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Knowledge mining of unstructured 
information: application to cyber 
domain
Tuomas Takko 1*, Kunal Bhattacharya 1,2, Martti Lehto 3, Pertti Jalasvirta 4, 
Aapo Cederberg 4 & Kimmo Kaski 1,5

Information on cyber-related crimes, incidents, and conflicts is abundantly available in numerous 
open online sources. However, processing large volumes and streams of data is a challenging 
task for the analysts and experts, and entails the need for newer methods and techniques. In this 
article we present and implement a novel knowledge graph and knowledge mining framework for 
extracting the relevant information from free-form text about incidents in the cyber domain. The 
computational framework includes a machine learning-based pipeline for generating graphs of 
organizations, countries, industries, products and attackers with a non-technical cyber-ontology. The 
extracted knowledge graph is utilized to estimate the incidence of cyberattacks within a given graph 
configuration. We use publicly available collections of real cyber-incident reports to test the efficacy 
of our methods. The knowledge extraction is found to be sufficiently accurate, and the graph-based 
threat estimation demonstrates a level of correlation with the actual records of attacks. In practical 
use, an analyst utilizing the presented framework can infer additional information from the current 
cyber-landscape in terms of the risk to various entities and its propagation between industries and 
countries.

The cyberspace is increasingly facing challenges in the form of persistent and devious threats from state and 
non-state actors alike. Given the growth of smart devices, data storage options, and supply-chain dependen-
cies, establishing the security and resiliency in the cyberdomain has become an imperative for companies and 
organizations across  sectors1. A key challenge here is to assimilate the large-scale data in free-forms, such as 
reports on incidents and vulnerabilities that are openly available from numerous sources including vulner-
ability databases and international  agencies2. An ad-hoc structuring of information by interlinking reports on 
events, i.e. a knowledge graph  framework3–6, appears to be a viable solution. The concept of knowledge graphs 
has been adopted for structuring and processing of technical information on known vulnerabilities, malicious 
IP addresses and different relevant threats in the cyberdomain, as well as for associating other related entities 
such as software companies.

In this article we present a computational framework for analyzing the cyber-landscape by utilizing publicly 
available textual reports of various incidents. The objective is to get a broad yet condensed view of the relevant 
interconnected entities and the prevailing threats. In addition to a visual tool, we explore the usability of the 
resulting knowledge graph in terms of estimating the risk of cyberattacks. Such frameworks have been proposed 
in the past, but only a few studies provide methods for practical and automated construction of visual and graph-
based solutions. The framework is based on high level descriptions of cyber-incidents, like attacks and breaches, 
which can easily be obtained from open online sources.

This work shares a broader objective similar to the work of Böhm et al.7, in which the authors described and 
justified a human-readable and visual approach for analyzing complex cyberattack reports. The success of security 
experts depends on the readability of available intelligence, information in structured formats and ontologies, 
which often require additional tools and frameworks for actionable usage. In general, ontologies such as  STIX8, 
 UCO9, and  STUCCO10 consist of various technical or higher level entities and their possible interrelations 
that facilitate the interlinking of entities and events. While these ontologies have excelled in focusing on the 
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microscopics and different technical sophistication, there still remains ample scope to portray the cyber-land-
scape in a clear and readable manner for the ease of analysis and subsequent decision making at a strategic level.

In the vein of earlier  research6,7,11 we extend the knowledge graph constructed from unstructured data by 
joining information from separate other sources of data. We use crawling and querying for additional records 
and information about the entities from sources such as  DBpedia12. The additional information is aimed to suf-
ficiently populate the ontology and to enhance interconnectedness in the knowledge graph , which subsequently 
allows us to calculate the risk. Furthermore we demonstrate that the graph can be used to determine a risk level 
for the entities in the graph by using historical data on cyberattacks. This risk level could be used to estimate the 
likelihood of future cyberattacks given the past incidents on connected entities.

This article is structured in the following manner. In “Related work” section, we establish the position of the 
current framework in relation to existing works and studies in the field of open source and knowledge graph 
based systems, by focusing on the studies that have overlapping methods or data sources. Next, in Methods 
and Materials (“Methods and materials” section) we describe the processing pipeline for producing a strategic 
level knowledge graph from unspecified textual sources, such as news reports on cyberattacks. In “Results and 
analysis on an experimental dataset” section, we analyze the knowledge graph and use it to measure a type of 
risk. Finally, in “Discussion” section we discuss the relevance of our findings in terms of their usefulness to 
cyber-analysts and enumerate the limitations. In “Conclusions” section we summarize our findings and discuss 
the possible future improvements.

