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Sobolev extensions via reflections

Pekka Koskela and Zheng Zhu ∗

June 20, 2022

Abstract

We show that certain extension results obtained by Maz’ya and Poborchi
for domains with an outward peak can be realized via composition opera-
tors generated by reflections. We also study the case of the complementary
domains.

1 Introduction

A domain Ω ⊂ Rn is called a (p, q)-extension domain, 1 ≤ q ≤ p ≤ ∞, if every
u ∈ W 1,p(Ω) has an extension E(u) ∈ W 1,q

loc (Rn) with

||E(u)||W 1,q(Rn\Ω) ≤ C||u||W 1,p(Ω).

A Lipschitz domain Ω is a (p, p)-extension domain for all 1 ≤ p ≤ ∞ by results
due to Calderón and Stein [27]. Jones generalized this result to a much larger class
of domains, so-called (ε, δ)-domains, but general domains are not necessarily (p, p)-
extension domains for any p. For example, in [20, 21, 22], Maz’ya and Poborchi
investigated in detail a typical case where the above extension property fails: the
case of a domain with an outward peak, also see [19, 25] for related results. Once
the sharpness of the peak was fixed, they found the optimal p, q for the (p, q)-
extendability.

The idea of using reflections to construct extension operators is implicit in the
results for Lipschitz domains. Gol’dshtein, Latfullin and Vodop’yanov initiated the
systematic use of reflections for constructing extension operators in the Euclidean
plane R2 in [5, 8]. In [6], Gol’dshtein and Sitnikov showed that the Sobolev ex-
tendability for planar outward and inward cuspidal domains of polynomial order
can be achieved by a bounded linear extension operator induced by reflections.

∗The research of both authors has been supported by the Academy of Finland Grant number
323960.
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2 P. Koskela and Z. Zhu

Very recently, Koskela, Pankka and Zhang [18] proved that for every planar Jordan
(p, p)-extension domain with 1 < p <∞, there exists a reflection over the boundary
∂Ω which induces a bounded linear extension operator from W 1,p(Ω) to W 1,p(R2).

In this paper, we study the Sobolev extension via reflections on outward cuspidal
domains in the Euclidean space Rn with n ≥ 3. From now on, we always assume
n ≥ 3.

We distinguish a horizontal coordinate axis in Rn,

Rn = R× Rn−1 = {z := (t, x) : t ∈ R and x = (x1, · · · , xn−1) ∈ Rn−1}.

A strictly increasing function ψ : [0,∞)→ [0,∞) is said to be a cuspidal function if
ψ ∈ C1(0,∞) ∩ C[0,∞) is doubling on (0, 1) in the sense that ψ(2t) ≤ Cψ(t) when
t ∈ (0, 1

2
), ψ(0) = 0, ψ′ is increasing on (0,∞) and

lim
ρ→0+

ψ′(ρ) = 0.

We normalize the function ψ by requiring ψ(1) = 1. The corresponding outward
cuspidal domain Ωψ is defined by setting

outer cuspidalouter cuspidal (1.1) Ωψ :=
{

(t, x) ∈ R× Rn−1 : 0 < t ≤ 1, |x| < ψ(t)
}
∪B((2, 0),

√
2).

See Figure 1.

Figure 1: Ωψ fig:3

We are interested in those cuspidal functions that satisfy the integrability condi-
tion

eq:integraleq:integral (1.2)

∫ 1

0

(
ts

ψ(t)

) n
s−1 dt

t
<∞
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for some 1 < s <∞. The typical examples of desired ψ are

ψ(t) = tβ with 1 ≤ β < s

and
ψ(t) = ts logα

(e
t

)
, ts logα log

(e
t

)
, · · · , ts logα log · · · log︸ ︷︷ ︸

k

(e
t

)
, · · ·

with α > s−1
n

. For the case of this model domain Ωψ with a cuspidal function
ψ satisfying (1.2) for some 1 < s < ∞, the results due to Maz’ya and Poborchi
state that there exists a bounded linear extension operator E1 from W 1,p(Ωψ) to

W 1,q(Rn), whenever 1+(n−1)s
n

< p < ∞ and 1 ≤ q ≤ np
1+(n−1)s

, and there exists

another bounded linear extension operator E2 from W 1,p(Ωψ) to W 1,q(Rn), whenever
1+(n−1)s
2+(n−2)s

< p <∞ and 1 ≤ q ≤ p+(n−1)sp
1+(n−1)s+(s−1)p

. For p = (n−1)+(n−1)2s
n

, one has

np

1 + (n− 1)s
=

p+ (n− 1)sp

1 + (n− 1)s+ (s− 1)p
= n− 1.

