained for meMode = 0. As mentioned above, this is the default for most SM res-
onance decays in PYTHIA as well as for some BSM ones, meaning that such code exists in
the program (in the form of process-specific SigmaProcess::weightDecay() methods and
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resonance-specific ResonanceWidths::calcWidth() methods) and is used by default. See
further section 3.11.

Finally, note that both PYTHIA’s simple shower as well as the VINCIA antenna shower allow
for the insertion of resonance decays as 1→ n branchings in the overall perturbative evolution,
at decay-specific perturbative scales. This is called interleaved resonance decays [23] and is
also further discussed in section 3.11.
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Part II

Physics content
The PYTHIA event generator is the product of a physics development program in close touch
with experimental reality. The two have often gone hand in hand, by making it possible to
check which ideas work and which do not. Many of the concepts that today form the accepted
picture of high-energy collisions can be traced directly to this undertaking, including string
fragmentation, dipole showers, multiparton interactions, colour reconnection, and more. This
part of the manual provides details on these and the other physics models encoded in PYTHIA.
Many of these models still evolve to handle new experimental input, or to accommodate the
progress in our theoretical understanding of the standard model of particle physics.

The first section describes the physics processes — sometimes denoted “hard processes”
— internal to PYTHIA. These processes are those that can be calculated in leading-order per-
turbation theory in the standard model or simple extensions. While some of the calculations
are currently outclassed, and are more of interest as a cross check or for quick studies, others,
particularly the treatment of jet production and BSM physics models, are still actively used
for comparisons with data. Further sections describe the core of the PYTHIA engine: parton
showers, multiparton interactions, hadronization, and particle decays. An important comple-
ment to these sections is the one on matching and merging, which documents the methods
for interfacing external calculations (that are more precise in perturbation theory) with the
PYTHIA engine.

Notable additions to the PYTHIA 8.3 presentation here are the descriptions of two parton-
shower plugins — DIRE and VINCIA— and the heavy-ion collision machinery.

3 Internal process types

PYTHIA 8.3 includes a good selection of native hard processes at Leading Order (LO). The hard
processes are generated by sampling the allowed phase space using matrix elements, and con-
voluted with the PDFs, as a weight. Usually the multichannel sampling strategy results in
accepted events with a common unit weight, but there are exceptions to this rule, so it is wise
to be prepared for non-unit weights in event-analysis programs. In addition to the internal
processes, there are several ways to feed in externally generated hard processes for showering
and hadronization, including several options for matching and merging of higher-order pro-
cesses. These options are discussed in detail in section 5 and section 10. This section classifies
and lists internally defined hard processes and discusses about special features and appro-
priate settings for given processes. All internally defined processes are listed in appendix A,
where also references to the cross-section formulae are given. If a process is included for both
quark and lepton initial or final particles, the process is written with an “f” (denoting fermion)
whereas a “q” is used when only quarks are expected. Charge-conjugate processes are always
implicitly included.

3.1 Hard QCD

The internal QCD processes can be classified in three categories: (1) 2 → 2 scattering of
light quarks and gluons, (2) production of heavy flavours (charm and bottom) in 2→ 2 pro-
cesses, and (3) 2→ 3 processes involving light quarks and gluons. For hard processes suitable,
process-dependent, phase-space cuts need to be applied to avoid soft and collinear singular-
ities of perturbative QCD. In addition to these, soft QCD processes are included. These are
discussed in section 6.1 and include also a unitarized version of the hard 2→ 2 cross sections,

31

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

where the divergences in the p⊥→ 0 limit have been regulated with the screening parameter
p⊥0, see section 6.2 for more details. Normally the hard and soft QCD processes would not
be used simultaneously, since typically they target different kinds of physics studies. If they
are combined nevertheless, relevant phase-space cuts should be introduced to separate the
regions handled by each machinery, to prevent double counting.

3.1.1 Light quarks and gluons

This subclass of processes contain all possible 2→ 2 scatterings of massless quarks and gluons.
In total there are six possibilities:

• gg→ gg

• gg→ qq

• qg→ qg

• qq′→ qq′ where incoming and outgoing flavours are the same

• qq→ gg

• qq→ q′q′

By default the light flavours include u, d and s quarks but it is also possible to produce c and
b quarks with the massless matrix elements.

3.1.2 Heavy flavours

These processes provide heavy-quark pair production where heavy flavours stand for c and b.
In LO, there are two possible processes each:

• gg→ cc

• qq→ cc

• gg→ bb

• qq→ bb

Unlike the case of massless partons, the finite mass also makes the matrix element expressions
finite in the p⊥ → 0 limit, so there is no need to introduce phase-space cuts to avoid diver-
gences. However, it is also possible to generate these processes within the regularized soft
QCD framework, though the mass effects are then not accounted for in the matrix elements.
When considering heavy-quark production, one should keep in mind that especially c quarks
are abundantly produced in the parton shower at LHC energies [24]. Therefore, to obtain e.g.
inclusive D-meson spectra, these processes should be combined with the light-parton processes
above. This combination will also provide the total QCD jet cross section in LO. Notice also
that the qg→ qg process is available only in the massless approximation above. (The massive
matrix element for this process incorrectly sets the incoming quark on mass shell, so it is not
a better alternative.)
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3.1.3 Three-parton processes

In addition to 2→ 2 QCD processes, LO expressions for processes with three final state partons
are also included in PYTHIA. These contain only light partons, but if needed the massive quarks
can be dealt with using the massless matrix elements. One should also keep in mind that, since
three-jet events can be formed from two-parton final states in the parton showers, mixing these
with the 2 → 2 QCD processes would lead to double counting. So far this section is partly
incomplete, e.g. colour flows are rather simple, so the purpose is rather to provide a way to
check cross sections in specific kinematics where e.g. all three jets need to be above a certain
p⊥. Included processes are listed below:

• gg→ ggg

• qq→ ggg

• qg→ qgg

• qq′→ qq′g where q and q′ are different flavours

• qq→ qqg where incoming and outgoing flavours are the same

• qq→ q′q′g where q and q′ are different flavours

• qq→ qqg where incoming and outgoing flavours are the same

• gg→ qqg

• qg→ qq′q′ where q and q′ are different flavours

• qg→ qqq where incoming and outgoing flavours are the same

3.2 Electroweak

The internally defined electroweak (EW) processes contain prompt photon production, pro-
cesses with photons in the initial state, and processes including electroweak bosons as an
intermediate state or in the final state.

3.2.1 Prompt photon production

These processes include parton-initiated production that have one or two photons in the final
state. The partonic cross sections are at LO in QCD for massless partons and contain only
2 → 2 processes. Thus, similarly as for light-flavour QCD, the expressions diverge in the
p⊥→ 0 limit and require a minimum p⊥ cut to avoid QCD singularities. These processes are,
however, also included in the eikonalized description of the soft QCD process class, where the
divergences are regulated with the p⊥0. Therefore this event class should be preferred when
low p⊥ photons are considered. The available processes are

• qg→ qγ

• qq→ gγ

• gg→ gγ

• qq→ γγ

• gg→ γγ
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Notice that the processes with two gluons in the initial state are box graphs. By default, it is
assumed that the five massless quarks may form the loop, such that the expressions should
be valid in a region where p⊥ is between the b and t quark masses. It is, however, possible
to change the number of active flavours inside the loop if a different region is considered. In
addition to the photons produced in the hard scattering (prompt photons), photons may also
be formed in parton showers and hadron decays. Therefore QCD processes might be needed
to obtain a realistic rates for photon production.

3.2.2 Weak bosons

This section includes processes with standard model EW gauge bosons, γ∗/Z and W±. The pro-
cesses are classified into single and pair production, where the single production is associated
with a parton and as an intermediate particle in t-channel exchange between two fermions.

As a highly-virtual photon γ∗ cannot be distinguished from a Z boson with equal quantum
numbers, typically both contributions should be accounted for to include interference effects.
It is, however, possible to consider these two components separately, without the interference.
This applies for all of the following processes including neutral EW bosons.

Boson exchange, DIS The EW boson t-channel exchange is mainly relevant in Deep Inelastic
Scattering (DIS) processes in lepton-hadron collisions but may also be applied for other types
of collisions. There are two different contributions, one with neutral and one with charged
EW bosons, namely

• f f ′ → f f ′ where a neutral γ∗/Z boson is exchanged so that the initial- and final-state
fermion pair remains the same.

• f1 f2 → f3 f4 where a charged W± boson is exchanged so that the initial- and final-state
fermions are different. This includes charged current DIS with a charged-lepton beam
and DIS with neutrino beams.

In pp collisions the factorization and renormalization scales are usually related to the trans-
verse momentum, p⊥, of the final-state particles. However, in DIS a more appropriate hard
scale is usually the virtuality of the intermediate particle, Q2. Therefore, when studying DIS
with these processes, it is advised to set the renormalization and factorization scales appro-
priately, see section 3.10 for details. Similarly, rather than having a phase-space cut on p⊥ to
avoid divergences, here it is more appropriate to set a minimum Q2 value to make sure that
the relevant phase space is covered. Furthermore, since the default parton shower distributes
the emission recoils globally, it is not well suited for DIS studies where the scattered lepton is
expected to stay intact. Instead it is recommended to use either the dipole-recoil option or the
DIRE shower, see section 4.1 and section 4.3 for further details.

Single boson production Two different options are included for the single EW-boson pro-
duction (s-channel) processes. In the first case the process is described as 2 → 1 scattering
where the final state is either γ∗/Z or W±:

• ff→ γ∗/Z

• ff′→W±

The decay products of the short-lived (or virtual) particles and their kinematics are then de-
rived as described in section 2.3.

The other possibility is to consider single EW-boson production as a 2→ 2 process where
the decay products can be predetermined. This is useful if only certain final states are studied
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and enables one to set phase-space cuts for the final state, e.g. for the p⊥ of the produced
lepton. These overlap with the first class of single-boson processes so one should not mix
these processes to avoid double counting. The possible processes are:

• ff→ γ∗→ f′f
′

• ff→ γ∗/Z→ f′f
′

• f1f2→W±→ f3f4

The difference between the first two is that in the first, the final state can be any of three
possible lepton generations or five possible quark flavours, whereas in the second, the decay
channels are set by the Z-decay modes. In the former, only γ∗ exchange is included and the
process is part of the MPI framework. In the latter, it is also possible to select between pure
γ∗, Z, and the full interference modes. For the last, W± production, the decay channels are
always the same for W+ and W−. These are set for W+ and charge-conjugated channels are
applied for W−. No quark-mass effects are included for the angular distribution of the decay
products of the W±.

Boson pair production These processes describe possible combinations of two EW-boson
production, also including LO correlations for 4-lepton final states [25].

• ff
′
→ γ∗/Zγ∗/Z

• ff
′
→ Z W±

• ff→W+W−

Notice that for the second process, no contribution from a virtual photon is included. In ad-
dition, it is possible to produce EW bosons in the parton shower as described in section 4.1.4
and section 4.2.4. Therefore, a full EW-boson pair production might require a combination of
different processes with some additional care to avoid possible double counting.

Boson and parton production These processes produce events where an EW boson is pro-
duced in association with a parton, where the latter in this case refers either to a quark, gluon,
photon, or lepton. The possible channels are:

• qq→ γ∗/Z g

• qg→ γ∗/Z q

• ff→ γ∗/Zγ

• fγ→ γ∗/Z f

• qq→W± g

• qg→W± q

• ff→W± γ

• fγ→W± f

Again, there will be overlap with the single-boson production channels and the appropriate
process depends on the final state and considered kinematics. For fully inclusive EW-boson
production, the single-boson class is the relevant one, but for the high-p⊥ tail these processes
would provide more accurate kinematics. These processes should also be favoured when EW-
boson production is studied with an associated high-p⊥ jet or lepton.
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3.2.3 Photon collisions

Many modern PDF sets include perturbatively-generated photons as a constituent of protons.
In addition, all electrically-charged particles accelerated to high energies may emit photons
that act as initiators for hard processes. The difference between these two cases is that in the
former case, the beam hadron will be resolved, whereas in the latter case, the beam particle
will stay intact. The following two-photon initiated processes are included in PYTHIA 8.3 and
can be applied for resolved and unresolved beams:

• γγ→ qq

• γγ→ cc

• γγ→ bb

• γγ→ e+e−

• γγ→ µ+µ−

• γγ→ τ+τ−

3.2.4 Photon-parton scattering

A few processes with a photon and a parton as initiators have been included. These are mainly
relevant for photoproduction in ep collisions but can also be applied to other collision types
with beams that may provide photons and partons. Similarly as pure-QCD processes with
light partons, these processes also contain collinear and soft divergences so a suitable phase-
space cut, e.g. on partonic p⊥, must be applied to obtain finite cross sections. Unlike for the
pure-QCD processes, no regularized description applicable at any p⊥ is present for any of the
photon-initiated processes. The included processes for photon-parton collisions are:

• gγ→ qq

• gγ→ cc

• gγ→ bb

• qγ→ qg

• qγ→ qγ

Here, the heavy-quark pair production processes contain the full mass dependence in the ma-
trix elements. Similar to the case of pure-QCD processes, at high-enough collision energies
heavy quarks, at least charm, may be produced via parton-shower emissions so several pro-
cesses might need to be considered to obtain realistic heavy-quark production rates.

3.3 Onia

Hard processes involving charmonium and bottomonium are provided using Non–Relativistic
Quantum Chromodynamics (NRQCD) [26], which includes both colour-singlet and colour-
octet contributions. The spectroscopic notation 2s+1 LJ specifies the necessary quantum num-
bers to define a state: spin s, orbital angular momentum L, and total angular momentum J .
Processes are available for the 3S1, 3PJ , and 3DJ states containing cc or bb, given an arbitrary
radial excitation n, e.g. any Υ (nS) for the 3S1 bb onia states. Double onium production is
also available for double-3S1 cc and bb processes, but only with colour-singlet contributions
provided. Because of the long-standing discrepancy between polarization in data and NRQCD
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predictions, only unpolarized processes are provided, with isotropic decays, which can then
be reweighted accordingly by the user for a given polarization model.

Within NRQCD, the inclusive cross-section for a heavy onium state, H, can be written as,

dσ(pp→ H + X ) =
∑

s,L,J

dσ̂(pp→ QQ[2s+1 LJ] + X )〈OH[2s+1 LJ]〉 , (57)

where the cross section is factorized into a sum of products between short-distance matrix
elements, dσ̂, and long-distance matrix elements 〈OH[2s+1 LJ]〉. The short-distance matrix
elements are calculated with perturbative QCD [27–32], while the long-distance matrix ele-
ments are determined from phenomenological fits to parameters [30,33,34]. Default settings
for these parameters are provided for the J/ψ, ψ(2S), χc0, χc1, χc2, ψ(3770), Υ (1S), Υ (2S),
Υ (3S), χb0, χb1, and χb2 states.

The sum in eq. (57) for a given physical onium state
�

�H[2s+1 LJ]
�

is over the expansion of
its Fock states,

�

�H[2s+1 LJ]
�

= O(1)
�

�

�QQ[2s+1 L(1)J ]
¶

+O(v)
�

�

�QQ[2s+1(L ± 1)(8)J ′ ]g
¶

+O(v2)
�

�

�QQ[2s+1(L ± 1)(8)J ′ ]gg
¶

+ . . . , (58)

where the superscript (1) indicates a colour-singlet state, (8) a colour-octet state, and the
expansion is in the velocity v of the heavy-quark system. Consequently, a long-distance and
short-distance matrix element must be provided for each state in the expansion.

For the physical 3S1 states the following processes are available.

• gg→
�

�

�QQ(3S1)[3S(1)1 ]
¶

g

• gg→
�

�

�QQ(3S1)[3S(1)1 ]
¶

γ

• gg→
�

�

�QQ(3S1)[3S(8)1 ]
¶

g

• qg→
�

�

�QQ(3S1)[3S(8)1 ]
¶

q

• qq→
�

�

�QQ(3S1)[3S(8)1 ]
¶

q

• gg→
�

�

�QQ(3S1)[1S(8)0 ]
¶

g

• qg→
�

�

�QQ(3S1)[1S(8)0 ]
¶

q

• qq→
�

�

�QQ(3S1)[1S(8)0 ]
¶

q

• gg→
�

�

�QQ(3S1)[3P(8)J ]
¶

g

• qg→
�

�

�QQ(3S1)[3P(8)J ]
¶

q

• qq→
�

�

�QQ(3S1)[3P(8)J ]
¶

q

The 3P(8)J Fock states are a summation of contributions for J = 0,1, 2. The 3P(8)1 and 3P(8)2

long-distance matrix elements are calculated from the 3P(1)0 long-distance matrix element.
The following processes are available for the physical 3PJ states, again with J = 0,1, 2.
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• gg→
�

�

�QQ(3PJ )[3P(1)J ]
¶

g

• qg→
�

�

�QQ(3PJ )[3P(1)J ]
¶

q

• qq→
�

�

�QQ(3PJ )[3P(1)J ]
¶

q

• gg→
�

�

�QQ(3PJ )[3S(8)1 ]
¶

g

• qg→
�

�

�QQ(3PJ )[3S(8)1 ]
¶

q

• qq→
�

�

�QQ(3PJ )[3S(8)1 ]
¶

q

Similar to the 3P(8)J states, the colour-singlet 3P(1)1 and 3P(1)2 long-distance matrix elements are

calculated from the 3P(1)0 long-distance matrix element.
For physical 3DJ production, the following processes are provided:

• gg→
�

�

�QQ(3DJ )[3D(1)J ]
¶

g

• gg→
�

�

�QQ(3DJ )[3P(8)J ]
¶

g

• qg→
�

�

�QQ(3DJ )[3P(8)J ]
¶

q

• qq→
�

�

�QQ(3DJ )[3P(8)J ]
¶

q

The colour-octet 3P(8)J contributions are treated in the same fashion as for the physical 3S1 state.
Finally, double onium production is available for any arbitrary same-flavour 3S1 configuration.

• gg→
�

�

�QQ(3S1)[3S(1)1 ]
¶

�

�

�QQ(3S1)[3S(1)1 ]
¶

• qq→
�

�

�QQ(3S1)[3S(1)1 ]
¶

�

�

�QQ(3S1)[3S(1)1 ]
¶

The default configuration for double-onium production is to provide all possible combinations
of the same-flavour physical 3S1 states.

Many of the short-distance matrix elements diverge as p⊥ → 0, and consequently must
be regulated either with a hard cutoff or a smooth damping factor. Onium can be produced
in a hard process, but also in multiparton interactions, except for double onium. In a hard
process, a hard cutoff in p⊥0 is used, although it is also possible to implement smooth damp-
ing through a user defined scheme, see section 9.7.2. In multiparton interactions, instead, a
smooth damping is performed with a cutoff scale p⊥0 for a given energy E0 with an evolution
parameter. See section 6.2 for more details.

The colour-octet states are defined in the event record using a non-standard numbering
scheme, 99nqnsnrnLnJ, where nq is the quark flavour of the state and ns is the colour-octet
state type. Here, 0 is 3S1, 1 is 1S0, and 2 is 3PJ . All remaining numbers follow the standard
Particle Data Group (PDG) numbering scheme [35, sec. 45]. As an example, 9941003 is the
1S(8)0 cc colour-octet state for the colour-singlet J/ψ. After the parton shower and hadroniza-
tion, all colour-octet states are forced to isotropically decay into their corresponding physical
colour-singlet state and a soft gluon. A user-configurable mass splitting is used to set the mass
of the colour-octet states for a given colour-singlet. This determines the softness of the gluon
emitted in the octet to singlet transition.
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Colour-octet states are allowed to evolve under the timelike QCD parton shower, see sec-
tion 4 for more details on parton showers. This is meant to account for the competing effects
of unbound QQ states that emit additional gluons to become a semi-bound state, and semi-
bound QQ states that are broken apart by additional gluon radiation. The combination is
approximated by allowing the colour-octet states to radiate in the parton shower with twice
the q→ qg splitting probability. Both the probability of a colour-octet state being considered
in the parton shower and the pre-factor for the splitting kernel can be configured.

This treatment of colour-octet production in the parton shower is a simplification. The
colour-octet state can be treated as a gluon, and so a factor of 9/4 rather than 2 may be used.
Using a q → qg splitting kernel, rather than g → gg, is roughly equivalent to always follow-
ing the path of the harder gluon, resulting in harder final-state onia. Additionally, soft gluons
producing heavy-quark will have little phase space to produce hard semi-bound states. How-
ever, after the g→ QQ splitting, each heavy quark carries only approximately half the onium
energy, reducing the energy of the gluon emissions. In principle, these two effects between
softer and harder gluon emissions should approximately balance. However, comparisons to
measurements of prompt J/ψ production in jets from pp collisions indicate that this treatment
underestimates the local radiation surrounding onia [36,37].

3.4 Top production

Standard model top production has now been part of standard measurements for over two
decades and state-of-the-art experimental observations now make use of higher-order calcu-
lations. However, we still maintain a minimum set of top-production processes that can be
used either with a K-factor for quick testing or for designing searches for non-standard decay
modes by modifying the top-decay table by hand.

Production processes available include:

• gg→ tt

• qq→ tt

• ff→ tt (via t-channel W or s-channel Z/γ separately)

• γγ→ tt

• gγ→ tt

• qq′→ q′′t (single top via s-channel W)

It may be possible, for example, to test for the production of charged Higgses in top decays
by adding the decay mode t → bH+ to the decay table and using the BSM Higgs sector (see
the next section for details of setting BSM Higgs parameters).

3.5 Higgs

Pythia includes the capability of simulating production of standard model or BSM Higgses via
the Two–Higgs Doublet Model (2HDM). The production processes for the SM Higgs include:

• f̄f→ H

• gg→ H (via 1-loop)

• qg→ Hq (via 1-loop)

• γγ→ H (via 1-loop)
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• f̄f→ ZH (via s-channel Z)

• f̄f→W±H (via s-channel W)

• f̄f→ Hf̄f (vector-boson fusion, ZZ and W±W± can be selected separately)

• f̄f→ HQQ̄ where Q = b, t

BSM Higgses can be produced using Higgs:useBSM = on. To allow for CP-violating cases,
the neutral Higgses are named H1, H2, A3, which in the CP-conserving case refer to two scalar
and one pseudoscalar Higgs, respectively. The neutral Higgses are ordered by mass. All pro-
cesses mentioned above for the SM Higgs are also available for BSM ones by replacing H with
the required BSM Higgs name. Further processes available for BSM Higgses are the pair-
production processes.

• f̄f→ H1,2A3

• f̄f→ H+H1,2

• f̄f→ H+H−

The couplings of each Higgs boson to SM fermions can be set independently to account for all
possible 2HDM structures. Further selection of the parity of each Higgs is also possible. We
refer the user to the online manual for a description of each parameter.

The decay of the Higgses is also calculated automatically based on input parameters. The
decay table can be overwritten by the user, either using the PYTHIA settings structure or using
the SLHA interface (see section 10.1.2). Since the LHC cross-section working group recom-
mends the usage of Next–to–Leading Order (NLO) decay widths, we use a multiplicative factor
for all internally-calculated widths. The factor is calculated for mH = 125 GeV, but should be
sensible for a range of masses. Furthermore, the Breit–Wigner shape of the Higgs resonance
is complicated due to a dependence on mass. For resonance searches, it may be useful to “clip
the wings” of the Breit–Wigner shape using Higgs:clipWings and Higgs:wingsFac (what
factor of width beyond which to clip) parameters.

3.6 Supersymmetry

The implementation of the Minimal Supersymmetric Simplified Model (MSSM) allows fully
general, complex 6 × 6 mixing in the squark sector, and up to five neutral gauginos (corre-
sponding to next-to-minimal MSSM). We also allow all four kinds of R-parity violating cou-
plings (one bi-linear and three tri-linear). Users are expected to input parameters via an SLHA
file (see section 10.1.2). Typically, the Higgs sector of Supersymmetry (SUSY) is identical to a
type-2 2HDM model and can be generated via the Higgs processes described above. PYTHIA is
also capable of calculating decay widths in the standard channels for all SUSY particles. How-
ever, if a decay table is provided in the SLHA file, the internal calculation is turned off. For
very low-width particles, the lifetime is set as the inverse of the total decay width. All particles
with a decay width set to zero are set as stable.

Pair production of squarks (q̃i), gluinos ( g̃), and gauginos (χ̃0
j , χ̃±), including pairs like

squark-gluino, squark-gaugino, and gluino-gaugino, are implemented with EW contributions.
We also implement resonant production of squarks via R–Parity Violating (RPV) λ′′ couplings,
with corresponding modification to showering and hadronization to include the new colour
structure. Here follows a full list of the processes available.

• squark-pair production (including anti-squarks and EW interference)

– f̄f→ q̃i q̃
(∗)
j
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– gg→ q̃i q̃
(∗)
j

• gluino pair and gluino-squark production

– qq̄→ g̃ g̃

– gg→ g̃ g̃

– qig→ q̃i g̃ (and charge conjugate)

• electroweak-gaugino pair production

– f̄f→ χ̃±χ̃±

– f̄f→ χ̃0
i χ̃

0
j

– f̄f→ χ̃±χ̃0
j

• gaugino-gluino and gaugino-squark production

– f̄f→ g̃χ̃∓

– f̄f→ g̃χ̃0
i

– f̄f→ q̃(∗)j χ̃
∓

– f̄f→ q̃(∗)j χ̃
0
i

• slepton or sneutrino-pair production

– f̄f→ ˜̀
i
˜̀(∗)

j

• resonant production of a squark via an R-parity violating process

– qi q̄ j → q̃k (RPV)

Further selection of what processes to turn on is also possible by specifying individual PDG
IDs of particles. All supersymmetric particles are given PDG codes greater than 1000000, with
the superpartners generally carrying the corresponding code to their SM partner, e.g. an up
quark is 2 and the two up squarks are named 1000002 and 2000002. The full list of PDG
codes is available in the published review [35, sec. 45].

3.7 Hidden valley

Hidden Valley (HV) refers to a range of scenarios characterized by a gauge-symmetric dark sec-
tor with various possibilities of portals into the “valley”. PYTHIA currently is the only general-
purpose Monte Carlo code that implements a HV scenario, including running of gauge cou-
plings, showering, and hadronization in the dark sector [38, 39]. There are multiple particle
spectra and production modes available which together can cover a wide range of phenomenol-
ogy.

First, based on the rank N of the dark SU(N), radiation to either dark photons (i.e. U(1))
or dark gluons (i.e. SU(N)) is implemented. The matter content is modelled of in two separate
ways — first via partners of the SM fermions (named dark-u, dark-d, dark-e and so on) that
carry both the SM charges of their partner as well as fundamental of the dark SU(N), and
second via a “dark quark” that carries only the dark charge but does not carry any SM charges.
In the first case, dark sector particles can be produced via normal SM gauge bosons and radiate
to both SM and dark bosons based on their mass and relative strengths of the dark and SM
couplings. In the second case, we implement an extra Z ′ portal to produce said quarks via a
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kinetic mixing with the SM photon. The spin of the dark-sector particles (aside from the gauge
bosons) can be set by the user to be either scalars, fermions, or vectors.

Two kinds of models are available in PYTHIA, depending on the charge of the new fermions.
The first case is where the new fermions also carry some standard-model charge and can
therefore be produced via one of the standard-model gauge bosons. The radiation of the final
state-fermions then includes both dark-sector radiation as well as SM radiation. The processes
that fall in this category include:

• gg→ Fv F̄v via intermediate gluon where Fv is the hidden sector quark — either one of
the quarks Uv , Dv , Sv , Cv , Bv , Tv , or generic quark Qv

• qq̄→ Fv F̄v via intermediate gluon where Fv is the hidden sector fermion — either one
of the quarks Uv , Dv , Sv , Cv , Bv , Tv , or generic quark Qv

• f̄f→ Fv F̄v via intermediate Z or γ∗. Fv includes all the quarks above, plus the “leptons”
Ev , νEv , and similarly for µ and τ flavours

It is possible to simulate a hidden sector where the new fermions do not carry any SM
charges, but in this case, we need a new portal, which PYTHIA assumes is a new vector Z ′. This
Z ′ is then expected to be able to decay to both SM fermions as well as dark-sector fermions.
Pair production of dark-sector fermions via this portal can be done using:

• qq̄→ Zv followed by Zv → Fv F̄v

An important phenomenological effect is the running of the hidden-sector strong coupling
which can make significant changes to the radiation pattern in the dark sector. This is by
default taken into account by using the one-loop beta function of SU(N) once the number of
colours and flavours of new fermions is set. The running can also be turned off by the user to
use a fixed-coupling value instead. There is also an inherent ambiguity in the composition of
the hadrons in the dark sector. PYTHIA allows the user to manually set the ratio of scalar to
vector mesons as well as the parameters of the Lund symmetric fragmentation function or the
dark sector (see section 7.1 for details of the fragmentation functions). The decay table of the
hidden mesons back into the standard model (should this be desirable), can be done by the
user at run time using the standard particle data scheme that PYTHIA uses for all particles.

3.8 Dark matter

Multiple models for Dark Matter (DM) are currently implemented in PYTHIA. They may be
separated into two different categories — production via s-channel mediator and production
via pair production of mediators (typically seen in co-annihilation or co-scattering scenarios
of DM). In all cases, the DM is assumed to be fermionic. We provide the possibility to pro-
duce dark matter with one associated jet for the s-channel models (vector or axial-vector Z ′

and scalar or pseudoscalar A). For the mediator pair-production processes, all mediators are
produced via Drell–Yan production.

The PDG provides some standard codes for common DM particles and mediators, cf. [35,
sec. 45]. Of these, the fermionic DM code 52, the s-channel scalar mediator (54) and vector
mediator (55) are used in this implementation. The new mediators are either charged scalar
(with PDG code 56), charged vector-like fermion (PDG code 57), and doubly charged fermion
(PDG code 59). The neutral partner that accompanies the charged mediators is given the PDG
code 58.

The singlet model contains a scalar singlet with quantum numbers identical to a right-
handed lepton. Therefore, it couples via a Yukawa-like coupling to a SM right-handed lepton
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and the DM is a Dirac fermion. Both the scalar and the DM are odd under a Z2 symmetry to
ensure the stability of the DM.

L= ∂µφ∗∂ µφ + χ̄(iγν∂νχ)−m2
φ |φ|

2 −mχ̄χ − (y`¯̀φχ + h.c.) . (59)

The fermionic mediators are based on models that have mixing between a singlet and an
n-plet vector fermion, both charged under a Z2 symmetry for which all of SM particles are
even. The mixing between the singlet and n-plet is then calculated based on the value of n.
The lightest neutral state is denoted as dark matter.

L= χ̄(iγν∂νχ) + ψ̄(iγνDνψ)−m1χ̄χ −m2ψ̄ψ . (60)

The mixing term depends on the representation of ψ. For example, for a triplet case, we have

Lmix =
c
Λ2

�

χ̄(Φ†
hτ

aΦh)ψ
a + h.c.

�

, (61)

where Φh is the SM-Higgs doublet, ψ is the triplet fermion, τ are the Pauli matrices and χ is
the singlet fermion.

Production of DM can be studied in two ways — either by directly producing the s-channel
mediator, which then decays to DM, or by producing the charged partner of DM via Drell–Yan
followed by the decay of the partner. The production processes therefore are

• qq̄→ Z ′→ χ̄χ

• gḡ→ S→ χ̄χ, note that 1-loop gḡ→ S via top-loop is included in this production.

• qq̄→ Z ′g (mono-jet)

• gḡ→ Sg (also mono-jet, via 1-loop in production)

• qq̄→ Z ′H, i.e. mono-Higgs production (coupling of the SM to the new Z ′ has to be set
by the user)

• f̄f → ψψ̄ where ψ = ˜̀± (scalar with leptonic quantum numbers), χ± (singly charged
fermion), or χ±± (doubly charged fermion), followed by decay ofψ into DM (Drell–Yan
for charged partners)

Couplings of quarks and leptons to the mediators are assumed to be generation universal,
however vector and axial-vector components (or equivalently scalar and pseudoscalar compo-
nents for the scalar mediator) can be set individually for up type, down type, charged lepton,
neutrino, and dark-matter fermions. In case of Z ′, it is also possible to choose a kinetic-mixing
parameter ε which then automatically sets the rest.

3.9 Other exotica

Finally, we mention other models of new physics that are implemented in PYTHIA, though they
are perhaps not as popular as they once were. We refer the reader to the online manual for
the detailed descriptions of the model parameters and only provide a list here.

• Fourth generation includes production of fourth-generation quarks or leptons via the
usual SM-mediated processes.

• New gauge boson Z ′, W ′ and horizontal gauge boson production can be performed
through ff→ V production followed by decay. For Z ′, full interference with SM γ, Z in
the s-channel production is taken into account. It is possible to have both universal and
non-universal models where couplings to each generation should be set by hand by the
user.
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• The left-right symmetry model includes a right handed SU(2) sector. Along with the
gauge bosons W ′ and Z ′, it also includes heavy right-handed neutrinos that can be used
to study signatures of heavy neutral leptons.

• Leptoquark production includes resonant single production or pair production of scalar
leptoquarks via gluon-mediated diagrams. The flavour of the leptoquark should be set
by the user by explicitly setting the decay table of the leptoquark.

• Compositeness models include simple models of excited fermions and contact interac-
tions that modify standard QCD dijet or Drell–Yan production of leptons.

• Extra dimensions includes production of the graviton or the extra Kaluza–Klein gauge
boson (e.g. KK-gluon) of the Randall–Sundrum model. Further processes include modi-
fication of SM dijet/dilepton production due to extra KK-bosons in the TeV-scale or large
extra dimension models. Finally, Unparticle emission is modelled associated with a jet
or photon.

3.10 Couplings and scales for internal processes

The perturbatively calculated cross sections for QCD and Quantum Electrodynamics (QED)
processes depend directly on the value of the relevant coupling evaluated at the scale at which
the hard scattering occurs. The scale dependence of the couplings arises due to the renormal-
ization procedure required to obtain finite cross sections and can be calculated by solving the
renormalization group equations of the applied theory.

In PYTHIA 8.3 the running of the QCD coupling, αs(Q2), is implemented up to second order
and applied at first order by default to match the precision of the internally-calculated cross
sections. A fixed value can also be used, but the potential usage is limited to special cases
and generally a running coupling should be applied for realistic cross-section estimates. The
coefficients related to the value of the coupling are fixed by setting the αs(Q2) value at the
mass of the Z boson.

Similarly, running of the QED coupling αem(Q2) has been implemented in PYTHIA 8.3. This,
however, runs much slower than the QCD one and only first-order running is implemented. An
option to use a fixed value for αem(Q2) is included, either by setting the value directly at the
mass of the Z boson or by matching to its value at vanishing momentum transfer. In addition,
it is possible to globally scale the cross sections with a K-factor if such behaviour is desired.

There are two relevant scales that needs to be set. The renormalization scale, Q2
ren, arises

from the renormalization procedure and defines at which scale the couplings are evaluated.
The factorization scale Q2

fact arises from factorizing the short-distance phenomena (hard scat-
tering) from the large-distance (soft) structure of hadrons. This scale determines at which Q2

the PDFs of resolved beams are probed.
As the scale dependencies arise from an approximated description of QCD, there is some

amount of freedom in the scale choices. The only solid guideline is that the scales should be
related to the hardness of the scattering process and therefore the optimal choice depends on
the type of the studied process. Multiple options for the scale choices have been implemented
into PYTHIA 8.3, and all options are available for both Q2

ren and Q2
fact.

For 2→ 1 processes two options exist:

• the squared invariant mass, ŝ, i.e. the mass of the produced particle;

• and a fixed scale.

For 2→ 2 a few more options are included:
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• the smaller of the squared transverse masses of the outgoing particles,
min(m2

⊥,3, m2
⊥,4);

• the geometric mean of the squared transverse masses of the outgoing particles,
m⊥,3 ·m⊥,4;

• the arithmetic mean of the squared transverse masses of the outgoing particles,
(m2
⊥,3 +m2

⊥,4)/2;

• the squared invariant mass of the system, ŝ, relevant for s-channel processes;

• the squared invariant momentum transfer − t̂, relevant especially for DIS events as this
coincides with the virtuality of the intermediate photon Q2;

• and a fixed scale.

For 2→ 3 processes the possible choices are:

• the smallest of the squared transverse mass of the outgoing particles,
min(m2

⊥,3, m2
⊥,4, m2

⊥,5);

• the geometric mean of the two smallest squared transverse masses of the outgoing par-
ticles,

Ç

m2
⊥,3 ·m

2
⊥,4 ·m

2
⊥,5/max(m2

⊥,3, m2
⊥,4, m2

⊥,5);

• the geometric mean of the squared transverse masses of the outgoing particles,
(m2
⊥,3 ·m

2
⊥,4 ·m

2
⊥,5)

1/3;

• the arithmetic mean of the squared transverse masses of the outgoing particles,
(m2
⊥,3 +m2

⊥,4 +m2
⊥,5)/3;

• the squared invariant mass of the system, ŝ, relevant for s-channel processes;

• and a fixed scale.

For vector-boson-fusion (VBF) processes, such as f1f2→ f3Hf4, the virtualities of the inter-
mediate bosons would not be accounted for with the above options and would likely underes-
timate the relevant scales. Therefore modified scale choices where, instead of the transverse
mass of the final-state particle, a virtuality estimate m2

⊥,Vi = m2
V + p2

⊥,i can be used in the
options above when relevant.

Traditionally, the theoretical uncertainties related to the truncated pQCD expansion are
estimated by varying the QCD scales by a factor of two or so. To enable such variations,
options to multiply the scales determined by the options above by constant factors have been
implemented. In a basic form, these variations will, however, require to generate a completely
new set of events, so mapping out all possible uncertainties might become computationally
demanding. Therefore, options to calculate weights for each event based on different scale
variations have been implemented in PYTHIA 8.3 for more efficient uncertainty estimation, see
section 9.8 for details. Notice also that the couplings and scales can be set separately for MPIs
and initial- and final-state showers.

3.11 Handling of resonances and their decays

By default, the SM electroweak gauge bosons, top quarks, the Higgs boson, and generally all
BSM particles are classified as resonances. Note that all of these have on-shell masses above
20 GeV (with the exception of some hypothetical weakly interacting and stable particles such
as the gravitino, which are also considered resonances).
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Importantly, neither hadrons nor any particles that can be produced in hadron decays,
such as τ leptons, are included in this category. The decays of such particles are performed
after hadronization, and changing their decay channels will not automatically affect the re-
ported cross section. For example, allowing only the decay Z → µ+µ− will reduce the total
cross section reported by PYTHIA for hard processes like pp→ Z by the appropriate branching
fraction, while allowing only the decay J/ψ → µ+µ− will not change the cross section for
gg → J/ψg. The reason for this is that hadron and τ decays involve multistep chains that
cannot be predicted beforehand: a hard process like gg → gg can develop a shower with a
g→ bb branching, where the b hadronizes to a B̄0 that oscillates to a B0 that decays to a J/ψ.
Any bias at the hard-process level would not affect these other production mechanisms and
could thus be misleading. Instead, the user must consider all relevant production sources and
perform their own careful bookkeeping.

Both types, “resonances” and “unstable particles”, can have Breit–Wigner distributed mass
spectra (at least when generated by internal PYTHIA processes); more on this below. For the
remainder of this subsection we focus on the production and decay of those particles that are
classified as resonances, referring to section 8 for the treatment of hadron and τ decays.

Note that the cross-section reduction factors to account for decay modes that have been
switched off are always evaluated at initialization, for nominal masses. For instance, in the
example above, the Z→ µ+µ− reduction factor is evaluated at the nominal Z mass, even when
that factor is used, later on, say in the description of the decay of a 125 GeV Higgs boson,
where at least one Z would be produced below this mass. We know of no case where this
approximation has any serious consequences, however.

Note also that, for the specific case of electroweak showers (cf. section 4.1.4 and sec-
tion 4.2.4), the decays of any resonances that are produced by the shower (i.e. not by the
hard process) are treated inclusively, ignoring any user restrictions on which channels should
be open or closed. It is then up to the user to select the final states of interest and reject the
rest.

Finally, a word of caution: the above logic implies that switching off all of the decay chan-
nels of a resonance will result in cross sections evaluating to zero, precluding PYTHIA from
being able to generate any events. Instead, to force a resonance to be treated as stable for a
given run, set NN:mayDecay = false, with NN being its particle ID code.

Total and partial widths: For resonances, the partial widths to different decay channels are
typically perturbatively calculable, given the parameters of the respective model. By default,
during initialization PYTHIA therefore computes the hadronic widths of W, Z, t, and SM Higgs
bosons at NLO in QCD, with

ΓNLO
V→qq =

�

1+
αs(m2

V )

π

�

Γ LO
V→qq ,

ΓNLO
t→bW =

�

1−
5αs(m2

Z)

2π

�

Γ LO
t→bW , (62)

where V is a generic vector boson. For H0, the default is a set of channel-specific numerical
NLO rescaling factors recommended by the LHCXSWG [40], with current values given in ta-
ble 1 valid for a reasonable range around the nominal Higgs mass of mH = 125 GeV. Note
also that PYTHIA 8 computes the LO partial widths for H0 → γγ and H0 → gg using running
quark-mass values in the loop integrals (evaluated at mH); this gives a non-negligible shift
relative to PYTHIA 6 which used pole-mass values in the same expressions. For comparisons,
the LHCXSWG rescaling factors can optionally be replaced by simple (1+αs/π) correction for
the decays to quarks, and for the loop-induced decays the running mass values can be replaced
by pole ones.
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Table 1: Numerical correction factors applied to the LO SM-Higgs decay partial width,
based on LHCXSWG recommendations [40]. Note that the strong coupling is fixed
to αs = 0.12833 in this context.

SM H0 Decay Mode: gg γγ γZ ZZ WW bb cc µ+µ− τ+τ−

NLO rescaling factor: 1.47 0.88 0.95 1.10 1.09 1.11 0.98 0.974 0.992

For BSM resonances, PYTHIA applies the (1+αs/π) factor to all integer-spin BSM particle
decays to quark-antiquark pairs and to semi-leptonic decays of right-handed neutrinos, while
the (1− 5αs/(2π)) one is applied to t′→ qW decays.

At the technical level, these decay-rate calculations are performed by dedicated
calcWidth() methods in the derived ResonanceWidths class for the given resonance. Note
that this means that the tabulated widths for these particles stored in the program’s particle
data table are purely dummy values, overridden at initialization. To force a resonance with ID
code NN to have a certain user-defined width, Γ , set NN:doForceWidth = on and NN:mWidth
= Γ . Input of resonance widths via the SLHA interface is discussed separately below.

Breit–Wigner modelling: We now turn to PYTHIA’s modelling of resonance shapes. Note that
this applies to resonances that are produced by PYTHIA (i.e. in PYTHIA’s internal hard processes
and/or in decays performed by PYTHIA). For externally generated ones, cf. section 10.1, it is
the responsibility of the external generator to model the shape of the produced resonances,
though PYTHIA’s modelling may still apply to any resonances produced by subsequent decays
of particles that are kept stable in the external process.

An important note in the specific context that an external generator is responsible not only
for resonance production, but also for one or more of their decays is that the total invariant
mass of the resonance-decay products (and hence the resonance shape) is only guaranteed to
be preserved during parton showering if an explicit resonance mother (with Les Houches status
code 2) is present in the externally provided event record. This is particularly relevant for
any coloured resonances (such as top quarks), for which the reconstructible resonance-mass
distribution will otherwise be impacted by unphysically large QCD recoil effects to parton(s)
outside the resonance-decay system. In principle, the same issue exists for QED recoil effects
in decays of electrically charged resonances.

The basics of phase-space generation and Breit–Wigner sampling in the context
of processes involving resonances were covered in section 2.3.3. As already men-
tioned there, decay-rate calculations specific to each given resonance and decay mode
are the default for most SM-resonance decays in PYTHIA as well as for some BSM
ones, via process-specific SigmaProcess::weightDecay() methods and resonance-specific
ResonanceWidths::calcWidth() methods, enabled for decay channels assigned meMode
= 0. For resonances that include such channels, eq. (50) of section 2.3.3 is generalized to

1
π

m
∑

j Γ j(m)

(m2 −m2
0)2 +m2Γ 2

tot(m)
, (63)

where both the partial widths Γ j and the total width Γtot are in principle allowed to depend on
m. There are two main sources of m dependence:

• Running couplings in the relevant matrix elements. This also applies e.g. to the NLO
normalizations given by eq. (62), in which αs(m2

0) is replaced by αs(m2). The SM-Higgs
resonance is sufficiently narrow that no appreciable running effects are expected, hence
the partial widths given in table 1 are left unchanged.
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• Threshold effects. For bosonic resonances (Z, W, H, and particles that are trivially related
to them such as Z′, W′, H+, and A bosons), decays to same-flavour fermion pairs are
associated with the following threshold factors:

Γ (m) =
mΓ0
m0
Θ(ŝ− 4m2

f )











β3 : scalar ,
β : pseudoscalar ,
β(3− β2)/2 : vector ,
β3 : axial-vector ,

(64)

where Γ0 is the on-shell partial width and β =
q

1− 4m2
f /m

2 is the fermion velocity
in the rest frame of the decay. Resonances that have both vector and axial-vector (or
both scalar and pseudoscalar) couplings use appropriate mixtures of these factors, and
analogous but more complicated expressions are used for decays into unequal masses
e.g. of the W+. For other decays, the m dependence is typically more complicated.

We refer to the corresponding implementations in the weightDecay() and calcWidth()
methods in the code, which can be inspected for more details about the treatment of a given
process and/or decay mode, respectively.

Decay angular distributions: In many cases, non-trivial angular distributions are encoded
in PYTHIA via process-specific LO matrix elements that include the relevant decays. For exam-
ple, for the hard process ff→W+W− (with f denoting a generic fermion), PYTHIA generates the
angular distributions for the two W decays at the same time, using the full ff→W+W− → 4-
fermion matrix elements.

This allows for an accounting of the effects of spin correlations between the production
and decay stages. Note, however, that only diagrams with the same resonant structure as the
production process are included; interference with background processes is not accounted for
by this method.

Using V to denote a generic weak boson (W± or Z0, with the latter typically includ-
ing γ∗/Z interference where relevant) and H to denote a generic neutral Higgs boson, pro-
cesses for which such matrix-element-corrected resonance-decay distributions are generated
by PYTHIA 8.3 include:

• Decays of (unpolarized) top quarks: t→ bW+→ b2f.

• Electroweak decays of neutral Higgs bosons: H→ VV→ 4f and H→ γZ→ γ2f, in both
cases allowing for generic (BSM) mixed-CP states.

• Electroweak resonant s-channel processes 2f → V → 2f. Note: this extends to BSM
vector bosons such as V′ and VR, and also includes the full γ∗/Z/Z′ interference for Z′

ones.

• Electroweak resonant 2 → 4 processes 2f → VV → 4f and 2f → HV → 4f. Also
2f→ V′→ VV→ 4f.

• W decays in ff→ g/γW→ g/γ2f.

• BSM excited-graviton decays in 2f→ G∗ and gg→ G∗ processes, cf. [41].

• BSM compositeness excited-fermion decays in 2→ f∗ → g/γ f and 2→ f∗ → V f, with V
decaying isotropically for the latter.
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A prominent example of a process that is absent from this list is top-quark pair production,
implying that internally generated tt events in PYTHIA do not exhibit non-trivial correlations
between the two top decays. Note also that, for externally provided events (cf. section 10.1),
only the top- and Higgs-decay correlations in the two first points above are applied. When
interfacing external hard processes it is therefore important to consider whether, and how,
resonance decays are treated by the external generator.

At the technical level, these process-specific angular distributions are implemented via
dedicated weightDecay() methods in the derived SigmaProcess class for the given hard
process.

Effects of PDFs on resonance shapes: Often, the observable resonance shape results from
a convolution with non-trivial parton distribution functions. For hadrons, these tend to be
strongly peaked towards small x , with a typical asymptotic behaviour roughly like
f (x)∝ 1/x . When convoluted with the Breit–Wigner shape, this tilts the overall resonance
shape; the parton-parton luminosity is higher in the low-mass tail than it is in the high-mass
tail.

If the low-mass enhancement is strong enough, the wide tails of the Breit–Wigner can even
lead to a secondary peaking of the cross section towards very low masses. This is obviously
unphysical, as the resonant approximation is invalid that far from the resonance, and non-
resonant background processes would anyway normally dominate in that region. The desire
to cut away such behaviour is one reason for the default choices made in PYTHIA for the mmin
limits in eq. (50). For non-standard PDFs, or when making user-defined modifications to the
nominal mass and/or width values (e.g. for BSM particles), it is up to the user to check that
sensible mmin limits are imposed.

Interleaved resonance decays: Rounding off the discussion of resonance production and
decays, PYTHIA also allows for interleaving resonance decays with the final-state shower evo-
lution, as described in [23]. Currently, this is only done by default for the VINCIA shower
model, while it exists as a non-default option for PYTHIA’s simple showers.

When interleaved resonance decays are enabled, resonance decays are inserted into the
final-state shower evolution as 1→ n branchings, at a scale which by default is given by the
following measure of the off-shellness of the resonance propagator,

Q2
RES =

(m2 −m2
0)

2

m2
0

, (65)

with median value 〈QRES〉= Γ . (A few alternative choices are also offered, including an option
to use a fixed scale QRES ≡ Γ .) As part of the resonance-decay branching process, a “resonance
shower” is also performed, in the region m0 > Q > QRES. This shower stage only involves the
decaying resonance and its decay products, with no recoils to any other partons. Note that any
nested resonance decays associated with intermediate scales (e.g. the W boson produced in a
t→ bW decay) are also performed during this stage, along with their corresponding resonance
showers, while any decays associated with scales below QRES occur afterwards, sequentially.

The main consequence is that resonances are prevented from participating as emitters or
recoilers for radiation at scales below QRES; only their decay products can do that. We refer
to [23] for further details.

3.12 Parton distribution functions

Parton distribution functions provide number distributions of a parton flavour i at a given mo-
mentum fraction x when a hadron is probed at scale Q2, and are a necessary input for any hard
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process generation with hadron beams [42]. Here, we focus on PDFs for hadrons and nuclei
— PDFs for other types of beams (including leptons, photons, and pomerons) are discussed
separately in section 6. The scale evolution of the PDFs is provided by the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) equations [43–45] and usually these are derived in a global
QCD analysis where the non-perturbative input at an initial scale is fitted to a wide range of
experimental data. Further constraints are provided by the momentum- and baryon-number
sum rules. Nowadays, it is common that in addition to the best fit, the PDF sets also provide
error sets that can be used to quantify how the uncertainties in the applied data propagate
into other observables.

In the case of protons, the high-precision DIS data from HERA collider form the backbone
of the PDF analyses. On top of this, the modern PDF sets incorporate a wealth of different
LHC data to increase the kinematic reach of the analysis and to obtain further constraints
for the flavour dependence. With this, in kinematic regions relevant for LHC studies, the
proton structure is known with a percent-level accuracy, except for in a few regions like the
very small-x region. PYTHIA comes with some 20 different proton PDF sets. There are a few
(pre-HERA) sets that are out of date, e.g. GRV94L and CTEQ5L, but are kept in for historical
reasons as some earlier tunes were based on these. In addition, there are a few sets that
include HERA data but did not have any from LHC data (e.g. CTEQ6L) which mainly differ
from the older ones due different small-x gluon behaviour. The more modern ones include
several data sets from LHC experiments which provide further constraints for gluon PDFs and
flavour separation between different quarks. Another recent development in the PDFs is the
inclusion of QED evolution that enables inclusion of photons as a part of the hadron structure.
The current default set is NNPDF2.3 QCD+QED LO, which does contain some datasets from
LHC, but not the most recent ones. It is important to note, however, that the default Monash
tune is based on this PDF set, so updating to a more recent PDF set would not lead to an
improved description unless a complete retuning of pp parameters is performed. Many further
sets are accessible via the LHAPDF interface, cf. section 10.1.4. This runs slightly slower than
the built-in sets, but also offers further facilities such as error bands around the central PDF
member. Notice also that there might be small differences between the internally defined PDFs
sets and the corresponding LHAPDF grids due to different interpolation routines and different
extrapolations beyond the provided interpolation grid.

The neutron PDF is obtained from the proton one by isospin conjugation. This is not quite
correct for some recent sets where the QCD evolution is combined with a QED one, i.e. where
the quarks can radiate off photons, but in practice it is good enough except for photon physics.

For pions, the main set is based on GRS 99 [46]. This work makes the ansatz that va-
lence, gluon, and sea PDFs are of the form N xa(1 − x)b(1 + A

p
x + Bx) at an initial scale

Q2
0 = 0.26GeV2, with the parameters fitted to data. By choosing a small Q0, the distributions

can be assigned a valence-quark-like shape at that scale, and strange and heavier quarks can
be taken to vanish. An older set based on GRV 92 [47] is available, but is deprecated in favour
of GRS 99. A similar PDF is also available for the kaon [48].

For other hadrons, rough estimates for PDFs have been made based on the form above, with
A = B = 0. No data is available, so the parameters a and b have been chosen heuristically,
based on the guiding principle that all valence quarks should have roughly the same velocity
for the hadron to stay together over time, and thus heavier quarks must take a larger average
momentum fraction. The N are fixed by the flavour and momentum sum relations. For details
on this procedure, see [49]. These PDFs are referred to as the SU21 sets, and are stored in
the LHAPDF format and distributed with PYTHIA 8.3. Specifically, the PDFs included this way
are available for the following hadrons: p, π+, K+, φ0, η, D0, D+s , J/ψ, B+, B0

s , B+c , Υ , Σ+,
Ξ+, Ω−, Σ++c , Ξ+c , Ω0

c , Σ+b , Ξ−b , and Ω−b . The SU21 p and π PDFs are less accurate than other
available sets, so they should not to be used in real studies, but are included for completeness.
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Hadrons with the same quark contents as the ones above are assumed to have the same PDFs.
Furthermore, other cases can be defined using isospin conjugation, since no QED effects are
included in the SU21 sets. Mixed cases such as π0 and Σ0 are assumed to have equal u and d
contents, which are given by the averages for the corresponding implemented PDF (i.e. π+ and
Σ+, respectively). Using such rules, all normal hadrons can be simulated, except for baryons
with more than one charm or bottom quark. One final technical point is that in the SU21
LHAPDF files for flavour-diagonal mesons, the antiquark content represents the sea, in order
to make it possible to separate valence and sea (e.g. for J/ψ, the c column represents the
charm content, while the c column represents charm sea).

Also, a few nuclear PDF sets have been included internally. These can be used to estimate
the leading nuclear effect for inclusive high-p⊥ observables, such as jet production, but for
more involved studies it is recommended to use the full heavy-ion machinery, see section 6.8.
More nPDFs are available as LHAPDF grids, but the advantage of the internally defined sets
is that any proton baseline PDF can be applied and, if needed, the number of protons and
neutrons can be redefined event-by-event.

A fair fraction of the internal PDFs are LO ones. This ensures a sensible behaviour also for
processes at low x and/or Q2 (discussed further below), but also some NLO and NNLO proton
sets are available, for the modelling of hard processes. In this context, it can be mentioned
that, at large x and Q2, NLO corrections to the PDF shape are often more important than those
for the matrix elements, such that NLO PDFs and LO MEs can be a viable combination. Further,
in the large-(x ,Q2) region where the behaviour is nowadays rather well understood, PDFs do
not risk turning negative.

For showers and MPIs, the case is less clear; they both connect to low-p⊥ scales around or
below 1 GeV, and especially MPIs can probe extremely small x values, down to around 10−8 at
LHC energies, cf. section 6.2. In this region, all PDF components are poorly known, especially
the dominant gluonic one. In an LO description, the PDFs are required to be non-negative, and
HERA data in combination with Regge theory provide some reasonable constraints on the low-
x behaviour. PDFs need not be positive definite at higher orders, NLO or NNLO, since it is only
the convolution of NLO (NNLO) hard-process matrix elements with NLO (NNLO) PDFs that
should be non-negative, up to NNLO (N3LO) terms. Actually, at scales p⊥ ∼ 1 GeV the whole
perturbative expansion is poorly convergent, since αs is large. Some recent PDFs attempt a
resummed description of the small-x behaviour to restore a guaranteed PDF positivity [50].
Nevertheless, in general, the criteria for what constitutes an optimal or at least sensible PDF
choice for the hard process are not necessarily the same as for showers and MPIs; for this
reason, PYTHIA 8.3 allows for the use of one PDF set for the hard process and a different set
for showers and MPIs. This can also be useful to preserve shower- and underlying-event tuning
properties while changing PDFs for the hard process.

It is also possible to pick different PDF sets for the two incoming beam particles, which
may be convenient as a technical trick but has no physics motivation when colliding beams
are the same.

3.13 Phase-space cuts for hard processes

Several different phase-space cuts have been implemented for the internal hard processes in
PYTHIA 8.3. These serve two purposes: to properly set values that ensure the approximations
in the theory description are valid, and to allow for more efficient event generation when only
a certain part of the available phase space is considered. The principal example is the lower
limit of the partonic p⊥ of 2→ 2 processes, that needs to be set to a high enough value such
that the divergent behaviour of the massless matrix elements in the p⊥ → 0 limit is avoided.
Similarly, a suitable lower limit for p⊥ should be applied when considering e.g. jet production
at higher values of p⊥, to avoid the inefficiency otherwise associated with a rapidly dropping
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p⊥ spectrum. (But also see comment at the end of this subsection.)
The number of implemented phase-space cuts for the hard scattering depends on the num-

ber of final-state particles of the process. For 2→ 1 only two options are included:

• the minimum invariant mass mmin

• the maximum invariant mass mmax

If the value of the latter is lower than the value of the former, the invariant mass will be limited
from above by the collision energy. The same cuts also apply to 2→ 2 and 2→ 3 processes.

For 2 → 2 processes some more options appear. The first three are related to invariant
transverse momentum of the process:

• the minimum transverse momentum p⊥min

• the maximum transverse momentum p⊥max

• an additional lower transverse-momentum cut p⊥diverge

The latter is to prevent divergences in the p⊥ → 0 limit for processes where a particle has a
mass smaller than the set p⊥diverge. In these cases, however, the larger of the p⊥min and p⊥diverge
is always applied for the p⊥ selection. The next set of cuts is related to limits of Breit–Wigner
(BW) mass distributions. By default, the mass selection based on BW shapes is always applied
for particles with a width above a certain threshold. There are two different thresholds that
can be set:

• the minimum width of a resonance for which the Breit–Wigner shape can be deformed
by the variation of the cross section across the peak;

• and the minimum width of a resonance that is below the former threshold, for which
a simplified treatment is applied instead, where a symmetric Breit–Wigner selection is
decoupled from the hard-process cross section.

Notice that the allowed mass range of a given particle can be set by modifying the particle
properties. In case of DIS, instead of p⊥, the most relevant phase-space cut is the lower limit
for the allowed virtuality of the intermediate photon:

• minimum Q2 for t-channel processes with non-identical particles

Notice that the cuts for p⊥ will also be applied when a non-zero cut for Q2 is applied.
For 2→ 3 processes that do not contain soft or collinear singularities, such as Higgs produc-

tion in EW-boson fusion, the same cuts as in the 2→ 2 case can be applied. For QCD processes,
where such singularities need to be accounted for, alternative cuts are defined. Also, since the
outgoing partons are no longer back-to-back, cuts for individual partons can be used for a
more detailed phase-space mapping:

• the minimum transverse momentum for the highest-p⊥ parton

• the maximum transverse momentum for the highest-p⊥ parton

• the minimum transverse momentum for the lowest-p⊥ parton

• the maximum transverse momentum for the lowest-p⊥ parton

• the minimum separation R (=
p

(∆η)2 + (∆φ)2) between any two outgoing partons
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The last one needs to have a high-enough value to avoid collinear divergences associated with
the outgoing partons.

As described above, the phase-space cuts can be used to improve the sampling efficiency
by focusing on a particular phase-space volume, e.g. defined by cuts on partonic p⊥. In some
cases this might, however, require several runs that need to be combined later on. Similar
improvement in efficiency can also be achieved by reweighting the cross section of the hard
process with a suitable kinematic variable. In PYTHIA 8.3 the events can easily be reweighted
by p⊥

−α, where α is a power that could e.g. approximate the p⊥ dependence of the hard cross
section. This allows for a more uniform filling of the phase space, even when the cross section
itself drops rapidly. The downside is that when reweighting is applied, each event comes with
a weight that needs to be accounted for e.g. when filling histograms. In addition to this built-in
reweighting of internally defined 2→ 2 hard processes, there are also more involved options
for reweighting with different variables that can be enabled with the user hooks described in
section 9.7.2.

An important aspect is that the described phase-space cuts are applied only for the hard
scattering, i.e. before any showering or hadronization. As the shower emissions will modify
the four-momentum of outgoing partons; a jet formed from the final particles will have a
somewhat different transverse momentum than the parton that originated the jet. Final-state
radiation and hadronization can reduce the energy of the jet, whereas initial-state radiation
and multiparton interactions may enhance it. Therefore a “fiducial phase-space volume” is
needed, i.e. hard processes must be generated in a larger volume than the volume of interest
for final-state observables, at the unfortunate cost of generating many events that will be
thrown away. The necessary amount of oversampling depends highly on the kinematics and
beam configuration considered, so it needs to be checked case-by-case. For jet studies, this
is usually done by plotting the hard-process p⊥ associated with accepted jets or events. If a
non-negligible fraction of events near the p⊥min scale are accepted then p⊥min is too high.

3.14 Second hard process

The MPI framework in PYTHIA will generate a variable number of partonic 2→ 2 interactions
in addition to the selected hard process itself. These, mainly QCD processes, will form the un-
derlying event, typically consisting of rather soft particles. Occasionally, they may also contain
a hard scattering but, due to power-law falloff of the relevant cross sections, such events are
rare. There are, however, cases when the studied observable is such that more control over
the kinematics of the second scattering can significantly improve the sampling efficiency (e.g.
of four-jet final states), or the second process is not included as a part of current MPI gener-
ation (e.g. the production of an EW boson together with a jet). The machinery for a second
hard process can be used in these situations. It can be viewed as an approach to generate
so-called Double Parton Scattering (DPS) events, but with two key distinctions. First, the DPS
framework as used for theoretical studies typically assumes that there are exactly two hard
interactions in an event, while the second-hard setup allows there to be further MPIs just like
when starting out from one hard interaction. Second, the MPI machinery uniquely fixes how
two hard cross sections should be combined into a total, while this usually involves a free
parameter in the DPS expressions.

The basic approach in the PYTHIA implementation for the generation of two hard processes
in a single event is that, first, the two processes are selected completely independently and,
afterwards, momentum conservation and the possible correlations in the PDFs are accounted
for by the rejection of a fraction of the topologies. This makes the process sampling symmetric
and thus the distinction between “first” and “second” is used only for bookkeeping. Further-
more, as long as there is some overlap in phase space of the two processes, any of the two can
be the hardest one. In principle, this construction would allow the generation of any two inter-
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nally (or externally) defined processes, but in practice there is no need for a very fine-grained
control of both processes, and furthermore the combination of two rare processes would give
a negligible cross section. Therefore a somewhat more limited set of second processes have
been implemented. Still, the first process can be selected from the complete list of processes
(appendix A), or even provided externally. The processes that can be enabled as a second hard
one include:

• standard QCD 2→ 2 processes, i.e. two-jet production

• a prompt photon and a jet

• two prompt photons

• charmonium production, colour singlet and octet

• bottomonium production, colour singlet and octet

• γ∗/Z production with full interference

• single W± production

• production of a γ∗/Z and a parton

• production of a W± and a parton

• top-pair production

• single-top production

• bottom-pair production

Technically these can be combined freely, but some combinations would double count and
therefore must be avoided. This includes a γ∗/Z/W± together with a jet or on its own, and
bb production as part of the QCD 2 → 2 processes or on its own. Also, since the last one
will include only bb production explicitly in the hard scattering, the pairs produced by gluon
splittings in the parton showers will not be present in that sample. Thus, depending on the
kinematics, this might or might not be enough to give realistic cross-section estimates.

By default, the phase-space cuts, couplings, and scales for the second hard process are the
same as for the primary scattering. It is, however, possible to set different cuts for the second
one, and, due to fully symmetric treatment of the two processes, the cuts for the second process
can be set higher or lower than for the primary one. The cuts that can be separately specified
are the minimum and maximum values for the invariant mass and transverse momentum of
the process.

It is instructive to consider some Poissonian statistics before showing how the cross sections
of two processes should be combined. If the average number of subcollisions, 〈n〉, is known,
the probability for n of them to occur is given by

Pn = 〈n〉n
e−〈n〉

n!
. (66)

In case where 〈n〉 is small, as it is for hard processes, we can approximate e−〈n〉 = 1. The
probability for one event to happen is then P1 = 〈n〉, and correspondingly for two such events
we find P2 = 〈n〉2/2 = P2

1 /2. Now consider two independent event types a and b, such that
〈n〉 = 〈na〉+ 〈nb〉 = P1a + P1b. The probability for any combination of two events a and b is
then given by

P2 =
(P1a + P1b)2

2
=

P2
1a + 2P1aP1b + P2

1b

2
. (67)
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From this it can be read off that a probability for having two different-type events comes with a
factor 2 relative to the same-type cases. If modelled in terms of increasing time, or decreasing
hard scale (say p⊥), the mixed combination can occur in two ways, either where the event a
happens before b, or the other way around, which explains the factor of 2.

The proper way to evaluate the resulting cross section thus depends on whether the two
processes are the same, and on whether the phase-space regions overlap. The simplest case
is when the two processes do not overlap, i.e. either the phase-space regions are completely
separated or the two process are different. An example of the latter would be a combination
of processes where the first produces two jets and the second two photons. When the a and
b cross sections are small fractions of the total non-diffractive cross sections σND, naively the
probabilities Pa,b = σa,b/σND enter multiplicatively. Thus their combined cross section is

σnaive
2ab = Pa PbσND =

σ1aσ1b

σND
. (68)

This simplification neglects the dependence on collision geometry, however. The probabil-
ity for a hard process is enhanced in central collisions, i.e. for small impact parameter, while it
is depleted in peripheral ones. This leads to a so-called “trigger bias” effect, where events con-
taining a first hard process predominantly occur in central collisions, which thereby enhances
the likelihood of a second hard process. In the context of traditional MPIs this is known as the
“pedestal effect”, where a selected high-p⊥ process has more underlying-event activity than an
average event, see more details in section 6.2.2. When the colliding matter profiles have been
specified, along with the parameters that set the 〈nMPI〉, a correction factor fimpact can be de-
rived event-by-event within the MPI framework. Its average value gives a corrected combined
cross section

σ2ab = 〈 fimpact〉
σ1aσ1b

σND
=
σ1aσ1b

σeff
. (69)

In the last step we introduceσeff, which is the conventional parameter that many experimental
results are expressed in terms of, but here it is a prediction of the model.

The cross section σ2aa of two identical processes follows the same pattern, except for the
extra factor of 1/2 that has already been explained. Often a would itself be the sum of several
subprocesses, e.g. the six main classes of 2 → 2 QCD processes that contribute to two-jet
production. If so, then a compensating factor of 2 will automatically occur for the mixed-
subprocess configurations, in the same spirit as eq. (67).

The cross section calculation becomes somewhat more complicated in cases when there
is partial overlap between the two processes. An example would be identical processes with
different, but partly overlapping, cuts on p⊥. In such cases it is useful to split the problem into
two completely independent processes a and b and a common process c. The first (second)
process can be selected according toσa+σc (σb+σc). Half of the events should be discarded if
both processes are chosen as c, and the combined cross section should be reduced accordingly.

So far it has been assumed that the generation of the two processes can be done indepen-
dently, apart from the geometrical correction factor for the final cross sections. This obviously
misses all possible correlations between the PDFs and, perhaps more importantly, may violate
energy-momentum conservation. Part of the selected events will be discarded to account for
these effects, even though each process would be acceptable on its own. The correlations in
multiparton PDFs implemented in PYTHIA are described further in section 6.2.4. The PDF re-
duction factor is obtained as the average of the two possible orderings, where either the second
or first PDF is corrected for the parton taken out either by the first or second process.

In the end, the cross sections provided by PYTHIA after the event generation do account
for all these effects, including the correction factor 〈 fimpact〉 and the PDF rescaling. The error
estimates provided by PYTHIA are statistical ones and do not cover the potentially large model
uncertainties, as usual. When the first process is provided externally, PYTHIA does not have
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the information whether there is an overlap between the first and the second process, and so
will assume that this is not the case. The proper correction for an overlap then rests with the
user.

4 Parton showers

The most violent pp collisions at the LHC may have five to ten easily separated jets. Zoom-
ing in on these, they display a substructure of jets-inside-jets-inside-jets, associated with the
perturbative production of increasingly nearby partons. Such a fractal nature is expected to
continue down to the hadronization scale, a bit below 1 GeV. At that scale, the event may con-
tain up to a hundred partons, even if the full partonic structure is masked by the subsequent
non-perturbative hadronization process. There is no way to perform matrix-element calcula-
tions to describe such complicated event topologies. Instead, the standard approach is to start
out from a matrix-element calculation with only a few well-separated partons, and then apply
a parton shower to that.

Parton showers attempt to describe how a basic hard process is dressed up by emissions at
successively “softer” (longer-wavelength) and/or more “collinear” (smaller-angle) resolution
scales, to give an approximate but realistic picture of the (sub)structure of the partonic state
across the full range of (perturbative) resolution scales. Such a shower is constructed in a
recursive manner, from the large scale of the hard process down to a lower cutoff at around
the hadronization scale. In each step, the number of partons is increased by one, or in very
special cases two, and the random nature of the steps leads to a large variability of final states.
It is worth emphasizing that, although often thought of in the context of QCD, parton (or
more generally particle) showers are in fact common to any quantum field theory with several
(quasi-)massless particles. Thus, showers are present in QCD, QED, and the EW theory above
the symmetry breaking scale and as such, dedicated modules describing all of these are part
of PYTHIA 8.3.

One starting point is to study the ratio of two differential matrix elements, dσn+1/dσn,
where the numerator corresponds to the emission of one more gluon in the final state. It then
turns out that this ratio is given by universal expressions, i.e. independent of which specific
process is considered, if this gluon is either soft, or collinear with one of the already existing
partons. This means that one can formulate a generic scheme that can be applied to any
process of interest. Such schemes started to be developed in the late 1970s. A key ingredient
has been the DGLAP evolution equations [43–45], which describe near-collinear emissions.
Modern showers, like the three available with PYTHIA 8.3, are based on many subsequent
developments, intended to make them cover the full phase space as well as possible. These
aspects are described later, but initially we introduce the simpler, classical (collinear “leading-
log”) framework that helps in understanding the overall picture.

Historically, showers are split into two kinds, ISR and FSR, which occur respectively before
or after the hard process. Alternatively, they may be referred to as spacelike and timelike
showers, respectively, since their representation in terms of Feynman diagrams contain off-
shell intermediate particles that are either spacelike or timelike. The more virtual such a
particle is, the shorter it may exist. Therefore, the highest virtualities occur in and closest to
the hard interaction, and then showers with decreasing virtualities stretch backwards (for ISR)
or forwards (for FSR) in time. LHC processes usually contain both ISR and FSR, and outside
the strictly collinear limits the distinction can be blurred, just like interfering Feynman graphs
of a different nature may contribute to a given final state. A decay γ∗/Z → qq is pure FSR,
however, while its production qq→ γ∗/Z can be discussed in terms of ISR only, so these are
often used as textbook examples. (Conversely, ISR-FSR interference can be exemplified by
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t-channel colour-singlet exchange, such as in deep inelastic scattering or vector boson fusion.)

FSR Starting from γ∗/Z → qq, either the q or q may emit a g, e.g. q → qg. This produces
a qqg state, after which either of the three partons may branch, and so on. The differential
probability for a parton to branch can be written as

dPa(z,Q2) =
dQ2

Q2

αs(Q2)
2π

∑

b,c

Pa→bc(z)dz . (70)

Here a is the mother that splits into partons b and c, where the momentum-energy of the
mother is split such that b takes fraction z and c takes 1−z. The Q scale, used to order emissions
in a falling sequence, is a key distinguishing feature of different shower implementations, and
may be chosen e.g. as mass, transverse momentum or energy-weighted emission angle. That is,
z parameterizes the longitudinal and Q the transverse evolution of the shower. There is also
an azimuthal angle ϕ that determines the orientation of the decay plane; typically, and for
the purpose of this brief introduction, this is assumed to be distributed isotropically, though
we note that PYTHIA does allow for non-uniform distributions as well, e.g. to reflect gluon
polarization effects.

A key issue that distinguishes parton showers from so-called analytic resummation ap-
proaches, is that the latter only maintain exact energy and momentum conservation in the
strict soft and collinear limits while showers do so over all of phase space. This difference
leads to the crucial aspect of recoil effects in parton showers, which will play an important role
when we introduce dipole showers later on.

There are three different DGLAP splitting kernels,

Pq→qg(z) =
4
3

1+ z2

1− z
, (71)

Pg→gg(z) = 3

�

1− z(1− z)
�2

z(1− z)
, (72)

Pg→qq(z) =
1
2

�

z2 + (1− z)2
�

. (73)

These obey the trivial symmetry relations Pa→cb(z) = Pa→bc(1− z). The Pg→qq kernel is nor-
malized for one quark flavour only, and has to be summed over all kinematically allowed
channels.

The same approach can also be used for other branchings, notably QED ones, where αs in
eq. (70) is replaced by αem and the splitting kernels are

Pf→fγ(z) = e2
f

1+ z2

1− z
, (74)

P
γ→ff(z) = Nc e2

f

�

z2 + (1− z)2
�

, (75)

where Nc = 3 if f is a quark and Nc = 1 if a charged lepton.
The DGLAP kernels are often written with additional terms that modify the behaviour at

z = 1 and 0, in order to conserve momentum-energy and flavour in analytic calculations. This
is not necessary in event generators, partly because the 0 and 1 limits are never reached, and
partly because conservation issues are handled explicitly: parton a is removed at the same
time as b and c are inserted in the list of currently existing partons.

The branching probability in eq. (70) can be integrated over the kinematically allowed z
range

dPa(Q
2) =

dQ2

Q2

αs(Q2)
2π

∑

b,c

∫ zmax(Q2)

zmin(Q2)
Pa→bc(z)dz , (76)
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to express the infinitesimal probability that a branches in a dQ2 infinitesimal step. (Strictly
speaking |dQ2| since Q2 is decreasing in the evolution.) The probability for a not to branch in
the same step thus is 1− dPa(Q2). By multiplication of the no-emission probabilities (expo-
nentiation), the probability for a not to branch between an initial scale Q2

1 and a final lower
Q2

2 becomes the Sudakov factor [51]

Πa(Q
2
1,Q2

2) = exp

 

−
∫ Q2

1

Q2
2

dPa(Q
2)

!

. (77)

The differential probability for a to evolve from a Q2
max to a Q2 and then branch at the latter

scale, thus is Πa(Q2
max,Q2)dPa(Q2). Note that the introduction of a Sudakov factor ensures

that the total probability for a to branch cannot exceed unity, something that is not guaranteed
for dPa alone.

We observe that the Sudakov factor plays a crucial role in the selection of a branching scale.
The veto-algorithm technology in section 2.2.3 is eminently suited to handle cases where the
Q2 and z integrations cannot be done analytically. The Sudakov factor also is closely related
to virtual corrections of matrix elements, i.e. loop corrections. This will play a key role for the
matching and merging methods presented in the next section.

ISR The ISR description starts out from the evolution equation for Parton Distribution Func-
tion (PDF)s,

d fb(x ,Q2) =
dQ2

Q2

αs(Q2)
2π

∑

a

∫

fa(x
′,Q2)dx ′

∫

Pb/a(z)dzδ(x − x ′z)

=
dQ2

Q2

αs(Q2)
2π

∑

a

∫

dz
z

fa

�

x ′ =
x
z

,Q2
�

Pb/a(z) , (78)

where fi(x ,Q2) is the probability to find a parton i inside a hadron, with i carrying a fraction
x of the full hadron momentum if the hadron is probed at a scale Q2.

As for FSR, the evolution is driven by branchings a → bc but, where FSR is formulated
in terms of the decay rate of a, ISR is given in terms of the production rate of b. The simple
splitting kernels are easily related, Pb/a(z) = Pa→bc(z), except that Pg/g(z) = 2Pg→gg(z), since
two gluons are produced for each gluon that decays.

The evolution of PDFs starts at some low scale Q2
0 and then proceeds towards the Q2 scale of

the hard process, where they enter into the cross-section expression. While eq. (78) describes
the evolution of an inclusive distribution, an exclusive shower formulation similar to the FSR
one is possible, although more complicated. A key problem is that the two incoming cascades,
one from each side of the event, may not end up as the colliding partons one is interested in.
For example, in gg→ H the two incoming gluons must have an invariant mass that matches
the Higgs mass.

The solution to this problem is backwards evolution [52]. In this method, the evolved
PDFs are first used to select the hard process of interest, say qq→ γ∗/Z . Only afterwards are
the incoming showers then constructed backwards in time, from the high Q2 scale down to
the low Q2

0. To this end, we introduce

dPb(x ,Q2) =
d fb(x ,Q2)
fb(x ,Q2)

=
dQ2

Q2

αs(Q2)
2π

∑

a

∫ zmax(Q2)

zmin(Q2)
dz

x ′ fa(x ′,Q2)
x fb(x ,Q2)

Pb/a(z) , (79)

where we have used that z = x/x ′. Here dPb is the probability that parton b becomes
associated with a branching a → bc during the interval dQ2. A no-branching probability
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Πb(x ,Q2
1,Q2

2) can be defined in analogy with the Sudakov factor eq. (77). The corrected prob-
ability for a parton b that branches or interacts at Q2

max to be assigned a mother a at Q2 then
is Πb(x ,Q2

max,Q2)dPb(x ,Q2). This a in its turn must be evolved to yet lower Q2 to find its
mother at an even higher x value.

Recoils and dipoles An isolated parton cannot branch, if energy and momentum is to be
preserved. Take as an example γ∗/Z → qq → q∗q → qqg, where q∗ is the off-shell quark
that branches as q∗ → qg. Initially, the q and q can split the energy equally, but the off-shell
q∗ acquires a larger mass than q, and so it must have a larger energy while the q receives
a smaller one. In this case we would call q the radiator (or emitter) and q the recoiler, but
note that at the end, both may yield energy to create the g. Also, considering the existence
of q → qg branchings, it may be simpler to say that it is the qq pair that jointly radiates the
g. Note that q and q have opposite and compensating colours and thus form a colour dipole,
hence the concept of dipole radiation.

This picture generalizes to the subsequent emission of further gluons [53,54]. In the limit
of infinitely many colours, Nc → ∞ [55], the qqg system exactly splits into one qg dipole
and one gq dipole. These can radiate independently, and the recoil is distributed within each
dipole. It is still possible, but not necessary, to split the radiation inside each dipole as being
associated with either dipole end.

To allow dipole showers to operate, unique colour indices (in the Nc → ∞ limit) are
assigned to all coloured partons, both ones produced in the hard process and ones in the
subsequent shower evolution. For the extension to ISR, and to decays like t → bW+, one
should note that the hole left behind by a scattered or decayed colour parton can act like its
anticolour.

Formal basis of parton showers In the previous discussion, we have developed the basic
idea of parton showers, similarly to the historical development. We now want to turn to a
more in-depth treatment about the formal basis of modern shower algorithms as the three
implemented in PYTHIA 8.3.