Related work
The concept of knowledge graph, where complex information is represented as nodes with edges as semantic 
relations between  them13,14, has become increasingly popular in numerous fields of research and in the imple-
mentation of information-driven applications. Improved methods for extracting meaningful information and 
entities from unstructured  text15, as well as the increasing coverage of linked data from various endpoints (such 
as  DBpedia12) has made it possible to query for relevant information and to connect information from text to 
existing records of various entities, events and items. The applications of knowledge graph ranges from systems 
in  healthcare16,17 to search systems and scientific document  indexing8,16–18.

In cybersecurity and cyber intelligence, the use of knowledge graphs and linked data has been prevalent due 
to the mostly structured nature of the recorded data related to intrusion detection systems, software vulner-
abilities and malicious  actors3,19. For instance, online databases like  NVD20,  CVE21 and  CWE22 provide regular 
updates on software and system vulnerabilities in a structured format. Cyberdefense benefits from synergy and 
cooperation, but sharing and interpreting various threat intelligence reports and databases requires standardized 
formats and protocols for the analysts to have a common  language23. Thus, there has been extensive research done 
for constructing taxonomies and ontologies to standardize the formats of linked data on threat intelligence such 
as software and system vulnerabilities, malware, and attacks in  general8,9,24. Using these types of ontologies to 
provide formalism and structure, various framework-type approaches to situational cyber awareness have been 
developed, for instance for different vulnerabilities, assets and network topologies during  cyberattacks6,7,25–27. 
Other approaches for extracting relevant information on cyberattacks and vulnerabilities from different unstruc-
tured text sources, such as social media, have been used as early warning signals for cyber-risks28–33.

The present study is related to earlier  works6,11,34 that describe and implement methods for a pipeline with 
the objective to turn unstructured data into knowledge graphs, based on specific ontologies. For instance, Joshi 
et al.11 described a framework that processes unstructured web text from security bulletins and blogs alongside 
the vulnerability data from the NVD, CVE and CWE datasets, recognizes the entities and concepts, and finally 
connects them by using information from DBpedia Spotlight. In another work, Li et al.4 proposed a method for 
building a knowledge base with similar rules and structure. But instead of considering the software and hardware 
vulnerabilities, the ontology used device properties, attack properties and attack features. The datapoints were 
gathered from the network level information using a neural network classifier. Third study relevant to the scope 
of the current study, by Kejriwal and  Szekely34, describes an information extraction method for unstructured 
text, scraped from illicit web domains. The authors proposed methods for annotating and extracting information 
such as entities and locations using unsupervised methods based on an initially annotated corpora.

The framework presented in this paper shares principle level similarities to the studies described above, in 
terms of the structure of the data processing pipeline and methods. This work shares similarities to the general 
objective of the work by Li et al.6 in portraying cyberattacks in a knowledge graph format. The latter framework 
processes data from the network and information systems of an entity, whereas the strategic domain approach 
of this study is restricted to open source information from security bulletins and news sources, thus limiting the 
number of features and amount of information available. The information extraction part of this study has prin-
ciples similar to the work of Kejriwal and  Szekely34, with the objective of processing information from unknown 
domains and extracting the relevant entities and their relationships. We extract the entities using a named entity 
recognizer (NER) from  spaCy35 and compare the extracted relevant entities to the knowledge base of DBpedia 
using DBpedia Spotlight, similar to Joshi et al.11. While sharing some similarities with previously described work, 
the framework in this study is dependent only on the most surface level descriptions of the events, which can be 
acquired from easily available sources online.

Methods and materials
Framework for processing unstructured information consists of three distinct modules, namely an information 
retrieval module, an information extraction module, and finally, a module for risk measurement and graph 
analysis. The framework implementation does not reuse the source material or otherwise infringe the copyright 
of the authors of the original text. The process with the corresponding modules is shown in Fig. 1. The first 
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module aims to gather and process relevant unstructured information from unspecified online sources. It begins 
by collecting a list of urls of news reports of cyberattacks that are of interest to the analyst. The module proceeds 
by requesting the page from the given url, if the source allows software agents, and cleaning the obtained text 
by removing irrelevant content such as html-tags, other urls or embedded content. This cleaned text is then 
processed by removing stop words and extracting relevant entities and their relationships in the information 
extraction module. The relationships between the target and the attacking entities are extracted as a triple in the 
form of “target–attackedBy–attacker”. The extracted entities are compared to the results of DBpedia  Spotlight36, 
which finds related records in  DBpedia12 as linked data, which we then use to complete the fields in the ontology. 
DBpedia Spotlight annotates the entities found in the text and performs disambiguation using the context of the 
phrases. In an ideal situation, these entities are correctly resolved and found in DBpedia, but in a situation where 
this additional information is not found, we omit the information while keeping the entity as it was recognized 
by the spaCy  NER35 and adding the triple of attacker–victim relationship. In a complete system one could also 
crawl other sources for additional information, such as software vulnerabilities. Lastly, we use the generated 
knowledge graph for estimating a measure for risk. The risk level in this study is based on the frequency of attacks 
in the connected entities of the knowledge graph.