For a detailed exposition of these results, see [19]. Interestingly, the given extension
operators for the domain Ωψ above are linear and the formulas defining the operators
do not depend on p once s and the range of p are fixed. Our main result explains
this phenomenon.

main resu Theorem 1.1. Let ψ be a cuspidal function satisfying (1.2) for some constant 1 <
s <∞ and Ωψ be the corresponding outward cuspidal domain. Then

(1) : There exists a reflection R1 : R̂n → R̂n over ∂Ωψ which induces a bounded linear

extension operator ER1 from W 1,p(Ωψ) to W 1,q(Rn), whenever 1+(n−1)s
n

≤ p < ∞
and 1 ≤ q ≤ np

1+(n−1)s
.

(2) : There exists another reflectionR2 : R̂n → R̂n over ∂Ωψ which induces a bounded

linear extension operator ER2 from W 1,p(Ωψ) to W 1,q(Rn), whenever 1+(n−1)s
2+(n−2)s

≤ p <

∞ and 1 ≤ q ≤ (1+(n−1)s)p
1+(n−1)s+(s−1)p

.

Theorem 1.1 implies that both reflections R1 and R2 induce a bounded linear

extension operator from W 1,
(n−1)+(n−1)2s

n (Ωψ) to W 1,q(Rn), whenever 1 ≤ q ≤ n− 1.
Coming back to the original results due to Maz’ya and Poborchi, their extension op-

erators E1 and E2 do not extend all functions inW 1,
(n−1)+(n−1)2s

n (Ωψ) intoW 1,n−1(Rn).
For this, they constructed a further more complicated extension operator E3 from

W 1,
(n−1)+(n−1)2s

n (Ωψ) to W 1,n−1(Rn). Comparing with the extension operators from
the work of Maz’ya and Poborchi, our extension operators induced by reflections
have another obvious advantage. If u1, u2 ∈ W 1,p(Ωψ) satisfy

supp(u1) ∩ supp(u2) = ∅,
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then

supp(ER1(u1)) ∩ supp(ER1(u2)) = ∅ and supp(ER2(u1)) ∩ supp(ER2(u2)) = ∅.

One can check from [19] and the references therein that the extension operators
constructed by Maz’ya and Poborchi do not have this property.

In general, we say that a reflection R : R̂n → R̂n over ∂Ω, for a bounded domain
Ω (whose boundary has volume zero) induces a bounded linear extension operator
from W 1,p(Ω) to W 1,q(Rn) if there is an open set U containing ∂Ω so that, for every
u ∈ W 1,p(Ω), the function v defined by setting v = u on Ω ∩ U and v = u ◦ R on
U \ Ω has a representative which belongs to W 1,q(U) with

uu1uu1 (1.3) ‖v‖W 1,q(U) ≤ C‖u‖W 1,p(U∩Ω),

for some positive constant C independent of u. Similarly, we say that the reflection
R induces a bounded linear extension operator from W 1,p(Rn \ Ω) to W 1,q(Rn), if
for every u ∈ W 1,p(Rn \ Ω) the function ṽ defined by setting ṽ = u on U \ Ω and
ṽ = u ◦ R on U ∩ Ω has a representative which belongs to W 1,q(U) with

uu2uu2 (1.4) ‖ṽ‖W 1,q(U) ≤ C‖u‖W 1,p(U\Ω).

Here the introduction of the open set U is a convenient way to overcome the non-
essential difficulty that functions in W 1,p(G) do not necessarily belong to W 1,q(G)
when 1 ≤ q < p <∞ and G has infinite volume. It follows from the assumption (1.3)
(or (1.4)) via the use of a suitable cut-off function that Ω (or Rn \Ω, respectively) is
a (p, q)−extension domain with a bounded linear extension operator. For this, see
Section 2.