We have seen above that parton showers build upon the factorization of (squared) am-
plitudes in soft and collinear limits. Technically, this means that whenever either two (or
more) particles become collinear or one (or more) particle becomes soft, the full (squared)
amplitude can be well approximated by the (squared) matrix element without the unresolved
particle times a universal radiation function. It is the latter, which takes the effect of the
soft or collinear radiation into account. This factorization is reminiscent of the perturbative
physics of the hard process and occurs, because an intermediate, almost on-shell, propagator
can be replaced by a polarization sum, such that the amplitude may be split into two inde-
pendent pieces. Vital for the construction of showers is that this factorization is universal in
the sense that it is process and multiplicity independent. This means that the same radiation
functions can be used for different squared matrix elements and at any multiplicity, as long
as only single-unresolved radiation is concerned. The latter comment serves to emphasize
that at higher multiplicities also multiple-unresolved limits occur, in which, for instance, two
particles become simultaneously soft or three particles become simultaneously collinear. For
such configurations, it should be obvious that higher-order radiation functions are needed and
the ones describing single-soft or (double-)collinear radiation are not sufficient. At the same
time, it is always possible to factorize phase-space integration measures into on-shell steps by
introducing delta functions to factorize the decay system, and introducing recoiling systems to
guarantee four-momentum conservation. Taking matrix-element and phase-space factoriza-
tion together, it follows that cross sections can be factorized. This allows for iteration of the
approximation, as long as the measure of “softness” or “collinearity” remains appropriate. In
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this context, the requirement of an appropriate measure leads to the notion of strong ordering,
which means that radiation of soft particles is yet softer and radiation of collinear particles is
yet more collinear. Although different possibilities to factorize matrix elements exist, all in-
herit that the approximation should recover the singularities of fixed-order results. On the
one hand, DGLAP evolution is driven by collinear radiation; on the other hand, factorization-
breaking (so-called non-global) logarithms are driven by soft radiation. These are the limits
any parton shower resumming the leading, i.e. largest, logarithms should recover.

Based on the above, we can start thinking about the construction of a shower model. It
should be emphasized that the construction of showers is by no means unique. As the bare
minimum, a shower algorithm must define the following.

1. Radiation functions, i.e. the matrix-element factorization.

2. A phase-space factorization and recoil procedure.

3. An ordering variable, i.e. a measure of “softness” and/or “collinearity”.

For each of these points, different choices are possible and used, motivated by different desires
to obtain certain objectives: simplicity, extendability, or simply to describe specific processes
better at the cost of describing others worse.

Using somewhat general language for now, we can denote the radiation functions by K j/ĩ k̃,

describing the radiation of particle j from the two parent particles ĩ and k̃, i.e. the branching
ĩ k̃ 7→ i jk. Depending on the specifics of the shower algorithm, one of the two parents ĩ and
k̃ may be distinguished as the “emitter” while the other, the “recoiler”, only ensures four-
momentum conservation, or both parents act as emitters and recoilers in an agnostic way.
The former is how both PYTHIA’s simple shower and DIRE are structured, whereas the latter
describes the antenna picture employed in the VINCIA shower. No matter which specific choice
of radiation functions is made, the sum of terms must reproduce all single-unresolved limits
of the full real-emission cross section,

dσn+1
single-unresolved
−−−−−−−−−−→

∑

j

K j/ĩ k̃ dΦ+1 dσn =: Kn7→n+1 dΦ+1 dσn , (80)

with the cross sections σ defined as in eq. (37). This factorization consists of two parts: the
factorization of the squared matrix element and the factorization of the phase space.

Specifically, in the case of two particles i and j becoming collinear, the n+1-particle matrix
element factorizes into a product of the n-particle matrix element and the DGLAP splitting
kernels eqs. (71) to (75),

|Mn+1|
2 i‖ j
−→

8πα
2pi · p j

Pĩ→i j(z) |Mn|
2 + angular terms . (81)

Generally, the collinear limit involves spin correlations between the factorized matrix element
and the (spin-dependent) DGLAP kernels, here indicated by the additional “angular terms”.
These terms vanish upon azimuthal integration and are therefore not necessarily implemented
in a parton-shower algorithm. It is, however, vital to account for these terms in so-called NLO
subtraction schemes to ensure point-wise cancellation of singularities. In the limit of a single
gauge boson becoming soft, however, the emission of the soft boson can be described by a
universal factor known as the soft eikonal. Different to the collinear limit, soft radiation is an
intrinsically coherent phenomenon, meaning that the boson is emitted by the whole particle
ensemble, introducing a sum over radiators:

|Mn+1|
2 E j→0
−−−→ 8πα

∑

i<k

Cik
2pi · pk

(2pi · p j)(2p j · pk)
|Mn|

2 , (82)
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with charge factors Cik depending on the charges of the radiators i and k. Especially in the case
of QCD, these charge factors introduce intricate colour correlations for soft gluon emissions.
It is because of these complications that most parton showers only consider the leading-colour
limit, i.e. neglect any contributions in the above sum that correspond to emissions from non-
neighbouring partons.

Besides the factorization of matrix elements, in eq. (80) we used that the n + 1-particle
phase space exactly factorizes into a product of an n-particle phase space and the branching
phase space dΦ+1, obtained through a formal insertion of an intermediate off-shell particle
with mass m2

i j = (pi + p j)2,

dΦn+1(q; p1, . . . , pi , p j , pk, . . . , pn+1) = dΦn(q; p1, . . . , pĩ , pk̃, . . . , pn)

×
�

�J(pĩ , pk̃; pi j , pk)
�

�

dm2
i j

2π
dΦ2(pi j; pi , p j)

≡ dΦn(q; p1, . . . , pĩ , pk̃, . . . , pn)dΦ+1(pi , p j , pk) . (83)

It must be emphasized that the n-particle phase-space measure is here written with on-shell
momenta pĩ and pk̃ instead of an off-shell intermediate momentum pi j . This means we here
assume an on-shell phase-space factorization, i.e. that after each emission, all momenta are
separately physical and momentum is conserved at each step in the shower,

pĩ + pk̃ = pi + p j + pk . (84)

The change from the off-shell momenta {pi j , pk} to the on-shell momenta {pĩ , pk̃} is repre-
sented by the Jacobian

�

�J(pĩ , pk̃; pi j , pk)
�

�. Specific forms of kinematic mappings {pĩ , pk̃} 7→
{pi , p j , pk} (or “recoil schemes”) are again shower specific. Presently, however, all showers in
PYTHIA 8.3 employ an on-shell factorization as described here. While this might not generally
be required, this is a key requirement for the matching and merging techniques utilized in
PYTHIA 8.3, cf. section 5.

The branching phase space dΦ+1 accounts for the degrees of freedom entering through the
emission of one particle from the n-particle configuration and can generally be expressed in
terms of three “shower variables” t, z, and φ,

dΦ+1(pi , p j , pk) = |J(t, z,φ)| dΦ+1(t, z,φ) =
1

16π2
|J(t, z,φ)| dt dz dφ . (85)

Usually, t is interpreted as the ordering variable of the shower, z as some kind of energy-sharing
variable, and φ as the angle about the branching plane in the i- j-k rest frame. However, dif-
ferent showers make different choices which may be more or less connected with this analogy.

Addressing point 3 of the list above, it is instructive to start by noting that various choices
of ordering variables are formally equivalent at the Leading Logarithmic (LL) level, as can be
seen by comparing the differentials as they enter through the matrix-element and phase-space
factorizations described above,

dt
t
=

dp2
⊥, j

p2
⊥, j

=
dm2

i j

m2
i j

=
dθ2

i j

θ2
i j

, (86)

and by noting that in the collinear limit p2
⊥, j ∼ z(1 − z)m2

i j ∼ z2(1 − z)2E2
j θ

2
i j . It is straight-

forward to see that all these choices represent a certain measure of softness or collinearity, as
required above. The requirement that this measure remains appropriate during the shower
evolution then translates into strong ordering of emissions, i.e. subsequent emissions evolve
down in the ordering scale: t0 > t1 > t2 > . . . tn.
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Putting the above together, a no-branching probability, often also called Sudakov factor,
can be defined:

Πn(tn, tn+1;Φn) = exp







−

tn
∫

tn+1

Kn7→n+1(Φn,Φ+1(t
′, z′,φ′))dΦ+1(t

′, z′,φ′)







. (87)

It describes the evolution from an n-particle state at scale tn to an n+ 1-particle state at scale
tn+1 < tn. By rewriting Kn7→n+1 as the sum of radiation functions K j/ĩ k̃, Πn can written as the

product of ĩ k̃ 7→ i jk no-branching probabilities:

Πn(tn, tn+1;Φn) = exp







−
∑

j

tn
∫

tn+1

zmax
∫

zmin

2π
∫

0

1
16π2

K j/ĩ k̃(t
′, z′,φ′)

�

�J(t ′, z′,φ′)
�

�

dφ′

2π
dz′ dt ′







=
∏

j

exp







−

tn
∫

tn+1

zmax
∫

zmin

2π
∫

0

1
16π2

K j/ĩ k̃(t
′, z′,φ′)

�

�J(t ′, z′,φ′)
�

�

dφ′

2π
dz′ dt ′







(88)

=
∏

j

Π j/ĩ k̃(tn, tn+1;Φn) .

Written this way, it is also emphasized that each branching ĩ k̃ 7→ i jk comes with its own
branching phase space and kinematic mapping. This is how the full no-branching probability
Πn 7→n+1 is implemented in shower algorithms in practice.

For the calculation of the expected value of an observable O, the no-branching probabilities
enter to describe the shower evolution as a Markov chain,

〈O〉PS
n =

∫

dσn

dΦn
Sn(t, O)dΦn , (89)

which is generated by a “shower operator” Sn(t, O), defined recursively as

Sn(t, O) := Πn(t, tc;Φn)O(Φn) +

t
∫

tc

Kn7→n+1Πn(t, t ′;Φn)Sn+1(t
′, O)dΦ+1(t

′, z′,φ′) . (90)

This shower operator makes the unitarity of the shower explicit. The first term implicitly
accounts for all unresolved radiation and virtual corrections between the shower starting scale
t and the shower cutoff tc. The second term, on the other hand, describes the emission of
a single particle, approximated by the sum of radiation functions Kn7→n+1, and includes all
unresolved and virtual corrections between the shower starting and cutoff scale.

It is instructive to make the form of the no-branching probability eq. (88) more explicit
for QCD showers. Implicitly, the radiation functions K j/ĩ k̃ above contain the strong-coupling
constant, a colour factor, and, for ISR, a ratio of PDFs,

K j/ĩ k̃(t, z,φ) = g2
s (t)RPDF(t, z)C j/ĩ k̃ K̄ j/ĩ k̃(t, z,φ) = 4παs(t)RPDF(t, z)C j/ĩ k̃ K̄ j/ĩ k̃(t, z,φ) ,

(91)
where we have introduced the coupling-, PDF-, and colour-factor-stripped radiation function
K̄ j/ĩ k̃, which depends solely on the branching kinematics. For FSR, the PDF ratio is equal to
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unity, RPDF = 1, as the initial-state momenta do not change due to the branching. Differentially
in the evolution variable t, the integral in the exponent of Π j/ĩ k̃ can thus be written as

dPFSR
j/ĩ k̃
(t)

dt
=
αs(t)
2π

C j/ĩ k̃

2

zmax
∫

zmin

2π
∫

0

K̄ j/ĩ k̃(t, z′,φ′)
�

�J(t, z′,φ′)
�

�

dφ′

2π
dz′ , (92)

dP ISR
j/ĩ k̃
(t)

dt
=
αs(t)
2π

C j/ĩ k̃

2

zmax
∫

zmin

2π
∫

0

RPDF(t, z) K̄ j/ĩ k̃(t, z′,φ′)
�

�J(t, z′,φ′)
�

�

dφ′

2π
dz′ , (93)

for FSR and ISR, respectively. Written this way, the connection to eqs. (76) and (79), respec-
tively, is immediately evident. It is worthwhile to point out here that typically different shower
algorithms are inconsistent as to whether colour factors are included or excluded in radiation
functions. Moreover, depending on whether a shower aims at describing the evolution of a
single initial-state leg at a time or both at the same time, the PDF ratios RPDF have to include
one PDF ratio,

RPDF(t, z) =
x i fi(x i , t)
x ĩ j f ĩ(x ĩ , t)

, (94)

or two PDF ratios if both initial-state particles are evolved at the same time,

RPDF(t, z) =
x i fi(x i , t)
x ĩ f ĩ(x ĩ , t)

xk fk(xk, t)
x k̃ fk̃(x k̃, t)

. (95)

The x-fractions pi = x i P, with P the incoming hadron momentum, depend on the shower
variables t and z.

A similar analysis can be done in the cases of QED or EW showers, where the QCD coupling
has to be replaced by the electromagnetic/electroweak coupling and QCD colour factors by the
appropriate QED/EW charges.

Formal accuracy Despite their success in describing wide classes of observables with often
impressive agreement with experimental data, parton showers commonly work with a number
of approximations. It is not an easy task to formally assess the accuracy of a given shower
model, i.e. to determine which exact terms of a perturbative series a shower includes. For a
start, there are three expansions to be considered:

1. the perturbative expansion in the coupling constant αn(t), determining the accuracy of
the hard process, e.g. leading-order (LO), next-to-leading order (NLO), etc.;

2. the perturbative expansion in large logarithms αn(t) logm(thard/t), determining the ac-
curacy of the resummation, e.g. Leading Logarithmic (LL), Next–to–Leading Logarith-
mic (NLL), etc.;

3. and for QCD showers, the expansion in the number of colours (Nc), determining the
accuracy of the colour factors in the resummation, e.g. Leading Colour (LC), Next–to–
Leading Colour (NLC), etc.

A baseline shower would for example start from a LO matrix element and (typically) generate
the LL corrections arising from additional radiation under the LC assumption of planar colour
flows. Such a shower could be assigned a LO+LL+LC accuracy. This can be expected from
virtually all common shower models, although observables may exist for which a given shower
does not correctly include the LL terms. It is more interesting, however, to determine if and
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for which observables showers reach sub-leading, i.e. higher, accuracy than the LO+LL+LC
minimum.

Increasing the accuracy on the fixed-order side can be addressed by matching and merging
methods, which are described in detail in section 5. Matching and merging at LO and NLO
have de-facto become state of the art for all showers and processes.

Assessing and increasing the logarithmic accuracy of showers has become a highly-active
field, where no general solution has yet been developed. Different approaches to assess the
logarithmic accuracy of showers have been developed in the recent past, such as ones based
on comparison of analytic and numerical resummation [56, 57], analytic examination of the
logarithmic structure of showers [58, 59], or numerical checks of logarithmic terms [60, 61].
Moreover, for simple processes such as e+e− annihilation to jets, first shower models have
been developed that can be shown to give NLL accuracy for a wider range of observables [62,
63]. Most common shower models currently only obtain a formal LL accuracy, with varying,
observable-dependent subleading accuracy.

Lastly, the inclusion of sub-leading colour corrections in parton showers is an active field as
well, with approaches based on matrix-element corrections [59, 64–68], sampling of colours
[69, 70], quantum-probability density-matrix arguments [71, 72], or amplitude-level evolu-
tion [73, 74]. Sub-leading colour corrections are not in general universally applied in parton
showers.

Showers in PYTHIA 8.3 There are three different shower modules available in PYTHIA 8.3:
the original/default simple shower, the VINCIA antenna shower, and DIRE. These will be dis-
cussed in detail below in section 4.1, section 4.2, and section 4.3, respectively.

4.1 The simple shower

The “simple shower” is the oldest parton-shower algorithm in PYTHIA 8 and is also the de-
fault shower model in PYTHIA 8.3. It has its origin in the mass-ordered showers in JET-
SET/PYTHIA [52,75–77], with the transition to p⊥ ordering [78] partly influenced by the Lund
dipole picture [54] and partly by the desire to combine the ISR and FSR shower evolution with
MPI in a single interleaved sequence [78].

Over the years, significant revisions and extensions have been introduced, many of them
only available in recent PYTHIA versions. This includes:

• Full interleaving of ISR, FSR, and MPI [79].

• Options for a dipole-style treatment of initial-final colour flows [80].

• f→ fγ and γ→ ff splittings (where f represents charged fermions).

• Matrix element corrections for resonance decays and a few other processes [76,77,81].

• Extensive facilities for matching and merging (cf. section 5).

• Reweighted shower branchings and uncertainty bands [20].

• A flexible treatment of showers in baryon-number-violating processes [82].

• Weak showers [83].

• Hidden-sector showers [38,39].
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The name “simple” shower here refers to the limited aim of a consistent leading-logarithmic
(and beyond) shower evolution, with several known shortcomings [58,59], as opposed to the
more sophisticated goals of the alternative VINCIA (cf. section 4.2) and DIRE (cf. section 4.3)
shower options, also available in PYTHIA 8.3. It should be emphasized that, by virtue of its
longer history, many features are only available in the simple shower, and that as such the
naming might be slightly misleading. As an example, the simple shower offers a much larger
selection of matching and merging methods than does VINCIA or DIRE.

The shower machinery consists of one algorithm for FSR and one for ISR. These two are
evolved together into one combined sequence of decreasing p⊥ scales. As an example, consider
a partonic process a+b→ c+d, where a and b are extracted from the beams A and B. It is then
possible for c and d to undergo FSR branchings, and for a and b backwards-evolution ISR ones.
Starting from some maximal scale p⊥max, downwards evolution gives a possible branching p⊥
scale for each of the four partons. The one with largest p⊥ is the winner that undergoes a
branching, leading to a new state of five partons. The selected p⊥ value is taken as the new
starting point for all five partons to evolve further down in p⊥, giving a new branching. This is
applied iteratively until some lower cutoff is reached and the evolution is stopped. Also, MPIs
will form part of this evolution, see section 6.2.5.

4.1.1 Basic shower branchings

The description of showers in the introduction of this section is valid for the simple shower
framework. Notably the branching probabilities dPa of eq. (76) and dPb of eq. (79) play a
central part, but with two key additions.

One is that evolution is performed in terms of transverse momenta, i.e. the generic Q2

scale in eq. (76) and eq. (79) is replaced by a p2
⊥evol. The use of transverse momentum as an

evolution variable has been shown to catch key coherence features and therefore is a preferred
choice [53,54].

The other is that a dipole picture is being used, although with some exceptions. In it each
coloured parton has a unique anticolour partner, and together the two form a dipole. Radiation
is split into one contribution from each dipole end. When one end radiates, the other end has
to take a recoil such that total energy and momentum is preserved.

Shower evolution To understand basic kinematics in a branching a → bc, expressions be-
come especially simple using light-cone (LC) p± = E ± pz , for which p+p− = m2

⊥ = m2 + p2
⊥.

When a moves along the +z axis, with p+b = zLCp+a and p+c = (1−zLC)p+a , p− conservation then
gives

m2
a =

m2
b + p2

⊥

zLC
+

m2
c + p2

⊥

1− zLC
, (96)

or equivalently
p2
⊥ = zLC(1− zLC)m

2
a − (1− zLC)m

2
b − zm2

c = p2
⊥LC . (97)

For a timelike branching Q2 = m2
a and mb = mc = 0, assuming massless partons, so then

p2
⊥LC = zLC(1− zLC)Q2. For a spacelike branching Q2 = −m2

b and ma = mc = 0, where b is the
parton that will enter the hard interaction, so instead p2

⊥LC = (1− zLC)Q2. We are inspired by
these relations to define abstract evolution variables

p2
⊥evol = z(1− z)Q2 for FSR, (98)

p2
⊥evol = (1− z)Q2 for ISR, (99)

in which to order the sequence of shower emissions. The zLC definitions will be replaced
by invariant-mass-based z for the final kinematics definitions, for better Lorentz invariance
properties, and as a consequence p⊥evol 6= p⊥LC. Further details on this are given later.

65

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

The evolution is now carried out, downwards in p2
⊥evol from some starting scale p2

⊥evol,max,
for FSR by parton a branching to b + c, for ISR by parton b being reconstructed as coming
from the branching of an earlier a. The branching probabilities of eq. (76) and eq. (79), with
the addition of no-branching probabilities Π, eq. (77), gives

dPFSR = Πa(p
2
⊥evol,max, p2

⊥evol)dPa(p
2
⊥evol) , (100)

dPISR = Πb(x , p2
⊥evol,max, p2

⊥evol)dPb(x , p2
⊥evol) . (101)

A p2
⊥evol scale is selected for each existing dipole end, and the end with the largest value is

chosen to branch.
The selection of a branching means that p2

⊥evol and z are fixed. From these, one can derive
the virtuality of the evolving parton

m2
a =Q2 =

p2
⊥evol

z(1− z)
for FSR, (102)

−m2
b =Q2 =

p2
⊥evol

(1− z)Q2
for ISR. (103)

What now remains is to construct the kinematics of the branching. This works rather differ-
ently for FSR and for ISR, so the two cases are presented separately.

FSR branching kinematics Study the radiation inside a dipole, consisting of a radiator
a and a recoiler r, in the dipole rest frame, with a moving in the +z direction, and with
m2

ar = (pa + pr)2.
For massless partons, the introduction of an off-shell Q2 = m2

a increases Ea from mar/2 to
(m2

ar +Q2)/2mar , with Er reduced by the same amount, or in terms of four-momenta

pa′ = pa +
Q2

m2
ar

pr , pr ′ =

�

1−
Q2

m2
ar

�

pr . (104)

The two daughters share the energy according to Eb = zEa and Ec = (1− z)Ea. With the mod-
ified a still along the +z axis, the transverse momentum of the two daughters then becomes

p2
⊥b,c =

z(1− z)(m2
ar +Q2)2 −m2

arQ
2

(m2
ar −Q2)2

Q2 ≤ z(1− z)Q2 = p2
⊥evol . (105)

The kinematics can now be completed, including a random ϕ orientation of the p⊥. Also, if
the original dipole had to be boosted and rotated to its rest frame, the new system should be
transformed back to the original frame.

Colours are also assigned in the branching, such that the new colour-dipole picture is set up.
This is well defined in the Nc→∞ limit, except for g→ gg branchings. Here a rewriting [54],

Pg→gg(z) = 3

�

1− z(1− z)
�2

z(1− z)
=

3
2

1+ z3

1− z
+

3
2

1+ (1− z)3

z
' 3

1+ z3

1− z
, (106)

allows the gluon that takes the (usually smaller) 1− z fraction to be the “radiated” gluon that
connects the “radiator” gluon to the recoiler.

Of note is that the light-cone sharing of momenta between daughters, suggested initially,
here is replaced by an energy sharing. It has the advantage that p2

⊥evol and this z together ex-
actly match on to the singularity structure of matrix elements, such as the textbook
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γ∗/Z→ q(1) + q(2) + g(3) one, when q→ qg and q→ qg radiation from the two dipole ends
is combined

dp2
⊥evol,q

p2
⊥evol,q

dzq

1− zq
+

dp2
⊥evol,q

p2
⊥evol,q

dzq

1− zq
=

dx1 dx2

(1− x2)x3
+

dx1 dx2

(1− x1)x3
=

dx1 dx2

(1− x1)(1− x2)
, (107)

with x i = 2Ei/Etot. Corrections to fully reproduce several important matrix elements therefore
are easily implemented.

Incidentally, note that 1 − x2 ∝ cosθqg and 1 − x1 ∝ cosθqg, so eq. (107) provides a
prescription for how radiation from the full dipole smoothly can be split into radiation from
the two ends as a function of the gluon emission angle. This split also decides which of the
two original partons is the recoiler, the one that keeps its direction of motion.

The kinematics need to be modified when quark masses are included, with full expressions
in [77]. There are two key points, however. First, if the branching parton a has an on-shell
mass ma and off-shell mass ma′ , then eq. (98) needs to be modified to

p2
⊥evol = z(1− z)Q2 = z(1− z)(m2

a′ −m2
a) , (108)

to reproduce the singularities in matrix elements. Second, if the daughters are initially as-
signed four-momenta p(0)b and p(0)c as if they were massless, then massive four-vectors can be
constructed as

pb = (1− kb)p
(0)
b + kc p(0)c , (109)

pc = (1− kc)p
(0)
c + kbp(0)b , (110)

kb,c =
m2

a −
q

(m2
a −m2

b −m2
c )2 − 4m2

bm2
c ± (m

2
c −m2

b)

2m2
a

. (111)

The p⊥b,c is also reduced in the process, by a factor 1− kb − kc .

ISR branching kinematics The handling of ISR branching kinematics is somewhat more
complicated. At any scale p2

⊥evol, two initial partons, one from each incoming beam particle,
are identified by the ISR algorithm. These partons are taken to be massless and collinear with
the beams, and are the mothers of the respective incoming ISR cascade.

By the backwards evolution, the resolution scale is gradually reduced, and then either of
these two partons may be reconstructed as the daughter b of a previous branching a → bc.
The other of the two partons takes on the role of recoiler r. The parton b, previously taken
as massless, is now assigned a spacelike virtuality m2

b = −Q2, and the recoiler is needed for
consistent reconstruction of the kinematics. The kinematics redefinition is performed such
that the invariant mass of the b + r system is unaffected, since this mass is given by the set
of produced particles, which in a case like gg → H must not be modified. The final-state
system must be rotated and boosted, however, since b not only acquires a virtuality but also a
transverse momentum. If previously b was assumed to travel along the event axis, now it is a
that does so.

The current massless mothers should, at any step of the cascade, have four-momenta in the
rest frame of the two incoming beam particles given by pi = x i (

p
s/2) (1;0, 0,±1), ensuring

that ŝ = x1 x2s. This relation should be preserved in the a→ bc branching, so the z = xb/xa
should fulfil z = m2

br/m
2
ar = (pb + pr)2/(pa + pr)2. This constraint is used to construct the
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kinematics in the a+ r rest frame, with a moving along the +z axis, and if c is massless:

pa,r =
mar

2
(1;0, 0,±1) , (112)

pb =

�

mar

2
z; p⊥b,c cosϕ, p⊥b,c sinϕ,

mar

2

�

z +
2Q2

m2
ar

��

, (113)

pc =

�

mar

2
(1− z);−p⊥b,c cosϕ,−p⊥b,c sinϕ,

mar

2

�

1− z −
2Q2

m2
ar

��

, (114)

p2
⊥b,c = (1− z)Q2 −

Q4

m2
ar
< (1− z)Q2 = p2

⊥evol . (115)

The p2
⊥b,c and p2

⊥evol measures agree well for small Q2 values. With increasing Q2, the p2
⊥b,c

will gradually turn over and decrease again (for fixed z and mar). The maximum p2
⊥b,c occurs

for pzc = 0, and a decreasing p2
⊥b,c is obtained for an increasingly negative pzc . Thus the drop

of p2
⊥b,c is deceptive. The p2

⊥evol therefore makes more sense than p2
⊥b,c as an evolution vari-

able, in spite of its nontrivial kinematics interpretation. Furthermore, emissions with negative
pzc should preferably be associated with radiation off the other incoming parton, where it is
collinearly enhanced, so this region is less important.

Quark-mass effects are less crucial for ISR than for FSR: nothing heavier than charm and
bottom need be considered as beam constituents, and even those are suppressed. Kinematics
have to be slightly modified if the outgoing parton c is not massless, e.g. in a g→ qq branching.
The main effect is a modified evolution p⊥, with eq. (99) replaced by

p2
⊥evol = (1− z)(Q2 +m2

c ) , (116)

and a reduced p⊥ in the branching, replacing eq. (115) by

p2
⊥b,c = (1− z)Q2 −

Q4

m2
ar
−m2

c

�

z +
Q2

m2
ar

�

=Q2 − z
(Q2 +m2

c )(m
2
br +Q2)

m2
br

. (117)

Charm and bottom quarks raise another issue, namely what to do in the threshold region,
i.e. around the Q2

thr scale where g → cc or g → bb branchings are turned on in the PDF
evolution. Normally, it is assumed that these quark PDFs vanish below Q2

thr and then evolve
above it as a massless quark would. Initially, thus fq(x ,Q2) ∝ ln(Q2/Q2

thr). In backwards
evolution of a c/b quark, this leads to a diverging dPb in eq. (79) for Q2 → Q2

thr, and a
vanishing no-branching probability. While such a behaviour is possible to handle by evolving
with gradually smaller Q2 steps as the threshold is approached, the chosen solution is instead
to rely on the known forwards-evolution PDF shape. Therefore, once p2

⊥evol < f m2
q, with

f a parameter of the order of 2, a p2
⊥evol is chosen logarithmically evenly between m2

q and

f m2
q, and a z flat in the allowed range. Acceptance is based on the product of three factors,

representing the running of αs, the splitting kernel (including the mass term) and the gluon
density weight. At failure, a new p2

⊥evol is chosen in the same range, i.e. is not required to be
lower since no no-branching probability is involved.

As for FSR, the choices of p2
⊥evol and z offers a possibility to match onto the singularity

structure of common matrix elements, and thereby easily correct to matrix-element expres-
sions. Consider e.g. qq′→ gW± [81]. The q→ qg branching gives a denominator t̂( t̂ + û) and
q′→ q′g a denominator û( t̂+ û), which combine to t̂ û, in agreement with the matrix element.
This also illustrates how the full ISR radiation pattern can be subdivided into contributions
from the two sides.

One special option in the ISR implementation, on by default, is the possibility to order the
emissions in rapidity, or equivalently in angle, i.e. to veto any trial emission that leads to un-
ordered emitted partons [79]. The backwards evolution is one towards smaller p⊥ and larger
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x values, so angular ordering is already implicit to first approximation, but the unordered
emissions have a non-negligible impact that appears to be detrimental for some distributions.
There are good arguments for a rapidity ordering to be a legitimate choice [84], to provide a
consistent separation between ISR and FSR. But that was for a somewhat different algorithm,
so this option should more be seen as one possible variation beyond the basic LL accuracy of
the shower.

Strong coupling By default a first-order running αs(p2
⊥evol) is used, but alternatives are a

fixed value or second-order running. Tuned αs(m2
Z) values typically tend to come out some-

what above the PDG MS one [35]. This can be understood as absent higher-order effects,
in splitting kernels and shower kinematics, being absorbed into effective values. Since these
higher-order corrections differ between ISR and FSR, the αs(m2

Z) are also set separately for
the two.

Furthermore, in the soft-gluon limit, it can be shown that the dominant O(α2
s ) splitting-

function term, which generates contributions starting from O(α2
s ln2) at the integrated level,

can be absorbed into the LO splitting functions by translating to the so-called Catani–
Marchesini–Webber (CMW) (also known as MC) scheme [85]. This means that an MS
αs(m2

Z) = 0.1185 would translate into an MC αs(m2
Z) = 0.126. This goes some of the way

towards explaining the PYTHIA default αs(m2
Z) = 0.1365. It is possible to switch on the us-

age of the CMW rescaling procedure to allow a lower input αs(m2
Z), but physics is only mildly

modified by this.
Another consequence of staying at leading order is that usage of LO parton distributions

is vastly to be preferred. If not, the description of ISR branchings at low scales becomes quite
unreliable, for physical and technical reasons. The former are covered elsewhere, the latter
are reflected in the need to have positive PDFs in eq. (79), which is not guaranteed at NLO.

Shower cutoff A lower cutoff scale p⊥min is needed both for ISR and FSR, but the two need
not be same. The FSR one is related to the transition from partons to hadrons, and LEP experi-
ence gives us some understanding that too high a value does affect event shapes detrimentally.
The ISR case is less clear cut. Experimental signals, such as the p⊥ spectrum of Z bosons in
pp/pp collisions, are affected by the non-trivial interplay with primordial k⊥, cf. section 6.3.3.
A lower p⊥min means more p⊥ kicks to the Z, but a shower initiator with a larger x , which
means more dilution of its k⊥ in the cascade. One reasonable strategy therefore is to assume
the ISR is damped in the same way as MPIs are, i.e. the dp2

⊥/p
2
⊥ divergence is replaced by a

dp2
⊥/(p

2
⊥0 + p2

⊥) one. Alternatively, it is also possible to use a sharp cutoff.

Interleaving Multiparton interactions and ISR are in direct competition for the
beam-remnant momentum. Therefore, a combined downwards evolution in p⊥ of the two
gives precedence to the harder parts of the event activities. There is no corresponding compe-
tition requirement for FSR to be interleaved, and FSR can also be viewed as occurring after the
other two components in time. Interleaving is allowed, however, since it can be argued that a
high-p⊥ FSR occurs on shorter time scales than a low-p⊥ MPI, say. Backwards evolution of ISR
is also an example that physical time is not the only possible ordering principle. Rather, one
can work with conditional probabilities: given the partonic picture at a specific p⊥ resolution
scale, what possibilities are open for a modified picture at a slightly lower p⊥ scale, either by
MPI, ISR, or FSR? This is the default approach taken.

It is possible to switch off the interleaving, and consider FSR after MPI and ISR. In that
case it is also possible to allow FSR dipoles to be formed between matching colour-anticolour
pairs in two different MPIs, whereas normally dipoles are local to each MPI separately.
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Another ordering issue is when resonance decays and their showers are considered. By
default, this is done after the ISR/FSR/MPI evolution of the hard process, and also after the
handling of beam remnants and colour reconnections (CR). An option for “early resonance
decays” allows for the resonance-decay to be handled before remnants and CR; this does not
alter the perturbative evolution, but partons from resonance decays can then participate in
CR on an equal footing with partons from the production process. The option for “interleaved
resonance decays” [23] moves the resonance-decay handling even earlier, interleaving it with
the ISR/FSR/MPI evolution of the hard process, with a few different options for which value
of the perturbative evolution scale to associate to resonance decays, the default being of order
the width of the resonance. This effectively represents an alternative treatment of finite-width
effects; it is not a big effect for the standard-model particles, none of which has widths much
larger than the shower cutoff, but could be relevant for precision studies and/or in BSM sce-
narios.

4.1.2 The dipole evolution

The previous subsection described the kinematics of a single branching. The full evolution in
an event requires some further consideration, in particular related to the overall colour flow
and the resulting set of radiating dipoles. In hadronic collisions the dipole pattern can be quite
complicated. Consider the example of gg→ gg scattering, as shown in fig. 7a, which is one of
the six possible colour topologies for this process in the Nc →∞ limit. Each radiation now
is characterized by whether the radiator is in the initial (I) or final (F) state, combined with
the same classification for the recoiler, so in general four different emission types need to be
considered.

Final-final radiation To begin with, consider the simple e+e− → γ∗/Z → qq event. The
first emission of a gluon, to give qqg, follows the pattern already outlined. Now the
Nc → ∞ limit is applied to split the event into two dipoles qg and gq. Each can be con-
sidered in its respective rest frame, with the p⊥evol scale of the branching setting the upper
limit for the continued evolution. In this evolution, the full emission rate of g → gg has
to be split between the two dipoles. Using eq. (106), the effective splitting kernel becomes
Pg→gg(z) = (3/2)(1+ z3)/(1− z). Here, the emitter gluon takes the fraction z and the emitted
1− z, where the latter is the one straddling the two new dipoles. The radiation function from
the q (or q) and g ends of the dipole have almost the same shape, the main difference being
between the colour factors 4/3 vs. 3/2, which are smoothly mixed around the middle of the
dipole, as already discussed for the angular dependence of q → qg vs. q → qg. There are
known shortcomings with this colour factor treatment [59, 86], but these are of order 1/N2

c
and are neglected here. On the kinematics side, note that an emission in one dipole also affects
the kinematics of adjacent ones, by virtue of sharing one gluon with changed momentum.

Initial–Initial (II) radiation The ISR and FSR descriptions can be separated so long as colour
does not flow between the initial and the final state, as for the first emission in qq→ Z, which
is pure II. But once a gluon has been emitted, cf. fig. 7b, the two dipoles now bypass the Z,
and the Z does not receive any further p⊥ recoil during the subsequent evolution. This runs
counter to standard perturbation- and resummation-theory results, which is the reason why
traditionally ISR has only been handled as II dipoles. That is, as shown in fig. 7b, the emission
of a second gluon is handled as occurring from the (new) qq dipole, with Z+g together taking
the recoil. Similarly, as shown in fig. 7a, the two IF dipole ends are replaced by doubling the
strength of the II dipole.

70

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

rg gb
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FI/IF

FI/IF

II

FF

Figure 1: Colour flow for the process g(rg) + g(gb) → g(rp) + g(pb). Here, we are working
in the limit where the number of colours goes to infinity so that p stands for the new
colour purple. The dashed lines represent the colour lines stretching between the dipole
ends. The type of dipole is indicated.

Z0

FI/IF
FI/IF

q

g

q

Figure 1: Colour flow for the process qq → Z0g. The dashed lines represent the colour
lines stretching between the dipole ends.

p

γ∗

e− e−

q q

FI/IF

Figure 1: Deep inelastic scattering: an incoming electron scatters one of the quark within
the incoming proton. The dashed line represents the colour line stretching between the
two dipole ends.

(a) (b) (c)

Figure 7: (a) Colour flow for the process g(r g) + g(g b)→ g(rp) + g(pb). Here, the
Nc →∞ limit is used so that p stands for the new colour purple. The dashed lines
represent the colour lines stretching between the dipole ends. The type of dipole is
indicated. (b) qq→ Zg, again with colour lines and dipole types. (c) Deeply inelastic
scattering, again with colour lines and dipole types.

Final–Initial (FI) radiation Normally it should be possible to replace the FI ends by FF ones,
with an arbitrary matching of the dipole ends, and such an option exists for exploratory pur-
poses, but this is not the default. Instead, the recoiler r is now the incoming colour-connected
parton. In a branching, studied in the dipole rest frame, a fraction Q2/m2

ar of the recoiler en-
ergy should be given from the recoiler to the emitter, as in eq. (104). But now the increase of a
momentum is not compensated anywhere in the final state. Instead, it is the momentum of the
incoming recoiler that is increased, by the same amount as the emitter. Thus its momentum
fraction x is scaled up as

xr ′ =

�

1+
Q2

m2
ar

�

xr . (118)

The direction along the incoming beam axis is not affected by this rescaling. The kinemat-
ics construction therefore is similar to that of Catani–Seymour dipoles [87]. It leads to an
increased dipole mass mar and increased squared subcollision mass ŝ, the latter by the same
factor as xr . The increased x value again leads to an extra PDF weight

xr ′ fr(xr ′ , p2
⊥)

xr fr(xr , p2
⊥)

, (119)

in the emission and no-emission probabilities, to maintain a proper damping of radiation in
the xr ′ → 1 limit. The splitting of the full dipole radiation pattern is not as well understood in
this case as for an FF dipole, however. Some rough estimates of how to share the full dipole-
emission rapidity range can be made [79]. Based on these, an extra damping factor is applied
by default, of the form Q2

hard/(Q
2+Q2

hard), where Q2
hard is the relevant hard scale of the process,

like 4p2
⊥ for QCD 2→ 2 processes.

Initial–Final (IF) radiation Finally, a non-default option exists, where IF dipole ends are
treated in their own right [80]. It then suffers from the above-mentioned problems with p⊥Z
resummation, but it enables handling e.g. of deeply inelastic scattering (DIS), cf. fig. 7c, where
II radiation is not an option (using the e− as recoiler would upset DIS kinematics), and pre-
sumably offers a more realistic description e.g. of weak-gauge-boson fusion to a Higgs. The
kinematics step from b + r, where r is the colour-connected recoiler in the final state, to
a+ c + r ′, as a consequence of the a→ bc step, is easiest constructed in the b+ r rest frame.

71

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

There

pa =
1
z

pb , (120)

pc =
�

1
z
− 1

�

pb + pshift , (121)

pr ′ = pr − pshift , (122)

pshift =

�

(2z − 1)Q2

2mbr
+ z

m2
c

mbr
; p⊥ cosϕ, p⊥ sinϕ,−

Q2

2mbr
− z

m2
r

mbr

Q2 +m2
c

m2
br −m2

r

�

, (123)

p2
⊥ =

�

(1− z)(Q2 +m2
c )−m2

c

�

�

1− z
Q2 +m2

c

m2
br −m2

r

�

−m2
r

�

z
Q2 +m2

c

m2
br −m2

r

�2

. (124)

The same set of rotations and boosts as used to recover the b+r rest frame can then be inverted
to bring c and r ′ back to the event rest frame.

Special cases What remains is to combine IF and FI emissions consistently. In the specific
case of the first gluon emission from a DIS process, it turns out that the IF-type branching
q→ qg exactly reproduces the soft- and collinear-singularity structure of the γ∗q→ qg matrix
element on its own, with only a mild mismatch in the numerator (which vanishes in the soft-
gluon limit). Therefore, it would be possible to leave aside FI emissions in this case, and the
same holds for g → gg splittings, but not for g → qq ones. So in general. both IF and FI
contributions have to be used. One simplifying factor is that the incoming parton must always
be along the beam axis, so there will only be one common phase-space mapping, unlike the
case of FF or II dipoles. Nevertheless, the details become technical and we refer to [80] for
further discussion. One small comment, however: when an emission from a qg dipole is
considered, the two ends radiate with different colour charges, 4/3 and 3/2, respectively. The
colour factors of the two ends are then mixed in proportion to the 1/m2 values of the emitted
parton to the two dipole ends.

Another set of problems occurs in the decays of coloured resonances, say t→ bW. In this
case the colour dipole is stretched between the b and the hole left behind by the decayed t. In
order to conserve momentum-energy, the b uses the W as a recoiler, and this choice is unique.
Once a gluon has been radiated, however, it is possible to either still have the unmatched
colour (inherited by the gluon) recoiling against the W, or to let it recoil against the b for this
dipole as well. The former could give unphysical radiation patterns, so the latter is chosen by
default, although it is not perfect either. A more detailed discussion of this issue can be found
in [88]. The same issue exists for a second emission of QED radiation, e.g. in W+→ e+νe, but
is obviously less significant there.

4.1.3 Matrix-element and other corrections

In this subsection we give a survey of some methods used to make the shower reproduce, or
at least better approximate, known matrix-element behaviours. The methods to match and
merge external matrix-element input to the showers are covered separately in section 5, so
here we mainly describe program elements internal to the simple shower. Included are also
some other “correction” aspects, that should offer improvements to the shower, or at least
provide increased understanding by controlled variations.

Matrix-element corrections One key capability is the first-order correction to resonance
decays a→ bc, where a gluon is emitted to give an a→ bcg final state. The foremost example
of this is e+e− → γ∗/Z→ qq→ qqg [75]. This works because eq. (107) provides a way that

72

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

the parton shower exactly can reproduce the singularity structure of the matrix element, i.e.
of the generic ratio

1
σa→bc

dσa→bcg

dx1 dx2
. (125)

The 1 + z2 numerator of the splitting kernels also combines to an expression that overesti-
mates the numerator of the matrix elements, e.g. x2

1 + x2
2 for e+e− annihilation. In the veto-

algorithmic downwards evolution of the shower, it is therefore trivial to use the ratio of the
correct numerator to the shower-kernel numerator, as a probability that a trial emission will
be retained. In fact, for the evolution down to the first branching, it is as simple as putting the
numerator equal to 2 and correct down from that.

This approach has then been extended to all combinations of colours and spins for a, b
and c that can occur within the SM and MSSM [77], and can be reused for other models where
the same colour and spin combinations occur. The inclusion of b and c masses as in eq. (108)
also reproduces the proper propagator poles 1/(m2

b′ − m2
b) and 1/(m2

c′ − m2
c ) that are found

in the matrix elements, such that all correction factors are well behaved over the whole phase
space. Although the matrix elements are calculated for a first emission only, they are reused
in a suitably modified form to include mass effects also in subsequent steps.

Similarly, there are a few processes where the first branching of an ISR shower are corrected
to the respective matrix element [81], based on a common singularity structure. These include
qq→ Vg, qg→ Vq, ff→ Vγ, and fγ→ Vf, where V = γ∗/Z/W±/Z′/ . . . is a colour-singlet vector
boson. In the point-like-coupling approximation, also Higgs production gg→ H and γγ→ H
is handled.

It should be feasible to include a matrix element correction to DIS in the same fashion as
already outlined, but this has not been done yet. A generic and more detailed discussion of
matrix-element corrections is given in section 5.

Power and wimpy showers In the cases above, the ISR/FSR showers are allowed to cover
the full phase space, so-called power showers [89]. We have seen that they can reach the
furthest corners no worse than being a factor two off, which then could be fixed by modest
reweighting. One guess is that this would hold true also in other processes, where no matrix-
element correction factors have been implemented. But there are counterexamples. Consider
QCD jet production, say, starting out from 2 → 2 partonic processes. Then a low-p⊥ 2 → 2
process could not be allowed to shower further partons at high p⊥, or else such high-p⊥ produc-
tion would be double counted and the whole perturbative framework would be undermined.
So the logical p⊥evol,max shower starting scale is the p⊥ scale of the 2 → 2 process, i.e. the
factorization scale, giving wimpy showers. Comparisons with 2→ 3 matrix elements confirm
that such a scale choice is close to optimal [79].

In general, it is possible for the user to choose between power and wimpy showers, even
separately for ISR and FSR. The default option involves a choice between the two based on
the likelihood of double counting:

• If the final state of the hard process (not counting subsequent resonance decays) con-
tains at least one quark (u, d, s, c, b), gluon, or photon then p⊥evol,max is chosen to be the
factorization scale for internal processes and the scale value for Les Houches input, i.e.
wimpy showers.

• Else, emissions are allowed to go all the way up to the kinematic limit, i.e. power show-
ers.

The reasoning is that in the former set of processes, the ISR emission of yet another quark,
gluon, or photon could lead to double counting, while no such danger exists in the latter case.
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In cases where more is known about the context of a particular event sample, e.g. when
doing matching and merging, it is important to make use of this knowledge to override the
default behaviour. One example is to start out with power showers but then implement a user
hook to reject those emissions that would double count the particular cuts of the event sample.

Damped showers While there are processes where power or wimpy showers are appropri-
ate, there are also ones where the actual behaviour lies in between. It is relevant to recall that
the characteristic cross-section shape of a shower emission is dp2

⊥/p
2
⊥, while that of QCD 2→ 2

process is dp2
⊥/p

4
⊥. That is, the p⊥ spectrum of a parton ought to begin to drop faster around

the scale where it goes from being a soft add-on to being a part of the core hard process. For
top-pair production gg→ ttg, e.g. the gluon emission can be approximated by a shape

dP
dp2
⊥g

∝
1

p2
⊥g

k2M2

k2M2 + p2
⊥g

, (126)

where M2 is a reasonable scale to associate with the hard process and k2 is a fudge factor
of order unity. This generalizes into the possibility to use a power shower with an additional
damping factor k2M2/(k2M2 + p2

⊥evol). Studies [90] show that this is a reasonable approach
for coloured final states, e.g. for pairs of supersymmetric coloured particles, whereas a simple
power shower is more appropriate for pair production of uncoloured particles. This can be
understood as reduced emission by a destructive interference between ISR and FSR when
colours flow from the initial to the final state [91], but only if there is such flow.

Gluon splittings The pure s-channel nature of g→ qq splittings motivates the introduction
of an option with αs(m2

qq) rather than αs(p2
⊥evol), where mqq is the invariant mass of the qq

pair. More importantly, the cuts on the allowed z range during the FSR evolution imply that
the branching rate is reduced relative to expectations from matrix elements. Therefore, for this
branching only, the default option is to weigh up the splitting kernel inside the allowed z range
to give the correct integrated matrix-element weight. Furthermore, this range is afterwards
remapped to cover the full range of decay angles, disregarding the normal p⊥ ordering. This
treatment is especially important for charm and bottom quarks, where the mass is not negligi-
ble and mass corrections should be reproduced both in rate and in angular distributions. As a
final twist, the matrix element for H→ gg→ gqq does reproduce the expected behaviour e.g.
from e+e− → γ∗ → qq, but times a factor (1−m2

qq/m
2
H)

3. The default option uses this factor,
with the radiating dipole mass replacing the Higgs one, to suppress high-mass branchings.

Dead cones For topologies where a gluon recoils against a massive quark (or another mas-
sive coloured particle) there are no suitable ME corrections implemented into PYTHIA. When
the dipole radiation pattern is split into two ends, with a smooth transition between the two,
this means that the gluon end can radiate into the quark hemisphere as if the quark were
massless. The “dead cone” effect, that radiation collinear with a massive quark is strongly
suppressed, thereby is not fully respected. (Unlike radiation from the quark end itself, where
mass effects are included.) By default, a further suppression is therefore introduced for g→ gg
branchings, derived as the massive/massless ratio of the eikonal expression for dipole radia-
tion, which eliminates radiation collinear with the quark. The g → qq branchings currently
are not affected; the absence of a soft singularity implies that there is hardly any radiation into
the recoiler hemisphere anyway.

Global recoil The default ISR and FSR showers differ, in that the former uses a global recoil
while the latter uses a dipole one. That is, the recoil from an emission is carried by all final-state
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particles in ISR, but only by a single one in FSR. Then we introduced an option where dipole
recoil can be used for ISR. As it turns out, there is also an option to obtain a global recoil in
FSR. In such a scenario, the radiation pattern is unrelated to colour correlations, which could
be seen as a disadvantage. It is convenient for some matching algorithms, however, where a
full analytic knowledge of the shower radiation pattern is needed to avoid double counting,
so it is by such user requests that the option is made available.

Technically, the radiation pattern is most conveniently represented in the rest frame of the
final state of the hard subprocess. Then, for each parton at a time, the rest of the final state
can be viewed as a single effective parton. This “parton” has a fixed invariant mass during the
emission process, and takes the recoil without any changed direction of motion. The momenta
of the individual new recoilers are then obtained by a simple common boost of the original
ones. With the whole subcollision mass as “dipole” mass, the phase space for subsequent emis-
sions is larger than for the normal dipole algorithm, which leads to a too steep multiplication of
soft gluons. Therefore, the main application is for the first one or few emissions of the shower,
where a potential overestimate of the emission rate is to be corrected by a matching to the
relevant matrix elements. Thereafter, subsequent emissions should be handled as before, i.e.
with dipoles spanned between nearby partons. Several process-dependent settings are needed
to use this option.

Azimuthal asymmetries Parton-shower branchings are assumed to occur isotropically in
azimuthal angle ϕ, in the rest frame of the respective dipole. The boost to the overall CM
frame then gives rise to the familiar “string effect” [92, 93] coherence phenomenon, where
particle production is enhanced in the region between two colour-connected partons. But
there are also azimuthal correlations arising from parton polarization [94]. Notably, gluons
tend to be plane polarized, with the decay plane of g → gg branchings favourably aligned
with the production plane, while g→ qq ones tend to be aligned orthogonal to it. The former
branching type is common but with small asymmetries, while the opposite holds for the latter
branching type, so that net effects are small. They are included nevertheless, since they may
have some effect in charm and bottom production.

User hooks There are also other user hooks that can be used to modify the shower evolution.
The ones that allow an ISR or FSR emission to be vetoed play a key role in matching and
merging schemes and therefore are described in section 5.

4.1.4 QED, electroweak and other showers

The simple shower includes several extensions beyond the QCD core discussed so far. Charac-
teristic is that these form part of the same evolution in a common p⊥evol scale, although with
some distinguishing features.

QED shower The most obvious extension is to QED. The required branching kernels have
been presented in eqs. (74) and (75). In the evolution equations αs(p2

⊥evol) is replaced by
αem(p2

⊥evol), but otherwise most that has been written about q→ qg and g→ qq carries over.
A dipole language is used also for QED emissions, but the dipoles may be different from the
QCD ones. An example is e+e−→ γ∗/Z→ qq→ qqg, where the last stage contains two colour
dipoles qg and gq, but only one charge dipole qq, since the gluon carries no electrical charge.
The complete multipole radiation pattern may be poorly represented by a set of simple dipoles
in cases with multiple charges, since there is no confinement mechanism in QED to further a
unique dipole setup. In reality, few events contain multiple QED charges to consider, and if
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so, often the event history suggests a reasonable division, e.g. when a new dipole arises from
a γ→ ff branching.

The lower cutoff on QED radiation in a hadron beam is not bound to be the same as the
QCD one, i.e. since there is no issue of αem diverging at low scales. Nevertheless it is plausible
to assume that the QCD cutoff is related to the transition from quarks to hadrons, and thus
should be applied to all radiation. For radiation off a lepton, there is no such restriction, and
PYTHIA then by default sets p⊥evol,min = 10−6 GeV for FSR and 5 · 10−4 for ISR. These values
are fully sufficient to cover the emission of any photons observable at a collider. They are also
adjusted to be in a region where kinematic reconstruction still works well in double precision.
It has been pointed out that they are not sufficiently low to generate the full observable-photon
spectrum when PYTHIA is applied to whatever processes could give the highest-energy cosmic
rays.

The branching of a photon, γ→ ff, does not fit well into the dipole picture. The choice of a
recoiler is based on the history to the largest extent possible, i.e. based on what the photon was
produced in association with. The photon branchings in part compete with the hard processes
involving γ∗/Z production. In order to avoid overlap it makes sense to correlate the maximum
γmass allowed in showers with the minimum γ∗/Z mass allowed in hard processes, by default
at 10 GeV. In addition, the shower contribution only contains the pure γ∗ contribution, i.e. not
the Z part, so the mass spectrum above around 50 GeV would not be well described.

Electroweak shower The emission of W± and Z gauge bosons off fermions is an integrated
part of the ISR and FSR frameworks, and is fully interleaved with QCD and QED emissions [83].
It is off by default, however, since it takes some time to generate trial emissions, whereof very
few result in real emissions unless the fermion transverse momenta are much larger than the
W/Z masses. These masses also have a considerable impact on the phase space of emissions,
which the shower is not set up to handle with a particularly good accuracy. Therefore, the
weak-shower emissions are always matched to the matrix element for emissions off an ff weak
dipole, or some other 2→ 3 matrix element that resembles the topology at hand. Even if the
match may not be perfect, at least the main features should be caught that way. Notably, the
correction procedure is used throughout the shower evolution, not only for the emission closest
to the hard 2→ 2 process. Also, the angular distribution in the subsequent V =W±/Z decay
is matched to the matrix-element expression for ff→ ffV→ fff′f

′
(FSR) and ff→ g∗V→ g∗f′f

′

(ISR). Afterwards, the f′f
′

system undergoes showers and hadronization just like any W±/Z
decay products would.

Special for the weak showers is that couplings are different for left- and right-handed
fermions. With incoming unpolarized beams this should average out, at least so long as only
one weak emission occurs. In the case of several weak emissions off the same fermion, the
correlation between them will carry a memory of the fermion helicity. Such a memory is re-
tained for the affected dipole end. The flavour-changing character of W± emissions also affects
the tight relation between the real-emission evolution and Sudakov factors, so-called Bloch–
Nordsieck violations. These effects are not expected to be large, but they are not properly
included. Another restriction is that there is no simulation of the full γ∗/Z interference: at low
masses, the QED shower involves a pure γ∗ component, whereas the weak shower generates
a pure Z. Finally, it should be remembered that this is not a full (electro)weak shower, which
would also have required interactions among gauge bosons, and even involved the Higgs bo-
son. These interactions are included, e.g. in the VINCIA EW shower, cf. section 4.2.4.

Onia Hard production of charmonium and bottomonium can proceed either through colour-
singlet or colour-octet mechanisms. In the former case, the state does not radiate and the
onium is therefore produced in isolation, while it is sensible to assume that a shower can
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evolve in the latter case, giving an onium state embedded in some amount of jet activity.
Currently, both cases are initiated by 2 → 2 interactions directly producing an onium state;
the alternative mechanism of producing onia during the shower evolution itself [95] is not
(yet) implemented. Emissions off an octet-onium state could easily break up a semi-bound
quark pair, but might also create a new semi-bound state, and to some approximation these
two effects should balance in the onium production rate. The showering implemented here
therefore should not be viewed as an accurate description of the emission history step by step,
but rather as an effective approach to build up the onium environment. The simulation of
branchings is based on the assumption that the full radiation is provided by an incoherent
sum of radiation off the quark and off the antiquark of the onium state. Thus, the splitting
kernel is taken to be the normal q → qg one, multiplied by a factor of two. A number of
corrections to this picture could be imagined; since they would come with opposite signs the
assumption is that they cancel out. Further discussion is also included in section 3.3.

Baryon-number-violating decays A complicated case for showering is
baryon-number-violating decays, e.g. a neutralino decaying to three quarks. It is then not
possible to assign an ordinary dipole configuration. Instead half-strength dipoles are con-
structed between each pair of quarks. That way the total emission rate from each quark is
at normal strength, and the recoil can be taken by either of the other two quarks. Similar
reduced-showering-rate dipoles can be selected also in a few other cases.

Hidden Valley processes The Hidden Valley (HV) scenario, introduced in section 3.7, has
been developed specifically to allow the study of visible consequences of radiation in a hidden
sector, either by recoil effects or by leakage back into standard-model particles. A key aspect
therefore is that the normal timelike showering machinery has been expanded with a third
kind of radiation, in addition to the QCD and QED(+EW) ones [38, 39]. These three kinds
are fully interleaved, i.e. evolution occurs in a common p⊥-ordered sequence. This radiation
may be described either within a (possibly broken) U(1) or an unbroken SU(N) gauge group,
but not both simultaneously. Thus, one has either HV-photons or HV-gluons as interaction
carriers, where the latter are non-Abelian and may branch into more HV-gluons. A set of 12
new particles mirrors the standard-model flavour structure, and is charged under both the
SM and the HV symmetry groups, so that they can radiate both into the visible and invisible
sector. There is also a new massive particle with only HV charge, sitting in the fundamental
representation of the HV gauge group, denoted an HV-quark.

HV particles are only produced in or after the hard process, so only FSR needs to be con-
sidered. The HV radiation defines its own set of dipoles, usually between opposite charges.
Decays of massive particles can give rise to the same kind of issues as for top decays, i.e. that
a dipole properly involves the hole of the decaying particle. Matrix-element corrections are
implemented for a number of decay processes, with colour, spin, and mass effects included,
as for SM processes. These were calculated within the context of the particle content of the
MSSM, however, which does not include spin-1 particles with unit colour charge. In such
cases spin 0 is assumed instead. By experience, the main effects come from mass and colour
flow anyway, so this is not a bad approximation. In the case of a broken U(1) symmetry, the
HV-photon is massive, which requires some kinematics corrections relative to ordinary QED
radiation. If decays back to the SM occur, e.g. the HV-photon by mixing with the ordinary γ,
then also ordinary showers are allowed. By default the coupling strength is fixed, but running
is allowed, given the gauge group and the contributing matter content.
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4.1.5 Algorithms for automated shower variations and enhanced splittings

Several variations of the simple shower are available in an automated fashion, to help construct
uncertainty bands for predictions [20]. That is, weights are constructed and associated with
the shower evolution under different alternative conditions, at the same time as the normal
showers (with unit weight) are evolved. The properties of an event only need to be analysed
once, but can then be filled in one histogram for each distinct variation, with its associated
event weight, and at the end these histograms can be combined to provide the uncertainty
band. Variations can be set for the renormalization scale for ISR and FSR QCD emissions
(separately), for the inclusion of non-singular terms in the ISR and FSR splitting kernels (sep-
arately), and for different PDF members.

The veto algorithm is used to generate parton-shower histories for the physics parameters
chosen at initialization as normal. Using eq. (16), we can compute sets of weights (which we
call variations) for each event reflecting the changed probability for that event under different
possible choices of physics parameters. The number of variations calculated is limited only by
finite computing and memory resources.

While the proof of unitarity is more easily realized using eq. (16), the algorithm is em-
ployed discretely. Thus the factors

f (t ′)
g(t ′)r(t ′)

(acc) and
1− f (t ′)/g(t ′)

1− r(t ′)
(disc) , (127)

can be calculated at each discrete step and book-kept during the shower to calculate an event
weight. The factors (acc) account for the effect in accepted splittings, while the factors (disc)
preserve unitarity from the discarded trial splittings.

Parton-Shower Variations Parton-shower variations are calculated by considering an alter-
native shower algorithm with an alternative radiation kernel P ′(t, z). The physical trial-accept
probability, P ′acc, for this alternative shower is the ratio of the alternative kernel to the un-
changed oversampling kernel. An alternative radiation kernel could have a different treat-
ment of αs, different non-singular terms in the splitting kernels, and/or different effective
higher-order terms. In principle, one could also imagine varying the definition of the shower
evolution scale, t, as was done in [96], or other shower aspects such as the splitting variable z
or the recoil scheme, but calculations of weights for such variations are currently not available
in PYTHIA. Suppressing the z dependence for clarity, the algorithm to compute the probability
of an event generated by P ′ based on an event generated using P is [20,64]:

1. Initialize all weights to the input value of the event w′ = w.

2. For an accepted branching, multiply the value of the parton-shower-variation weight w′

by the ratio of accept probabilities,

R′acc(t) =
P ′acc(t)

Pacc(t)
=

P ′(t)
P(t)

. (128)

3. For a rejected branching, multiply w′ by the ratio of rejection probabilities,

R′disc(t) =
P ′disc(t)

Pdisc(t)
=

1− P ′acc(t)

1− Pacc(t)
=

P̂(t)− P ′(t)
P̂(t)− P(t)

, (129)

where P̂ is the trial overestimate used for generating a branching.
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Note that steps 2 and 3 adjust the branching and no-branching probabilities, respectively,
so that the set of weights w′ represents a separately unitary event sample. In other words,
the samples integrate to the same total cross section, i.e.




w′
�

= 〈w〉. The denominator of the
relative discard-ratio, eq. (129), is given by the difference P̂−P. If the trial overestimate, P̂, is
very close to P, the denominator can become close to zero, producing large weights that may
be numerically unstable. This occurs because the variation algorithm effectively uses failed
trials to estimate the modifications to the no-branching probabilities, and if the algorightm
is “too efficient”, with few failed trials, then each failed trial must represent a rather large
correction, resulting in large fluctuations. A technical fix is to apply a “headroom factor” to
the trial functions when automated uncertainty variations are requested so that there is always
a non-negligible probability for trials to be discarded. These enhanced rejections come at the
cost of computational speed.

Every accepted trial emission contributes a factor R′acc to the final event weight w′ in the
full shower evolution, while every discarded trial emission contributes a factor R′disc, hence the
total weight is just the product:

w′ =
∏

i∈accepted

P ′i,acc

Pi,acc

∏

j∈discarded

P ′j,disc

Pj,disc
. (130)

Technically, a few limiting factors are imposed on the variation weights, as will be described
further below, mainly in order to prevent large fluctuations from low-scale branchings that do
not have much impact on (infrared and collinear safe) observable distributions.

Renormalization-Scale Variations A standard method to estimate uncertainties from un-
known higher-order contributions is to vary the QCD (and/or QED) renormalization scale(s).
For a coherent shower algorithm based on p⊥, a judicious choice of a renormalization-scale
prefactor — the so-called CMW scale factor — takes leading second-order corrections from
soft-gluon emissions into account, and the framework for shower renormalization-scale varia-
tions in PYTHIA is constructed to preserve this property. This is done by including an (optional)
explicit O(α2

s ) compensating term that restores the soft limit of the NLO expansion of the ef-
fective scale choice.

Specifically, for each shower kernel P(z), we define renormalization-scale variations by:

P(t, z) =
αs(p⊥)

2π
P(z)

t
→ P ′(t, z) =

αs(kp⊥)
2π

�

1+δsoft(k)
� P(z)

t
, (131)

where k is the renormalization-scale-variation factor (relative to the default argument p⊥) and
δsoft(k) is the soft compensation term, which we define as

δsoft(k) = (1− ζ)
αs(µmax)

2π
β0 ln k , (132)

with β0 = (11Nc − 2nF )/3, Nc = 3, and nF the number of active flavours at the scale µ = p⊥.
The purpose of the factor (1− ζ) is to suppress the compensation term outside the soft limit.
We define it via:

ζ=







z , for splittings with a 1/z singularity ,
1− z , for splittings with a 1/(1− z) singularity ,

min(z, 1− z) , for splittings with a 1/(z(1− z)) singularity .
(133)

The choice of renormalization scale for the αs factor in eq. (132) is beyond NLO accuracy. To
be conservative and to avoid the risk of overcompensating, our choice is to use the largest local
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scale in the problem. Specifically, µmax =max(mdip, kp⊥), where mdip is the invariant mass of
the emitting colour dipole. Note, this compensation term is only applied to gluon emissions.
For g → qq̄ splittings, the full (uncompensated) variation, αs(kp⊥)/αs(p⊥) is applied.

A subtlety is that, if the choice of k causes the scale to cross any quark-mass thresholds,
αs(kp⊥) will not be evaluated with the same number of active flavours nF as the nominal
shower would. For reasonable values of k, this is a small effect since matching conditions
are applied in PYTHIA to make the running continuous across thresholds. In principle, an
additional term αs/(2π) ln(mq/(kp⊥))/3 could be added to compensate for the different β0
coefficients used in the region. But since this would reduce the variation, we consider it more
conservative to leave it out, which may then also partially reflect the additional ambiguity in
the running in the vicinity of thresholds.

Thus, we arrive at the following form for the reweighting factor for accepted branchings,

R′acc(t, z) =
P ′acc(t, z)

Pacc(t, z)
=
αs(kp⊥)
αs(p⊥)

�

1+ (1− ζ)
αs(µmax)

2π
β0 ln k

�

. (134)

The user has a wide range of options available for calculating parton-shower scale varia-
tions for ISR or FSR. Technically, to limit large weight fluctuations between events with and
without a very soft branching near the end of the evolution, we impose an absolute limit on
the allowed amount of αs variation. By default, |∆αs| ≤ 0.2. This choice is not a signifi-
cant restriction on the range of variation for perturbative branchings (even when αs ∼ 0.5, a
full 40% amount of variation is still allowed), but it does prevent variations corresponding to
branchings very near the cutoff, which should not have a significant impact.

Finite-Term Variations Another class of parton-shower variations is related to non-singular
terms in the splitting kernels, also called “finite terms”. The exact forms of the parton-shower
branching kernels are only uniquely determined in the singular (infrared soft and/or collinear)
limits. Away from these limits, one is in principle free to choose shower kernels that differ from,
say, the DGLAP kernels, by non-singular contributions. (Notably, this freedom is exploited in
the context of matrix-element corrections and in the POWHEG method, cf. section 5.) Setting
the non-singular terms to zero is an arbitrary choice and is anyway not stable against reparam-
eterizations [64, 97]. In the absence of matrix-element corrections, it therefore makes sense
to vary the finite terms, e.g. provide an estimate for how significant the effects of the missing
matrix-element corrections could be.

The effects of finite-term variations are qualitatively different from those of
renormalization-scale variations. By construction, the latter are proportional to the shower
kernels. But away from the singular limits, the pole terms in the radiation function are not
enhanced, and may not bear much resemblance to a corresponding matrix-element based cal-
culation for the process at hand. In exactly these regions, modest finite terms can produce
larger variations than scale choices can. PYTHIA provides the possibility to explore such vari-
ations.

To account for non-singular terms, the radiation function based on DGLAP is modified as
follows:

P(z)
Q2

dQ2 →

�

P(z)
Q2
+

c
m2

dip

�

dQ2 =

�

P(z) +
c Q2

m2
dip

�

d t
t

, (135)

where mdip is the invariant mass of the dipole in which the splitting occurs and the finite-term
variation parameter c is a dimensionless constant of order unity. This expression uses the
identity dQ2/Q2 = dt/t, which holds for any t = f (z)Q2 and covers all the PYTHIA evolution
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variables. The alternative splitting kernel is then

P ′(t, z) =
αs

2π
C
�

P(z) + c Q2/m2
dip

t

�

, (136)

where C is the colour factor, leading to the acceptance factor:

R′acc =
P ′acc

Pacc
= 1+

c Q2/m2
dip

P(z)
. (137)

From this expression, it is immediately apparent that the relative variation explicitly vanishes
when Q2→ 0 or P(z)→∞. For gluon emission off timelike massive quarks, Q2 is changed to
the off-shellness of the massive quark, defined as Q2 = (pb + pg)2 −m2

b = 2pb · pg [77], with
pb the four-momentum of the massive quark and pg that of the emitted gluon.

We suggest variations on the order of unity (c ∈ [−2,2] to be conservative) as a baseline.
This is motivated by PYTHIA’s Matrix Element Corrections (MEC) for Z-boson decays [75] and
by explicit numerical studies [97] that found order-unity differences between different physical
processes and different antenna-shower formalisms.

Veto Algorithm with Biased Kernels The veto algorithm can also be modified to enhance
the rate of some or all splittings in the shower. In this case, the event weight is modidified to
account for the relative overpopulation of events with such splittings (and underpopulation of
events without). This has applications, e.g. for enhancing the rate of relatively rare splittings,
like q → qγ and g → bb̄. The biasing method implemented in PYTHIA 8.3 is described in
[15,20] and is formally identical to that of [98].

For simplicity, assume that one of many splitting types is to be biased by an enhanced trial
factor E > 1. The (new) oversampling kernel will be

P̂biased = EP̂ , (138)

so that more of the desired splittings are encountered in the veto algorithm. Keeping the (old)
accept probability unchanged, the bias can be incorporated into a weight inversely propor-
tional to the biasing factor:

Pacc =
P

P̂
; Racc =

P̂

P̂biased
=

1
E

. (139)

With this modification, the original distribution for the desired splitting is recovered, since
RaccPacc P̂biased = P. Similarly, when a biased trial branching is not accepted, a different weight
is applied to the event:

Rdisc =
1− PaccRacc

1− Pacc
=

P̂

P̂ − P

�

1−
P

P̂biased

�

P�P̂biased→
P̂

P̂ − P
, (140)

For very large values of E, the reweighting factor becomes independent of the bias, but is
still important for recovering the physical no-branching probability. Strictly speaking, E does
not have to be a constant and could be allowed to depend upon the shower kinematics, but
currently only a simple constant factor is implemented in PYTHIA, which can be specified in-
dependently for each type of shower splitting.
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4.2 The VINCIA antenna shower

The VINCIA shower implements an interleaved p⊥-ordered evolution based on the so-called
antenna formalism. In event-generator contexts, this type of shower was first pioneered by
the ARIADNE model [4,54], which was widely used e.g. at LEP. For completeness, we note that
the objects we call “antennae” here were actually called dipoles in that context, but today the
term dipole has taken on a different meaning, see, e.g. section 4.3 on DIRE.

Especially for FSR QCD radiation, VINCIA shares many features with ARIADNE, including
its evolution-variable definition and its antenna-style 2 7→ 3 approach to parton branchings in
which both parents can acquire transverse recoil and the soft eikonal remains unpartitioned.
These latter two properties are specific to antenna showers.

For ISR, VINCIA’s treatment is quite different from that of ARIADNE, with VINCIA extend-
ing the concept of (interleaved) backwards evolution [52,78] to the antenna picture [99] via
coherent II and IF antennae [100], as well as so-called Resonance–Final (RF) ones [88]. The
latter are relevant to the decays of coloured resonances, such as top quarks. They come with
their own, dedicated kinematic mapping which is constructed to preserve the invariant mass
of the decaying resonance. Since all of its building blocks are explicitly coherent (at least at
leading colour) and interleaved in a single common sequence of decreasing p⊥ values, VIN-
CIA should exhibit a quite reliable description of soft coherence effects across essentially all
physical contexts.

This extends to QED, for which VINCIA’s default antenna functions [101,102] include fully
coherent (multipole) soft interference effects in addition to the collinear DGLAP structures.
We are not aware of any other multipole QED treatment that can be interleaved with the
QCD evolution. (e.g. the YFS formalism [103] is constructed purely as an “afterburner”, i.e.
not interleaved with the QCD shower, and collinear logarithms can only be included order by
order.)

A further difference with respect to ARIADNE is that VINCIA’s QCD and multipole QED show-
ers are constructed as so-called “sector” antenna showers, in which the phase space is divided
into distinct (non-overlapping) colour and kinematics sectors, each of which only receives con-
tributions from one specific antenna-branching kernel. This has a number of mainly technical
consequences which will be elaborated on further below, to do with making the incorporation
of higher-order corrections as straightforward and efficient as possible. For the time being,
ARIADNE-style “global” showers also remain available as a non-default option.

Effects of particle masses are systematically included, both via mass corrections to the
antenna functions such that all relevant (quasi-)collinear limits are reproduced [100, 104],
and by the use of exact massive phase-space factorizations. The current default behaviour is
to treat bottom and heavier quarks, and muons and tau leptons, as massive in VINCIA, though
this can be changed if desired. (Weak bosons are always treated as massive.) A subtlety arises
in the treatment of incoming heavy-flavour quarks (and, potentially, muons). Kinematically,
such partons are book kept as massless, similarly to the choice made in PYTHIA’s simple shower.
The consequence is that the treatment of mass effects for initial-state partons in VINCIA is less
rigorous than for final-state ones. One should also be aware that there can be a non-trivial
interplay with the flavour scheme employed by the chosen PDF set.

As a complementary option to the multipole QED shower, VINCIA also includes a mod-
ule for full-fledged electroweak showers [23, 105]. This option includes the full set of EW-
branching kernels, including both Higgs couplings and gauge-boson self-interactions, tallying
to more than 1000 EW-antenna functions in total. The main limitation is that only the rel-
evant (quasi-)collinear limits are implemented, not the full soft interference structure; thus,
also the QED treatment is effectively reduced to a DGLAP-style treatment when using this op-
tion. Note also that the EW module is based explicitly on VINCIA’s underlying formalism for
helicity-dependent showers [106,107] (e.g. to tell left- and right-handed weak bosons apart).
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This module therefore requires Born partons with assigned helicities, which is not the default
in PYTHIA, and must be provided either via external LHEF events with helicity information,
or via VINCIA’s dedicated option for hard-process helicity selection. (The latter is based on
PYTHIA’s run-time interface to external matrix-element libraries; see the program’s online
manual and example programs for configuration and linking instructions.)

A further feature that was originally introduced with VINCIA’s electroweak-shower mod-
ule, but is now applied independently of it, is a novel treatment of finite-width effects, called
interleaved resonance decays [23], which are the default in VINCIA. This means that decays
of short-lived resonances, such as top quarks, W/Z bosons, or BSM particles, are inserted in
the shower evolution at an evolution scale of order the off-shellness of the resonance, instead
of being treated sequentially, after the shower of the hard process. This reflects the physical
picture that short-lived particles should not be able to radiate at frequencies lower than the in-
verse of their lifetime; only their decay products can do that. This can produce subtle changes
in reconstructed invariant-mass distributions, relative to conventional (non-interleaved) reso-
nance decays.

All of VINCIA’s shower modules are fully interleaved with PYTHIA’s treatment of multiparton
interactions (MPI), in the same manner as for the simple-shower model.

4.2.1 Common features

Some aspects are common to all of VINCIA’s shower modules. This includes the definition of
the evolution variable as well as recoil schemes and phase-space factorizations. These common
features are discussed in this subsection before going into further detail on each of the specific
components of VINCIA’s shower implementations.

Evolution variables All showers in VINCIA, including the QED and EW ones, are evolved in a
Lorentz-invariant scaled notion of off-shellness, based on a generalized version of the ARIADNE

definition of transverse momentum. For a generic branching IK → i jk,

p2
⊥ j =

q̄2
i j q̄

2
jk

smax
, (141)

where the off-shellness for final-state partons is defined as

q̄2
i j = (pi + p j)

2 −m2
I = m2

i j −m2
I , i is final , (142)

and that for initial-state partons is obtained via crossing (and an overall sign change to make
it positive),

q̄2
i j = −(pi − p j)

2 +m2
I , i is initial . (143)

These both involve the positive invariant 2pi ·p j but differ in the signs of pre- vs. post-branching
parton masses. This reflects the underlying crossing and sign change, combined with the
propagator structure of backwards evolution. For convenience, we define the dimensionful
invariant

si j ≡ 2pi · p j , (144)

regardless of whether particles i and j are massless or not. The maximal antenna invariant,
smax, is then defined by

smax =



















sIK FF ,

sa j + s jk IF & RF ,

sab II ,

(145)
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where initial-state partons are labelled with letters from the beginning of the alphabet (a and
b) and final-state ones are labelled by i, j, k, . . .. Below, that labelling convention will be used
systematically to distinguish initial- and final-state partons.

We also define dimensionless (scaled) invariants and masses,

yi j =
si j

smax
; µ2

i =
m2

i

smax
. (146)

For massless kinematics, the scaled invariants have very simple relations to the z variables of
DGLAP-style approaches. Thus, for final-final (FF) antennae, the CM energy fractions are

xk =
2Ekp

sIK
= 1− yi j , (147)

and similarly for the two other permutations of (i, j, k). For initial-initial (II) antennae, the
incoming legs are always massless and the yAB invariant can be identified with the z variable,
since

yAB =
sAB

sab
=

xAxB

xa xb
= zazb , (148)

where we have emphasized that, for antenna-II branchings, in general both x values change,
with

za =
xA

xa
=

√

√

√

yAB
1− y j b

1− ya j
, and zb =

xB

xb
=

√

√

√

yAB
1− ya j

1− y j b
. (149)

There is still the constraint that, in the a-collinear limit zb→ 1 and vice versa (for massless j).
For initial-final (IF) ones, the exact relations are more involved but again the collinear

limits can be examined via

za = 1− y jk , zk = 1− ya j . (150)

Recoil schemes In the antenna formalism, the branching recoil is shared between both an-
tenna parents for FSR emissions in an on-shell kinematics map along the lines of [104,108,109]
including full mass dependence. This is illustrated in the top row in fig. 8. In the collinear
limits, any transverse momentum is fully absorbed within the collinear pair, and the anti-
collinear parent recoils purely longitudinally; therefore, in these limits the map agrees with
the conventional dipole ones, cf. [87,110,111]. This means that the post-branching momenta
are constructed as

pµi = (Ei , 0, 0, |~pi|) , (151)

pµj =
�

E j ,−|~p j| sinθi j , 0, |~p j| cosθi j

�

, (152)

pµk = (Ek, |~pk| sinθik, 0, |~pk| cosθik) , (153)

in the rest frame of the parent I -K antenna. Here, the energies are given by

Ei =
si j + sik + 2m2

i

2mIK
, E j =

si j + s jk + 2m2
j

2mIK
, Ek =

sik + s jk + 2m2
k

2mIK
, (154)

and the angles by

cosθi j =
2Ei E j − si j

2|~pi||~p j|
, cosθik =

2Ei Ek − sik

2|~pi||~pk|
. (155)
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FF pA pB

pI

pK

pR

pA pB

pi

pk
pj

pR

IF pA pB

pK

pR

pa pB

pk
pj

pR

II pA pB

pR
p∗a p∗b

p∗j

pR

pa pbpj

pr

RF pA

pK

pR

p∗a

p∗k
p∗j

pR

pA

pk
pj

pr

Figure 8: Illustration of VINCIA’s kinematic maps, for final-final (FF), initial-final
(IF), initial-initial (II), and resonance-final (RF) branchings. Dashed lines represent
initial-state momenta, non-participating legs are shaded grey, and the set of final-
state spectators (R) is shown in cyan. For II and RF branchings, the frame reinter-
pretation done in the last step imparts a collective recoil to the final-state spectators,
pR→ pr .

The branching plane is then rotated in the x-y plane, by an angle φ, which is uniformly
sampled in the range [0,2π]. The azimuthal rotation by φ is combined with a rotation by a
polar angle ψ whose value is only uniquely constrained in the two collinear limits. The case
ψ→ 0 corresponds to parton i being oriented in the same direction as parton I . This limiting
value is mandated in the K-collinear limit in which parton i must recoil purely longitudinally.
In the I -collinear limit,ψ→ π−θik ensures that parton k recoils longitudinally. A few different
options are provided for how to interpolate between those limits, cf. [104,109].