These modules were implemented in Python 3.7 using libraries for web scraping,  spaCy35 for information 
extraction and  NetworkX37 for graph analysis. For the purpose of demonstrating our approach in this study, we 
opted to use the openly available datasets of cyberattacks from  Hackmageddon38 containing reported attacks 
from year 2017 to 2020. The human-annotated dataset contains descriptions of targets, attackers, attack types, 
dates, countries and links to the original reports, which we use to obtain the full text report. The remaining fields 
are used in the evaluation of information extraction methods of this framework as well as to substitute for miss-
ing relationships from DBpedia. In a real use-case an analyst would use their own news sources or knowledge 
bases and use the framework via a user interface, or other applicable method. For the sake of clarity we restrict 
the number of cases analyzed in the knowledge graph to the contents of the Hackmageddon dataset. Some 
organizations might experience attacks or preparations of an attack on a daily basis, but those are not reported 
in the news whether due to their commonality, minor damage or because the organization is not releasing the 
information. The attacks recorded in this set of data are the ones where the attack itself is already operational 
and deemed news-worthy.

Information extraction. The primary aim of this module is to identify the victim and the perpetrator of 
an attack from a given piece of text. The method used here is an unsupervised  one39, and generally belongs to 
the category of relation extraction methods, which are used for constructing knowledge graphs in the cyber 
 domain40. The approach comprises of extraction of subject–verb–object (SVO) triples, scoring for named enti-
ties, and ranking of entities. The SVO triples are extracted using a mixture of rule based  methods41 and parsing 
of the dependency  tree42. Below we will broadly describe different components in this approach. The finer details 
of the method and related concepts will be reported elsewhere. 

1. First, the subjects and objects are tagged using spaCy noun phrases (noun-chunks).
2. The verb phrases are identified as the most general pattern: particle + adposition + verb/auxillary + particle 

+ adposition + adjective/adverb + adposition. Similarly, lone adpositions, adverbs and adjectives are tagged. 
To take into account complex predicates, light verb constructions that include nouns are also recognized, for 
example, the phrase ‘gained access to’43. Additionally, Hearst  patterns44 are identified from a pre-compiled 
list and using the patterns nouns are linked by using the dependency tree structure parsed by spaCy.

3. A coarser dependency tree is constructed using the noun and the verb phrases and the original dependency 
structure. Note, that the dependency parsing may vary depending on the language model used by spaCy. 
Using this coarser tree and considering the subject–verb–object order we generate the triples. The tree is 
parsed such that the conjugated verbs are crawled and associated with all the subjects and objects.

Text retrieval and
cleaning

Online reports

Information
extraction

Extraction of entities and
SVO-triples

Knowledge graph

Graph analysis
and risk

estimation

Graph extension
DBpedia Spotlight for

completing fields in the
ontology.

"Triples"

Entities

Text
"Triples"

Figure 1.  Process pipeline of the proposed knowledge mining framework. The framework and the modules 
are depicted as boxes with the correct order. The pipeline retrieves, cleans and extracts information from 
unstructured text and computes graph-level features for the analyst to investigate in the final knowledge graph.
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4. A co-reference resolution for the set of noun phrases is performed using the package  NeuralCoref45.The 
resulting output from the resolution are clusters of noun phrases, where each cluster implies a single co-
referenced mention.

5. Named entities are tagged using the spaCy named entity recognizer.
6. A map between the named entities in the text and the clusters from co-reference resolution is created. Using 

the map the subjects and the objects in the triples are replaced with the named entities.
7. For each named entity a ‘target score’ is calculated in the following fashion. A list of attack tokens is con-

sidered. The list is populated with a set of seed tokens, such that ‘hacked’, ‘breached’, etc., and further are 
extended by including the inflections. Given an SVO triple we check for the presence of an attack token 
inside the verb phrase. If a token is found and the triple has an active voice then the entity corresponding to 
the object gets its target score incremented by +1 . If the voice is passive, the target score corresponding to 
the entity in the subject is incremented. The process is repeated for all the triples and the final target scores 
are obtained.

8. The number of occurrences of each entity and the order in which they appear in the text are also calculated. 
For each entity, a compound score is calculated by adding the min–max normalized values of the target 
score, the frequency of appearance, and the order (reversed). The entities are ranked in descending order of 
the compound score. The topmost identity is identified as the primary target mentioned in the text.