The crucial point behind Theorem 1.1 is that we obtain Sobolev estimates on
u ◦ R in terms of the data on u. There is a rather long history of such results, for
example see [7, 9, 12, 28] and references therein. In the setting of our problem, the
most relevant reference is the paper [28] by Ukhlov. What we find surprising in our
situation is that a single R1 induces the best bounded linear extension operator for

all values (n−1)+(n−1)2s
n

≤ p < ∞ and another single R2 induces the best bounded

linear extension operator for all values 1+(n−1)s
2+(n−2)s

≤ p ≤ (n−1)+(n−1)2s
n

. In the case of

compositions from W 1,p to W 1,p, the relevant estimate is

maarmaar (1.5) |DR(z)|p ≤ C|JR(z)|

almost everywhere, which for p = n is the pointwise condition of quasiconformality.
Mappings satisfying (1.5) with p 6= n apparently appeared for the first time in the
works of Gehring [4] and of Maz’ya [23], independently. With some work one can
show that (1.5) implies the corresponding inequality with p replaced by q when
either q > p > n or 1 ≤ q < p < n, but not in other cases. On the other hand, for
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n − 1 < p < ∞, a result in [6] shows that (1.5) together with W 1,p-regularity of R
implies the dual estimate

maar1maar1 (1.6) |DR−1(z)|
p

p+1−n ≤ C ′|JR−1(z)|.

This kind of duality actually also holds for compositions from W 1,p to W 1,q with
q < p, see [28]. Also see [13, 14, 28, 31] for general results on the regularity of R−1.

From the argument above, one could also expect that the reflections R1 and R2

induce bounded linear extension operators from W 1,p(Rn\Ωψ) to W 1,q(Rn), for some
1 ≤ q ≤ p < ∞. As one can easily check, for every cuspidal function ψ, Rn \ Ωψ is
a so-called (ε, δ)-domain and hence a (p, p)-extension domain for every 1 ≤ p < ∞
due to Jones [16]. Our next theorem relates this to our reflections.

thm:comp Theorem 1.2. For arbitrary cuspidal function ψ, Rn \Ωψ is a (p, p)-extension do-
main, for every 1 ≤ p < ∞. The reflection R1 over ∂Ωψ in Theorem 1.1 induces
a bounded linear extension operator from W 1,p(Rn \ Ωψ) to W 1,p(Rn), whenever
1 ≤ p ≤ n − 1. Moreover, for each n − 1 < p < ∞, no reflection over ∂Ωψ can
induce a bounded linear extension operator from W 1,p(Rn \ Ωψ) to W 1,p(Rn).

What then about the case p = ∞? We say that a domain Ω ⊂ Rn is uniformly
locally quasiconvex if there exist constants C > 0 and R > 0 such that, for every
pair of points x, y ∈ Ω with d(x, y) < R, there is a rectifiable curve γ connecting x
and y in Ω such that the length of γ is bounded from above by Cd(x, y). If the above
holds without the distance restriction, Ω is said to be quasiconvex. Recall that Ω is
an (∞,∞)-extension domain if and only if it is uniformly locally quasiconvex, see
[10] by Haj lasz, Koskela and Tuominen. One can easily check that both Ωψ and
Rn \ Ωψ are uniformly locally quasiconvex, equivalently, they are (∞,∞)-extension
domains. We close this introduction with the following analog of Theorem 1.2.

thm:infty Theorem 1.3. For arbitrary cuspidal function ψ, both Ωψ and Rn \Ωψ are (∞,∞)-
extension domains. The reflection R1 over ∂Ωψ in Theorem 1.1 induces a bounded
linear extension operator from W 1,∞(Ωψ) to W 1,∞(Rn). On the other hand, no
reflection over ∂Ωψ can induce a bounded linear extension operator from W 1,∞(Rn \
Ωψ) to W 1,∞(Rn).

2 Preliminaries

In this paper, R̂n := Rn ∪ {∞} is the one-point compactification of Rn. Next,
z = (t, x) ∈ R×Rn−1 = Rn means a point in the n-dimensional Euclidean space Rn.
We write C = C(a1, a2, ..., an) to indicate a constant C that depends only on the
parameters a1, a2, ..., an; the notation A . B means there exists a finite constant c
with A ≤ cB , and A ∼c B means 1

c
A ≤ B ≤ cA for a constant c > 1. Typically

c, C, ... will be constants that depend on various parameters and may differ even on
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the same line of inequalities. The Euclidean distance between given points z1, z2

in the Euclidean space Rn is denoted by d(z1, z2) or |z1 − z2|. Then the distance
between two sets A,B ⊂ Rn is denoted by

d(A,B) := inf{d(z1, z2) : z1 ∈ A, z2 ∈ B}.

The open ball of radius r, centered at the point z, is denoted by B(z, r). In what fol-
lows, Ω ⊂ Rn is always a domain, and ∂Ω is the boundary of Ω. The r-neighborhood
of Ω is

B(Ω, r) := {z ∈ Rn : d(z,Ω) < r}.