For initial-state radiation, one (or both) parents must remain collinear to the beam axis,
and instead the hard system can now acquire transverse recoil. This makes it more complicated
to define a truly antenna-like recoil scheme, and VINCIA’s choices [100, 112, 113] are more
similar to dipole treatments such as the ones in [114–117]. In the case of IF antennae, this
amounts to constructing the post-branching momenta as

xa = xA/yAK ( =⇒ pµa =
1

yAK
pµA) , (156)

pµj =
(yak +µ2

j −µ
2
k) + (yak − ya j)µ2

K − yAK yak

yAK
pµA + ya j pµK +

Æ

Γa jk qµ⊥max , (157)

pµk =
(ya j −µ2

j +µ
2
k) + (ya j − yak)µ2

K − yAK ya j

yAK
pµA + yak pµK −

Æ

Γa jk qµ⊥max , (158)

in the A-K rest frame, as illustrated in the second row in fig. 8. In this context, Γa jk = ya j y jk yak
and qµ⊥max denotes the transverse component in terms of a spacelike four-vector that is per-
pendicular to pA and pK and obeys q2

⊥max = −(sa j + sak).
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For II antennae, both initial-state particles are evolved at the same time and therefore both
momentum fractions change simultaneously [99, 118], cf. the third row in fig. 8 for an illus-
tration. (Note that this is different to “dipole” kinematics, in which only one of the incoming
x fractions can change in each branching.) Consequently, the post-branching momenta are
constructed as

pµB , (159)

xa = xA/za ( =⇒ pµa = pµA/za) , (160)

xb = xB/zb ( =⇒ pµb = pµB/zb) , (161)

pµj = y j bpµa + ya j p
µ

b +
Ç

ya j y j b −µ2
j qµ⊥max , (162)

pµr = pµa + pµb − pµj , (163)

where the za,b fractions are defined in eq. (149), qµ⊥max is again a spacelike four-vector perpen-
dicular to pA and pB with q2

⊥max = −sab, and r denotes the recoiling spectator system whose
combined invariant mass and rapidity are both unchanged by the branching: p2

r = p2
R and

yr = yR.
In both IF and II antennae, all momenta are rotated about the branching plane by a uni-

formly distributed angle φ ∈ [0,2π].
For RF antennae [88], the invariant mass of the resonance must be kept fixed,

p2
a = p2

A = m2
A. The post-branching kinematics are therefore constructed in the resonance

rest frame with the z-axis defined along pK , so that

pµA = pµa = (mA, 0, 0, 0) , (164)

pµk =
�

Ek, 0, 0,
Ç

E2
j −m2

k

�

, (165)

pµj =
�

E j ,
Ç

E2
j −m2

j sinθ jk, 0,
Ç

E2
j −m2

j cosθ jk

�

, (166)

pµr =
�

mA− Ek − E j ,−
Ç

E2
j −m2

j sinθ jk, 0,−
Ç

E2
j −m2

k −
Ç

E2
j −m2

j cosθ jk

�

, (167)

where r denotes the remainder of the resonance decay system and

E j =
sa j

2ma
, Ek =

sak

2ma
, cosθ jk =

2EbEg − s jk

2
Ç

(E2
k −m2

k)(E
2
j −m2

j )
. (168)

These momenta are rotated about the y axis such that the set of recoilers are along -z, so
that only j and k receive transverse recoil. Again, the momenta are subsequently rotated by
a uniformly sampled angle φ ∈ [0, 2π] about the z axis. The original orientation of pK with
respect to z is then recovered in a final step. This map is illustrated in the bottom row of fig. 8.

Helicity Dependence All of VINCIA’s QCD and EW (but not QED) antenna functions are
implemented with full helicity dependence, i.e. decomposed into distinct terms for each set
of contributing helicities. This facilitates helicity-dependent showering and matching, given a
polarized Born state [107]. For brevity, the QCD antenna functions shown below are averaged
over pre-branching helicities and summed over post-branching ones; see [100] for details on
their individual helicity components.

Biased branchings and uncertainty weights Just as for the simple shower, VINCIA contains
several options for artificially increasing (or suppressing) the probabilities for different branch-
ing types to occur, accompanied by non-unity event weights to compensate for how over- or
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under-represented each generated event becomes in the resulting sample. This can be espe-
cially useful to enhance the rate of rare splittings, such as g → bb̄. The general procedure is
described in section 4.1.5 and follows the formalism presented in [20].

As a relatively minor extension, VINCIA also allows for “enhancement” factors smaller than
unity, which then act to suppress the corresponding branchings. The intended use case is to
focus on Sudakov-suppressed regions of phase space. In the algorithms described in [15,20],
enhancement factors smaller than unity are not guaranteed to produce positive weights. In
VINCIA’s implementation, this issue is sidestepped by letting trial branchings be enhanced by
a factor max(1, E),

P̂biased =max(1, E)P̂ , (169)

where P̂ is the unenhanced trial-generation probability density and E is the enhancement (or
suppression) factor. Thus for E < 1 the trial probability is not modified. Conversely, each trial
branching is accepted with a probability

Pacc =
min(1, E)P

P̂
, (170)

where P/P̂ is the unbiased accept probability. The reweighting factor for an accepted trial
branching remains Racc = 1/E (cf. section 4.1.5), while the reweighting factor for a discarded
one generalizes to

Rdisc =
P̂biased − P

P̂biased − EP
. (171)

Thus, in VINCIA’s version of the enhancement algorithm, both Racc and Rdisc are positive definite
for any E > 0 and P < P̂.

Although automated shower-variation weights were a signature feature of early versions
of VINCIA [64], such variations have not yet been incorporated into the current VINCIA imple-
mentation in PYTHIA 8.3 but remain planned for a future revision. See the program’s online
manual for updates.

4.2.2 QCD showers

In their present incarnation, VINCIA’s QCD showers are fully developed within the so-called
sector framework [97, 100, 106, 108, 119–121], in which only a single branching contributes
per phase-space point. This is enforced by dividing the phase space into sectors according to
a decomposition of unity as given by the following sum of Heaviside step functions,

1=
∑

j

Θsct
j (p

2
⊥ j ,ζ j ,φ j) =

∑

j

θ
�

min
k
{Q2

res,k} −Q2
res, j

�

. (172)

To discriminate between the different sectors, a “sector resolution” variable is used, which we
define to be [97]

Q2
res, j =















p2
⊥ j , if j a gluon ,

q̄2
i j

√

√

√
q̄2

jk

smax
, if (i, j) a quark− antiquark pair ,

(173)

with p2
⊥ j and q̄i j as defined in eq. (141). The asymmetric choice for quark-antiquark pairs ac-

counts for the fact that in gluon splittings with an arbitrary colour-connected recoiler
X IgK 7→ X iq jqk, there is no singularity associated to the i- j-collinear limit [97].
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The shower evolution is given by the exponentiation of leading-order antenna functions
[118–126], specifically sector-antenna ones defined by the ratio of colour-ordered squared
amplitudes,

A j/IK = g2
s C j/IK Ā j/IK =

�

�Mi jk(q; pi , p j , pk)
�

�

2

|MIK(q; pI , pK)|
2 , (174)

and the coupling- and colour-factor-stripped antenna function Ā j/IK . Antenna functions for
quark-antiquark, quark-gluon, and gluon-gluon parents can be derived from off-shell photon
decays γ → qq [123], neutralino decays χ̃0 → g̃g [124], and Higgs decays H → gg [125],
respectively. An antenna function derived in this way will include the full single-unresolved
singularity structure of all colour dipoles in the given colour-ordered amplitude.

When multiple colour dipoles are present in the three-particle state used to derive the
function, these can be divided into sub-antenna functions,

Ag/qg(pi , p j , pk) = Agl
g/qg(pi , p j , pk) + Agl

g/qg(pi , pk, p j) ,

Ag/gg(pi , p j , pk) = Agl
g/gg(pi , p j , pk) + Agl

g/gg(pi , pk, p j) + Agl
g/gg(p j , pi , pk) .

(175)

Such functions build the basis for so-called global antenna showers, in which every antenna
radiates over all of its branching phase space, and only the sum of all antennae recovers the
full single-unresolved singularity structure. Denoting these by Agl

j/IK , the specific choices for
global final-state antenna functions in VINCIA are

Agl
g/qq(sIK ; yi j , y jk,µ2

i ,µ2
k) =

g2
s Cg/qq

sIK

�

(1− yi j)2 + (1− y jk)2

yi j y jk
+ 1−

2µ2
i

y2
i j

−
2µ2

k

y2
jk

�

, (176)

Agl
g/qg(sIK ; yi j , y jk,µ2

i ) =
g2

s Cg/qg

sIK

�

(1− yi j)3 + (1− y jk)2

yi j y jk
+ 2− yi j −

y jk

2
−

2µ2
i

y2
i j

�

, (177)

Agl
g/gg(sIK ; yi j , y jk) =

g2
s Cg/gg

sIK

�

(1− yi j)3 + (1− y jk)3

yi j y jk
+ 3−

3
2

yi j −
3
2

y jk

�

, (178)

Agl
q/gX(sIK ; yi j , y jk, yik,µ2

Q) =
g2

s Cq/Xg

2sIK

1

yi j + 2µ2
Q

�

y2
ik + y2

jk +
2µ2

Q

yi j + 2µ2
Q

�

. (179)

They only differ from the ones given in [118–126] by non-singular terms. Below, we show
how VINCIA’s sector-antenna functions, Asct

j/IK , are constructed from these building blocks.

Single-unresolved limits In the sector shower formalism, there is only a single branch-
ing kernel that contributes per phase-space point. In order to capture the correct leading-
logarithmic structure of QCD matrix elements, it is therefore vital that sector-antenna func-
tions fully incorporate all single-unresolved limits of a given antenna/dipole. This means, that
a single sector-antenna function has to reproduce the full eikonal in the soft-gluon limit,

Asct
j/IK(sIK ; yi j , y jk,µ2

i ,µ2
k)

g j soft
−−−→ g2

s C j/IK

�

2sik

si js jk
−

2m2
i

s2
i j

−
2m2

k

s2
jk

�

, (180)

while reproducing the full massive DGLAP splitting kernel PI→i j(z,µ2
i ) (or PI→i j(z,µ2

i )/z for
initial-state partons) in any (quasi-)collinear limit,

Asct
j/IK(sIK ; yi j , y jk,µ2

i ,µ2
k)

i‖ j
−→ g2

s C j/IK
PI→i j(z,µ2

i )

si j
. (181)
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This differs from conventional (non-sector) parton-shower algorithms, in which the soft and/or
collinear singularity structures are partial fractioned onto different branching kernels. E.g. in
DGLAP-based and dipole approaches, the soft eikonal is partial fractioned onto two separate
kernels (which are associated with two different recoil maps), and the same is true of gluon-
collinear singularities in both dipole and global-antenna showers. In the sector-antenna for-
malism, each antenna function reproduces both the full eikonal and the full DGLAP kernel
in the respective limits, and double counting is avoided by allowing only one such antenna
function to contribute per phase-space point.

FSR antenna functions In VINCIA, final-final (FF) sector-antenna functions for gluon emis-
sions are constructed from their global counterparts, eqs. (176) to (179), by symmetrizing
over colour-connected gluons in the following way,

Asct
g/IK(sIK ; yi j , y jk,µ2

i ,µ2
k) = Agl

g/IK(sIK ; yi j , y jk,µ2
i ,µ2

k)

+δIg Agl
g/IK(sIK ; yi j , 1− y jk,µ2

i ,µ2
k) (182)

+δKg Agl
g/IK(sIK ; 1− yi j , y jk,µ2

i ,µ2
k) ,

where δIg = 1 if I is a gluon and zero otherwise, and similarly for K . Note that
the symmetrization is done on the CM energy fraction of the relevant gluon(s), as in
(y jk = 1 − x i) → (1 − y jk = x i) in the symmetrization for I → i j, instead of via ex-
plicit permutations of the i and j momenta as in eq. (175), which would correspond to
y jk → (yik = 1 − y jk − yi j). This slight difference (which vanishes in the relevant collinear
limit yi j → 0) is to ensure finiteness in phase-space regions close to the “hard” boundary yik.
Although the yik = 0 region will never belong to the j-emission sector, this damping of the
singularity is important as it allows for the sampling of the sector-antenna function over all of
phase space with a post-hoc imposed sector veto. Additionally, it ensures numerical stability
whenever sector boundaries become close to the yik-singular region.

For gluon-splitting sector-antenna functions, an equivalent procedure yields

Asct
q/gX(sIK ; yi j , y jk, yik,µ2

Q) = 2 Agl
q/gX(sIK ; yi j , y jk, yik,µ2

Q) . (183)

Antenna functions for final-state partons that are colour-connected to incoming ones, as in
initial-final (IF) or resonance-final (RF) colour flows, are discussed below.

ISR antenna functions As for final-state radiation, sector-antenna functions involving
initial-state partons can be obtained by symmetrizing corresponding global ones over final-
state gluons. The reason initial-state legs do not need to be symmetrized is that there is no
sector for “emission into the initial state”. (Analogously, while jet algorithms may decide to
cluster final-state partons either with each other or with the beam, the beam itself is hard by
definition and cannot be clustered away.)

This means that, even in the global-antenna approach, beam-collinear singularities do not
need to be partial-fractioned. Hence, for II antennae, there is no difference between global
and sector-antenna functions; while for initial-final gluon emissions, antenna functions with
two final-state gluons are symmetrized as follows,

Asct,IF
g/AK(sAK ; ya j , y jk,µ2

a,µ2
k) = Asct,IF

g/AK(sAK ; ya j , y jk,µ2
a,µ2

k)

+δgK Asct,IF
g/AK(sAK ; 1− ya j + y jk, y jk,µ2

a,µ2
k) . (184)

Finiteness close to the spurious yak→ 0 singularity is here again ensured by adding y jk to the
symmetrized argument. Initial-final antenna functions describing final-state gluon splittings
are obtained in exactly the same way as in eq. (183).
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Global initial-final and initial-initial antenna functions are obtained from
eqs. (176) to (179) by crossing partons from the final state into the initial state. For initial-
initial antennae, the crossing (I , K , i, k)→ (−A,−B,−a,−b) implies:

yi j =
si j

sIK
→

−sa j

sAB
= −

ya j

yAB
,

y jk =
s jk

sIK
→

−s j b

sAB
= −

y j b

yAB
, (185)

yik =
sik

sIK
→

sab

sAB
=

1
yAB

,

while for initial-final antennae, the crossing (I , i)→ (−A,−a) yields:

yi j =
si j

sIK
→

−sa j

−sAK
=

ya j

yAK
,

y jk =
s jk

sIK
→

s jk

−sAK
= −

y jk

yAK
, (186)

yik =
sik

sIK
→

−sak

−sAK
=

yak

yAK
.

The RF antenna functions are identical to the IF ones. The full set of VINCIA antenna functions,
including their helicity contributions, can be found in [100].

The strong coupling VINCIA offers the same basic options for the strong coupling as the
simple shower does, with up to 2-loop running matched across flavour thresholds and an
option to use the CMW scheme. However, whereas the main tuneable parameters in the simple
shower are the effective values of αISR

s (M
2
Z) and αFSR

s (M2
Z) (which may then be interpreted as

being given in a renormalization scheme not necessarily identical to MS), in VINCIA one instead
specifies a single common value for αMS

s (M
2
Z)— normally just set to agree with a reasonable

global average value such as that given by the PDG [35]— with different effective values for
different branching types obtained via user-specifiable renormalization-scale prefactors,

αMS
s (M

2
Z)→































αs( kF
Ep2
⊥ j +µ

2
0 ) , for FF and RF gluon emissions ,

αs( kF
Sp2
⊥ j +µ

2
0 ) , for final-state gluon splittings ,

αs( kI
Ep2
⊥ j +µ

2
0 ) , for II and IF gluon emissions ,

αs( kI
Sp2
⊥ j +µ

2
0 ) , for initial-state gluon splittings ,

αs( kI
Cp2
⊥ j +µ

2
0 ) , for initial-state gluon conversions ,

(187)

where the scheme can be either MS or CMW and µ0 ∼O(ΛQCD) is a fixed scale that forces the
effective coupling to asymptote to αs(µ2

0) for p⊥ j → 0. A maximum value can also be specified
beyond which αs is not allowed to grow, effectively freezing the coupling at that value in the
infrared.

Evolution equations The differential branching probability as implemented by the sector
shower is given as the sum of individual IK 7→ i jk antenna branching probabilities,

dP
dp2
⊥ j

=
∑

j

dP j/IK

dp2
⊥ j

, (188)
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which can be written in terms of the shower evolution variable p2
⊥ j and an arbitrary comple-

mentary phase-space variable ζ as

dP j/IK

dp2
⊥ j

=
αs(p2

⊥ j)

4π
C j/IK

ζmax(p2
⊥ j)

∫

ζmin(p2
⊥ j)

2π
∫

0

Āsct
j/IK(p

2
⊥ j ,ζ)RPDF FΦ

�

�

�J(p2
⊥ j ,ζ)

�

�

� Θsct(p2
⊥ j ,ζ,φ)

dφ
2π

dζ .

(189)
Here, the Jacobian J(p2

⊥ j ,ζ) accounts for the change to the shower variables

(yi j , y jk) 7→ (p2
⊥ j ,ζ), for which different choices are implemented in VINCIA, depending on the

branching type, cf. [100, section 2.5]. Note that, since the starting point is an exact phase-space
factorization and the Jacobian factor J(p2

⊥ j ,ζ) accounts for the mapping to shower variables,
there is no physical dependence on the choice of ζ in VINCIA; it only affects how simple or
complicated the trial integrals become, and the efficiency with which trial branchings can be
generated. The phase-space factor

FΦ =















































sIK
sIK

q

λ(sIK , m2
i , m2

k)
FF ,

sAK +m2
j +m2

k −m2
K

(1− y jk)3
sAK +m2

j +m2
k −m2

K
q

λ(m2
A, m2

AK , m2
K)

RF ,

sAK

1− y jk
IF ,

sAB

1− ya j − y j b
II ,

(190)

accounts for the relative size of the post-branching phase space to the pre-branching phase
space. For ISR, a PDF ratio is included for every initial-state parton,

RPDF =



































1 FF & RF ,

fa(xa, p2
⊥ j)

fA(xA, p2
⊥ j)

IF ,

fa(xa, p2
⊥ j)

fA(xA, p2
⊥ j)

fb(xb, p2
⊥ j)

fB(xB, p2
⊥ j)

II .

(191)

Two things should be noted in eq. (189). First, the colour factor C j/IK is normalized such
that the integral prefactor is always 1/4π (as opposed to 1/2π), with the specific VINCIA

choices being

Cg/qq = 2CF =
8
3

, (192)

Cg/qg =
1
2
(2CF + CA) =

17
6

, (193)

Cg/gg = CA = 3 , (194)

Cq/Xg = 2TR = 1 , (195)

where an interpolation between 2CF and CA,

Cg/qg =
(1− yi j)2CF + (1− y jk)CA

2− yi j − y jk
, (196)

is available for qg antennae. Second, the azimuthal integration is made explicit although the
antenna functions have no azimuthal dependence. This is to emphasize a potentially non-
trivial azimuthal dependence of the sector veto Θsct.
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Matching, merging, and matrix-element corrections A unique property of VINCIA’s sector-
based approach to parton showers is that there is only a very small number of “shower histo-
ries” leading to each distinct parton configuration. For gluon emissions, VINCIA’s sector shower
is entirely bijective, i.e. there is only a single unique shower history leading from the Born to
any given Born+n-gluon parton configuration. For g → qq̄ splittings, one has to sum over all
possible same-flavour quark-antiquark pairings, but the number of contributing histories for
a given phase-space point is still drastically reduced relative to conventional, non-sectorized,
showers. We say that the sector shower is “maximally bijective”, and this provides an optimal
framework for high-multiplicity matching and merging, discussed further in section 5.4.

Infrared cutoffs For p⊥ scales below 1 GeV or so, perturbative approximations become in-
creasingly inaccurate as αs(p⊥) shoots towards divergence at ΛQCD ∼ 200 − 300 MeV. Like
for the simple shower model, VINCIA’s perturbative shower evolution is therefore also halted
some distance above ΛQCD, at which point the parton system is handed to PYTHIA’s string-
fragmentation model for hadronization. In VINCIA, the precise scale at which the shower is
stopped can be set independently for FF, IF, and II antennae.

The shower cutoff for FF antennae in VINCIA is analogous to the FSR cutoff in the simple-
shower model. It can be regarded as the effective factorization scale between the perturbative
and non-perturbative parts of the overall fragmentation description. It therefore has the inter-
pretation as the scale at which the parameters of the non-perturbative hadronization modelling
are defined. Ideally, the hadronization parameters should “run” with the shower cutoff, but
since the relevant running equations are not known, in practice the hadronization parameters
simply have to be retuned for each new value of the cutoff. In other words, the FF-cutoff value
can be considered part of the fragmentation tuning. In general, one would seek not to leave
too much of a gap between the lowest p⊥ scales generated by shower branchings (down to
the cutoff) and the highest p⊥ scales generated by string breaks (with typical size set by the
fragmentation p⊥ width, cf. section 7.1.1).

For II antennae, the cutoff can be regarded as an effective colour-screening resolution scale,
or a lowest scale for which partons inside hadrons can be said to be well represented by plane
waves. This could possibly be tied to the physics of parton saturation, though no explicit such
connection is made here. The practical considerations are similar as for the ISR shower cutoff
in the simple-shower model, striking a balance between p⊥ kicks generated by the shower and
contributions from so-called “primordial k⊥”, cf. section 6.3.3.

For IF antennae, the fact that VINCIA’s default recoil strategy is fully local, and does not
impart p⊥ recoil to any partons outside of the 2→ 3 branching itself, leads to some pathologies.
In particular, each IF branching dilutes the primordial k⊥, and does not add any perturbative
p⊥ of its own, to the hard system. The non-smooth interplay between the II and IF recoil
strategies can make it challenging to describe the soft peak of experimental signals such as the
Drell–Yan p⊥ spectrum, and can produce seemingly counter-intuitive scaling with the value of
the IF cutoff.

4.2.3 QED showers

The VINCIA shower offers a number of options for the inclusion of electromagnetic and weak
corrections. They all share common features, like the phase-space factorizations and ordering
scale, with the QCD shower, cf. section 4.2.1. In this section, we describe the first (and default)
option, which is a pure QED shower that incorporates a fully coherent multipole treatment
of the simulation of photon radiation off systems of charged fermions, vectors, and scalar
particles, as well as photon splittings to pairs of charged fermions [101,102]. We also include
a simpler and somewhat faster alternative, in which the full multipole sum is replaced by

92

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

individual dipole terms according to a principle of maximal screening, analogous to how QED
is handled in the simple-shower model.

The basic building block for VINCIA’s treatment of photon radiation is the photon-emission
antenna function for a single pair of final-state charged particles i and k,

Asct
γ/IK(sIK ; yi j , y jk,µ2

i ,µ2
k) = 2g2 Q IQK

sIK

�

2
yik

yi j y jk
− 2
µ2

i

y2
i j

− 2
µ2

k

y2
jk

+δIf
yi j

y jk
+δKf

yi j

y jk

+δIW
4
3

yi j

�

y jk

yIK − y jk
+

y jk(yIK − y jk)

y2
IK

�

+δKW
4
3

y jk

�

yi j

yIK − yi j
+

yi j(yIK − yi j)

y2
IK

�

�

, (197)

where the Kronecker deltas ensure the correct collinear terms are incorporated in the cases
where I and K are fermions or W bosons. The factors Q I and QK represent the relative elec-
tromagnetic charges of I and K , respectively. The II and IF antennae may be found by crossing
symmetry following eqs. (185) and (186). For notational convenience we define

Asct
γ/IK(sIK ; yi j , y jk,µ2

i ,µ2
k) = g2Q IQK Āsct

γ/IK(sIK ; yi j , y jk,µ2
i ,µ2

k) , (198)

similar to the QCD equivalent eq. (174).
While possibly counter intuitive, the definition of a coherent QED shower using eq. (198)

is not as straightforward as for its (leading-colour) QCD shower counterpart. The reason is
the absence of an equivalent of the leading-colour approximation, which in QCD allows one to
discard the majority of the soft eikonal contributions that are subleading in colour. Conversely,
in QED no eikonal is subleading to any other, and full coherence can only be accomplished
by the inclusion of all of them simultaneously. VINCIA’s most sophisticated photon emission
algorithm accomplishes this by the definition of a single branching kernel

Āsct
γ/coh =

∑

{IK}

σIQ IσKQK Āsct
γ/IK(sIK ; yi j , y jk,µ2

i ,µ2
k) , (199)

where {IK} runs over all pairs of charged particles, and σI and σK are sign factors that have
σI = 1 for final-state particles and σI = −1 for initial-state particles. This branching kernel
includes all soft multipole terms, as well as the correct collinear limits [101], but its singular
structure is highly complex. The coherent algorithm is able to sample it by sectorizing the
phase space according to

dP j,coh

dp2
⊥ j

=
∑

{ik}

ζmax(p2
⊥ j)

∫

ζmin(p2
⊥ j)

2π
∫

0

αem(p2
⊥ j)

4π
Āsct
γ/coh(p

2
⊥,ζ)

× RPDF FΦ
�

�

�J(p2
⊥ j ,ζ)

�

�

� Θsct
ik (p

2
⊥ j ,ζ,φ)

dφ
2π

dζ , (200)

where Θsct
ik (p

2
⊥ j ,ζ,φ) is given by eq. (172), but with a sum over charged-particle pairs, and the

sector resolution is the same as that of a gluon emission as given by eq. (173). This procedure
ensures the soft and collinear singularities are correctly regularized by the transverse momenta
of the photon with respect to all pairs of charged particles. The coherent emission algorithm is
the default choice, but in some specific high-multiplicity cases it may be slow due to the large
number of sectors that need to be sampled.

93

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

As a backup, a faster, unsectorized alternative is implemented that rephrases the photon
emission probability as

dPpair

dp2
⊥ j

=
∑

[IK]

ζmax(p2
⊥ j)

∫

ζmin(p2
⊥ j)

2π
∫

0

αem(p2
⊥ j)

4π
Q2
[IK]Ā

sct
γ/IK(p

2
⊥ j ,ζ)RPDF FΦ

�

�

�J(p2
⊥ j ,ζ)

�

�

�

dφ
2π

dζ , (201)

where [IK] now runs over all pairings of charged particles with identical but opposite charge
Q[IK]. The factors σI and σK have been absorbed into the definition of Q[IK], meaning that a
final-state charged particle may be paired with a same-sign initial-state particle. That is, every
charged particle now only appears once, and pairings are constructed to minimize the sum of
dipole-antenna invariant masses as per the principle of maximum screening [102]. The task of
pairing particles under such a constraint in O(n3) time complexity is accomplished using the
Hungarian algorithm [127–129]. While this algorithm is generally faster, it only approximates
the complete multipole structure. Furthermore, it may not always be possible to pair up all
charges. For instance, in a W+ → ud decay, no pairings are possible at all. In such cases,
as many charges as possible are paired up, and the fully coherent algorithm is used for the
remainder.

The QED shower also includes photon splittings to charged fermions, which use antennae
that are kinematically identical to their gluon-splitting counterparts. Furthermore, while pho-
ton radiation off quarks is cut off at a scale of order the hadronization scale, leptonic photon
radiation continues to much lower scales and has its own cutoff scale. Since the system of
leptons is not necessarily charge conserving by itself, which is a requirement for the above
algorithms, the pool of charges is supplemented with the colour-neutral strings that enter the
hadronization stage. When acting as the recoiler of a lepton, the antenna function is replaced
by a dipole function that only contains the singular limits relevant to the lepton.

QED radiation off charged hadrons and/or in hadron decays, is not present in the current
implementation but may be included in future work; see the program’s online manual for
updates.

4.2.4 EW showers

As an alternative to the coherent QED shower described above, VINCIA also offers the option
to interleave the QCD shower with a full-fledged EW shower, in which all possible branchings
from the EW sector are incorporated, albeit only in a collinear approximation without any at-
tempt at incorporating soft-interference effects [23,105]. For each given application, one must
therefore choose whether weak-shower corrections are more important than QED coherence
effects for the study at hand, the default choice being the coherent-QED one.

When enabled, VINCIA’s EW option includes not only the branchings that are also available
in the simple shower (heavy vector-boson emissions off initial- and final-state fermions) but
also final-state triple vector-boson branchings, Higgs emissions, and decay-like splittings. Like
the QED module, the EW one also shares the common features of the QCD shower, allowing
for a sensible interleaving of the two. However, it is important to be aware that the EW shower
relies on the helicity-dependent evolution described in section 4.2.1, which must therefore also
be enabled. The resulting intermediate states of definite helicity are vital in the EW sector due
to its chiral nature. Helicity-dependent antenna functions are present for all EW branchings,
capturing their associated quasi-collinear limits. Due to the rich physics landscape of the EW
sector of the SM and the many different helicity combinations, there are hundreds of distinct
polarized collinear-splitting kernels. The antenna functions are therefore not included here,
but they may be found in [23]. Note that, since the EW shower does not incorporate soft-
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interference effects, the antenna functions are more like dipole functions, only including the
single quasi-collinear limit of the branching particle, while the other just functions as a recoiler.

A number of features unique to the EW sector are incorporated. For example, in a shower
sequence like e− → e− Z/γ→ e−W+W−, the interference between the Z and the γ can be of
O(1) [105,130]. A full treatment of this effect may for instance be accomplished by the evo-
lution of density matrices, which can quickly become prohibitively expensive. VINCIA instead
implements a simplified approach, in which the emission probability is corrected at first order
by an event weight. This weight is computed using quasi-collinear amplitude-level branching
amplitudes using the spinor-helicity formalism.

These same amplitudes are also used to determine recoilers for the quasi-collinear branch-
ings of the EW shower. Unlike in the QCD sector, where recoilers are typically chosen to be a
colour-connected parton, no such mechanism is available in the EW sector. Furthermore, be-
cause the EW shower only models quasi-collinear branchings without soft-interference effects,
the choice of recoiler is formally arbitrary. One can however select the recoiler probabilistically
such that the kinematic effects of recoil on previous branchings is minimized [105].

Another peculiar feature of the EW sector is the fact that branchings like t → bW+ and
Z → qq appear both as shower branchings and as resonance decays. For off-shellness scales
Q2 = m2 − m2

0 ∼ Γ
2, the physics is best described by a Breit–Wigner distribution, while for

scales above the electroweak scale Q2
EW, the EW shower is most accurate. In the intermediate

region a matching procedure is required. When the EW shower produces a heavy resonance
like one of the EW gauge bosons, a top quark, or a Higgs boson, its mass is sampled from a
helicity-dependent Breit–Wigner distribution (see [23] for details)

BW(Q2)∝
m0Γ (m)

Q4 +m2
0Γ (m)2

. (202)

This procedure mirrors the treatment of resonances that are part of the hard process as de-
scribed in section 2.3.3, which can also be branched by the EW shower. The shower is matched
to the Breit–Wigner distribution by applying a suppression factor Q4/(Q2 + Q2

EW)
2, and the

resonance is decayed when the evolution scale reaches the sampled resonance off-shellness
without generating an EW branching. In that case, if the EW shower produced the resonance,
the decay is distributed according to the appropriate helicity-dependent 1→ 2 matrix element.
If instead the resonance was part of the hard process, the decay has already been generated
and is inserted.

Finally, double counting issues appear with the inclusion of EW branchings in the shower.
For instance, the state pp→ VVj may be reached by starting from pp→ VV and performing an
initial-state QCD emission, or from pp→ Vj and performing an EW emission. To avoid double
counting such phase-space points, VINCIA implements an overlap veto procedure that can be
used when overlapping matrix elements are enabled. It is based on the kT jet algorithm [131]
distance measures, generalized to account for the massive states that appear in the EW sector,
given by

diB = k2
T,i ,

di j =min(k2
T,i , k2

T, j)
∆i j

R
+ |m2

i +m2
j −m2

I | . (203)

The distance between the beam and final-state particle i is measured by diB, while di j measures
the distance between two final-state particles i and j. If, for example, a gluon is emitted by
the QCD shower, the distances with respect to its colour-connected partons are computed.
Furthermore, the distances of all possible 2 → 1 EW clusterings of the state after the gluon
emission are also evaluated. If one of these distances is smaller than the QCD ones, then the
current phase-space point should be populated by the EW shower rather than the QCD shower,
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and the gluon emission is vetoed. This procedure ensures no double counting occurs and the
QCD and EW showers populate the regions of phase space they are most accurate in.

4.3 The DIRE shower

The DIRE parton shower, introduced in [117], offers another alternative showering model. It
aims to combine aspects traditionally associated with 2 → 3 dipole (antenna) showers with
features of “conventional” 1 → 2 parton showers. The goal of this hybrid is to inherit the
modelling of soft-emission effects from dipole showers, while keeping an explicit association
of splittings with specific collinear directions. This should, in principle, allow for an uncom-
plicated comparison to the ingredients in QCD factorization theorems. The physics aspects of
DIRE have been developed in a series of articles [117, 132–137], and we refer the reader to
these publications for details. Below, we will summarize the most important choices, virtues
and current limitations.

4.3.1 Phase-space coverage and ordering

DIRE employs an exact factorization of the single- and double-emission phase spaces. The
single-emission phase space is adapted from [111, 138], and allows for any combination of
masses in 2→ 3 branchings. The construction of post-emission momenta through the mapping
M(1) can be sketched by

M(1)




Radiator ĩ1

Recoiler k̃

⊕ t(1), z(1),φ(1)



 =

Recoiler k

Radiator i

Emission 1

, (204)

where t(1) is the evolution variable, z(1) a momentum-sharing variable, and φ(1) an azimuthal
angle. Note that under the mapping M(1), the direction of the recoiler is not affected by the
branching. Only its longitudinal momentum components change. This deliberate choice en-
sures that the collinear direction defined by the recoiler, and consequently its mapping onto
factorization theorems, remains intact. A caveat to this approach — related to initial-state
emissions — is discussed below.

The double-emission phase space — relevant for NLO parton evolution [132]— may sim-
ilarly be illustrated by a map M(2)

M(2)




Radiator ĩ12

Recoiler k̃

⊕ t(12), z(12),φ(12), s12, x ,φ′



 =

Recoiler k

Radiator i

Emission 2

E
m

is
si

on
1

. (205)

Here, t(12) is the evolution variable assigned to the emission of the system (12), z(12) (φ(12)) a
momentum-sharing (azimuthal angle) variable, and s12 the virtuality of the system (12), while
x and φ′ are related to the momentum sharing (azimuthal angle) between emissions 1 and 2.
Again, the direction of the “recoiler” is preserved.

The momentum mappings M(1) and M(2) are (re)arranged to ensure that the phase-space
coverage is fully symmetric between radiation from the “radiator” or the “recoiler”, i.e. given a
fixed post-branching phase-space point and fixed branching variables, an identical
pre-branching phase-space point is produced, independent of assigning the emissions to the ra-
diator or recoiler. However, it should be noted that the momentum-sharing variables z are not
symmetric under exchange of the “emission” for one of the other involved particles, since the
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limit z→ 1 is associated with a soft emission. DIRE separates the generation of post-branching
momenta into four distinct cases:

FF, i.e. emission from a final-state particle, using a final-state recoiler:
This case has the fewest kinematic constraints, but the richest set of combinations of
possible masses. Thus, the mapping is constructed to ensure that regions of phase space
in which mass-corrected transition rates would lead to negative contributions are outside
the physical phase-space boundaries.

FI, i.e. emission from a final-state particle, using an initial-state recoiler:
This case again has few kinematic constraints, after the choice of keeping the recoiler di-
rection intact. DIRE will, if not instructed otherwise, treat incoming particles as massless
for the purpose of phase-space generation. This means that in this configuration, nega-
tive transition rates due to mass corrections may occur. This is handled by a weighted
shower algorithm.

IF, i.e. emission from an initial-state particle, using a final-state recoiler:
This case has several kinematic constraints that need to be considered. In fact, the sys-
tem is over-constrained if both the initial-state particle and the final-state recoiler should
retain their directions. In this case, the transverse momentum generated in the branch-
ing can be balanced by extending the set of particles that may change their momentum.
DIRE offers the possibility to employ a “global”-recoil strategy, in which the transverse
momentum of the splitting is balanced by all final-state particles within the decaying
system2. It is also possible to instruct DIRE to relax the condition that the final-state
recoiler retains its direction. In this “local” strategy, the system of particles that change
their momentum does not need to be extended.

II, i.e. emission from an initial-state particle, using an initial-state recoiler:
This case also has several kinematic constraints, and is over constrained, since both
initial-state particles should retain their directions. Here, no attempt is made to con-
struct a “local”-recoil strategy. Instead, the transverse momentum of the branching is
collectively balanced by all final-state particles within the decaying system.

In general, the construction of post-branching momenta is subject to many choices. The choices
above have foremost been guided by providing a simple procedure and Jacobian factors, such
that analytic integrations of the emission patterns are as straight-forward as possible. This
helps when improving the evolution with next-to-leading order corrections.

The evolution variables in DIRE are chosen to lead to a symmetric phase-space sampling
and simple phase-space boundaries. Soft transverse momenta fulfil these criteria, if defined
by

t(a)∝
(pi pa)(pkpa)

Q2
∝ p+a p−a , (206)

where Q2 is a maximal scale, pa may be a sum of one or two emission momenta, and pi and
pk are the radiator and recoiler post-branching momenta. Thus, in all of the four cases above,
and for both single-emission and double-emission contributions, DIRE employs soft transverse
momentum as ordering variable, see [117,132] for details.

4.3.2 Transition rates

The DIRE parton shower aims to model configurations containing soft particles or collinear
configurations with high fidelity. As in a traditional parton shower, separate transition rates

2Here, “decaying system” refers to the particle content of a single 2→ n scattering, in case several such scat-
terings exist due to the inclusion of multiparton interactions.
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are used in each collinear direction. It might be helpful to explain this choice with an example.
Imagine a dipole stretched between a quark and a gluon. The primary contributions to radia-
tion collinear to the quark should be proportional to the colour factor CF, while the radiation
pattern collinear to the gluon should, up to small corrections, be proportional to CA. Similarly,
higher-order corrections to the radiation pattern in either region differ.

However, simultaneously radiating from both dipole “ends” with the full rate expected in
the collinear limit (given by the DGLAP splitting functions) will naively lead to an incorrect
pattern in the soft limit. This problem is circumvented by replacing collinear-soft parts of
DGLAP kernels by an improved description. The latter may be obtained by distributing the
correct soft radiation pattern among all coherently radiating particles,

(pi pk)
(pi pa)(pk pa)

= 1
(pi pa)
︸ ︷︷ ︸

(pi pk)
(pi pa) + (pkpa)
︸ ︷︷ ︸

+ (i↔ k)

2(1−z)
(1−z)2+t/Q2

1
t

2
1−z

rewrite in t and zcombine with Jacobian

collinear limit t → 0 . (207)

The resulting soft-collinear pattern is supplemented with hard-collinear terms [87]. As an ex-
tension of [87], the 1/z-terms present in DGLAP kernels are also shifted 1

z →
z

z2+t/Q2 to ensure
that sum rules for the splitting kernels are maintained. Finally, mass-dependent corrections
based on [111] are added. The exact splitting kernels used in DIRE are listed in [117]. The
above chain of reasoning is used for all branching types in DIRE.

QCD The above reasoning directly applies to QCD branchings at leading order, i.e. when
increasing the multiplicity by one particle, and while not including explicit virtual corrections
to single-parton emission. At leading order:

• Dipoles are formed from radiator-recoiler pairs connected by a colour flow in the
Nc →∞ limit. At the point of compiling this manual, the fixed-colour corrections dis-
cussed in [137] have not been included in the core PYTHIA code.

• Colour factors due to colour-charge correlators in the Nc→∞ limit are given by:

1. gluon-radiation off (anti)quarks∝ CF,

2. gluon-radiation off gluons∝ CA/#(possible recoilers) = CA/2,

3. and gluon branching to quark pairs∝ TR.

• Coupling-factors αs for all QCD splittings are evaluated with dynamic arguments, with
the preferred scheme being αs(t). However, it should be noted that the emergence of the
running coupling is driven by soft-gluon emissions, and thus, it is a priori not obvious if
the evaluation αs(t) extends also to hard-collinear configurations. Thus, the user may
instruct PYTHIA to use different arguments to evaluate αs: the running coupling may be
evaluated using the “collinear transverse momenta” k2

⊥ defined as evolution variables
in [114], i.e. αs(k2

⊥), or it may be evaluated using the strict definition of the (inverse)

eikonal term, i.e. αs

�

(pi pa)(pk pa)
(pi pk)

�

.

The usage of a running coupling effectively includes “universal” virtual corrections to the emis-
sion rates. For inclusive soft-gluon emission, it is possible to include further next-to-leading
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order corrections rescaling the soft-gluon emission rate:

αs

2π

�

2(1− z)
(1− z)2 + t/Q2

+ (hard-collinear terms)
�

→
αs

2π

�

1+ K
αs

2π

� 2(1− z)
(1− z)2 + t/Q2

+
αs

2π
· (hard-collinear terms) . (208)

This may be considered as a conservative implementation of the conventional CMW (or MC)
scheme [85]. Note that different strategies for the evaluation of running couplings will induce
different higher-order corrections. Without better modelling, none of these ad hoc choices are
completely satisfactory.

Higher-order corrections to QCD evolution have been known for a long time. DIRE imple-
ments several aspects of QCD evolution at next-to-leading order:

• Inclusive branching rates can be augmented with hard-collinear corrections by employ-
ing NLO DGLAP splitting functions. These improvements are available for both initial-
state and final-state branchings. The benefit of such corrections is mainly in a more
consistent treatment of PDF evolution in backwards initial-state evolution, since the lat-
ter relies on the parton shower distributing emissions according to the rates used to
evolve externally pre-tabulated PDFs from low to high scales.

• Correlated triple-collinear emissions, i.e. branchings of the form 1⊕1→ 3⊕1, have been
included to yield NLO DGLAP (initial- or final-state) evolution in the collinear limit from
fully differential double-emission matrix elements.

• Correlated double-soft emissions and explicit real-virtual corrections, i.e. branchings of
the form 2 → 4 and 2 → 3 at 1-loop, can be employed for final-state branchings. The
inclusion of such NLO corrections is mainly a reduction of the renormalization-scale
uncertainty of the parton shower. At the point of writing this manual, the consistent
combination of triple-collinear and double-soft NLO corrections outlined in [139] has
not been included in a public PYTHIA release.

QED The description of QED in DIRE [135, 137] follows a very similar structure to that of
QCD branchings, and is inspired by [140].

• Dipoles are formed from all electrically charged radiator-recoiler pairs, much like the
fixed-colour QCD dipole assignments discussed in [69,137].

• Charge-factors due to electric-charge correlators are determined from

Q2 = −
ηĩ1ηk̃Q ĩ1Q k̃

Q2
ĩ1

(photon emission) ,

Q2 =
1

#recoilers
(photon splitting) , (209)

where Q ĩ1 and Q k̃ are the charges of the radiator and recoiler, respectively, and
ηi = +1(−1) if i is a final- or initial-state particle. These correlators multiply the splitting
functions in place of the QCD colour factors, and may readily lead to negative contribu-
tions to the transition rates. Thus, a weighted shower algorithm is crucial for the QED
modelling in DIRE.

• Coupling-factors αem for all QED splittings are evaluated in the Thompson limit, i.e. no
running QED coupling is employed in the shower.
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Kinetically mixed dark photons DIRE further implements kinetically mixed dark photon
interactions, featuring dark photon emission from and decay into standard-model particles.
These transitions are handled analogously to QED interactions, except that the dark photon
may be massive. The decay width of the dark photon is currently ignored for both dark photon
emission and decay.

Electroweak effects Finally, DIRE allows for electroweak-boson radiation and fermionic
weak-boson decay, using a simplistic model similar to the ideas of [83, 141]. Electroweak
effects are mainly included because of the necessity for consistent matrix-element merging at
LHC energies: to avoid an overly QCD-evolution biased scale setting for vector-boson plus
jets configurations that exhibit giant K-factors [142], the inclusion of parton-shower histories
containing electroweak clusterings are mandatory for some showers [143, 144]. Thus, DIRE

implements electroweak evolution using:

• Transition rates are determined from partial-fractioned massive dipole kernels [111].

• Dipoles are formed from all pairs of particles that may emit the same electroweak vector
bosons. Electroweak-boson decays employ the same recoiler selection as vector-boson
radiation, much like the QED case [135,137].

• Coupling factors are calculated under the assumption of chirality-summed evolution,
cf. [141]. The coupling value is kept fixed, i.e. no running coupling is employed.

This overly simplified model may appropriately handle electroweak history effects in the con-
text of multi-jet merging, especially for W±-boson plus multi-jet configurations at the LHC
[136]. Beyond this, studies of weak-boson radiation with DIRE are discouraged.

4.3.3 Weight handling aspects

The transition rates outlined in section 4.3.2 may be relatively complex. This results in some
technical requirements that need to be met to produce a sound simulation since:

• it may not be possible to find efficient overestimates of complex transition kernels, such
as for correlated double emission;

• and it may not be possible to guarantee positivity, e.g. due to mass effects, electric charge
correlators, or higher-order corrections.

Both of these points (as well as the automated renormalization scale variations available in
DIRE) may be addressed with the help of a weighted veto algorithm, which was discussed in
section 2.2.3. DIRE employs this method more heavily than the rest of PYTHIA. Thus, the
relevant features and extensions beyond the literature will be discussed here.

The core realization of weighted shower algorithms is that acceptance rates in the veto
algorithm may be factored into a contribution that is “unweighted” via the veto algorithm,
and an event-by-event “weight” factor that encapsulates the effect of sign changes or under-
estimations of the transition rate. To preserve inclusive cross sections, this is naturally com-
plemented by event-by-event weights that augment the rejection rate of the parton shower.
Once acceptance and rejection weights have been introduced, it also becomes possible to only
partially unweight the use of overestimates through the veto algorithm, and correct for the
partial unweighting by amending the event weight. This allows for an enhancement of certain
transitions beyond their natural rate, leading to an improved statistical error, at the expense of
a larger weight variance. Finally, the veto algorithm may be implemented in a series of distinct
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accept-reject steps. Each such step can be upgraded to incorporate complex rates3. At present,
DIRE employs a weighted shower when choosing a branching according to splitting kernels,
and another, stacked weighted shower to incorporate matrix-element corrections. A weighted
approach to the latter is necessary as matrix-element corrections may induce sign changes, or
because matrix elements are underestimated by the (sum of all possible) splitting kernels.

The weighted shower algorithm in DIRE rests on the realization that the rate of producing
one transition in the shower after n rejections (through the veto algorithm) is given by

P(t) = g(t)
f (t)
g(t)

exp

�

−
∫ tn

t
d t̄ g( t̄)

� n
∏

i=1

�

g(t i)− f (t i)
g(t i)

�

g(t i)exp

�

−
∫ t0

t i

d t̄ g( t̄)

�

. (210)

This equation is the formal requirement for the validity of the veto algorithm, and does not
strictly constrain the transition rates f (t) by the “overestimate” g(t) through 0< f (t)< g(t).
The numerical implementation of the equation does, however, require sensible acceptance
probabilities. This may be achieved by introducing an auxiliary function h(t) that guaran-
tees acceptance probabilities 0 < f (t)/h(t) < 1, see e.g. also the description at the end of
section 2.2.3. Rewriting in terms of this auxiliary function leads to

P(t) =
�

g(t)
f (t)
h(t)

exp

�

−
∫ tn

t
d t̄ g( t̄)

� n
∏

i=1

�

1−
f (t i)
h(t i)

�

g(t i)exp

�

−
∫ t0

t i

d t̄ g( t̄)

�

�

⊗
h(t)
g(t)

n
∏

i=1

h(t i)
g(t i)

g(t i)− f (t i)
h(t i)− f (t i)

. (211)

The second line may be interpreted as a corrective factor due to disconnecting the sampling
and rejection distributions. It does not have to be bounded, and is implemented as an event
weight. It is important to note that the acceptance rates f (t)/h(t) only need to be bounded
point-wise in t, i.e. they may be adjusted depending on the value of f (t). In particular, DIRE

uses

h(t) =

¨

sign[ f (t)]g(t) , if g(t)> | f (t)| ,
k f (t) , if g(t)< | f (t)| (with k ∼ 1.1) .

(212)

An artificially enhanced sampling may be achieved by shifting g → g ′ = C g, while keeping
all rejection steps (i.e. the definition of h(t)) fixed to their original values. The compensating
event weight will then be shifted to

1
C

h(t)
g(t)

n
∏

i=1

h(t i)
g(t i)

g(t i)− f (t i)/C
h(t i)− f (t i)

. (213)

Once the weighted shower is in place, parton-shower variations may be included by keeping
track of multiple weights of the form

w[k] =
1
C

h(t)
g(t)

n
∏

i=1

h(t i)
g(t i)

g(t i)− f [k](t i)/C
h(t i)− f (t i)

, (214)

where f [k](t i) is the value of the varied transition kernel. DIRE allows for renormalization-
scale variations in the argument of running-coupling evaluations, as well as variations of par-
ton distribution functions.

Finally, DIRE stacks weighted-shower steps, especially to allow the incorporation of matrix-
element corrections. The possibility for stacking relies on two realizations: weighted-shower

3For example, the algorithm of [137] relies on a three-step (un)weighting.
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induced event weights are multiplicative, and after applying the event weight of previous steps,
the shower rate will be correctly determined from the full splitting rate. Thus, for subsequent
weighted shower steps, the full splitting kernel that would be obtained after applying the
weight is the new sampling rate — or “overestimate” — for the next, stacked, weighted-shower
step.

DIRE currently stacks two weighted-shower steps. Ignoring, for the sake of a simple pre-
sentation, splitting enhancements and variations, then the first weighted shower (used to ex-
ponentiate complicated splitting kernels) yields a weight

w1 =
h1(t)
g1(t)

n
∏

i=1

h1(t i)
g1(t i)

g1(t i)− f1(t i)
h(t i)− f (t i)

, (215)

while the stacked weighted shower (used within the context of matrix element corrections)
further induces the weight

w2 =
h2(t ′)
f1(t ′)

m
∏

i=1

h2(t ′i)

f1(t ′i)

f1(t ′i)− f2(t ′i)

h2(t ′i)− f2(t ′i)
, (216)

with

f2(t
′
i) = f1(t

′
i)⊗ME-correction and h2(t) =

¨

sign[ f2(t)] f1(t) , if | f1(t)|> | f2(t)| ,
k2 f2(t) , if | f1(t)|< | f2(t)| ,

(217)

where k2 ∼ 1.5. Since matrix-element corrections are applied only once a viable splitting has
been selected, and the corresponding phase-space point generated. Thus, the set of all t ′ is
different, and smaller, than the set of all t. Currently, DIRE does not implement enhancements
or variations in the stacked weighted-shower step, since there does not seem to be a strong
need for such complications. Variations may, in the future, be used to embed uncertainties due
to the underlying Lagrangian entering the matrix elements.

Note that only the product of all event weights is required. Thus, the stacked algorithm is
identical to the original weighted-shower algorithm from an outside perspective.

5 Matching and merging

Matching and merging methods aim to augment the event generator with (multiple) calcula-
tions performed within fixed-order perturbation theory. This is rather straight forward for indi-
vidual (and simple) hard-scattering calculations, which may be treated as the “hard process”
from which further event generation steps start. When the fixed-order calculation includes
virtual and/or real corrections, a consistent treatment quickly becomes more complex, such
that dedicated schemes of combining external calculations with the event generator need to
be developed.

Naive parton showers aim to reproduce the effect of many collinear or soft emissions, and
thus require improvements when describing observables that depend on well-separated hard
particles. Fixed-order perturbative calculations furnish, on the other hand, an appropriate de-
scription of events with a handful of well-separated particles, but may fail in the collinear and
soft limits. At high-energy colliders, observables typically exhibit effects of both approxima-
tions. On top of that, both the bulk cross sections (of low jet multiplicity) and tails (depending
on the correct rate of high jet multiplicities) are often equally important. Methods to perform
a matching or a merging of the fixed-order calculations with parton showers aim to combine
the strengths of both approaches.
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Before going into the details of matching and merging methods, it is useful to discuss
some aspects of fixed-order calculations. Higher-order calculations require the calculation of
virtual and real corrections. The latter introduce additional final-state particles, so that the
(next-to-)korder prediction for an observable O is

〈O〉=
∫

dΦn

k
∑

i=0

dσ(i)n

dΦn
O(Φn) +

∫

dΦn+1

k−1
∑

i=0

dσ(i)n+1

dΦn+1
O(Φn+1) +

∫

dΦn+1

k−2
∑

i=0

dσ(i)n+2

dΦn+2
O(Φn+2)

+ · · ·+
∫

dΦn+k

dσ(0)n+k

dΦn+k
O(Φn+k) , (218)

where the superscript (i) determines the loop order. The symbols dΦn, dΦn+1, . . . , dΦn+k refer
to the n-, (n + 1)-, . . . , (n + k)-particle phase-space measures defined in eq. (19). We will
refer to a “matching method” as a method to combine complete higher-order corrections (i.e.
all terms for the order k) to a single inclusive process. A “merging method” combines several
calculations for a lowest-multiplicity base process and related processes with additional well-
separated jets (i.e. up to a certain multiplicity n + m, but possibly omitting some higher-(i)
terms) with parton showering. The goals of these two approaches are often overlapping. Next-
to-leading order matching methods aim to include the NLO prediction

〈O〉NLO,in =

∫

dΦn

�

dσ(0)n

dΦn
+

dσ(1)n

dΦn

�

O(Φn) +

∫

dΦn+1
dσ(0)n+1

dΦn+1
O(Φn+1) , (219)

while a leading-order merging combines the calculation

〈O〉LO,in =

∫

dΦn
dσ(0)n

dΦn
O(Φn)Θ(Q(Φn)−QMS) +

∫

dΦn+1
dσ(0)n+1

dΦn+1
O(Φn+1)Θ(Q(Φn+1)−QMS)

+ · · ·+
∫

dΦn+m
dσ(0)n+m

dΦn+k
O(Φn+k)Θ(Q(Φn+m)−QMS) , (220)

with the parton shower. Here, QMS denotes the so-called merging scale, which separates the
hard (fixed-order) region Q > QMS from the soft/collinear (resummation) region Q ≤ QMS.
This scale is in principle arbitrary, and merging algorithms should not develop a strong depen-
dence on the exact choice, as long as it amounts to a reasonably small scale.

Before any combination is attempted, it is important to remember that virtual and real
corrections are separately infrared divergent, and only their sum is free of singularities. This
means that the individual contributions need to be regularized carefully, making the (un-
weighted) generation of events challenging. Matching and merging can help with this, as
explained below. Furthermore, fixed-order calculations are inclusive, meaning that a calcu-
lation for the process ab → c + X includes real-emission corrections implicitly, as part of X .
For example, a leading-order calculation for pp → e+e− + X implicitly includes the process
pp→ e+e−g. Fixed-order calculations for different processes can thus not simply be added —
they first have to be reorganized as exclusive cross sections. At fixed order, this is achieved by
including all relevant virtual corrections. The parton shower employs Sudakov factors or no-
emission probabilities to produce exclusive all-order cross sections — a reminder that Sudakov
factors resum virtual corrections to all orders. High-multiplicity fixed-order calculations and
showered low-multiplicity predictions may overlap as well.

Thus, various sources of overlap between calculations should be handled when combining
fixed-order calculations with parton showers. Matching and merging methods typically em-
ploy a mix of subtraction, phase-space division and (emission or event) vetoes for this task.
The subtractions that are required in matched or merged calculations can occur at fixed per-
turbative order or at all perturbative orders.
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The aim of additional fixed-order subtractions is to remove the parton-shower approxima-
tions of real and/or virtual corrections from the fixed-order calculation, such that the resulting
remnant can be showered without introducing overlaps. At next-to-leading order, this leads
to (NLO) matching formulas that schematically have the form

〈O〉NLO+PS =

∫

dΦn

�

dσ(0)n

dΦn
+

dσ(1)n

dΦn
−

dσPS(1)
n

dΦn

�

S(O,Φn)

+

∫

dΦn+1

�

dσ(0)n+1

dΦn+1
−

dσPS(0)
n+1

dΦn+1

�

S(O,Φn+1) , (221)

where S is the shower operator defined in eq. (90). This also shows that these “parton-shower
subtractions” are typically mandatory to allow for fixed-order event generation, since this
would allow for the generation of the bracketed terms in eq. (221) as individual event samples.
Additionally, this highlights that matrix-element-corrected parton showering can lead to sim-
ple NLO matching methods. Matrix-element corrections guarantee that the first emission in
the parton shower is distributed according to the full tree-level rate by improving the splitting
kernel eq. (80),

K j/ĩ k̃→ PMECK j/ĩ k̃ with PMEC =

�

�

�M(0)
n+1

�

�

�

2

∑

j
K j/ĩ k̃

�

�

�M(0)
n

�

�

�

2 . (222)

It is straightforward to see that in the sum over all branchings this reproduces the full n+ 1-
particle matrix element,

∑

j

PMECK j/ĩ k̃

�

�M(0)
n

�

�

2
=
�

�

�M(0)
n+1

�

�

�

2
. (223)

In practice, the correction factor PMEC is implemented via an additional multiplicative factor
in the accept probability of the shower veto algorithm, cf. section 2.2.3. It is worth noting that
matrix-element-correction methods historically appeared well before generic NLO matching
methods [75,145–147]. MECs identified

dσPS(0)
n+1

dΦn+1
=

dσ(0)n+1

dΦn+1
, (224)

dσPS(1)
n

dΦn
= −

∫

dΦ1
dσ(0)n+1

dΦn+1
, (225)

leading to the POWHEG matching prescription

〈O〉NLO+PS =

∫

dΦn

 

dσ(0)n

dΦn
+

dσ(1)n

dΦn
+

∫

dΦ1
dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

!

SMEC(O,Φn) . (226)

Since the matrix-element-corrected parton shower SMEC would now produce real-emission
events, it is not possible to combine this calculation naively with further pre-calculated multi-
parton fixed-order predictions. It would, however, be possible to add new tree-level samples
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if the contributions are also subtracted in the overall result:

〈O〉STACKED =

∫

dΦn

 

dσ(0)n

dΦn
+

dσ(1)n

dΦn
+

∫

dΦ1
dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

!

O(Φn)

−
∫

dΦndΦ1
dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

Θ(Q(Φn+1)−QMS)O(Φn)

+

∫

dΦn+1
dσ(0)n+1

dΦn+1
Θ(Q(Φn+1)−QMS)O(Φn+1) . (227)

This somewhat academic exercise of “stacking” fixed-order calculations can be cast into a more
familiar form related to the parton shower. For that, we introduce the “parton-shower weight”
of an n-parton state wPS

n as the exact parton-shower rate of the n-parton state, excluding the
product of naive splitting probabilities. Thus,

wPS
n = f0(x(Φ0),µ

2
f PS)

n−1
∏

i=0

Πi(t i , t i+1;Φi)
αs(t i+1)

2π
fi+1(x(Φi+1), t i+1)

fi(x(Φi), t i+1)
. (228)

Similarly, we may collect all coupling and PDF factors used at fixed order into the fixed-order
weight

wFO
n =

�

αs(µ2
r )

2π

�n

fn(x(Φn),µ
2
f ) . (229)

Applying the ratio of the former to the latter weight, to an n-parton fixed-order calculation in-
troduces appropriate parton-shower higher orders. With this, we may instead add and subtract
all-order contributions, leading to

〈O〉MERGED =

∫

dΦn

 

dσ(0)n

dΦn
+

dσ(1)n

dΦn
+

∫

dΦ1
dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

!

wPS
n

wFO
n

O(Φn)

−
∫

dΦndΦ1
wPS

n+1

wFO
n+1

dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

Θ(Q(Φn+1)−QMS)O(Φn)

+

∫

dΦn+1
wPS

n+1

wFO
n+1

dσ(0)n+1

dΦn+1
Θ(Q(Φn+1)−QMS)O(Φn+1)

≈
∫

dΦn

 

dσ(0)n

dΦn
+

dσ(1)n

dΦn
+

∫

dΦ1
dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

!

wPS
n

wFO
n
Πn(tn, tcut ;Φn;>QMS)O(Φn)

+

∫

dΦn+1
wPS

n+1

wFO
n+1

dσ(0)n+1

dΦn+1
Θ(Q(Φn+1)−QMS)O(Φn+1) . (230)

Here, the additional argument “> QMS” in the no-emission probability indicates that only
emissions leading to states with Q(Φn+1) > QMS should be considered — leading to what is
sometimes called the “vetoed shower” no-emission probability. The lines after the approximate
equality would be fully equivalent to the lines before if the shower correctly reproduced the
rate dσ(0)n+1/dΦn+1.

This equation leads to an interesting interpretation: the inclusion of a no-emission proba-
bility Πn on top of the fixed-order n-parton cross section is producing a subtraction that allows
it to be combined the (n + 1)-parton event samples. Event samples that are made exclusive
with the help of no-emission probabilities can be added without further complication. This
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realization is the basis of merging methods, which extend the argument to the combination of
several multiparton calculations. If the no-emission probabilities are approximated by jets after
the complete evolution sequence, then the merging procedure can become independent of the
shower details. This is the case for MLM jet matching. In the Catani–Krauss–Kuhn–Webber–
Lönnblad (CKKW-L) method, the second equation and the exact (partonic) no-emission proba-
bilities of the parton shower are used to calculate the rescalings wPS

n+1/w
FO
n+1. Incidentally, such

ratios are often called the “CKKW-L weight” or “merging weight”. Unitarized merging methods
retain the explicit add-subtract structure to guarantee the correct inclusive cross sections even
if the parton shower does not accurately reproduce the (higher-order) emission pattern.

As of today, a broad spectrum of matching and merging techniques has been developed.
Historically, the first method were matrix-element corrections (MECs) [75], where the shower
kernel itself is corrected to the full matrix element after the first emission. This method
has later been extended to include higher orders as well [64, 97, 109, 112, 148]. For NLO
matching, two general schemes exist, namely MC@NLO [149] and POWHEG [150–152], with
the former being automated in the MADGRAPH5_AMC@NLO [153] and SHERPA [154] event-
generation frameworks and the latter available through the POWHEG BOX program [155].
Well-established tree-level merging methods are MLM [156,157] and CKKW [158,159], which
utilize a simple jet-matching algorithm and analytic Sudakov factors, respectively. The CKKW-
L method [160–162] and METS [163] extend the CKKW merging scheme to use numerical
no-branching probabilities, generated by trial showers.

The Unitarised Matrix Element + Parton Shower (UMEPS) scheme [164, 165] improves
the unitarity of tree-level merging and thereby addresses the issue that these change the in-
clusive cross section of the event samples. At NLO, multiple refinements of the aforemen-
tioned LO merging schemes exist. The NL3 technique [166] extends CKKW-L to NLO, just as
UNLOPS [167, 168] does the same with UMEPS. At the same time, UNLOPS may be viewed
as the unitarity-improved version of NL3. The MENLOPS scheme [169, 170] combines an
NLO calculation for the lowest multiplicity with LO calculations for higher multiplicities in the
METS scheme, while the full extension to NLO is treated in the MEPS@NLO scheme [171,
172]. The FxFx method [173] combines MC@NLO matching with MLM merging. The MiNLO
scheme [174, 175] may be regarded as a scale-setting-improved NLO extension of the CKKW
algorithm, with analytically calculated NLL Sudakov factors between the clustered states.

Before describing the matching and merging methods available in PYTHIA 8.3, it should
be emphasized that (NLO) matching and merging methods introduce the stated fixed-order
accuracy only up to the matched (merged) multiplicities. That is, an NLO-matched n-jet event
sample has NLO accuracy only for n-jet observables, while (n+1)-jet observables will have LO
accuracy, and (n+2)-jet as well as higher-multiplicity observables have parton-shower accuracy
only. Similarly, a merged event sample with up to n jets at (N)LO accuracy, has (N)LO accuracy
for m-jet observables with m≤ n. In the case of NLO merging, (n+1)-jet observables will have
LO accuracy, while they will have parton-shower accuracy for LO merging. In either case, m-
jet observables with m > n + 1 have only parton-shower accuracy. Another question is the
accuracy of the inclusive cross section. In NLO matching schemes, the inclusive cross section
is accurate to NLO by design. In merging schemes, the inclusive cross section of n-jet cross
sections are individually retained only if the merging scheme is constructed to be unitary, such
as UMEPS or UNLOPS. In non-unitary merging schemes, inclusive cross sections are changed
by the inclusion of higher-multiplicity event samples.

5.1 PYTHIA methods for leading-order multi-jet merging

As discussed above, PYTHIA offers a variety of leading-order merging schemes. This allows
for a test of the robustness of merged predictions, beyond assessing the uncertainty due to
scheme-specific parameters. The main task for a leading-order merging scheme is to produce
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an inclusive event sample that provides a simultaneous tree-level prediction for observables
depending on any number of jets≤ n. This entails removing any overlap between the tree-level
calculations for ≤ n partons. The second main task is to provide a smooth transition between
the “well-separated region” (Q(Φn) > QMS) described by (reweighted) tree-level results, and
the “soft/collinear region” (Q(Φn) < QMS) described by the parton-shower radiation pattern.
Internal merging schemes in PYTHIA also ensure that the self-consistency of the PYTHIA event-
generation chain is intact.

CKKW-L multi-jet merging is the oldest tree-level merging scheme implemented in PYTHIA.
It allows both standard-model and BSM core processes4, to which multiple several colour-
charged partons or W bosons are added. Lepton and hadron-collider processes are accepted.
The resulting tree-level samples are combined with each other and the default parton shower
by employing the merging formula

〈O〉CKKW−L =
N−1
∑

n=0

∫

dΦn
dσ(0)n

dΦn

wPS
n

wFO
n
Πn(tn, tcut ;Φn;>QMS)Θ(Q(Φn)−QMS) S(O,Φn;<QMS)

+

∫

dΦN
wPS

N

wFO
N

dσ(0)N

dΦN
Θ(Q(ΦN )−QMS) S(O,ΦN ) , (231)

where the showers S(O,Φn;< QMS) of all but the highest-multiplicity event sample fill in
emissions below the merging scale QMS. The main challenge of CKKW-L merging lies in the
correct calculation of the weights wPS

n . Their calculation in PYTHIA ensures that the value of the
weights is identical to the all-order weight the shower would had attached to the state Φn, had
it produced the state internally. This requires the construction of all possible parton-shower
histories, and an admixture of the (history-dependent) weight factors identical to that of the
shower [161].

A theoretical drawback of CKKW-L is that inclusive jet cross sections change upon inclusion
of higher-multiplicity tree-level samples. The size of the change is determined by the value
of the merging scale QMS, leading to unacceptable changes for QMS of O(1GeV). For low
merging scales, the exact “subtract what you add” strategy highlighted in eq. (230) has to be
employed. For this purpose, the UMEPS method has been introduced in PYTHIA. The UMEPS
implementation can handle the same process classes as the CKKW-L scheme. The UMEPS
merging formula reads

〈O〉UMEPS =
N−1
∑

n=0

∫

dΦn

�

dσ(0)n

dΦn

wPS
n

wFO
n
Θ(Q(Φn)−QMS)

−
∫

dΦ1
dσ(0)n+1

dΦn+1

wPS
n+1

wFO
n+1

Θ(Q(Φn+1)−QMS)

�

S(O,Φn;<QMS)

+

∫

dΦN
wPS

N

wFO
N

dσ(0)N

dΦN
Θ(Q(ΦN )−QMS) S(O,ΦN ) , (232)

The subtractive samples in this formula are produced with the help of the parton-shower his-
tory employed to calculate the weights wPS

n [164].
As a final remark on leading-order merging, it should be noted that PYTHIA offers de-

tailed semi-internal UserHooks utilities for MLM jet matching [176]. This early approach
to combining fixed-order matrix-element calculations with parton showers approximates the
parton-shower no-emission probabilities necessary to remove overlap between samples with a

4Note, though, that no attempt is made at diagram removal or subtraction for colour-changed BSM resonances
that decay into SM quarks.
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pragmatic event-veto procedure: the parton ensemble at fixed order is stored, and compared
to jets after showering the ensemble. If each jet directions overlaps with one parton direction,
the event is retained. The rate of rejected events mimics the application of no-emission prob-
abilities. This convenient approach has the benefit of simplicity and computational efficiency,
at the expense of sacrificing a formal understanding of the result.

5.2 PYTHIA methods for matching

The POWHEG NLO matching formalism as given in eq. (226) provides an elegant and universal
method for the combination of NLO calculations and parton showers. It is universal, as it does
not depend on the exact implementation of the parton shower to be matched. This is, because
in addition to the NLO-corrected Born-level event, the first emission is generated according to
a matrix-element corrected no-branching probability

Π̄(Q2
0,Q2

1) = exp











−

Q2
0

∫

Q2
1

dΦ+1
dσ(0)n+1

dσ(0)n











, (233)

which is independent of the branching kernels used by the shower. In principle, an NLO-
matched prediction could therefore be obtained with any given shower by starting the shower
evolution at the scale of the first POWHEG emission. In practice, the ordering variable of the
shower t will disagree with the ordering variable Q2 used in the POWHEG formalism. To avoid
over- or under-counting emissions, it is hence preferable to start the shower at the phase-
space maximum (i.e. using a “power shower”, cf. section 4.1.3) and vetoing emissions that are
harder than the POWHEG emission according to the POWHEG ordering variable. This method
was outlined in [90] and since then PYTHIA 8.3 provides the relevant POWHEG hook to supply
consistent showering of POWHEG BOX events with the simple showers. It is worth noting
that this procedure leads to the somewhat awkward situation that the first, i.e. hardest, jet is
produced from the kinematics and colour configuration of the Born+1-jet state. To circumvent
this, a more complete treatment would involve clustering the first emission and running a
vetoed truncated shower off the actual Born state for the first emission. This is currently not
available in PYTHIA 8.3.

It might potentially be regarded as an inelegance that the POWHEG no-branching proba-
bility eq. (233) exponentiates the full matrix element, including process-specific non-singular
terms, and that the value of Q2

0 is typically given by the (hadronic) phase-space limit, and not
a scale that more adequately defines the transition between “hard” and “soft” radiation. These
concerns are avoided in the (historically first developed) MC@NLO method, in which the real-
radiation matrix element is separated into an infrared-singular (“soft”) and infrared-regular
(“hard”) part,

dσ(0)n+1 = dσS(0)
n+1 + dσH(0)

n+1 . (234)

Therefore, only the singular part in the no-branching probability is retained,

Π̄S(Q2
0,Q2

1) = exp











−

Q2
0

∫

Q2
1

dΦ+1
dσS(0)

n+1

dσ(0)n











, (235)
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so that the MC@NLO matched expectation value of an observable O reads

〈O〉(MC@NLO)
NLO+PS =

∫

dΦn

�

dσ(0)n

dΦn
+

dσ(1)n

dΦn
+

∫

dΦ+1
dσPS(0)

n+1

dΦn+1

+

∫

dΦ+1

�

dσS(0)
n+1

dΦn+1
−

dσPS(0)
n+1

dΦn+1

�

�

S(O,Φn)

+

∫

dΦn+1
dσH(0)

n+1

dΦn+1
. (236)

As evident from eq. (236), the MC@NLO method requires stringent consistency between the
NLO calculation and the shower. Different to the POWHEG method, it therefore does not pro-
vide a universal scheme but needs to be implemented explicitly for each shower. To facilitate
a simple implementation of the MC@NLO technique for PYTHIA’s simple shower, PYTHIA 8.3
provides a global-recoil scheme, cf. section 4.1.3. A publicly available parton-level event gen-
erator supporting the generation of MC@NLO events for PYTHIA’s simple shower is MAD-
GRAPH5_AMC@NLO. Caution is, however, advised, as the global-recoil scheme might not be a
suitable choice for each and every process.

Different to the POWHEG formalism, the MC@NLO scheme explicitly employs negative-
weighted events (in fact POWHEG was designed to remove negative weights from MC@NLO).
While not posing a problem technically, negative weights reduce the efficiency of any sim-
ulation, simply because they have to compensated for in histograms with positive-weighted
events, of which more are needed to obtain the same statistics as for simulations with a strict
probability interpretation. The fraction of negative-weighted events can be reduced by the
MC@NLO-∆ formalism [177], which regulates the divergent structure of real-emission ma-
trix elements via shower-generated no-branching probabilities. In addition, the MC@NLO-∆
prescription introduces an independent shower starting scale for each colour line in the hard
process. Such multi-scale treatment is also required in the POWHEG formalism, if resonance-
aware matching is pursued, e.g. when using the POWHEG BOX RES generator [178]. In both
cases, PYTHIA 8.3 offers the necessary machinery to deal with multiple scale definitions [179]
through UserHooks (see section 9.7.2). While PYTHIA 8.3 offers in-house implementations
for MC@NLO and POWHEG matching as alluded to above, other matching schemes can conve-
niently be implemented via user hooks, cf. section 9.7.2. A prominent example is the NNLO+PS
matching framework GENEVA [180–183].

5.3 PYTHIA methods for NLO multi-jet merging

A number of schemes to combine several matched NLO (QCD) calculations with each other
and parton showering are available in PYTHIA. As was the case for tree-level merging (cf. sec-
tion 5.1), this allows for an exploration — through comparison within the same code base —
of the benefits and limitations of various approaches, as well as NLO merged predictions more
generally.

Historically, the first two NLO merging schemes embedded in PYTHIA were NL3 (an exten-
sion of the CKKW-L approach to NLO) and UNLOPS, the extension of UMEPS to NLO accuracy.
Beyond the theoretical and computational challenges already present at leading order, NLO
merging needs to ensure that the application of all-order weights wPS

n /w
FO
n does not invali-

date the NLO precision of the input samples due to overlapping virtual corrections. This can
be achieved by subtracting the first-order expansion of the shower weights attached to tree-
level events. Thus, the main complication in calculation is in generating terms in the shower
expansion [184]. PYTHIA uses trial showering to generate the expansion of no-emission prob-
abilities, and analytic results to calculate the expansion of running-coupling and PDF factors.
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Once these technicalities are under control, the NLO extension of CKKW-L implements the
matching formula

〈O〉NL3 =
N
∑

n=0

∫

dΦn
dσ(0)n

dΦn

wPS
n

wFO
n
Πn(tn, tcut ;Φn;>QMS)Θ(Q(Φn)−QMS) S(O,Φn;<QMS)

+
N
∑

n=0

∫

dΦn

�

dσ(1)n

dΦn
+

∫

dΦ1
dσ(0)n+1

dΦn+1

�

�

�

�

�

Φn

−
dσ(0)n

dΦn

�

wPS
n

wFO
n
Πn(tn, tcut ;Φn;>QMS)

�

O(αs)

�

S(O,Φn;<QMS)

+

∫

dΦN+1
dσ(0)N+1

dΦN+1

wPS
N+1

wFO
N+1

Θ(Q(ΦN+1)−QMS) S(O,ΦN+1) . (237)

where square bracket with subscript O(αs) indicate that the O(αs) term of the expansion of
the bracketed term is required. The first and last line of eq. (237) are identical to the CKKW-
L result. The second line incorporates the inclusive NLO correction, and the subtraction of
double counting of virtual corrections. As was the case for CKKW-L, the calculation of all
necessary terms in eq. (237) employs parton shower histories.

However, the NL3 formula eq. (237) has the same theoretical drawback as the CKKW-L
results: inclusive n-parton rates are changed when including corrections to m > n parton
rates. The size of the effect is determined by QMS, and can easily be of a similar numerical size
as NLO corrections for moderately small QMS. Thus, PYTHIA also extends the UMEPS method,
which corrects this behaviour, to NLO accuracy. The resulting UNLOPS merging formula can
be found in [184]. UNLOPS is the preferred NLO merging scheme in PYTHIA.

Before moving on, it is interesting to observe that any reweighting of the second line in
eq. (237) with higher-order terms will neither affect the NLO fixed-order nor the shower ac-
curacy of the combined calculation. Thus, variants of NLO merged methods can be obtained
from reweighting these contributions. This freedom, and the resulting uncertainty, is exposed
in PYTHIA by offering three different variants of UNLOPS [185]. Sensible uncertainties from
NLO merged calculations should include the envelope of these variants as “scheme uncer-
tainty”.

As part of its semi-internal implementation of MLM jet matching, PYTHIA also offers semi-
internal utilities to combine input samples produced for FxFx merging [173]. This scheme
extends the MLM method to NLO QCD accuracy, and handles the overlap between events of
different multiplicity before showering in a hybrid scheme: fixed-order events are reweighted
with analytic Sudakov form factors to produce results that are additive before showering. The
overlap after showering is addressed in a pragmatic way, following along the lines of MLM jet
matching. The resulting scheme is computationally efficient, especially since Sudakov form
factors can directly be integrated into the fixed-order calculation code. However, this efficiency
comes at the price of an unclear all-order structure of the prediction. Nevertheless, the scheme
has found a large user base.

5.4 Matching and Merging in VINCIA

The unique “maximally bijective” property of VINCIA’s sector antenna showers, cf. section 4.2,
make them well suited for incorporating corrections from fixed-order matrix elements, espe-
cially at high multiplicities. The focus so far has been on QCD corrections, although the sector
nature of VINCIA’s coherent QED shower should make adaptations to include QED corrections
as well fairly straightforward.
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At leading order, a dedicated CKKW-L merging scheme has been implemented which ex-
ploits the properties of VINCIA’s sector showers. This is discussed below in section 5.4.1. De-
tails on the general PYTHIA CKKW-L implementation can be found in section 5.1.

Next-to-leading order matching in the antenna framework is so far not generally available,
but VINCIA’s QCD showers, including the resonance-final one, can be combined with NLO QCD
calculations by shower-independent matching methods, such as POWHEG. This is described in
section 5.4.2.

Although VINCIA currently has no built-in NLO matching schemes, a generalization of the
scheme developed in [96, 186] may become available in the future. In a similar vein, VINCIA

does not offer the merging of multiple NLO-matched samples in the current version. Schemes
extending the ones described in section 5.3 to sector showers may, however, be implemented
in the future.

VINCIA’s NNLO matching approach presented in [187] is not yet part of the public
PYTHIA 8.3 releases. We expect it to become available in a future release, once it has been
applied and validated for a larger class of processes.

A signature feature in early developments of VINCIA, iterated matrix-element corrections
[64, 106, 148, 188] have not yet been made available in PYTHIA 8.3. Plans are underway to
do so, building on the new matrix-element interfaces described in section 10.1.6. Note also
that VINCIA’s weak shower, described in section 4.2.4, is currently not sectorized and hence
full-fledged EW merging would presumably require some work. Finally, note that dedicated
matching and merging strategies for VINCIA’s interleaved treatment of resonance decays have
not yet been worked out. See the program’s online manual for updates.

5.4.1 Leading-order merging

Tree-level merging with VINCIA is done in the CKKW-L scheme [158, 160, 161] according to
eq. (231), properly extended to sector showers [162]. The phase-space sectorization par-
ticularly facilitates the merging at very high multiplicities and offers increased control over
highly-complex final states. Most of the merging method is identical to the PYTHIA implemen-
tation described in section 5.1, with the difference only in the construction of shower histories
needed for the Sudakov reweighting. The settings relevant to VINCIA’s CKKW-L implementa-
tion can be found in section 9.6.1.

In the default CKKW-L scheme, all possible shower histories are constructed and the one
maximizing the branching probability is chosen, cf. section 5.1. In the sector-shower CKKW-L
implementation, however, the construction of all possible histories is replaced by a determinis-
tic inversion of the shower evolution. This is possible because VINCIA’s sector showers generate
branchings only if these correspond to the minimal sector-resolution variable, cf. section 4.2.2.
The sector-resolution variable can then be used to exactly invert any branching. The only sub-
tlety in this algorithm stems from the treatment of multiple quark pairs, for which all possible
quark-antiquark clusterings must be taken into account. To this end, the same procedure as
in the default CKKW-L method is utilized and a shower history is constructed for all viable
permutations of colour strings between quark pairs, and the one maximizing the branching
probability is picked. This algorithm replaces the shower history tree by maximally a few
linear history branches, which not only positively affects the CPU time needed for the compu-
tation, but more importantly reduces the prohibiting scaling in memory allocation intrinsic to
the default CKKW-L algorithm.

5.4.2 NLO matching

If an NLO-matched calculation with VINCIA is desirable, the POWHEG method [150,151] with
externally matched NLO event samples, as e.g. produced by the POWHEG BOX program [155,
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178], can be used [88]. To this end, the difference in the POWHEG BOX and VINCIA evolution
variables are properly accounted for by increasing the shower starting scale and vetoing emis-
sions above the POWHEG scale [90]. The usage of POWHEG BOX with VINCIA is described in
detail in [189, appendix A].