The above method is illustrated in Fig. 2. We find that this method yields an accuracy of 60% for the top-most 
ranked entity to be the true target. However, the accuracies for the true target to be in the top-2 and top-3 ranked 
entities are 75% and 83% , respectively. If solely the frequency or the order of appearance is taken into account 
the accuracy for the true target to be in the top-most and top-3 entities are around 50% and 70% , respectively. 
Note that in general a news piece has 10–20 entities, and therefore, a baseline accuracy would be much lower 
in comparison. For determining the attacker, we follow a scoring method similar to item 7 in the list above by 
choosing the subject (object) in a triple when the voice is active (passive). However, for most of the instances in 
the dataset the identity of the attacker is not known. Therefore, in this case the accuracy can not be ascertained. 
In our future work we will provide methods whereby models can be trained on linguistic features, and quantities 
like frequency and order.

Domain ontology structure. The framework of this study utilizes a novel domain ontology for defin-
ing the elements and the relationships appearing in the knowledge graph. The ontology is depicted in Fig. 3. It 
captures knowledge on the entities and actors at a strategic level, i.e. at a level that describes real world struc-
tures and helps in constructing a broader picture of the whole field at once. The extracted information for each 
report on a cyberattack depicts the main attributes of an organization and ideally forms a connected network, 
in which visualizing trends and campaigns along with individual attack incidents is possible. The entities, such 
as companies and organizations, are described by their countries and industries as well as by their products 
and possible child–parent relationships to other entities. Different countries, products and industries appear in 
the knowledge graph as nodes alongside the organizations and attacking entities. We categorize industry and 
country nodes into central nodes and rest of the nodes non-central. As we are using DBpedia Spotlight to obtain 
information on the extracted entities, the ontology can be considered to share predicates with the ontology of 
DBpedia. The relationships and their counterparts in DBpedia’s syntax are depicted in the table in Fig. 3.

When populating the knowledge graph using the ontology, we are not setting any requirements or rules to 
the types of categories that might appear in the automated construction process. Every entity is considered as 
a type of organization, with the distinguishing feature being the type of industry the entity has. For instance, 
a government organization would have an industry indicating public service. The set of entity attributes for 
describing cyberattacks and events in our ontology were chosen as such to maintain readability and simplic-
ity of the knowledge graph. It is also worth noting, that increasing the number of predicates for a given entity 
affects the network properties of the resulting knowledge graph. Naturally, the number of these predicates can 
be increased if the analyst requires other information within the boundaries of information available, but the 
current set serves as a backbone for the purpose of this study. The finalized result of the knowledge graph using 
the ontology presented here contains five types of nodes (entity, country, industry, product, attacker) and the 
five relationships described above. An example of a subset of the resulting knowledge graph is shown in Fig. 7.

Figure 2.  The components of the process of information extraction are shown. A major part of the process is 
implemented using the Python spaCy library.
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Measuring risk level. In addition to the situational awareness and human readability provided by the 
knowledge graph, we aim to quantify risk for the entities in the graph. Rather than trying to predict the occur-
rence of cyberattacks, our focus is on measuring risk from the relationship between sequential attack records. 
The level of risk in this study is measured from the network structure of the knowledge graph. As an attack is 
recorded in the form of an SVO-triple and a date, we can construct risk levels for the central nodes, which consist 
of industry and country nodes. Risk levels for the central nodes in the knowledge graphs are then used as a proxy 
for the connected entities via the linkages in the network structure.

In this initial model, we consider the risk rc(t) for a single central node c at time step t to be given by a sum 
of decaying exponential weights over the past events, such that

where t denotes the time when the risk is calculated, and i is a time when an attack happened. The unit of time is 
considered as a parameter for adjusting the contributions of the past events to the current risk. After testing on 
our data for different values, we chose time to be in units of 30 days. The time step can be chosen for an appropri-
ate duration, considering the type of data represented in the knowledge graph. For each attack-triple the time 
of reported occurrence is stored in the data structure. Should an attack be spread on multiple days, each day of 
the attack would be presented as a separate triple.

We also calculate the second central neighbors for the entity nodes by constructing a projection (see Fig. 6) of 
the network in such a way that the central nodes sharing entity nodes are connected in the projection. In addition 
to forming connections, the projection can be used to provide weights on the links between the central entities 
based on the number of shared entities. In the scope of this study we chose to consider every link with equal 
weight due to the fact that entities in the data are all part of the collected dataset and not an unbiased sample of 
entities in industries or countries. In an operational implementation of the framework the projection should be 
temporal and change over time in terms of the evolving amount of common entities between the central nodes. 
Constructing the projection allows us to investigate whether the risk propagates across the network and whether 
certain types of central nodes have more importance when considering the weights in the risk measures.

For a non-central entity e in the graph (i.e. an organization or a company), the risk level at a certain time step 
can be calculated from the neighboring central nodes by calculating a sum of the means

where re(C) denotes the mean of risk for the first neighbor country nodes, re(I) denotes the mean of risk for 
first neighbor industry nodes and c and i denote the risk for the second neighbor countries and industries in the 
projection, respectively. The second neighbors are considered to be the immediate neighbors of the central nodes 
C and I in the projection, C and I being connected to the focal entity e in the knowledge graph. We construct 
these risk measures into a dataset, in which for each day any non-central entity can be evaluated using a vector 
of these four values.