Given a Lebesgue-measurable set A ⊂ Rn, |A| refers to the n-dimensional Lebesgue
measure. The interior of a set A ⊂ Rn is denoted by Å. For a locally integrable
function u and a measurable set A ⊂ Rn with 0 < |A| < ∞, we define the integral
average of u over A by setting

–

∫
A

u(z)dz :=
1

|A|

∫
A

u(z)dz.

The Sobolev space W 1,p(Ω) for p ∈ [1,∞] is the collection of all functions u ∈
Lp(Ω) whose norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖|Du|‖Lp(Ω)

is finite. Here Du = (g1, g2, ..., gn) is the distributional gradient of u, where gi is
the weak partial derivative of u with respect to xi. A mapping f = (f1, f2, · · · , fm) :
Ω→ Ω′ is said to be in the class W 1,p(Ω,Ω′), if every component fi is in the Sobolev
space W 1,p(Ω).

The outward cuspidal domain Ωψ has a boundary singularity but it is still rather
nice. For example, both the outward cuspidal domain Ωψ and its complement Rn\Ωψ

satisfy the segment condition.

defn:segment Definition 2.1. We say that a domain Ω ⊂ Rn satisfies the segment condition if
every x ∈ ∂Ω has a neighborhood Ux and a nonzero vector yx such that if z ∈ Ω∩Ux,
then z + tyx ∈ Ω for 0 < t < 1.

Smooth functions are dense in our Sobolev space for domains satisfying the seg-
ment condition. See [1, Theorem 3.22], [24].

lem:density Lemma 2.1. If the domain Ω ⊂ Rn satisfies the segment condition, then the set of
restrictions to Ω of functions in C∞o (Rn) is dense in W 1,p(Ω) for 1 ≤ p < ∞. In
short, C∞o (Rn) ∩W 1,p(Ω) is dense in W 1,p(Ω) for 1 ≤ p <∞.

Let us give the definition of Sobolev extension domains.
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(p,q)-extension Definition 2.2. Let 1 ≤ q ≤ p ≤ ∞. We say that a domain Ω ⊂ Rn is a (p, q)-
extension domain, if for every u ∈ W 1,p(Ω), there exists a function E(u) ∈ W 1,q

loc (Rn)
with E(u)

∣∣
Ω
≡ u and

‖E(u)‖W 1,q(Rn\Ω) ≤ C‖u‖W 1,p(Ω)

with a constant C independent of u.

Lipschitz domains are typical examples of Sobolev extension domains. By the re-
sults due to Calderón and Stein [27], Lipschitz domains are (p, p)-extension domains
for 1 ≤ p ≤ ∞. For the definition of Lipschitz domains, see [3, Definition 4.4]. As a
generalization of the extension result for Lipschitz domains, Jones [16] proved that
(ε, δ)-domains are also (p, p)-extension domains.

defn:ED Definition 2.3. We say Ω ⊂ Rn is an (ε, δ)-domain for some positive constants
0 < ε < 1 and δ > 0 if, whenever z1, z2 ∈ Ω with |z1 − z2| < δ, there is a rectifiable
arc γ ⊂ Ω joining x to y and satisfying

l(γ) ≤ 1

ε
|z1 − z2|

and

d(z,Ωc) ≥ ε|z1 − z||z2 − z|
|z1 − z2|

for all z on γ.

defn:ref Definition 2.4. Let Ω ⊂ Rn be a domain. A self-homeomorphism R : R̂n → R̂n is
called a reflection over ∂Ω, if R(R̂n \Ω) = Ω, R(Ω) = R̂n \Ω and for every z ∈ ∂Ω,
R(z) = z.

The following technical lemma justifies our terminology.

cut-off Proposition 2.1. Let Ω ⊂ Rn be a bounded domain with |∂Ω| = 0 and R : R̂n →
R̂n be a reflection over ∂Ω. If R induces a bounded linear extension operator
from W 1,p(Ω) to W 1,q(Rn) in the sense of (1.3) (from W 1,p(Rn \ Ω) to W 1,q(Rn),
respectively) for 1 ≤ q ≤ p < ∞, then Ω (Rn \ Ω, respectively) is a (p, q)-extension
domain with a linear extension operator.

Proof. We only consider the case of Ω, since the case of Rn \ Ω is analogous. Let
U ⊂ Rn be the corresponding open set which contains ∂Ω. For a given function
u ∈ W 1,p(Ω), we define a function ER(u) by setting

equa:E_r(u)equa:E_r(u) (2.1) ER(u)(z) :=

u(R(z)), for z ∈ U \ Ω,
0, for z ∈ ∂Ω,
u(z), for z ∈ Ω.