5.5 Matching and Merging in DIRE

At the time of compiling this manual, the matching and merging machinery with DIRE have not
been validated within PYTHIA 8.3. Previous versions of DIRE + PYTHIA 8.2 included CKKW-L
tree-level merging [135], UNLOPS NLO merging [136], iterated matrix-element corrections
within the MOPS approach [135, 137], and TOMTE N3LO+PS matching [190]. We expect
these previous developments to become accessible and validated in PYTHIA 8.3 in the future.

6 Soft and beam-specific processes

Hadrons and nuclei are composite objects, mainly made out of quarks and gluons. This re-
quires the introduction of parton distribution functions (PDFs) f A

a (x ,Q2), expressing the prob-
ability density that parton a exists inside particle A with a momentum fraction x if the particle
is probed at a resolution scale Q2. Given such PDFs, hard collisions between the constituent
partons can be described by perturbation theory, see section 2.3. But in the limit p⊥ → 0
the cross section for perturbative QCD scattering diverges, and traditional perturbation theory
breaks down.

The alternative offered already since before the advent of QCD is so-called Regge–Gribov
theory [191–195], wherein an effective field theory is formulated in terms of the exchange
of reggeon (R ) and pomeron (P ) objects between the colliding hadrons, with propagators
and vertex-coupling strengths, the latter both to hadrons and among themselves. A reggeon
(pomeron) contribution represents the resummed effect from the exchange of (an infinite set
of) mesons (glueballs) with a common set of flavour quantum numbers, but ordered in a linear
relationship (a “trajectory”) between increasing orbital angular momentum L and increasing
m2. This language can be used to motivate expressions for total, elastic, and diffractive cross
sections, even if today this is done in a pragmatic spirit, where not fully consistent adjustments
of parameters can be made to better fit data.

Leptons are fundamental particles, unlike hadrons, and it would seem like traditional per-
turbation theory can always be applied. But a charged lepton is surrounded by a cloud of
virtual photons, and these carry some of the total momentum. It therefore becomes necessary
to introduce PDFs also to describe the distribution of a lepton and photons inside the whole
charged lepton, as a function of Q2. Either of these two components can then collide with
constituents of the other beam. The photon, in its turn, can fluctuate further into a lepton or
quark pair, and the latter again can have a non-perturbative behaviour. This requires a similar
approach for photon interactions as for hadron ones, in fact with even more complexity. Since
hadrons and nuclei also can contain or be surrounded by photons, by coupling to the charge
of individual quarks or to the hadron as a whole, similar issues can arise in hadronic collisions.

Also fluxes of W± and Z bosons can be defined, and have been used in the past, both
for leptons and for protons. The large weak-gauge-boson masses suppress the rate in the
p⊥ → 0 limit, however, and so their contributions are better handled as propagators in Feyn-
man graphs, like the top quark and the Higgs boson. This also implies that neutrinos can be
considered point-like for our purposes.

Heavy-ion collisions introduce further physics aspects, relative to hadronic collisions. Some
of these are reasonably well understood, such as the role of the initial geometry, where models
for the distribution of nucleons inside a nucleus can be used to find the “wounded” nucleons,
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i.e. those that interact. But most of the subsequent physics is still open to interpretation, and
different approaches exist. One such is the PYTHIA 8.3/ANGANTYR model, presented here.

6.1 Total and semi-inclusive cross sections

Here we introduce the components of the total hadron-hadron cross section, and how these
vary as a function of the collision energy. The intention is not to go into the modelling of
the collision processes as such, which is the main topic for subsequent subsections, but some
such information is necessary when the differential cross sections are the basic building blocks,
and the integrated ones only a consequence thereof. See also the online manual, under the
heading “Total Cross Sections”.

Throughout this section, we will discuss collisions between two high-energy hadrons A
and B at a squared CM energy s = E2

CM. By high energy, we mean roughly ECM > 10 GeV,
where the perturbative model is valid. Low-energy non-perturbative processes are discussed
in section 6.1.5. The (strong-interaction) total cross section for the collision of two high-energy
hadrons is conveniently subdivided into several components, typically

σAB
tot(s) = σ

AB
el (s) +σ

AB
inel(s)

= σAB
el (s) +σ

AB
sd(X B)(s) +σ

AB
sd(AX )(s) +σ

AB
dd (s) +σ

AB
cd (s) +σ

AB
nd(s) . (238)

The components are:

• Elastic scattering (el) AB → AB where the hadrons are scattered through an angle but
are otherwise unharmed. Everything else, where the final state is not AB, is collectively
called inelastic.

• Single diffraction (sd) where either of the incoming hadrons becomes an excited system,
while the other remains intact, AB → X B or AB → AX . Here, X represents the excited
system that eventually will produce two or more hadrons.

• Double diffraction (dd) where both hadrons are excited, AB → X1X2, but remain as
separate objects.

• Central diffraction (cd), where both hadrons survive but lose energy to a new central
system, AB→ AX B.

• Non-diffractive interactions (nd), or more formally inelastic non-diffractive ones, where
both hadrons break up and form a common system, AB→ X , that is not (easily) subdi-
vided into separate subsystems, unlike diffraction.

In principle, one could imagine higher diffractive topologies, say AB→ X1X2X3, but these are
expected to be small and are neglected here. For applications at low energies we will also
introduce annihilation and resonance contributions.

The dividing line between these different components is unclear, notably between diffrac-
tive and non-diffractive events. Single- or double- diffractive systems X predominantly have
low masses, and thus only produce a few particles at either end of the full rapidity range. In
between, there is a large rapidity gap, i.e. a region in rapidity space without any particle pro-
duction. That is unlike the non-diffractive events, where particle production is assumed to span
the whole available rapidity range. But, since particles are discrete objects randomly produced,
there will be a falling distribution of increasing gap sizes also in non-diffractive events. In con-
trast, the falling tail of large-mass diffractive systems can leave no obvious gap in a diffractive
event. We therefore need to distinguish the theoretical modelling of cross-section classes and
event properties presented here from the experimental-detector and analysis-dependent clas-
sification of observed events.
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Figure 9: Schematic Feynman-diagram-style illustration of the six event classes in
eq. (238). A pair of parallel vertical gluons represent a net colour-singlet exchange, a
pomeron, while a single vertical gluon gives a colour-octet exchange, a cut pomeron.
The vertical axis can be viewed as representing the rapidity range spanned between
A and B, where horizontal gluons are regions with possible partonic final-state pres-
ence. The red bars represent the final regions where strings will be drawn and pro-
duce hadrons, whereas the regions without them are rapidity gaps.

In modern nomenclature, where a pomeron is viewed as shorthand for a two-gluon system
in a colour-singlet state, the different event classes can be illustrated in terms of the colour
and momentum-energy transfers between the two incoming hadrons, see fig. 9. An elastic
scattering requires a pomeron (or reggeon) to be exchanged, so that the scattered hadrons
remain colour singlets, but with (modestly) changed outgoing momenta. If only one gluon
is exchanged, a so-called cut pomeron, then the colour transfer turns the A and B hadrons
into colour-octet objects, which means they will be connected by colour strings that can frag-
ment into hadrons over the whole rapidity range, i.e. this gives a non-diffractive event. Single
diffraction, e.g. AB → AX , can be viewed as a two-step process. First the emission of a P
from A, carrying a fraction ξ of the A momentum. And second the collision between the P
and B, giving rise to a system with M2

X = ξs. For the first step a pomeron flux f A
P (ξ, t) can

be introduced in analogy with conventional PDFs, while the second step can be viewed as a
non-diffractive-type PB subcollision, at least for large MX . Double and central diffraction can
be described in a similar manner.

The hadronic cross sections that will be discussed late are for reasonably high hadron-
hadron CM energies, say ECM > 10 GeV, corresponding to a fixed-target proton-proton beam
energy of Ebeam ¦ 50 GeV. Separate from this, low-energy cross sections will be discussed in
the context of hadronic rescattering, section 6.1.5. To a large extent the same language can
be used, but at low energies the contribution from exclusive resonances, AB → R → AB or
AB→ R→ C D, can give rise to rapid fluctuations in the cross section as a function of s.
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6.1.1 Proton total cross sections

As already mentioned, pomeron and reggeon contributions play a large role in the modelling of
cross sections. Both are expected to give an sδ energy dependence, where δ ≥ 0 for pomerons
and δ < 0 for reggeons, such that high-energy cross sections are dominated by the pomeron
term. The pomeron contribution is even, i.e. the same for AB and AB, while reggeons can be
even or odd, the latter giving opposite-sign contributions for the two processes. A hypothetical
odderon contribution would be odd, as the name indicates, and have δ ≥ 0 like the pomeron,
so that σAB(s) − σAB(s) would not vanish in the s →∞ limit. Its existence is supported by
recent TOTEM data [196], but is still not included in most models.

The simple sδ behaviour is obtained for the exchange of a single object, whereas multiple
exchanges can come in with opposite signs and damp the rise of cross sections. The Froissart
bound [197] shows that cross sections cannot rise faster than ln2 s asymptotically, but that
limit is far off. Other bounds are more relevant, for instance that diffractive cross sections
cannot become larger than the total one [198].

The most important hadronic cross sections are the pp and pp ones. Here, four different
σtot(s) parameterizations are available for high-energy collisions in PYTHIA, plus one place-
holder, see further the overview in [199]. They are roughly ordered in increasing number of
free parameters tuned to data, with numbers corresponding to the options of the
SigmaTotal:mode switch.

0. A zero option allows the user to set any value at the currently studied energy, i.e. it does
not model any energy dependence.

1. The Donnachie–Landshoff (DL) form [200], with one pomeron and one reggeon term,

σAB
tot(s) = X AB s0.0808 + Y AB s−0.4525 , (239)

with s in units of GeV and σ in mb. The coefficients X pp = X pp, as discussed above.
There is no such symmetry for the Y AB, which can be viewed as having one even and
one odd reggeon, but with the same power.

2. The Minimum Bias Rockefeller (MBR) parameterization [201], which uses two different
expressions. Below 1.8 TeV the form is given by one pomeron and two reggeon terms,
whereof one odd and one even, with different δ. Above it a common Froissart-inspired
form like a ln2 s+ b ln s+ c is used.

3. The ABMST model [202] includes a soft and a hard pomeron, i.e. lower or higher δ > 0,
an even and an odd reggeon, plus terms for two-pomeron and triple-gluon exchange.

4. The COMPAS/RPP parameterization [203] contains a total of six even and six odd terms,
including pomeron, odderon, reggeon, and double-exchange ones.

The relevant cross section parameterizations are hard coded in options 1 – 4, and cannot easily
be changed.

6.1.2 Proton elastic cross sections

Elastic cross sections are related to total ones via the optical theorem:

dσel

dt
(s, t = 0) =

1+ρ2

16π
σ2

tot(s) , (240)

where t represents the squared momentum transfer between the initial and final proton on the
same side of the event. For detailed modelling, a suitable starting point is the elastic scattering

115

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

amplitude T (s, t), from which one derives (dσel/dt)(s, t)∝ |T (s, t)|2, σtot∝ Im T (s, 0), and
ρ = Re T (s, 0)/Im T (s, 0). Typically ρ is close to 0 and can be neglected to first approximation.
The total elastic cross section is obtained by integration over t.

For the simple Regge-theory-motivated ansatz, that (dσel/dt)(s, t)∝ exp(Bel t), one ob-
tains

σel(s) =
1+ρ2

16π

σ2
tot

Bel
, (241)

where, to a very good approximation at high energies, the t integration range has been ex-
tended to [−∞, 0]. The ansatz also assumes that

BAB
el (s) = 2bA+ 2bB + 2α′ ln(s/s0) , (242)

where bA,B come from the respective hadronic form factors, with b = 2.3 GeV−2 for un-
flavoured baryons and 1.4 GeV−2 for mesons, α′ = dL/dm2 = 0.25 GeV−2 is the slope of
the pomeron trajectory, and s0 = 1/α′ = 4 GeV2 is a typical hadronic scale [198,204].

In detail, the total-cross-section models above, as selected by SigmaTotal:mode, also
handle elastic scattering as follows.

0. It is possible for the user to set their own σel, Bel, and ρ at the current energy.

1. The original DL model was extended to Schuler and Sjöstrand (SaS)/DL [198] by the
simple Regge-theory ansatz above, but with the difference that the ln s dependence in
eq. (242) is replaced by an s0.0808 term to ensure that σel does not grow faster than σtot
asymptotically. There is no modelling of ρ, but a value can be set by hand.

2. In MBR the ratio σel(s)/σtot(s) is parameterized, separately below and above 1.8 TeV,
and separately for pp and pp below it. Then eq. (241) is used to derive a Bel(s) slope,
with ρ = 0.

3. In ABMST the fundamental building block is a complex scattering amplitude T (s, t),
containing the six terms of the total cross section, each with a separate t dependence,
usually, but not always, of an exponential character. From this, both total and elastic
cross sections are derived, including the ρ parameter.

4. Also the COMPAS/RPP parameterization starts out from a complex T (s, t), with the same
comments as for ABMST, except that the number of terms now is larger.

There are no further free parameters in the code, beyond the ones mentioned above.
So far, only strong interactions have been considered. But, since protons are charged

particles, there are also electromagnetic (EM) interactions. These are given by the traditional
Coulomb scattering cross section, dσel/dt ∝ α2

em/t2, which blows up in the t → 0 limit, i.e.
for vanishing scattering angle. Therefore, it is always necessary to specify a minimal angle
or equivalently a tmax < 0. There are two aspects that make it possible to disregard the
EM contributions at the LHC, except for special runs. Firstly, the EM contribution exceeds
the strong one only below a |t| of order 10−3 GeV2, which corresponds to extremely small
scattering angles. Secondly, owing to this, inelastic EM collisions are completely negligible.
By default, Coulomb corrections therefore are not taken into account, but can be switched on.

What complicates the issue is that the elastic scattering amplitude

T (s, t) = Tn(s, t) + eiαemφ(t) Tc(s, t) , (243)

contains a phase factor in front of the Coulomb Tc amplitude, relative to the definition of
the real part of the nuclear/QCD Tn amplitude. Three different expressions are used, one
for SaS/DL, and also for MBR and SigmaTotal:mode0, and one each for ABMST and COM-
PAS/RPP. Although written in slightly different ways, they give almost identical results.
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6.1.3 Proton diffractive cross sections

Diffractive cross sections are differential in several variables: for single diffraction in t and
MX ; for double diffraction in t, MX1

, and MX2
; and for central diffraction in t1, t2, and MX .

Here, MX represents the mass of the respective diffractive system. Alternatively the scaled
variable ξ = M2

X/s is often used, but it is less intuitive when modelling contributions from
low-mass resonances. The fundamental objects are the differential expressions, and the inte-
grated rates in general do not have simple closed forms. Within Regge theory it is possible to
relate the differential expressions to the ones for total and elastic ones, with minor extensions.
Specifically, single diffraction is modelled with triple-Regge exchange graphs that involve the
same pomeron (or reggeon) propagators as before, but requires the introduction of triple-
Regge couplings. If only pomerons are considered, as could be reasonable at high energies,
then mass spectra will behave roughly like dM2

X/M
2
X and t spectra roughly like exp(Bt), where

B = B(s, M2
X ) depends on the process considered.

In reality it is more complicated, for a number of reasons. At low masses the experimental
MX spectrum is not smooth, but reflects the presence of well defined N and∆ resonance states.
At high masses phase-space restrictions kick in, e.g. in the allowed t range, as well as a wish to
minimize the overlap between diffractive and non-diffractive event topologies. In addition to
the pomeron also reggeons should be considered, in various combinations, contributing to dif-
ferent mass distribution shapes and CM energy dependencies. Some terms increase faster with
CM energy than the total cross section itself, implying that the description has to break down
at some point. The solution to this is likely to involve the possibility of multiple exchanges of
both a diffractive and non-diffractive nature, leading to a competition between the two [205].

Three different diffractive models are implemented [199], matching the first three descrip-
tions of total and elastic cross sections, plus again an additional placeholder, enumerated in the
SigmaDiffractive:mode switch in the same way as in SigmaTotal:mode. It is possible to
combine the choice of total plus elastic and diffractive models freely.

0. One can set user defined single, double and central diffractive cross sections for the
current energy. In this option there is a choice between seven possible M2

X spectra, with
related t shapes.

1. The SaS model is based on pomeron contributions only, i.e. is of the form
(dM2

X/M
2
X ) exp(Bt) to first approximation. At low masses a smooth enhancement is

added, to provide a simple smeared-out further contribution from resonances. At large
masses the rate is suppressed to reduce the rate of diffractive events with small rapidity
gaps. The rise of the diffractive cross section with energy is given by integration. It turns
out, however, that the initial ansatz gives a steeper rise than data, so energy-dependent
damping factors have been introduced. Central diffraction is a rather recent addition,
not included in many commonly used tunes, and therefore not on by default. The B slope
is similar in spirit to eq. (242), but without any form factor contribution for protons that
break up, and the logarithmic term is related to the rapidity gap size, e.g. ln(s/M2

X ) for
single diffraction.

2. In the MBR model the single-, double- and central-diffractive cross sections are given as
ratios of two integrals, one being the Regge cross section and the other a renormalized
flux. These are matched so that the increase of diffractive cross sections is kept at an
acceptably low rate. The differential distributions in M2

X and t are given by somewhat
lengthier expressions than in SaS, but qualitatively similar.

3. The ABMST model is the most sophisticated one, in terms of number of components con-
sidered. The single-diffractive description is split into two parts, for high- and low-mass
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diffraction. The former includes PPP, PPR, RRP and RRR graphs, plus pion exchange,
each with a characteristic mass, t, and energy dependence. Four resonances are mod-
elled in the low-mass regime, along with a background from the high-mass regime and
a contact term matching the two regimes smoothly. The resonances are excited states
of the proton, each a unit of angular momentum higher than the previous one. Taken
together, the ABMST model gives a very good description of data at lower energies. Un-
fortunately the energy dependence of some terms is too steep, such that single diffrac-
tion at the LHC is overestimated by about a factor of two, and results at 100 TeV would
be completely unphysical. A few different options have therefore been included in the
PYTHIA implementation to damp this rise [199]. Another problem is that ABMST does
not model double diffraction. One expects an approximate relationship [195]

d3σdd

dM2
X1

dM2
X2

dt
≈

d2σsd

dM2
X1

dt

d2σsd

dM2
X2

dt

�

dσel

dt

�−1

, (244)

however, and this has been used to extend the modelling. Also central diffraction can
be introduced by a similar ansatz.

4. The COMPAS/RPP parameterization does not extend to diffraction, so there is no such
option.

Each of the models above contain a wide selection of modifiable parameters, specific to that
diffraction model. Both the integrated and the differential cross sections can be modified,
notably affecting the dependence on CM energy and the shape of the MX spectra.

In summary, the modelling of diffraction is highly nontrivial, and at a more primitive stage
than that of total and elastic cross sections. There also exist alternative starting points to the
Regge formalism we have worked with here, notably the Good–Walker one [206]. In it, it is
assumed that the interaction eigenstates do not agree with the mass ones. That is, an incoming
proton can be viewed as a coherent sum of interaction eigenstates. During the collision process,
parts of these eigenstates are absorbed to give rise to non-diffractive events. The remaining
parts of the incoming wave function can be projected back on to a spectrum of possible masses
for the outgoing object, including one component corresponding to elastic scattering. Actually
the “diffraction” name comes from the close analogue with optics, where an opaque disk put in
a beam of light absorbs part of the light but also generates a quantum mechanical diffraction
pattern in the remaining light. Such a picture implies that diffractive and elastic collisions are
more peripheral than non-diffractive ones. The same also holds in the Regge-language-related
MPI framework to be discussed in the next subsection, so even of the models seemingly are
unrelated, there are many common traits.

6.1.4 Other cross sections

Except for the absence of Coulomb elastic scattering, collisions involving (anti)neutrons are
assumed to have the same cross sections as (anti)protons in PYTHIA, and this similarity appears
supported by data [200]. Therefore all of the models above can be used for pn, pn, nn and nn.

For other hadron combinations, the only alternative beyond the user-defined option is an
extension of the SaS/DL setup. It encompasses the following collision types.

• Combinations where σtot(s) were fitted by DL [200]: π+p, π−p, K+p, K−p, and γp.

• SaS extensions [207]: ρ0p, φ0p, J/ψp, ρ0ρ0, ρ0φ0, ρ0J/ψ, φ0φ0, φ0J/ψ, and
J/ψJ/ψ. Particles with identical flavour content are assumed to give identical cross
sections. The prime example is π0, ρ0, and ω. The emphasis on the interactions of
vector mesons is related to the SaS modelling of γp and γγ physics, where an important
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aspect is that a real photon can fluctuate into a vector meson like ρ0, ω, φ0, or J/ψ,
and interact as such most of the time (Vector Meson Dominance (VMD), see section 6.6
and section 6.7). Total γγ cross sections are also provided.

• Later extensions in the SaS/DL spirit [49]: K0p, ηp, η′p, D0,+p, D+s p, B0,+p, B0
s p, B+c p,

Υp, Λp, Ξp, Ωp, Λcp, Ξcp, Ωcp, Λbp, Ξbp, and Ωcp. Isospin symmetry is used to equate
the cross sections of closely related particles, e.g. n with p and Σ+,0,−,∗+,∗0,∗− with Λ.
For the baryon-baryon processes, the corresponding baryon-antibaryon ones are also
implemented. The purpose of these extensions is to allow the tracing of the evolution of
cascades in matter, also in collisions with nuclei, meaning that essentially all hadronic
collisions with protons or neutrons have to be included.

• As a final case, aσPptot(s) is defined for pomerons, but more for model studies of diffractive
systems at a given mass than for comparisons with data.

In summary, by suitably mapping a particle onto one of equivalent flavour content, the possi-
bilities above cover a fair fraction of all possible hadron collisions. The main exceptions are
those involving baryons with more than one charm or bottom quark, and (most) collisions
between two short-lived particles. Should the need arise, further extensions along the same
lines would be possible for these cases.

It should be clear from the onset that the accuracy expected for these cross sections cannot
compare with the pp and pp ones. As a rule of thumb, the rarer the particle, the more uncertain
the assumptions that went into deriving related cross sections. For many applications, notably
the evolution of a cascade in matter, it is the average collision rates that count rather than the
individual ones, however, one may assume that it should still work out reasonably well.

The starting point in all these total cross sections is the pomeron plus reggeon ansatz of
eq. (239). The X AB pomeron term strength appears to obey the Additive Quark Model (AQM)
rule [208, 209], i.e. be proportional to the number ni of valence quarks in each hadron, but
with a reduced contribution for strange and heavier quarks. Thus we have made the ansatz
that X AB ∝ nA

eff nB
eff, with

neff = nd + nu + 0.6ns + 0.2nc + 0.07nb . (245)

The prefactors for heavier quarks have been assumed roughly inversely proportional to their
respective constituent quark masses, which could be viewed as a reflection of a reduced size
of their spatial wave functions.

The modelling of the Y AB reggeon factors is considerably less systematic, since typically
several reggeon trajectories may contribute. The mix of charge-even and charge-odd contri-
butions gives Y AB 6= Y AB, while X AB = X AB. For baryon collisions Y AB > Y AB, which can be
viewed as a reflection of possible contributions from qq annihilation graphs. This is supported
by the observation that Yφp ≈ 0, consistent with the OZI rule [210–212], and we assume that
this suppression of couplings between light u/d quarks and s quarks extends to c and b. Thus,
for baryons, the reggeon Y AB and Y AB values are assumed proportional to the number of u/d
quarks only, scaled separately from the Y pp and Y pp reference values. Thereby baryons with
the same flavour content, or only differing by the relative composition of u and d quarks, are
taken to be equivalent, i.e. σΛp(s) = σΣ

+p(s) = σΣ
0p(s) = σΣ

−p(s). Another simplification is
that D/B mesons are assigned the same cross sections as the respective D/B, taken to be some
average.

The BAB
el slope for hadronic collisions is defined as in eq. (242), with a universal α′ but

bA,B taken to be 1.4 for mesons and 2.3 for baryons, except that mesons made only out of c
and b quarks are assumed to be more tightly bound and thus have lower values, in the spirit
of the AQM factors. Given this, and assuming ρ ≈ 0, the integrated elastic cross sections
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are given by eq. (241). For photon interactions, only the VMD part is assumed to undergo
“elastic” scatterings, so the fractions of fluctuations to ρ0, ω, φ0, or J/ψ are combined with
the expressions for these respective states to scatter elastically.

Diffractive cross sections are again calculated using the SaS ansatz. It provides differential
cross-section expressions for relevant collision processes, which are integrated numerically,
with results suitably parameterized, including a special threshold-region form [213]. The
ansatz for the pomeron-exchange hadronic form factor is taken to be βAP(t) = βAP(0) exp(bAt).
With suitable normalization this translates to X AB = βAP(0)βBP(0). Thus βpP(0) =

p
X pp and

other βAP(0) = X Ap/βpP(0). The β numbers enter in the prefactor of single diffractive cross
sections, e.g. σAB→AX ∝ β2

AP(0)βBP(0) = X AB βAP(0). This expression can be viewed as a
consequence of the optical theorem, wherein an (semi)elastic cross section is related to the
square of a corresponding total one. Neither side is elastic in double diffraction AB → X1X2,
and therefore the rate is directly proportional to X AB. For photons again only the VMD parts
undergo diffractive scatterings.

The descriptions mentioned so far are intended for cross sections at high energies. Specif-
ically, the original DL ansatz was tuned to data down to 6 GeV. At low energies, different
descriptions are used, as outlined in the next subsection, most of which are not intended to be
used much above 10 GeV. In cases where the full energy range from threshold upwards needs
to be used, a smooth interpolation is therefore applied between the low- and high-energy
descriptions. More precisely, the transition is linear in the range between

Ebegin
CM = Emin +max(0., mA−mp) +max(0., mB −mp) , and (246)

Eend
CM = Ebegin

CM +∆E , (247)

where Emin is 6 GeV and ∆E is 8 GeV by default.

6.1.5 Low-energy processes

At low energies (below∼ 10 GeV), the perturbative framework described in this section breaks
down. In modern high-energy physics, experimental beam energies lie far above this threshold,
but processes at these energies still have applications for example in hadronic rescattering
(see section 7.4). PYTHIA provides a framework for simulating such low-energy collisions.
This framework can be used explicitly by enabling LowEnergyQCD:* processes, and is used
implicitly inside PYTHIA when rescattering is turned on. The following gives a summary of the
available low-energy processes:

Elastic scattering AB → AB is implemented similarly to elastic scattering at high energies,
except the cross section is calculated differently, as described below.

Diffractive scattering (both single and double) is also similar to how it is implemented at
high energies. Central diffractive (AX B) has a very small cross section at low energies, and
is thus not implemented. In addition, at low energies the diffractive system can sometimes
be viewed as a resonance excitation, for example pp→ p∆+. In PYTHIA 8.3, these excitation
processes are implemented only for nucleon-nucleon interactions.

Non-diffractive scattering Works similarly in principle to high-energy non-diffractive inter-
actions, but with extra steps to ensure the process does not reduce to an elastic scattering at
energies very close to the threshold.

Annihilation processes Baryon-antibaryon interactions where one or two quarks annihilate.
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Resonance formation A meson interacting with a baryon or another meson can form a res-
onance particle, e.g. pπ+→∆++ or π+π−→ ρ0.
While several of these processes correspond to similar high-energy processes, their cross sec-
tions are in most cases calculated differently, as perturbative calculations cannot be used at
these energies. Only a short overview of how the cross sections are calculated is given here,
and the reader is referred to [213] for further details.

When PDG data is available5, total cross sections are calculated using parameterizations or
by fitting to data. The HPR1R2 parameterization is used when available, as is the case for e.g.
nucleon-nucleon interactions [214]. For baryon-antibaryon interactions, a parameterization
due to UrQMD is used [215]. π π and π K interactions use parameterizations by Pelaez
et al. [216–218]. For other processes involving mesons, if the pair can form resonances, the
total cross section is calculated by summing the contributions from each resonance, possibly
also adding an elastic contribution. While these cases describe the most common processes,
there is also a large set that is not covered. For these remaining processes, the total cross
section is calculated using the additive quark model (AQM) [208,209]with small modifications
introduced to also include charm and bottom quarks [213]. Specifically, the total AQM cross
section is given by

σAB
AQM = (40 mb)

nA
eff

3

nB
eff

3
, (248)

where neff is the “effective” number of quarks in each hadron, given by eq. (245). With this,
low-energy processes are available for all possible hadron-hadron types.

In our description, we define elastic interactions as processes where the hadrons exchange
momenta without ever changing their types, e.g. through a pomeron exchange. We do not
include for example “pseudo-elastic” scattering through a resonance, AB → R → AB. Note
that this distinction usually cannot be made experimentally, so one often considers a process
elastic as long as the outgoing hadrons are of the same type as the incoming ones. For nucleon-
nucleon and nucleon-pion interactions, the elastic cross section is found by fitting to data below
5 GeV [214], and by using the CERN/HERA parameterization above 5 GeV [219]. Elastic cross
sections for baryon-antibaryon interactions are calculated using another parameterization by
UrQMD [215], and for π π and π K, we use parameterizations by Pelaez et al. [216–218].
Other cross sections are given by an elastic AQM-style parameterization. The angular distri-
bution of the outgoing hadrons is the same as for the high-energy case (section 6.1.2).

Diffractive cross sections are calculated using the SaS model [198, 207], with two modi-
fications. First, the basic model is designed to deal with processes involving only p, p, π, ρ,
ω, and φ hadrons. In the low-energy framework, the generic case is calculated by replacing
each incoming hadron by the most similar among these particles (e.g. treating each baryon
as a proton), then rescaling the calculated cross section by the appropriate AQM factor. The
second modification is due to the fact that the basic SaS model is intended for collision ener-
gies above 10 GeV. This is compensated for by multiplying by an ad hoc factor below 10 GeV.
At low energies, diffractive processes can lead to the formation of explicit resonances, e.g.
pp → p∆+. This is implemented in PYTHIA 8.3 only for nucleon-nucleon interactions, using
the description by UrQMD [215].

Non-diffractive cross sections are calculated by subtracting all other partial cross sections
from the total cross section. One important difference between non-diffractive interactions
at low and high energies is that at low energies, the hadronization process might sometimes
produce a hadron pair that is the same as the incoming pair, essentially reducing the interaction
to an elastic process (AB → X1X2 → AB). This is a problem in cases where the calculated
elastic cross section has already been adjusted to fit data. Several steps are taken to ensure

5https://pdg.lbl.gov/2018/hadronic-xsections/hadron.html [214]
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that this does not give unexpected contributions to the elastic cross section, and are outlined
in section 7.1.6.

Annihilation processes in our framework refer to baryon-antibaryon interactions where one
or two quark-antiquark pairs are annihilated. Strings are drawn between the remaining quark-
antiquark pairs, and hadronize to form outgoing hadrons. The cross section for annihilation
in pp is given by a parameterization by Koch and Dover [220],

σann = 120
s0

s

�

A2s0

(s− s0)2 + A2s0
+ 0.6

�

, (249)

where s0 = 4m2
p and A = 0.05 GeV. The cross section for other B B interactions is found by

rescaling this value by an AQM factor. The only exception is when the quark-contents make
annihilation impossible, e.g. like in a ∆++ + Σ

−
interaction, in which case the annihilation

cross section is set to zero.
Finally, resonance production refers to processes where the two hadrons combine to form

one resonance particle. The cross section for the process AB→ R is given by a non-relativistic
Breit–Wigner [214],

σAB→R =
π

p2
CM

(2SR + 1)
(2SA+ 1)(2SB + 1)

ΓR→ABΓR

(mR −
p

s)2 + 1
4Γ

2
R

, (250)

where S is the spin of each particle, pCM is the CM momentum of the incoming particles, ΓR→AB
is the mass-dependent partial width of the decay R→ AB, and ΓR is the mass-dependent total
width of R. The full list of implemented resonances is given in [213]. For π π and π K where
the total cross section is calculated using the parameterization by Pelaez et al., the partial cross
sections are rescaled to ensure their sum equals the total cross section.

6.2 Multiparton interactions basics

Hadrons are composite objects. A proton consists of three valence quarks, plus countless glu-
ons and sea quarks. When two hadrons collide there is a possibility for several parton pairs
to collide — multiparton interactions (MPIs). Processes with exactly two parton pairs, double
parton scattering (DPS), was proposed in the early days of QCD, but then viewed as a rare
perturbative process [221, 222]. Regge–Gribov theory, on the other hand, allowed for events
with multiple cut pomerons, i.e. several “strings” crossing from one rapidity end of the event to
the other, each generating its sequence of low-p⊥ hadrons [223]. The PYTHIA philosophy for
the first time introduced a merger and extension of these two approaches [224]. In it, semiper-
turbative MPIs both generate multiple minijets, that contribute to the p⊥ flow, and multiple
colour connections between the beam remnants, that leads to events with higher multiplic-
ity. This picture is now generally accepted in its essentials. An overview of MPI theory and
phenomenology can be found in [225], with the PYTHIA perspective described in [226], with
many further references. See also the online manual under the “Multiparton Interactions”
heading.

6.2.1 The perturbative cross section

The p⊥-differential perturbative QCD 2→ 2 cross section can, to leading order, be written as

dσ

dp2
⊥
=
∑

i, j,k

∫∫∫

fi(x1,Q2) f j(x2,Q2)
dσ̂k

i j

d t̂
δ

�

p2
⊥ −

t̂ û
ŝ

�

dx1 dx2 d t̂ , (251)

with Q2 = p2
⊥ as factorization and renormalization scale, partons assumed massless, and k

running over processes with the same initial state but different final states (cf. eq. (37) and
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Figure 10: (a) Integrated standard 2→ 2 QCD cross section as a function of the lower
cutoff p⊥min for pp collisions at 200 GeV, 2 TeV, 13 TeV and 100 TeV, respectively.
Horizontal dashed lines give the total cross section at their respective energy. (b)
Differential 2→ 2 QCD cross section at 13 TeV, as obtained in standard perturbation
theory, and after multiplication by the damping factor eq. (253). Minor breaks in
slopes come from transitions, notably the freeze of PDFs below 1 GeV. Results have
been obtained for the default PYTHIA 8.3 setup, and details depend e.g. on the choice
of PDF set.

eq. (42)). The partonic cross section dσ̂/d t̂ is dominated by t-channel gluon exchange, i.e.
qq′ → qq′, qg → qg and gg → gg. (Including those u-channel graphs that easily can be
relabelled into t-channel ones.) This cross section has an approximate behaviour

dσ̂
d t̂
∝
α2

s (Q
2)

t̂2
⇒

dσ̂

dp2
⊥
∝
α2

s (p
2
⊥)

p4
⊥

. (252)

Evidently this cross section is divergent in the limit p⊥→ 0, as shown in fig. 10. The integrated
2 → 2 cross section above some p⊥min scale, σint(p⊥min), is increasing with the pp collision
energy. But, taking p⊥min = 1 GeV as a scale where perturbation theory would be expected to
hold, already at a collision energy of 200 GeV, the σint value exceeds the total pp cross section
σtot at this energy.

A further aspect is that σtot is subdivided into different components, as already discussed,
and the 2 → 2 partonic interactions primarily occur within the non-diffractive one, which is
what we will assume next. They are absent in elastic scattering and low-mass diffraction,
while they can occur in high-mass diffraction. This is a small fraction of the total cross section,
however, so to first approximation we may neglect it. Later on we will correct the picture.

Putting it together, one finds thatσint(p⊥min) is around 60 mb for p⊥min ≈ 5 GeV at LHC en-
ergies, which is also the order of the non-diffractive pp cross sectionσnd. Going to lower p⊥min
scales the cross section rapidly explodes, σint(2 GeV) ≈ 1000 mb ≈ 15σnd. In the context of
MPIs, this is not as bad as it may sound, since we may interpret the ratio σint(p⊥min)/σnd as
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the average number of MPIs above the p⊥min scale that occur in a non-diffractive collision.
Nevertheless, an infinity of MPIs in the p⊥min→ 0 limit is not attractive.

A damping of the cross section at low p⊥ can be viewed as a consequence of colour screen-
ing: in the p⊥→ 0 limit a hypothetical exchanged gluon would not resolve individual partons
but only (attempt to) couple to the vanishing net colour charge of the hadron. By contrast,
traditional perturbation theory is based on the assumption of asymptotically free incoming and
outgoing partons. To be specific, a multiplicative damping factor

�

αs(p2
⊥0 + p2

⊥)

αs(p2
⊥)

p2
⊥

p2
⊥0 + p2

⊥

�2

, (253)

is introduced, with p⊥0 a free parameter. This means a modification to eq. (252)

dσ̂

dp2
⊥
∼
α2

s (p
2
⊥)

p4
⊥
−→

α2
s (p

2
⊥0 + p2

⊥)

(p2
⊥0 + p2

⊥)
2

, (254)

which is finite in the limit p⊥→ 0, cf. fig. 10b.
The p⊥0 value is not provided from first principles, although suggestions have been made

to equate it with the saturation scale Qs in colour glass condensate models [227,228]. Fits to
pp/pp data give a result that increases with energy, by default like

p⊥0(ECM) = (2.28 GeV)
�

ECM

7 TeV

�0.215

, (255)

but alternatively a logarithmic rise could be assumed. It should be noted that results are sensi-
tive to the choice of PDF set, and especially to the low-x behaviour of the gluon distribution at
small Q2. The numbers are for the default NNPDF2.3 QCD+QED LO αs(MZ) = 0.130 set [229].
The choice of an LO PDF is deliberate, since the description of partonic collisions is also an LO
one, but in particular since NLO PDFs tend to become unphysical at small x and Q2. This is
why PYTHIA offers the possibility to use two different sets of PDFs, one for the hard processes,
where these kinematic regions are not accessed, and one for MPIs and showers, where often
they are.

The range of x values that can be accessed by MPI in PYTHIA is illustrated by the thick
black lines in fig. 11, for hadronic CM energies ranging from 10 GeV (at the left-hand edge
of the plot) to 100 TeV (at the right-hand edge). The shaded area emphasizes the region of
low x ≤ 10−4 in which current PDFs are uncertain by a factor two or more. The red dashed
line indicates the solution to x2s = 4p2

⊥0, for the default form of p⊥0(ECM) given by eq. (255).
Any partonic collision with p̂⊥ ∼ p⊥0 will involve at least one x value below this line. Thus,
especially at LHC energies and beyond, it is important to keep in mind that the effective MPI
cross section (and hence any observables derived from it) around p̂⊥ ∼ p⊥0 really depends on
the combination of p⊥0 and the shape of the low-x PDF parameterization. Since the latter can
change drastically between different PDF sets, any “tuned” values of p⊥0 should be considered
valid only for the PDF set they were obtained with.

6.2.2 The impact-parameter model

A hadron is characterized not only by its longitudinal structure, as encoded in the PDFs, but
also by its transverse one. That is, the “impact parameter” plane overlap of partons in the
two hadrons influences the possible collisions. The hadrons are Lorentz contracted to pancake
shapes in high-energy collisions, such as the LHC, so the partons can be considered as frozen
during the short collision time.
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Figure 11: Range of x values accessible to MPI in PYTHIA, for
10GeV < ECM < 100TeV. Scatterings at p̂⊥ ∼ p⊥0 will involve at least one x
fraction below the red dashed line. Grey shading highlights the low-x extrapolation
region x < 10−4 in which current PDFs are uncertain by a factor two or more.

As a first approximation we will assume a common spatial distributionρ(x)d3 x = ρ(r)d3 x
for all parton types and momenta in a hadron. In the collision between two hadrons, passing
by at an impact parameter b, the overlap between the two distributions is then given by

eO(b) =
∫∫

d3 x dt ρboosted

�

x −
b
2

, y, z − vt
�

ρboosted

�

x +
b
2

, y, z + vt
�

∝
∫∫

d3 x dt ρ(x , y, z)ρ(x , y, z −
p

b2 + t2) , (256)

where the second line is obtained by suitable scale changes.
A few different ρ distributions have studied and made available as options. Using Gaussian

distributions is especially convenient, since the convolution then becomes trivial. However, a
single Gaussian does not give a good enough description of the data, and a better description is
obtained with a sum of two Gaussians, with a small core region embedded in a larger hadron.
This can be viewed as a manifestation of the “hot spot” concept [230, 231], wherein partons
may tend to cluster in a few small regions, typically associated with the three valence quarks,
as a consequence of partons cascading from them. Another alternative, that is currently the
default, is a one-parameter shape

eO(b)∝ exp
�

−bd
�

, (257)

where d < 2 gives more fluctuations than a Gaussian and d > 2 less. The default value
is d = 1.85, i.e. slightly more peaked than a Gaussian. Note that the expression is for the
overlap, not for the individual hadrons, for which no related simple analytic form is available.

It is now assumed that the interaction rate, to first approximation, is proportional to the
overlap

〈enMPI(b)〉= k eO(b) . (258)

Interactions are assumed to occur independently of each other for a given b, to first approx-
imation, which leads to a Poissonian number distribution. Zero interactions means that the
hadrons pass each other without interacting. The enMPI(b)≥ 1 interaction probability therefore
is

Pint(b) = 1− exp (−〈enMPI(b)〉) = 1− exp
�

−k eO(b)
�

. (259)
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We notice that k eO(b) is essentially the same as the eikonal Ω(s, b) = 2 Imχ(s, b) of optical
models [232–235], but split into one piece eO(b) that is purely geometrical and one k = k(s)
that carries the information on the parton-parton interaction cross section.

Simple algebra shows that the average number of interactions in events, i.e. hadronic
passes with nMPI ≥ 1, is given by

〈n〉=

∫

k eO(b)d2 b
∫

Pint(b)d2 b
= k〈 eO〉= 1

σnd

∫ s/4

0

dσ

dp2
⊥

dp2
⊥ , (260)

which fixes the absolute value of k (numerically). We have also taken the occasion to introduce
〈 eO〉 as the average overlap. Hence eO(b)/〈 eO〉 represents the enhancement at small b and
depletion at large b.

So far, we have assumed the transverse b-space profile to be decoupled from the longitu-
dinal x one. This is not the expected behaviour, because low-x partons in a hadron should
diffuse out towards larger r during the evolution down from higher-x ones [236]. Addition-
ally, if r = 0 is defined as the centre of energy of a hadron, then by definition a parton with
x → 1 also implies r → 0. In this spirit, there is a non-default PYTHIA option with correlated
x and r [237]. It does not explicitly trace the evolution of cascades in x , but assumes that
the r distribution of partons at any x can be described by a simple Gaussian, but with an
x-dependent width:

ρ(r, x)∝
1

a3(x)
exp

�

−
r2

a2(x)

�

, with a(x) = a0

�

1+ a1 ln
1
x

�

, (261)

where a0 and a1 are free parameters to be determined. The overlap is then given by

eO(b, x1, x2) =
1
π

1
a2(x1) + a2(x2)

exp

�

−
b2

a2(x1) + a2(x2)

�

. (262)

In principle one could argue that also a third length scale should be included, related to the
transverse distance the exchanged propagator particle, normally a gluon, could travel. This
distance should be made dependent on the p⊥ scale of the interaction. For simplicity, this fur-
ther complication is not considered but, a finite effective radius is allowed also for x → 1. The
generation of events is more complicated with an x-dependent overlap, but largely involves
the same basic principles. Until now, there is no evidence that this option provides a better
description of data than the default, unfortunately.

6.2.3 The generation sequence

To introduce the MPI generation algorithm, leave aside the impact-parameter issue for a mo-
ment. The probability to have an MPI at a given p⊥ in a non-diffractive event is then given by
(1/σnd)dσ/dp⊥. If interactions occur independently of each other, the number of MPIs would
be distributed according to a Poissonian, with the zero suppressed. There are a few ways to
generate such a Poissonian.

The PYTHIA approach is inspired by the parton-shower paradigm. The generation of con-
secutive MPIs is formulated as an evolution downwards in p⊥, resulting in a sequence of n
interactions with

p
s/2 > p⊥1 > p⊥2 > · · · > p⊥n > 0. The probability distribution for p⊥1

becomes
dP

dp⊥1
=

1
σnd

dσ
dp⊥1

exp

�

−
∫

p
s/2

p⊥1

1
σnd

dσ
dp′⊥

dp′⊥

�

. (263)
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Here the naive probability is corrected by an exponential factor expressing that there must not
be any interaction in the range between

p
s/2 and p⊥1 for p⊥1 to be the hardest interaction.

The procedure can be iterated, to give

dP
dp⊥i

=
1
σnd

dσ
dp⊥i

exp

�

−
∫ p⊥i−1

p⊥i

1
σnd

dσ
dp′⊥

dp′⊥

�

. (264)

The exponential factors resemble Sudakov form factors of parton showers [51], or virtual
corrections of “uncut pomerons” in the Regge–Gribov framework, and fills the same function
of ensuring that probabilities are bounded by unity. We will use the Sudakov terminology
to stress this similarity. Summing up the probability for a scattering at a given p⊥ scale to
happen at any step of the generation chain gives back (1/σnd)dσ/dp⊥, and the number of
interactions above any p⊥ is a Poissonian with an average of σint(p⊥)/σnd, as it should. The
downwards evolution in p⊥ is handled by using the veto algorithm, like for showers. If no
MPIs are generated in the evolution, a sequence is rejected and a new try made.

When the impact-parameter variability is to be included as well, eq. (263) generalizes to

dP
d2 b dp⊥1

=
eO(b)
〈 eO〉

1
σnd

dσ
dp⊥1

exp

�

−
eO(b)
〈 eO〉

∫

p
s/2

p⊥1

1
σnd

dσ
dp′⊥

dp′⊥

�

. (265)

This expression can be integrated over p⊥1 to give eq. (259). Once b has been chosen, the
selection is similar to that in eq. (263), except that there is now a factor eO(b)/〈 eO〉multiplying
the rate. The same factor enters in the extension of eq. (264), for the continued evolution, to

dP
dp⊥i

=
eO(b)
〈 eO〉

1
σnd

dσ
dp⊥i

exp

�

−
eO(b)
〈 eO〉

∫ p⊥i−1

p⊥i

1
σnd

dσ
dp′⊥

dp′⊥

�

. (266)

The usefulness of the doubly differential expression in eq. (265) is not so apparent in
the generation of an inclusive non-diffractive event sample, where p⊥1 can be integrated out
before selecting b. But it gives important insights, especially since the MPI machinery is also
intended to be used to generate the underlying event associated with other processes. Assume
e.g. that we want to produce a hard jet sample, i.e. p⊥1 > p⊥min. For a large p⊥min the steep fall
of dσ/dp⊥ ensures that the argument of the exponent is tiny, and so the exponent itself is close
to unity and can be neglected. The b and p⊥1 expressions then factorize. The former variable
is selected proportional to eO(b), while the latter is selected according to the conventional
differential cross section. Since eO(b) is more peaked at small b than Pint(b), it means that
hard processes are selected at more central b values than inclusive non-diffractive events.
The physics is quite clear: the probability to obtain a hard collision is proportional to the
full parton-parton collision rate, 〈enMPI(b)〉 ∝ eO(b), and so it is strongly peaked at small b,
while already a single MPI is enough to obtain a non-diffractive event, and so that probability
saturates at unity in Pint(b). The consequence of picking a smaller b in hard processes is that
the selection rate for subsequent MPIs, eq. (266), also is larger, thus giving a higher level of
underlying activity than that of the full non-diffractive event sample, the “pedestal effect”.

While the expression in eq. (265) provides for interpolation between hard and soft events,
it is important to note that only the non-diffractive processes, i.e. the ones where the hardest
interaction is selected by the MPI machinery, involve the full correlation. If one studies a
hard process, be it hard QCD jets or something else, then in PYTHIA the selection of process
kinematics is done with no reference to MPIs. It is only if and when, after the MPI machinery
is invoked, that the p⊥ scale of the hard process is used to select a b value that takes into
account the Sudakov factor.

Therefore, in the study of hard QCD jets, one should not pick such a low p⊥min that the
Sudakov factor deviates appreciably from unity. In practice, this means that one should have
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p⊥min at least above 20 GeV at LHC energies. If one wants to study jets below that scale, one
can as well start out from the full non-diffractive sample. When a hard process is fed into the
MPI machinery, however, b is chosen according to eq. (265) in full, i.e. including the Sudakov.
That is, if by mistake one were to generate LHC jets at or below 10 GeV, the Sudakov would not
be used in the p⊥ selection, and thus the cross section would be overestimated, but it would
be used in the b selection, and thereby provide the correct underlying-event activity.

So far, we have only considered 2→ 2 QCD processes in the MPI framework, but the list can
be extended also to other ones. By default PYTHIA allows other 2→ 2 processes to be included
in the Sudakov factor, and thereby also in the MPI generation: jet pairs via s-channel γ∗ or t-
channel γ∗/Z/W± exchange, events with one or two photons, or charmonium or bottomonium
recoiling against a jet. Needless to say, these cross sections are much lower than the standard
QCD ones, and therefore do not make much of a difference, but nevertheless help provide a
richer non-diffractive or underlying-event structure.

Another issue is what upper limit to set for the selection of p⊥2. If studying QCD jets, the
ordering p⊥1 > p⊥2 is obvious; anything else would not reproduce the inclusive scattering
cross section. But, if the hard process is single Z production, say, then this is not part of the
MPI machinery, and so there is no double counting involved by allowing the underlying events
to contain jets up to the kinematic limit. (The exception is if weak showers are switched on;
then a hard QCD jet can emit a softer Z, and so such topologies could be double counted.) A
few options are available, but the default strategy in PYTHIA is to split events into two types.
If the final state of the hard process contains only (d,u, s, c or b) quarks, gluons, and photons
then p⊥max is chosen to be the factorization scale for internal processes, and the scale value
for external Les Houches input. If not, interactions are allowed to go all the way up to the
kinematic limit.

6.2.4 Momentum and flavour conservation

As formulated so far, the same PDFs are used for all MPIs. This would allow more momentum
to be taken out of a beam than there is, and also favour the repeated collisions of valence
quarks that have already reacted. It is here that the ordering of the emissions becomes impor-
tant. Standard PDFs can indeed be used for the first emission, which is the hardest one and
therefore the one most visible and the one that standard PDFs have been tuned to describe.
For subsequent emissions, the PDFs can gradually be modified to take into account the effects
of the previous ones. An obvious modification is to rescale the x scale such that PDFs do not
extend to higher values than left by the previous ones, i.e.

x i < x i,max ≡ X i = 1−
i−1
∑

j=1

x j , (267)

but we will also want to consider flavour aspects. The beauty is that these successive modi-
fications, that gradually let the PDFs diverge from the conventional ones, occur at falling p⊥
scales, where individual MPIs become less easily studied, so imperfections do not give large
effects. The consecutive reduction of remaining momentum also means that the nMPI distri-
bution, for a fixed b, will fall off faster than the assumed Poissonian. What does not change,
fortunately, is the fraction of nMPI = 0 events that have to be thrown away, because that is
entirely determined by whether a first MPI can be generated with standard PDFs or not.

To extend the PDF framework, to include not only a simple x rescaling but also flavour
counting, it is assumed that quark distributions can be split into a valence and a sea part.
In cases where this is not explicit in the PDF parameterizations, it is assumed that the sea is
flavour-antiflavour symmetric, so that one can write e.g.

u(x ,Q2) = uval(x ,Q2) + usea(x ,Q2) = uval(x ,Q2) + u(x ,Q2) . (268)
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The parameterized u(x ,Q2) and u(x ,Q2) distributions can then be used to find the relative
probability for a kicked-out u quark to be either valence or sea.

For valence quarks two effects should be considered. One is the reduction in content by
previous MPIs: if a u valence quark has been kicked out of a proton then only one remains,
and if two then none remain. In addition, the constraint from momentum conservation should
be included. Together this gives

ui,val(x ,Q2) =
Nu,val,remain

Nu,val,original

1
X i

uval

�

x
X i

,Q2
�

, (269)

for the u quark in the i’th MPI, and similarly for the d. The 1/X i prefactor ensures that the
ui integrates to the remaining number of valence quarks. The momentum sum is also pre-
served, except for the downwards rescaling for each kicked-out valence quark. The latter is
compensated by a uniform scaling up of the gluon and sea PDFs.

When a sea quark (or antiquark) qsea is kicked out of a hadron, it must leave behind a
corresponding antisea parton in the beam remnant, by flavour conservation, which can then
participate in another interaction. We can call this a companion antiquark, qcmp. In the pertur-
bative approximation the pair comes from a gluon branching g→ qsea + qcmp. This branching
often would not be in the perturbative regime, but we choose to make a perturbative ansatz,
and also to neglect subsequent perturbative evolution of the qcmp distribution. Even if approx-
imate, this procedure should catch the key feature that a sea quark and its companion should
not be expected too far apart in x . Given a selected xsea, the distribution in x = xcmp = y−xsea
then is

qcmp(x; xsea) = C

∫ 1

0

g(y) Pg→qseaqcmp
(z)δ(xsea − z y)dz

= C
g(xsea + x)

xsea + x
Pg→qseaqcmp

�

xsea

xsea + x

�

. (270)

Here Pg→qq(z) is the standard DGLAP branching kernel, g(y) an approximate gluon PDF, and
C gives an overall normalization of the companion distribution to unity. Furthermore, an X i
rescaling is necessary as for valence quarks. The addition of a companion quark does break
the momentum sum rule, this times upwards, and so is compensated by a scaling down of the
gluon and sea PDFs.

In summary, in the downwards evolution, the kinematic limit is respected by a rescaling
of x . In addition, the number of remaining valence quarks and new companion quarks is
properly normalized. Finally, the momentum sum is preserved by a scaling of gluon and (non-
companion) sea quarks. It is interesting to note that the joint PDFs for the first two MPIs
behave rather similarly to the Gaunt–Stirling DPS PDFs [238], whereas the PYTHIA approach
currently is the only one that explicitly offers triple parton distributions and beyond.

6.2.5 Interleaved and intertwined evolution

So far we have only considered an MPI as a 2 → 2 process, but it should be associated with
ISR and FSR showers. In particular, ISR needs to take momentum from the beams, and can
also change the “original” flavour taken out of the beam during the backwards evolution. This
implies a more intricate competition between the MPI systems than already outlined. If all
MPIs are first considered, then their number will be maximized, whereas there may be little
room left for ISR. If instead ISR is added to each MPI before proceeding to the next, then there
will be less room left for MPIs.

Time ordering does not give any clear guidance what is the correct procedure. Incoming
high-energy hadrons can be viewed as flat pancakes, such that all MPIs happen simultaneously
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at the collision moment, while ISR stretches backwards in time from it, and FSR forwards. But
we have no clean way of separating the hard interactions themselves from the virtual ISR
cascades that “already” exist in the colliding hadrons.

Instead we choose the same guiding principle as we did when we originally decided to
consider MPIs ordered in p⊥: it is most important to get the hardest part of the story “right”,
and then one has to live with an increasing level of approximation for the softer steps. Since
also showers are ordered in (some kind of) p⊥, it is meaningful to choose p⊥ as common
evolution scale. Thus the scheme is characterized by one master formula

dP
dp⊥

=
�

dPMPI

dp⊥
+
∑ dPISR

dp⊥
+
∑ dPFSR

dp⊥

�

× exp

�

−
∫ p⊥max

p⊥

�

dPMPI

dp′⊥
+
∑ dPISR

dp′⊥
+
∑ dPFSR

dp′⊥

�

dp′⊥

�

, (271)

that probabilistically determines what the next step will be. Here the ISR sum runs over all
incoming partons, two per already produced MPI, the FSR sum runs over all outgoing partons
(or dipoles), and p⊥max is the p⊥ of the previous step. Starting from the hardest interaction,
eq. (271) can be used repeatedly to construct a complete parton-level event. The flavour and
momentum used by previous MPIs or shower branchings are book kept in accordance with the
principles outlined previously, with a few straightforward extensions. For ISR, e.g. the x and
flavour of the own MPI does not count as used up.

MPIs are not only related to each other by overall momentum and flavour conservation
issues, but may be directly interacting with each other. Two such examples are joined interac-
tions and partonic rescattering.

In the former, two partons participating in two separate MPIs may turn out to have a
common ancestor when the backwards ISR evolution traces their prehistory. The joined in-
teractions are well known in the context of the forwards evolution of multiparton densi-
ties [239, 240]. It can approximately be turned into a backwards evolution probability for
a branching a→ bc

dPbc(xb, xc ,Q
2)'

dQ2

Q2

αs

2π
xa fa(xa,Q2)

xb fb(xb,Q2) xc fc(xc ,Q2)
z(1− z)Pa→bc(z) , (272)

with xa = xb + xc and z = xb/(xb + xc). The main approximation is that the two-parton
differential distribution has been been factorized as f (2)bc (xb, xc ,Q

2)' fb(xb,Q2) fc(xc ,Q
2), to

put the equation in terms of more familiar quantities.
Just like for the other processes considered, a form factor is given by integration over the

relevant Q2 range and exponentiation. Associating Q ' p⊥, joined interactions can be included
as a fourth term in eq. (271). But technical complications arise when the kinematics of joined
branchings are reconstructed, notably in transverse momentum, and the code to overcome
these was never written. One reason is that already the evolution itself showed that joined-
interaction effects are small and tend to occur at low p⊥ values [78].

The second intertwining possibility is rescattering, i.e. that a parton from one incoming
hadron consecutively scatters against two or more partons from the other hadron. The simplest
case, 3→ 3, i.e. one rescattering, has been well studied [241–243]. The conclusion is that it
should be less important than two separated 2→ 2 processes: 3→ 3 and 2× (2→ 2) contain
the same number of vertices and propagators, but the latter wins by involving one parton
density more. The exception could be large p⊥ and x values, but there 2 → n, n ≥ 3 QCD
radiation anyway is expected to be the dominant source of multi-jet events.

For rescattering, a detailed implementation is available as an option in PYTHIA [244], as
follows. In order to allow a rescattering then a scattered parton has to be put back into the
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PDF, but now as a δ function. A hadron can therefore be characterized by a new PDF

f (x ,Q2)→ frescaled(x ,Q2) +
∑

i

δ(x − x i) = fun(x ,Q2) + fδ(x ,Q2) , (273)

where fun represents the unscattered part of the hadron and fδ the scattered one. The scattered
partons have the same x values as originally picked, in the approximation that small-angle t-
channel gluon exchange dominates, but more generally there will be shifts. The sum over
delta functions runs over all partons that are available to rescatter, including outgoing states
from hard or MPI processes and partons from ISR or FSR branchings. All the partons of this
disturbed hadron can scatter, and so there is the possibility for an already extracted parton
to scatter again. With the PDF written in this way, the MPI scattering rate can be seen as a
sum of four terms, depending on whether the fun or the fδ is involved on either incoming
side. Unfortunately, like for the joined interactions above, the kinematics become quite messy,
specifically the propagation of recoils between systems that are partly intertwined but also
partly separate.

A third and more dramatic intertwining possibility is that the perturbative cascades grip
into each other. An example is the “swing” mechanism, whereby two dipoles in the initial
state can reconnect colours, which is a key aspect of the DIPSY generator [245, 246]. An
implementation exists in a branch of PYTHIA 8.3 [247], but not yet in the public version.

6.2.6 Spatial parton vertices

While setting spatial production vertices of unstable hadrons and leptons is a standard task (see
section 8.1.3), the corresponding task for parton vertices in MPIs (as well as for beam remnants
and parton shower) is not. The main issue to tackle is, that as the MPI and shower models
are formulated in momentum space only, no obviously correct correlation with an impact-
parameter picture exists. The plan is to further develop such an integrated framework, based
on matching with dipole calculations on proton Fock states in impact-parameter space [247],
but as such information is needed for string interactions (section 7.3) and hadronic rescattering
(section 7.4), a basic framework is in place already now.

The basic framework includes four choices for the pp overlap region, from which vertices
are sampled randomly. For all model choices, vertices of ISR and FSR partons are smeared
relative to their mother by a Gaussian distribution, with a width of σv/k⊥, where k⊥ is the
transverse momentum of the produced parton, and σv is a parameter to be set by the user.

The four possible choices for the overlap region are:

• The proton profile is a Lorentz-contracted ball of uniform density. This gives an almond-
shaped overlap region, similar to heavy-ion collisions, favouring MPIs being displaced
perpendicular to the collision plane. This option somewhat collides with impact-
parameter selection in the MPI model, as it does not allow any interactions of the impact
parameter to be larger than twice the hadron radius.

• The proton profile is a Lorentz-contracted three-dimensional Gaussian (motivated by the
proton mass distribution), easily reduced to a two-dimensional one, as the z can be in-
tegrated out. The overlap region is taken as the product of the two displaced Gaussians,
which is in itself a Gaussian.

• A variation of the above Gaussian scheme, but elongated by a factor
p

(1+ ε)/(1− ε),
where ε is a parameter determining whether production should be favoured in the col-
lision frame or out of the collision frame.

• Another variation of the Gaussian scheme, but with a modulation factor 1+ε+cos(2φ),
and φ defined with respect to the collision plane.
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It should be noted that the models for spatial parton vertices are at a very early stage of
development, and subject to change in the future.

6.2.7 Other MPI aspects

There are several topics that concern MPIs, that will be described separately. One such is
the issue of colour flow. The colours within each MPI, and its associated ISR and FSR, are
initially assigned in the Nc →∞ limit. This implies that each parton taken out of a hadron,
to go into a MPI, leaves its corresponding unique anticolours behind in the beam remnant.
With many MPIs involved this gives an unrealistically complicated remnant, and so there is
a machinery that attempts to associate an initial-parton colour from one MPI with an initial-
parton anticolour from another MPI. Remaining colour lines attach to the remnant partons, see
further the beam remnants description. This still allows colour lines to be drawn criss-cross
in the event. Colour reconnection (CR) is a mechanism whereby these colour lines may be
reconnected, typically in such a way that the total string length is reduced, further described
in section 7.2.

In this section we have reasoned around MPIs in the non-diffractive component in hadron-
hadron collisions, which is the prime, but not the only, application of the MPI framework. One
extension is that photons have a resolved component, where they behave more-or-less like
hadrons, and undergo MPIs in a similar manner. Another is that diffraction may be viewed as
involving the collision of pomerons with hadrons or with each other, and that also pomerons
can be associated with a hadronic structure that allows MPIs to occur. These aspects will be
discussed further in their respective context.

A standard task for PYTHIA is to generate one predetermined hard process and then add
underlying-event activity to that, which means that most of the time the additional MPI activity
will be too soft to give explicitly visible jets. This means that generation efficiency will be low
if one is interested in studies of double parton scattering. But, there is a possibility to request
two hard scatterings in an event, each of a given type and within given kinematic ranges.
While one of the two processes can be selected from the full range of possibilities, the other
must be chosen from a list of a dozen process groups. This is not a fundamental limitation, but
covers all that we could see a possible application for, and if need be the list could be extended.
Furthermore, as a non-standard extension to the Les Houches Accord, it is also possible to feed
in external events with two hard processes for further handling in PYTHIA. See section 3.14
for further details.

Since MPIs play such a key role for hadronic event properties, it is important to tune them
as well as possible to describe minimum bias, i.e. predominantly non-diffractive, and under-
lying events alike. A number of settings and parameters are available to that end. Of special
interest is the p⊥0 parameter, that directly influences important properties such as the mul-
tiplicity distribution. Finally, it is worth mentioning that the MPI component normally is the
most time-consuming task of the PYTHIA initialization step. In order to prepare the Monte
Carlo sampling of the differential cross section, it is necessary to find an upper envelope of
it in the (x1, x2, t̂) phase space. This envelope is based on multichannel sampling, where the
relative importance of the channels should be optimized to allow a reasonably high sampling
efficiency. The MPI cross section itself also needs to be integrated, as part of the p⊥-evolution
formalism. The initialization of non-diffractive events therefore may take around a second,
i.e. almost two orders more than it takes to generate an LHC event afterwards. If one had
to repeat the MPI initialization for each new event, this step would form a bottleneck. That
would be the case in diffractive events, where the mass of the diffractive system varies from
one event to the next. To this end, diffraction is initialized for a number of logarithmically
evenly spaced mass values, and then parameters for intermediate masses are obtained by in-
terpolation. If the incoming beams have varying energies, also non-diffractive events can be
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set up for a range of collision energies. Thus initialization may take tens of seconds for the
full set of inelastic processes, while the subsequent interpolation time is negligible compared
to the event-generation one. If furthermore PYTHIA is initialized for multiple hadron types,
the time needed becomes proportionately longer. An option therefore exists to save the MPI
initialization data to a file, for reuse in subsequent runs, see section 9.6.2.

6.3 Beam remnants

What is left of a beam particle, after the partons initiating hard interactions and MPI have been
removed from it (and showered), is called the beam remnant. By definition, the remnant itself
does not participate in any momentum exchanges at scales larger than O(1 GeV). Hence, in
PYTHIA, it is regarded as a purely non-perturbative object, which does not undergo a parton
shower.

The general strategy is to add the minimal number of partons required to conserve the
beam particle’s quantum numbers (flavour, colour and baryon number), taking into account
which valence and sea flavours have been scattered out of it. The remaining beam-particle
momentum is then shared amongst those partons, as described below. Note that what is rele-
vant to determining the remnant structure is not which partons initiated Born-level processes
(or MPI) at the respective hard-process factorization scale(s), but instead the ones after initial-
state radiation, at Q ∼ Qcutoff ∼ O(1GeV). For brevity, we henceforth refer to these low-scale
partons as “initiator partons”.

By default, also some “intrinsic transverse momentum” is added for the initiators and the
remnant partons. Final momentum conservation is then ensured by rescaling the sampled
momenta of the remnant partons appropriately. The procedure is discussed in more detail
in [248] and outlined below for hadron beams and the more specialized cases of lepton and
photon beams will be discussed in sections 6.5 to 6.7.

6.3.1 Flavour structure

The first step in beam remnant generation is to determine the number and flavours of the
remnant partons. This begins by including the remaining valence quarks. For baryons, if
two or more valence quarks are present, a randomly selected pair of these is turned into a
diquark state. In this case, relative probabilities for different diquark spins are derived within
the context of the non-relativistic SU(6) model, i.e. flavour SU(3)uds times spin SU(2). For
instance, a ud diquark in a proton remnant is 3/4 spin-0 and 1/4 spin-1, while a uu diquark
always has spin-1. If the initiator was a gluon, then the remnant is a colour-octet object, which
is split into a triplet and an antitriplet, again using SU(6) to determine relative weights. For a
proton remnant, P(u+ ud0) =

1
2 , P(u+ ud1) =

1
6 , and P(d + uu1) =

1
3 .

Otherwise, the valence flavours are unambiguous assuming that valence content has been
fixed beforehand. As sea quarks are created in pairs, for all sea quarks that have taken out
from the beam particle a companion quark with an opposite flavour and colour is added if
such have not been already found during partonic evolution. If no other remnants are needed,
a gluon (photon) is added to carry the momentum of the hadron (lepton) beam, otherwise
no gluons are added as remnant partons unless required to balance for the colour structure.
For DIS events, it is also possible to collapse two remnant partons directly into a colour-singlet
hadron.

6.3.2 Colour structure

Since the incoming hadrons (or, more generally, the incoming beam particles) are colourless,
the combined set of initiator and beam-remnant partons must be colourless, too. In the very
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simplest cases, such as when the remnant consists of a single triplet and/or antitriplet colour,
there is no ambiguity. But when there are several such charges, the assignment of colour flow in
the remnant (roughly, which remnant-parton colours to associate with which initiator-parton
colours) is inherently ambiguous, and there is no first-principles solution. PYTHIA contains
two distinct models that address this ambiguity, called “old” and “new”, based on the time
they were developed and implemented. Currently, the “old” one is the default.

The old model [248] is motivated by the way colour flow is treated in parton showers, and
extends this to the beam remnant, as follows. Starting from the simplest representation of the
colour structure of the valence quarks in the incoming beam particle (a quark-antiquark pair
for a meson and a three-quark junction structure for a baryon, simplified to a quark-diquark
structure when possible), initiator gluons are attached in random order to one of the valence
quarks (selected at random if there are several), and quark-antiquark pairs are added as if
they came from gluon splittings. Thus this model captures the qualitative behaviour that is
expected from leading-colour QCD.

The new model [249] is motivated by SU(3) colour algebra, and essentially extends the
QCD-based colour-reconnection model to the beam remnant, as follows. First, the set of ini-
tiator partons is considered. An SU(3) product determines the possible overall multiplets that
can be formed from those partons. If one assumes they are uncorrelated, the naive proba-
bility for the set to be in any of those multiplets would be given simply by state counting. A
free parameter allows for the application of an (exponential) weighting factor favouring small
multiplets over larger ones. This is intended as a way to mimic correlations due to possible
saturation effects which are not otherwise explicitly represented in PYTHIA. Having selected
a multiplet for the set of initiator partons, the beam-remnant colour configuration has to be
the inverse of that, to conserve the colour-singlet nature of the beam particle. The minimum
amount of gluons are added to the beam remnant in order to obtain this colour configuration.

6.3.3 Primordial k⊥

As the hard processes and parton showers in PYTHIA are based on collinear factorization,
only the longitudinal momenta are generated during the perturbative treatment. However,
some transverse momentum of non-perturbative origin due to Fermi motion of partons inside
a hadron is expected. Furthermore, studies on Z-boson transverse-momentum distributions
have indicated that a significant amount of partonic p⊥ is required to reproduce these distribu-
tions in hadron-hadron collisions. In PYTHIA such partonic transverse momentum is modelled
with primordial k⊥ that acts as a proxy for non-perturbative and possibly perturbative initial
p⊥.

In PYTHIA the primordial k⊥ is generated from a two-dimensional Gaussian distribution.
For hard-process initiators the width of the Gaussian is parameterized as

σ(Q) =
σsoftQ1/2 +σhardQ

(Q1/2 +Q)
m

(m+m1/2 ydamp)
, (274)

where Q is the renormalization scale for the hardest process and p⊥ for subsequent MPIs and
m the mass (

p
ŝ) of the system. The Q-dependent factor provides an interpolation between a

soft scale set by parameter σsoft and a hard scale, set by σhard, and Q1/2 controls the midpoint
between these two. The m-dependent factor on the right-hand side in turn provides damping
for small-mass and/or large-rapidity systems. Such damping is introduced due to purely tech-
nical reasons so the controlling parameters m1/2 and ydamp = (

E
m)

rred , where rred controls the
of amount rapidity damping, should not have much influence on related observables. For the
remnant partons not directly connected to any hard process, the width of the k⊥-distribution
is fixed by an another parameter σremn and does not depend on any scale related to hard
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scattering or MPIs. After sampling the k⊥ for each parton in the beam it is inevitable that
the total transverse momentum of the beam becomes non-zero. To retrieve the original beam
p⊥, the k⊥ of all partons will be rescaled with a common factor in such a way that the net
four-momentum of the beam particles will be preserved.

6.3.4 Longitudinal momentum

In addition to the transverse momentum, the remnant partons should also carry the remaining
longitudinal momentum of the beam particle, X . As a first step, a momentum fraction x < X is
sampled for each remnant parton. In case of valence quarks, the value is sampled according to
(1− x)a/

p
x , where the power a can be adjusted for each parton flavour. Such a distribution

approximates the valence quark PDFs around the initial scale O(1 GeV) at which the remnants
are constructed. For the remaining companion quarks, the momentum fraction is sampled
from the distribution defined in eq. (270) which takes into account that the sea quarks are
always created in pairs, by definition, from gluon splittings. Gluons (and photons) are only
added as remnants if no valence or companion quarks are remaining in the beam. As only one
of these will be added as a remnant, it will carry all the remaining beam particle’s momentum
X .

After the initial momentum fractions have been sampled for each remnant parton, these
have be to rescaled to make sure that the total four-momentum is conserved in each event.
As now both the initiator and the remnant partons carry also transverse momentum, the
longitudinal-momentum fraction of the remnants cannot be simply rescaled with X but some
momentum have to be shared between the two beams to balance the event, for details see [248,
section 4.4]. In some special cases, such as DIS processes, only one remnant is required and
no such balancing can be done. To account for momentum conservation, the final-state par-
ton momenta are then boosted and rotated in such a way that the total four-momentum is
conserved for the sampled remnant configuration.

6.4 Hadron-hadron collisions

In section 6.1 we introduced the main event types in hadron-hadron collisions, and how their
total and differential cross sections are parameterized in PYTHIA 8.3. Elastic-scattering events
are trivial to model, given the dσ/dt cross-section expression; there are just two hadrons com-
ing in and the same two coming out, with a momentum transfer t and a randomly-selected
ϕ angle. See section 6.1.2 for the various options available for proton elastic-scattering cross
sections, and section 6.1.4 for the less sophisticated expressions used for other hadrons. The
subsequent test on MPIs and beam remnants are mainly concerned the non-diffractive com-
ponent. It has the largest cross section, and especially it is the one where the bulk of hard
processes occur, which makes it the most studied one experimentally. In this section we pro-
vide some further comments on this event class in section 6.4.1, but in particular describe
additional aspects in the description of diffraction in sections 6.4.2 and 6.4.3.

6.4.1 Minimum-bias and related inclusive processes

The inelastic non-diffractive event type is often also called Minimum Bias (MB). Strictly speak-
ing, however, MB refers to the smallest possible trigger bias that allows for the identification
of non-empty events in a given experimental context. Depending on the detector acceptance,
MB will typically also include contributions from processes that PYTHIA labels as diffractive.
Thus, if the aim is to simulate an inclusive sample of “minimum bias” events, usually both
diffractive and non-diffractive events must be included, and then subjected to the appropriate
experimental trigger requirements.
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Other, related, experimental terms are zero bias (e.g. based on a bunch-crossing timing
trigger, including some a priori unknown fraction of genuinely empty events), pileup (essen-
tially also zero bias except in cases where pileup contamination may affect trigger variables
such as calorimeter energies), inelastic≥ N events (inelastic events with at least N particles in
some given fiducial region), and non-single-diffractive events (typically a “double-sided” MB
trigger).

Related to this, note that the distinction between diffractive and non-diffractive processes
is not without ambiguity. In experimental contexts, diffraction may be defined in terms of
observable “rapidity gaps” with no particle production detected in specific region(s) of the
detector, while in theoretical contexts processes that are classified as diffractive typically pro-
duce a whole spectrum of gaps with small ones suppressed but not excluded, see section 6.4.2.
Conversely, events that are modelled as non-diffractive in origin may produce large rapidity
gaps, due to fluctuations in the fragmentation process and/or if colour reconnections — see
section 7.2 — are allowed to produce such gaps, and in the transition region there could even
be quantum interference between the two categories (not modelled by PYTHIA). Thus, for any
given application it is important to phrase experimental measurements in terms of clearly de-
fined physical observables, and consider which MC processes are going to be able to contribute
to those.

Usually hard processes, such as jet or gauge-boson production, are assumed to occur within
the non-diffractive event class. This is not quite true, since it is possible also for diffractive
topologies to contribute to hard cross sections, see section 6.4.3. That contribution typically
is of the order of a per cent when modelled or measured experimentally, however, and is ne-
glected by default. This means that the full parton distribution functions (PDFs) are associated
with the non-diffractive component. They are used not only for the hard process itself but also
for the associated MPI, ISR and FSR activity. See further section 3.12

6.4.2 Diffractive processes

Diffractive event topologies are illustrated in fig. 9 on p. 114, and the differential cross sections
are described in section 6.1.3. The choice of diffractive mass(es) and t values sets the overall
kinematics of the events, but does not describe the hadronization of the diffractive system.
To this end, the Ingelman–Schlein approach is used [250], with details as described further
in [199]. In this approach, a pomeron is viewed as a physical particle, akin to a glueball state,
with an internal structure and notably with PDFs. Similarly, a reggeon is viewed as a mesonic
state, but for the practical handling the two are not distinguished. Single diffraction therefore
contains a pomeron-proton subcollision, double diffraction two such, and central diffraction a
pomeron-pomeron subcollision. Each such subcollision is assumed to produce particles as in
a normal inelastic non-diffractive hadron-hadron collision.

At high energies the modelling on the perturbative level is then given by the MPI machin-
ery, augmented by ISR and FSR. There are a few issues that need to be clarified, however.
Notably the MPI collision rate involves a combination of the pomeron-inside-proton flux with
the parton-inside-pomeron PDF. What is measured, e.g. at HERA, is the convolution of the
two, where the absolute normalization of each individually is not known. Historically, the
flux normalization was specified, such that then the pomeron PDF does not have to obey the
momentum sum rule. This may seem odd, but is in line with some theoretical arguments that
the pomeron is not a real particle and therefore is not bound by such constraints. There are a
dozen different pomeron PDFs that come with PYTHIA (plus three special-purpose ones), and
most of these have a momentum sum of the order of 0.5. It is possible to scale them by a
factor, to restore unit normalization. Whether that is done or not, the rescaling of remaining
momentum for subsequent MPIs is done as for a normal hadron, however. That is, the nor-
malization matters for the rate of MPI production, but not for the handling of those MPIs that
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do occur.
Further, the ordinary non-diffractive MPI rate is related not only to PDFs but also to the

normalization with the non-diffractive total cross section σnd, cf. eq. (260) and other MPI
expressions. This is an unknown number from first principles, and with the same pomeron-
flux-normalization uncertainty as the PDFs, so effectively it can be used to compensate for a
non-unit momentum sum. The default value is 10 mb at a collision CM energy of 100 GeV,
where it has been tuned (with default PDFs etc.) to produce about the same average charge
multiplicity as ordinary pp non-diffractive collisions at the same energy. This value could be
energy-dependent, cf. the pomeron term in eq. (239), but currently the default is a constant
value.

Diffraction tends to be peripheral, i.e. occur at high-to-intermediate impact parameter for
the two protons. That aspect is implicit in the modelling of diffractive cross sections. For the
simulation of the pomeron-proton subcollision itself, however, it is rather the impact-parameter
distribution of that particular subsystem that should be modelled. That is, it also involves the
transverse coordinate-space shape of a pomeron wave function. The outcome of the convolu-
tion with a proton wave function could be a different shape than for non-diffractive events,
and therefore it can be set separately. The default is a simple Gaussian, for lack of any rele-
vant data. The p⊥0 scale is assumed the same as in non-diffractive events at the same collision
energy, but also that is an assumption that could be questioned.

The diffractive mass spectrum extends down to the ∆+ mass for pp collisions, and obvi-
ously a perturbative MPI description would not make sense at such low energies. Instead a
separate low-mass description has been implemented. Up to 1 GeV above the hadron mass,
the diffractive system is allowed to decay isotropically into a two-hadron state. Above that, a
diffractively-excited hadron is modelled as if either a valence quark or a gluon is kicked out
from it, along the collision axis with some “primordial k⊥” smearing, cf. section 6.3.3.

In the former case this produces a simple string to the leftover remnant, in the latter it
gives a hairpin arrangement where a string is stretched from one quark in the remnant, via
the gluon, back to the rest of the remnant. The latter topology ought to dominate at higher
mass MX of the diffractive system. Therefore an approximate behaviour like

Pq

Pg
=

N

M p
X

(275)

is assumed, with N (= 5 by default) and p (= 1) as free parameters, and MX in GeV.
There is a smooth transition between the low-mass non-perturbative and the high-mass

perturbative descriptions. The probability for applying the latter is given by [251]

Ppert = 1− exp
�

−
max(0, MX −mmin)

mwidth

�

, (276)

with mmin and mwidth free parameters, both by default 10 GeV. Note how Ppert vanishes when
below mmin.

6.4.3 Hard diffraction

The model for hard diffraction is somewhat different from the soft (low- and high-mass)
diffraction and it can be applied to any hard process, including e.g. high-p⊥ jets and EW
bosons. The starting point is again the Ingelman–Schlein picture where these interactions
are mediated by a pomeron whose internal structure is given by the diffractive PDFs. It has
been observed, however, that this factorization-based approach is broken as the predictions
based on the diffractive PDFs determined in diffractive DIS overshoot the hard diffractive data
in hadron-hadron collisions roughly by an order of magnitude [252,253]. In the PYTHIA frame-
work this can be naturally explained by having several non-diffractive partonic interactions,
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MPIs, in the same hadron-hadron collisions on top of the diffractive process. These may then
produce particles that fill up the rapidity gap used to select the diffractive events leading to
seemingly a suppressed diffractive cross section. The details of this dynamical rapidity gap
survival model are presented in [254], together with several data comparisons, and are briefly
outlined below.