In practice, the risk level shown in Eq. (2) is constructed as follows. Let us consider an organization o that 
is connected to a single industry node I and a single country node C in a random knowledge graph at time t. 
The structure of this example graph is shown in Fig. 4. To calculate the sum for ro we first consider the mean of 
the risk value depicted in Eq. (1) for the first neighbour nodes I and C. As the attacks to entities linked to the 
nodes I and C occur at times t1 for attack a1 and at t2 for attack a2 , the risk values are ro(C) = exp (t2 − t) and 

(1)rc(t) =

t∑

i

exp (i − t),

(2)re = re(C)+ re(I)+ re(c)+ re(i),

hasIndustryhasCountry

hasProduct
hasParent

attackedBy

Entity

Industry

Product

Attacker

Country

DBpedia Study
foaf:name Name

dbo:industry hasIndustry

dbp:locationCountry hasCountry

dbo:product hasProduct

dbo:parentCompany hasParent

Figure 3.  Structure of the novel strategic level cyber ontology. Subjects and objects are entities (boxes) that are 
connected via their relative predicates (arrows). The labels tell the class names in the ontology. The hasParent 
relationship is from an entity to another entity. The table lists the similarities between the predicates of the 
extraneous data from DBpedia and the corresponding predicates ontology in this study.
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ro(I) = exp (t1 − t) , respectively. In a similar fashion, we calculate the risk for the second neighbour nodes, i.e. 
the nodes that share entities with the central nodes the focal entity is connected to, i and c. The risk measures for 
these nodes would be ro(c) = (exp (t0 − t)+ exp (t1 − t))/2 and ro(i) = (exp (t2 − t)+ exp (t3 − t))/2 . Thus, 
the risk ro would be ro = exp (t2 − t)+exp (t1 − t)+(exp (t0 − t)+exp (t1 − t))/2+(exp (t2 − t)+exp (t3 − t))/2 . 
This risk for entity  o is not measuring the probability of an attack, but it is a measure depicting the recent inci-
dents of attacks in the immediate and extended neighbourhood. We investigate the usefulness of this measure 
by using the components of the sum as a set of values.

Experimental setup and analysis methods. We evaluate the knowledge mining framework by com-
bining a dataset from Hackmageddon’s cyberattack  timelines38 for each month from January 2017 to April 2021. 
For each article we crawled the original text whenever possible and processed its text through the NLP pipeline, 
extracting the attacked entity, the attacking entity and matching them with the entities recognized by DBpe-
dia Spotlight. As the empirical data contains these fields already annotated by humans, we also compared the 
extracted entities to the fields in the original data and substituted missing text reports or entities from the anno-
tated dataset to properly evaluate the graph analysis and risk module. Considering the shortcomings of classify-
ing industries in a standard way or obtaining the operating countries for multi-national or lesser known organi-
zations not present in DBpedia, we also add the annotated fields from the dataset in the knowledge graph as the 
industries and countries for the entities in addition to the ones obtained from DBpedia. In order to maintain the 
integrity of the dataset, we omit the rows where the victim is not specifically reported (i.e. various victims in mul-
tiple countries) or the countries or industries are not exact in a similar manner. The resulting nodes are resolved 
by comparing them to one another by using string similarity and joining sufficiently similar nodes. Processing 
the dataset using these methods resulted in a knowledge graph of 12,966 nodes and 18,476 edges. The filtered 
and processed data leaves us with 6825 SVO attack triples.

We construct the risk measure by first binning and ordering the recorded attacks and the triples into daily 
bins, after which we calculate the number of attacks towards the entities connected to the central nodes. The risk 
levels for each central node were calculated using the formula in Eq. (1). For each non-central entity illustrated in 
the resulting knowledge graph, we construct the averages of the first and second neighbor countries and indus-
tries in the graph into sets of four variables for each day, i.e. {re(C), re(I), re(c), re(i)} . We split the dataset into 
“attack days” and “non-attack days” by letting the values for the attack days to be the values for the previous time 
step and sampling a non-attack day as a random day between the beginning of the dataset and the recorded attack 
date. By this process we obtain a dataset with 11,028 observations with equal amount of points in both classes.