Then ER(u) has a representative that belongs to W 1,q(U) with

‖ER(u)‖W 1,q(U) ≤ C‖u‖W 1,p(Ω).
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Let L : Rn → R be a Lipschitz function such that L
∣∣
Ω
≡ 1, L

∣∣
Rn\U ≡ 0 and

0 ≤ L(z) ≤ 1 for every z ∈ Rn. We define a function on Rn by setting

equa:exgloequa:exglo (2.2) ẼR(u) := L · ER(u).

Since L is Lipschitz with 0 ≤ L ≤ 1, ẼR(u) has a representative that belongs to
W 1,q(Rn). Now∫

Rn
|ẼR(u)(z)|qdz≤

∫
Ω

|u(z)|qdz +

∫
U

|ER(u)(z)|qdz

≤
(∫

Ω

|u(z)|pdz +

∫
Ω

|Du(z)|pdz
) q

p

,

and∫
Rn
|DẼR(u)(z)|qdz≤C

∫
U

|ER(u)(z)DL(z)|qdz + C

∫
U

|L(z)∇ER(u)(z)|qdz

+C

∫
Ω

|Du(z)|qdz

≤C
(∫

Ω

|u(z)|pdz +

∫
Ω

|∇u(z)|pdz
) q

p

.

By combining these two inequalities, we obtain that ẼR(u) ∈ W 1,q(Rn) with ẼR(u)
∣∣
Ω
≡

u and
‖ẼR(u)‖W 1,q(Rn) ≤ C‖u‖W 1,p(Ω).

Hence, (2.2) defines a bounded linear extension operator from W 1,p(Ω) to W 1,q(Rn).

By Proposition 2.1, in order to prove that a reflection R over ∂Ω induces a
bounded linear extension operator from W 1,p(Ω) to W 1,q(Rn) for some 1 ≤ q ≤ p ≤
∞, it suffices to prove that, for every u ∈ W 1,p(Ω), the function ER(u) defined in
(2.1) satisfies the inequality

‖ER(u)‖W 1,q(U) ≤ C‖u‖W 1,p(Ω)

with a constant C independent of u.
Let f : Ω → Ω′ be a homeomorphism. If for every z ∈ U there is an open set

containing z and a constant C > 1 such that for all x, y ∈ U , we have

1

C
|x− y| ≤ |f(x)− f(y)| ≤ C|x− y|,

we call f a locally bi-Lipschitz homeomorphism.
By combining results in [28, 29, 30, 32], we obtain following two lemmas.
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QCcompo Lemma 2.2. Suppose that f : Ω→ Ω′ is a homeomorphism in the class W 1,1
loc (Ω,Ω′).

Fix 1 ≤ p <∞. Then the following assertions are equivalent:
(1) : for every locally Lipschitz function u, defined on Ω′, the inequality∫

Ω

|D(u ◦ f)(z)|pdz ≤ C

∫
Ω′
|Du(z)|pdz

holds for a positive constant C independent of u;
(2) : the inequality

|Df(z)|p ≤ C(p)|Jf (z)|

holds almost everywhere in Ω.

lem:pQc Lemma 2.3. Let 1 ≤ q < p <∞. Suppose that f : Ω→ Ω′ is a homeomorphism in
the class W 1,1

loc (Ω,Ω′). Then the following assertions are equivalent:
(1) : for every locally Lipschitz function u, the inequality(∫

Ω

|D(u ◦ f)(z)|qdz
) 1

q

≤ C

(∫
Ω′
|Du(z)|pdz

) 1
p

holds for a positive constant C independent of u;
(2) : ∫

Ω

|Df(z)|
pq
p−q

|Jf (z)|
q
p−q

dz <∞.

The following lemma is a special case of [31, Theorem 3].

reduinverse Lemma 2.4. Let Ω,Ω′ ⊂ Rn be domains, and let f : Ω→ Ω′ be a homeomorphism
in the class W 1,p

loc (Ω,Ω′) for a fixed n− 1 < p <∞. If

pdisinpdisin (2.3) |Df(z)|p ≤ C(p)|Jf (z)|

holds for almost every z ∈ Ω, then the inverse homeomorphism f−1 : Ω′ → Ω belongs

to the class W
1, p
p+1−n

loc (Ω′,Ω) with

inverdisininverdisin (2.4) |Df−1(z)|
p

p+1−n ≤ C(p)|Jf−1(z)|

for almost every z ∈ Ω′.