After a hard process and its kinematics are sampled, the events of diffractive origin are first
selected based on relative magnitude of the diffractive, f p,D

i , and non-diffractive, f p,ND
i , PDFs

which together form the inclusive (the usual) hadronic PDFs

f p
i (x ,Q2) = f p,ND

i (x ,Q2) + f p,D
i (x ,Q2) . (277)

The diffractive part, in turn, can be defined as a convolution between the pomeron flux f p
P and

pomeron PDF f Pi :

f p
i (x ,Q2) =

∫ 1

x

dxP
xP

f p
P (xP) f Pi (x/xP,Q

2) , (278)

which can be considered as parton-in-pomeron-in-proton PDFs, typically determined using
diffractive DIS data from HERA. After this tentative selection of diffractive events correspond-
ing to the Ingelman–Schlein approach, the pomeron kinematics are sampled and the event is
processed further. The essence of the PYTHIA model is then to perform a full parton-level evolu-
tion for the original hadron-hadron system and to check whether any MPIs, that would render
the event to a non-diffractive one, has occurred. This allows for the generation of a sample
where only events without such additional interactions remain and the rapidity gap has sur-
vived. It is also possible not to perform such a check and obtain the purely factorization-based
result that serves as a baseline for the expected cross-section suppression. Notice, however,
that MPIs in the pomeron-hadron system are still allowed as these would not fill up the ra-
pidity gap between the excited hadron and the pomeron remnants. Remarkably, this model
relies solely on the MPI model in PYTHIA and does not require any further parameters tuned
to data. Yet, it can qualitatively explain the order-of-magnitude difference between the purely
factorization-based predictions and Tevatron and LHC data, and reproduces the latest CMS
data for diffractive dijets [255] with a good precision. Only single diffraction is currently
implemented, and if both beams have been found to emit pomerons, the diffractive side is
selected randomly with equal probabilities. It is possible to consider pomeron emissions from
one side only which can be useful for non-symmetric collisions.

6.5 Lepton-lepton collisions

Lepton colliders have a reputation for providing the cleanest collisions possible, with
e+e−→ Z→ ff at LEP/SLC providing a prime example, where Z properties could be studied in
minute detail. At lower energies, charm and beauty factories have advanced our understand-
ing of the standard model, e.g. the weak unitarity triangle(s). The key argument for future
lepton colliders often is precision Higgs physics. Nevertheless, lepton colliders also have their
challenges, as will be discussed in this section.

6.5.1 Bremsstrahlung and lepton PDFs

A lepton is surrounded by a cloud of virtual photons. In a collision, such as e+e− annihilation,
some of those photons survive in the final state as so-called bremsstrahlung, mainly travelling
near the incoming lepton directions, and the annihilation energy is reduced correspondingly.
Similarly to the traditional PDF evolution in Q2 of a hadron, one can here start from a low-Q2

f e
e (x ,Q2

0) = δ(x − 1) and evolve it with a splitting kernel

dPe→eγ =
dQ2

Q2

αem

2π
1+ z2

1− z
dz , (279)
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in close analogy with q → qg. The resummed effects of multiple photon emissions are de-
scribed in PYTHIA by an NLO expression [256] of the approximate shape

f e
e (x ,Q2)≈

β

2
(1− x)β/2−1 , β =

2αem

π

�

ln
Q2

m2
e
− 1

�

. (280)

The form is divergent but integrable for x → 1, i.e. the electron tends to keep most of the
energy. To handle the numerical precision problems for x very close to unity, where 64-bit
double precision would not be sufficient, the (electron) parton distribution is set to zero for
x > 1− 10−10, and is rescaled upwards in the range 1− 10−7 < x < 1− 10−10, in such a way
that the total area under the parton distribution is preserved:

�

f e
e (x ,Q2)

�

mod =



















f e
e (x ,Q2) , 0≤ x ≤ 1− 10−7 ,

1000β/2

1000β/2 − 1
f e
e (x ,Q2) , 1− 10−7 < x < 1− 10−10 ,

0 , x > 1− 10−10 .

(281)

Turning to the photon flux, the evolution equation eq. (279) is deceptive in that it appears
to treat the electron and photon on equal footing. But, there is no resummation of the photon
spectrum, as there is for the one-and-only electron, only an increasing number of photons as
the evolution continues. The typical kinematics is also different. When we consider f e

e (x ,Q2),
it is for an annihilating e±, where m2

e � Q2 ∼ s, and the radiated energy manifests itself in
terms of massless photons. For the f e

γ (x ,Q2), it is instead the electron that has to be on mass

shell, a requirement that leads to a non-trivial Q2
min, and the photon that is virtual. This gives

a PDF like

f e
γ (x ,Q2) =

αem

2π
1+ (1− x)2

x
ln

�

Q2

Q2
min

�

, Q2
min ≈

m2
e x2

1− x
, (282)

which obviously should vanish if Q2 ≤Q2
min. In typical physics applications, it is conventional

to set Q2 =Q2
max ∼ 1 GeV2 to define a beam of quasi-real photons, that then can lead to γp and

γγ collisions. A photon more virtual than that would rather be considered as the propagator
of a deep inelastic scattering event, and one would not use PDF language to describe it. See
further section 6.6 and section 6.7.

The above equations for an electron beam can easily be extended to a muon one, simply
by replacing me by mµ, and similarly for τ. Neutrinos do not couple to photons and so there
is no need to introduce a substructure for them.

Returning to the issue of e+e− annihilation, the effects of bremsstrahlung are more easily
illustrated if only one photon emission is considered, but from either side, in which case

dσ
dxγ

=
αem

π

�

ln
s

m2
e
− 1

�

1+ (1− xγ)2

xγ
σ0(ŝ) , (283)

where xγ is the photon energy fraction of the beam energy, ŝ = (1−xγ)s is the squared reduced
hadronic CM energy, and σ0 is the ordinary annihilation cross section at the reduced energy.
For e+e− → γ∗ → ff, where σ0(ŝ) ∝ 1/ŝ ∝ 1/(1 − xγ), the bremsstrahlung spectrum thus
is singular both for xγ → 0 and xγ → 1. The former is a true singularity, corresponding
to infinitely soft photons, that fortunately also carry away infinitely little energy from the
electron. The latter is cut off by the mass threshold for ff production.

If instead the e+e− collider is running on a peak in the cross section, like the Z one at LEP 1,
and neglecting interference with γ∗ for simplicity, then σ0(ŝ) < σ0(s). While the soft-photon
singularity remains, any non-negligible photon energy will push the Z propagator further off-
shell, which leads to a suppression of such photon emissions and of the total Z cross section.
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The situation is even more extreme for charm and beauty factories when they run on a
narrow ψ or Υ state, where the net effect is a loss of cross section. PYTHIA does not simulate
such emissions, however, or indeed the production of onium states by e+e− colliders.

Finally, note that leptons can be polarized both transversely and longitudinally, the former
by plane polarization in circular rings and the latter by spin rotation thereof. This can lead to
non-trivial effects on cross sections, since the standard model distinguishes between left- and
right-handed fermions, and is therefore expected to be a main staple at future linear colliders.
While PYTHIA 6.4 encoded spin-dependent cross sections for a few common processes, none
of these have been ported to PYTHIA 8.3. If Les-Houches event input is used, such effects can
be taken into account already at that level, and will not affect the continued handling of the
event by PYTHIA.

6.5.2 Beamstrahlung

At potential future linear e+e− colliders, the beams will be so tightly collimated that the electri-
cal field of one beam will significantly deflect the individual e± of the other. This acceleration
of charges leads to the emission of photons — beamstrahlung. Like bremsstrahlung, it gives a
reduced collision energy, a disadvantage that has to be balanced against the gains of a higher
luminosity. Beamstrahlung emits real photons and keeps the electrons real as well, so there is
no Q2 dependence but only an x one. The f e

e (x) spectrum is highly dependent on the beam pa-
rameters, and varies e.g. between the front and the tail of a bunch. It is therefore in the realm
of machine physicists to provide relevant spectra, e.g. with the GUINEA-PIG program [257].
Simplified parameterizations are found in the CIRCE program [258].

For e+e− annihilation, the beamstrahlung and bremsstrahlung effects must be convoluted.
Relevant code for handling such a convolution does not (yet) exist in PYTHIA 8.3. In case of
need, a temporary solution is to split the energy remaining after beamstrahlung, but before
bremsstrahlung, into small bins that are generated separately and combined in proportion to
their respective cross section. This requires an initialization for each bin, but this is not such
a big overhead since the MPI bottleneck is absent in e+e− annihilation.

6.5.3 Processes

PYTHIA contains many processes initiated by a fermion-antifermion pair, and these can almost
all be used both for hadron and lepton colliders. The list includes electroweak processes, top
production, Higgs physics, new gauge bosons, supersymmetry, and so on.

Most prominent is e+e−→ γ∗/Z→ ff. It has been the main staple of all lepton colliders so
far, possibly with the exception of LEP 2. In addition to precision electroweak physics, it has
allowed the study of FSR and hadronization under the cleanest conditions that we can hope
for. The simplest γ∗/Z→ qq process produces a single string between the q and q endpoints.
One order up, γ∗/Z→ qqg offers access both to αs and to tests of string topologies, specifically
to confirm that a string is drawn from the q via the g to the q. With four-jet events, mainly
γ∗/Z→ qqgg, the non-Abelian nature of QCD could be established. Taken together, the mea-
sured particle composition can be used to tune flavour parameters, measured jet rates and
correlations to tune showers, and measured particle spectra to tune longitudinal and trans-
verse fragmentation properties.

For LEP 2, instead W+W− pair production was the most prominent process, although γγ
physics contributed at an even higher rate. Apart from electroweak physics, of note is that
e+e− → W+W− → q1q2q3q4 offers a test bed for colour reconnections, further described in
section 7.2.
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6.6 Lepton-hadron collisions

In lepton-hadron collisions the events are often classified in terms of virtuality of the interme-
diate photon, Q2. Events where the virtuality is large, or the mass of exchanged EW boson is
large, and the target hadron breaks up are referred to as deep inelastic scattering (DIS). At
low virtualities (Q2 ® 1 GeV2), the events are in the photoproduction region where the pho-
tons can either interact directly as unresolved particles or fluctuate into a hadronic state with
equal quantum numbers. In PYTHIA 8.3 these two event classes are handled in separate frame-
works and the special features of the former class are discussed below. The photoproduction
framework is, in turn, introduced in section 6.7.

6.6.1 Parton distribution functions and structure functions

In DIS the intermediate boson scatters off a parton in the target hadron in a relatively clean
scattering process where the kinematics characterizing the scattering can be related to the
four-momentum of the outgoing lepton. Therefore, such collisions can be used to study the
structure of the hadron and the initial-state QCD dynamics. Let P denote the four-momentum
of the incoming hadron, k the incoming lepton and k′ the scattered lepton. Then it is possible
to define the following Lorentz-invariant quantities

Q2 = −q2 = −(k− k′)2 ,

W 2 = (P + q)2 ,

x =
Q2

2 P · q
,

y =
P · q
P · k

, (284)

purely based on measured energy and scattering angle of the scattered lepton. In fully inclusive
events, where the hadronic final state is integrated out, it is possible then to write down the
cross section of such a scattering process in terms of these quantities without making further
assumptions on the proton structure

d2σ

dxdy
= N l

�

y2 x F l
1(x ,Q2) + (1− y) F l

2(x ,Q2)∓ (y −
y2

2
)x F l

3(x ,Q2)

�

. (285)

The coupling factor N l is different for neutral- and charged-current DIS and the sign of the last
term depends on whether the incoming lepton l is charged or neutral (neutrino) and if it is a
particle or an antiparticle. The structure functions F l

i (x ,Q2) represent the partonic structure
of the hadron. In the leading-order parton model [259,260] the structure functions are simply
proportional to the sum of the parton distributions f (x ,Q2) but do depend also on beam lepton
type. The x can be interpreted as the momentum-energy fraction of the parton with respect
to the hadron momentum P and the Q2 dependency arise from the QCD corrections at higher
orders. The goal of PYTHIA 8.3 is, however, to provide fully exclusive events for which the
relevant treatment is described next.

6.6.2 Deep inelastic scattering

The DIS framework describes processes where the scattered lepton emits a highly-virtual
(point-like) photon or a massive gauge boson that interacts with the constituents of the target
hadron breaking it up. As there currently are no models for intermediate photon virtualities
(Q2 ∼ 1 GeV2) where high-virtuality, point-like, and low-virtuality hadronic processes con-
tribute to cross sections, the DIS framework provides a reliable description only at sufficiently
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large Q2 where the scattering is purely mediated by a point-like particle. As the resolved-
photon contribution fade continuously (roughly as ∼ 1/Q2), it is impossible to set a hard cut
for such a region. In most applications, however, a limit of Q2 > 5 GeV2 has turned out to
be sufficient to ensure negligible contributions from the hadronic fluctuations. As the model
for intermediate virtualities implemented in PYTHIA 6 was based on several parameterizations
mimicking the physical picture and turned out to be somewhat fragile with restricted pre-
dictability, we have decided to develop a completely new model for such processes that will
be implemented in a future PYTHIA 8.3 release.

Hard processes In the LO DIS implemented in PYTHIA, the incoming lepton scatters off a
quark from the target hadron by exchanging an EW boson. As described in section 3.2, this
includes both neutral- and charged-current processes with charged leptons and neutrinos, and
the interference between a virtual photon and the Z boson can be accounted for. The DIS-
optimized scale-setting options are listed in section 3.10 and the relevant phase-space cuts in
section 3.13. It is also possible to provide the hard process as an input from an ME generator
in the LHE format. However, no matching of higher-order processes and the default parton
shower has been implemented. As the hard-processes are set up in the collinear approximation,
no off-shellness is allowed for the initial lepton line. Thus no radiation should be allowed for
the initial-state lepton and no PDFs for the lepton used. The phase-space sampling for DIS is
inherited from generic massless 2 → 2 scattering where the initiators are assumed massless
but the final-state particles can have finite masses. This is not ideal for DIS, however, since
the invariants typically studied in DIS, Bjorken x and Q2, are often derived from the four-
momentum of the scattered lepton. Due to a mismatch in masses, these variables might then
not match the internally sampled values which can lead to unphysical configurations such as
x > 1 when invariants are derived from the scattered lepton. To fix the issue, a new phase-
space sampling optimized for t-channel exchange of bosons with (potentially varying) masses
will be implemented. Heavy-quark pairs can be produced in two different ways: if the lepton
scatters off a heavy quark, a companion will be added by ISR, or the heavy-quark pair can
be formed from a gluon splitting by FSR. Similarly, DIS events with more than one jet can be
formed via PS emissions but no explicit hard dijet processes have been included. The showers
do, however, include matrix-element corrections for the first emissions. As the DIS process is
a scattering of a single point-like particle, no MPIs are allowed.

Parton showers Both initial- and final-state radiation from deep-inelastic-scattering pro-
cesses require a careful treatment of the branching kinematics. If emissions from the hadronic
system disturb (via recoil) the lepton line, or vice versa, then both the x and the Q2 distribution
are affected by showering. In this case, an intricate recalculation of the hard-scattering cross
section after each parton-shower emission is required, making the strategy sub optimal6. The
natural resolution is to ensure that any recoil due to the branching process is contained either
in the hadronic or the leptonic system. For the hadronic system, this is most easily achieved by
employing a “local dipole recoil” strategy, in which the kinematic recoil is absorbed by a colour-
connected partner. Such a strategy is employed by the DIRE section 4.3 and VINCIA section 4.2
showers, and is an option for the simple-shower methods [80]. To model the QED evolution
of the leptonic line, this approach is insufficient, however, and more complex strategies are
necessary, or the conservation of x and Q2 may need to be relaxed, e.g. for charged-current
DIS events, where electric charge flows from the lepton to the hadron system. The latter is the
case in the DIRE shower.

6Similar concerns apply to any scattering via t-channel colour-singlet exchange, e.g. to Higgs production in
vector-boson fusion.
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Another important aspect of modelling radiation in DIS events is the phase-space boundary
for emissions that involve incoming partons. The factorization scale (i.e. typically Q2) gives
a natural phase-space boundary when using backward initial-state evolution [52]. However,
the kinematic boundary is more accurately given by the invariant mass of the radiating dipole
or the invariant mass of the hadronic system (W 2), which are often, and especially for low-x
values, significantly larger than Q2. A natural resolution of this issue is to keep the tight Q2

constraint for the shower, and use (tree-level) merging to supplement the missing phase-space
regions. Another approach is to abandon the DGLAP-based initial-state evolution [6]. In lieu
of the latter, hard initial-state emission in the partons shower models of PYTHIA should be
considered with caution.

As the DIS events are rather clean, they offer a very good environment to study parton-
shower dynamics. For example, since the parton shower produces p⊥ kicks for the initiator
via emissions, it can be thought to resemble perturbative evolution of transverse-momentum
dependent (TMD) PDFs [261, 262]. Thus one should obtain reasonable p⊥ distributions in
Semi–Inclusive DIS (SIDIS) from the parton-shower enabled PYTHIA simulations.

Hadronization The hadronization of DIS events is analogous to that of hadron-hadron scat-
tering systems. The scattered lepton does not partake in hadronization and since no multi-
parton interactions are included in DIS events, no colour reconnection model is employed. At
present, no DIS data has been used in the tuning of the hadronization model. The study of
spin polarizations and the higher-dimensional structure of the hadron are typically important
aspects of DIS analysis. In this context, it should be noted that the PYTHIA 8.3 hadronization
model does not by default consider polarization, though external tools to model such effects
have been proposed [263].

6.7 Photon-hadron and photon-photon collisions

The possibility to turn a charged lepton into a photon using laser back scattering has been
studied, but has not been realized in the current or foreseen colliders. Thus photon-induced
collisions are usually studied in colliders with charged beam particles that may emit photons
when accelerated to high energies. The shape of the photon flux and the virtuality spectra are,
however, different for different beam types but, given an appropriate flux, the photon-induced
processes can be treated in a single framework regardless of the original beam configuration.
Here we focus on low-virtuality (quasi-real) photons and introduce the current simulation
framework in PYTHIA 8.3 for processes involving such effective beams.

6.7.1 Parton distribution functions of resolved photons

In total there are three separate contributions for processes with low-virtuality photons: a pho-
ton can interact either as an unresolved particle, it can split perturbatively into quark-antiquark
pair, or it can fluctuate into hadronic state non-perturbatively. The two latter contributions,
where the partonic constituents act as initiators for hard scattering, can be described with
DGLAP-evolved PDFs. As in the case of hadrons, the evolution equation for resolved photons
do include a hadron-like component where a non-perturbative ansatz is evolved according
the usual QCD DGLAP kernels. In addition to this, however, the evolution equation contains
also a point-like component which feeds in more quark-antiquark pairs with increasing evolu-
tion scale that may evolve further by QCD splittings. The full evolution equation for resolved
photons is

∂ f γi (x ,Q2)

∂ log(Q2)
=
αem(Q2)

2π
e2

i Piγ(x) +
αs(Q2)

2π

∑

j

∫ 1

x

dz
z

Pi j(z) f
γ
j (

x
z

,Q2) , (286)
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where the γ→ qq splitting kernel in LO is Piγ(x) = 3(x2+(1− x)2) and Q2 is the factorization
scale at which the partonic structure is probed. As in the case of proton PDFs, the parameters
related to the non-perturbative ansatz at the initial scale are determined in a global QCD
analysis comparing to experimental data. In PYTHIA 8.3, the default set for the resolved photon
PDFs is from the CJKL analysis [264] which conveniently provides the hadron-like and point-
like parts separately, which can be used for finer classification of the events with resolved
photons. No dependence on the photon virtuality is included in these PDFs, but all photons
are taken as real with zero virtuality, which is the case also for the LO photon-initiated cross
sections currently implemented in PYTHIA 8.3.

6.7.2 Photoproduction

Photoproduction typically refers to processes where a beam lepton emits a low-virtuality
(quasi-real) photon that then collides with a hadron from the other beam. The following
describes some special features of such collisions. These are not unique to ep colliders – simi-
lar processes can take place also in e+e−, pp, pA, and AA collisions as will be discussed in the
following.

Photon flux and kinematic limits When the emitted photons are quasi-real and almost
collinear with the beam leptons, the cross section calculations can be simplified by factorizing
the photon flux from the hard perturbatively calculated part. In case of lepton beams, the flux
of quasi-real photons can be obtained from the well-known Weizsäcker–Williams [265, 266]
or Equivalent Photon Approximation (EPA). The flux differential in photon virtuality Q2 is

f l
γ (xγ,Q

2) =
αem

2π
dQ2

Q2

1+ (1− xγ)2

xγ
, (287)

where xγ is the momentum fraction carried by the (almost) collinear photon with respect to the
parent lepton. Integration from the minimum allowed virtuality yields the photon-in-lepton
PDF in eq. (282). In photoproduction, the upper limit Q2

max is typically of the order 1 GeV2,
depending on the considered experimental setup and detector acceptance. The lower limit is
restricted by the requirement of physical kinematics (on-shell leptons) for the 1→ 2 splitting
and depends on xγ, the mass of the lepton, ml , and the energy of the beam in the CM frame,
E

Q2
min(xγ) =

2m2
l x2
γ

1− xγ −m2
l /E

2 +
q

1−m2
l /E

2
q

(1− xγ)2 −m2
l /E

2
≈

m2
l x2
γ

1− xγ
. (288)

From a similar consideration, one can find the kinematically allowed upper limit for xγ

xmax
γ =

2
�

1− Q2
max

4E2 −
m2

l
E2

�

1+
s

�

1+
4m2

l
Q2

max

��

1−
m2

l
E2

�

, (289)

which typically is very close to unity. The lower limit of xγ can be derived from the mini-
mum considered W of the photon-hadron system. Similarly, as for hadron-hadron collisions,
this should be large enough to justify the perturbative treatment that PYTHIA is largely based
on. After the values for xγ and Q2 have been sampled from the allowed phase space, the
full kinematics for the intermediate photon can be derived. The transverse and longitudinal
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momentum, q⊥ and qz as shown in fig. 12, can be calculated from

q⊥ =

√

√

√

√

√

�

1− xγ −
Q2

4E2

�

Q2 −
�

x2
γ +

Q2

E2

�

m2
l

1−
m2

l
E2

, (290)

qz =
E(xγ +

Q2

2E2 )
r

1−
m2

l
E2

. (291)

The azimuthal angle is sampled from a flat distribution and the scattered lepton
four-momentum can be obtained simply from k′ = k − q. It is also possible to provide the
photon flux externally in PYTHIA 8.3, but the sampling has been optimized for the form in
eq. (287). The kinematics and the allowed phase-space region are independent from the ap-
plied flux.

k
k′

q

qz

q⊥

Figure 12: Kinematics of a photon emission.

Direct and resolved photons If the (quasi-)real photon is the initiator of the hard scattering,
i.e. an unresolved (or direct) photon, the photon flux acts essentially as a PDF and can be
directly applied for sampling of the process kinematics. If the photon has fluctuated into a
hadronic state, for which the partonic structure is given by the resolved photon PDFs described
above, these PDFs have to be convoluted with the flux to define so-called parton-in-photon-in-
lepton PDFs

f γi (x ,Q2) =

∫ 1

x

dxγ
xγ

f p
γ (xγ) f γi (x/xγ,Q

2) , (292)

where the photon virtuality has been integrated out and Q2 refers to the factorization scale at
which the resolved photon is probed. Here, it is also assumed that the PDFs are independent
of the photon virtuality, though alternatives containing such information exist, see e.g. [267].
The flux is also used to sample the intermediate photon kinematics required to reconstruct the
full event including the remnants of the resolved photon and the kinematics of the scattered
lepton. In PYTHIA 8.3 both of these contributions, direct and resolved, are included and can
be generated simultaneously to obtain the correct mixture of the possible contributions for a
given process at considered kinematics.

ISR with photon beams For direct photons, no ISR splittings have been implemented as
in these cases the effect from additional QED emissions is typically small. For the resolved
photons, however, some additional care needs to be taken when generating ISR due to the
extra term in the PDF evolution, see eq. (286), compared to purely hadronic beam particles.
As this term feeds in quark-antiquark pairs when evolving forwards with DGLAP, in backwards
evolution, relevant for the ISR, this will collapse partons back into the original unresolved
photon as illustrated in fig. 13. If such splittings are found during the PS evolution, one can
think of these processes being of point-like origin and if not, the partons have originated from
the hadron-like part of the PDFs. This dynamical selection of these two contributions have
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then further implications for beam remnants and MPIs as discussed below. This is also one
of the key differences between the old PYTHIA 6 implementation where such selection was
done already when sampling the hard scattering, and no MPIs were allowed for the point-like
contribution at any scale.

Q2
s Q2

Figure 13: Backwards evolution of a point-like photon that collapses into unresolved
photon at the scale Qs. The hard-process initiator whose splittings are traced back in
ISR is highlighted with red colour.

MPIs with resolved photons Similarly as with resolved hadron beams, the resolved photons
may also experience several partonic interactions in each collision. These MPIs are modelled
in the same way as for hadrons as described in section 6.2, but some aspects require further
attention. The first one follows from the ISR generation discussed above. If the photon has
collapsed back to an unresolved state, it can not have further MPIs below the scale at which
this splitting has occurred, in fig. 13 this scale is denoted with Qs. Such an ordering is possible
thanks to the interleaved evolution of PS and MPIs, see eq. (271). Another potential differ-
ence is related to the screening parameter in semi-hard cross sections from which the MPI
probabilities are calculated from. Since the partonic and spatial structure of resolved photons
are quite different compared to protons, it would be expected that the value of this parameter
should be separately tuned for collisions involving resolved photons. Indeed, first comparisons
to HERA data [268] indicate that a somewhat larger screening parameter yielding a lower MPI
probability is preferred but the constraints are still rather sparse and would benefit from fur-
ther measurements of low-p⊥ hadron production. Also, the impact-parameter profile could be
modified but this would require more experimental data sensitive to MPIs.

Remnants Since the PDFs for resolved photons contain both a hadron- and a point-like part,
the remnant construction also needs to be adjusted to handle both cases. The main difference
to a purely hadronic state is that since the point-like contribution is of a perturbative nature,
the collapse back to a pure photon state should also be handled perturbatively, namely with
the parton showers. Unlike in PYTHIA 6 the distinction into a point-like and hadron-like part
is not done when the (semi-)hard scattering is selected, but the term corresponding to γ→ qq̄
splitting in ISR algorithm will select the cases where the initiator has originated from a per-
turbative photon splitting. In cases where there are no MPIs in the event, ending up in such a
configuration means that there is no need to add any non-perturbative remnants, as the nec-
essary partons have been added perturbatively by the parton shower as illustrated in fig. 13.
If the ISR generation will not end in a γ → qq̄ splitting, the resolved photon is taken to be
hadron-like, and the remnants will be constructed similarly as for any hadrons. In this case,
the valence flavour is sampled based on relative weights derived from the PDFs. The remnant
construction becomes more complicated if the initiator is found to be of a point-like origin
but the beam photon has encountered additional MPIs before (at scale Q2 >Q2

s ) the resolved
state is collapsed into an unresolved one. Then there are several initiators kicked out from the
beam, so a single companion cannot make the beam configuration flavour and colour neutral.
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In this case the remnant is again constructed as for any hadron, but the primordial k⊥ for the
initiator of the hardest process and its companion are derived from the scale Q2

s at which the
γ→ qq̄ branching collapsing the photon to an unresolved state has occurred.

Hard processes and diffraction The hard diffraction with dynamical rapidity-gap survival
model introduced in section 6.4.3 has been implemented also for photoproduction. For di-
rect photons, the no-MPI requirement has zero effect since there are no MPIs with unresolved
photons. However, as MPIs can still occur with resolved photons, some suppression is ex-
pected also for hard-parton initiated processes. Indeed, there are indications that diffractive
dijet photoproduction cross sections are suppressed compared to pQCD predictions based on
diffractive PDFs for the target proton. The observed suppression factor depends on the ap-
plied kinematic cuts and varies between 0.5–0.9 in different analyses [269, 270]. The milder
suppression compared to hadron-hadron collisions at the Tevatron and LHC is explained by
the presence of the direct component and the smaller invariant mass of the photon-proton sys-
tem at HERA kinematics which both reduce MPI probability compared to hadronic collisions
at higher energies. As demonstrated in [271], the MPI-based model in PYTHIA 8.3 provides a
reasonable description for the various HERA data.

Soft QCD processes Apart from the non-diffractive low-p⊥ 2→ 2 scatterings that are gen-
erated with the regulated cross section from the MPI framework using photon PDFs, the soft
processes with real photons are modelled according to the vector meson dominance (VMD)
model. In this model the photon is described as a linear combination of different vector-
meson states with prefactors derived from experimental data. In PYTHIA 8.3, the values are
taken from the analysis presented in [272] that have also been used in an SaS fit [207] for
total and elastic cross sections applied here. The included vector meson states are ρ0, ω, φ0,
and J/ψ but Υ is currently neglected. In the VMD model for elastic and diffractive processes,
the incoming photon will first transform into a vector-meson state sampled according to rela-
tive weights. Then, the interaction is handled similarly as for any other hadron-hadron case
described in section 6.1.5. The elastic scattering process in photoproduction is often referred
to as exclusive vector-meson production for which there are nowadays a good amount of data
from HERA experiments, see e.g. [273–279]. The SaS parameterization tends to provide a
good description for low-mass vector-meson production, e.g. in case of ρ0, but underestimates
higher-mass states such as the J/ψ by a large margin. This indicates the need for further,
possibly pQCD based, modelling for high-scale elastic processes.

6.7.3 Photon-photon collisions

Similarly as photoproduction in ep collisions, the charged-lepton beams in e+e−collisions may
emit photons that can interact with each other leading to effective photon-photon collisions. If
both of the photons have a low virtuality, there are a number of possible combinations that must
be accounted for. In the most complex case, where both photons are resolved, the collisions are
generated in a similar manner as in hadron-hadron collisions, including parton showers for the
initial and final state, beam remnants, and, in particular, MPIs with the same special features
as with photoproduction as discussed earlier. If one photon is unresolved and other resolved,
the interactions are somewhat simpler, since the unresolved photon scatters off a parton from
a resolved photon. In this case, no MPIs can take place and ISR and beam remnants are
generated only for the hadron side. Both photons can also interact as unresolved particles
when all particles are produced from the outgoing particles through FSR and hadronization,
which are relevant also for other possible contributions.
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Kinematics The initial phase-space sampling assumes that the incoming photons are
collinear with respect to the beam particles. However, as kinematically allowed photons emit-
ted from massive (on-shell) particles will always have a finite virtuality, they will also possess
some transverse momentum given by eq. (290). The direction of this q⊥ is not a priori known
and is sampled only after the hard process kinematics are determined. Thus the final invariant
mass of the photon-photon system, Wγγ, will depend on the virtualities of the photons and
their relative azimuthal angle, ∆φ = φ1−φ2. The resulting W can again be derived from the
kinematics, giving

W 2
γγ = 2E1E2 xγ1 xγ2 −Q2

1 −Q2
2 + 2qz1qz2 − 2q⊥1q⊥2 cos(∆φ) , (293)

where x i are the momentum fractions of the photons with respect to the beam leptons whose
CM energies are Ei . To account for the possibly modified W 2 (= ŝ for the direct-direct case),
the cross section and relevant kinematic variables are recalculated after the virtualities and
the direction of the photons are sampled. Typically the changes in the cross section and kine-
matics are negligible, but are needed in order to preserve the four-momentum of the event.
An exception is, however, 2 → 1 processes where it is important to keep the mass of the in-
termediate particle intact, a prime example being Higgs-boson production, where the photon
momentum fractions are modified instead.

Possible final states There are many topics that can be studied in photon-photon collisions
and the relative importance of direct and resolved contributions varies by the process and
considered kinematics. For example, Higgs production in γγ collisions is dominated by the
direct-direct contribution but for QCD processes, such as jets or heavy quarks that contribute to
the background of Higgs studies, the resolved photons may also have a significant contribution.
Another interesting phenomenon is the MPIs in a photon-photon system which can be studied
with low-p⊥ hadrons that arise almost completely from resolved-resolved interactions. Also
QED processes, such as dilepton production, can be considered to calibrate the photon fluxes
as they are not sensitive to QCD effects.

6.7.4 Ultra-peripheral collisions

As briefly mentioned earlier, other charged beam particles, including protons and heavy nuclei,
may also emit photons that interact with the other beam or photons emitted by the other beam.
When the beam particles do not interact hadronically but stay intact and emit photons that give
rise to a hard interaction, the events are referred to as Ultra–Peripheral Collisions (UPCs). Due
to the requirement of beam particles with finite size not breaking up, the emitted photons have
always a small virtuality and can therefore be handled with the photoproduction framework
introduced above. The photon-induced processes where the beam hadron break ups can be
simulated by using a PDF set that includes perturbatively generated photons from DGLAP
evolution with the usual PYTHIA model for hadron-hadron collisions.

The key difference between photon fluxes from hadrons and charged leptons is that the
finite size of the emitting particle needs to be accounted for. For protons, a good approximation
is obtained with the electric dipole form factor, giving a Q2-differential flux of the form

f p
γ (xγ,Q

2) =
αem

2π

1+ (1− xγ)2

xγ

dQ2

Q2

1

(1+Q2/Q2
0)4

, (294)

where Q2
0 = 0.71 GeV2. Integrating over the possible virtualities will provide the flux derived

in [280]. Another flux has been implemented for protons that is based on work by Budnev
et al. (see [281]). The downside in the latter is that since only a virtuality-integrated form is
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provided, there is not enough information to sample the full kinematics of the intermediate
photon and the virtuality sampling needs to be turned off. Therefore, this flux is not suited to
study observables sensitive to the transverse momentum of the intermediate photon as the q⊥
is set to zero.

For heavy nuclei, it is possible to use form factors and derive the photon flux in a similar
manner as for protons. Usually it is more convenient to work in the impact-parameter space
since the heavy nuclei have a well-defined size and therefore it is possible to remove events
where hadronic interactions dominate the particle production by rejecting events with small
impact parameter. As shown in [282], it is possible to derive an analytic form for the flux
differential in the impact parameter by assuming a point-like charge distribution. In fact,
this provides a good approximation for the flux with a more realistic density profile when
considering the region outside of the nucleus relevant for UPCs. Integrating this from the
minimum allowed impact-parameter value bmin gives

f A
γ (xγ) =

αemZ2

π xγ

�

2ξK1(ξ)K0(ξ)− ξ2
�

K2
1 (ξ)− K2

0 (ξ)
��

, (295)

where Z is the electric charge (number of protons) of the nuclei A, ξ = bmin xγmN . As the
nuclear beams are typically defined in terms of per-nucleon energy, mN here also refers to
average nucleon mass. A suitable value for bmin is given by the sum of the radii of the colliding
nuclei. Such a flux is included in PYTHIA 8.3 but can only be enabled by providing this as a
pointer to the Pythia object with a dedicated method. The shape and magnitude of this flux
is very different from the flux for charged leptons, and therefore the phase-space sampling
must be re-optimized for efficient event generation. A suitable over-estimate is included, but
the parameters may have to be re-adjusted for different beam configurations. When using
this flux, the virtuality sampling has to be disabled since the allowed virtualities have been
essentially integrated over when converting to impact-parameter space by Fourier transform
from the momentum space.

The current framework can already be applied to many processes studied in UPCs but have
a few limitations as well. In proton-proton collisions it is possible to study both photon-photon
and photon-proton collisions with fully reconstructed kinematics, when a Q2-dependent flux
is used. This includes all hard processes initiated by photons or partons and also soft QCD
processes apart from central- and double-diffractive events. These allows for the study of
minimum-bias photon-proton collisions, inclusive and diffractive jet production, and photon-
initiated dilepton production with all different contributions, to name a few. In case of heavy
ions, the palette is somewhat more limited due to a Q2-independent photon flux and lack
of model for photon-nucleus collisions, which will be addressed in future releases. In pA
collisions, where the flux from the heavy nucleus is amplified by the Z2 factor so that γp
component dominates the cross sections, almost all the same final states can be studied as in
proton-proton collisions apart from observables highly sensitive to transverse momentum of
the intermediate photon. For QCD observables, the effect from neglected Q2 dependence will
be washed out by the QCD radiation. In AA collisions subsequent photon-nucleon interactions
are not modelled, but high-p⊥ observables and direct-photon dominated processes can be
generated with reasonable accuracy. Photon-photon interactions can also be considered, with
the only limitation being the neglected Q2 dependence in the kinematics that again has an
effect for the q⊥-dependent observables, e.g. the acoplanarity of dilepton pairs produced by
two direct photons.

6.8 Heavy ion collisions

The Heavy Ion (HI) collider physics community has traditionally not had very close ties to the
rest of the High–Energy Physics (HEP) community. This has also been reflected in the event

149

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

generator community, where the authors of HI event generators, although they some times
make use of e.g. the string fragmentation in PYTHIA, did not interact much with the authors of
the main general purpose event generators for pp, ep, and e+e−collisions. However, with the
arrival of the LHC, the situation has changed. Not only are HI and particle physicists now part
of the same collaborations, the physics questions being asked are also starting to converge,
and typical observables studied in HI collisions are being applied to pp, and vice versa. It
should therefore not come as a surprise that PYTHIA 8.3 now also has some HI functionality
implemented.

There are several ways to study HI collisions in PYTHIA 8.3. In section 6.7.4 we described
how to study ultra-peripheral HI collisions, and there is also the possibility to use nuclear PDFs
to study some observables. Here, we will concentrate on the modelling of complete exclusive
hadronic final states using the so-called ANGANTYR model [283], which is the default way of
handling HI collisions in PYTHIA 8.3.

6.8.1 Wounded nucleons

The ANGANTYR model in PYTHIA 8.3 can be said to be the successor of the old FRITIOF pro-
gram [284] which used string fragmentation to generate final states in HI collisions, and was
based on the so-called wounded nucleon model [285]. The basic assumption in the wounded
nucleon model is that each nucleon that participates in a HI collisions contributes to the mul-
tiplicity of the full final state, according to a multiplicity function W (y) which has a triangular
form in rapidity

W (y)∝
1
2

�

1+
y

ymax

�

, (296)

where ymax is the rapidity of the nucleon in the collision rest frame. This would yield the
following simple form of the rapidity distribution in an AA, for a given number of wounded
nucleons (or participants), Npart,p, Npart,t in the projectile and target nuclei respectively,

N(y) = Npart,pW (y) + Npart,tW (−y) . (297)

FRITIOF, in its simplest form, used the fact that the distribution of particles of a hadronizing
string is flat in rapidity. For each wounded nucleon, a string was stretched out to an endpoint
randomly positioned uniformly in rapidity, which then on average reproduces the form in
eq. (296). Despite the simplistic nature of the model, FRITIOF was able to provide a fairly good
description of collider data at the energies available in the 1980s. In fact, even pp collisions
(with Npart,p = Npart,t = 1) were reasonably described.

With the energies achievable at RHIC and LHC, the basically non-perturbative FRITIOF

model falls short of reproducing data, and the ANGANTYR model was developed to address
these shortcomings.

6.8.2 The ANGANTYR model

In comparison to FRITIOF, the ANGANTYR model introduces two major new ingredients. First,
rather than wounded nucleons only resulting in a string stretched out and being hadronized,
a full diffractive excitation is generated using the full multiparton interaction machinery of
PYTHIA where these are described in terms of a pomeron-proton collision. In addition, a more
advanced version of the Glauber simulation is used where special attention is given to the fluc-
tuations in the nucleon wave functions, making it possible to differentiate between different
types of Nucleon–Nucleon (NN) subcollisions.

Starting with the new Glauber modelling, we rely on the Good–Walker formalism [206] to
connect the different types of NN semi-inclusive cross sections with fluctuations in the wave
functions [286].
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For a projectile particle with an internal substructure, the elastic scattering eigenstates may
differ from the mass eigenstates. In the following we denote the eigenstates of the scattering
amplitude T , with TΦl = t lΦl , and the mass eigenstates Ψi . The ground state (e.g. a nucleon)
is denoted Ψ0.

The mass eigenstates can be written as linear combinations of the scattering eigenstates,
Ψi =

∑

l cilΦl , and a scattering is treated as a measurement, where one of the eigenvalues, t l ,
is chosen with probability |c0l |2.

The elastic amplitude for a ground state projectile is directly written as
〈Ψ0|T |Ψ0〉=

∑

l |c0l |2 t l ≡ 〈T 〉. The resulting 〈T 〉 is then the expectation value of the ampli-
tude T for the projectile. The elastic cross section then becomes

dσel/d
2 b = 〈T (b)〉2 . (298)

In impact-parameter space, the amplitude depends on b, and the total diffractive-scattering
cross section, σdiff, can be written as the sum of transitions to all Φl :

dσdiff/d
2 b =

∑

l

〈Ψ0|T |Φl〉〈Φl |T |Ψ0〉= 〈Ψ0|T2|Ψ0〉 , (299)

since Φl form a complete set of eigenstates. The cross section for diffractive excitation only,
can then be obtained by subtracting the elastic cross section from the above result. It directly
becomes the fluctuations in the scattering amplitude:

dσdiff−tot/d
2 b = 〈T2〉 − 〈T 〉2 . (300)

If both projectile and target are in flux, this leads to a number of options. This is the case for
NN collisions. One can have single-diffractive excitation of the projectile (denoted subscript
Dp) or the target (denoted subscript Dt), as well as both, i.e. double diffraction (denoted
subscript DD). With elastic scattering (denoted subscript el), the remaining cross section is
then the absorptive or inelastic non-diffractive cross section (denoted subscript abs). Denoting
averages over projectile and target states by〈· · ·〉p and 〈· · ·〉t respectively, all the semi-inclusive
different NN cross sections can be written as,

dσtot/d
2 b = 〈2T (b)〉p,t ,

dσabs/d
2 b =




2T (b)− T2(b)
�

p,t ,

dσel/d
2 b = 〈T (b)〉2p,t ,

dσDt/d
2 b =

¬

〈T (b)〉2p
¶

t
− 〈T (b)〉2p,t ,

dσDp/d
2 b =




〈T (b)〉2t
�

p − 〈T (b)〉
2
p,t ,

dσDD/d
2 b =




T2(b)
�

p,t −
¬

〈T (b)〉2p
¶

t
−



〈T (b)〉2t
�

p + 〈T (b)〉
2
p,t . (301)

We note that the diffractive excitation is directly related to fluctuations in the nucleon wave
function.

In ANGANTYR, we use these cross sections in the Glauber modelling to determine not only
which nucleons have been wounded, but also to differentiate if they were non-diffractively
scattered or only diffractively excited. The fluctuations are by default modelled using a varying
radius of the nucleons, according to a Gamma function,

P(r) =
rk−1e−r/r0

Γ (k)rk
0

, (302)

151

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

and in addition, introducing a varying opacity of the elastic amplitude, which depends on the
radii of the projectile and target nucleons, rp and rt ,

T (b, rp, rt) = T0(rp + rt)Θ

 
√

√

√

(rp + rt)2

2T0(rp + rt)
− b

!

, (303)

where
T0(rp + rt) =

�

1− exp
�

−π(rp + rt)
2/σt

��α
. (304)

We then obtain the differential semi-inclusive cross sections in eq. (301) using
〈· · ·〉i =

∫

dri P(ri)(· · · ), which gives e.g.

¬

〈T (b)〉2p
¶

t
=

∫

P(rt)

�∫

P(rp)T (b, rp, rt)drp

�2

drt . (305)

Three parameters (k, r0 and σt) depend on the NN collision energy, and need to be de-
termined. By default this is done in the ANGANTYR initialization by fitting the integrated total
and semi-inclusive NN cross sections to the parameterization in PYTHIA 8.3 (see section 6.1),
using a simple genetic algorithm. If needed, the parameters can be specified by the user to
avoid the somewhat time-consuming fitting procedure.

The Glauber calculation works as follows. First the 3D positions of the nucleons in the
nuclei are modelled using a Woods–Saxon parameterization (by default the parameterizations
with a hard core from [287, 288] is used). Then, an impact parameter between the nuclei is
generated according to a user-specified importance sampling (by default a 2D Gaussian). For
each nucleon we then sample the wave function according to eq. (302). This gives us the
probability that a projectile nucleon, i, scatters non-diffractively with target nucleon, j, as

2T (b, ri , r j)− T2(bi j , ri , r j) , (306)

where bi j is the impact parameter between the nucleons. But, we also want to obtain the
probability of diffractive excitation, which involves the fluctuations. We do this by generating
an additional radius, r ′, for each nucleon, thus sampling the fluctuations. In this way we obtain
four statistically equivalent NN collisions and we can ensure that on the average we obtain
the correct integrated non-diffractive and diffractive excitation cross sections, by shuffling the
probabilities between the four combinations so for each the probability never exceeds unity,
as explained in [283]. It should be noted that this trick does not allow us to determine the
correct amount of elastic scattering, but these scattering are of less importance in a Glauber
calculation.

In the end of the Glauber modelling, we have a long list of all potential NN subcollisions
with an assigned type of interaction. These will now tell us how many, and of which kind of
NN events we will generate using the normal pp minimum-bias framework in PYTHIA 8.3, to
be merged together into a full HI collision event. The way this is done is as follows.

• Order all non-diffractive subcollisions in the NN impact parameter, bi j , and iterate with
increasing bi j .

• If none of the nucleons has been involved in a non-diffractive subcollision with smaller
bi j , generate a (primary) non-diffractive subevent.

• If one of the nucleons has been involved in a previous subevent, generate a single-
diffraction NN event corresponding to the diffractive excitation of the other nucleon
(using a special modification as explained in [283]) and merge this with the correspond-
ing previous subevent.
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• If both of the nucleons are already in a generated subevent, do nothing.

When we merge a single diffraction subevent, we only add the diffractively excited subsystem,
removing the elastically scattered nucleon. We also take some longitudinal momentum from
the remnants of the primary event to ensure momentum-energy conservation.

In a similar way, we go through all double- and single-diffractive subcollisions, and add
these to the full HI event. In the end, we take all non-interacting nucleons and collect them
into projectile and target nucleus remnants, which each end up as a single entry in the event
record with PDG-ID codes of the form 100ZZZAAA9, depending on the number of neutrons
and protons, which in the PDG standard corresponds to a highly-excited nucleus.

It should be noted that all subevents above are generated on the parton level, which allows
us to hadronize them together. This enables us the option to perform string shoving and rope
formation (see sections 7.3.1 and 7.3.2) on the full HI partonic state.

The main use of the ANGANTYR model is to generate minimum-bias events. It is however,
also possible to generate specific hard processes in HI events. If a hard process is specified by
the user, the Glauber modelling will proceed as before, but (at least) one of the non-diffractive
primary NN events will be replaced by a specific hard interaction event, and at the same the
event will be reweighted by a factor given by

NNDσhard/σND , (307)

where NND is the number of non-diffractive subcollisions. Note that for the specified hard
processes, ANGANTYR treats pp, pn, np, and nn subcollisions separately, which is not the case
for the minimum bias, where isospin symmetry is assumed.

By default, PYTHIA 8.3 will automatically initialize the ANGANTYR machinery as soon as
one of the beams is specified to be a nucleus (using the PDG ID of the form 100ZZZAAAI,
where I indicates the excitation level). It is possible to use the ANGANTYR machinery also for
minimum-bias pp collisions, by setting HeavyIon:mode = 2.

Finally, it should be noted that only the most commonly used nuclei are defined by default
in PYTHIA 8.3, but a user can easily define further nuclei. Note also that the beam energy of a
nucleus is specified by giving the energy per nucleon, following the convention of the field.

7 Hadronization

Hadronization (often also referred to as fragmentation) is the process of turning the final
outgoing, coloured partons into colourless hadrons. This transition is non-perturbative, and
must be handled by models. In PYTHIA it is based on the Lund string model [289,290], which
is also historically the core of the JETSET/PYTHIA programs. Even though the core methods
for string hadronization are identical to previous versions of PYTHIA, the past years have seen
significant activity in the area of fragmentation dynamics, guided by the discovery of heavy-
ion-like effects in hadronic collisions. In PYTHIA, these efforts have culminated in a multitude
of models modifying the original Lund strings in the presence of other strings in an event.

7.1 The Lund String model

Results from lattice QCD support viewing the confining force field between a colour and an
anti-colour charge, such as a qq pair, as a flux tube with potential energy increasing linearly
with the distance between the charge and the anti-charge. As the partons move apart, energy
is transferred from the partons at the ends of the string to the string itself, by κ ≈ 1 GeV/fm.
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Figure 14: (a) The yoyo picture of a meson, at several steps in time as explained
in the text. (b) A quark-antiquark string breaking into hadrons. The original pair is
moving outwards along light-like trajectories. New qq pairs are produced around a
hyperbola in (x , t), and combine into hadrons.

This directly gives rise to the so-called “yoyo” modes of single qq dipoles in 1+1 dimensions7,
as illustrated in fig. 14 (a). In the figure, an evolution starts at time t = 0, where all the energy
is stored in the ends, and none in the string,

(E, px)qq =
1
2
(
p

s,±
p

s), Estring = 0 . (308)

The string reaches its maximal extension at time t =
p

s/2κ. Here, all energy has been trans-
ferred from the end-points to the string:

(E, px)qq = (0, 0) , Estring =
p

s . (309)

At time t =
p

s/κ, the string ends are back at their starting point, but with their momenta
swapped compared to eq. (308), and finally at t = 2

p
s/κ, the string has been through a full

period.
In the string picture, yoyo modes like this are identified as mesons, with flavour determined

by their quark content (see section 7.1.1). Longer strings will break into hadrons, with new
qq pairs breaking up the original string. Aligning the string axis of the original string with the
x axis, this process is depicted in fig. 14 (b). The qq pairs are produced around a hyperbola,
and joins together to form the hadrons, depicted as arrows. A hadron produced on the string
is then characterized by two adjacent vertices (i and i − 1), with space-time coordinates (x
and t) correlated through the hadron mass (m):

m2
i /κ

2 = (x i − x i−1)
2 − (t i − t i−1)

2 . (310)

In general, a string will break into a state with n hadrons, which in the model is given by
the probability [291]:

dP∝
n
∏

i=1

�

Nd2piδ(p
2
i −m2)

�

δ(2)
�∑

pi − Ptot

�

exp (−bA) , (311)

7The following convention for spatial coordinates is used. When discussing the 1+1 dimensional string, x is
taken as the spatial coordinate. When we move on to discuss 3+1 dimensional strings, the coordinate z is chosen
to be the coordinate along the string axis, as this will often coincide with the coordinate along the beam axis, which
is normally denoted z.
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where A is the area covered by the string before breakup in units of κ, as shown in fig. 14 (b),
and b is a parameter. If the string breaking is imagined as an iterative process, the consistency
constraint that the same result should be obtained (on average) by fragmenting from the left
or the right, one obtains the distribution of momentum fraction (z) of remaining light-cone
momentum taken by each hadron as

f (z)∝
(1− z)a

z
exp

�

−
bm2

z

�

, (312)

where a is a new parameter related to N and b in eq. (311). Once transverse momenta are
introduced, the substitution m2→ m2

⊥ is performed, with the “transverse mass” defined by

m2
⊥ = m2 + p2

⊥ . (313)

The resulting form of eq. (312) is known as the Lund symmetric fragmentation function. This
simple picture of a qq system can be extended to topologies including gluons, without intro-
ducing new parameters, by viewing the gluon as a kink on the string in the Nc →∞ limit,
with separate colour and anti-colour indices. A string can as such stretch from e.g. the quark
end through a number of gluons, and end in the antiquark end [290].

While the default behaviour of PYTHIA is to always use eq. (312) with given values for
the parameters a and b, the a parameter can in principle be different for each flavour. This
possibility is implemented for s quarks and diquarks. Going from an old flavour i to a new
flavour j, the fragmentation function would thus be modified as:

f (z)∝
zai

z

�

1− z
z

�a j

exp

�

−
bm2
⊥

z

�

. (314)

Finally, the Bowler modification [292] done in the Artru–Mennesier model [293] allows for
massive endpoint quarks with mass mQ. This modified the symmetric fragmentation function,
as the areas swept out by massive endpoint quarks is reduced compared to massless ones.
Though using this modification is a break with the Lund-string philosophy, it is available as an
option, where an effective a term for a discrete mass spectrum [294] is used:

f (z)∝
1

z1+rQ bm2
Q

zaα

�

1− z
z

�aβ
exp

�

−
bm2
⊥

z

�

. (315)

A common use case is to enable the Bowler modification for fragmentation for heavy quarks,
as it can describe the somewhat harder spectrum better.

The derivation of eq. (312) also gives the probability distribution in proper time (τ) of qq
breakup vertices, i.e. a quantity that can be interpreted as (input to) a hadron production time.
In terms of Γ = (κτ)2 it is:

P(Γ )dΓ ∝ Γ a exp(−bΓ )dΓ . (316)

From this distribution it is possible to calculate the average breakup time of a qq string:

〈τ2〉=
1+ a
bκ2

. (317)

Default PYTHIA values for a and b give 〈τ2〉 ≈ 2 fm. The Γi values can be defined recursively

Γi = (1− z)

�

Γi−1 +
m2
⊥

z

�

, (318)

with Γ0 = 0.
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7.1.1 Selection of flavour and transverse momentum

In the previous section, the qq pairs in the string breaking were treated as massless and without
transverse momenta. If the quark and antiquark has a transverse mass, they can no longer be
produced in a single vertex, but must tunnel through a forbidden region of size m⊥/κ. The
tunnelling probability can be calculated in the WKB approximation, giving [289]:

1
κ

dP
d2p⊥

∝ exp(−πm2
⊥/κ) = exp(−πm2/κ)exp(−πp2

⊥/κ) . (319)

Here m⊥ is the transverse mass of the quark, and the factorization of the result allows separa-
tion of the generation of m and p⊥.

The relative production of light quarks of different mass, and thus of different flavour,
could in principle be obtained directly by inserting u, d and s quark masses in eq. (319). It
is, however, not obvious what quark masses to use. Current quark masses lead to too lit-
tle strangeness suppression, and constituent quark masses lead to too much. Instead, the
suppression is viewed as a free parameter, and tuned to LEP data. The current default s sup-
pression relative to u or d types is 0.217, which does not imply unreasonable effective quark
masses in eq. (319). Heavier quark flavours are suppressed too heavily to be produced in
string breakings, for any reasonable value of their masses.

The generation of p⊥ by eq. (319), can be implemented by giving the quark and antiquark
Gaussian p⊥-kicks withσ2 = κ/π≈ (0.25 GeV)2. Fits to data have this number higher, around
σ = 0.35 GeV, implying that a large fraction of the p⊥ kick comes from another source, such
as soft gluon radiation below the parton shower cutoff.

Besides production of the normal light-quark species, other hadron types can be produced
through the same mechanism with a few modifications. Excited mesons are allowed by letting
quarks and antiquarks combine to a total spin of either 0 or 1. Considering only pseudoscalar
and vector multiplets, the expectation of the relative rate is 1 : 3, while data – at least in the
case of π : ρ – prefers a ratio about 1. This difference between prediction and data can be
explained as a result of differences in the hadronic wave function [295, 296], but this comes
at the expense of many free parameters, which have to be tuned to data. Baryons can be
produced using eq. (319) as well, by allowing diquark-antidiquark string breakings [297].
Compared to the production of s quarks, this process will be suppressed by a larger (effective)
diquark mass. In such an approach, the produced baryon-antibaryon pair will be neighbours
along the string, and share two flavours. This simple picture is modified by considering an
underlying step-wise mechanism for baryon production, first suggested by Casher, Neuberger
and Nussinov [298], and realized in the “popcorn” model [299] in PYTHIA. In the popcorn
model, diquarks are generated by first producing a qq pair as a vacuum fluctuation on the
string, without breaking it. By producing more new qq pairs in between, meson production
between the baryon-antibaryon pair is allowed. The whole process is illustrated in fig. 15. In
principle, several mesons can be produced in between a baryon-antibaryon pair through the
popcorn mechanism, but currently only the simplest case of a single meson is implemented in
PYTHIA.

While this explanation above suffices for an introduction of the physics behind the model,
there are many important implementation details to be faced when going from a “physics
level” description of the Lund string to the actual implementation in PYTHIA, which must
be able to handle arbitrarily complicated configurations of partons. In the next subsections
we outline several of the more specialized features in PYTHIA string fragmentation, and the
thought behind the implementation. While some are completely new models on top of the old
hadronization framework, others remain the same as even the oldest version of the JETSET

and PYTHIA 6.3 programs . Those specific parts of the discussion are therefore largely carried
over from the PYTHIA 6.4 manual [14].
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a

r r̄

b

r g ḡ r̄

c

r g b b̄ ḡ r̄

d

r g b b̄ b b̄ ḡ r̄

Figure 15: Illustration of step-wise popcorn production of a baryon-antibaryon pair,
with a meson in between. In frame a), a string is spanned between a red-antired (r r̄)
qq pair, with colour flow indicated by the arrow. In frame b), a green-antigreen (g ḡ)
qq pair has appeared as a vacuum fluctuation between them, reversing the colour
flow in the central part of the string. In frame c), an additional pair is produced,
breaking the string, and in frame d) another breakup produces a meson between the
baryon and anti-baryon. Figure from [246].

7.1.2 Joining two jets in qq events

Keeping with the simple picture of a single qq pair, the iterative procedure obtained by suc-
cessive application of eq. (312), is only valid when the remaining mass of the system, after
fragmenting off a hadron, is large. If the algorithm implementing eq. (312) were to start from
one end, and create hadrons successively until the other end is reached, the mass of the last
hadron would be fully constrained by four-momentum conservation, and would therefore be
off-shell.

The practical route taken in PYTHIA, is to randomly fragment off hadrons from either the q
or q end in each step, with z taken to be either the positive or negative light-cone momentum
respectively. To wit, if the step is on the q side, z is the remaining E + pz fraction, and if the
step is on the q side, z is the remaining E− pz fraction. Once the mass of the remaining system
has dropped below a certain value, with some smearing to avoid an unphysical sharp cutoff,
the remaining system is fragmented into two “final” hadrons, and the chain ends.

7.1.3 Fragmentation of systems with gluons

Most of the preceding discussion has involved the simple system of a single string spanned
between a qq pair. While sufficient to explain the basic features of the model and imple-
mentation, it is far from covering the complexity in hadronization of multiparton systems. A
Lorentz covariant algorithm exists, however, and in this section the machinery employed for
this task is outlined, noting that the complete machinery is complicated, and covered in detail
in [290,300].

The basis of the algorithm is to divide multiparton systems to be fragmented into smaller
string pieces, spanned between individual partons. Consider a long string spanned between
a qq pair (labelled 1 and n in the following), with a number of gluons in between (labelled
2, ..., n− 1). Such a string will contain n− 1 separate pieces. The kinematics of those pieces
are, as for simple qq strings, determined by the four-momenta of the endpoint partons. In
the case of gluons, the four-momentum is shared between the two neighbouring string pieces,
each taking half. It must furthermore be assumed that endpoint (anti-)quarks are massless,
for the fragmentation algorithm to work. In practise this is done by attaching a fictitious string
piece with a massless (anti-)quark to the string end, replacing the massive quark. This string
piece in a later step becomes part of the massive hadron produced from the massive quark.
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In summary, we have therefore n− 1 string pieces defined by adjacent8 four-momentum
pairs ( j, k), with the parton going towards the q end further indexed with a + and the parton
going towards the q end with a −. In general, a hadron is now created by taking a step from
a region ( j1, k1) to ( j2, k2). A step may be taken within just a single region, or between two
different regions. The resulting hadron four-momentum can be written as

p =
j2
∑

j= j1

x ( j)+ p( j)+ +
k2
∑

k=k1

x (k)− p(k)− + px1 ê( j1k1)
x + py1 ê( j1k1)

y + px2 ê( j2k2)
x + py2 ê( j2k2)

y , (320)

where the four-momentum fraction of pi
± taken by the hadron is denoted x i

±, and (px , py)
are the transverse momenta produced at the string breaks according to eq. (319) with (êx , êy)
spacelike unit four-vectors normal to the string direction in the respective region.

The only remaining degree of freedom is z, to be determined by eq. (312). The interpreta-
tion of z is, however, only well-defined for a step in the initial string regions. But via eq. (318)
a z value can be translated into a new Γ = (κτ)2 value, and Γ is well defined across region
boundaries. Together with the p2 = m2 constraint on eq. (320) this is sufficient to find the
relevant x ( j2)+ and x (k2)

− values of the next breakup vertex.

7.1.4 Hadron vertices

While the production vertices of hadrons are impossible to detect experimentally, calculating
them still has applications in other parts of the simulation, most notably hadronic rescattering.
In this section we describe the space-time picture for qq pairs, based on methods developed
in [301].

From the linear potential V (r) = κr, the equations of motion are
�

�

�

�

dpz,q/q

dt

�

�

�

�

=

�

�

�

�

dpz,q/q

dz

�

�

�

�

=

�

�

�

�

dEq/q

dt

�

�

�

�

=

�

�

�

�

dEq/q

dz

�

�

�

�

= κ . (321)

The sign on each derivative is negative if the distance between the quark is increasing, and
positive if the distance is decreasing. After sampling Ehi

and phi
for each hadron, these

equations lead to simple relations between the space-time and momentum-energy pictures,
zi−1 − zi = Ehi

/κ and t i−1 − t i = phi
/κ, where zi and t i denote the space-time coordinates of

the ith breakup point (note that zi−1 > zi since points are enumerated from right to left). In
the massless approximation, the endpoints are given by z0,n = t0,n = ±

p
s/2κ. This specifies

the breakup points, but there is still some ambiguity as to where the hadron itself is produced.
The default in PYTHIA 8.3 is the midpoint between the two breakup points, but it is also pos-
sible to specify an early or late production vertex at the point where the light-cones from the
two quark-antiquark pairs intersect.

A complete knowledge of both the space-time and momentum-energy pictures violates the
Heisenberg uncertainty principle. This is compensated for in part by introducing smearing
factors for the production vertices, but outgoing hadrons are still treated as having a precise
location and momentum. Despite not being a perfectly realistic model, there is no clear sys-
tematic bias in this procedure, and any inaccuracies associated with this violation are expected
to average out.

There are several further complications to these process. One is more complicated topolo-
gies such as those involving gluons or junctions. Another is the fact that the massless ap-
proximation is poor for heavy qq pairs. For massive quarks, rather than moving along their

8It is possible to have string regions spanned by non-adjacent pairs as well, created when a gluon loses all its
energy to the string. These regions form an integral part of the formalism, and help ensure that string fragmentation
is rather insensitive to soft and collinear gluon emissions in the parton-shower stage.
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Figure 16: Illustration of the two main stages of junction fragmentation. (left) First,
the junction rest frame (JRF) is identified, in which the pull directions of the legs are
at 120◦ to each other. (If no solution is found, the CM of the parton system is used in-
stead.) The two lowest-energy legs (A and B) in this frame are then fragmented from
their respective endpoints inwards, towards a fictitious other end which is assigned
equal energy and opposite direction, here illustrated by grey dashed lines. This frag-
mentation stops when any further hadrons would be likely to have negative rapidities
along the respective string axes. (right) The two leftover quark endpoints from the
previous stage (qA2 and qB3) are combined into a diquark (qqAB) that is then used as
endpoint for a conventional fragmentation along the last leg, alternating randomly
between fragmentation from the qC end and the qqAB end as usual.

light-cones, the quarks move along hyperbolas E2− p2
z = m2+ p2

⊥ = m2
⊥. Both these issues are

addressed in more detail in [301].

7.1.5 Junction topologies

Junction topologies in their simplest form arise when three massless quarks in a colour-singlet
state move out from a common production vertex, a textbook example of which is given by
a baryon-number-violating super-symmetric decay χ0 → qqq. In that case it is assumed that
each of them pull out a string piece, a “leg”, to give a Y-shaped topology, where the three legs
meet in a common vertex, the junction. This junction is the carrier of the baryon number of
the system: the fragmentation of the three legs from the quark ends inwards will each result
in a remaining quark near to the junction, and these three will form a baryon around it.

The junction will be at rest in a frame where the pull of the three legs balance each other,
which is when the angle between each quark pair is 120◦. It is therefore convenient to handle
the hadronization in such a frame. There is no first-principles description of junction-string
fragmentation. Instead the process is split into a few steps, to make use of the existing string
machinery in a credible manner [302], illustrated in fig. 16. First, the two lowest-energy legs
are considered separately, each as if it were a qq string, with a fictitious q in the opposite
direction to the q. All fragmentation is from the q end of the respective system, however,
and keeps on going until almost all the original q energy is used up, resulting in the situation
illustrated in the left-hand pane of fig. 16. At that stage the remaining unmatched two quarks
(qA2 and qB3 in the figure) are combined into a diquark, carrying the unspent energy and
momentum. This diquark now forms one end of the remaining string out to the third quark,
which can be fragmented as a normal string system, illustrated in the right-hand pane of fig. 16.
One criterion that the procedure works, e.g. that the fragmentation of the two first legs is
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stopped at about the right remaining energy, is that the junction baryon is formed with a low
momentum and with minimal directional bias in the junction rest frame. Additional checks are
also made to ensure that the final string mass is above the threshold for string fragmentation.
Otherwise, repeated attempts are made, starting over with the first two strings.

Unfortunately real-life applications introduce a number of complications. One such is that
the pull is more complicated when the endpoints are not massless. Then, in a fraction of the
events, there is no analytic solution. Typically this happens when a massive quark is almost at
rest in the configurations that come closest to balance, and an approximate balance along these
lines may be obtained. An even more complicated case is when a leg is stretched via a number
of intermediate gluons between the junction and the endpoint quark, as would be a natural
consequence of parton-shower evolution in the χ0 → qqq decay. Then the initial motion of
the junction is set by the gluon nearest to it. But often this gluon has low energy and, once
that is lost to the drawn-out string, it is the direction of the next-nearest gluon that sets a new
net pull. Thus, there is no frame where the junction remains at rest throughout the whole
fragmentation process. An effective average pull is then defined for each of the three legs, as
a weighted sum of the respective parton momenta, where the weight drops exponentially as
the energy sum of partons closer to the junction increases, cf. [302].

The absence of an exact solution for the junction rest frame leads to an approximate it-
erative procedure being used. One of the more common sources of PYTHIA warnings is that
this procedure does not converge. If no fix can be found any other way, then ultimately the
centre-of-mass frame of the system is taken as the junction rest frame.

Junction fragmentation is not only a topic for exotic physics, but very much part of ordinary
QCD hadronic physics. It appears if two valence quarks are kicked out of a baryon beam by
the MPI machinery. Since these interactions typically involve colour exchange, two of the ends
will stretch to partons from the other incoming beam, unless colour reconnection gives another
result. The fragmentation follows the already outlined procedure, which can lead to the beam
baryon number being transported in to the central region of the event, cf. [248].

Also antijunctions may exist, where the colour lines from three antiquarks meet, and such
antijunctions carry a negative baryon number. A string system may contain both a junction
and an antijunction, or even multiple of such. The simplest such topology is when one leg
connects a junction to an antijunction, leaving two other junction legs to quarks and two
antijunction legs to antiquarks. It is here assumed that the total string length (see section 7.2)
is smaller for such a topology than for having two simple qq strings, or else the junction pair
would annihilate to give the simple string topology, cf. [248,302]. Conversely, when the string
length can be reduced, more-or-less parallel qq strings may colour reconnect into junction-
antijunction systems, see further section 7.2.2.

To reduce the complexity of multijunction fragmentation, each system is split up into
smaller ones that only contain (at most) one junction or antijunction each. Consider e.g. a
junction-antijunction topology. If the leg connecting the two contains at least one gluon, it
can be split up by a replacement g→ qq. If not, a small amount of energy can be shuffled from
the regular q and q legs into some energy (and momentum) for this connecting leg, so that it
can be split.

Another subtlety concerns what spin state to choose for the diquark that is formed at the
end of the fragmentation of the two first legs, the one labelled qqAB in fig. 16, which we
will call the junction diquark. For conventional (non-junction) fragmentation, empirically one
finds that S = 1 diquark states are heavily suppressed, interpreted as due to significantly
higher masses and smaller binding energies. However, unlike in conventional string breaks,
where diquark-antidiquark pairs are formed together in a single coherent tunnelling process
(modulo fluctuations such as in the popcorn scenarios), the junction diquark is formed by
combining the leftovers from two separate string breaks; PYTHIA 8 therefore allows for the
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S = 1 suppression factor for junction diquarks to be set independently of that for conventional
diquarks. Moreover, analogously to in the meson sector, it can be set independently for b-, c-,
s-, and light-flavoured junction diquarks, where the label always refers to the heaviest of the
two constituents.

It is also worth emphasizing that, within the context of the current PYTHIA modelling, junc-
tions represent the sole mechanism for producing baryons containing multiple heavy flavours,
such as Ξcc , Ωcc , Ωccc , and their b-flavoured relatives. Note, however, that this will still be
quite rare; since heavy flavours cannot be produced by string breaks, they can only appear as
endpoints, say qA0 and qB0 in fig. 16. The only possibility to form a double-heavy-flavoured
baryon involving these is if there is too little energy in both legs A and B for any other string
breaks to occur, so that qA0 and qB0 are combined directly into the junction diquark, which is
then doubly-heavy flavoured. We note that, so far, no dedicated emphasis has been placed on
developing the heavy-quark aspects of junction fragmentation, though that may change with
experimental interest. Predictions should therefore be regarded as tentative.

In summary, the full machinery for junction hadronization is convoluted and not without
weaknesses, but overall it serves its purpose, and finds use in several physics contexts.

7.1.6 Small-mass systems

If the invariant mass of the qq system is small, a few complications to the fragmentation process
can arise. For example, for an ss system at 0.9 GeV, the string cannot fragment as there is not
enough energy to form an outgoing K K pair, nor can the quarks enter a “yoyo motion” as there
is no hadron with compatible mass and flavour content. Furthermore, even if the string can
fragment, at low energies the available phase space might be so small that the fragmentation
algorithm becomes very inefficient. These situations can occur for instance towards the end of
a parton shower by g→ qq branchings or during hadronic rescattering, and are handled using
approaches inspired by cluster fragmentation [303].

To improve the efficiency of the algorithm, the first step is to assume that the string will
break at only a single point, and a few attempts are made to find possible outgoing two-
hadron states. If these attempts fail, next the algorithm tries to form a single hadron from the
endpoints, then put that hadron on-shell by transferring momentum to or from a neighbouring
string system. If no momentum rearrangement is possible, further attempts are made to find
possible two-hadron states, but now only the lightest possible hadrons for the given flavour
content are considered. If this still does not work, the string may collapse to the lightest
possible hadron given the endpoints, and produce one additional π0. Finally, if this is not
possible either, the last resort is to collapse the string to the lightest possible hadron, and
transfer momentum with a neighbouring parton or hadron.

String systems are handled in order of increasing mass relative to the two-body threshold,
so normally other systems are still unfragmented when addressing this kind of issue. Especially
in (low-energy) hadronic rescattering there may two low-energy strings. Then, when the first
string is handled, its collapse may reduce the mass of the other string. In this case, that system
may also collapse to a single hadron, which is put on-shell by transferring momentum with a
hadron from the previously fragmented string.

7.2 Colour reconnections

In PYTHIA (and other event generators), a simplified set of rules for colour flow is used to
determine between which partons confining potentials should arise. In the context of the
string model, this determines a unique string topology which sets the stage for the subsequent
hadronization.
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Figure 17: Illustration of LC colour flow in a simple e+e−→ qq̄ ⊗ shower event. The
shaded regions represent the resulting unique LC string topology.

Specifically, all perturbative processes (including MPIs, ISR and FSR) are handled in a
leading colour (LC) limit in which the probability for any two random colours to both be the
same vanishes. Formally, this is done by taking the limit Nc→∞ with αsNc kept fixed [55] so
that QCD amplitudes retain their Nc = 3 normalizations. This accomplishes two things: 1) it
eliminates colour-interference effects which are suppressed by powers of 1/N2

c → 0, and 2) it
allows for a particularly simple representation of gluons in colour space, as direct products of
a colour and an anticolour, since the weight of the singlet in Nc ⊗ N̄c = (N2

c − 1)⊕ 1 vanishes
as Nc→∞.

In the LC limit, Feynman-diagram amplitudes in colour space are represented by products
of independent “colour lines”. Each of these expresses conservation of a distinct colour charge,
and is represented by a δi j connection between partons carrying colours i and j (suitably
crossed). We call this an LC dipole connection. Due to the orthogonality of the basis states
and the lack of interference in this limit, each such line translates directly to a coherent colour-
singlet structure at the colour-summed amplitude-squared level, which is confining at large
distances. Thus, each LC dipole emerging from the perturbative stages of the event evolution
can be uniquely mapped to a string piece (discussed further, e.g. in [53]). We use the term
“colour reconnection” (CR) to refer to any scenario that results in changes relative to this map
in defining the starting configuration of hadronizing strings in an event.

A simple illustration of the map between LC dipoles and string pieces, for an
e+e− → γ∗/Z → qq̄q′q̄′g g event, is shown in fig. 17. Matching colour (and anticolour)
charges are represented by Les Houches colour (and anticolour) tags [304, 305] numbered
from 101–104 in this example and indicated by coloured lines in the diagram. In keeping
with the Nc →∞ nature of the LC limit, the number of different tags is not limited to three,
and each new tag is distinct from all others. This produces a unique set of colour connections
which can be traced to form the LC string topology (shaded regions).

In hadronic collisions, the structure of the beam remnants is also to be modelled, after
MPIs have extracted multiple coloured objects from them. Here it is useful define rules on
how to equate some of these colours and anticolours with each other, so as to keep the total
colour charge of a remnant within reasonable bounds. Note that this would still classify as
“colour connection”, insofar as it is the initial assignment of remnant colours, although the
consequences propagate in from the remnants to the central perturbative interactions. This is
discussed further in the section on beam remnants, section 6.3. As used in this section, the
term CR applies to models that go beyond this, i.e. that allow for departures from the simple
colour rules discussed above and/or address ambiguities that are left unresolved by them.
CR may be classified as one example of a broader palette of string interactions, with other
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examples presented in section 7.3.
Note that, occasionally, “junction” structures (see section 7.1.5) may also be present. Un-

like dipole-type δi j connections, junctions (and antijunctions) represent εi jk structures in
colour space; these are explicit Nc = 3 structures which have no analogy in the Nc→∞ limit.
In PYTHIA, they can appear in the initial state in proton beams [248], in hard BSM processes
(or decays) with baryon number violation [82, 302], and/or as a product of colour recon-
nections in the final state (in pairs of junctions and antijunctions to conserve overall baryon
number) [249]. Due to the added technical complexity of dealing with junction structures, the
latter possibility is, however, so far only invoked by the QCD-based CR model, cf. section 7.2.2.

Several different scenarios are included in PYTHIA, as described in the following sub-
sections, each with its own motivations and underpinnings. The unifying feature is that
these models act only by reassigning colours, with no explicit momentum exchanges between
the involved partons. The decisions whether and how to reassign still can depend both on
momentum-energy and on space-time relations between partons. Also, the changes at the
level of produced hadrons still can be dramatic, due to the changed lengths and orientations
of the resulting hadronizing strings.

Historically, CR was first discussed in the context of charmonium production [306–308],
notably in weak B decay to J/ψ, e.g. B

0
= bd→W−cd→ sccd→ J/ψK

0
. In such decays the

c and c belong to two separate colour singlets, but ones that overlap in space-time, with the
possibility of soft gluon exchange to create the new singlets.

The first large-scale application of CR was in the PYTHIA MPI model of hadronic colli-
sions [13], notably to explain the increasing mean transverse momentum 〈p⊥〉 with increasing
charged multiplicity nch observed at CERN’s SppS collider [309]. If all MPIs draw out strings
and fragment in the same manner, 〈p⊥〉(nch) would be essentially flat. CR was therefore in-
troduced in such a way that the total string length is reduced. Each further MPI then on the
average increases nch less than the previous one, while giving the same p⊥ from (mini)jet
production, resulting in an increasing 〈p⊥〉(nch).

LEP 2 offered a good opportunity to search for CR effects. Specifically, in a process
e+e− → W+W− → q1q2q3q4, CR could lead to the formation of alternative “flipped” singlets
q1q4 and q3q2, and correspondingly for more complicated string topologies, formed when
parton showers are included. Such CR would be suppressed at the perturbative level, since it
would force some W± propagators off the mass shell [310]. This suppression would not apply
in the soft region. Based on a combination of results from all four LEP collaborations, the no-
CR null hypothesis is excluded at a 99.5% CL [311]. Within the SK I scenario, described below,
the best description is obtained for ∼50% of the 189 GeV W+W− events being reconnected,
in qualitative agreement with predictions.

More recently, Tevatron [312] and LHC [313,314]measurements of the top-quark mass in
hadronic top-quark decays brought CR effects on precision observables to the fore again, with
several new models geared towards the increased complexity of hadron collisions produced
first in PYTHIA 6 [315–317] and later in PYTHIA 8 [249,318]. Hadronic reconstruction of the
top-quark mass remains an important impetus for further explorations of CR model space and
for the development of systematic and exhaustive ways to constrain modelling ambiguities
and parameters experimentally.

The importance of colour algebra versus dynamics differs widely between models. Taking
the simple W+W− case above, there is a 1/9 probability that q1q4 and q3q2 are singlets purely
by colour algebra. But such accidental singlets do not stop q1q2 and q3q4 from still being
singlets as well; so nevertheless, a dynamics principle would be needed to decide which singlet
set takes precedence when it is time to hadronize. Furthermore, once parton showers are
included, the number of colour charges in an event increases, and the possibilities for CR
with it. In the extreme limit, a string may be viewed as a chain of (non-perturbative) gluons
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infinitesimally closely spaced, such that the string constantly flips colour, so there would be no
suppression of CR for lack of nearby matching colours.

In several of the models below the concept of a “string-length” λ plays a prominent dy-
namics role. It is a measure of how many hadrons of some reference hadronic mass m0 there
are room for (in phase space), if the hadrons are evenly spaced in rapidity along the string.
For a simple qq string of mass mqq one possible definition is λ= ln(m2

qq/m
2
0). In principle, λ is

well defined also for more complicated string topologies [291], but in practice its construction
is too complicated. Instead, approximate expressions are used, like

λ≈
n
∑

i=0

ln

�

1+
m2

i,i+1

m2
0

�

, m2
i,i+1 = (εi pi + εi+1pi+1)

2 , εq = 1 , εg =
1
2

, (322)

for a string q0g1g2 · · ·gnqn+1, where εg = 1/2 because gluon momenta are shared between two
string pieces. The addition of 1 is to ensure that a low-mass section does not give a negative
contribution, and is not always used. More generally, if low masses are common, it probably
signals that there is a larger underlying issue, e.g. having too low a cut-off for shower evolution.

One may think of λ as the “free energy” of a string system, available for particle production.
More specifically, the classical (Nambu–Goto) string action to be minimized is proportional to
the worldsheet area spanned by the string motion. Here, λ is then related to the average area
spanned before hadron formation. Therefore, it is often assumed that nature prefers a low
string length whenever possible.

This principle is significantly violated in the early stages of a collision, however. There
the hard interaction and the MPIs turn two incoming beam-hadron states, each with minimal
λ, into a combined one of a significantly higher value. Consequently, we discuss here the
aftermath, where strings begin to be pulled out and eventually fragment back to hadrons of
low λ.