To further interpret the usefulness of the constructed risk variables we perform a logistic regression and 
dimensionality reduction on the dataset of attack days and non-attack days. The objective of this analysis is to 
investigate the separability of the two classes and the relationship between the risk variables. These methods 
were implemented with the Scikit-learn  library46. For the logistic regression classifier we split the constructed 
dataset into a training set and testing set with a 60–40 ratio at random. Fitting the logistic function to the training 
data allows us to evaluate the feasibility of the risk measures in estimating the likelihood of cyberattacks, even 
though the objective of this framework is not to predict exact attack dates. By fitting the classifier we also obtain 
the weights for the variables, which we can interpret in terms of their importance and mutual relationship. The 

hasIndustryhasCountry

f

hasIndustry hasCountry

o

hasCountry hasIndustry

g

CI ic

hasCountry

h

hasIndustry

j

attackedBy attackedByattackedBy attackedBy

a0 a1 a2 a3

Figure 4.  Example of the structure of the knowledge graph for calculating the heuristic risk value for the 
focal entity o. The focal entity is connected to industry I and country C. The rest of the graph is populated with 
entities h, f, g and j as well as industry i and country c. The recorded attacks to the entities are denoted from a0 to 
a3 in the order of occurrence at times t0 to t3.
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last part of our evaluation was conducted using a principle component analysis (PCA) on the dataset to portray 
the attack days and non-attack days in two dimensions.

Results and analysis on an experimental dataset
The frequency of reported attacks in the combined dataset is shown in Fig. 5. The number of reported attacks 
per month shows an increasing trend but the months of June and December in 2020 have significantly lower 
number of incidences, indicating that the reporting in the data can be incomplete. The nodes with the highest 
degree (i.e. the most connected to other nodes) are industries (public sector, healthcare) and countries (US, UK). 
The non-central nodes with the highest degree are the tech giants such as Google and Amazon and the users of 
their products such as the Android operating system. As we use the industry fields from the annotated dataset in 
addition to the ones obtained using DBpedia Spotlight, the network consists of a single connected component. 
The finalized knowledge graph based on the dataset from Hackmageddon cyberattack timelines from January 
2017 to April 2021 and extraneous information from DBpedia is shown in Fig. 6 and a more descriptive subset 
of the same graph is shown in Fig. 7.

The standardized distributions for the four variables in Eq. (2) are shown in Fig. 8. Overall, the distributions 
between the classes seem to differ from one another, the attack day distribution having a longer tail and more 
positive mean. It is notable that the distribution of the first neighbor’s (country) risk is very similar between the 
attack days, whereas the second neighbor’s risk shows a difference between the attack days and non-attack days. 
The differences between the two classes in the distributions of risk values show that there is some commonality 
within the classes.

Training a logistic regression classifier with standardized training and validation set constructed from the 
data results in around 69% accuracy, which shows that there is, indeed, some relationship between the attacks in 
the network, at least in a temporal sense appearing as burstiness. The coefficients for the logistic regression (see 
Table 1) show that the first neighbour country has a very minor weight in the classifier function. The correspond-
ing distribution C in Fig. 8 reinforces this as the two classes are highly overlapping. Interestingly, the coefficient 
of second neighbor country (c) is the highest, which could be interpreted as some countries being the catalysts 
or initial targets for chains of attacks. Also, the higher weight for c tells that multiple attacks to entities in a single 
country within a short time interval are not well represented in the analyzed dataset. The confusion matrix for 
the logistic regression is depicted in Fig. 9, showing the fractions of correctly and incorrectly predicted labels. As 
one would expect from the differences in the distributions of the constructed variables, the accuracy for correctly 
predicting non-attack days is higher (0.81) than correctly predicting the attack days (0.57).

Performing a dimensionality reduction with principle component analysis (see Fig. 9 left panel) results in 
components explaining 94% of the variance (83% and 11% for the two components). The component weights are 
shown in Table 1. These weights can be interpret as two different risk factors, industry-based and system-based 
risk. The industry-based risk in this situation can be reasoned from the higher factors for the industry nodes 
(I and i) in the first principal component and the system-based risk can be considered due to negative factors 
to all but second neighbour industry risk i. Lower factors for first neighbor country C in both components are 
apparent from the overlap in the variable’s distribution shown in Fig. 8.

Figure 5.  Number of monthly incidents in the filtered dataset. Records that did not produce a single coherent 
SVO-triple (subject–verb–object) for the attack were omitted to produce a consistent knowledge graph. It should 
be noted that the time of occurrence of an event (a triple) in the dataset can be wrongly recorded or reported 
long after the attack. Also, it is notable from the number of attacks that the reporting is not uniform and some 
months are much less populated than others, likely resulting from human error or bias.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1714  | https://doi.org/10.1038/s41598-023-28796-6