3 Main Results

In this section, we show that the Sobolev extension results for outward cuspidal
domain Ωψ ⊂ Rn from [20, 21, 22] can be achieved via bounded linear extension
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operators induced by reflections. Let ψ be a cuspidal function. It follows from the
definition that there exists a positive constant C such that we have

eq:condition1eq:condition1 (3.1) lim
t→0+

ψ(t)

t
= 0 and

ψ(t)

t
≤ ψ′(t) ≤ C

ψ(t)

t
for every t ∈ (0, 1),

eq:condition2eq:condition2 (3.2)
1

C
(ψ−1)′(t) ≤ ψ−1(t)

t
≤ C(ψ−1)′(t) for every t ∈ (0, 1)

and

eq:condition3eq:condition3 (3.3) lim
t→0+

ψ−1(t)

t
=∞ and t ≤ Cψ−1(t) for every t ∈ (0, 1).

3.1 Reflection R1 over ∂Ωψ
sec:ref1

In oder to introduce the reflection R1 : R̂n → R̂n over ∂Ωψ, we define a domain
∆ ⊂ Rn by setting

equa:deltaequa:delta (3.4) ∆ :=

{
(t, x) ∈ R× Rn−1 :

−1

2
< t <

1

2
, |x| < 1

2

}
∪ Ωψ.

See Figure 2. To begin, we divide ∆ \ Ωψ into three parts A,B,C by setting

A :=
{

(t, x) ∈ R× Rn−1 : −1
2
< t ≤ 0, |x| ≤ |t|

}
,

B :=
{

(t, x) ∈ R× Rn−1 : −1
2
< t < 1

2
, |t| ≤ |x| < 1

2

}
and

C :=
{

(t, x) ∈ R× Rn−1 : 0 ≤ t < 1
2
, ψ(t) ≤ |x| ≤ t

}
.

We define a subdomain Ωψ
1 ⊂ Ωψ around the tip by setting

subdomainsubdomain (3.5) Ωψ
1 :=

{
(t, x) ∈ Ωψ; 0 < t <

1

2
, |x| < ψ(t)

}
.

We will construct a reflection R1 which maps ∆ \ Ωψ onto Ωs
1. We define R1 on

∆ \ Ωψ by setting

HOMEOMOR’HOMEOMOR’ (3.6) R1(t, x) :=


(
−t, ψ(t)

6t
x
)
, if (t, x) ∈ A,(

|x|,
(
ψ(|x|)
12|x| t+ ψ(|x|)

4

)
x
|x|

)
, if (t, x) ∈ B,(

t, 2ψ(t)
3(ψ(t)−t)x+ ψ2(t)−3tψ(t)

3(ψ(t)−t)
x
|x|

)
, if (t, x) ∈ C.
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Figure 2: The domain ∆ fig:5

We extend R1 to ∂Ωψ as the identity. Since both ∂∆ and ∂(Ωψ\Ωψ
1 ) are bi-Lipschitz

equivalent to the unit sphere, it is easy to check that we can construct a reflection
R1 : R̂n → R̂n over ∂Ωψ such that R1 is defined as above on ∆ \ Ωψ, and R1 is
bi-Lipschitz on B(Ωψ, 1) \∆.

For (t, x) ∈ Å, the resulting differential matrix of R1 is

DR1(t, x) =



−1 0 0 · · · 0(
ψ′(t)

6t
− ψ(t)

6t2

)
x1

ψ(t)
6t

0 · · · 0(
ψ′(t)

6t
− ψ(t)

6t2

)
x2 0 ψ(t)

6t
· · · 0

...
...

...
. . . 0(

ψ′(t)
6t
− ψ(t)

6t2

)
xn−1 0 · · · 0 ψ(t)

6t


.differeninA (3.7)

By (3.1) and the fact that |x| < |t| for every (t, x) ∈ Å, we have

equa:ref11equa:ref11 (3.8) |DR1(t, x)| . 1 and |JR1(t, x)| ∼c
(
ψ(t)

t

)n−1

.
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For (t, x) ∈ B̊, the resulting differential matrix R1 is

DR1(t, x) =



0 x1
|x|

x2
|x| · · · xn−1

|x|
x1ψ(|x|)
12|x|2 A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
x2ψ(|x|)
12|x|2 A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)
...