Similarly, some general considerations of the space-time picture are necessary. One is
that the spatial evolution of showers need not be traced. That is, parton showers occur at
time scales sufficiently shorter than hadronization ones so that, to first approximation, all
the final partons can be viewed as emerging from a common vertex. Furthermore, while the
branching of a low-mass high-energy parton can be significantly displaced, the daughters will
tend to be sufficiently close, by any distance measure, such that CR is unlikely to break them
apart. Another issue is how the lifetime of intermediate resonances compares with the CR
time. The W, Z, and t have intermediate decay time scales, about an order of magnitude
shorter than typical hadronization times. (Whereas the H is much more long lived.) But
the two would become more comparable if time is added for the decay products to expand
and begin interacting with the environment given by the rest of the pp collision. Ideally,
the situation should therefore be simulated dynamically, where different time orderings are
possible outcomes, but that would be fraught with uncertainties and is typically not done.
Instead, a more common option is to allow only early or only late resonance decays, i.e. before
or after hadronization. In early decays, all partons can reconnect, while in late decays the
resonance decay products cannot.

7.2.1 The MPI-based model

The first CR model implemented in PYTHIA 8, and currently still the default, attempts to reduce
λ by a complete merge of the partons of separate MPI systems. The probability for two MPIs
to be reconnected this way is a function of the lower p⊥ scale of the two, of the form

Prec(p⊥) =
(Rrec p⊥0)2

(Rrec p⊥0)2 + p2
⊥

, (323)
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where p⊥0 is the parameter introduced in eq. (253) to damp the p⊥ → 0 infinity of the QCD
2→ 2 cross section, and Rrec is a phenomenological parameter. An Rrec of order unity would
seem reasonable; empirically somewhat larger values are found. The reconnection probability
is chosen to be higher for soft systems, reflecting that the latter are described by more extended
wave functions, thus having a higher probability to overlap and interact with other systems.

Now consider an event containing n MPIs, which have been generated in order of falling
p⊥, p⊥1 > p⊥2 > . . . > p⊥n. The reconnections are then done in a two-step procedure, as
follows.

First, the MPI systems are tested for reconnection in sequence of increasing p⊥, i.e. starting
with system n. For an arbitrary m, 2 ≤ m ≤ n, the reconnection probability Pm = Prec(p⊥m)
is used to decide whether system m should be merged with m − 1 or not. If not, the same
relative probability holds for a merger with m− 2, and so on to the top. That is, there is no
explicit dependence on the higher p⊥ scale, but implicitly there is via the survival probability
of not already having been merged with a lower-p⊥ system. In total, the probability for m not
to merge therefore is (1 − Pm)m−1. Note that mergings may cascade: if m is merged with l,
1 < l < m, then l in its turn may be merged with an even-higher-p⊥ system k, 1 ≤ k < l, and
then also m counts as merged with k.

Second, once it has been decided which systems should be reconnected, the actual merging
is carried out in the opposite direction. That is, first the hardest system is studied, and all colour
dipoles (i, k) in it are found, as usual in the Nc →∞ limit. This includes those to the beam
remnants, as defined by the holes of the incoming partons. Then consecutively, each softer
system to be merged with it is considered in order of decreasing p⊥. For each such system, the
gluons j are inserted, in order of decreasing gluon pT , into the dipole (i, k) that minimizes the
increase in the λ measure for the harder system

∆λ= λ j;ik ≡ λi j +λ jk −λik = ln
(pi · p j)(p j · pk)

(pi · pk)m2
0

. (324)

Note that the first term of eq. (322) is not required here, since an Ek → 0 (for fixed rela-
tive angles) would affect all λ j;ik the same way and thus not alter the choice of the winning
(i, k) dipole. Although gluons dominate, MPIs may also contain quarks. Those qq pairs that
originate from the splitting of a gluon can be inserted into the higher-p⊥ system by the same
criterion as would have been used for such a gluon. The (few) other quarks are not affected
by the CR procedure, but remain for the beam-remnant handling to address.

The CR procedure is carried out before resonance decays are considered by default, i.e. the
late decay option introduced above. It is possible to switch to early decays, however.

7.2.2 QCD-based colour reconnections

As discussed in the introduction to section 7.2, during the perturbative stages of the event
evolution, LC colour flow is used to keep track of which partons are colour connected to each
other. In the LC limit, each colour tag is matched by only a single unique anticolour tag in the
event (or a combination of two colour tags, if junctions are present). At the perturbative level,
these connections represent LC dipoles/antennae, and they are one-to-one mapped to string
pieces at the non-perturbative stage, enforcing colour confinement.

Beyond the LC limit however, there should be a finite probability also for LC-unconnected
partons to “accidentally” find themselves in a colour-singlet state, or in some other coherent
state with a lower total colour charge than the scalar sum of their individual charges. This
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follows from the SU(3) colour-algebra rules:

3⊗ 3= 8⊕ 1 , (325)

3⊗ 3= 6⊕ 3 , (326)

3⊗ 8= 15⊕ 6⊕ 3 , (327)

8⊗ 8= 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 , (328)

where the representations that correspond to a coherent addition of charges (with lower total
charge) are highlighted in red. In the LC limit, colour-unconnected quark-antiquark pairs
are never allowed to form a singlet; they are always in an overall octet state, while quark-
quark, quark-gluon, and gluon-gluon ones are in sextet, quindecuplet, and vigintiseptet states,
respectively.

The starting point for the QCD-based CR scheme [249] is that slightly simplified ver-
sions of eqs. (325) to (328) can be used to compute probabilities for LC-unconnected par-
tons to stochastically enter into coherent states with one another. This does not invalidate
the LC colour topology, but it does allow for (potentially many) other viable mappings of the
same parton system to different string configurations. Optionally, configurations that involve
(re)connections between systems with large relative boosts can be excluded if deemed to be
in conflict with causality, as discussed further below. The model then chooses between the re-
maining allowed configurations by selecting the one that minimizes the λmeasure, eq. (322).
In principle, one could allow fluctuations around this, but that is not currently done in the
model.

A characteristic feature of this model is that it provides a qualitatively new mechanism for
the creation of baryon-antibaryon pairs, in addition to the conventional mechanism of string
breaks to diquark-antidiquark pairs. The 3 in eq. (326), the 6 in eq. (327), and the two decu-
plets in eq. (328) represent colour states that involve colour-epsilon structures. In the context
of the string model, these map to string junctions (and antijunctions), around which baryons
will form, cf. section 7.1.5 and [302]. As a consequence, the effective baryon-to-meson ra-
tio increases with the amount of CR in this model, and hence more active events (e.g. with
many MPI) will generally exhibit higher baryon fractions. Note that colour conservation im-
plies that the model always creates equal numbers of baryons and antibaryons; these pairs
can, however, be well separated in phase space, contrary to the more localized nature of the
conventional diquark string breaks. Moreover, the model also allows for the formation of
doubly-heavy-flavour baryons such as Ξbc , a possibility that does not occur within the conven-
tional diquark-type string breaks. In the current formulation of the model, however, no special
attention has been devoted to questions specific to heavy quarks, hence this aspect should be
considered to be associated with substantial uncertainty.

At the technical level, the model approximates the QCD probabilities expressed by
eqs. (325) to (328) by randomly assigning an index between 0–8 to each Les-Houches colour
tag, subject to the requirement that gluons must have different colour and anticolour indices.
Any parton pairs with matching colour and anticolour indices are then considered to be in rel-
ative singlets and are candidates for dipole-type string pieces. (This mimics the representation
first proposed in [319].) Stochastically, this reproduces the 1

9 probability of eq. (325) exactly.
The algorithm starts from the LC topology and considers each index group in turn, working

its way down from high to low dipole invariant masses, at each step considering all allowed
possibilities and executing a swap if that lowers the total λ measure. Note that qq̄ pairs origi-
nating directly from g → qq̄ branchings are also excluded from having the same index. Con-
sequently, quarkonium formation from such pairs is not expected in this model in its current
formulation.

If junction-type reconnections are enabled, the algorithm then works its way through three
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separate groups of indices: [0,3,6], [1,4,7], and [2,5,8] (chosen so that they are trivial to
separate using the modulo 3 operation). Within each of these groups, any partons carrying two
different colour indices (say, 0 and 3) are allowed to add coherently to the overall anticolour
of the third (say, -6) and enter into corresponding junction-type reconnections if that reduces
the λ measure. This enables a decent (2

9) approximation to the probability for junction-type
reconnections, but does underestimate the true QCD group weights somewhat, see [249]. This
procedure (dipole-style reconnections followed by junction reconnections) is iterated until no
more favourable reconnections are identified.

In addition to the colour rules, the dipoles also need to be causally connected in order to
perform a reconnection. The definition of causally connected dipoles is not exact, and several
different options are available. All the time-dilation modes introduce a tunable parameter,
which provides a handle on the overall amount of CR.

When the two strings are allowed to reconnect, they will reconnect if it lowers the total
string length, as defined by an approximation to the λ measure. Several options for different
approximations are available. The λ measure is not well understood, especially for junction
structures, and a tunable parameter allows for the enhancement or suppression of junction-
type connections to dipole ones. This affects how many baryons are generated by the model.
See also the description of junction fragmentation in section 7.1.5.

Although the main objective of the model is to treat reconnections involving large invariant
masses, there is of course a tail towards small masses as well. For very low masses<O(1GeV),
string fragmentation becomes technically complicated (as each hadron needs to straddle sev-
eral gluon “kinks”), especially when junctions are involved, and also the approximations made
in the λmeasure are not particularly reliable. Therefore, reconnections involving string pieces
with masses below m0, cf. eq. (322), are excluded from participating in the CR framework.
(Technically, partons making up such low-mass systems are treated collectively as a single
pseudo-particle for the purpose of reconnections.)

7.2.3 The gluon-move scheme

In the effort to determine the top mass as accurately as possible, CR is one of the major sources
of systematic error. To better understand the situation, a range of new models were developed
and implemented in [318]. Many of these are crude straw-man models, or applicable only
to top decay. They are therefore not integrated as standard options, but may be obtained by
using the ColourReconnectionHooks.h plugin; see main29.cc for an example.

In the late resonance decays approach it is possible to use separate CR models for the un-
derlying event and for the top decay products. Then two collections of gluons are constructed,
one with the gluons radiated from the top decay products and the other with the gluons from
the rest of the event. Iterating over the former set in random order, a random fraction of the
gluons from the top are forced to exchange colours with a gluon from the rest of the event.
The latter gluon can be picked according to one of five different criteria, (i) at random, (ii) giv-
ing the smallest invariant mass, (iii) giving the largest invariant mass, (iv) giving the smallest
(with sign) ∆λ value, or (v) as (iv) but only if ∆λ < 0.

For early resonance decays, three possible operations were implemented, swap, move, and
flip. The latter two are implemented in the main body of PYTHIA.

The swap model is similar to option (iv) above. In it, a random fraction of all final-state
gluons are chosen for possible reconnection. For each gluon pair j and m in this set, on dipoles
(i, k) and (l, n) respectively, one calculates the difference∆λ resulting from a swap of the two
gluon colours

∆λ( j, m) = λm;ik +λ j;ln −
�

λ j;ik +λm;ln

�

= λim +λmk +λl j +λ jn −
�

λi j +λ jk +λlm +λmn

�

.
(329)
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A corresponding reconnection is performed if min j,m∆λ( j, m) ≤ ∆λcut. Here, ∆λcut ≤ 0 is a
free parameter that relates to the generated CR rate. The procedure is iterated over until no
allowed swaps remain.

The closely related move model works as follows. Again a random fraction of all final-state
gluons are selected. The change in the string length ∆λ is calculated for each such gluon j on
a final-state dipole (i, k), if the gluon is moved to any other final-state dipole (l, n):

∆λ( j, ik→ ln) = λ j;ln −λ j;ik = λl j +λ jn +λik −
�

λi j +λ jk +λln

�

. (330)

Here, the minimum is found as ∆λmin = min j,l,n∆λ( j, ik→ ln), and the move is carried out
if ∆λmin ≤∆λcut. This is then repeated as long as the latter criterion is fulfilled.

There is some fine print. If a colour-singlet subsystem consists of two gluons only, then it
is not allowed to move any of them, since that would result in a colour-singlet gluon. Also,
at most as many moves are made as there are gluons, which normally should be enough. A
specific gluon may be moved more than once, however. Finally, a gluon directly connected to
a junction cannot be moved, and also no gluon can be inserted between it and the junction.
This is entirely for practical reasons, but should not be a problem, since junctions are rare in
this model.

Neither the swap nor move methods reconnect quarks. That is, a qq pair starting out at the
opposite ends of a string will remain connected throughout. The intermediate gluons on this
string can change, however, and in the move model even the number of such gluons. A flip
step can be added after the swap or move ones, to also reconnect quarks. There, two string
pieces, (i, k) and (l, n), are connected to(i, n) and (l, k). For any two separate colour-singlet
subsystems this gives

∆λmin = min
i,k,l,n

[λin +λlk − (λik +λln)] . (331)

The system pair with smallest ∆λmin is allowed to flip, as long as ∆λmin ≤ ∆λcut. Singlet
systems cannot undergo a second flip. Junction topologies are either included or excluded
among the allowed flip possibilities. It is also possible to switch on/off move and flip separately.

7.2.4 The SK models

The SK I and SK II models [310, 320] were specifically developed for
e+e− → W+W− → q1q2q3q4 at LEP 2, and work (almost) equally well for an (γ∗/Z) (γ∗/Z)
intermediate state. They are not intended to handle hadronic collisions, however, except
in special contexts. The prime example is Higgs decays of the same character as above,
H → W+W−/ZZ, since the Higgs is so long lived that its decay is decoupled from the rest
of the event [321].

The labels I and II refer to the colour-confinement strings being modelled either by anal-
ogy with type I or type II superconductors. In the former case the strings are viewed as trans-
versely extended “bags” [322]. The reconnection probability is then related to the space-time-
integrated overlap of the W+ and W− string pieces. In the latter model, strings are instead
assumed to be analogous with vortex lines, where all the topological information is stored in
a thin-core region. Then, reconnection only can occur when these cores pass through each
other.

The imagined time sequence is as follows. The W+ and W− move apart from their com-
mon production vertex and decay at some distance. A perturbative parton shower evolves
from an original qq pair produced at each decay vertex. The typical distance that a virtual
parton travels before it branches is shorter than the fragmentation time, by a factor of five or
more. Note that a Lorentz-boosted virtual parton gives rise to a string piece inheriting this
boost factor. Thus, the branching-to-fragmentation time separation remains in all parts of an
event, even if one part started hadronization while another part still is in the shower stage,
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if viewed e.g. in the event rest frame. To a decent first approximation, each W can therefore
be viewed as instantaneously decaying into a string spanned between the partons at the end
of the shower. The strings expand transversely and longitudinally, (at most) by the speed of
light, and fragment into hadrons and disappear. The W+ and W− string pieces may overlap
before that happens, however, and then a reconnection may occur in the overlap region.

The reconnection probability in scenario I is proportional to the integrated space-time over-
lap of the W+ and W− strings, with saturation at unit probability. In more detail, first consider
a string piece expanding along the ±z direction. Then the colour field strength is taken to be

Ω(x, t) = exp
�

−(x2 + y2)/2r2
had

	

θ (t − |x|) exp
¦

−(t2 − z2)/τ2
frag

©

, (332)

where x = (x , y, z). The first factor gives a Gaussian falloff in the transverse directions. The
assumed string width rhad ≈ 0.5 fm corresponds to a hadron radius of

p
3 rhad. The time

retardation factor θ (t − |x|) ensures that information on the W decay spreads outwards with
the speed of light. The last factor gives the no-fragmentation probability at a given proper time
along the string axis, where τfrag ≈ 1.5 fm follows from the default a and b fragmentation-
function parameter values. The combined field-strength expression must be appropriately
rotated, boosted, and displaced to the respective W decay vertex for each string piece. A
complication is that two string pieces from the same W may well overlap in a space-time point,
by convoluted string drawings or by imperfections in the modelling at a gluon kink. Then the
string field strength Ω+max(x, t) is defined as the maximum of all the contributing Ω+’s at the
relevant point. From this, the probability for a reconnection to occur is chosen to be

Precon = 1− exp

�

−kI

∫

d3xdt Ω+max(x, t)Ω−max(x, t)

�

, (333)

with kI a free parameter. The integral is approximated by Monte-Carlo methods. The ex-
ponentiation I → 1 − exp(−I) ensures that the probability saturates at unity. Once a re-
connection occurs, however, its space-time location is selected according to the differen-
tial probability Ω+max(x, t)Ω−max(x, t) without any saturation. This defines the string pieces
involved, and the new colour singlets are obtained by a flip as described above (dipoles
(i, k) + (l, n)→ (i, n) + (l, k)).

Reconnections in scenario II can only take place when the cores of two string pieces cross
each other. Then the transverse size of strings is irrelevant, which gives a much simpler algo-
rithm than in scenario I. Now a string-piece core at time t is parameterized by a one-parameter
set x(t,α), where 0 ≤ α ≤ 1. Two string pieces (i, k) and (l, n) from the W+ and W− decays
cross when x+(i,k)(t,α

+) = x−(l,n)(t,α
−). This simple sytem of linear equations always has a

unique solution in (t,α+,α−), but the solution need not be in the physically allowed domain.
Such false solutions are easily rejected. As an example, if there is no shower activity, so that
the event only consists of the two q1q2 and q3q4 strings, it is easy to see that these are mov-
ing apart from each other already from their creation and will never meet. A solution will
nevertheless be found, but with negative t and possibly either or both of the α± outside their
allowed range. Further, as in scenario I, neither string piece should have had time to fragment
at crossing. This gives two extra suppression factors exp{−τ2/τ2

frag}, with τ the proper life-
time of each string piece at the point of crossing. Only the one that occurs first is chosen if
several string crossings are possible. Reconnection is done with a flip, as in scenario I.

In models I and II the string length is not tested, so it may increase. The geometry of the
process still tends to favour a reduced λ. For the model variants I′ and II′, a reduced λ is
imposed as an additional requirement on allowed reconnections.
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7.2.5 Other CR models

It is relevant to remember that many more CR models have been proposed, and several im-
plemented in past PYTHIA versions. Some of these could be resuscitated using the existing
colour-reconnection user hook, or an expanded version thereof, should the need arise.

In PYTHIA 6.4, several colour-annealing scenarios were available [315,323], again primar-
ily intended to be useful for top-mass uncertainty studies in hadronic collisions. They start
from the assumption that, at hadronization time, no information from the perturbative colour
history of the event is relevant, so all existing colour tags are erased. Instead, what determines
how hadronizing strings form between the partons is a minimization of the total potential en-
ergy stored in these strings, as represented by the λ measure. The minimization is achieved
by an iterative procedure, which unfortunately can be quite time consuming. The scenarios
differ by details such as whether closed gluon loops are suppressed or not, or whether only
free colour triplets are allowed to initiate string pieces.

Also in PYTHIA 6.4, the GH model [324] offered a simpler option for W+W− events, based
on colour factors and string length reduction, without any space-time picture.

In the ARIADNE program for e+e− and e±p, CR was introduced based on λ minimiza-
tion [319], but CR could occur after each new parton-shower emission, and thereby affect the
continued shower evolution. A similar idea is the dipole-swing mechanism for the initial-state
evolution of incoming hadrons [245,247].

When rapidity gaps were found in HERA DIS events, one early alternative to the Ingelman–
Schlein pomeron picture [250] was that the gaps were a consequence of CR [325–328]. The
Uppsala group has subsequently expanded this soft colour interactions approach to encompass
also hadronic events, for topics such as diffraction and other rapidity gaps [329], and charmo-
nium production [330]. One important difference relative to many of the models above is the
frequent use of an “area law” [331] rather than the λ measure. The area that a string motion
sweeps out is related to its m2. For a string consisting of several pieces, the total area is defined
as A=

∑n
i=0 m2

i,i+1, with masses calculated as in eq. (322). The probability of a reconnection is
then P = R0 [1− exp(−b∆A)] = R0 [1− exp(−b(Aold − Anew))]. The R0 ≈ 1/N2

c is an assumed
colour-factor suppression, and b is the same as in eq. (312). Note that, had A been defined as
the product of masses rather than a sum, then ln A would have been closely related to λ, and
in particular a ∆λ and a ∆A scan would find the same optimal reconnection region, but that
is not the case now. The related code is available in some earlier PYTHIA versions.

CR has also been studied in the context of other generators, such as HERWIG [332–334]
and SHERPA [335]. It is not possible to address CR in equivalent terms for cluster as for string
fragmentation, so there is no straight correspondence, but some basic ideas nevertheless are
shared.

7.3 String interactions and collective effects

Heavy-ion collision experiments have for decades studied the possible creation of a Quark–
Gluon Plasma (QGP) in high-energy collisions of heavy nuclei. Monte-Carlo simulations of
physics processes involving QGP creation, is mostly carried out in designated generators or
generator frameworks such as JEWEL [336] or JETSCAPE [337] (both of which in fact use
PYTHIA as a hard-process generator). Another approach is to segment individual events into
“core” and “corona” parts [338], where the former are treated as QGP, and the latter in vacuum.
This is the case for EPOS-LHC [339], which is an independent framework, as well as for other
approaches built on top of PYTHIA [340].

PYTHIA has thus, historically, played on a different field than generators focused on the spe-
cial observables obtained in heavy-ion collisions. Instead, PYTHIA is often used as a generator
supplying an initial state, with a focus on the hard process, parton shower, and hadronization

170

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

as in lepton collisions, with no QGP produced or assumed. This clear division of tasks was
questioned by data from LHC. First in 2010, with the discovery of long-range azimuthal cor-
relations of final-state hadrons in high multiplicity pp collisions, referred to as “the near-side
ridge” [341], and later by observations of enhanced production of strange and multi-strange
final-state hadrons, incompatible with model fits to LEP data [342–345]. The latter culmi-
nated in the observation that not only is the observed strangeness production incompatible
with model fits to LEP data, strange/non-strange ratios also increase with multiplicity, and the
increase smoothly connects pp with pA and AA collision systems [346]. This clearly meant
that PYTHIA could no longer assume that effects traditionally ascribed to QGP formation are
only present in heavy-ion collisions. While CR models can account qualitatively for some of
the observed effects [347, 348], they are wholly unsuitable in others [349]. Instead of intro-
ducing QGP formation into PYTHIA, as the approaches cited above in some sense have already
done, the route taken is to expand the Lund string model to its furthest consequence, by allow-
ing interactions between strings in densely populated regions of space. Whether interactions
between strings are indeed responsible for all collective effects observed in pp and heavy-ion
collisions, is still unknown. The models introduced here should thus clearly be understood as
one possibility among several others, however unified by the underlying assumption that QGP
is not formed. Furthermore, they are all work in progress at the time of writing, and subject to
change. There is no clear demarcation between what constitutes a model of colour reconnec-
tion, as introduced above, and models of string interactions. In this manual we have drawn
the line between models operating in momentum space (the colour reconnection models) and
models operating in real space.

7.3.1 String shoving

In the original formulation of the Lund string model, strings are treated as massless relativis-
tic strings, which presupposes that strings have no transverse extensions. In collisions with
many strings occupying the available spatial volume, this approximation breaks down, and
strings are allowed to interact with mainly repulsive forces. The realization of this picture is
denoted the “string shoving model”. While similar ideas were explored analytically already in
1988 [350], the modern version of the string shoving model is formulated to take into account
input from lattice QCD, and is based more firmly on the correspondence with a superconductor.
This model is rather new at the time of writing [283] and is still being extended with further
consequences being explored [351,352]. The model contains three basic physics components:
1) the string shape, 2) the string transverse width, and 3) the interaction force between two
strings.

The transverse shape of the colour-electric field of the flux tube (the string shape) is de-
termined with input from lattice QCD [353], and can be well described by a Gaussian:

E(ρ) = N exp

�

−
ρ2

2R

�

, (334)

where N is a normalization factor, ρ is the radial coordinate, and R is the string equilibrium
radius. The normalization constant is determined by assuming that the field energy per unit
length

∫

d2ρE2/2 is a constant fraction (g) of the string tension. This gives N2 = 2gκ/(πR2).
The strings expand from their time of formation with infinitesimal width, until they either
attain the maximum width R, or until the string’s fragmentation proper time, τhad, has been
reached. While the equilibrium width of a string can be argued either by lattice considerations
or from models, the number is associated with such large uncertainty, that it is in practice kept
as a free parameter of the model, with reasonable values between around 0.5 and 1.5 fm. The
same holds for the parameter g. The string repulsion force can then be calculated from the
energy of the colour-electric field of two overlapping, parallel strings

∫

d2ρ(~E1 + ~E2)2/2. If
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strings are separated from each other by the transverse distance d⊥, the interaction energy
becomes 2gκexp(−d2

⊥/(4R2)), which gives the interaction force per unit length:

f (d⊥) =
gκd⊥

R2
exp

�

−
d2
⊥

4R2

�

. (335)

The above treatment leading to eq. (335), is made in terms of Abelian fields. As such,
anti-parallel strings would attract each other rather than repel. In a non-Abelian theory like
QCD, the picture is more complex, leading to repulsion being the dominant mechanism. As
an example, consider the case of oppositely oriented triplet fields. One obtains an octet field
with probability 8/9, which still leads to a repulsion, and a singlet field with probability 1/9,
leading to attraction. Since singlets correspond to the total attenuation of fields, it can further
be assumed that singlets are already handled by colour-reconnection mechanisms [352,352].

The technical implementation is concerned with two further questions, namely calculating
d⊥ for two given string pieces, and distributing the resulting pushes in the event. For the
former, a suitable Lorentz frame is defined, where a string pair always lies in parallel planes,
called the parallel frame [352]. One can then boost a pair of strings from the lab frame to
the parallel frame, where the string topology is specified with an opening angle between the
two partons in the string ends and a skewness angle between the two strings — both of which
are constrained by momentum-energy conservation. The angles can be expressed in terms of
pseudorapidity and invariant masses si j for the string formed by partons i and j:

cosh(η) =
s14

4p⊥1p⊥4
+

s13

4p⊥1p⊥3
, and cos(φ) =

s14

4p⊥1p⊥4
−

s13

4p⊥1p⊥3
. (336)

Furthermore, the strings now evolve and interact in the proper time in the parallel frame.
Calculating this interaction for every possible string pair is, among other aspects, a compu-
tational challenge, and to curb the possibility of running into being an extreme computing
resource-consuming program, we for now neglect end-string effects which, for example, have
been studied in [290].

The shoving force is distributed to the outgoing hadrons formed after string fragmentation,
taking into account that the total applied push is a result of a time evolution. The integrated
push ∆ p⊥ is:

∆p⊥ =

∫

dt

∫

dz f (d⊥(t)) , (337)

where the integration limits in z are time dependent. Since the time ordering of pushes is
important, ∆p⊥ is split up into several (fixed) small pushes δp⊥, according to a probability
distribution P(t). The total push is then:

∆p⊥ =

∫

dtP(t)δp⊥ , with P(t) =
1
δp⊥

∫

dz f (d⊥) , (338)

when δp⊥ is small. The pushes can then be ordered in time (in the parallel frame) using the
veto algorithm. The resulting procedure corresponds to a time evolution with dynamical time
stepping, where steps are large when pushes are small and vice versa.

In t, z space, this would look like hadrons flying out along the direction of their original
pseudorapidity, even after the pushes are applied, spreading out in a light-cone that extends
in such a way that it encloses all the hadrons which receive a share of this generated ∆p⊥.
This distribution of pushes is performed as shown in fig. 18.
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z
z

Figure 18: Space-time diagram of a Lund string showing the trajectory of hadrons
when they receive their share of∆p⊥ resulting from string shoving interactions. The
blue lines show the initial pseudorapidity lines for the hadrons formed, the red line
implies a δp⊥ generated from shoving, and the red dashed line shows the τhad .

7.3.2 Rope hadronization

A simple string drawn between a quark and an antiquark is an SU(3) triplet (or anti-triplet
depending on direction of colour flow). When several strings overlap with each other at
hadronization time, the rope-hadronization model posits that end-point colour charges will
act together coherently to form a stronger field — a rope. This possibility was noted in the
classic paper by Biro, Nielsen and Knoll from 1984 [354].

The new, stronger field is an SU(3) multiplet. According to lattice calculations [355], the
energy density (and thus the string tension) scales as the second Casimir operator (C2) of
the rope multiplet. When a rope is formed by ordinary triplet and anti-triplet strings, the net
colour charge is obtained from the addition of random coloured triplets and anti-triplets [246,
354, 356]. A resulting multiplet is uniquely characterized by two quantum numbers p and q,
with a specific state corresponding to p coherent triplets and q coherent anti-triplets (a normal
triplet string is thus characterized as {p, q} = {1, 0}). The multiplicity of a multiplet is given
by:

2N = (p+ 1)(q+ 1)(p+ q+ 2) . (339)

This allows for an iterative addition of multiplets. Starting from a given multiplet {p, q},
adding a triplet gives the three possible multiplets [246]:

{p+ 1, q}, {p− 1, q− 1} , and {p, q− 1} , (340)

with weights given by eq. (339). The anti-triplet case is given directly from symmetry. Once
it is established which triplets and anti-triplets are overlapping in an event, a random walk
procedure can be carried out to find p and q for the rope multiplet. Since the energy density
of the rope is proportional to C2, the relative tension of the multiplet to the triplet can be
calculated directly as:

C2({p, q})
C2{1,0}

=
1
4
(p2 + pq+ q2 + 3p+ 3q) . (341)

173

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

When the rope breaks up, it does so in a step-wise manner, one string at a time. By considering
the change in available field energy in the transition {p, q} → {p − 1, q}, neglecting the con-
tribution from the vacuum pressure to the total energy, the energy available in a single string
breaking becomes the effective string tension κ̃:

κ̃= (2p− 1)κ . (342)

While the string tension κ does not enter explicitly9 into the PYTHIA implementation of
string hadronization, it does enter implicitly through the parameters of eqs. (312) and (319).
From the implicit dependence on κ, transformation rules for all parameters can be defined,
given the assumption that the PYTHIA default values of all parameters correspond to κ̃ = κ,
as they are tuned to LEP data [357] where there are no overlapping strings, and thus p = 1
and q = 0. The most important affected parameters [246], are: those involved in suppression
of strangeness (ρ), diquark production (ξ), diquark with strange-quark content relative to
diquarks without strange quarks (x), the suppression of spin-1 diquarks relative to spin-0
diquarks, and the width of the transverse momentum distribution in string breakings (σ).
Letting h= κ̃/κ, the transformation rules for ρ, x and y are similar:

ρ 7→ ρ̃ = ρ1/h, x 7→ x̃ = x1/h , and y 7→ ỹ = y1/h , (343)

while σ 7→ σ̃ = σ1/h. The ξ parameter is more complicated, and transforms like:

ξ 7→ ξ̃= α̃β
�

ξ

αβ

�1/h

, (344)

with α depending on all the above parameters, and β a free parameter.

7.3.3 The thermal model

The thermal model [358], available as a non-default option, can partly be viewed as an alter-
native to the rope model, sharing similar objectives. Not all details have been fully developed,
so its main purpose is for exploration. One motivation for it is that hadronic p⊥ spectra in
low-energy collisions are reasonably well described by an exponential fit

dσ
d2p⊥

= N exp(−m⊥had/T ) , with m⊥had =
Ç

m2
had + p2

⊥ , (345)

where N and T are (approximately) common for all hadron types. Another motivation is that
local quantum-mechanical fluctuations in the string transverse profile translate into a fluctuat-
ing string tension κ, which can broaden the Gaussian p⊥ into an exponential-like form [359].
(Compare with fluctuations in the proton size, which are commonly advocated and used e.g.
in the ANGANTYR modelling of cross sections [283].) While traditionally T is associated with
a temperature, in such a scenario it would rather be derived from κ.

The thermal model is implemented as follows. In each string break the q and q receive
opposite and compensating p⊥ values, chosen such that the p⊥ sum of two adjacent string
breaks precisely gives an exp(−p⊥/T ) spectrum. Starting from a known flavour in one string
break, the next flavour and the resulting intermediate hadron is chosen among all possibili-
ties according to a relative weight exp(−m⊥had/T ). Assuming the production of two hadrons
with different masses m1 and m2, this approach then implies the same production rate for
p⊥ � m1, m2, but more suppression of the heavier hadron at low p⊥. Thus, there is less
production of heavier states, but they come with a larger 〈p⊥〉, which is as intended.

9The string tension does enter explicitly into the vertex positions in section 7.1.4, but the effect of rope formation
has so far not been taken into account for hadron vertices.
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There is some fine print, like that each particle should be weighted by the number of spin
states, that flavour-diagonal mesons can mix, that baryons need SU(6) symmetry factors, that
baryons receive a free overall normalization factor with respect to mesons, and so on. The
number of flavour-related free parameters still is significantly reduced relative to the ordinary
string fragmentation.

Overall the particle composition comes out reasonably well, with some excess of the heav-
ier baryons. This is in contrast to the normal string fragmentation, where it is difficult to
produce enough of these particles. The larger 〈p⊥〉 for heavier particles also improves agree-
ment with pp data, but resonance decays act to dilute the effects, so 〈p⊥〉(mhad) still does not
rise quite fast enough.

Another issue is what happens when several strings are close packed. In the rope model,
this leads to a higher κ, in quantised steps. An alternative is to assume a continuously increas-
ing κ as each string is squeezed into a decreasing effective area. Such an option is implemented
as part of the thermal model, but can also be applied to the default Gaussian one. In this ap-
proach, the T or κ parameter is rescaled by a power of the effective number of strings in the
neighbourhood of a new hadron. Therefore a trial average step along the string is made before
a new hadron is produced, giving a likely hadron rapidity and p⊥. Then, one may count the
number of strings crossing that rapidity, as a simple measure of string density. A smooth damp-
ing is applied for particles produced at larger p⊥, which are likely to be produced in minijets
sticking out from the denser-populated central region. The close-packing enhancement can be
used e.g. to increase strangeness production in high-multiplicity pp events, similar to the rope
model, but it has not been as extensively compared with data.

7.4 Hadronic rescattering

After hadrons have been produced, outgoing hadrons can interact in secondary collisions. This
rescattering can be relevant when studying collective effects, but can lead to a significant slow-
down of PYTHIA, and is therefore not on by default. It is enabled by setting
HadronLevel:Rescatter = on. Here, we will outline the rescattering algorithm, then
summarize some notable effects of rescattering of which the average user should be aware. A
more detailed discussion of the rescattering framework is given in [213] in the context of pp
collisions, while [360] discusses physics results for pA and AA collisions.

There are two aspects to the rescattering algorithm: first, describing how two hadrons
interact with each other in their rest frame; and second, describing the evolution of the event
as a whole.

Consider two hadrons in their rest frame, with CM energy
p

s and impact parameter b. We
assume that the probability of an interaction occurring is a function of b and the total cross
section σtot. The cross section generally depends on

p
s and the specific hadron species, as

described in section 6.1.5. There is no solid theory for how P depends of b, so two different
models are implemented in PYTHIA 8.3. The default is a Gaussian dependency,

P(b) = P0e−b2/b2
0 , (346)

where P0 is referred to as the opacity, a free parameter that is 0.9 by default, and the charac-
teristic length scale is

b0 =
√

√σtot

P0π
. (347)

The alternative model is a disk model,

P(b) = P0Θ(b− b0) , (348)
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where Θ is the Heaviside step function. For P0 = 1, this corresponds to the black-disk model
used by most existing hadronic rescattering frameworks. The two models are normalized such
that if b is chosen uniformly on a disk with radius much larger than b0, then both models will
give the same interaction probability. In practice, rescattering is more likely in dense regions
where b tends to be biased towards lower values, so the narrower distributions like the black
disk will lead to more rescattering activity. If it is determined that the hadrons should interact,
the interaction time is defined as the time of closest approach in their rest frame.

The algorithm for performing rescattering for the whole event proceeds as follows:

1. Start with an event right after hadronization.

2. For each hadron pair, test whether they could interact, using the probability P defined
above.

3. If a pair could potentially interact, record the interaction time for that pair in a time-
ordered list.

4. Choose the earliest interaction in the list where participants have not already interacted,
and simulate the collision. Which process to simulate is chosen with probabilities pro-
portional to the partial cross sections for each process.

5. Check whether the newly produced hadrons can interact with existing ones, and if so,
add the interaction times for those pairs to that list.

6. Continue picking interactions from the list until there are no more potential rescatter-
ings.

Short-lived hadrons can also decay during the rescattering phase. To model this, the decay
times of those hadrons are recorded in the list together with rescattering interaction times,
and the decay occurs when it is chosen in step 3 above, if it has not already rescattered.

Enabling rescattering has a few consequences for the shape of events. First, rescat-
tering increases charged multiplicity, since only processes with two incoming hadrons
are allowed, but inelastic processes can produce more than two outgoing ones. For
PYTHIA 8.307 with default parameters and pp at 13 TeV, this can be compensated by setting
MultipartonInteraction:pT0Ref = 2.345. For beams such as pPb and PbPb, other val-
ues might restore the multiplicity, but a more thorough retune is necessary in order to simul-
taneously obtain the correct multiplicity in all three cases. In such a retune, it would also be
relevant to include other effects such as ropes (section 7.3.2) and shoving (section 7.3.1). For
now, the user is advised to assume that rescattering will change the charged multiplicity.

Similarly, hadron composition will change. Baryon number in particular is reduced in
rescattering through annihilation processes. For example, the process pp → π+π−π0 is pos-
sible, but not the reverse. Another way the composition changes is through resonance pro-
duction, e.g. πK→ K∗, but be aware that this resonance production is not easily detectable in
experiment; for a resonance production followed by a decay, πK → K∗ → πK, the invariant
mass of the outgoing system is the same as for the incoming one. In other words, this process
produces a K∗ that is visible in the event record, without necessarily changing the observable
πK mass spectrum.

A particular consequence of the increased multiplicity is that each hadron will on average
have lower p⊥, which could affect e.g. spectra that are sensitive to p⊥ cuts. At the same time,
the mean p⊥ for particular hadron species may increase. This is the case for example with
protons, which will move slower than pions with similar p⊥, and will therefore receive a push
from behind. This phenomenon is referred to as the “pion wind”.
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Rescattering has been shown to give rise to some collective effects, in particular azimuthal
flow in PbPb collisions. PYTHIA 8.3/ANGANTYR with rescattering provides a good description
of elliptic flow coefficients at large multiplicities, and a more modest contribution at low mul-
tiplicities. It can also lead to some jet modifications, but with the aforementioned p⊥ shift, it
is not clear how to interpret these modifications. See [360] for further discussion.

7.5 Bose–Einstein effects

Ideally, coloured partons could be formed into colourless final-state hadrons using amplitude-
based quantum mechanics, but because these transitions are non-perturbative, phenomenolog-
ical models of hadronization are employed. Due to the probabilistic nature of these hadroniza-
tion models, coherence in final-state particles cannot be directly described. A classic example
of such final state coherence is Bose–Einstein effects, where correlations arise between iden-
tical bosons in an event from the symmetrization of the production amplitude. While these
correlations are expected to have a negligible impact for most measurements in pp collisions,
Bose–Einstein effects10 have been observed in minimum bias pp and pp data [362–365], as
well as e+e−data [366–369]. Additionally, some precision measurements such as W -mass de-
termination using hadronic final states may be sensitive to Bose–Einstein effects [370].

Assuming a geometric picture with a Gaussian distribution of production vertices in space-
time, two-particle correlations of identical bosons are enhanced by a unitless factor of,

f2(Q) = 1+λe−Q2Q−2
0 , (349)

with respect to a final state with no coherence effects [371]. Here, Q2 is (pi − p j)2 where
pi and p j are the four-momenta of the two particles, λ is the incoherence parameter, and Q0
is a reference Q related to the radius of the particle source as r ≡ ħh/Q0. The incoherence
parameter is limited between 0 where there is no effect, and 1 with a maximal effect.

For a high multiplicity event with multiple two-particle correlations, the event weight can
be naively approximated as the product of f2(Q) for each particle pair. Note, this is a slight
overestimate of the event weight for most event topologies. These event weights cannot modify
the overall normalization, as this would increase the cross section for the final state. If the
weights are normalized to unity, the total cross section is not modified, but the multiplicity
distribution will be shifted to higher multiplicities. Neither of these behaviours is desirable,
as both cross sections and multiplicity distributions are already well described without Bose–
Einstein effects.

Instead, in PYTHIA Bose–Einstein effects are introduced by shifting the momenta inside
particle pairs. Assuming the distribution of Q for particle pairs is given by flat phase space,
then solving,

∫ Q

0

dq
q2

p

q2 + 4m2
=

∫ Q′

0

dq f2(q)
q2

p

q2 + 4m2
, (350)

for Q′ determines the new Q value needed to produce an enhancement of f2(Q) for that particle
pair with individual particle mass m. The three-momentum for the two particles can then be
shifted by,

∆~pi, j = c(~pi − ~p j) , (351)

where ~p ′i = ~pi+∆~pi, j ~p
′
j = ~p j−∆~pi, j , and the constant coefficient c is determined from setting

Q′2 = (p′i − p′j)
2. Because events may have more than one particle pair, the total shift for a

given particle is then,
~p ′i = ~pi +

∑

j 6=i

∆~pi, j , (352)

10Within the heavy-ion and astrophysics communities these effects are oftentimes discussed in the context of
Hanbury-Brown–Twiss interferometry [361].
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where the sign of ∆~pi, j is such that the three-momenta of the event is conserved.
Effectively, this shifting of momentum corresponds to pulling particle pairs closer together,

and while three-momenta is conserved throughout this process, energy conservation is vio-
lated and the total energy of the event is reduced. The form of f2(Q) from eq. (349) arises
from integrating the pair symmetrization term 1+cos(∆x ·∆p) over a Gaussian distribution of
production vertices in space-time. Consequently, any source distribution other than a Gaussian
will result in an oscillatory behaviour of f2(Q), with alternating values of f2(Q) > 1, where
Q′ <Q results in the pair pulled together, and f2(Q)< 1, where Q′ >Q results in the pair sep-
arated apart. With the appropriate damping of this oscillatory behaviour, for a given particle
configuration, a form of f2(Q) can be found where both conservation of three-momenta and
energy is achieved. Some pairs at low Q are pulled together, reducing the net energy, while
other pairs at middle Q are separated apart, increasing the net energy.

To achieve this behaviour, a form of f2(Q) is selected to have one oscillation before damp-
ing. The ansatz of the BE32 algorithm [372],

f2(Q) =
�

1+λe−Q2Q−2
0

��

1+αλe−Q2Q−2
0 /9

�

1− e−Q2Q−2
0 /4

��

, (353)

is chosen for α < 0, where the new second factor effectively models the initial minimum of the
oscillation as a smeared Gaussian [14]. This form does not have any deep physical meaning,
but provides the necessary first oscillation while maintaining the initial Gaussian distribution
form, and has the limiting behaviour of f2(0) = 1+ λ. The factor α is iteratively determined
per event after calculating all relevant p′i , such that energy is still conserved even after three-
momentum shifting is performed for each relevant particle. Consequently, at least two particle
pairs must be present for Bose–Einstein effects to be introduced.

Bose–Einstein correlations are performed after hadronization but prior to particle decays,
and are not included by default. Effects may be switched on or off for different particle group-
ings: pions with π0, π+, and π− pairs; kaons with K0

S, K0
L, K+, and K− pairs; and eta mesons

with η and η′ pairs. Many of these particle species are produced not only from primary
hadronization, but also from the decay of short-lived particles. Consequently, a configurable
minimum decay width can be set so that any particles with a larger width are decayed prior to
the application of Bose–Einstein effects. The default minimum decay width is set at 0.02 GeV
so that both ρ and K∗ mesons are decayed before correlations are introduced. Both the shifted
and unshifted versions of particles are kept in the event record for bookkeeping purposes. All
shifted particles are assigned a status of 99 and are set as the children of their unshifted entry.

7.6 Deuteron production

The deuteron, D, is a bound proton and neutron state, which, similar to Bose–Einstein effects
(see section 7.5), must be formed after hadronization. Understanding deuteron production
in the context of collider-based experiments can help efforts in modelling nuclei formation
and reduce prediction uncertainties when searching for possible dark-matter induced excesses
in cosmic ray flux ratios [373]. In heavy-ion physics, formation of loosely bound systems
are often used to determine the chemical freeze-out temperature in statistical hadronization
models [374]. In PYTHIA 8.3, two deuteron formation models are available, the coalescence
model [375, 376] and the more sophisticated Dal–Raklev model [377]. Both models are im-
plemented through the same configurable framework, with the Dal–Raklev model set as the
default configuration. All deuteron production is switched off unless explicitly requested by
the user. Note that while the discussion here is for the deuteron, anti-deuteron production is
also performed following the exact same method, but with all particles swapped to antiparti-
cles.
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In the coalescence model, all possible p and n pair combinations are determined. For each
pair the magnitude of their three-momenta difference,

k =
q

(~pi − ~p j)2 , (354)

is calculated in the rest frame of the pair, where ~pi and ~p j are the two three-momenta of the
pair. If k is less than some cutoff value c0, the pair is bound into a deuteron, otherwise the
nucleons remain unmodified. Spatial separation, in addition to momentum separation, could
also be considered, although this has not been implemented in any of the models described
here. The ordering of testing pairs for binding is randomized, and after each successful bind-
ing, any remaining pairs containing one of the bound nucleons are no longer considered for
binding. For the coalescence model, this implies that the binding cross section is flat as a func-
tion of k. If there are two unique pairs each with k < c0, both pairs have an equal probability
of being bound, even if one k is smaller than the other.

After a nucleon pair is selected for binding, a deuteron is formed. In principle, the three-
momentum of this deuteron could be calculated as ~pi+~p j , and while three-momentum for the
event would be conserved, energy would not. Instead, an isotropic decay into a deuteron and
photon is performed in the rest frame of the pair. Because the primary process for deuteron
formation at the low momentum differences of the coalescence model is radiative capture,
pn→ γD, this provides a reasonable approximation of the process and conserves both energy
and momentum. While spin correlations could be considered, these typically are negligible
after boosting the deuteron and photon into the laboratory frame.

The Dal–Raklev model expands upon the coalescence model by considering the following
formation channels, other than just pn→ Dγ.

• pn→ γD

• pn→ π0D

• pn→ π−π+D

• pn→ π0π0D

• pp→ π+D

• nn→ π−D

• pp→ π+π0D

• nn→ π−π0D

Channels can be removed, modified, or added. Each channel must have a two-body initial state
and an n-body final state where n> 1 and at least one of the outgoing particles is a deuteron.
For each of these channels the kinematics of the final state are determined by an isotropic
decay in the rest frame of the initial state pair. Additionally, the binding cross section is no
longer considered as a uniform distribution up to a cutoff parameter, but is instead determined
from fits of differential nucleon-scattering data from a number of experiments [377].

Four cross-section parameterizations are available. For each channel, one of the following
parameterizations must be selected, and the necessary coefficients ci provided.

1. The coalescence model parameterization as previously described is a step function with
two parameters, the cutoff parameter c0 and a normalization parameter c1. The nor-
malization allows channels using this parameterization to be used in combination with
other channels.

dσ(k)
dk

= c1Θ(c0 − k) . (355)

2. The pn → γD cross-section differential in k can be parameterized by a polynomial be-
low a cutoff of c0, and with an exponential above. Due to Runge’s phenomenon, the
polynomial is fixed to its value at k = 0.1 GeV for k < 0.1 GeV.

dσ(k)
dk

=











dσ(0.1 GeV)/dk , for k < 0.1 GeV ,
∑12

i=1 cik
i−2 , for 0.1 GeV ≥ k < c0 ,

e−c13k−c14k2
, otherwise .

(356)
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3. The two-body final states with a pion and deuteron are parameterized using a cross
section differential in q, the momentum magnitude of the pion in the nucleon-pair rest
frame, divided by the mass of the pion. Because the final state is two-body, the pion
momentum magnitude is already known a priori.

dσ(q)
dq

=
c0qc1

(c2 − ec3q)2 + c4
. (357)

In the default Dal–Raklev model, the pn → π0D, pn → π+D, and pn → π−D channels
use this parameterization.

4. The cross sections for the three-body final states with pions are differential in k and are
parameterized with,

dσ(k)
dk

=
∑

i=0

c5ik
c5i+1

(c5i+2 − ec5i+3k)2 + c5i+4
, (358)

where the number of coefficients is variable but must be a multiple of 5. The default
pn→ π−π+D, pn→ π0π0D, pn→ π+π0D, and nn→ π−π0D channels use this param-
eterization.

Not only does the shape of the differential cross sections matter, but also the normalization,
as this determines the relative rates between the channels. In the Dal–Raklev model the γD
channel dominates at low k. For k > 1 GeV the πD channels dominate except between roughly
1 and 2 GeV where theππD channels dominate. An additional unitless normalization scale can
be configured to increase or decrease the total deuteron production cross section. A number
of fits for this normalization constant have been made using various data sets from the LHC,
with the default normalization set from differential 7 TeV ALICE data [377].

8 Particles and decays

There are several ways to classify unstable particles, and in PYTHIA at least three classifications
are useful:

• by lifetime, specifically for coloured particles whether above or below the hadronization
time;

• by if the partial and total widths of a particle are perturbatively calculable, such as for
the µ, γ∗/Z, W±, top, Higgs bosons, and most BSM particles, or not, such as for hadrons;

• by if a particle is part of the hard process, and cannot be produced anywhere else, such
as in parton showers or hadronization, e.g. Z, W±, top, and Higgs bosons.

These classifications are necessary to understand how particles are technically treated.
In PYTHIA a distinction is made between the following technical representations of particle

states: resonances with an average lifetime shorter than the hadronization scale; particles
with an average lifetime comparable to or longer than the hadronization scale; and partons
that carry colour charge and must be hadronized. By default, any state with a nominal mass
above 20 GeV is considered as a resonance, e.g. γ∗/Z, W±, top, Higgs bosons, and most BSM
states such as sfermions and gauginos. However, some light hypothetical weakly interacting
or stable states, such as the gravitino, are also by default considered as resonances to ensure
a full treatment of angular correlations in their decays. All remaining states without colour
charge, primarily leptons and hadrons, are treated as particles, while quarks and gluons are
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considered as partons. There are some exceptions like colour-octet onia, which are treated as
both partons carrying colour charge, and particles that decay after hadronization.

Resonance states are sequentially decayed during the hard process, see section 3.11 for
details. For example, in the hard process gg→ H→ Z[→ µ+µ−]Z[→ µ+µ−] the decay of the
Higgs into Z bosons is first performed, followed by the decays of the γ∗Z resonances into muon
pairs. The cross sections calculated for hard processes with resonances depend upon the avail-
able decay channels of the resonances; closing decay channels will reduce the cross section for
the process while opening decay channels will increase the cross section. Consequently, when
using the cross section calculated for a resonance produced in a hard process, the available
branching fractions of the resonance are already included in the cross section. In most cases,
angular correlations are included in the decay of the resonance. In some cases, mixed decays
of the resonances are needed, e.g. gg → H → Z[→ µ+µ−]Z[→ e+e−]. In this example, both
the muon and electron channels could be left open. However, in some cases this might result
in inefficient generation of the required final state. Consequently, a special class is available
in PYTHIA, ResonanceDecayFilterHooks, which can be used to select specific final states
from the resonance decays.

Lighter states such as the J/ψ, which can be produced by the hard processes of section 3.3,
are technically treated by PYTHIA as particles and not resonances. This is because the J/ψ can
be produced in both hadronization and particle decays, where the cross section of these J/ψ
production mechanisms is not known a priori. The reduced cross section of the J/ψ due to
closed decay channels can only be determined after the generation of full events, including
J/ψ production from the hard process, hadronization, and particle decays. Similarly, states
that are only produced in the hadronization and particle decays, e.g. the ρ, are also considered
particles and not resonances. An important exception to the treatment of resonances is the
production of weak bosons in the parton shower, see section 4.1.4. Here, while closing the
decay channels of the weak bosons will modify the hard-process cross section, the decays of
the weak bosons in the parton shower will still remain inclusive. The decay channels of the
weak bosons in the parton shower can be selected using the special IDs 93 and 94 for the Z
and W, respectively. However, changing these decay channels will not affect the hard-process
cross section and must be book kept carefully by the user.

8.1 Particle properties

For all states, a number of properties must be defined. Each state is uniquely identified by
its PDG ID, or when a PDG convention is not available, a PYTHIA specific numbering conven-
tion, i.e. for BSM and colour-octet onium states. For each state a human readable name is
stored, as well as an antiparticle name when relevant. The quantum numbers for each state
must be defined: the spin, electric charge, and colour charge. Note that the spin information
is duplicated for hadrons, where the spin can also be determined from the PDG ID. The ex-
perimentally observable properties of the state are also specified including a nominal mass,
a nominal width, allowed limits of this width, and a nominal proper lifetime. Additionally, a
number of decay related options can be specified including whether the state may decay, if the
width is perturbatively calculable, and if the width should be forced to be rescaled. Each state
may also have a list of decay channels which determine how the state is decayed. Each chan-
nel is configured with a flag specifying if the channel is available for the particle/antiparticle
state, a branching ratio, a mode specifying a possible matrix element for the decay, and a list
of the decay products.
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8.1.1 Masses

The default masses for most particles in PYTHIA are taken from experimental observation as
summarized by the PDG [378]. There are three exceptions: quarks and diquarks, unobserved
or poorly studied hadrons, and hypothetical BSM particles. For hypothetical particles, e.g.
BSM Higgs bosons, hidden valley hadrons, or fourth generation fermions, reasonable defaults
are provided, see section 10.1.2 for details.

Due to ill-defined quark masses, two types of quark masses are used in PYTHIA, kinematic
and running. The kinematic masses are those defined in the PYTHIA particle database, and are
used when generating phase space. For example, in the process gg→ cc, the kinematic mass
of the c quark is used. Similarly, the g→ qq splittings of the parton shower use these kinematic
masses. While these quark masses can be changed, their default values have been carefully
chosen following a number of considerations [303]. Modifying these default values can lead to
unintended consequences across all aspects of PYTHIA including hard process generation, the
parton shower, hadronization, and even particle decays. Consequently, care should be taken
when changing these quark masses from their default values.

Running quark masses are used when calculating mass-dependent couplings, which in-
clude couplings of the quarks to SM and BSM Higgs bosons. The running masses for the
quarks are calculated at one loop in the MS normalization scheme using,

m(Q) = m0

�

ln(Q0/Λ)
ln(Q/Λ)

�12/(33−nf)

, (359)

where m0 is the input mass at the reference scale Q0, and nf is the number of active flavours
in calculating αs. For the light quarks, Q0 is set at 2 GeV, while for the c, b, and t quarks Q0 is
set at m0. The input masses can be configured with the parameters ParticleData:mXRun,
where X is the quark name, i.e. either d, u, s c, b, or t, to be put equal to the MS mass of
the quark. The reference value of αs used in calculating Λ is defined at the scale mZ and set
with the parameter ParticleData:alphaSvalueMRun.

The default masses of unobserved hadrons and diquarks have been set using the constituent
mass model from PYTHIA 6 [14, 379], which considers the spin-spin couplings of the quark
combinations. The semi-empirical formula for a hadron mass is given by,

m= m0 +
∑

i

mi + k m2
d

∑

i< j

Si j

mi m j
, (360)

where the terms m0 and k are determined from known hadron masses and depend upon
the multiplet of the hadron, mi are the constituent quark masses, and Si j are the spin-spin
interactions for each quark-pair combination. The constituent quark masses are taken from
PYTHIA 6 as 0.325 GeV for the u and d, 0.5 GeV for the s, 1.6 GeV for the c, and 5 GeV for the
b. Since the t does not form narrow bound states, the t constituent mass is not needed.

For mesons and diquarks, there is only one quark pair, given by q1 and q2. For diquarks
and meson multiplets with orbital angular momentum L = 0, the spin-spin term for S = 0
states is S12 = −3, while for the S = 1 states this term is S12 = 1. For both pseudoscalar and
vector mesons, m0 is set to 0 GeV and k is fitted to be 0.16 GeV. For the excited multiplets
with L = 1, the spin-spin terms vanish with k set to 0 GeV and m0 fitted to be 0.45 GeV,
0.5 GeV, 0.55 GeV, and 0.6 GeV for scalars, S = 0 axial-vectors, S = 1 axial-vectors, and
tensors, respectively. The masses of diquarks are calculated using the same k value as for
baryons, 0.048 GeV, and m0 = 0.077 GeV which is two-thirds the baryon m0 value.

There are three possible combinations for baryons, and the spin-spin terms depend not
only upon the spin of the baryon, but also the quark composition. For S = 1

2 baryons the
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spin-spin term is given by,

∑

i< j

Si j

mi m j
=

1
m1m2

−
2

m1m3
−

2
m2m3

, (361)

if there are either two identical flavours, q1 and q2, or all the quark flavours are different and
the two lighter quarks are in an anti-symmetric spin state. For this anti-symmetric case q3 is
the heaviest quark, while q1 and q2 are the two lighter quarks. When all the quarks are all
different flavours and the light quark pair is symmetric, the spin-spin term is given by

∑

i< j

Si j

mi m j
= −

3
m2m3

, (362)

where q2 and q3 are the two lighter quarks when relevant. For the S = 3
2 baryons, the spin-spin

term is given by,
∑

i< j

Si j

mi m j
=

1
m1m2

+
1

m1m3
+

1
m2m3

, (363)

where the ordering of the quarks does not matter. For all baryons, the fitted parameters are
set as m0 = 0.11 GeV and k = 0.048 GeV. The default masses for a number of baryons in
PYTHIA are calculated using these factors and eq. (360). These baryons include the double
and triple-heavy Ξ and Ω baryons.

8.1.2 Widths

Widths are relevant for sampling the masses of both resonances and particles. For particles,
widths are fixed when sampling a particle mass except for the case of hadronic rescattering, see
sections 7.4 and 8.2.3 for further details. The parameter ParticleData:modeBreitWigner
determines what type of distribution is used to select particle masses. Note that this parameter
is set for all particle species; it is not possible to choose different mass shapes on a species-
by-species basis. For a value of 0 the fixed on-shell particle mass is used, while for 1 a non-
relativistic Breit–Wigner is used,

P(m)dm∝
1

(m−m0)2 + Γ 2/4
dm . (364)

By setting a value of 2 a mass dependent width can be included,

Γ (m) = Γ0

√

√

√

m2 −m2
thr

m2
0 −m2

thr

, (365)

where m is the selected mass, m0 is the on-shell mass, and mthr is the average threshold
mass. The threshold mass is the sum of the on-shell masses for the decay products, and is
consequently channel dependent. However, to decouple mass selection and decay, the mass
threshold is taken as the average mass threshold for all decay channels, weighted by branching
fraction.

A relativistic Breit–Wigner can also be selected,

P(m2)dm2∝
1

(m2 −m2
0)2 +m2

0Γ
2

dm2 , (366)

with the option 3, where a fixed Γ is used just as for option 1. The relativistic Breit–Wigner can
also be used with the mass dependent width of eq. (365) with option 4. For all mass selection
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options, relativistic or otherwise, the mass distribution is truncated via the NN::mMin and
NN:mMax parameters set for each particle species; here, NN is the given particle species ID.
The default mass shape in PYTHIA is option 4, a mass-dependent relativistic Breit–Wigner.

For particles with broad mass distributions that are not treated as resonances, the mass
selection models above can distort the particle branching ratios. Regardless of the selected
mass of a particle, all decay channels, even those with an on-shell mass threshold above the
selected mass, are considered. Only after the masses for the decay products are sampled, are
channels eliminated if not kinematically available. In this way, decay channels can remain open
if there are downward fluctuations in the selected masses of the decay products. However, if
the mass distribution for a particle is truncated at a lower mass, decay channels with lower
mass thresholds may be enhanced. A good example is the ρ0 which, as a broad low-mass
resonance, has any number of non-perturbative and threshold effects. The mass distribution
for the ρ0 is limited by the rare e+e− decay channel. However, truncating the mass distribution
at this mass threshold can result in oversampling the lighter decay channels. Consequently,
the mass threshold for the ππ channel is used instead for the default low-mass truncation of
the ρ0 mass distribution.

For resonances, widths are sampled using the relativistic Breit–Wigner of eq. (366), but
with a number of options available for determining the partial widths of the resonance at a
given mass. This calculation method can be set by the user with the NN:meMode parameter
when defining the decay channels for a particle. The default value is 0, where the partial width
is calculated perturbatively for the resonance if already available in PYTHIA. If a given width is
not available via a perturbative calculation, then this width is set to zero. However, a number
of alternative partial width calculations are available.

• NN:meMode = 100: The partial width is defined as the branching fraction for that decay
channel, multiplied by the total width. This method results in mass-independent widths
and does not account for mass-threshold effects, which may result in issues when a
resonance is produced significantly off-shell with a mass below the on-shell mass. When
this occurs, it is possible that no decay channels remain kinematically open, and the
resonance can no longer be decayed. However, it is also possible that downward mass
fluctuations may occur in the masses of the decay products, allowing some channels.
Consequently, all decay channels are considered whenever a resonance is decayed, even
if the on-shell masses of the products kinematically exclude the channel.

• NN:meMode = 101: The partial widths are calculated in the same fashion as for
NN:meMode = 100, but are now set to zero if the sum of the on-shell masses for the
decay products is not kinematically allowed at the mass for which the partial width is
being calculated. Consequently, the total width becomes mass dependent through the
introduction of step functions at the kinematic limits for each decay channel.

• NN:meMode = 102: This method builds upon the method of NN:meMode = 101 but
uses a smooth threshold factor, rather than a step function. For two-body decays the
partial width is multiplied by the factor,

β =
q

(1−m2
1/m

2 −m2
2/m

2)2 − 4m2
1m2

2/m
4 , (367)

where mi are the masses of the decay products and m is the selected mass of the decaying
resonance. While this correctly includes the phase-space suppression for an isotropic
two-body decay, any channel specific modifications due to the matrix element for the
decay are not included. For higher multiplicity decays, a less sophisticated factor of,

β =
√

√

1−
∑

i

mi/m , (368)

184

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

is used which roughly approximates the phase-space suppression. For this method,
the branching ratio for each decay channel should be provided without a phase-space
suppression factor, otherwise phase-space suppression for that channel will be double
counted. When using this method, the branching fractions for the resonance as calcu-
lated by PYTHIA will not match those provided by the user.

• NN:meMode = 103: The phase-space suppression of NN:meMode = 102 is used, but
the branching fraction for the channel is divided by the β factor calculated at the on-
shell mass of the resonance, β−1

0 . Consequently, the branching fractions no longer need
to be adjusted for phase-space suppression, and the branching fractions calculated by
PYTHIA will match those provided by the user. However, in some cases β−1

0 can be very
large if a channel is very near threshold for the nominal mass of the resonance. The
parameter ResonanceWidths:minThreshold defines the minimum allowed β0 and
limits the correction for resonance masses well above the on-shell mass.

Note that it is possible to mix and match partial width calculation methods for a given reso-
nance, i.e. some decay channels may have their partial width calculated perturbatively, while
the methods outlined above are used for others.

8.1.3 Lifetimes

While the lifetime of a particle is inversely related to its width, decoupling the lifetime and
width of a particle is oftentimes useful for practical purposes. Consequently, both the lifetime
and the width of a particle species can be specified independently in PYTHIA. The lifetime
is given as the nominal proper lifetime multiplied by the speed of light, cτ0, and has units
of millimetres. For particles with a non-zero lifetime, a lifetime is sampled according to an
exponential decay,

P(τ)dτ∝ exp(−τ/τ0)dτ , (369)

where the τ0 used here is not calculated from the width, but rather specified independently.
When the hadronic-rescattering framework is enabled and the independently provided τ0 is
zero, the nominal proper lifetime is automatically calculated using the width, if the particle
species has at least a single available decay channel. See section 7.4 for details. Similarly,
missing lifetimes are calculated when vertex positions and rapid hadron decays are enabled in
the hadronization. For resonances, τ0 is automatically determined from the calculated width
of the resonance. However, in some cases very long lifetimes are necessary, which could result
in such narrow widths that the calculation of the cross section becomes numerically unstable.
Here, the width and lifetime for a resonance can be made independent by setting the flag
NN:tauCalc = false for that resonance. This can be particularly useful when scanning
lifetime space for BSM resonances.

After the lifetime for a particle or resonance is selected, the decay vertex position is calcu-
lated as,

xdec = xpro +τ
p
m

, (370)

where m is the mass of the particle, p the momentum, and xpro the production-vertex position
that may be either the primary interaction point or from some previous decay. This treatment
of the decay vertex assumes all particles travel without interaction, including no magnetic
fields or interactions with detector materials. Consequently, decay chains can be stopped to
allow the subsequent decays of the particles to be handed to a detector simulation. A number
of criteria for stopping decays is available. Particles with a specified minimum nominal lifetime
can be stopped from decaying with the flag ParticleDecays:limitTau0. Similarly, parti-
cles with a selected lifetime greater than a configurable minimum lifetime can be set stable
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with the ParticleDecays:limitTau flag. Particles can also be limited from decaying geo-
metrically, either within a sphere with ParticleDecays:limitRadius, or within a cylinder
with ParticleDecays:limitCylinder.

8.2 Decays

Table 2: Available matrix element modes for particle decays. Here, V is a vector
meson, P a pseudoscalar, H a generic hadron, X any non-partonic initial state, and
A and B any non-partonic final states.

force process eq. meMode

any X → qq or X → gg none 91
any X → qqA, where A is a colour singlet none 93
any X → qq . . . none 42 - 80
any H → AB (372) 3 - 7
strong V → π+π−π0, where V is an isoscalar (376) 1
strong P → PV [→ PP] (377) 2
strong P → γV [→ PP] (378) 2
strong V → ggg or V → γgg (379) 92
EM H → Aγ∗[→ `+`−] (380), (381) 11
EM H → qqγ∗[→ `+`−]→ A`+`− (380), (381) 11
EM H → AB . . .γ∗[`+`−] (380), (381) 12
EM H → qqγ∗[→ `+`−]→ AB`+`− (380), (381) 12
EM H → γ∗[→ `+`−]γ∗[→ `+`−] (380), (381) 13
weak H → ν̄``−A (382) 22/23
weak H → ν̄``−qq (382) 22/23
weak X → qqA, where A is a colour singlet (382) 94
weak H → ν̄``−AB . . . (383) 22/23
weak H → qqqq (384) 22, 23
weak `−→ ν`A . . . (384) 21
weak `−→ ν̄``−`+ν` (382) 22/23
weak H → γqq (385) 31

Particle decays might at first appear to be one of the simpler components of PYTHIA, given
the clear factorization between the production and decay of particles. The masses, widths,
and decay channels for most particles can be set directly to experimentally observed values,
and typically do not require sophisticated calculations. Once this information is provided, a
particle can be decayed by randomly selecting a decay channel with a weight proportional to
its branching fraction, and then distributing the products of the selected channel according to
phase space. However, there are a number of complications which require modifications to
this initial approach.

The technical generation of phase space for decays with more than three products can be
non-trivial to perform efficiently, and requires the use of specialized algorithms such as the
M-generator or RAMBO, which are introduced in section 2.2.4. After phase-space generation,
a matrix-element weight can be applied to ensure the correct kinematic distribution, given the
nature of the decay. For particles with non-zero spin, spin effects can change the kinematic
distribution not only for a single decay, but also between correlated decays. Finally, additional
photons need to be probabilistically included in radiative decays.
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All these complications assume the decay channel is exclusive, i.e. the number and type of
decay products is fixed. For many decays, such as those of charm and bottom hadrons, this is
not the case. A full list of the available decays are provided in table 2. About 40% of decay
channels in PYTHIA have dedicated matrix elements, corresponding to 50% of decays when
weighted by branching fraction. The remainder of this section describes these decays.

8.2.1 Hadron decays with parton showers

The decays of many particles are not known in an exclusive hadronic form but instead, the
relative rates between exclusive partonic channels is known. Consequently, it is necessary
to evolve these exclusive partonic decays into final state hadrons. In PYTHIA there are two
mechanisms for this evolution. In the first method, the partons are passed to the timelike
parton shower of section 4, followed by the hadronization of section 7.1. This method is
used for bb states, and typically the parton shower does not significantly modify the decay.
By default, the partons produced in the decay are distributed uniformly in phase space, with
the notable exception of NN:meMode = 92 detailed in section 8.2.4 and NN:meMode = 94
detailed in section 8.2.6.

A number of parton and colour configurations are available for this type of inclusive decay
via the parton shower as follows. Here, ci is used to indicate a colour index and c̄i anti-colour
index.

• qq: The quark carries c1 the antiquark c̄1. This type of decay is set with NN:meMode
= 91. Examples of decays using this matrix element mode are Υ → qq. Hidden valley
hadrons also heavily utilize this decay.

• gg: The first gluon carries c1 and c̄2 while the second gluon carries c2 and c̄1. This decay
is also specified by NN:meMode = 91 and is primarily used for quarkonia, e.g. ηb→ gg.

• ggg: The first gluon carries c1 and c̄2, the second c2 and c̄3, and the third c3 and c̄1. This
configuration is intended for the decays of quarkonia, e.g. Upsilon→ ggg, and set with
NN:meMode = 92.

• ggγ: The first gluon carries c1 and c̄2 and the second c2 and c̄1. This decay is also
intended for quarkonium decays, e.g. Υ → γgg and is set with NN:meMode = 92.

• qqX : This is the same as the colour-singlet qq decay mode, except with an additional
colour singlet X , and is selected with NN:meMode = 93 for flat phase space, and
NN:meMode = 94 for a weak decay.

For all of these decays, the ordering of the partons as passed to PYTHIA does not matter.

8.2.2 Inclusive hadron decays

The second method for inclusive hadronic decays is to first determine hadrons from the partons
and then distribute these hadrons in phase space. This method is used primarily for multibody
decays of hadrons such as the D and B mesons, where only a few channels are known exper-
imentally. The flavours for a channel can then be dynamically built from the initial partonic
content of a weak decay. For this type of decay, either one or two parton pairs can be speci-
fied in the decay, in addition to any non-parton particles. Here, a parton is either a quark or
diquark. The number of final particles is determined from a Poisson distribution with a mean
of,

λ=
nknown + nspec

2
+

npartons

4
+ρmult ln(mdiff/mmult) , (371)
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where nknown is the number of non-partonic particles in the specified decay, nspec is the num-
ber of spectator partons, and npartons is the number of partons. Here, the spectator partons are
those partons that do not participate in the partonic weak decay. The mass mdiff is the differ-
ence between the decaying particle mass and the sum of the nominal decay-product masses.
A reference mass mmult is set by the parameter ParticleDecays:multRefMass and can be
used to tune the average decay multiplicity. An additional factor, ρmult, also determines the
average decay multiplicity and is set via the parameter ParticleDecays:multIncrease
for all relevant matrix-element modes except NN:meMode = 23 where ParticleDecays:-
multIncreaseWeak is used instead. See section 8.2.6 for further details.

The method for selecting the final hadrons is as follows.

1. The multiplicity is selected according to eq. (371) and is required to be less than 10. A
minimum multiplicity can be required by setting the NN:meMode between 42 and 50,
where the minimum multiplicity is given by meMode - 40. Alternatively, the multiplic-
ity can be fixed by setting the NN:meMode between 62 and 70. Here the multiplicity is
calculated as meMode - 60.

2. The number of hadrons to form is the difference between the selected multiplicity from
the previous step, and the number of non-parton particles in the decay.

3. One of the partons is selected at random and a new parton and hadron is formed, fol-
lowing the flavour selection of section 7.1.1.

4. The previous step is repeated until the number of remaining hadrons to select is the
same as the number of parton pairs.

5. The remaining parton pairs are formed into hadrons.

6. If there are two pairs, they may be reshuffled, as determined by the probability
ParticleDecays:colRearrange, i.e. for a value of 0 the pairs will never be reshuffled
but for a value of 1 they will always be reshuffled.

7. If the mass of the final decay products is less than the decaying particle, the hadron
selection is kept, otherwise the process begins again with step 1.

This model is very similar to the hadronization model, but the momenta of the hadrons is
now just determined with phase space. For most decays this approximation is valid as the
decay-product momenta should be very low and on average reproduce the correct kinematic
behaviour. While the flavour selection is the same as for hadronization, the mass constraint
of step 7 will typically bias decays to the lighter pseudoscalar mesons, particularly for high
multiplicity decays.

For these types of inclusive decays, the special particle ID 82 can be used to randomly select
a light flavour pair, i.e. uu, dd, or ss. The suppression of selecting an ss pair with respect to
uu and dd is configured by the parameter StringFlav:probStoUD which is also used in the
flavour selection of the hadronization algorithm of section 7.1.1. When specifying decays with
this ID, the channel should be given as an 82 -82 pair, where the ordering does not matter. A
similar ID is 83 which is the same as 82, but intended for decays that proceed through a gluon
loop. Since this loop will increase the average multiplicity of the decay, eq. (371) is modified by
adding an additional constant specified by the parameter ParticleDecays:multGoffset.
The primary decay of the J/ψ into three gluons, as well as many of the other onium states,
use this special ID.

For some particles, exclusive decays must be specified in addition to inclusive decays.
Matrix-element modes are provided in PYTHIA to prevent double counting the exclusive decays

188

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

in the inclusive decays. An NN:meMode between 52 and 60 reproduces the same behaviour as
an NN:meMode between 42 and 50, but will exclude any generated final state that matches a
non-partonic decay channel. An example of such a decay is ηc→ qq. Similarly, if NN:meMode
is between 72 and 80, the behaviour for meModes between 42 and 50 is reproduced, but again
excluding any generated final state that matches a non-partonic decay channel.

8.2.3 Variable-width hadrons

For standard particle decays, the probability used to select a decay channel is calculated using
a fixed branching ratio, independent of the decaying particle mass. The hadronic rescattering
framework (cf. section 7.4), however, includes mass-dependent partial widths for two-body
decays of hadrons. For hadrons included in the rescattering framework, decay channels are
picked using these partial widths. The partial width for the decay of a hadron resonance H
into particles A and B, H → AB, is given by,

ΓH→AB(m) = Γ0
m0

m
Φ(2l + 1, m)
Φ(2l + 1, m0)

1.2

1.0+ 0.2 Φ(2l,m)
Φ(2l,m0)

. (372)

Here, Γ0 is the nominal partial width of the decaying hadron at its nominal mass m0, set from
experiment. The angular momentum of the two-body decay is given by l. In PYTHIA, this
angular momentum is specified by the user as l = meMode−3. At high masses the final multi-
plicative factor regulates the partial width. Similar to resonance production, see section 8.1.2,
these partial widths define not only the branching fractions of the hadron but also production.

The phase space is given by

Φ(l, m) =

∫

dmA

∫

dmB ql(m, mA, mB)BW(mA)BW(mB) , (373)

where q(m, mA, mB) is the magnitude of the A and B momentum in the centre-of-mass frame,

q(m, mA, mB) =

p

(m2 − (mA+mB)2)(m2 − (mA−mB)2)
2m

. (374)

Finally, the mass distribution for each of the two decay products is given by a Breit–Wigner,

BW(m) =
1

2π
Γ (m)

(m2 −m2
0)2 +

1
4Γ

2(m)
. (375)

While this mass distribution does include a mass-dependent width, phase-space considerations
ensure these mass-dependent widths can be evaluated recursively from the lowest mass par-
ticle to the highest. Note that performing decays with variable partial widths only affects the
branching ratios of the decay channels, and not the angular distribution of the decay products.
By default, a number of hadrons are decayed using variable partial widths in PYTHIA. This in-
cludes many of the excited mesons as well as a number of the baryons. For technical reasons,
variable partial width decays are never performed for the ρ or f2 mesons.

8.2.4 Strong decays

Most decays proceeding via the strong force in PYTHIA are modelled with pure phase space.
However, there are four special cases that are generated according to matrix elements:
isoscalar vector mesons decaying into pseudoscalar mesons, pseudoscalar mesons decaying
into a pseudoscalar and vector mesons, pseudoscalar mesons decaying into a photon and vec-
tor meson, and vector mesons decaying into a three gluon final state.
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The ω meson decays predominantly into a three-pion final state of π+π−π0. This decay
can be modelled using the isobar model [380], where the decay proceeds via the intermediate
ρ0π0 or ρ±π∓ state. The matrix element for this decay is given by

|M|2∝
�

(m1m2m3)
2 − (m1p2p3)

2 − (m2p1p3)
2 − (m3p1p2)

2 + 2(p1p2)(p1p3)(p2p3)
�

|F |2 ,
(376)

where mi and pi are the mass and momentum of decay product i. Here, π+ corresponds to
i = 1, π− to i = 2, and π0 to i = 3. The function F includes possible final-state interactions of
the pions, and depends upon the full kinematics of the decay. When no final-state interactions
are present, F = 1, which corresponds to P-wave distributed phase space. In PYTHIA, this
assumption of no final-state interactions is made. However, there is experimental evidence
that final-state interactions could play an important role in this decay [381].

The φ meson is also an isoscalar like the ω meson and has a non-negligible branching to
the ρ0π0 and ρ±π∓ channels, where the larger φ mass provides sufficient phase space for a
ρ resonance. However, a contact π+π−π0 decay, without the ρ-resonance structure, is also
possible [382], and is described by the same matrix element as for the ω meson. The ρ0 itself
can also decay into a π+π−π0 final state described by this matrix element, although this decay
channel is heavily suppressed due to phase space. For both theφ and ρ0 mesons, no final-state
interactions are considered in these decay channels. The matrix element of eq. (376) can be
selected by setting NN:meMode = 1.

In the decay chain P0 → P1V2[→ P3P4], where P is a pseudoscalar meson and V a vector
meson, the decay products P3 and P4 are distributed in the rest frame of V2 according to cos2 θ ,
where θ is the angle between P0 and P3. The corresponding matrix element, is given by

|M|2∝ (p0p2)(p2p3)−m2
2(p0p3) , (377)

where again i specifies the particle in the decay chain, mi is the mass of that particle, and pi
is the momentum. Similarly, for the decay chain P0→ γV2[→ P3P4], the distribution of P3 and
P4 is now given by sin2 θ in the rest frame of V2. The matrix element for this decay is,

|M|2∝ m2
2

�

2(p2p3)(p0p2)(p0p3)−m2(p2p3)
2−m2

2(p0p3)
2−m2

3(p0p2)
2+(mm2m3)

2
�

. (378)

While these two matrix elements are relevant for all appropriately produced vector-meson
decays into a pseudoscalar-meson pair, in practice the relevant vector-meson decay channels
are: ρ → ππ, ω → π+π−, K∗ → Kπ, φ → KK, φ → π+π−, and D∗ → Dπ. Note that when
the vector meson is not produced in the decay chain P0→ P1/γV2, these matrix elements are
not used. As an example, in the decay chain D→ πK∗[→ Kπ], the decay products of the K∗

are distributed according to eq. (377). To use these matrix elements, NN:meMode = 2 must
be set.

For the decays of vector-like onium states into a partonic final state of gluons, V0→ g0g1g2,
or gluons and a photon, V0→ γ0g1g2, the matrix element,

|M|2∝
�

1− x1

x2 x3

�2

+
�

1− x2

x1 x3

�2

+
�

1− x3

x1 x2

�2

, (379)

is used. Here, x i is twice the energy of particle i divided by the mass of the de-
cayer in the rest frame of the decayer, 2Ei/m. For the two gluon and photon decay,
the two-gluon system is required to have a minimum mass configured by the parameter
StringFragmentation:stopMass to ensure that the system can properly hadronize. This
matrix element is set using meMode = 92 as is done for the partonic decays Υ → ggg and
Υ → γgg. Because eq. (379) is symmetric, ordering of the decay products when configuring
PYTHIA does not matter.
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8.2.5 Electromagnetic decays

The electromagnetic decay π0 → γ∗[→ e+e−]γ can be generated with a factorized approach.
To begin, the γ∗ mass is selected, using the decay matrix element integrated over the solid
angle, but still dependent upon the γ∗ mass, m1.

|M|2∝ 1

m2
1

�

1+
2m2

2

m2
1

�

√

√

√

1−
4m2

2

m2
1

�

1−
m2

1

(m−mmax)2

�3
1

(m2
ρ0 −m2

1)2 +m2
ρ0Γ

2
ρ0

. (380)

The subscript i is 0 for the π0, 1 for the virtual γ∗, 2 for the e+, 3 for the e−, and 4 for the
real γ; the mass for each particle is given by mi and mmax is the maximum mass of the off-
shell photon, i.e. mmax = m4 = 0 for this decay channel of the π0. The final factor of this
expression is the VMD propagator for the ρ0, where mρ0 is the mass of the ρ0, and Γρ0 the
width. This propagator is negligible for any decaying particle with a mass far from the ρ0

mass, which includes the case of the π0. Next, after the γ∗ mass is selected, the two-body
decay of π0→ γ∗γ is performed. Finally, the angular distribution of the e+e−pair is generated
according to,

|M|2∝ (m2
1 − 2m2

2)
�

(qp2)
2 + (qp3)

2
�

+ 4m2
2

�

(qp2)(qp3) + (qp2)
2 + (qp3)

2
�

, (381)

where pi is the momentum of the corresponding particle with index i, and q = p0 − p1. For
efficiency and simplicity, this angular distribution is generated in the rest frame of the de-
caying particle, which if highly boosted, can result in minor numerical induced violations in
momentum-energy conservation. Consequently, the momentum of the final lepton is calcu-
lated as p3 = p1 − p2 in the laboratory frame.