www.nature.com/scientificreports/

Discussion
As a whole, the advantages of the presented knowledge mining framework are its generality, explainability and 
extensibility. The generality allows us to consider different types of attacks and entities with limited informa-
tion and resources. The information used to construct the strategic level graph with high abstraction is mostly 
available in online sources such as DBpedia and the extraction of the victim–attacker triple from unstructured 
data can be performed efficiently using the methods presented in this paper. The ontology is human-readable 
and easy to explain and can thus serve as a tool for communicating a large number of events and investigations 
with other people, such as decision and policy makers. As the present knowledge mining framework can be used 
to semi-automatically produce a contextual situational picture of the cyberspace and compute levels of risk for 
entities and industries, it could also serve as a tool for companies with limited resources on cyber intelligence 
and analysis. The rational for using this kind of framework to conducting investigations is its ability to concep-
tualize trends and similarities between attacks on a high abstraction level that does not require high level details 
or authorised knowledge about the entities or the entities’ systems. Thus, the metric of risk for an entity depicts 
the incidence of attacks to other entities with similar association or purpose. The framework can be extended 
to include information on software vulnerabilities, software used by the entities, and importance of entities in 
various supply-chain systems, moving the knowledge graph towards a more operational scope. However, the 
availability of such information is restricted and for the scope of this study we decided to keep the network 
structure human-readable by having only the essential nodes for describing general entities and incidents and 
relationships between them.

The analysis of the risk measure has shown that there can be some level of temporal and structural correlation 
between the recorded attacks. The distributions between the attack and non-attack days in the dataset differ from 
each other to a degree (see Fig. 8) and performing a logistic regression classification on the produced knowledge 
graph dataset yields a moderate accuracy (see Fig. 9). This reinforces the usefulness of our strategic level ontology, 
which assumes that similar entities have some common factors that are not always publicly reported and that 
similar companies are often targeted during some period of time. The relationship between different entities in 
the knowledge graph can be more complex than just surface level similarities and contain hidden variables, such 
as the used systems and protocols, which could explain some of the pathways between the various entities that 
are connected to different central nodes. Correlations between attacks and attacked entities in the knowledge 
graph can also be because the attackers focus on certain type of entities for their own reasons, or because recent 
vulnerabilities or data breaches have compromised entities with similar connections within the knowledge graph. 
The risk measures presented here are intended for evaluating our framework rather than investigating the real 
life risk. The results show that our framework has potential in formulating a measure of risk in addition to the 
capabilities on visualizing a large dataset for situational awareness and investigation.

There are also limitations to this framework. The risk measure used in this study is based on the network 
structure of the resulting knowledge graph and thus the design choices could have impact on the variables 

Figure 6.  (Left) The resulting knowledge graph from the Hackmageddon dataset. The edges are coloured 
according to the interaction in the related triples such that red edges represent the attack triples (attackedBy), 
blue edges represent hasCountry, green edges represent hasIndustry, purple edges represent hasProduct 
triples, and turquoise edges represent hasParent triples. (Right) The projection of the central nodes used in the 
construction of the entity risk measures. The projection is constructed by linking central nodes sharing common 
neighbors such that the weight of every link is uniform regardless of the number of common neighbors.
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constructed. The results can be biased and affected by numerous sources, such as human error and bias in the 
reporting of the incidents and collecting the incidents to the dataset. The constructed knowledge graph is hardly 
a ground truth of all cyberattacks due to lack of reporting or detection. The language of the collected dataset can 
impose a limitation on geographical areas, where the reporting language is different from the one used in the 
implementation of the framework. Other biases can rise from the accuracy of processing the unstructured data 
into a knowledge graph as well as the types of extra information added to the graph, such as the types of industry 
nodes. The generality of the industries have a direct effect on the structure of the graph and related properties. 
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Figure 7.  An example subset of the knowledge graph showing an egocentric network of the company 
Microsoft. The central entity is connected to the reported malicious entities (red links), the industries reported 
in the dataset as well as the ones obtained from DBpedia (green links), country (blue link), products (purple 
links) and child companies (turquoise links). The network is a subset of the knowledge graph with nodes and 
links of a single step from the focal node. The central nodes of this subset are connected to the focal node by 
green and blue links.

Table 1.  PCA component weights and coefficients from fitting a logistic regression to the data. The variables 
are notated as first neighbor country (C), first neighbor industry (I), second neighbor country (c) and second 
neighbor industry (i).

Variable PCA 1st component PCA 2nd component Logistic regression coefficient

C 0.075 − 0.127 − 0.004

I 0.516 − 0.737 0.025

c 0.176 − 0.377 0.039

i 0.835 0.547 0.007
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Also, the accuracy for recording and reporting a cyber-related incident can vary in public online sources. The 
discovery of an attack can be late and thus the accurate time might not be reported correctly. This is a direct limi-
tation to the estimation of risk in the framework. For instance, the dates reported in the empirical dataset used 
in this study vary in accuracy with some dates reported days later than the incident in question. It should also 
be noted that online reports from unauthorized sources and written by journalists of various backgrounds can 
contain misinformation or disinformation. Unreliability of the data is a limitation of this framework, potentially 
affecting the measurement of the risk. Better credibility and quality of the data obtained can be achieved with 
additional manual labor, such as verification. Using a set of trusted sources, such as national or international 
cyber security authorities, can also mitigate inaccuracies and false reports. The relevant information extracted 
from the reports is the SVO triple, which is not affected by possibly inaccurate reporting of attack types, for 
instance. The required relevant information is the correct victim entity and a date.