...
... · · · ...

xn−1ψ(|x|)
12|x|2 An−1

1 (t, x) An−1
2 (t, x) · · · An−1

n−1(t, x)

 ,differeninB (3.9)

where, for every i, j ∈ {1, 2, · · · , n− 1}, we set

Aij(t, x) =


x2i
|x|2

((
tψ′(|x|)

12|x| −
tψ(|x|)
6|x|2

)
+
(
ψ′(|x|)

4
− ψ(|x|)

4|x|

))
+
(
tψ(|x|)
12|x|2 + ψ(|x|)

4|x|

)
, if i = j,

xixj
|x|2

((
tψ′(|x|)

12|x| −
tψ(|x|)
6|x|2

)
+
(
ψ′(|x|)

4
− ψ(|x|)

4|x|

))
, if i 6= j.

Since |t| ≤ |x| < 1
2
, (3.1) and some computations give

equa:ref12equa:ref12 (3.10) |DR1(t, x)| . 1 and |JR1(t, x)| ∼c
n−1∑
k=1

x2
kψ(|x|)
12|x|3

∏
i 6=k

Aii ∼c
(
ψ(|x|)
|x|

)n−1

.

For (t, x) ∈ C̊, the resulting differential matrix of R1 is

DR1(t, x) =


1 0 0 · · · 0

A1
t (t, x) A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
A2
t (t, x) A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)
...

...
... · · · ...

An−1
t (t, x) An−1

1 (t, x) An−1
2 (t, x) · · · An−1

n−1(t, x)

 ,differeninC (3.11)

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

Aij(t, x) :=


2ψ(t)

3(ψ(t)−t) +
(
ψ2(t)−3tψ(t)

3(ψ(t)−t)

)(
1
|x| −

x2i
|x|3

)
, if i = j,(

3tψ(t)−ψ2(t)
3(ψ(t)−t)

)
xixj
|x|3 , if i 6= j.

and

Ait(t, x) :=xi

(
2(ψ(t)− tψ′(t))

3(ψ(t)− t)2

)
+
xi
|x|

(
ψ2(t)ψ′(t)− 2tψ(t)ψ′(t)− 2ψ2(t) + 3t2ψ′(t)

3(ψ(t)− t)2

)
.

Since ψ(t) < |x| < t, (3.1) and simple computations give

equa:ref13equa:ref13 (3.12) |DR1(t, x)| . 1 and |JR1(t, x)| ∼c
ψn−1(t)

|x|n−1
.
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Finally, since R1 is bi-Lipschitz on B(Ωψ, 1) \∆, there exists a positive constant
C > 1 such that for almost every (t, x) ∈ B(Ωψ, 1) \∆, we have

equa:upper1equa:upper1 (3.13)
1

C
≤ |DR1(t, x)| ≤ C and

1

C
≤ |JR1(t, x)| ≤ C.

It is easy to see that the restriction of R1 to B(Ωψ, 1) \ (Ωψ ∪ {0}) is locally
bi-Lipschitz.

3.2 Reflection R2 over ∂Ωψ

In order to introduce the reflection R2 : R̂n → R̂n over ∂Ωψ, we define a domain
∆′ ⊂ Rn by setting

conecone (3.14) ∆′ :=

{
(t, x) ∈ R× Rn−1 = Rn :

−1

2
< t <

1

2
, |x| < ψ

(
1

2

)}
∪ Ωψ.

See Figure 3. We divide ∆′ \ Ωψ into two parts D,E by setting

Figure 3: The domain ∆′ fig:6

D :=

{
(t, x) ∈ R× Rn−1 = Rn :

−1

2
< t ≤ 0, |x| ≤ ψ(|t|)

}
,
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and

E :=

{
(t, x) ∈ R× Rn−1 = Rn :

−1

2
< t <

1

2
, ψ(|t|) < |x| < ψ

(
1

2

)}
.

We will construct a reflection R2 over ∂Ωψ that maps ∆′ \ Ωψ onto Ωψ
1 . We define

the reflection R2 on ∆′ \ Ωψ by setting

HOMEOMOR1HOMEOMOR1 (3.15) R2(t, x) :=

{(
−t, 1

2
x
)
, if (t, x) ∈ D,(

ψ−1(|x|), t
4

x
ψ−1(|x|) + 3

4
x
)
, if (t, x) ∈ E.

We extendR2 on ∂Ωψ as the identity. Since both ∂∆′ and ∂(Ωψ\Ωψ
1 ) are bi-Lipschitz

equivalent to the unit sphere, we can construct a reflection R2 which is defined on
∆′ \ Ωψ as in (3.15) and is bi-Lipschitz on B(Ωψ, 1) \∆′.