The matrix element for this decay channel is also valid for similar processes where a lepton
pair, `+`−, is produced via an off-shell photon. Such decay channels include η → `+`−γ,
ω → `+`−π0, φ → `+`−η, B → `+`−K/K∗, B0

s → `+`−φ, and Σ0 → `+`−Λ0. This matrix
element can also be used for the final state `+`−qq. In this particular case, the qq is converted
into a single hadron, following the inclusive decay selection of section 8.2.2 but with the
multiplicity of the decay fixed to three. In all the cases described above, the matrix element
for these decay channels is set with NN:meMode = 11.

The form of eq. (380) and (381) are also approximately valid for decay channels with
the final state γ∗[`+`−]AB . . ., where there are two or more decay products in addition to the
lepton pair. Such decays include η → `+`−π+π−, K0

S → `+`−π+π−, B0 → `+`−π0π0, and
B+ → `+`−us. For this type of decay channel, eq. (380) is still used to select the mass, but
with mmax = mA + mB + . . ., and eq. (381) is used without modification. The phase-space
generation, after selecting m1, is now performed as a decay with multiplicity n−1> 2, where
n is the final multiplicity of the decay. Setting NN:meMode = 12 selects this matrix element.
If A and B are replaced with a qq̄ final state, the system is collapsed down into two hadrons,
with the flavour selection again performed using the inclusive decay algorithm but with the
multiplicity fixed at four.

Finally, these matrix elements are also used to approximate γ∗[`+`−]γ∗[`+`−] decay chan-
nels. Following the same numbering convention, the mass of the first off-shell photon, m1
is selected using eq. (380) where mmax = m5 + m6, i.e. twice the mass of the second lepton
flavour. Then, the mass of the second off-shell photon, m3, is selected again with eq. (380) but
using indexing i−2 and setting mmax = m2+m3. After performing the two-body decay of the
γ∗γ∗ system, the angular distributions for the two lepton pairs are generated independently
using eq. (381). This type of decay channel is specified with NN:meMode = 13 and can be
used for decays such as π0 → e+e−e+e−. The technical implementation for all decays using
eqs. (380) and (381) require that the lepton pair should always be set as the final two decay
products when defining these decay channels.
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8.2.6 Weak decays

The helicity averaged matrix element for the t-channel weak scattering of fermions, f0f1→ f2f3,
is,

|M|2∝ (p0p1)(p2prem) , (382)

where pi is the momentum of particle with index i and prem =
∑

i=3 pi is the sum of the re-
maining momenta, which here is just p3. By crossing symmetry, this matrix element can also
be used for weak decays. An example is the fully leptonic decay of the τ lepton, τ−→ ν̄``−ν̄τ.
The particle ordering determines the corresponding i for each particle in eq. (382), e.g. i = 1
for the anti-neutrino and i = 2 for the charged lepton. This matrix element can also be used
to approximate semi-leptonic decays of D and B mesons, e.g. D0 → `+ν`π− or B0 → ν``+π−,
where the final fermion pair is collapsed into a single hadron. In this example, the ordering of
the neutrino and charged anti-lepton is swapped between the two decays. This is because for
D-meson decays, the partonic f0 is a c quark, while for the B-meson this is a b antiquark. Sim-
ilarly, this matrix element can be used for the semi-leptonic decays of baryons, e.g. n→ ν̄e−p,
or the leptonic decays of charged leptons, e.g. µ− → ν̄ee−νµ. When not using the sophisti-
cated τ decays of section 8.2.8, this helicity averaged matrix element can also be used for the
leptonic decays of the τ.

Semi-leptonic decays can also be specified with their partonic content, e.g. D0 → `+ν`du
or B0 → ν``

+du, where the ordering of the quarks does not matter. Similarly, baryon de-
cays of this nature like Ξ0

c → e+νes(sd)0, can be decayed using this matrix element where
one of the partons is a diquark, i.e. (sd)0. When partonic content is specified, the parton
system is collapsed to a single hadron following the flavour-selection rules of section 7.1.1.
The matrix element of eq. (382) is used for all the decays described above by setting either
NN:meMode = 22 or NN:meMode = 23. For these types of decays there is no difference be-
tween these two matrix-element modes. The only technical requirement for these decays is
that the first two particles of the decay are the neutrino/charged-lepton pair, followed by ei-
ther a hadron or a parton pair, where ordering of the partons does not matter. In some cases it
is convenient to use the special particle ID 81 to act as a place holder for the spectator quark or
diquark, which is then automatically replaced with the correct spectator flavour. For baryons,
an ambiguity can arise in this selection where the spin of the diquark cannot always be deter-
mined uniquely. For the example decay of the Ξ0

c given here, the spectator flavour can either
be (sd)0 or (sd)1, while the automatic flavour will always select the (sd)0 diquark.

In some cases, semi-leptonic decays with more than one final-state hadron are needed, e.g.
D0→ e+νeK0π−. The additional hadrons can be physically interpreted as being produced from
the fragmentation of the spectator parton, resulting in hadrons with a significantly softer mo-
mentum than the hadron containing the spectator quarks. This softer momentum is modelled
by taking the product of eq. (382) and an exponential damping factor,

|Mdamp|2∝ |M|2
∏

i=4

e−|pi |2/σ2
soft , (383)

which is calculated in the rest frame of the decay, where the product is taken over all hadrons
following the spectator hadron with momentum magnitude |pi|. Here, |M|2 is calculated
with eq. (382) and σsoft is the damping term which can be configured by the user with the
parameter ParticleDecays:sigmaSoft. A single damping parameter is used for all decays
and is expected to fall within the range 0.2 – 2, where a smaller value increases the damping.
For semi-leptonic decays with two or more final state hadrons, this matrix element can be used
by setting NN:meMode = 22 or NN:meMode = 23. Again, there is no difference between
these two matrix-element modes for decays of this type. As before, the ordering of the decay
as passed to PYTHIA matters. The neutrino/charged-lepton pair must be specified first, in
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the correct order as discussed above, followed by the hadron containing the spectator quark,
followed by any remaining hadrons, which will then have their momentum damped.

The matrix element for weak decays into purely hadronic final states, where the decay is
defined only by partonic content, is approximated by PYTHIA. An example of this class of decay
is B0 → udcd which will result in a final state with a D meson. The partonic content should
be set as q1q2q3q4 where q1 and q2 are colour connected, and either q3 or q4 is the spectator
quark/diquark. The special particle code 81 can be used here to automatically determine the
spectator flavour. Just like for the partonic semi-leptonic decays, the final two partons are
collapsed into a single hadron following the flavour-selection rules of section 7.1.1. The first
two partons are then fragmented into multiple hadrons, following the method of section 8.2.2.

When NN:meMode = 22 is used, the mean number of final particles in the decay is calcu-
lated with eq. (371) using the ρmult parameter ParticleDecays:multIncrease. When
NN:meMode = 23 is used instead, the mean number of final particles is calculated using
ParticleDecays:multIncreaseWeak. The former parameter is intended, although not
required, to be smaller than the latter, since in weak decays only the mass of the off-shell W
boson is available to the fragmenting partonic system, and not the entire parent mass. Addi-
tionally, for NN:meMode = 23 a minimum of three final particles are required in the decay
after flavour selection. After the final particles are determined for each decay, the matrix ele-
ment,

|M|2∝ 2E1

m

�

3−
4E1

m

�

, (384)

is used where m is the mass of the decaying hadron and E1 is the energy of the hadron con-
taining the spectator quark, in the rest frame of the decay. This matrix element can also
be used for hadronic τ decays when the sophisticated treatment is not needed by specifying
NN:meMode = 21. Here, the first decay product should always be the ντ, which increases the
energy of the neutrino with respect to flat phase space.

Partonic radiative decays via the weak force are roughly approximated with the matrix
element,

|M|2∝
�

2E1

m

�3

, (385)

where m is the mass of the decaying hadron and E1 is the energy of the photon in the rest
frame of the decay. Effectively, this increases the photon energy with respect to flat phase
space. The partonic content for these decays should be set as a photon, the spectator quark,
and the flavour-changing quark, e.g. B0 → dsγ where d is the spectator quark. Unlike the
previous weak decays, where the spectator system is collapsed to a single hadron, the spectator
system is fragmented into multiple hadrons following the inclusive selection of section 8.2.2.
However, the multiplicity for the decay is selected with a geometric distribution,

P(n) =
�

1−
1
2

�n−1 1
2

, (386)

rather than a Poisson distribution, where a minimum multiplicity of 2 and a maximum multi-
plicity of 10 is required. This type of decay is specified by setting NN:meMode = 31, and the
decay products can be assigned in an arbitrary order.

In all the decays above, the matrix element is applied to the final particles of the decay,
not the partonic content. In some cases it is useful to apply the matrix element to the partonic
content of the decay, and then perform a full parton shower followed by hadronization, using
the parton-shower method of section 8.2.1. Specifying NN:meMode = 94 does this, where
the matrix element of eq. (382) is used to distribute the phase space of the partons from the
decay.
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In addition to the weak decays described above, B systems may mix prior to decay. This
mixing is controlled by the flag ParticleDecays:mixB and has a probability of,

P = sin2
�

xτ
2τ0

�

, (387)

where τ is the selected lifetime of the particle, and τ0 the nominal proper lifetime. The mixing
parameter x is set with ParticleDecays:xBdMix and ParticleDecays:xBsMix for the
Bd and Bs systems, respectively.

8.2.7 Helicity decays

A generic helicity-density formalism is available in PYTHIA which can be used for τ decays as
well as muon decays in lepton-flavour violating production. External tools have also used this
framework for heavy-neutral-lepton decays. The weight for an n-body decay of an arbitrary
particle is given by,

W = ρλ0λ
′
0
Mλ0;λ1...λn

M∗
λ′0;λ′1...λ′n

∏

i=1,n

D(i)
λiλ

′
i
. (388)

The decaying particle is given index 0 and the decay products are assigned indices i through n.
The helicity for each particle is given by λi and summations are performed over each repeated
helicity index. The helicity density matrix for the decaying particle is given by ρ, while the
decay matrix for each decay product is given by D. The helicity matrix element for the decay
is M and depends upon the helicity of the decaying particle as well as the decay products.

For a particle produced from a 2 → n hard process, the helicity-density matrix for an
outgoing particle with index i is given by,

ρ
(i)
λiλ

′
i
= ρ(1)

κ1κ
′
1
ρ
(2)
κ2κ

′
2
Mκ1κ2;λ1...λn

M∗
κ′1κ

′
2;λ′1...λ′n

∏

j 6=i

D( j)
λ jλ

′
j
, (389)

where ρ(1,2) are the helicity-density matrices for the incoming particles, M is the helicity ma-
trix element for the process, and κ1,2 are the helicities of the incoming particles. For incoming
two-helicity-state beam particles with a known longitudinal polarizationPz the helicity-density
matrix is diagonal with elements (1±Pz)/2.

Before any particles are decayed in a given sequence, all decay matrices in eq. (388) and
eq. (389), D, are initialized to the identity matrix. In a 2→ n process, a first outgoing particle
is randomly selected and decayed using a helicity-density matrix determined with (389). The
decay matrix for this first decay is calculated as

D(0)
λ0λ

′
0
=Mλ0;λ1...λn

M∗
λ′0;λ′1...λ′n

∏

i=1,n

D(i)
λiλ

′
i
. (390)

After the full decay tree for this first particle is determined, the remaining particles for the
2 → n process are then randomly selected and decayed using the helicity-density matrix of
(389) with the updated decay matrices for the already decayed outgoing particles.

When a particle from the hard process is selected for decay, the full decay tree of that
particle is performed. A single branch of the decay tree is followed until a final stable particle
is reached. The helicity-density matrices for particles produced from decays are calculated
with,

ρ
(i)
λiλ

′
i
= ρ(0)

λ0λ
′
0
Mλ0;λ1...λn

M∗
λ′0;λ′1...λ′n

∏

j 6=i

D( j)
λ jλ

′
j
, (391)

where the ρ(0) is the helicity-density matrix of the parent particle. The algorithm then cal-
culates the decay matrix for the last particle decayed with eq. (390) and the next undecayed
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Table 3: Summary of available τ− decay models in PYTHIA. The ντ is omitted from
the decay products for brevity and charge conjugation is implied for τ+ decays.

mult. ref. meMode decays

2 1521 π−, K−

3
1531 e−ν̄e, µ−ν̄µ

[385] 1532 π0π−, K0K−, ηK−

[386] 1533 π−K̄0, π0K−

4

[387] 1541 π0π0π−, π−π−π+

[388] 1542
K−π−K+, K0π−K̄0, K0

Sπ
−K0

S , K0
Lπ
−K0

L , K0
Sπ
−K0

L ,
K−π0K0, π0π0K−, K−π−π+, π−K̄0π0

[389] 1543
π0π0π+, π−π−π+, K−π−K+, K0π−K̄0, K−π0K0,
π0π0K−, K−π−π+, π−K̄0π0, π−π0η

[383] 1544 γπ0π−

5 [390] 1551 π0π−π−π+, π0π0π0π−

6 [391] 1561 π0π0π−π−π+, π0π0π0π0π−, π−π−π−π+π+

branch of the decay tree is traversed until all branches of the decay tree have been decayed.
In this way the decays of the outgoing particles from the hard process are correlated. As im-
plemented in PYTHIA, this full recursion is not necessary since the implemented τ decays are
typically provided with stable final-state particles.

The hard-process generation of PYTHIA uses unpolarized matrix elements to generate the
phase space of the hard process, and so dedicated 2→ n helicity matrix elements are needed
to determine the helicity density matrix after phase-space generation. For τ decays a number
of helicity matrix elements are available. Correlated decays from γ, Z, Z′0, γ/Z/Z′0, neutral
Higgs bosons, and t-channel γγ→ `` production are provided. Single τ decays from W, W′,
charged Higgs bosons, and B/D decays are also provided. For all these production mechanisms
the relevant parameters that can be configured for the unpolarized production mechanisms are
also used in the helicity matrix elements. This includes the axial and vector couplings for the
new gauge bosons, as well as the parity of the Higgs bosons. When a particle used in the
helicity decay framework is provided from outside of PYTHIA, the SPINUP digit is interpreted
as the helicity of the particle in the laboratory frame. A number of options can be configured
to fine tune the helicity treatment of τ decays in PYTHIA.

8.2.8 Tau decays

While unpolarized simplified models ofτ decays are available in PYTHIA, see section 8.2.6, ded-
icated models which use the helicity-density framework are available. These models are based
on those provided in TAUOLA [383], and are available for all decay channels with branching
fractions greater than 0.04%, including up to six-body tau decays. The general helicity-density
matrix for these decays used in eq. (388) is given by

M∝ ūντγµ(1− γ
5)uτJµ , (392)

where only the current Jµ needs to be specified. Here, u and ū are Dirac spinors, γµ are the
Dirac matrices, and the Weyl basis as adopted in HELAS [384] is used throughout.
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Here, a brief description of the available τ decays is provided; more details can be found
in [392] with a summary given in table 3. Note that the ordering of the particles matters,
and whenever numerical indices are used, 0 is the decaying τ− while nuτ has index 1. For
two-body decays into a neutrino and pseudoscalar meson, tau− → ντP, the hadronic current
is given by,

Jµ∝ pµ2 . (393)

The current for the fully leptonic three-body decay τ−→ ντ`−ν̄` is

Jµ = ū2γ
µ(1− γ5)v3 . (394)

Three-body decays with hadronic states can proceed via vector and scalar currents,

Jµ∝
cv

∑

i wv i

�

(p3 − p2)
µ
∑

i

wv iBWp(m2, m3, s2, mv i , Γv i)

− s1(p2 + p3)
µ
∑

i

wv iBWp(m2, m3, s2, mv i , Γv i)

mv
2
i

�

+
cs

∑

j ws j
(p2 + p3)

µ
∑

j

ws jBWs(m2, m3, s2, ms j , Γs j) ,

where ws, v i are complex weights for each vector and scalar current, cs,v are the scalar and
vector couplings, and BWp is a P-wave Breit–Wigner. The final state determines the relevant
couplings and weights to use. The general form of the hadronic current for four-body decays
is given by,

Jµ∝
�

gµν −
qµqν

s1

��

(F3 − F2)p2 + (F1 − F3)p3 + (F2 − F1)p4

�µ

+ F4qµ + iF5ε
µ(p2, p3, p4) ,

where each Fi is a model specific form factor and ε is the permutation operator.
The hadronic current for the decay τ−→ ντγπ0,π− is given by [383]

Jµ∝ F(s1, ~mρ,~Γρ, ~wρ)F(0, ~mρ, ~Gρ, ~wρ)F(s4, ~mω, ~Gω, ~wω)
�

ε
µ
2

�

m2
π−p4νpν2 − p3νpν2(p4νpν3 − p4νpν2)

�

− p3
µ
�

(p3νε
ν
2)(p4νpν2)− (p4νε

ν
2)(p3νpν2)

�

− p2
µ
�

(p3νε
ν
2)(p4νpν3)− (p4νε

ν
2)(m

2
π− + p3νpν2)

�

�

,

where F is a sum over the possible vector currents including ρ and ω resonances. The five-
body decays depend on sub-currents for each allowed resonance [390,393],

Jµ
π0π0π0π−

∝ Jµ0,a1→ρπ
+ Jµ0,a1→σπ

,

Jµ
π0π−π−π+

∝ Jµ−,a1→ρπ + Jµ−,a1→σπ + Jµ−,ω→ρπ ,

and are based in the Novosibirsk model. The six-body decay model [391] can be written as a
summation of a and b-type currents,

Jµ∝
∑

Jµa +
∑

Jµb , (395)

where each term is one of the possible final state permutations. The a-type currents proceed
through a a1 → ωρ resonance structure, while the b-type proceed via a a1 → σa1[→ ρπ]
structure.
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Part III

Using PYTHIA 8.3
PYTHIA 8.3 provides comprehensive choices for modelling all kinds of physics effects in col-
lision experiments, as can be seen from the bulk of this manual. It is often not necessary to
know the details of all components to start using the program to calculate useful quantities,
however. The descriptions provided in this section should allow a new user to set up and use
PYTHIA for most standard model and new physics processes, using default settings for showers,
MPIs, and hadronization that have been tested to work at the LEP and LHC experiments. By
extension, it should also be useful in many other contexts. All settings corresponding to par-
ticular physics models or to changing the “tunes” (i.e. parameter fitting for showers, MPIs, and
hadronization) are documented in the HTML online manual, which is also distributed in the
share/Pythia8/htmldoc/ directory of the released source code. One can begin browsing
from the Welcome.html home page of that directory.

PYTHIA is under constant and active development. Therefore, any specific detail of this
article can become obsolete soon after it is released. We therefore urge users seeking specific
information to:

• Make sure to read the most recent version of this manuscript, in conjunction with the
most recent code version. Some information, which may have been correct when the
manuscript was obtained, may be outdated when being read.

• Consult the HTML manual, which always contains specific settings and reasonable de-
faults for all physics processes, as well as suggestions for analyses. It also contains a
detailed change-log documenting updates between code versions.

• Use the examples distributed with the working version of PYTHIA for inspiration. Exam-
ples are kept up to date, and should always correspond to the program version down-
loaded.

Past and present code versions, documentation, some relevant presentations, and more
can be found at the PYTHIA website:

https://www.pythia.org/

It is continuously kept up to date.
In section 9 we will describe the logic behind using PYTHIA as a library to write a stand-

alone analysis, and in section section 10 we describe interfacing to external programs.

9 Using PYTHIA stand-alone

The default way of using PYTHIA, is to use it as a C++ library, and write “main” programs
performing the desired simulation tasks. This can be done completely stand-alone, as PYTHIA

in principle contains everything needed for a complete physics analysis. Several such example
main’s are shipped with PYTHIA in the examples/ sub-directory. In the following we will
describe and exemplify how such user code can be written, and then go on to give more
advanced use cases, covering deeper interactions with the simulation than allowed from an
example main.
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9.1 Installation

The latest version of PYTHIA 8.3 (as well as older versions) can be downloaded from https:
//www.pythia.org/ as a gzipped tarball pythia83XX.tgz. On Unix, Linux, or MacOS systems
this can be unzipped with

tar -xvfz pythia8307.tgz

(On Windows systems, we recommend to install a virtual machine running Linux, cf. e.g., this
tutorial.) The simplest installation can be made using the standard commands

./configure
make

Configuration options (especially for linking against external libraries) can be found by typing

./configure ��help

Details can also be found in the README file distributed with PYTHIA 8.3. If an install location
is specified with ��prefix, then make install will copy libraries, headers, and shared doc-
umentation to that location in the standard Unix/Linux hierarchy. Details of the configuration
can be accessed either via the generated Makefile.inc file or the pythia8-config script
in the bin directory.

Most users would then change to the examples/ sub-directory, find a suitable example
to use as a template for their analysis, modify the desired parts, and compile and run the
examples (say, main01) by:

make main01
./main01

It is, however, also possible to compile and run PYTHIA programs outside the examples/
directory. Three environment variables could be potentially useful, providing the paths to the
compiled libraries, and to the settings and particle properties databases,

PYTHIA8PATH = <set to head Pythia directory>
PYTHIA8DATA = $PYTHIA8PATH/share/Pythia8/xmldoc
LD_LIBRARY_PATH = $PYTHIA8PATH/lib:$LD_LIBRARY_PATH

9.2 Program setup

The simplest PYTHIA 8.3 user code comprises three main sections — initialization, the event
loop, and final statistics. A skeleton of a simple program is as below. Note that the skeleton
program should compile but not produce any reasonable output, as no reasonable settings are
read in.
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#include "Pythia8/Pythia.h" // access to Pythia objects.
using namespace Pythia8; // allow simplified notation.

void main() {

// --- Initialization ---

Pythia pythia; // Define Pythia object.
Event& event = pythia.event; // quick access to current event.

// Read in settings
pythia.readString("..."); // line by line...
pythia.readFile("cardfile.cmnd"); // or via file.

// Define histograms, external links,
// local variables etc. here. E.g.
int maxEvents = 1000; // The number of events to run.

pythia.init(); // Initialize

// --- The event loop ---

for(int iEvent = 0; iEvent < maxEvents; iEvent++){

// Generate next event;
// Produce the next event, returns true on success.
if(!pythia.next()) {

// Any error handling goes here.
}

// Analyse event; fill histograms etc.

} // End event loop.

// --- Calculate final statistics ---
pythia.stat();

// Print histograms etc.

return;
}

9.3 Settings

The internal PYTHIA 8.3 event generation is divided into three steps:

• Process level, dealing with the hard process.

• Parton level, dealing with showers, MPIs, colour reconnection, and beam remnants.

• Hadron level, dealing with hadronization and further decays of the particles produced.
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Naturally, there are specific settings to control each of these levels. Aside from this, there
are several classes of settings to address output during initialization and generation of each
event. In the following, we give an overview of how these may be used. However, the reader
should consult the online manual (also accessible from share/Pythia8/htmldoc/-
Welcome.html distributed with the release) for a full listing of all available settings and
options. Note that all possible setting keys are indexed, and can be searched via the Search
Docs box in the upper-right corner of the page.

It is possible to run PYTHIA 8.3 entirely with the default settings. The only minimal user
input required is the choice of production process. As a default, the incoming beams are both
protons with a centre-of-mass energy of 14 TeV with the parton distribution function set to
the NNPDF2.3 QCD+QED LO αs(MZ) = 0.130 one [229]. Furthermore, initial- and final-state
radiation is turned on, using the internal PYTHIA simple shower. MPIs and hadronization are
both on by default, and all unstable hadrons with cτ0 < 1000 mm are decayed to stable ones.
The default tune is the Monash 2013 one [357], see section 9.9.2.

PYTHIA 8.3 collects settings performing related functions into groups (e.g. overarching
parton-level settings are named PartonLevel:*). Input strings for changing settings have
the form

settingGroup:nameOfSetting = value

For example, decays of all resonances can be turned off by setting

ProcessLevel:resonanceDecays = off

PYTHIA 8.3 supports four different types of settings:

• flag is a boolean true or false. Acceptable input alternatives include
on/off, yes/no, and 1/0.

• mode is an integer switch enumerating either available options or a wider range of val-
ues. Acceptable values are integers.

• parm is a real number parameter.

• word is a character string. It cannot contain single or double quotation marks, or curly
braces, i.e. { }.

It is further possible to have a vector of each of these types. If necessary, users can define their
own settings that can then be used in their code.

The user can read in settings in one of two ways: either line-by-line with
pythia.readString() calls inside the user C++ code, or by providing a plain-text file that
is read at run time. The latter has the advantage of not requiring a recompilation every time
a change is made. It is triggered by

pythia.readFile("cardfile.cmnd");

inside the code.
All settings have reasonable default values enabled, and can furthermore be defined with

maximal and/or minimal values beyond which they cannot be changed. These can be studied
in the online manual under the respective parameter. A parameter can be forced outside
the allowed bound by using the keyword force, for example:

PhaseSpace:pTHatMinDiverge force= 0.1
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will force the parameter PhaseSpace:pTHatMinDiverge, which usually has a minimal value
of 0.5 GeV, to 0.1 GeV. The force keyword should be used with extreme caution! The boundaries
are there for a reason, and breaking them can make the program unstable or invalidate the
physics model.

If nothing else is mentioned explicitly, dimensional parameters have units of GeV for en-
ergy, momentum, and mass, and mm for length and time, with the speed of light c = 1 implicit.
Internal cross sections are book kept in mb, but communication with other programs may re-
quire conversion from/to other units.

9.3.1 Beams and PDFs

The incoming beams are set by providing the PDG code of the incoming particles to Beams:idA
and Beams:idB (the default for both is proton i.e. 2212). For example, a pp collision can be
set by changing the value of Beams:idB to

Beams:idB = -2212

An e+e− collision can be set by idA = 11 and idB = -11. Currently available beams in-
clude protons (2212), neutrons (2112), pions (±211,111), most other light hadrons (but not
necessarily all combinations of them), electrons (11), muons (13), photons (22), and several
heavy-ion species. The collision energy can then be set by

Beams:eCM = 2000.

Units of GeV are implicit, as already mentioned. For heavy-ion collisions, this is the energy
per nucleon-nucleon collision, as per the usual heavy-ion conventions.

By default, collisions are assumed to be in the CM frame. Other options can be set with
Beams:frameType. Using option Beams:frameType = 2 the beam energies can be set sep-
arately and e.g. a HERA-like beam configuration can be obtained with

Beams:frameType = 2
Beams:idA = 2212
Beams:eA = 920.
Beams:idB = -11
Beams:eB = 27.5

Furthermore, the beams do not need to be back-to-back but option Beams:frameType = 3
allows for setting also some transverse momentum for the beams. A particularly useful setting
to automatically set beam information when using external LHE files (see section 10.1.1 for
details) is

Beams:frameType = 4

It is also possible to specify a simple Gaussian spread of incoming beam momentum and of
the interaction vertex position. These can be set by Beams:allowMomentumSpread and
Beams:allowVertexSpread and their accompanying parameters in the x , y , and z direc-
tions for each beam.

The applied proton PDF set can be selected with setting PDF:pSet which is also applied
for antiprotons and neutrons via isospin symmetry. By default, this sets PDFs to be the same
for beam A and B but it is also possible to set the PDFs for beam B separately using option
PDF:pSetB. The internal PDF sets can be selected by setting an integer value for the above
options, e.g. the current default is set with
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PDF:pSet = 13

To use LHAPDF grids instead, PYTHIA needs either be linked to the LHAPDF library or one can
use the internal implementation for the LHAPDF grid interpolation, see see section 10.1.4. In
the first case, the set is defined with a string LHAPDF6:set/member, e.g.

PDF:pSet = LHAPDF6:NNPDF23_lo_as_0130_qed/0

which would correspond to the current default above. Also LHAPDF version 5 is supported and
enabled with keyword LHAPDF5:set/member. The internal interpolation for the LHAPDF 6
format is enabled with LHAGrid1:filename and with this, the default PDF can be obtained
with

PDF:pSet = LHAGrid1:NNPDF23_lo_as_0130_qed_0000.dat

The grid file should be located in the folder share/Pythia8/xmldoc or an absolute path
should be provided. These settings change the PDF used throughout the program, including
hard-process generation, MPIs, and ISR. To keep the underlying event description intact, one
can also change the PDFs only for the hard processes by setting PDF:useHard = on and
selecting the hard PDFs with PDF:pHardSet. All the above options can be used to select
the PDFs for hard processes and one can also include nuclear modifications for these with
PDF:useHardNPDFA = on or PDF:useHardNPDFB = on. Similarly, one can select PDFs for
other beam types including pions, pomerons, photons, and leptons, see the online manual
and section 3.12 for further details.

9.3.2 Process selection

The minimal initialization information required by PYTHIA 8.3 to generate events is which
process(es) are to be run. This is done by turning on the relevant flags. For example, to
generate a gg→ qq hard process, set

HardQCD:gg2qqbar = on

A full list of internally defined processes is available in appendix A.
It is possible to turn on more than one process at a time. PYTHIA 8.3 will then generate

events for each process in proportion to their cross sections. Some extra switches are also
available for processes that are often grouped together, e.g.

HardQCD:all = on

will turn on all QCD 2 → 2 quark/gluon production processes. Since these processes are
divergent in the p⊥→ 0 limit, it is necessary to introduce a lower transverse-momentum cutoff
PhaseSpace:pTHatMin. Note that such a parton-level cut does not directly translate into a
cut on jet properties, since intermediate parton showers, MPIs, hadronization effects, and jet
finders will distort the original simple process. Further details are available in sections 3.1
and 3.13.

Several choices of renormalization and factorization scale are available. For 2→ 2 pro-
cesses,
these can be set via SigmaProcess:renormScale2 and SigmaProcess:factorScale2,
respectively. The default for the renormalization scale is the geometric mean of the squared
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transverse masses of the two outgoing particles. The default of factorization scale is set at the
smaller of the two squared transverse masses. The possible options are listed in section 3.10.

9.3.3 Soft processes

The bulk of the total cross section in high-energy hadronic collisions is not associated with
a visible hard process. A reasonably complete and consistent description of these relevant
processes is instead obtained with

SoftQCD:all = on

This includes elastic, single- and double-diffractive, and non-diffractive processes, which al-
ternatively could be switched on individually. The inelastic processes, i.e. the diffractive and
non-diffractive ones, include a modelling of MPIs, which does include a tail of high-p⊥ pro-
cesses. Thus HardQCD:all becomes a subset of the SoftQCD:all total cross section, and
one should not mix SoftQCD and HardQCD processes. Colour screening ensures that the hard
processes here are damped appropriately at low p⊥ values, as described in section 6.2.

At very low collision energies the perturbative processes are gradually phased out and only
truly soft processes remain. This occurs e.g. in hadronic rescattering, or in the final stages of
the evolution of a cosmic-ray cascade in the atmosphere. To simulate low-energy collisions
directly, use

LowEnergyQCD:all = on

or related LowEnergyQCD:* flags to turn on only a subset of the available processes. These are
assumed to be accurate below 10 GeV. It is possible to simultaneously turn on both
LowEnergyQCD:* and SoftQCD:* processes, in which case a mix of the two is used at inter-
mediate energies.

A number of other processes are available, including numerous non-QCD processes which
may not be applicable for proton beams. See appendix A.1 for a complete list of included
standard-model processes, and appendix A.2 for a list of BSM processes.

9.3.4 Parton- and hadron-level settings

The primary switches for parton showers are

PartonLevel:ISR = on|off
PartonLevel:FSR = on|off

PYTHIA 8.3 has two other showers available, aside from the “simple showers”. The choice of
shower model can be performed with

PartonShowers:model = 1|2|3

where the default (1) corresponds to the “old” simple shower, (2) corresponds to VINCIA, and
(3) to the DIRE shower.
Finally, the primary switch for hadronization is

HadronLevel:all = on|off
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9.3.5 Particle data

All known information regarding particles (mass, charge, decay width, branching fractions,
etc.) is stored within the ParticleData class. Each particle has the following basic properties:

• id holds the PDG identity number of the particle.

• name is a string containing the name of the particle. Particle and antiparticle names are
stored separately, with void returned when no antiparticle exists.

• spinType in the form of an integer equal to (2s+ 1).

• chargeType is three times the electric charge.

• colType is the colour representation (0: uncoloured, (-1)1: (anti-) triplet, 2: octet,
(-3)3: (anti-) sextet).

• m0 is the nominal mass in GeV.

• mWidth is the Breit–Wigner width in GeV.

• mMin, mMax are the limits for mass generated by the Breit–Wigner.

• tau0 is the proper lifetime in mm.

• mayDecay sets whether the particle is allowed to decay.

• isVisible sets whether the particle is to be considered visible by the detector.

Other than these, there are a few special properties related to external decays which can be
found in the online manual. Any property of a particle can be changed by setting:

NN:Property = value

where NN is the PDG ID of the particle.
The next critical piece of information for a particle is its decay table. The decay table is

comprised of decay modes (or decay channels), each of which has the following properties:

• onMode sets whether this decay channel is open where 0 is off, 1 is on, 2 on for the
particle but not for the antiparticle, and 3 is on for the antiparticle but not for particle.

• bRatio sets the branching ratio for the channel.

• meMode sets how this decay is handled, in particular whether internal matrix element
reweighting is available to account for mass or angular correlations. The default is 0
and corresponds to flat phase space. See table 2 for available matrix-element modes for
particles and section 8.1.2 for available matrix-element modes for resonances.

• multiplicity sets the number of daughters, the maximum allowed is eight.

• product(i) is an array that holds the PDG IDs of the daughter particles; empty slots
are set to zero.

Several shortcuts exist to quickly set up the decay table of a particle. For example, deleting
the existing decay table to start anew can be done by using the following.

NN:oneChannel = onMode bRatio meMode product1 product2 ...
NN:addChannel = onMode bRatio meMode product1 product2 ...
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Branching fractions are automatically rescaled such that the sum is one. Certain modes can
be turned on or off based on the identity of the products by using the following shortcuts

NN:offIfAny = product1 product2 ...
NN:onIfAny = product1 product2 ...
NN:onPosIfAny = product1 product2 ...
NN:onNegIfAny = product1 product2 ...

This turns on the mode if any of the products in the list matches one in the product(i) array.
Note that onPos... (onNeg...) above means that setting only applies to the decays of the
(anti)particle. Further shortcuts (to select based on matching all products etc.) can be found
in the online manual.

Adding new particles can be done either by directly calling
ParticleData::addParticle from the program or by using the SLHA interface with a
QNUMBERS block (cf. section 10.1.2).

9.4 Analysis of generated event

A generated “event” is essentially a list of particles — initial, final, or intermediate — that are
generated sequentially based on probabilistic calculations. A user will mostly be interested
in studying kinematic variables constructed from the momenta of initial or final-state parti-
cles. The following three classes will be useful in constructing such variables. The full list of
available classes and methods for analysing an event is available in the online manual.

9.4.1 The Vec4 class

The Vec4 class is designed to hold the four-momentum (or indeed any other four-vector quan-
tity that may be needed) of the particles in the collision event. Some useful methods are

• px(), py(), pz(), e() to access the individual components.

• mCalc() for calculated mass
q

E2 − p2
x − p2

y − p2
z .

• pT() and pAbs() for the transverse momentum and the absolute value of the three-
momentum, respectively.

• theta(), eta(), phi() for the polar and azimuthal angles, rapidity and pseudora-
pidity, respectively.

• rot(double theta, double phi) to rotate the three-momentum.

• bst(const Vec4& p) and bstback(const Vec4& p) to boost the current vector
by ~β = ± ~pE .

9.4.2 The Particle class

The Particle class forms the fundamental particle unit, multiples of which are assembled in
the form of an “event”. Each Particle has the following properties:

• id() for the PDG code.

• status() for the status of the current particle (initial, final, stable, or intermediate etc.,
see the online manual for the full status codes). For most users, the only relevant
check is, if the number is greater than zero, which denotes a stable, final-state particle.
This can also be determined directly by asking isFinal().
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• p() returns a four-vector whereas px(), py(), pz(), e() can be used directly to
access components.

• mother1(), mother2() refer to the indices of the first and last mother, with several
special rules. motherList() returns a vector of all the mother indices, circumventing
the need to know these rules.

• daughter1(), daughter2() refer to the indices of the first and the last daughter,
with several special rules (all contiguous indices in between are daughters of said parti-
cle). daughterList() returns a vector of all the daughter indices, circumventing the
need to know these rules

• vProd() for the production four-vertex.

• tau() is the lab-frame lifetime in mm/c.

9.4.3 The Event class

Finally, we come to the main result of the program which is held in a class called Event,
representing a collision event. It contains a dynamic array (vector) of particles along with
helper methods that are useful to extract information from the array. A single Pythia instance
contains two Events, called process and event. The first of these, process, contains only
the hard process whereas the second event contains the full history of the collision event.
The user usually does not need to manually add or remove particles from either of these
arrays. The individual particles can be accessed simply by using their index in the event (e.g.
pythia.event[i]). All methods corresponding to the particle then can be accessed e.g.
pythia.event[i].phi() accesses the azimuthal angle ϕ. Some useful methods beyond
those given for individual particles are:

• detaAbs(int i1, int i2) and dphiAbs(int i1, int i2) to obtain ∆η and
∆ϕ between two particles in the event.

• REtaPhi(int i1, int i2) for the R distance between two particles.

with more given in the online manual.
Several useful functions that take an Event as in input are available to the user to construct
important quantities, e.g. SlowJet is a sequential clustering algorithm that can be used to
form jets from final-state particles whereas Sphericity and Thrust classes calculate these
inclusive variable.

9.5 Program output

The most basic level of output that can be requested is a listing of the full event (when inside
the event loop), which is done simply by

pythia.event.list()

A printout of the statistics, i.e. number of tried and accepted events, as well as the number of
events produced for each process and the resulting cross section can be obtained by using

pythia.stat()
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For hard processes with e.g. p⊥ cuts, the cross section must be calculated by Monte-Carlo
integration. This is done automatically as events are generated. After generation, the total
cross section and its statistical error can be accessed by calling respectively:

pythia.info.sigmaGen()
pythia.info.sigmaErr()

Pythia also provides rudimentary built-in histogramming via the Hist class. The main meth-
ods of interest are

• Hist(string title, int numberOfBins, double xMin, double xMax,
bool logX) the constructor, defining a histogram.

• fill(double value, double weight = 1.0) to fill the histogram with an
optional weight.

• table(string fileName, bool printOverUnder = false,
bool xMidBin = true) to output the histogram as a table.

Piping the histogram object directly to the standard output (std::cout < < myhist; ) will
also give a rudimentary ASCII output of the histogram. There are methods that will also
generate PYTHON PYPLOT code for cleaner graphical representations.

9.5.1 Messages, warnings, and errors

PYTHIA 8.3 provides four basic levels of diagnostic output that are available in the Info class.
All such generated output is provided in a summary at the end of each run and can be useful
as a sanity check or as debug information. The main categories are:

Abort means that something went seriously wrong, either in initialization or generation. In
the former case, event generation cannot begin. In the latter case, the event is flawed,
and should be skipped. In either case the respective method Pythia::init() or
Pythia::next will return false, to allow the user to react. There are occasions where
an abort may be deliberate, such as when a file of Les-Houches events is read and the
end of the file is reached.

Error typically means that something went wrong during event generation, but the program
will backup and try again. In cases where this is not possible, a separate Abort will be
issued. A typical run can issue several errors, without it being a problem, unless the
program aborts. If encountering unusually many errors, it can be a good idea to check
if any run parameters are set to unreasonable values, making a calculation unable to
converge. The user can set the maximum number of errors to allow before the entire
run is aborted via the Main:timesAllowErrors parameter.

Warning is less severe. Typically the program will try again with a good chance of success.
Usually no action needs to be taken by the user.

Message represents informative outputs that confirm e.g. reading of an external file. Ver-
bosity of messages can be set separately for each module that provides this function
(e.g. SLHA:verbose can be set to zero for a silent read.)
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9.6 Advanced settings examples

The example use cases given above, are enough for performing simple tasks with PYTHIA 8.3.
In most cases, however, when a user wants to apply specialized built-in physics capabilities,
the application is more complicated, generally scaling with the complexity of the required
tasks. For this purpose, PYTHIA 8.3 ships with a large number of examples (in the examples/
sub-directory), intended to showcase various applications.

In this section we provide a thorough explanation of two such advanced use cases, to high-
light the versatility of the distributed code. Settings for matching and merging are presented
in section 9.6.1, while section 9.6.2 discusses options for changing the beam configuration on
an event-by-event basis.

9.6.1 Matching and merging settings

PYTHIA 8.3 offers implementations of a large variety of matching and merging schemes. This
allows both flexibility, but crucially also cross-checks of the results of combining fixed-order
perturbative calculations with the event-generator machinery.

POWHEG matching allows for the combination of specialized next-to-leading order calcula-
tions with PYTHIA 8.3. To facilitate the matching, PYTHIA 8.3 offers vetoed parton showers via
so-called PowhegHooks. This tool is available for the default showers as well as VINCIA11 and
prevents the over counting of emissions. It can be enabled with the setting:

POWHEG:veto = 0|1

Since it is not strictly guaranteed that the first shower emission can be considered the hardest
emission according to the POWHEG criteria, the number of emissions to be subjected to vetoed
showering can be adjusted by:

POWHEG:vetoCount = value

Furthermore, vetoed showering only needs to be applied to Born-type configurations, which
can be tagged by the minimal number of partons in the process:

POWHEG:nFinal = value

Vetoed showering relies on comparing the hardness of an emission to an allowed maximal
hardness. The definition of “hardness” is determined by:

POWHEG:pTdef = 0|1|2

Values other than 1 are discouraged. The definition of the “maximal hardness” can be adjusted
with:

POWHEG:pThard = 0|1|2

where values other than 0 only serve testing purposes. Finally, the setting:

POWHEG:pTemt = 0|1|2

11For VINCIA, PowhegHooks should be swapped for PowhegHooksVincia. All settings listed here retain their
importance with VINCIA. More details can be found in [189, appendix A].
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determines for which sets of particles the hardness comparison should be applied, with a value
of 0 strongly recommended. A few further, more advanced, settings are listed in the online
manual.

MC@NLO matching employs shower-specific fixed-order calculations, which handle the
overlap between shower and fixed-order calculation by explicit subtraction. When interfacing
these calculations, it is paramount to guarantee consistency of settings between the fixed-order
calculation and the parton shower, for any aspects that might have an impact at the NLO level.
No new settings need be introduced in PYTHIA. The relevant settings to produce consistent
results depend on the shower and the MC@NLO provider. When using MC@NLO inputs with
PYTHIA’s simple showers, a minimal set of consistent settings is:

SpaceShower:pTmaxMatch = 1
SpaceShower:pTmaxFudge = 1
TimeShower:pTmaxMatch = 1
TimeShower:pTmaxFudge = 1
SpaceShower:MEcorrections = off
TimeShower:MEcorrections = off
TimeShower:globalRecoil = on
TimeShower:weightGluonToQuark = 1

Please refer to the online manual for further details.

CKKW-L merging allows for the combination of several multi-jet tree-level fixed-order cal-
culations with each other and the wider PYTHIA 8.3 environment. For example, calculations
of Drell–Yan lepton-pair production at hadron colliders in association with zero, one, two, or
more additional jets can be combined. In this context, “additional jets” refers to further QCD
partons, as well as W and Z bosons, in the case of simple showers and DIRE.

The inputs for multi-jet merging need to be regularized to avoid soft/collinear configu-
rations. The regularization cut also acts as the criterion to distinguish between fixed-order
and parton-shower phase space regions — the so-called merging scale. If the input events are
regulated by a k⊥ cut, the following flag can be used to interpret the merging scale in terms
of the k⊥ definition:

Merging:doKTMerging = on|off

For the simple showers, the merging scale definition may also be set in terms of the shower
evolution variable p⊥ by setting:

Merging:doPTLundMerging = on|off

It must be emphasized that this option is naturally not available within VINCIA’s merg-
ing. The simple shower also offers further built-in merging scale definitions, and the option
to supply a pointer to a user-defined MergingHooks class to implement new merging scale
definitions. The value of the merging scale separating fixed-order and parton-shower regions
must be specified via the parameter:

Merging:TMS = value

The merging further requires the definition of the “process” through the string:
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Merging:Process = value

where value should identify the particles of the lowest-multiplicity process partaking in the
merging. The process is used under the assumption that each event will contain exactly the
specified particles, and potentially further particles that are considered as additional radiation.
Looser process definitions are possible through the use of “particle containers”, and the “guess”
option, see the online manual. Finally, the number of additional jets must be set via:

Merging:nJetMax = nJets

Other settings are documented in the online manual.

Sector merging The VINCIA antenna shower in PYTHIA 8.3 comes with its own implementa-
tion of the CKKW-L merging algorithm, which differs from the one implemented for the simple
showers. The main difference is that VINCIA’s sector showers are maximally bijective, i.e. pos-
sess a minimal number of possible histories that lead to any given multi-parton configuration.
As such, they are specifically designed for merging with high-multiplicity matrix elements for
which the complexity grows factorially with the number of possible shower histories, cf. sec-
tion 5.4.

Sector merging may be enabled by using VINCIA with its sector shower option turned on12

and switching on merging:

PartonShowers:model = 2
Vincia:sectorShower = on
Merging:doMerging = on

By default, it is then assumed that the merging scale is defined in terms of VINCIA’s evolution
variable, cf. section 4.2. Other definitions (such as a k⊥ regularization) may be used via the
appropriate settings listed for the simple showers above.

While the merging-scale value and the number of additional jets must be set in exactly the
same way as listed for the simple showers above, an important difference pertains to the syntax
of the process definition. Different to the Merging:Process setting in the default merging
implementation, the whole string must be encased in curly braces when using VINCIA:

Merging:Process = { value }

In addition, particles must be specified one at a time and be separated by a white-space char-
acter. The initial and final state should be separated by > and exactly two initial-state particles
must be specified. It must be emphasized that a process string in the “default” syntax cannot
be processed by VINCIA and will lead to an abort.

More advanced settings can be found in the online manual.

UMEPS merging extends CKKW-L tree-level merging, by ensuring that inclusive cross sec-
tions for n additional jets are not changed by the inclusion of calculations for m> n extra jets.
This is achieved by introducing subtractions that act to remove the effect of higher-multiplicity
events from lower-multiplicity inclusive cross sections. As an extension to CKKW-L, UMEPS

shares the settings of the former. Beyond these settings, the different stages of UMEPS merging
can be invoked by:

12The sector shower flag is listed only for completeness — sector showers are switched on in VINCIA by default.
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Merging:doUMEPSTree = on|off

which yield CKKW-L-reweighted tree-level results (up to small differences in Sudakov reweight-
ing), and by:

Merging:doUMEPSSubt = on|off

which produce the necessary subtractions. Depending on the example main program, these
two stages may directly be mixed internally, so that only the first setting may be necessary.

NLO merging extends the leading-order merging machinery of PYTHIA 8.3 with (externally
generated) next-to-leading order QCD event samples. As an extension of LO machinery, NLO
merging inherits many of the settings of LO merging. The result of NLO merging is an inclu-
sive calculation that recovers NLO QCD accuracy for inclusive cross sections with n ≤ nNLO
additional partons, and LO (QCD) accuracy for inclusive cross sections with nNLO < m ≤ nLO
jets. The maximal number of jets for which NLO samples are available (n ≤ nNLO) has to be
set by using:

Merging:nJetMaxNLO = value

PYTHIA 8.3 offers two NLO merging schemes as part of its core code: NL3 and UNLOPS.
Other NLO merging schemes (such as the FxFx scheme) can be embedded with the help of
UserHooks. NL3 merging is a straight-forward extension of CKKW-L, and mixes augmented
CKKW-L-reweighted tree-level events with events from NLO samples. The reweighted LO stage
is enabled by using the flag:

Merging:doNL3Tree = on|off

while the processing of NLO samples requires setting the switch:

Merging:doNL3Loop = on|off

Typically, NLO input samples contain not only NLO corrections, but tree-level contributions as
well. If this is the case, then explicit removal of tree-level contributions from the NLO sample
is necessary to avoid double counting. This subtraction is enabled by using the flag:

Merging:doNL3Subt = on|off

Note that this subtraction is not related to any of the UMEPS subtractions, but rather a ne-
cessity due to the structure of available inputs. NL3 only supports the use of the Merging:-
doPTLundMerging merging scale definition.

UNLOPS merging is an extension of UMEPS that — like UMEPS at leading order — ensures
that NLO inclusive cross sections are exactly retained, with the help of unitarity subtractions.
Due to this, UNLOPS merging proceeds in four phases. The reweighting of tree-level inputs is
enabled by:

Merging:doUNLOPSTree = on|off

while the processing of NLO samples is produced when using:
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Merging:doUNLOPSLoop = on|off

Both of the former stages should then be accompanied by subtractions to ensure the correctness
of the inclusive cross section. Subtractive leading-order samples are produced when using

Merging:doUNLOPSSubt = on|off

while subtractive NLO events are enabled by:

Merging:doUNLOPSSubtNLO = on|off

Depending on the example main program, these two tree-level-dependent stages, as well as the
two NLO-dependent stages, may directly be mixed internally, so that only the first two settings
may be necessary in practice. UNLOPS supports the use of the Merging:doPTLundMerging
merging-scale definition natively. Other merging-scale definitions (embedded by custom
MergingHooks classes) can be enabled by setting

Merging:unlopsTMSdefinition = value

to a non-zero value.

9.6.2 Variable energies and beam particles

By default, the beam configuration is initialized at one specified energy. In some cases, how-
ever, one may need to generate events across a range of energies. In PYTHIA 8.3, this feature
is enabled by setting

Beams:allowVariableEnergy = on

When this is enabled, the MPI machinery for SoftQCD will be initialized at a grid of ener-
gies ranging from 10 GeV up to the maximum energy specified by Beams:eCM. This way,
interpolation can be used to efficiently find the relevant coefficients at each particular en-
ergy. (The LowEnergyQCD code is intended for energies below 10 GeV where MPIs are irrele-
vant, and no specific initialization is needed.) Events can then be generated using one of the
variant Pythia::next methods below, corresponding to the kinematics setup specified by
Beams:frameType. In other cases, it is also necessary to change the beam particle types on
an event-by-event basis. One example of a relevant use case is hadronic cascades in a medium
like the Earth’s atmosphere or a particle detector. A number of settings must be explicitly
switched on to enable this feature:

SoftQCD:all = on
LowEnergyQCD:all = on
Beams:allowVariableEnergy = on
Beams:allowIDAswitch = on

This will initialize the MPI machinery for a set of some 20 different common hadrons. To
switch beam configurations, use one or more of the following variants of the Pythia::set
methods
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pythia.setBeamIDs( idA, idB = 0)
pythia.setKinematics( eCM)
pythia.setKinematics( eA, eB)
pythia.setKinematics( pxA, pyA, pzA, pxB, pyB, pzB)
pythia.setKinematics( pAin, pBin)

that match the Beams:frameType set. After calling these methods, all subsequent events
called with next will use the updated configuration, unless the set call was unsuccessful. The
first method preserves the kinematics of the previous event, modulo the change of masses. In
this framework, currently only p/n/p/n is supported for idB. An optional parameter
procType can be passed to next, and is used to generate an event of a particular type, such
as non-diffractive or single-diffractive on a specified side.

For applications such as cascades in a medium, the decision whether a variable-type in-
teraction should occur or not must be based on the relevant cross section. To this end, the
parameterizations outlined in section 6.1.4 and section 6.1.5 can be accessed by using the

pythia.getSigmaTotal( idA, idB, eCMAB, mixLoHi = 0)
pythia.getSigmaPartial( idA, idB, eCMAB, procType, mixLoHi = 0)

methods. Here, the default mixLoHi = 0 gives a smooth interpolation between the low-and
high-energy descriptions.

Typically, the MPI initialization is the slowest step also in a normal LHC run setup, and
with variable particles and energies it will take several minutes. It is possible to speed up
the initialization process by saving the MPI parameterizations to disk. This is done using the
MultipartonInteractions:reuseInit option, which can take the following values:

• 0 (default): MPIs are reinitialized every time.

• 1: MPIs are reinitialized and the parameterization is saved to disk.

• 2: The MPI parameterization is loaded from disk. If the data file does not exist, initial-
ization fails.

• 3: The MPI parameterization is loaded if the file exists, otherwise it is reinitialized and
saved to disk.

When using non-zero values, the file name MultipartonInteractions:initFile
to save/load from must be specified.

9.7 Advanced usage

Often, the user might want to use PYTHIA to simulate physics effects that are not already
implemented in the standard release. We therefore provide several ways of extending PYTHIA

capabilities. The event generation process can be interrupted at various points (e.g. after hard
scattering, after first branching in the parton shower, etc.) by using “user hooks”. These can
be used to reweight (or veto) events and change distributions accordingly. Additionally, any
extra production process or decay of a new particle can be implemented by inheriting from
PYTHIA classes that provide cross section calculation or decay width calculation machinery.
We refer to any processes implemented this way as “semi-internal”. Finally, when extending
capabilities, one may wish to have run-time user-input information in the same way as PYTHIA

settings. We therefore provide some placeholder settings as well as methods to add custom
settings keys that can be used to accompany any new functionality.
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9.7.1 User-defined settings

Should the user require additional settings be provided via a card file, some spares have been
made available following the same schema as the normal PYTHIA settings: three each (N = 1,
2, 3) of boolean flags via Main:spareFlagN; integer modes via Main:spareModeN; float-
ing point parameters via Main:spareParmN; and strings via Main:spareWordN. These can
all be set in the card file and interpreted by the user to suit their needs. To add completely
new settings keywords, the user can use corresponding methods in the Settings class, e.g.

addFlag(string key, bool default)

to add a boolean, i.e. a Flag, and

addParm(string key, double default, bool hasMin, bool hasMax,
double min, double max)

to add a double-precision parameter. For further fine-grained control or using the comma-
separated vector type settings, we advise the user to refer to the methods documented in the
Settings Scheme section of the online manual.

9.7.2 User hooks

User hooks are placeholders where the user can interrupt normal PYTHIA program flow to
customize behaviour. The behaviour of the hook (i.e. the position in program flow where it is
designed to interrupt) is set by functions of the type canVetoX where X indicates one of the
pre-defined locations. An accompanying doVetoX is then executed during every instance of
the X. A user defines a hook by creating a class inheriting from UserHooks, overriding one or
more of the hook methods, and passing an object of that class to a Pythia instance:

pythia.setUserHooksPtr(make_shared<MyUserHooksClass>());

It is also possible to add more than one UserHooks object as follows:

pythia.addUserHooksPtr(make_shared<AnotherUserHooksClass>());

Note, however, that this may give rise to ambiguities if several objects have overridden the
same hook function. For the standard doVetoX functions, X will be vetoed if any of the ob-
jects veto, while for some hook methods for which it is not possible to deduce a reasonable
combination. In the latter case, PYTHIA will issue a warning during initialization.

PYTHIA provides user hooks for ten cases: interruption while switching between main-
generation levels (e.g. process to parton); during parton-level evolutions based on pT or after
a step; vetoes for ISR or FSR emissions; to modify cross section or phase space sampling; after
resonance decays; to modify shower scales; to allow colour reconnections; to enhance cer-
tain rare splittings (e.g. g → bb̄); and finally, to modify hadronization. The details of each of
these hooks can be found in the online manual. Using these hooks to modify parton level
emissions (e.g. to match matrix-element contributions from different orders) is discussed in
section 9.8. Here we discuss a simple case of modifying a resonance decay (e.g. to select cer-
tain kinematics or decay modes). The Pythia::process event contains the hard scattering
process and decay of resonances produced in the hard scattering. Defining:
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bool MyHook::canVetoResonanceDecays() {
// By default returns false.
// Set to true to run following method
// after each resonance decay
return true;

}

bool MyHook::doVetoResonanceDecays(Event& process){
// Look through the process to check
// for desired characteristics.
// Return false to accept the event.
// Return true to veto the event.
return false;

}

this method can be used e.g. with an LHE file (an LHE event is always stored in the process
before migrating it to the full event) that already has decayed resonances that are decayed
again by PYTHIA.

9.7.3 Semi-internal processes and resonances

While PYTHIA provides a large number of models, built-in production processes and reso-
nances, it is oftentimes necessary to either modify existing processes or add new ones. The
class structure provided by PYTHIA can be easily inherited from to include new processes. Any
new particles produced can be implemented as new resonances.

For a resonance, there are three levels of methods used when calculating decay widths
in various channels. The first, initConstants() is run once per resonance and can be
used to set couplings or any other properties that do not depend on kinematics. The second
calcPreFac() has access to the kinematic configuration (masses of particles and phase-space
variables), whereas the third, calcWidth() has access to all information and usually contains
a case-wise calculation of the decay width in all channels. When there is no flavour-dependent
factor in the calculation, calcPreFac() can be used to set the internal variable widNow (in-
herited from ResonanceWidths) which serves as the calculated width for a given channel.
The example program main22 provides a working example of a new resonance.

class NewResonance : public ResonanceWidths {

public:

// Constructor.
NewResonance(int idResIn) {initBasic(idResIn);}

private:

// Locally stored properties and couplings.
double coupling1, coupling2;
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// Initialize constants.
virtual void initConstants();

// Calculate various common kinematic factors
// for the current mass.
virtual void calcPreFac(bool = false);

// Calculate width for each channel.
virtual void calcWidth(bool = false);

};

Once the resonance is set up, it can be added to the PYTHIA particle data table before
initializing using

ResonanceWidths* newResonance = new NewResonance(pid);
// Where pid is the integer PDG id.
pythia.setResonancePtr(newResonance);

This will automatically call the relevant width calculation functions on initialization and cal-
culate the total width of the particle based on all open channels. The use may have to set up
the decay table (i.e. a list of open channels) using the commands in section 9.3.5 if the particle
is not part of the PDG standard [35].

Once all new particles are set up, production modes can be set up by inheriting from
PYTHIA’s SigmaProcess class and its derivatives. For 2→ 1, use SigmaProcess, for 2→ 2
use Sigma2Process, and use Sigma3Process for 2 → 3. All relevant kinematic variables
are already set up and will be filled event by event based on PYTHIA’s phase-space generator.
The production process should be set up before calling init() in the main Pythia class. The
kind of incoming particles needed for the production are set by the return value of inFlux();
options are qqbar, qqbarSame (same flavour qq), qg (qg and qg), ffbar (includes quarks
qq and leptons `¯̀), gg (gluons), and a few more.

class Sigma1qqbar2NewResonance : public SigmaProcess {

public:

// Constructor.
Sigma1qqbar2NewResonance() {}

// Initialize process.
virtual void initProc();

// Calculate flavour-independent parts of cross section.
virtual void sigmaKin();

// Evaluate sigmaHat(sHat).
// Assumed flavour-independent so simple.
virtual double sigmaHat() {return sigma;}
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// Select flavour, colour and anticolour.
virtual void setIdColAcol();

// Info on the subprocess.
virtual string name() const {return "q qbar -> NewResonance";}
virtual int code() const {return 10000;}
virtual string inFlux() const {return "qqbarSame";}
virtual int resonanceA() const {return 1000025;}

// Set internally shared variables (like couplings)
// as protected or private
...

}

Similar to the new resonance-width calculation, there are three progressive methods that
can be used to optimize running time. First, initProc() is called once per run and can
be used to set constants or couplings based on input parameters. Second, sigmaKin() can
be used to set up kinematic factors for unresolved processes that do not rely on flavour in-
formation of the incoming and outgoing states. Third, sigmaHat() can be used to calcu-
late the full contribution of the phase-space point, which is returned as a double-precision
floating-point number. The return value should be the value of dσ

d t for 2 → 2 and |M|2
for 2 → 3 processes, respectively. If the user wishes to input the matrix element squared
instead of dσ

d t , then they should also override bool convertM2() to return true (see
include/Pythia8/SigmaProcess.h for full class definition and explanatory comments).
Finally, an important step before the process is usable is to set the incoming and outgoing
colours (i.e. colour topology) and flavours where necessary.

void Sigma1qqbar2NewResonance::setIdColAcol() {

// Flavours simply to be copied from incoming
// quark ids i.e. id1, id2
setId( id1, id2, idNew);

// Colour flow topologies. Swap when antiquarks.
// Say NewResonance is an octet
// col1, acol1, col2, acol2, colRes, acolRes
setColAcol( 1, 0, 0, 2, 1, 2);
if (id1 < 0) swapColAcol();

}

The new process can now be added to the PYTHIA process array by declaring:

SigmaProcess* sigma1Res = new Sigma1qqbar2NewResonance();
pythia.setSigmaPtr(sigma1Res);

9.7.4 Multithreading

In most cases, events are generated independently of each other. This means that in principle,
event generation can easily be split across multiple threads in order to speed up generation.
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In practice, each Pythia object contains an internal state, and is therefore not thread-safe.
A straightforward workaround is to create multiple Pythia objects, each initialized with its
own random seed using Random:seed and Random:setSeedon.

Starting from PYTHIA 8.307, the PythiaParallel class provides a framework for doing
this. This class is intended to provide a lightweight solution to easily enabling parallelism for
simple studies. Objects of this class are constructed and initialized similarly to normal Pythia
objects, but rather than having a next() method that generates a single event, it provides the
run method, which generates a number of events in parallel. The way this works is that the
PythiaParallel object creates and keeps track of a number of Pythia sub-objects. These
sub-objects create events in parallel. Whenever an event is generated, the Pythia object that
generated it is passed to the user so that the resulting event can be analysed. This process
then continues until a required number of events has been generated, as specified by the
Main:numberOfEvents setting. The following snippet gives an example of how to generate
events using this class.

#include "Pythia8/Pythia.h"
// PythiaParallel.h must be included explicitly.
#include "Pythia8/PythiaParallel.h"
using namespace Pythia8;

void main() {
// The PythiaParallel object is created
// and initialized as normal.
PythiaParallel pythia;
pythia.readString("SoftQCD:nonDiffractive = on");
pythia.readString("Main:numberOfEvents = 10000");
pythia.init();

// Example: plot charged multiplicity
Hist nCh("Charged multiplicity", 100, -0.5, 399.5);

// This defines the callback that will analyse events.
function<void(Pythia& pythiaNow)> callback =
[&nCh](Pythia& pythiaNow) {
int nChNow = 0;
for (int i = 0; i < pythiaNow.event.size(); ++i)
if (pythiaNow.event[i].isFinal() &&
pythiaNow.event[i].isCharged()) nChNow += 1;

nCh.fill(nChNow);
};

// Generate events in parallel, using
// the specified callback for analysis.
pythia.run(callback);

// Print histogram.
cout << nCh;

}

In this example, the callback is defined via an anonymous function (also known as a lambda
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Figure 19: Illustration of how 10 events are generated and processed in parallel by
four threads. The red lines indicate that a thread is generating an event. The blue
lines indicate that a thread is analysing the event. Note that two threads are not
allowed to analyse at the same time; the dashed black lines indicate that a thread is
done generating the event, and is waiting for another thread to finish its analysis.

function). It would also be possible to define it as a named function, e.g. with signature

void callback(Pythia& pythiaNow) ...

The advantage of using an anonymous function is that it can directly access local variables
such as the nCh histogram, which is captured by reference according to the [&nCh] specifier.
It is not necessary to actually save this anonymous function in the callback local variable.
They can instead be passed directly to run, which would make the structure of the code more
similar to running with Pythia::next. Further examples on using the PythiaParallel
class are included with the PYTHIA 8.307 distribution.

By default, the framework tries to identify the number of available hardware threads and
use the maximum degree of parallelism. Alternatively, the number of threads can be fixed using
the Parallelism:numThreads setting. This can be useful in order to limit the computational
resources spent on generation, and is mandatory on systems where the number of threads
cannot be detected.

Although event generation is done in parallel, the analysis is synchronized by default so
that only one event is processed at the same time. In the example above, this ensures that it is
not possible for two threads to simultaneously write to the nCh histogram. An illustration of
this is shown in fig. 19. Usually, the analysis is much faster than the actual event generation,
and this does not have a significant impact on the run time. However, if the analysis is slow or if
the number of threads is very large, the different threads may spend a non-negligible amount
of time waiting for other threads to finish the processing. In this case, the run time can be
improved by setting Parallelism:processAsync = on, which will cause the generated
events to be also processed in parallel. It is then up to the user to ensure mutually exclusive
access to thread-unsafe resources such as histograms.

It is also possible to use external libraries to perform naive parallelization. Several exam-
ples using OPENMP are available in the PYTHIA distribution.

9.8 Event weight handling

By default, PYTHIA produces unweighted events. This means that every event produced by the
generator represents an equal share of the total cross section of the chosen processes. How-
ever, some settings and functionalities require the use of weighted events. Weighted events
no longer represent equal shares of the total cross section, but are augmented with a cor-
rective event weight that needs to be taken into account when filling histograms of physics
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observables.
Event weights are useful in different scenarios, which are listed below. One of the key

advantages is the use of parameter or setting variations. Rather than regenerating events
for different settings and choices of parameters, a vector of corrective event weights can be
included in the event generation, reducing the total computation time significantly compared
to the generation of separate event samples.

A detailed list of available event weights, related settings and how to access them is avail-
able in the online manual. In the following, we provide an overview of process-specific
weights and how they can be accessed. Furthermore, we describe the automated-variation
weights and the weight container, which collects all weights in a common structure.

9.8.1 Overview of process specific weights

PYTHIA collects the available event weights in a single nominal event weight, which is acces-
sible through the Info::weight() function. In a usual setting, this weight is set to 1 and
thus uninteresting. Several functionalities and settings lead to a modification of this weight
though, in which case the weight must be included when filling histograms.

• Biased phase-space point selection allows for the reduction of statistical fluctuations for
specific kinematic configurations. The corrective weight needs to be included to ensure
that the overall distributions are not changed.

• If Les-Houches events are used as input, some strategies allow for negative weights,
which will be included in the event weight and need to be taken into account. For the
strategies 4 and −4, the event weight has units pb, and is converted to mb upon output.

• For heavy-ion collisions, PYTHIA allows a Gaussian sampling of the impact parameter
space, leading to weighted events.

• In rare cases, the initial over-estimate of the differential cross section might for spe-
cific phase-space points lie below the correct differential cross section. In these cases, a
weight above 1 is provided to compensate for this violation.

• Enhanced parton-shower emissions (cf. section 4.1.5) need to be corrected for with a
weight to ensure that the distributions remain unchanged when improving the statistical
relevance of rare emissions.

• Multi-jet merging requires event weights to account for Sudakov factors and the running
of coupling parameters. For the leading-order merging schemes CKKW-L and UMEPS,
these are by default included in Info::weight(). For the next-to-leading-order multi-
jet merging schemes NL3 and UNLOPS, the merging weight needs to be included and is
available from Info::mergingWeightNLO().

9.8.2 Automatic weight variations

In addition to the nominal weight, additional weights can be provided to take into account
variations of settings and parameters. Filling histograms with these respective weights allows
for an estimation of the corresponding distributions without rerunning PYTHIA. Additional
variation weights are available from the parton shower, multi-jet merging and external LHEF
input.

The parton shower currently allows for renormalization-scale variations and non-singular
term variations in both initial- and final-state radiation, discussed further in section 4.1.5.
Besides, it allows for the variation of PDF members of LHAPDF 6 families. Details on the
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usage of these variations can be found in the online manual. The physics background is
described in [20].

The multi-jet merging schemes CKKW-L, UMEPS, NL3, and UNLOPS also allow for re-
normalization-scale variations. Furthermore, variations of the UNLOPS merging scheme itself
are available. For details, see [185] and the online manual. The renormalization-scale vari-
ations in the merging are automatically combined with corresponding variations from LHEF
input and the parton shower.

With the availability of variation weights from different sources, PYTHIA 8.3 introduces
a common structure, the weight container, to make all these weights available to the user.
This structure is also used for writing available event weights to HEPMC output. The naming
conventions are based on [394, p. 162]. If multi-jet merging is activated, combined weights
for renormalization-scale variations in LHEF input, parton shower, and merging are included.
Custom weights from LHEF input or the parton shower are presented with a prefix to empha-
size that further processing or combining might be necessary. While HEPMC output automati-
cally contains these variation weights, the user can access them directly through the following
methods:

int Info::numberOfWeights()
string Info::weightNameByIndex(int i)
double Info::weightValueByIndex(int i)
vector<string> Info::weigthNameVector()
vector<double> Info::weightValueVector()

The first entry of this weight vector, or correspondingly the weight with index 0 is the
nominal weight, including the weights from all the above-mentioned sources.

9.9 Tuning PYTHIA

By default, PYTHIA 8.3 operates using a particular set of run-time parameters that determine
the behaviour of the physics models. A set of parameters that is chosen based on a comparison
of PYTHIA 8.3 predictions to data is generically named a “tune”. As the name suggests, the
procedure to obtain a tune is similar to adjusting the pegs on a stringed instrument to achieve
a certain sound. However, there is no universal agreement on what constitutes a good tune in
contrast to a good sound. The goal of tuning is to find an “optimal” set of physics parameters,
p∗, that minimizes the difference between the experimental data and the simulated data from
the event generator. In practice, this difference is defined as follows:

χ2
MC(p, ~w) =

∑

O∈SO

∑

b∈O
wOb

(MCb(p)−Ob)2

∆MCb(p)2 +∆O2
b

, (396)

where SO is the set of observables used in the tune, b ∈ O denotes the bins in a certain
observable O, and ~w is a vector of weights wOb

for each bin of each observable. The∆s are the
uncertainties on the simulated data and the observable. The weights wOb

≥ 0 reflect how much
an observable contributes to the tune, i.e. if wOb

= 0 for some Ob, then this observable bin will
not influence the tuning of p, whereas if ~wOb

= 1 then all data is treated equally. The choice
of SO and wOb

determines a unique tune, and these choices are driven by both theoretical and
experimental considerations. The variable in eq. (396) is called a “chi-squared”, but due to
the presence of weights there is no guarantee that it will have the properties of a proper χ2

distribution.
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9.9.1 Comments on the tuning procedure

There are several aspects of this problem that make it non-trivial. One is that the model, which
is a mixture of theoretically- and phenomenologically-grounded sub-models, does not describe
all data equally well. Related to this is that there is no systematic method for predicting a priori
where the model will fail — the sub-models are often deeply entwined and are not factorizable,
despite our original intention that they should be. If one had a numerical estimate of the
uncertainty coming from a certain model (not just its sensitivity to parameter variations, but
an estimate of where it fails), then that could be included in ∆MCb, which usually includes
only the uncertainty arising from a finite number of simulation runs. Another issue is how
the tune will be applied — will it be used for generic simulations with lowest-order matrix
elements or with matched and merged predictions with higher-order matrix elements?

There is more than one way to attack these problems. One, as suggested above, is to set
~wO = 0 for some set of observables or analyses. Such a decision is made at the beginning of
tuning when one decides which data is most relevant, e.g. Tevatron data or LHC data from a
lower-energy run, minimum bias or inclusive jet data, etc. Data can also be removed from the
tune when it becomes obvious they do not fall within the envelope of the model predictions.
In practice, it is sometimes found that even problematic data should be included, with reduced
significance, to improve the overall quality of the tune. This can be accomplished by adjusting
some of the ~wO values to emphasize or de-emphasize certain datasets. Obviously, such a
posteriori manipulation of data is subject to bias and abuse. However, one should remember
that tuning is not hypothesis testing — we do not allow for the possibility that the model is
ruled out. To illustrate two different, but not exhaustive, approaches, we will describe the
MONASH 2013 and the ATLAS A14 tuning exercises.

9.9.2 The default PYTHIA 8.3 tuning: MONASH 2013

The MONASH 2013 tune is currently the default one. It was performed using data from HEP-
DATA and the PDG. It was aimed at non-diffractive, high momentum-transfer collisions us-
ing the leading-order matrix elements coded in PYTHIA. It started from the hypothesis that
hadronization was independent of the environment, and the related physics parameters could
be best constrained using e+e− data, particularly from LEP (for most observables) and SLD
(for b-hadron specific observables). Any modifications to hadronization predictions from the
breakup of the proton, for example, would be handled by explicit models that modified the
initial conditions, but not the mechanism of hadronization. Once the observables were se-
lected, all with either ~wO = 0 or 1,; several inconsistent values of particle yields were adjusted
based on common sense. Physics parameters related to final state radiation, hadronization,
and particle decays were selected using eq. (396) as a guide, but without an explicit global
minimization. An additional ad hoc “theory uncertainty” of 5% was added per bin of each
histogram used in the tune to prevent overfitting. These parameters were then frozen as a
particular eetune. The tuning of the remaining parameters, specific to hadronic collisions,
began with a choice of PDF, which is an integral part of any such tune. The central tune of the
NNPDF2.3 PDF set was selected, as it was being used in many other theory calculations at the
time. In particular, the choice was leading order with a value of αs closer to that found in the
eetune. The tuning of initial-state parameters, such as those related to initial-state radiation,
beam remnants, and multiparton interactions, proceeded in a similar fashion using LHC data
at the highest energy available. Scaling of the multiparton-interaction parameter was obtained
by including Tevatron data. Again, at no point was a global optimization of parameters made
based on minimization of a χ2.
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9.9.3 The ATLAS A14 tune

The ATLAS A14 tune took a different approach. First, it took the basic MONASH 2013 parame-
ters as a starting point, with the goal of optimizing parameters for LHC physics studies. It relied
heavily on the PROFESSOR [395] framework. The observables were selected and weighted to
emphasize high-p⊥ radiation and some top-quark observables. It was designed to be used
for BSM physics searches, where precision was not the main goal. To that end, it minimized
eq. (396) for ten parameters, but in an iterative process to select weights that produced a
“reasonable” fit. Using PROFESSOR, it also produced eigentunes that could be used as alterna-
tive tunes to study sensitivity to the PYTHIA parameters. However, because of the inclusion of
weights, and since the fit residuals do not appear to be χ2 distributed, an ad hoc criterion was
used to determine these variations. In the process of selecting data, many observables were
included that are obviously highly correlated. However, those correlations were not reported
consistently by the experiments. As a result, some of the observables have a hidden weight.

9.9.4 Automatic tuning approaches

Automatic tuning approaches can be helpful to circumvent some of the challenges that manual
tuning entails, like subjectivity based on expert knowledge of models, parameters, constraints,
and data, and challenges due to a high amount of data sets and parameters to be taken into
account. Automatic tuning aims at simplifying the tuning procedure and making it more sys-
tematic, which is especially helpful when many parameters are to be tuned.

A brute force grid-based tuning approach is usually prohibited due to the high computa-
tional cost of generator runs, especially if many parameters are to be tuned. To circumvent this
problem, one can use iterative optimization approaches, which can take time due to the se-
rial running with different parameters, but focus well on relevant regions in parameter space.
Alternatively, one can attempt to parameterize the generator response, and to then optimize
based on an interpolation. After an initial generator run, which can be trivially parallelized,
the actual optimization based on the interpolation is much more straight forward.

As outlined in [396], an iterated Bayesian optimization approach can be employed for
event generator tuning. A χ2 value for different parameter values is obtained, and all infor-
mation is used to find the next set of parameters iteratively. This approach thus goes beyond
local gradient-based optimization, balancing exploration and exploitation.

The PROFESSOR toolkit employs a parameterization approach. After an initial parallelized
MC event-generator run, the generator response is parameterized using a polynomial function.
A χ2 optimization is then performed based on this interpolation. This approach allows for
several parameters, but becomes prohibitive if the parameter space becomes too large. It is
then beneficial to tune in successive steps based on model and data knowledge.

There are multiple efforts in improving the PROFESSOR tuning approach. The AUTOTUNES

method [397] employs PROFESSOR, and goes beyond by automatically identifying subsets
of correlated parameters that can be optimized successively. The weights are chosen corre-
spondingly to constrain sub-tunes by the most relevant experimental data. The APPRENTICE

method [398] goes beyond PROFESSOR by allowing for more general interpolations, a larger
variety of optimization methods, and automated setting of weights.

Automatic tuning methods can be very useful, and are helpful when many parameters are
to be optimized based on a large amount of experimental data. In combination with expert
knowledge about the tuned models and the experimental data, pitfalls can be avoided, like
too strong constraints due to single well-measured distributions or unphysical tuning results.
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10 Interfacing to external programs

In most realistic use-cases, PYTHIA 8.3 is not used stand-alone, but rather as part of a large
software stack capable of providing everything from calculation of Feynman rules from a La-
grangian, to detector simulation and analysis, including interfaces between all those steps.
Technically, PYTHIA 8.3 is a C++ library, and only the users’ technical proficiency limits the
ways the program can be interfaced to other code, thus a manual section describing exter-
nal interfaces, will by definition be incomplete. For practical purposes, however, PYTHIA 8.3
comes with a number of interfaces pre-written, and several more with an official or unofficial
“blessing” by the developers. These are interfaces which should in general work, and where
the PYTHIA 8.3 developers will at take some responsibility for helping users when setting up.
Those interfaces are described here, along with an explanation of how PYTHIA 8.3 is expected
to interact with them. The section is sub-divided in four. In section 10.1 we describe file-based
or run-time based interfaces to external providers of input to PYTHIA 8.3, be it external matrix
elements, PDFs, or random numbers. In section 10.2 we describe the most often used out-
put formats, such as HEPMC events or ROOT “n-tuples”. In section 10.3 we describe run-time
interfacing with the analysis tools RIVET and FASTJET, and finally in section 10.4 the use of
PYTHIA 8.3 through the PYTHON interface and on multicore HPC architectures is discussed.

10.1 Generation tools

Several file-based or run-time interfaces exist. For file-based interfaces, generation steps must
be run in a strict sequence. For run-time interfaces, we take a PYTHIA-centric view, i.e. that
PYTHIA controls the overall event generation (unless stated otherwise).

10.1.1 Les Houches Accord and Les Houches Event File functionality

The Les Houches Accord (LHA) format [304] allows a factorized event generation chain and
is one of the most long-lived and successful interface agreements in particle physics. Using the
LHA format, complex perturbative calculations can be factored out from the rest of the event
generation chain, and performed by specialized tools. The basic idea of LHA is a run-time
interface between two generator codes: the “fixed-order generator” stores the collision setup
and cross-section information in memory for the “event generator” to read upon initialization
(see table 4). At generation time, the individual phase-space points used in the fixed-order
generator are stored in memory for the event generator to read and process further, cf. table 5
for the format definition. Originally, the in-memory structures were FORTRAN common blocks
(called HEPRUP for initialization and HEPEUP for event information). This original format is
still used in modern applications, e.g. the interfaces to MADGRAPH or POWHEG BOX discussed
below. An example of another in-memory structure is discussed in section 10.1.3.

Although desirable from a computing perspective, run-time interfaces require program-
ming language-specific in-memory representations. The Les Houches event file (LHEF) for-
mat [305] is a text-file-based update and extension of LHA, such that no run-time interface
is necessary, making the results somewhat more portable. Les Houches Event files provide
pre-tabulation and storage of phase-space points, thus enabling the reuse of computationally
expensive results.