Within the information extraction pipeline there are two primary sources of possible inaccuracies. The first 
involves information from the dependency parser. This was done by using spaCy’s trained pipelines and is, there-
fore, indirectly depended on the performance of the in-built neural network predictions. The second source of 

Figure 8.  The distributions of resulting risk levels of attack and non-attack days in the knowledge graph. (Top) 
The sum of the four standardized variables, (Second row) Standard scores for risk in the first neighbor country 
node C and standard scores for average risk in first neighbor industry nodes I. (Third row) Standard scores 
for average risk in second neighbor countries c and second neighbor industries i. The two classes have equal 
number of observations.
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inaccuracy is the scoring method used for ranking of triples. While we achieve a moderate accuracy of 60% (and 
83% for target to lie within the top three ranks) by this method, the results indicate the importance of inclusion 
of the target score. Just using the order of appearance or frequency lowers the accuracy by 10% . Also, as noted 
earlier the baseline accuracy would be much smaller.

For evaluating the risk measure, we used the annotated dataset when the information was not available. 
There were a number of such situations, either because of preventive measures of the websites or the URL being 
deprecated after a period of time. Without using the annotated fields, the number of entities and observations 
would be lower and the graph structure would be different without the industry categories. Also, the number of 
industries and entities would be different in a real world application of our knowledge graph based framework, 
as all of the entities in the knowledge graph of this study were either attacked at some point or related to these 
entities as parent or child companies. A larger number of entities would have an effect on the risk measures for 
second neighbour countries and industries by affecting the projection. The classifier used to evaluate the risk 
metric was trained and evaluated on an evenly balanced dataset, thus the accuracy should not be considered to 
predict the attack date from any possible set of dates, but as a demonstration that binary classification using the 
risk variables yields better accuracy than random guessing.

Conclusions
In this study we have presented a novel knowledge graph based framework for constructing a strategic level map-
ping of the current and past cyberattacks from unstructured reports in the open online sources and demonstrated 
the capabilities of the resulting knowledge graph in terms of communicating events and constructing measures 
for risk. The aim of this framework is to structure textual data into computer-readable and computable form, 
facilitate measures for risk and help expert analysts to process and view a large amount of reports in an automated 
manner. The pipeline combines methods and techniques from NLP and complex networks, starting with scraping 
and retrieving of articles from online sources, extracting relevant entities and the correct subject–verb–object or 
SVO-triples on the attacked entities and the attacking actors, and finalizing by constructing a knowledge graph 
with an ontology consisting of five types of nodes and relationships (see Fig. 3). We have implemented the pipe-
line and the related algorithms in Python 3.7 programming language and created a knowledge graph using the 
pre-annotated dataset from Hackmageddon that contains over 7000 recorded attacks between January 2017 and 
April 2021 (see Fig. 6). With this knowledge graph we have also constructed a measure of risk, which is based 
on a decaying time-based function and the network structure of the knowledge graph.

We believe that the methods and results of this study can help cyber-analysts to perform their investigations 
more efficiently in the future as the amount of new information is increasing faster than the number of experts 
available at any time. In our future research, we plan to improve the methods for information extraction from 
unstructured sources for better accuracy and generalization, which would improve the reliability and validity 
of the knowledge graph as well as provide a possibility for better automation in terms of facilitating the frame-
work as a continuous process. Constructing language-agnostic tools for this task would also solve the problem 
of having a limited focus on certain parts of the world. As discussed previously, adding new information from 
other sources, such as system information of entities and various vulnerability databases, could increase the 
accuracy of the risk model, should such information be available. This would also allow to conduct simulations 
and “what–if ” type scenarios on the knowledge graph, possibly being able to show more microscopic trends or 

Figure 9.  (Left) First two components of PCA dimensionality reduction on the risk data consisting of the four 
variables (C, I, c and i). The component loadings are shown in Table 1. Difference of the two classes in the plot 
indicates that a level of separability exists in the dataset. (Right) Confusion matrix obtained by training and 
testing a logistic regression classifier on the proposed risk measures. The overall accuracy of the classifier was 
around 0.69 and F1 score was 0.65.
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campaigns. In addition to high-level scenarios, such as common infrastructure, one could utilize the vast work 
done in the field of models and simulations for vulnerability  analysis47,48. Also, joining the system level technical 
information and accurate industry information to the framework could allow categorization of the events into 
different aspects of the society such as political, economical and military-operations.

Data availability 
The datasets analysed during the current study are available in the Hackmageddon  website38. The combined 
dataset and code used in this study are available from the corresponding author on reasonable request.
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