The LHEF format defines XML-like “tag” structures to store information. As such, all rele-
vant information in a LHEF file is enclosed in:

<LesHouchesEvents version="v"> ... </LesHouchesEvents>.

The version can be v = 1.0 [305] or v = 3.0 [394].
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The HEPRUP initialization information of the LHA is mirrored by a text block bracketed
with <init> ... </init>, while the HEPEUP event information is captured in a text block
enclosed in an <event> ... </event> tag. Auxiliary information pertaining to all events
can also be stored in a block bracketed with a <header> ... </header> tag. The content
of each tag may contain further tags, see tables 6 and 7 for a list of all recognized tags.

A basic example <header> block is

<header>
Some auxiliary information that
...
is not parsed.
</header>

Such a header would be compliant with all versions of the format. Additional tags may
appear in later versions (v. 3) of the format, as shown in the example below

<header>
Some auxiliary information that
...
is not parsed.
<initrwgt>
<weightgroup type="alphasVariation">
<weight id="A"> nominal alphas </weight>
<weight id="B"> decreased alphas </weight>
<weight id="C"> increased alphas </weight>
</weightgroup>
</initrwgt>
</header>

In this particular example, PYTHIA 8.3 will be instructed to expect each event to contain a
<rwgt> block that contains three <wgt> entries.

In a slight extension of the accord, PYTHIA 8.3 will also parse the parts of the <header>
block that are enclosed in <slha> .. </slha> as if the block contained an SLHA file. See
section 10.1.2 for a description of SLHA files.

The <init> block is a mandatory part of any LHE file. A basic example will contain the
two beam-particle identifiers, their two energies in GeV, two PDF-author-group identifiers, two
PDF-set identifiers, and weighting information, followed, in a separate line, by cross section,
statistical error, and unit weight information, followed by an integer process label:

<init>
2212 2212 0.4E+04 0.4E+04 -1 -1 21100 21100 -4 1
0.50109086E+02 0.89185414E-01 0.50109093E+02 1234
</init>

Nowadays, the most common weighting-strategy information (given by−4 in the example)
allows for both positive and negative event weights, where the average weight gives the cross
section of the generated events. In later versions of the format, the optional generator tag
may also be included:
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<init>
2212 2212 0.4E+04 0.4E+04 -1 -1 21100 21100 -4 1
0.50109086E+02 0.89185414E-01 0.50109093E+02 1234
<generator name="SomeGen1" version="1.2.3"> some additional
comments </generator>
<generator name="SomeGen2" version="a.x.3"> some other comments
</generator> </init>

This tag mainly serves to convey information, and does not affect the file processing
through PYTHIA 8.3.

The initialization information is then complemented with a large list of <event> blocks
containing the phase-space points. It should be noted that PYTHIA 8.3 supports an arbitrary list
of attributes of the <event> tag, and further allows “custom” additions enclosed in <event>
tags:

• The identifier #pdf at the start of a line means the line contains information on PDFs.
For example, the line
#pdf 1 -1 0.11 0.3 100 0.5 0.3
will lead to reading/setting the values: ID(particle extracted from beam “A”) = 1,
ID(particle extracted from beam “B”) = −1; momentum fraction of particle extracted
from beam A xA = 0.11, momentum fraction of particle extracted from beam B xB = 0.3;
factorization scale µF = 100 GeV; value of the parton distribution for beam A
fA(xA,µF ) = 0.5; and value of the parton distribution for beam B fB(xB,µF ) = 0.3.

• <event> tags are allowed to enclose two hard-scattering events, as is e.g. needed when
interfacing to external double-parton scattering codes.

• In the latter case, the identifier #scaleShowers at the start of a line leads to the two
subsequent floating-point values being interpreted as parton-shower starting scales for
the first and second hard scattering enclosed by <event> ... </event>, respectively.

• Omitting the incoming particles in the content of the <event> tag can be permissible
when interfacing with PYTHIA 8.3 to perform only hadronization of resonance-decay
systems.

• The event attributes npLO and npNLO are parsed, and employed when interfacing to
MADGRAPH5_AMC@NLO.

A simple event compliant with both versions of the standard will contain information about the
number N of particles in the event, the process label, the “scale”, and QED and QCD coupling
strengths, followed by N lines containing particle information:

<event>
4 1234 5.0 300.0 7.861651E-03 1.084400E-01
2 -1 0 0 101 0 0.000E+00 0.000E+00 3.016E+02 3.016E+02 0.000E+00
0. 9.
-2 -1 0 0 0 102 0.000E+00 0.000E+00 -2.964E+02 2.964E+02
0.000E+00 0. 9.
6 1 1 2 101 0 -1.358E+02 -1.671E+02 1.128E+02 3.000E+02 1.756E+02
0. 9.
-6 1 1 2 0 102 1.358E+02 1.671E+02 -1.076E+02 2.980E+02 1.756E+02
0. 9.
</event>
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For each particle, its identity, status, pair of mothers, pair of colours, momentum, mass,
production vertex, and spin are required information. In version 3.0 of the standard, further
information may be added to an <event>. A more involved example is:

<event type="undecayed_born_level_ttbar">
4 1234 5.0 300.0 7.861651E-03 1.084400E-01
2 -1 0 0 101 0 0.000E+00 0.000E+00 3.016E+02 3.016E+02 0.000E+00
0. 9.
-2 -1 0 0 0 102 0.000E+00 0.000E+00 -2.964E+02 2.964E+02
0.000E+00 0. 9.
6 1 1 2 101 0 -1.358E+02 -1.671E+02 1.128E+02 3.000E+02 1.756E+02
0. 9.
-6 1 1 2 0 102 1.358E+02 1.671E+02 -1.076E+02 2.980E+02 1.756E+02
0. 9.
<rwgt>
<wgt id="A"> 5.0 </wgt>
<wgt id="B"> 4.5 </wgt>
<wgt id="C"> 5.5 </wgt>
</rwgt>
<weights> 1.0 0.7 1.3 </weights>
<scales muf="175.0" mur="175.0" mups="300.0" scale_3="1.0"
scale_4="1.0">
content is not parsed
</scales>
</event>

This event contains three auxiliary event weights in the “detailed format”, as well as three
additional event weights in the “compressed format”. These different ways to transmit event
weights do typically not appear together. The “detailed format” has become much more widely
used. The example above further contains auxiliary scale information through the scales tag.
This feature can be used to e.g. transfer multiple shower starting scales to PYTHIA 8.3. Starting
scales for individual particles in the event can be set by including a scales attribute ending
with _iPos, where iPos is the position of the particle (in the <event>) in question. This func-
tionality is used for MLM jet matching with MADGRAPH, and for MC@NLO ∆ matching using
MADGRAPH5_AMC@NLO. At present, PYTHIA 8.3 does not support the use of sets of events
enclosed in <eventgroup>. Such events sets were originally proposed in [399] to collect
events that require correlated post-processing. Since the latter is not possible in PYTHIA 8.3,
event files containing <eventgroup> tags will be treated as if the <eventgroup> tag was
not present.

Finally, note that PYTHIA 8.3 will perform momentum-conservation checks on each input
<event>. If inconsistencies (e.g. due to rounding errors) are found, then actions will be taken
to repair the event. This entails enforcing the correct value of particle rest masses, and ensuring
that the incoming momentum matches the outgoing momentum.
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Table 4: The information defining the LHA initialization interface (in the HEPRUP
common block). The suffix UP can be read as “user process”. At most 100 user
processes are allowed. See [304] for details.

block name description

IDBMUP(2) pair of two integer values defining the PDG IDs of the colliding
beams

EBMUP(2) pair of two floating-point values listing the energies of the two
colliding beams in GeV

PDFGUP(2) pair of two integer values defining the author group of the PDF fit
used as the PDF for the colliding beams

PDFSUP(2) pair of two integer values defining the PDF set used to extract
particles from the colliding hadron beams

IDWTUP signed integer value determining how the event weights should
be interpreted

NPRUP integer value defining the number of different user processes
XSECUP(NPRUP) list of NPRUP double values giving the cross sections (in units of

pb) of the individual user processes
XERRUP(NPRUP) list of NPRUP double values giving the statistical errors associated

with the individual user processes
XMAXUP(NPRUP) list of NPRUP double values giving the maximum weight encoun-

tered in generating the cross section of the user process
LPRUP(NPRUP) list of NPRUP integer identifiers for the user processes; the iden-

tifiers will also feature in the in-memory representation of the
phase-space point
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Table 5: The information defining the LHA event information (in the HEPEUP com-
mon block). At most 500 particles are allowed. See [304] for details.

block name description

NUP number of particle entries in the event
IDPRUP identifier of the user process for this event
XWGTUP event weight
SCALUP scale of the event in GeV
AQEDUP value of the QED coupling for this event
AQCDUP value of the QCD coupling for this event

IDUP(NUP) list of NUP integer values defining the PDG IDs of the individual
particles

ISTUP(NUP) list of NUP integer values defining the status (initial state, final
state, or resonance) of the individual particles

MOTHUP(2,NUP) pair of two lists of NUP integer values defining the mothers of the
particles

ICOLUP(2,NUP) pair of two lists of NUP integer values defining the Nc →∞ colour
(anticolour) flow indices of the particles

PUP(5,NUP) five lists of NUP double values giving the lab-frame momentum of
the particle (Px , Py , Pz , E, M) in GeV

VTIMUP(NUP) list of NUP double values giving the invariant lifetime cτ (distance
from production to decay) in mm

SPINUP(NUP) cosine of the angle between the spin vector of the particle and
the three-momentum of the decaying particle, specified in the lab
frame

Table 6: Allowed tags in the <header> and <init> blocks of a Les-Houches event
file.

tag name description

<header> the tag starting the header block, a completely empty
header block is allowed

<initrwgt> optional tag detailing the auxiliary events in the “de-
tailed LHEF v3.0 format”; the following two tags have
to be enclosed in this tag

<weightgroup> optional tag defining a group of event weights in the “de-
tailed LHEF v3.0 format”; this group will contain several
instances of the following tag

<weight id="name"> optional tag defining a particular auxiliary event weight;
PYTHIA 8.3 expects each event to contain a <wgt> (see
table 7) with id=name for a <weight> with id=name

<init> the tag starting the cross section information and initial-
ization block

<generator> optional tag to transfer information about the generator
and generator version used to produce the event sample
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Table 7: Allowed tags in the <event> block of a Les-Houches event file.

tag name description

<event> the tag starting the event block; an arbitrary number of attributes
is allowed

<rwgt> optional tag enclosing a set of event weights in the “detailed LHEF
v3.0 format”, see next tag

<wgt id="name"> optional tag transmitting the floating-point value of a unique aux-
iliary event weight as content; the id=name should mirror one of
the <weight> tags of the <initrwgt> block (see table 6)

<weights> optional tag containing an array of floating-point values for a set
of auxiliary event weights in the “compressed LHEF v3.0 format”

<scales optional tag allowing additional scale information stored as at-
tributes of the tag

10.1.2 SLHA

The SUSY Les Houches accord format! [400, 401] was designed as a plain-text interface be-
tween supersymmetric spectrum generators, decay packages, and event generators. However,
it has since been generalized to contain information for any new physics model, cf. e.g. [402].

The current SUSY implementation in PYTHIA is fully general with support for flavour- and
R-parity violation. The physical mass basis for each class of new particles (squarks, sleptons,
charginos, and neutralinos, as well as Higgses) is ordered by mass alone. We refer the reader
to the original SLHA2 documentation [401] for the full list of supersymmetric parameters
supported by SLHA2. Here we give a summary of how new parameters can be passed to
PYTHIA, and the modifications made to extend SLHA2 support to be able to read up to 3-
dimensional matrix input.

An SLHA file contains a number of pre-formatted “blocks”. The three main blocks most
often used for passing information about new particles are QNUMBERS, MASS, and DECAY. As
an example, we show here how a new spin-1 particle in a colour-octet representation (“heavy
gluon”) and a new fermion (“heavy quark”) can be defined in SLHA [402]. All characters
following a # symbol are ignored as a comment, except the first two words after the particle
ID code are assumed to be the name of the particle and, optionally, its antiparticle.

BLOCK QNUMBERS 9000021 # HeavyGluon
1 0 # 3 times electric charge
2 3 # number of spin states (2S+1)
3 8 # colour rep (1:singlet, 3:triplet, 8:octet, 6:sextet)
4 0 # Particle/Antiparticle distinction (0=own anti)

BLOCK QNUMBERS 9000006 # HeavyQuark HeavyQuarkbar
1 0 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 3 # colour rep (1:singlet, 3:triplet, 8:octet, 6:sextet)
4 1 # Particle/Antiparticle distinction (0=own anti)

Note that many of the particle ID codes below 3 million, and several above it, are already
in use in PYTHIA (e.g. for hadrons, SM particles, and the MSSM particle spectrum). To avoid
conflicts, it is strongly advised to only use codes above 3 million for new BSM particles, and to
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check in the particle data table that the codes are not already in use. See also the PDG list of
standard particle ID codes [35, sec. 45]. Finally, note that PYTHIA is only able to handle colour
singlets, triplets, octets, and sextets.

The mass block [400] contains the mass of the physical particles and is simply a list con-
taining the particle ID code and its mass.

BLOCK MASS
9000021 1000. # HeavyGluon
9000006 450. # HeavyQuark

Note that some matrix-element generators export their complete list of particle masses in
this block, including also those of SM particles, which may not agree with PYTHIA’s internal
values. This can wreak havoc in unintended places, e.g. by overwriting PYTHIA’s constituent-
quark masses by far smaller current-quark masses. Therefore, for particles with ID codes less
than one million, PYTHIA normally ignores SLHA input for any particle whose default mass in
PYTHIA is smaller than SLHA:minMassSM = 100 GeV. This allows SLHA input to modify top
and Higgs-boson properties, but not those of Z , W , and lighter particles.

Separate DECAY blocks [400] can be used to specify decay tables for both new and exist-
ing particles. (See further sections 2.3.3 and 3.11 for more on PYTHIA’s modelling of res-
onance production and decays.) The sum of all branching fractions is normalized to one
when read in. If a certain decay channel is needed for determining the total width, but is
not desired to be generated in the context of a given run, this can be done by setting the
branching fraction negative. Each line containing a branching ratio should also contain the
number of daughter particles, followed by the ID codes of the daughters. Note that only a
single decay table should be provided for each particle type; PYTHIA does not accept sepa-
rate decay tables for antiparticles. However, if different open decay modes are required for a
particle and its antiparticle, this can be accomplished by using the PYTHIA ParticleData set-
tings NN:onIfPos and NN:onIfNeg which are allowed to override the initial SLHA settings
if SLHA:allowUserOverride = true.

# PID Width
DECAY 9000021 0.01
# BR NDA ID1 ID2
0.67 2 9000006 -9000006
0.33 2 6 -6

When the SLHA interface is used to modify particle data, the mmin and mmax limits used in
PYTHIA’s Breit–Wigner sampling (see section 2.3.3) default to m0±min(5Γ0, m0/2). The mmin
value is further required to also be above the sum of on-shell masses for the lightest decay
channel. The default values can be modified by the user, if so desired.

The default Breit–Wigner treatment for decay tables imported via the SLHA interface is the
simple NN:meMode = 100 one with constant branching fractions, but this can also be changed
if desired. The phase-space sampling is isotropic, since the SLHA tables do not convey any
differential information. It is up to the user to ensure that the final behaviour is consistent with
what is desired and/or to apply suitable post-facto reweightings. Plotting the generator-level
resonance and decay-product mass distributions and e.g. mass differences, effective branching
fractions, etc., may be of assistance to validate the program’s behaviour for a given application.

Note, finally, that the default in PYTHIA is to ignore SLHA input for all SM particles except
top quarks and Higgs bosons; this protects PYTHIA’s more sophisticated modelling of e.g. Z

231

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

and W decays (as well as its definitions of quarks, hadrons, and leptons), cf. section 3.11, from
being unintentionally overridden by the simpler SLHA treatment. Similar to the above, this
choice can be changed by the user if desired, though care must be taken not to corrupt PYTHIA’s
hadron or light-quark particle data.

Finally, we describe how user-defined blocks may be accessed via the SLHA class [82]. All
unknown, i.e. user-defined blocks that can be stored in arrays of up to 3 dimensions are read in
via the test SLHA file and saved under the name following the BLOCK keyword. Depending on
the dimensions of the box, one of these methods can be used to access relevant information.
This functionality can be used with e.g. the semi-internal processes described in section 9.7.3
to use SLHA files to read complex parameter information. Using the slhaPtr object available
to all production processes inheriting from the SigmaProcess class, a block with blockName
can be accessed using one of the following.

# Single value
bool slhaPtr->getEntry(string blockName, double& value);

# 1D array
bool slhaPtr->getEntry(string blockName, int index,

double& value);

# 2D array
bool slhaPtr->getEntry(string blockName, int index1,

int index2, double& value);

# 3D array
bool slhaPtr->getEntry(string blockName, int index1, int index2,

int index3, double& value);

10.1.3 LHAHDF5

In addition to plain-text based ASCII LHEF, PYTHIA 8.3 now also supports Les-Houches event
input via the HDF5 data format, which some matrix-element generation frameworks, such as
SHERPA [403], support as an alternative to LHEF event output.

The HDF5 format is an open-source binary data format, organized like a database within a
single file. It allows for heterogeneous data storage, which is more compressed than ASCII files.
Being indexed in an efficient way, it enables the possibility of data slicing, i.e. the reading of
data subsets instead of the entire data at once. The HDF5 format is thus well suited for storing
large numbers of LHA phase-space points in a more efficient way than text-based file formats,
allowing for massively parallelized simultaneous access to a single event file [404].

The LHAHDF5 reader uses the HighFive header library to interface HDF5. Moreover, the
HDF5 library tools must be installed and an MPI compiler, such as that shipped with MPICH,
is needed. To use the LHAHDF5 reader with PYTHIA 8.3, an example configuration command
is therefore given by:

./configure --with-mpich[=path] --with-hdf5[=path]
--with-highfive[=path]

As a relatively new event file format, the LHAHDF5 standard is still undergoing active de-
velopment. PYTHIA 8.3 internally uses a three-digit numbering scheme to distinguish different
LHAHDF5 versions, characterized as follows:
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0.1.0 The event file contains an index group, in which the indices of the particles in a single
event are stored. The indices refer to the particle group. Weight variations are not
supported and event weights are stored as a single floating-point number in the event
group.

0.2.0 The event file does not contain an index group. Weight variations are not supported,
and event weights are stored as a single floating-point number in the event group.

1.0.0 The event file does not contain an index group. Weight variations are supported, and
event weights are stored in a (possibly one-dimensional) array in the event group.

Currently, not all event files may have their version number stored. Therefore, the version
can be specified in the PYTHIA input file using e.g. LHAHDF5:version = 0.2.0. If a version
number is present in the event file that is used, the user input will be ignored and the one in
the event file is used instead.

10.1.4 LHAPDF

The LHAPDF package is the community standard for providing external parton distribution
functions to event generators. Two versions of LHAPDF are supported by PYTHIA 8.3, version
5 [405], a legacy FORTRAN version, and version 6 [406], with a more performant modern C++
implementation. The use of LHAPDF 5 is discouraged and will be fully removed in the future,
but is currently kept to provide PDFs for resolved photons that are not currently available
in LHAPDF 6. Both versions act as interpolators and extrapolators, for x and Q2 PDF grids
provided by fitting groups. The LHAPDF libraries do not perform DGLAP evolution, and are
restricted in x and Q2 to the grids provided by each PDF set.

Support for LHAPDF can be enabled during PYTHIA 8.3 configuration by,

./configure --with-lhapdf5[=path] --with-lhapdf6[=path]

where the path can optionally be provided. If the executable lhapdf-config is available,
the LHAPDF path will be automatically extracted. Plugin libraries are generated along with
the Pythia library which are then loaded at run time when LHAPDF sets are requested by the
user. With this interface, it is technically possible to simultaneously use both an LHAPDF 5 and
LHAPDF 6 PDF, but this is strongly discouraged. For all PDFs, proton or otherwise, LHAPDF sets
can be selected via setting the relevant configuration key to the value LHAPDF5:set/member
or LHAPDF6:set/member, where set is the name of the PDF set to use and member is the
numerical member of that set. If member is not supplied, the nominal member is assumed.
The example main52 demonstrates this syntax, while the example main51 shows how PDF
classes can be used independently of a main Pythia instance.

Every LHAPDF set has a range of validity, given by the minimum and maximum x and Q2

values of the grids provided. By default, PYTHIA 8.3 freezes these PDF sets at all boundaries for
the set, i.e. for x < xmin the PDF value is fixed at xmin and for Q <Qmin the PDF value is fixed
at Qmin. It is possible to enable extrapolation below xmin by setting the PDF:extrapolate
flag. This flag applies universally to all PDF sets, both internal and external. Extrapolation
should be enabled with care, as the extrapolation is PDF set and LHAPDF version dependent,
and in many cases may return nonsensical results. Note that extrapolation for the remaining
boundaries, xmax, Qmin, and Qmax, is never performed. These values are always frozen at the
limits of validity.

The standardized LHAGrid1 format used by LHAPDF 6 allows for PYTHIA 8.3 to use grids
from LHAPDF 6 sets without requiring the LHAPDF 6 library. Simple cubic interpolation is
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performed in ln(x) and ln(Q2), where all Q2 sub-grids must have the same x-value struc-
ture. When less than four Q2 sub-grids are available, linear interpolation is used instead.
All relevant PDF sets can use this interpolation by setting the relevant PDF configuration key
to the value LHAGrid1:file, where file is the full name of the PDF set file. If file be-
gins with /, then an absolute file path is used, otherwise the file is assumed to be in the
share/Pythia8/pdfdata directory.

10.1.5 POWHEG

A large number of processes utilizing the POWHEG method (positive weight hardest emission
generator) [150, 151, 155] are available via the POWHEG BOX package [178]. The physics
behind the matching and merging of the hard processes generated by this package with the
PYTHIA parton shower is detailed in section 5. Here, technical details on how results from
POWHEG BOX matrix elements may be technically interfaced with PYTHIA are given.

The POWHEG BOX package uses a common FORTRAN code structure, which is then dupli-
cated with process-specific modifications in individual matrix elements, e.g. dijets which
produces NLO dijet events. These individual matrix elements are then compiled to create
executables which when run, take input cards from the user and produce LHEF output, see
section 10.1.1 for details on this format. This output file can then be directly read into PYTHIA

via the Beams:LHEF setting. Direct POWHEG BOX input, without correctly setting up match-
ing, will result in double counting of emissions. A special UserHooks class, PowhegHooks
in Pythia8Plugins, provides a common interface for appropriately matching POWHEG BOX

output with the PYTHIA parton shower. In main31 a full example is given, demonstrating how
dijet events produced from the dijets POWHEG BOX matrix element can be correctly passed
through PYTHIA to produce full events.

In some cases, particularly within large experimental frameworks, users may wish to di-
rectly access the FORTRAN common blocks of a POWHEG BOX executable, passing the event by
memory to PYTHIA, rather than through LHEF output. By default, POWHEG BOX builds only
executables. However, it is possible to modify the Makefile via the command,

sed -i "s/F77= gfortran/F77= gfortran -rdynamic -fPIE -fPIC
-pie/g" Makefile

so that the executables can also be used as shared libraries. When modified accordingly, these
executables can be linked against PYTHIA interface code to produce libraries that can be loaded
directly by PYTHIA at run time. Run-time loading, rather than dynamic linking, is used so
that multiple POWHEG BOX processes can be accessed by a single Pythia instance, without
creating symbol collisions between executables that have common names for global functions
and variables.

After appropriately modifying the relevant POWHEG BOX Makefiles and compiling ex-
ecutables that can also be used as shared libraries, the PYTHIA interface libraries must be
created. This can be configured with PYTHIA via,

./configure --with-powheg-bin=path

where path is the directory containing the POWHEG BOX executables. When building
PYTHIA, a plugin library for each POWHEG BOX in the provided directory will automatically
be created. These plugin libraries can then be used via the PowhegProcs class provided in
Pythia8Plugins as demonstrated in the example main33. The program flow is as follows,
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Pythia pythia; // Create a Pythia instance.
PowhegProcs hvq(&pythia, "hvq"); // Load the "hvq" plugin
library.
hvq.readString("configure here"); // Configure the "hvq" plugin
hvq.init(); // Initialize the plugins.
pythia.init(); // Initialize Pythia.

where the heavy-quark process hvq has been loaded and configured. It is also possible to
include another process,

PowhegProcs dijet(&pythia, "dijet", "dijetrun");

where the additional argument is needed to ensure that the integration grids from the first
process are not overwritten by the second process.

When using the PowhegProcs method for interfacing with POWHEG BOX a PowhegHooks
instance is automatically created and passed to the main Pythia instance. The settings for this
matching hook must be set by the user through either the readString or readFile methods
of the Pythia instance. In many cases, sensible default values are set, but some settings are
process dependent and must be correctly configured by the user, i.e. POWHEG:nFinal.

10.1.6 MADGRAPH5_AMC@NLO

MADGRAPH5_AMC@NLO [153] is a hard process generator, similar to POWHEG BOX, but rather
than relying upon individually implemented processes, it can automatically generate arbitrary
processes up to NLO. There are a number of ways through which MADGRAPH5_AMC@NLO can
be interfaced with PYTHIA.

1. MADGRAPH and AMC@NLO themselves can interface with PYTHIA and pass generated
hard processes through PYTHIA to produce full events, all within the
MADGRAPH5_AMC@NLO machinery.

2. LHEF output from MADGRAPH5_AMC@NLO can be passed to PYTHIA 8.3, see
section 10.1.1 for details on reading LHEF input.

3. Source code for matrix-element libraries, inheriting from the internal SigmaProcess
class in PYTHIA, can be generated by MADGRAPH.

4. The MADGRAPH5_AMC@NLO executable can be called from within PYTHIA via the
LHAupMadgraph class.

5. Matrix-element plugins for the DIRE and VINCIA parton showers can be generated by
MADGRAPH, compiled, and then loaded at run time.

The latter three methods are covered in more detail below. In all cases, it is important that
appropriate matching and merging, see section 5, is configured to ensure there is no double
counting between the generated hard process and the remainder of the event produced by
PYTHIA 8.3.

Semi-internal processes can be passed to PYTHIA 8.3 via inheriting from the
SigmaProcess class. The primary method of this class is sigmaHat where the exact defi-
nition depends upon the final-state multiplicity of the process. Phase-space generation can be
handled by PYTHIA 8.3 for 2→ 1, 2→ 2, and 2→ 3 processes, although the 2→ 3 phase-space
sampler is not particularly sophisticated. When necessary, users can provide custom external
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phase-space samplers. Consequently, while 2→ n processes can be externally supplied, phase-
space generation must also be implemented by the user for n > 3. A full example is given in
the example main22 but the general syntax is,

SigmaProcess* userSigma = new UserSigma();
pythia.setSigmaPtr(userSigma);

where UserSigma is a user-defined process inheriting from SigmaProcess.
Semi-internal process source code can be generated from within the MADGRAPH PYTHON

interface as follows.

import model model_name
generate mg5_process_syntax
add process mg5_process_syntax
output pythia8 [path_to_pythia]

A directory containing the output for the process is placed in the PYTHIA 8.3 source direc-
tory specified by path_to_pythia and an example is placed in the examples directory.

It is also possible to call MADGRAPH from within PYTHIA 8.3 via the LHAupMadgraph class
provided in Pythia8Plugins.

shared_ptr<LHAupMadgraph> madgraph =
make_shared<LHAupMadgraph>(&pythia, true, "madgraphrun",

exe);
madgraph->readString("generate mg5_process_syntax");
pythia.setLHAupPtr(madgraph);

This interface generates the relevant MADGRAPH configuration cards, and then runs the
MADGRAPH executable, specified by exe, to produce LHEF output that is then read in by
PYTHIA 8.3. An attempt is made to automatically set up matching and merging, but this process
should always be validated by the user. Random-number sequences are automatically handled,
based on the PYTHIA 8.3 random-number generator. Whenever the LHEF input is exhausted,
a new call is made to the MADGRAPH executable and a new LHEF output is generated.

Finally, it is possible to use MADGRAPH to generate matrix-element plugins for use in the
DIRE and VINCIA parton showers. A number of these plugins are already provided with the
PYTHIA 8.3 distribution in the plugins/mg5mes directory. To enable this plugin support,
configure PYTHIA 8.3 with

./configure --with-mg5mes[=path]

where the path to the matrix-element plugin source-code directories can optionally be speci-
fied. A plugin library for each directory in the path will be built, which can then be loaded at
run time. Just as for POWHEG BOX, run-time loading of the matrix elements allows for mul-
tiple plugins to be used with the same instance of Pythia. For DIRE and VINCIA, the plugin
library to be used can be specified with the settings Dire:MEplugin and Vincia:MEplugin
respectively.

New matrix-element plugin libraries can be generated by using the generate command in
the plugins/mg5mes directory. In its simplest form, the user just needs to specify the process,

./generate --process="mg5_process_syntax"
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but may also specify a model to use, as well as the output directory. Advanced usage is also
possible where a custom MADGRAPH card is passed by the user, or the interactive mode of
MADGRAPH is enabled. Note that this feature requires the use of DOCKER to download and run
a container with a custom version of MADGRAPH.

The most common interface to MADGRAPH5_AMC@NLO is through text files in LHEF for-
mat, cf. section 10.1.1. For easy interfacing between MADGRAPH5_AMC@NLO and PYTHIA 8.3,
some custom additions to the file format are employed:

• The event attributes npLO and npNLO are used to set the number of particles at lowest
order for events with leading-order and next-to-leading order cross sections, respectively.
For the former, npLO amounts to a simple final-state particle count. For the latter, npNLO
gives the number of final-state particles necessary to define the scattering at Born level.
It is assumed that npLO≥ 0 → npNLO< 0 and npNLO≥ 0 → npLO< 0, meaning that
these attributes also act to signal if an event is a leading-order or next-to-leading-order
contribution.

• Several mechanisms to set the parton shower starting scales for individual particles exist.
These rely on attributes of the <scales> tag defined in the LHEF 3.0 format.

• For the case of MLM matching, the parton-shower starting scale information is also used
to signal whether a particle should not be considered for the MLM jet matching proce-
dure. Particles that have been assigned a starting scale µ > 2ECM will be considered
exempt from the MLM jet matching criterion.

MADGRAPH5_AMC@NLO further incorporates provisions for automatic NLO+PS matched
calculations within the MC@NLO approach. The interface between AMC@NLO and PYTHIA 8.3
typically relies on phase-space points transmitted via LHEF. However, for special match-
ing tasks, it is possible to invoke PYTHIA 8.3 from within AMC@NLO. This is the case
for the MC@NLO −∆ matching prescription. The relevant FORTRAN code, wrapping
PYTHIA 8.3 functionality, is shipped within MADGRAPH5_AMC@NLO. PYTHIA 8.3 can be set
up for use within MADGRAPH5_AMC@NLO by setting the configuration flag Merging:-
runtimeAMCATNLOInterface. This then allows MADGRAPH5_AMC@NLO direct access to
select parts of PYTHIA 8.3’s internal merging machinery, to e.g. enable the extraction of Su-
dakov form factors. A more detailed introduction may only be relevant to experts in MAD-
GRAPH5_AMC@NLO, and may be found in the online manual.

10.1.7 HELACONIA

While PYTHIA 8.3 has a complete collection of expandable quarkonia processes, see section 3.3,
it is sometimes necessary to generate quarkonia states at higher orders or with additional
final-state partons. Previous versions of MADGRAPH were able to produce arbitrary tree-level
quarkonia processes via MADONIA [407], but the current version of MADGRAPH no longer has
this ability to generate bound heavy-quark resonances. However, the standalone HELACO-
NIA [408] package is able to provide the same functionality of the MADONIA package, and
beyond.

The program flow of HELACONIA is very similar to that of MADGRAPH. A PYTHON interface
is used to generate source code which is then compiled and run to produce LHEF output.
This output can then be provided to PYTHIA 8.3 to produce full events with parton showers,
underlying event, and particle decays. The HELACONIA syntax is modelled after the MADGRAPH

syntax, and consequently, the interface is similar. Unlike MADGRAPH, HELACONIA is not able
to produce semi-internal matrix elements inheriting from the SigmaProcess class. Instead,
HELACONIA can be interfaced either by directly providing LHEF output to PYTHIA 8.3, or using
the LHAupHelaconia class provided in Pythia8Plugins.
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The LHAupHelaconia interface is very similar to that of LHAupMadgraph,

shared_ptr<LHAupHelaconia> helaconia =
make_shared<LHAupHelaconia>(&pythia, true, "helaconiarun",

exe);
helaconia->readString("generate ho_process_syntax");
pythia.setLHAupPtr(helaconia);

where ho_process_syntax is the HELACONIA equivalent for the MADGRAPH process syn-
tax. The HELACONIA executable must be available via the string exe. Every time a PYTHIA 8.3
event is generated, the plugin checks if an event is available from an LHEF file generated by
HELACONIA. If not, it will automatically run another batch of events. Random-number seeds
and sampling are consistently handled in the same way as for LHAupMadgraph.

10.1.8 EVTGEN

For many experimental collaborations, particularly those specializing in B-physics, more de-
tailed hadron-decay models are needed than those provided by default in PYTHIA 8.3. The EVT-
GEN [409] package specializes in B-hadron decays, including sophisticated models, spin cor-
relations, and the ability to implement new models. To include spin correlations EVTGEN does
not just decay a single particle at a time, but instead performs the entire decay tree for each
given initial particle. Consequently, decays from EVTGEN cannot be included in PYTHIA 8.3 via
the provided DecayHandler class, called during the decay stage of the hadron level, but must
rather be performed after full event generation. Such an interface for EVTGEN is supplied by
the class EvtGenDecays provided in Pythia8Plugins.

In B-physics, particularly at hadron colliders, one oftentimes wishes to produce a large
sample of events where each event contains one or more rare signal decays, e.g. B0

s → µ
+µ−.

The first step, of course, is to generate an event with at least one signal particle candidate,
while the second step is to force the signal decay for one of these candidates. The weight for
an event containing one candidate with a forced signal decay is simply the branching fraction
for the signal decay. However, when multiple candidates are present, the event weight becomes
slightly more complex, requiring non-trivial bookkeeping. Consequently, the EvtGenDecays
class in PYTHIA 8.3 provides a generalized mechanism by which to force signal decays for given
particle species, while still providing an appropriate event weight.

Signal particle candidates, ci , do not all need to be the same particle species. Here, a
particle species differentiates not only between particle types, e.g. B0

s and τ+, but also between
particles and antiparticles, e.g. τ+ and τ−. Additionally, the signal decay for a candidate, with
branching fraction Bsig(ci), can include multiple channels. Consequently, arbitrarily complex
signal decays can be forced. As an example, events can be required to contain one or more of
the following decays: τ+ → ν̄τπ+, τ+ → ν̄τπ0π+, B0

s → µ
+µ−, and τ− → τνπ−π−π−π+π+.

Here, assuming equal production of the three particle species (which is almost certainly not
the case), the decay τ+→ ν̄τπ0π+ of the four signal decays will be the most commonly forced
decay. Following this notation, the event weighting is performed as follows.

1. An event is generated and all n signal particle candidates, ci , are found. If there are no
candidates, n= 0, then an event weight, Wevent, of 0 is returned.

2. If n> 0 then a candidate ci is randomly chosen with probability

P(ci) =
Bsig(ci)

∑m
j=1

�

1−Bsig(c j)
� , (397)
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where Bsig(ci) is the signal branching fraction for each candidate ci .

3. A channel is selected for the chosen candidate ci from one of the signal channels con-
tributing to Bsig(ci).

4. Channels for all remaining candidates are selected, using all allowed decay channels,
not just the signal channels.

5. The number of candidates with a selected signal channel, m, is determined. The channel
selection for the candidates is then kept with probability 1/m. If the channel selection
is rejected, the algorithm returns to step 2 and a new set of channels is selected.

6. All candidates are decayed via their selected channel and

Wevent = 1−
n
∏

i=1

�

1−Bsig(ci)
�

, (398)

is calculated as the event weight.

An unweighted sample of events can be obtained by randomly selecting events, each with
probability Wevent/Wmax. The maximum possible event weight, Wmax, can be determined by
the maximum weight from a sufficiently large sample of events.

To use EVTGEN in PYTHIA 8.3, configure PYTHIA 8.3 with

./configure --with-evtgen[=path]

where path optionally provides the path to the EVTGEN installation. Note that EVTGEN

itself also links against PYTHIA 8.3, so in some cases it might be necessary to reconfigure
PYTHIA 8.3 after installation of EVTGEN. A full example using EVTGEN is provided in main48.
The general syntax is,

EvtGenDecays evtgen(&pythia, dec, pdl);
pythia.next();
evtgen->decay();

where dec and pdl provide the paths to the EVTGEN decay and particle data files.

10.1.9 External random-number generators

When including PYTHIA in a larger software framework, using a single random-number gener-
ator across all components is oftentimes required to ensure reproducible results. Consequently,
an external random-number-generator pointer may be passed for use by a given PYTHIA in-
stance.

pythia.setRndmEnginePtr(rng)

Here, rng is a pointer to an instance of a user-defined random number generator derived from
the RndmEngine class. The only method that must be implemented by the user is flat which
should return a uniform distribution between 0 and 1. The example below implements a linear
congruential generator with a configurable seed, modulus, multiplier, and increment.
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class RandomLCG : public RndmEngine {
public:
long int seed{1}, m{2147483648}, a{1103515245}, c{12345};

// The only method that needs to be implemented.
double flat() {
seed = (a * seed + c) % m;
return double(seed)/m;

}
};

Typically, the RndmEngine class can be used to wrap some other random number genera-
tor. An example of this is the MixMadRndm class which is a wrapper for an implementation of
the MIXMAX algorithm [11].

#include "Pythia8Plugins/MixMax.h"
MixMaxRndm rng(0, 0, 0, 123);
pythia.setRndmEnginePtr(&rng);

The argument to the generator constructor is four seed values. While this functionality of
providing an external random number generator is useful, it should be treated with care.
Some pseudo-random-number generators implemented in standard packages are not suffi-
cient for large scale generation, e.g. the CLHEP implementation of the RANLUX algorithm.
Consequently, when possible, the default random number generator in PYTHIA, based on the
RANMAR implementation of the Marsaglia-Zaman algorithm [9], is recommended and suffi-
cient for most physics purposes, see section 2.2.1.

10.2 Output formats

PYTHIA comes with a set of example main programs, and in most of these the analysis of the
produced event is performed directly in the code there. It is also possible to output the events
to be analyzed by interfacing to external programs and code. For this purpose PYTHIA can
communicate its events with different output formats as described in this subsection.

10.2.1 HEPMC versions 2 and 3

The standard format for communicating fully generated events is called HEPMC [410, 411]
and defines a set of C++ classes to describe an event and all particles therein. Internally, the
particles are connected by vertex objects using pointers.

The latest version of the HEPMC code is not yet adopted by all LHC collaboration and
PYTHIA therefore has support for both version 2 (2.06 and later) and version 3. The in-
terface as such is provided at the header file level using Pythia8Plugins/HepMC2.h or
Pythia8Plugins/HepMC3.h, and the PYTHIA code itself does not have any dependencies
on these. This means that the PYTHIA (shared) library can be built independently of which
version of HEPMC should be used. However, if one wishes to use the example main programs
that show how to use HEPMC13 the configuring of PYTHIA must be done according to

./configure --with-hepmc3=/path/to/hepmc/installation

13The example main programs can be found in the online manual under Getting Started → Examples

by Keyword, search for Hepmc.
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or

./configure --with-hepmc2=/path/to/hepmc/installation

Besides the particles, other information will also be transferred to the HEPMC format, such
as cross sections, parton density information, and different weights (see section 9.8). Note,
however, that not all information in the Pythia8::Event is preserved in the HEPMC output.
Notably, the status codes for particles in HEPMC are only set to 1 (final state particle), 2
(decayed standard model hadron or τ or µ), 4 (incoming beam), or a number in the range
11–200 (generator dependent status of an intermediate particle, given by the absolute value
of the corresponding PYTHIA status code).

10.2.2 Histograms with the YODA package

Even though the built-in histogram package might suffice for the most basic use cases, such as
one-dimensional histograms, most users require more advanced capabilities. Since PYTHIA 8.3
is not a statistics or plotting package, we refer the user to external programs. For slightly more
advanced use cases, we recommend interfacing to the YODA14 histogram package. If installed,
PYTHIA 8.3 can be configured with --with-yoda=/path/to/yoda, which allows the user to
create Makefile recipes with access to YODA histograms easily. The YODA package will then
be accessible in PYTHIA 8.3 as any other C++ library can be accessed. Questions regarding the
YODA histogram package should be addressed to the YODA authors.

10.2.3 Interfacing with ROOT

For more advanced analyses, many users prefer the ROOT [412] package. PYTHIA 8.3 provides
several possibilities to interface with ROOT, version 6 or higher. Use cases can roughly be
grouped into three categories:

1. Using ROOT as a histogram package inside PYTHIA 8.3.

2. Using PYTHIA 8.3 to generate ROOT events or “n-tuples”, which can be post-processed
by ROOT.

3. Steering PYTHIA 8.3 from inside a ROOT-based framework.

We will here briefly cover the first two use cases, but refer the user to the ROOT documentation
for using the PYTHIA 8.3 interface in ROOT, where it is extensively documented.

The simplest use case is of the first category which, from a technical point of view, is not
too different from using any other C++ library along with PYTHIA 8.3. In the example main91,
it is shown how to declare a ROOT TApplication environment and ROOT TH1F histograms,
to be filled by PYTHIA 8.3, and displayed on screen. The crucial part is the Makefile recipe.
If PYTHIA 8.3 is configured --with-root, convenient variables pointing to the ROOT libraries
and the root-config script can be used as shown, to compile a main program with the
necessary linking to ROOT libraries. The generated histograms can then be saved to a .root
file for later access.

Most users already familiar with ROOT, would rather store event files generated with
PYTHIA 8.3 (so-called “n-tuples”) on disk, which can then be post-processed with a ROOT-
centric analysis framework, often with auxiliary packages, provided by a large experiment.
In such cases, examples main92 and main93 can be of inspiration. The main92 example
shows how to store full events into a ROOT TTree. For most realistic use cases, this is not very

14See https://yoda.hepforge.org/.
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practical, as such files will quickly grow large, containing a significant amount of information
which is of little relevance to the user. The main93 program provides a more streamlined
interface. In the header file main93.h, two classes RootTrack and RootEvent are defined.
Those classes define what information about each track (including track-level cuts, e.g. desired
acceptance) as well as each event, should be stored in an output ROOT-file. If PYTHIA 8.3 has
been configured with ROOT, the main93 example can be run with an input .cmnd file with
the flag Main:writeRoot = on, and the desired information will be stored. If changes are
made to the header file, main93 must be recompiled. For both main92 and main93, the com-
pilation recipe in the Makefile is the most difficult part to set up, as both require generation
of compiled and linked ROOT dictionary libraries with CINT. A user wishing to go beyond sim-
ple extensions of the given examples are encouraged to study the existing Makefile recipes,
as well as the ROOT documentation on Linkdef.h. It is kindly requested that queries about
ROOT dictionary library generation are directed to the ROOT authors.

10.3 Analysis tools

The tools included in PYTHIA are normally enough for doing simple analyses of the generated
events, but for more complicated analyses, or if direct comparison with data is wanted, the
user needs to interface to external tools. Here we describe some of these interfaces.

10.3.1 RIVET versions 2 and 3

The RIVET package [413, 414] is probably the most convenient way of comparing event-
generator models to experimental data. The program includes a large collection of exper-
imental analyses encoded (usually by the experiments themselves) in C++ classes that read
HEPMC input and produce YODA files that can be plotted together with the experimental data
points (also provided by the experiments through HEPDATA [415,416]).

Since RIVET only needs HEPMC input, the only thing needed for PYTHIA is to write the
events to a HEPMC file (see section 10.2.1) or a pipe (which is recommended to avoid creating
unnecessarily large files), and have RIVET take this as input. Assuming a main PYTHIA program,
mymain-hepmc, that simply writes HEPMC to the standard output, the commands to do this
are

mkfifo hepmc-pipe
./mymain-hepmc > hepmc-pipe &
rivet -a SomeAnalysis hepmc-pipe
rivet-mkhtml Rivet.yoda

where the last command will produce formatted web pages in the rivet-plots subdirectory,
with the comparisons to data.

In PYTHIA there is also a more direct way of calling RIVET from within a main program
provided. This uses the header file Pythia8Plugin/Pythia8Rivet.h and provides simple
shortcuts as shown in some of the provided example main programs.15 To enable this, PYTHIA

must be configured using

./configure --with-rivet=/path/to/rivet/installation

together with the corresponding --with for the version of HEPMC that RIVET was configured
with.

15The example main programs can be found in the on-line manual under Getting Started → Examples

by Keyword, search for Rivet.
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PYTHIA currently supports direct linking with both versions 2 and 3 of RIVET. The ad-
ditional features in the later version includes the possibility of using different weights (see
section 9.8), several heavy-ion specific features [417], and to provide options to the analyses.
Support for version 2 of RIVET will likely be dropped in the future.

10.3.2 FASTJET

The fjcore code is distributed together with the PYTHIA 8.3 code by permission from the
authors. There is also an interface that inputs PYTHIA 8.3 events into the full FASTJET library,
for access to a wider set of methods, but then FASTJET must be linked by using

./configure --with-fastjet=/path/to/fastjet/installation
--with-fastjetlib=/path/to/
fastjet/library

Among PYTHIA 8.3 example main programs, main71.cc shows in the case of W plus
jet production, how the FASTJET package can be used for analysis of the final state, and
main80.cc performs CKKW-L merging with a merging scale defined in k⊥, with main80.cmnd
and LHE files as input. Also, main72.cc compares QCD jet finding in SlowJet and FASTJET,
using the header file FastJet3.h present in the directory Pythia8Plugins contributed by
Gavin Salam [418].

10.4 Computing environments

PYTHIA has been developed as a C++ library to write and compile programs to execute stan-
dalone on a generic ∗nix operating system on a generic computer. However, we address here
the rise in popularity of PYTHON as a development language and a powerful tool in machine-
learning applications.

10.4.1 PYTHON interface

To meet the growing requirements of a large user base, PYTHIA includes a flexible PYTHON

interface to most frequently used classes, and thus allows a user to write a PYTHIA main pro-
gram entirely in PYTHON. This provides the user direct access to the wealth of analysis and
visualization tools, available through PYTHON libraries, all at run time. A number of PYTHON

examples are provided, each a direct translation of their corresponding C++ counterpart. The
interface is generated with BINDER using the PYBIND11 template library. The specific version
of BINDER and PYBIND11 needed to generate the interface is provided through a small DOCKER

container.
The default interface is a simplified one, with only the core PYTHIA functionality available.

This interface is a trade off between usability and remaining light weight. The top level Pythia
class is available, as well as all relevant Event, ParticleData, and analysis tool related
classes. An important feature of the interface is that it is bi-directional, derived classes in
PYTHON can be passed back to PYTHIA. This is useful, for example, to create a UserHooks
derived class (see section 9.7.2). All user interface classes, typically passed to the main Pythia
object via pointers in the standard C++ code, are available through the simplified interface.

A full PYTHON interface can also be generated by the user. Only DOCKER is required to
enable the generation of a new PYTHON interface to PYTHIA. The following generates the full
interface.
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cd plugins/python
./generate --full

It is also possible to generate a user-defined interface which is tailored to a specific use
case via the flag --user=FILE instead. Here, FILE is a BINDER configuration file specified
by the user. Note that whenever changes are made to the PYTHIA C++ headers, the PYTHON

interface must be generated again, whether simplified, full, or user defined.
Installation of the PYTHON interface requires the Python.h header to be available. The

python-config script can be used to find the relevant paths when configuring PYTHIA. An
example configuration for PYTHIA with PYTHON 3.6 could then be:

./configure --with-python-config=python3.6-config

This would configure PYTHIA to be built with the default interface, using PYTHON 3.6.
After configuring, the compiled PYTHIA module is available in the lib/ directory under the
top level PYTHIA directory. The PYTHON installation must have that directory made available,
e.g. by setting:

export PYTHONPATH=$(PWD)/lib/:$PYTHONPATH

from the top level PYTHIA directory. After compiling with make, the PYTHON interface
should be available. The following example loads the PYTHIA PYTHON module and prints the
internal documentation which includes the available classes, as well as some of the not-so-
obvious features.

>>> import pythia8
>>> help(pythia8)

One of the main reasons for the PYTHON interface is the fast development of a standalone
main program in PYTHON rather than C++, allowing for an environment of external tools,
which the user might be more familiar with. As an example of such a program, consider the
short PYTHON script below, which will run PYTHIA to produce a numpy histogram containing
the distribution of charged hadron multiplicity at mid-pseudorapidity in proton collisions at
LHC energies.

# Wrapper around numpy histogram to allow fill functionality.
import numpy as np
class HistoFiller(object):

def __init__(self, bins):
self.bins = bins
self.hist, edges = np.histogram([], bins=bins,

weights=[])
self.widths = []
for i in range(len(edges)-1):

self.widths.append(edges[i+1] - edges[i])

def fill(self, val, w=1.0):
hist, edges = np.histogram(val, bins=self.bins,

weights=w)
self.hist+=hist
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def get(self):
scale = 1./sum(self.hist)
return [h/w*scale for h,w in zip(self.hist,self.widths)],

[np.sqrt(h)*scale for h in self.hist]

# Set up Pythia and declare histogram.
import pythia8
pythia = pythia8.Pythia()
pythia.readString("SoftQCD:all = on")
pythia.init()
mult = HistoFiller([3.*x for x in range(20)])

# Event loop. Find particles and fill histogram.
for iEvent in range(1000000):

if not pythia.next(): continue
nCharged = 0
for p in pythia.event:

if p.isFinal() and p.isHadron() and p.isCharged():
nCharged += 1

mult.fill(nCharged)

# Plot the histogram using the matplotlib library.
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
y, ye = mult.get()
ax.errorbar(mult.xvals,y,xerr=[w/2. for w in mult.widths],
yerr=ye, drawstyle='steps-mid',fmt='-',color='black')
ax.set_xlabel(r'$dN_{ch}/d\eta$')
ax.set_ylabel(r'$P(dN_{ch}/d\eta)$')
plt.show()
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Part IV

Summary and Outlook
Our goal in writing this manual was to provide reference material for users and developers of
PYTHIA 8.3. We provided some basic content that we considered mandatory, such as defining
what is an event generator, how does our code structure reflect the physics, and what sorts of
numerical methods we use in the program. This is covered in part I. The core of the manual,
provided in part II, describes in detail the phenomenon that is simulated and our assumptions
and approximations. Parton showers and hadronic or nuclear physics are covered in more de-
tail because these have been the arenas of more recent development. Other topics are covered
more liberally in the HEP literature, and we hope to have provided enough outside references.
What is somewhat new compared to other PYTHIA manuals is part III, dedicated to the user of
PYTHIA 8.3. Our aim was not to give the user an easy way to skip the description of physics,
but to facilitate the use of the program in real analyses and investigations. This part of the
manual is the most pragmatic, but also the one most susceptible to acronyms, initialisms, and
jargon. It is also the most technical in describing our and others’ computer code.

This manual is a snapshot of an evolving entity. Within a short period of our concluding
statements, new developments will arise that are not covered in this manual. We hope this
continues, even as we pass the torch to the next generation of PYTHIA authors and contributors.

James D. Bjorken (“BJ” to his generation) wrote of the “tyranny” of Monte Carlo in a short
paragraph of a larger editorial on the future of particle physics in 1992 [419]. He lamented the
fact that Monte-Carlo predictions were taken as the truth, event though most of the prediction
was a black-box. Had he read this manual in 2022, we hope he would understand that the
authors have provided a code that is more democratic, and allows users to liberally test ideas,
but within well-defined boundaries. As such, there is no single PYTHIA prediction to compare
to data.
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Appendices

A Full list of internal processes

A.1 Standard model processes

Table 8: List of internal soft QCD processes, see section 6.1 for details and references.

process internal name code

SoftQCD:all
AB→ X SoftQCD:nonDiffractive 101
AB→ AB SoftQCD:elastic 102
AB→ X B SoftQCD:singleDiffractiveXB 103
AB→ AX SoftQCD:singleDiffractiveAX 104
AB→ X1 X2 SoftQCD:doubleDiffractive 105
AB→ AX B SoftQCD:centralDiffractive 106

SoftQCD:singleDiffractive 104, 103
SoftQCD:inelastic 101, 103, 104, 105,

106

Table 9: List of internal hard QCD processes, see section 3.1 for details.

process internal name code refs.

HardQCD:all
gg→ gg HardQCD:gg2gg 111 [420–422]
gg→ qq HardQCD:gg2qqbar 112 [420–422]
qg→ qg HardQCD:qg2qg 113 [420–422]
qq′→ qq′ HardQCD:qq2qq 114 [420–423]
qq→ gg HardQCD:qqbar2gg 115 [420–422]
qq→ q′q′ HardQCD:qqbar2qqbarNew 116 [420–423]
gg→ cc HardQCD:gg2ccbar 121 [424]
qq→ cc HardQCD:qqbar2ccbar 122 [424]
gg→ bb HardQCD:gg2bbbar 123 [424]
qq→ bb HardQCD:qqbar2bbbar 124 [424]

gg→ ggg HardQCD:gg2ggg 131 [425]
qq→ ggg HardQCD:qqbar2ggg 132 [425]
qg→ qgg HardQCD:qg2qgg 133 [425]
qq′→ qq′g HardQCD:qq2qqgDiff 134 [425]
qq→ qqg HardQCD:qq2qqgSame 135 [425]
qq→ q′q′g HardQCD:qqbar2qqbargDiff 136 [425]
qq→ qqg HardQCD:qqbar2qqbargSame 137 [425]
gg→ qqg HardQCD:gg2qqbarg 138 [425]
qg→ qq′q′ HardQCD:qg2qqqbarDiff 139 [425]
qg→ qqq HardQCD:qg2qqqbarSame 140 [425]
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Table 10: List of internal low-energy QCD processes, see section 6.1.5 for details.

process internal name code refs.

LowEnergyQCD:all
AB→ X LowEnergyQCD:nonDiffractive 151 [213]
AB→ AB LowEnergyQCD:elastic 152 [213]
AB→ X B LowEnergyQCD:singleDiffractiveXB 153 [213]
AB→ AX LowEnergyQCD:singleDiffractiveAX 154 [213]
AB→ X1 X2 LowEnergyQCD:doubleDiffractive 155 [213]
N N → N ∗ N LowEnergyQCD:excitation 157 [213]
B B̄→ X LowEnergyQCD:annihilation 158 [213]
AB→ R LowEnergyQCD:resonant 159 [213]

Table 11: List of internal photon-collision processes, the second code in parenthesis
is used to separate photons from beam A and beam B when both are possible, see
section 3.2 for details.

process internal name code refs.

PhotonCollision:all [434]
γγ→ qq PhotonCollision:gmgm2qqbar 261
γγ→ cc PhotonCollision:gmgm2ccbar 262

γγ→ bb PhotonCollision:gmgm2bbbar 263
γγ→ e+e− PhotonCollision:gmgm2ee 264
γγ→ µ+µ− PhotonCollision:gmgm2mumu 265
γγ→ τ+τ− PhotonCollision:gmgm2tautau 266

PhotonParton:all
gγ→ qq PhotonParton:ggm2qqbar 271 (281) [435]
gγ→ cc PhotonParton:ggm2ccbar 272 (282) [436]
gγ→ bb PhotonParton:ggm2bbbar 273 (283) [436]
qγ→ qg PhotonParton:qgm2qg 274 (284) [435]
qγ→ qγ PhotonParton:qgm2qgm 275 (285) [435]
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Table 12: List of internal weak-boson processes, see section 3.2 for details.

process internal name code refs.

PromptPhoton:all
qg→ qγ PromptPhoton:qg2qgamma 201 [422,426]
qq→ gγ PromptPhoton:qqbar2ggamma 202 [422,426]
gg→ gγ PromptPhoton:gg2ggamma 203 [427–429]
qq→ γγ PromptPhoton:ffbar2gammagamma 204 [428]
gg→ γγ PromptPhoton:gg2gammagamma 205 [427–429]

WeakBosonExchange:all [430]
ff′→ ff′ WeakBosonExchange:ff2ff(t:gmZ) 211
f1f2→ f3f4 WeakBosonExchange:ff2ff(t:W) 212

WeakSingleBoson:all [423]
ff→ γ∗/Z WeakSingleBoson:ffbar2gmZ 221
ff′→W± WeakSingleBoson:ffbar2W 222

ff→ γ∗→ f′f
′

WeakSingleBoson:ffbar2ffbar(s:gm) 223 [422,423]
ff→ γ∗/Z→ f′f

′
WeakSingleBoson:ffbar2ffbar(s:gmZ) 224 [422,423]

f1f2→W±→ f3f4 WeakSingleBoson:ffbar2ffbar(s:W) 225 [422,423]

WeakDoubleBoson:all

ff
′
→ γ∗/Zγ∗/Z WeakDoubleBoson:ffbar2gmZgmZ 231 [25,423]

ff
′
→ Z W± WeakDoubleBoson:ffbar2ZW 232 [25,423]

ff→W+W− WeakDoubleBoson:ffbar2WW 233 [423,431]
WeakBosonAndParton:all

qq→ γ∗/Zg WeakBosonAndParton:qqbar2gmZg 241 [423]
qg→ γ∗/Z q WeakBosonAndParton:qg2gmZq 242 [423]
ff→ γ∗/Zγ WeakBosonAndParton:ffbar2gmZgm 243 [423]
fγ→ γ∗/Z f WeakBosonAndParton:fgm2gmZf 244 [432]
qq→W± g WeakBosonAndParton:qqbar2Wg 251 [423]
qg→W± q WeakBosonAndParton:qg2Wq 252 [423]
ff→W± γ WeakBosonAndParton:ffbar2Wgm 253 [423,433]
fγ→W± f WeakBosonAndParton:fgm2Wf 254 [432]
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Table 13: List of internal onia production processes, see section 3.3 for details. Here
only charmonium channels are listed. The same channels are available for bottomo-
nium by substituting cc , Charmonium: and ccbar with bb , Bottommonium: and
bbbar respectively, and by increasing the code numbers with 100.

process internal name code

Onia:all
Onia:all(3S1)
Onia:all(3PJ)
Onia:all(3DJ)

Charmoniun:all

gg→
�

�

�cc(3S1)[3S(1)1 ]
¶

g Charmonium:gg2ccbar(3S1)[3S1(1)]g 401

gg→
�

�

�cc(3S1)[3S(1)1 ]
¶

γ Charmonium:gg2ccbar(3S1)[3S1(1)]gm 441

gg→
�

�

�cc(3S1)[3S(8)1 ]
¶

g Charmonium:gg2ccbar(3S1)[3S1(8)]g 402

qg→
�

�

�cc(3S1)[3S(8)1 ]
¶

q Charmonium:qg2ccbar(3S1)[3S1(8)]q 403

qq→
�

�

�cc(3S1)[3S(8)1 ]
¶

q Charmonium:qqbar2ccbar(3S1)[3S1(8)]g 404

gg→
�

�

�cc(3S1)[1S(8)0 ]
¶

g Charmonium:gg2ccbar(3S1)[1S0(8)]g 405

qg→
�

�

�cc(3S1)[1S(8)0 ]
¶

q Charmonium:qg2ccbar(3S1)[1S0(8)]q 406

qq→
�

�

�cc(3S1)[1S(8)0 ]
¶

q Charmonium:qqbar2ccbar(3S1)[1S0(8)]g 407

gg→
�

�

�cc(3S1)[3P(8)J ]
¶

g Charmonium:gg2ccbar(3S1)[3PJ(8)]g 408

qg→
�

�

�cc(3S1)[3P(8)J ]
¶

q Charmonium:qg2ccbar(3S1)[3PJ(8)]q 409

qq→
�

�

�cc(3S1)[3P(8)J ]
¶

q Charmonium:qqbar2ccbar(3S1)[3PJ(8)]g 410

gg→
�

�

�cc(3PJ )[3P(1)J ]
¶

g Charmonium:gg2ccbar(3PJ)[3PJ(1)]g 411

qg→
�

�

�cc(3PJ )[3P(1)J ]
¶

q Charmonium:qg2ccbar(3PJ)[3PJ(1)]q 412

qq→
�

�

�cc(3PJ )[3P(1)J ]
¶

q Charmonium:qqbar2ccbar(3PJ)[3PJ(1)]g 413

gg→
�

�

�cc(3PJ )[3S(8)1 ]
¶

g Charmonium:gg2ccbar(3PJ)[3S1(8)]g 414

qg→
�

�

�cc(3PJ )[3S(8)1 ]
¶

q Charmonium:qg2ccbar(3PJ)[3S1(8)]q 415

qq→
�

�

�cc(3PJ )[3S(8)1 ]
¶

q Charmonium:qqbar2ccbar(3PJ)[3S1(8)]g 416

gg→
�

�

�cc(3DJ )[3D(1)J ]
¶

g Charmonium:gg2ccbar(3DJ)[3DJ(1)]g 417

gg→
�

�

�cc(3DJ )[3P(8)J ]
¶

g Charmonium:gg2ccbar(3DJ)[3PJ(8)]g 418

qg→
�

�

�cc(3DJ )[3P(8)J ]
¶

q Charmonium:qg2ccbar(3DJ)[3PJ(8)]q 419

qq→
�

�

�cc(3DJ )[3P(8)J ]
¶

q Charmonium:qqbar2ccbar(3DJ)[3PJ(8)]g 420

gg→
�

�

�cc(3S1)[3S(1)1 ]
¶

�

�

�cc(3S1)[3S(1)1 ]
¶

Charmonium:gg2doubleccbar(3S1)[3S1(1)] 421

qq→
�

�

�cc(3S1)[3S(1)1 ]
¶

�

�

�cc(3S1)[3S(1)1 ]
¶

Charmonium:qqbar2doubleccbar(3S1)[3S1(1)] 422

252

https://scipost.org
https://scipost.org/SciPostPhysCodeb.8


SciPost Phys. Codebases 8 (2022)

Table 14: List of internal top-production processes and production of fourth-
generation fermions. Expressions are from [14].

process internal name code

Top:all
gg→ tt Top:gg2ttbar 601
qq→ tt Top:qqbar2ttbar 602
qq→ tq Top:qq2tq(t:W) 603

ff→ γ/Z→ tt Top:ffbar2ttbar(s:gmZ) 604

ff→W±→ tq Top:ffbar2tqbar(s:W) 605
γγ→ tt Top:gmgm2ttbar 606
gγ→ tt Top:ggm2ttbar 607

FourthBottom:all

gg→ b′b
′

FourthBottom:gg2bPrimebPrimebar

qq→ b′b
′

FourthBottom:qqbar2bPrimebPrimebar 801

ff→ b′q (t-channel W) FourthBottom:qq2bPrimeq(t:W) 803

ff→ b′b
′

(s-channel γ/Z) FourthBottom:ffbar2bPrimebPrimebar(s:gmZ) 804

ff
′
→ b′q (s-channel W) FourthBottom:ffbar2bPrimeqbar(s:W) 805

ff
′
→ b′t (s-channel W) FourthBottom:ffbar2bPrimetbar(s:W) 806

FourthTop:all

gg→ t′t′ FourthTop:gg2tPrimetPrimebar 821

qq→ t′t′ FourthTop:qqbar2tPrimetPrimebar 822

ff→ b′q (t-channel W) FourthTop:qq2tPrimeq(t:W) 823

ff→ t′t′ (s-channel γ/Z) FourthTop:ffbar2tPrimetPrimebar(s:gmZ) 824

ff
′
→ t′q (s-channel W) FourthTop:ffbar2tPrimeqbar(s:W) 825

ff
′
→ t′b

′
(s-channel W) FourthPair:ffbar2tPrimebPrimebar(s:W) 841

ff
′
→ τ′ν̄′ (s-channel W) FourthPair:ffbar2tauPrimenuPrimebar(s:W) 842
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Table 15: List of internal SM-Higgs production processes. See section 3.5 for details.

process internal name code

HiggsSM:all

ff→ HSM HiggsSM:ffbar2H 901
gg→ HSM HiggsSM:gg2H 902
γγ→ HSM HiggsSM:gmgm2H 903

ff→ HSMZ HiggsSM:ffbar2HZ 904

ff→ HSMW HiggsSM:ffbar2HW 905

ff→ HSMff (ZBF) HiggsSM:ff2Hff(t:ZZ) 906

ff→ HSMff (WBF) HiggsSM:ff2Hff(t:WW) 907
gg→ HSMtt HiggsSM:gg2Httbar 908
qq→ HSMtt HiggsSM:qqbar2Httbar 909

qg→ HSMq HiggsSM:qg2Hq 911

gg→ HSMbb HiggsSM:gg2Hbbbar 912

qq→ HSMbb HiggsSM:qqbar2Hbbbar 913
gg→ HSMg HiggsSM:gg2Hg(l:t) 914
qg→ HSMq HiggsSM:qg2Hq(l:t) 915
qq→ HSM g HiggsSM:qqbar2Hg(l:t) 916

A.2 Beyond-the-Standard-Model processes

Table 16: List of internal SUSY particle production processes. Expressions from [82,
437,438]. Particular flavour states can be selected using IdA and idB, see section 3.6
or the online manual for details.

process internal name

SUSY:all
gg→ g̃ g̃ SUSY:gg2gluinogluino
qq→ g̃ g̃ SUSY:qqbar2gluinogluino
qg→ q̃ g̃ SUSY:qg2squarkgluino
gg→ q̃i q̃

∗
j SUSY:gg2squarkantisquark

qq→ q̃i q̃
∗
j SUSY:qqbar2squarkantisquark

qq→ q̃i q̃
∗
j (No EW) SUSY:qqbar2squarkantisquark:onlyQCD

qq→ q̃i q̃
∗
j SUSY:qqbar2squarkantisquark

qq→ q̃i q̃ j SUSY:qq2squarksquark
qq→ q̃i q̃ j (No EW) SUSY:qq2squarksquark:onlyQCD
qq→ χ̃0

i χ̃
0
j SUSY:qqbar2chi0chi0

qq→ χ̃±i χ̃
0
j SUSY:qqbar2chi+-chi0

qq→ χ̃±i χ̃
∓
j SUSY:qqbar2chi+chi-

qg→ q̃χ̃0
i SUSY:qg2chi0squark

qg→ q̃χ̃±i SUSY:qg2chi+-squark
qq→ χ̃0

i g̃ SUSY:qqbar2chi0gluino
qq→ χ̃±i g̃ SUSY:qqbar2chi+-gluino

ff→ ˜̀
i
˜̀∗

j SUSY:qqbar2sleptonantislepton

qiq j → q̃∗k SUSY:qq2antisquark
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Table 17: List of internal BSM-Higgs production processes. See section 3.5 for details.
Expressions from [439,440].

process internal name code

HiggsBSM:all
(replace H1 with H2 or A3)
HiggsBSM:allH1

ff→ H1(H2, A3) HiggsBSM:ffbar2H1 1001, 1021, 1041
gg→ H1(H2, A3) HiggsBSM:gg2H1 1002, 1022, 1042
γγ→ H1(H2, A3) HiggsBSM:gmgm2H1 1003, 1023, 1043

ff→ H1(H2, A3)Z HiggsBSM:ffbar2H1Z 1004, 1024, 1044

ff→ H1(H2, A3)W HiggsBSM:ffbar2H1W 1005, 1025, 1045

ff→ H1(H2, A3)ff (ZBF) HiggsBSM:ff2H1ff(t:ZZ) 1006, 1026, 1046

ff→ H1(H2, A3)ff (WBF) HiggsBSM:ff2H1ff(t:WW) 1007, 1027, 1047
gg→ H1(H2, A3)tt HiggsBSM:gg2H1ttbar 1008, 1028, 1048
qq→ H1(H2, A3)tt HiggsBSM:qqbar2H1ttbar 1009, 1029, 1049

HiggsBSM:allH+-

ff→ H± HiggsBSM:ffbar2H+- 1061
bg→ H± HiggsBSM:bg2H+-t 1062

HiggsBSM:allHpair

ff→ A3H1 HiggsBSM:ffbar2A3H1 1081

ff→ A3H2 HiggsBSM:ffbar2A3H2 1082

ff→ H±H1 HiggsBSM:ffbar2H+-H1 1083

ff→ H±H2 HiggsBSM:ffbar2H+-H2 1084

ff→ H±A3 HiggsBSM:ffbar2H+H- 1085

qg→ H1(H2, A3)q HiggsBSM:qg2H1q 1011, 1031, 1051

gg→ H1(H2, A3)bb HiggsBSM:gg2H1bbbar 1012, 1032, 1052

qq→ H1(H2, A3)bb HiggsBSM:qqbar2H1bbbar 1013, 1033, 1053
gg→ H1(H2, A3)g HiggsBSM:gg2H1g(l:t) 1014, 1034, 1054
qg→ H1(H2, A3)q HiggsBSM:qg2H1q(l:t) 1015, 1035, 1055
qq→ H1(H2, A3)g HiggsBSM:qqbar2H1g(l:t) 1016, 1036, 1056

Table 18: List of internal processes for dark matter. See section 3.8 and [441] for
details.

process internal name code

gg→ χχ̄ DM:gg2S2XX 6011
gg→ χχ̄ j DM:gg2S2XXj 6012

ff→ χχ̄ DM:ffbar2Zp2XX 6001

ff→ χχ̄ DM:ffbar2Zp2XXj 6002

ff→ χχ̄ j DM:qg2Zp2XXj 6003

ff→ Z ′H DM:ffbar2ZpH 6004
qq→ ΨΨ̄ DM:qqbar2DY 6020
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Table 19: List of internal processes mediated by new gauge bosons or leptoquarks.
See section 3.9.

process internal name code refs.

ff→ γ/Z/Z ′ NewGaugeBoson:ffbar2gmZZprime 3001 [442]
ff→W ′ NewGaugeBoson:ffbar2Wprime 3021 [442]
ff→ R0 NewGaugeBoson:ffbar2R0 3041 [442]

LeftRightSymmmetry:all [443]
ff→ ZR LeftRightSymmmetry:ffbar2ZR 3101

ff→W ′ LeftRightSymmmetry:ffbar2WR 3102

`¯̀→ HL LeftRightSymmmetry:ll2HL 3121
`γ→ HLe LeftRightSymmmetry:lgm2HLe 3122
`γ→ HLµ LeftRightSymmmetry:lgm2HLmu 3123
`γ→ HLτ LeftRightSymmmetry:lgm2HLtau 3124

ff→ ffHL LeftRightSymmmetry:ff2HLff 3125

ff→ HLHL LeftRightSymmmetry:ffbar2HLHL 3126

`¯̀→ HR LeftRightSymmmetry:ll2HR 3141
`γ→ HRe LeftRightSymmmetry:lgm2HRe 3142
`γ→ HRµ LeftRightSymmmetry:lgm2HRmu 3143
`γ→ HRτ LeftRightSymmmetry:lgm2HRtau 3144

ff→ ffHR LeftRightSymmmetry:ff2HRff 3145

ff→ HRHR LeftRightSymmmetry:ffbar2HRHR 3146

LeptoQuark:all
q`→ S LeptoQuark:ql2LQ 3201 [444]
qg→ `S LeptoQuark:qg2LQl 3202 [444]
gg→ SS∗ LeptoQuark:gg2LQLQbar 3203 [444]
ff→ SS∗ LeptoQuark:qqbar2LQLQbar 3204 [444]
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Table 20: List of internal processes for excited fermions. See section 3.9.

process internal name code refs.

ExcitedFermion:all [445,446]
dg→ d∗ ExcitedFermion:dg2dStar 4001 [445,446]
ug→ u∗ ExcitedFermion:ug2uStar 4002 [445,446]
sg→ s∗ ExcitedFermion:sg2sStar 4003 [445,446]
cg→ c∗ ExcitedFermion:cg2cStar 4004 [445,446]
bg→ b∗ ExcitedFermion:bg2bStar 4005 [445,446]
eγ→ e∗ ExcitedFermion:egm2eStar 4011 [445,446]
µγ→ µ∗ ExcitedFermion:mugm2muStar 4013 [445,446]
τγ→ τ∗ ExcitedFermion:taugm2tauStar 4015 [445,446]

qq→ d∗q ExcitedFermion:qq2dStarq 4021 [445,446]
qq→ u∗q ExcitedFermion:qq2uStarq 4022 [445,446]
qq→ s∗q ExcitedFermion:qq2sStarq 4023 [445,446]
qq→ c∗q ExcitedFermion:qq2cStarq 4024 [445,446]
qq→ b∗q ExcitedFermion:qq2bStarq 4025 [445,446]
qq→ e∗e ExcitedFermion:qqbar2eStare 4031 [445,446]
qq→ ν∗eνe ExcitedFermion:qqbar2nueStarnue 4032 [445,446]
qq→ µ∗µ ExcitedFermion:qqbar2muStarmu 4033 [445,446]
qq→ ν∗µνµ ExcitedFermion:qqbar2numuStarnumu 4034 [445,446]
qq→ τ∗τ ExcitedFermion:qqbar2tauStartau 4035 [445,446]
qq→ ν∗τντ ExcitedFermion:qqbar2nutauStarnutau 4036 [445,446]
qq→ e∗e∗ ExcitedFermion:qqbar2eStareStar 4051 [445,446]
qq→ ν∗eν

∗
e ExcitedFermion:qqbar2nueStarnueStar 4052 [445,446]

qq→ µ∗µ∗ ExcitedFermion:qqbar2muStarmuStar 4053 [445,446]
qq→ ν∗µν

∗
µ ExcitedFermion:qqbar2numuStarnumuStar 4054 [445,446]

qq→ τ∗τ∗ ExcitedFermion:qqbar2tauStartauStar 4055 [445,446]
qq→ ν∗τnu∗τ ExcitedFermion:qqbar2nutauStarnutauStar 4056 [445,446]

Table 21: List of internal processes for Randall–Sundrum resonances. See section 3.9
and [447,448] for details.

process internal name code

ExtraDimensionsG*:all
gg→ G∗ ExtraDimensionsG*:gg2G* 5001

ff→ G∗ ExtraDimensionsG*:ffbar2G* 5002
gg→ G∗g ExtraDimensionsG*:gg2G*g 5003
gq→ G∗q ExtraDimensionsG*:qg2G*q 5004
qq→ G∗g ExtraDimensionsG*:qqbar2G*g 5005
qq→ GKK g ExtraDimensionsG*:qqbar2KKgluon* 5006
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Table 22: List of internal processes for TeV−1-sized extra dimensions. See section 3.9
for details, expressions from [449].

process internal name code

ff→ dd ExtraDimensionsTEV:ffbar2ddbar 5061

ff→ uu ExtraDimensionsTEV:ffbar2uubar 5062

ff→ ss ExtraDimensionsTEV:ffbar2ssbar 5063

ff→ cc ExtraDimensionsTEV:ffbar2ccbar 5064

ff→ bb ExtraDimensionsTEV:ffbar2bbbar 5065

ff→ tt ExtraDimensionsTEV:ffbar2ttbar 5066

ff→ e+e− ExtraDimensionsTEV:ffbar2e+e- 5071

ff→ νeν̄e ExtraDimensionsTEV:ffbar2nuenuebar 5072

ff→ µ+µ− ExtraDimensionsTEV:ffbar2mu+mu- 5073

ff→ νµν̄µ ExtraDimensionsTEV:ffbar2numunumubar 5074

ff→ τ+τ− ExtraDimensionsTEV:ffbar2tau+tau- 5076

ff→ ντν̄τ ExtraDimensionsTEV:ffbar2nutaunutaubar 5076

Table 23: List of internal processes for large extra dimensions. See section 3.9 for
details.

process internal name code refs.

ExtraDimensionsLED:monojet [450,451]
gg→ Gg ExtraDimensionsLED:gg2Gg 5021
gq→ Gq ExtraDimensionsLED:qg2Gq 5022
qq→ Gg ExtraDimensionsLED:qqbar2Gg 5023

ff→ GZ ExtraDimensionsLED:ffbar2GZ 5024 [450]
ff→ Gγ ExtraDimensionsLED:ffbar2Ggamma 5025 [450]
ff→ γγ ExtraDimensionsLED:ffbar2gammagamma 5026 [450]
gg→ γγ ExtraDimensionsLED:gg2gammagamma 5027 [450]
ff→ `¯̀ ExtraDimensionsLED:ffbar2llbar 5028 [450]
gg→ `¯̀ ExtraDimensionsLED:gg2llbar 5029 [450]

ExtraDimensionsLED:dijets [450]
gg→ gg ExtraDimensionsLED:gg2DJgg 5030
gg→ qq ExtraDimensionsLED:gg2DJqqbar 5031
qg→ qg ExtraDimensionsLED:qg2DJqg 5032
qq→ qq ExtraDimensionsLED:qq2DJqq 5033
qq→ gg ExtraDimensionsLED:qqbar2DJgg 5034
qq→ q′q′ ExtraDimensionsLED:qqbar2DJqqbarNew 5035
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Table 24: List of internal processes for unparticles. Expressions from [452,453], see
section 3.9.

process internal name code

ExtraDimensionsUnpart:monojet
gg→ U g ExtraDimensionsUnpart:gg2Ug 5045
gq→ Uq ExtraDimensionsUnpart:qg2Uq 5046
qq→ U g ExtraDimensionsUnpart:qqbar2Ug 5047

ff→ UZ ExtraDimensionsUnpart:ffbar2UZ 5041

ff→ Uγ ExtraDimensionsUnpart:ffbar2Ugamma 5042

ff→ U → γγ ExtraDimensionsUnpart:ffbar2gammagamma 5043
gg→ U → γγ ExtraDimensionsUnpart:gg2gammagamma 5044

ff→ U → `¯̀ ExtraDimensionsUnpart:ffbar2llbar 5048

gg→ U → `¯̀ ExtraDimensionsUnpart:gg2llbar 5049

Table 25: List of internal hidden valley processes, see section 3.7 and [38, 39] for
details.

process internal name code

HiddenValley:all

gg→ dvdv HiddenValley:gg2DvDvbar 4901
gg→ uvuv HiddenValley:gg2UvUvbar 4902
gg→ svsv HiddenValley:gg2SvSvbar 4903
gg→ cvcv HiddenValley:gg2CvCvbar 4904

gg→ bvbv HiddenValley:gg2BvBvbar 4905
gg→ tvtv HiddenValley:gg2TvTvbar 4906

qq→ dvdv HiddenValley:qqbar2DvDvbar 4911
qq→ uvuv HiddenValley:qqbar2UvUvbar 4912
qq→ svsv HiddenValley:qqbar2SvSvbar 4913
qq→ cvcv HiddenValley:qqbar2CvCvbar 4914

qq→ bvbv HiddenValley:qqbar2BvBvbar 4915
qq→ tvtv HiddenValley:qqbar2TvTvbar 4916

ff→ dvdv HiddenValley:ffbar2DvDvbar 4921

ff→ uvuv HiddenValley:ffbar2UvUvbar 4922

ff→ svsv HiddenValley:ffbar2SvSvbar 4923

ff→ cvcv HiddenValley:ffbar2CvCvbar 4924

ff→ bvbv HiddenValley:ffbar2BvBvbar 4925

ff→ tvtv HiddenValley:ffbar2TvTvbar 4926

ff→ ev ēv HiddenValley:ffbar2EvEvbar 4931

ff→ µvµ̄v HiddenValley:ffbar2MUvMUvbar 4932

ff→ τvτ̄v HiddenValley:ffbar2TAUvTAUvbar 4933

ff→ ντvν̄τv HiddenValley:ffbar2nuEvnuEvbar 4934

ff→ ντvν̄τv HiddenValley:ffbar2nuMUvnuMUvbar 4935

ff→ ντvν̄τv HiddenValley:ffbar2nuTAUvnuTAUvbar 4936

ff→ Zv HiddenValley:ffbar2Zv 4941
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