For z = (t, x) ∈ D̊, the resulting differential matrix of R2 is

DR2(t, x) =


−1 0 0 · · · 0
0 1

2
0 · · · 0

0 0 1
2
· · · 0

...
...

...
. . .

...
0 0 0 · · · 1

2

 .differeninA1 (3.16)

Hence,

equa:ref21equa:ref21 (3.17) |DR2(t, x)| = 1 and |JR2(t, x)| = 1

2n−1
.

For z = (t, x) ∈ E̊, the resulting matrix of R2 is

DR2(t, x) =


0 (ψ−1)′(|x|) x1|x| (ψ−1)′(|x|) x2|x| · · · (ψ−1)′(|x|)xn−1

|x|
x1

4ψ−1(|x|) A1
1(t, x) A1

2(t, x) · · · A1
n−1(t, x)

x2
4ψ−1(|x|) A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)
...

...
... · · · ...

xn−1

4ψ−1(|x|) An−1
1 (t, x) An−1

2 (t, x) · · · An−1
n−1(t, x)

 ,

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

(3.18) Aij(t, x) :=

 t
4

(
1

ψ−1(|x|) −
x2i

|x|(ψ−1(|x|))2 (ψ−1)′(|x|)
)

+ 3
4
, if i = j,

−txixj(ψ−1)′(|x|)
4|x|(ψ−1(|x|))2 , if i 6= j.

By (3.2) and (3.3), after some simple computations, for every (t, x) ∈ E̊ we have
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equa:ref22equa:ref22 (3.19) |DR2(t, x)| . (ψ−1)′(|x|) ∼c
ψ−1(|x|)
|x|

and

|JR2(t, x)| ∼c
n−1∑
k=1

(ψ−1)′(|x|)x2
k

4ψ−1(|x|)|x|
∏
i 6=k

Aii ∼c 1.

Finally, since R2 is bi-Lipschitz on B(Ωψ, 1) \∆′, there exists a positive constant
C > 1 such that for almost every (t, x) ∈ B(Ωψ, 1) \∆′, we have

equa:lipschitzequa:lipschitz (3.20)
1

C
≤ |DR2(t, x)| ≤ C and

1

C
≤ |JR2(t, x)| ≤ C.

It is easy to see that the restriction of R2 to B(Ωψ, 1) \ (Ωψ ∪ {0}) is locally bi-
Lipschitz.

3.3 Proof of Theorem 1.1

We prove Theorem 1.1 in two parts, considering our two reflections separately.

thm5 Theorem 3.1. Fix 1 < s < ∞. Let ψ be a cuspidal function which satisfies in-
equality (1.2). Then the reflection R1 : R̂n → R̂n over ∂Ωψ induces a bounded linear

extension operator from W 1,p(Ωψ) to W 1,q(Rn), whenever 1+(n−1)s
n

≤ p < ∞ and
1 ≤ q ≤ np

1+(n−1)s
.

Proof. Since Ωψ satisfies the segment condition, by Lemma 2.1, C∞o (Rn)∩W 1,p(Ωψ)
is dense in W 1,p(Ωψ). Let u ∈ C∞o (Rn)∩W 1,p(Ωψ) be arbitrary. We define a function
ER1(u) as in (2.1) and another function w by setting

defn:funcwdefn:funcw (3.21) w(z) :=

{
u ◦ R1(z), if z ∈ B(Ωψ, 1) \ Ωψ,
u(z), if z ∈ Ωψ.

Since u ∈ C∞o (Rn)∩W 1,p(Ωψ) andR1 is locally Lipschitz on B(Ωψ, 1)\(Ωψ∪{0}), the
function w is locally Lipchitz on B(Ωψ, 1) \ {0}. We claim that w ∈ W 1,q(B(Ωψ, 1))
with

‖w‖W 1,q(B(Ωψ ,1)) ≤ C‖u‖W 1,p(Ωψ)

for a constant C > 1 independent of u. These claims follow if we prove the above
norm estimate with B(Ωψ, 1) replaced by B(Ωψ, 1) \ {0}. Next, since w is locally
Lipschitz and |∂Ωψ| = 0, it suffices to estimate the norm over the union of Ωψ and
B(Ωψ, 1)\Ωψ. Since w = u ∈ W 1,p(Ωψ) on Ωψ, our domain Ωψ has finite measure and
q < p, we are reduced to estimating the norm over the second set in question. On
this set, w = u ◦R1 almost everywhere and hence it suffices to prove the inequality

equa:norm1equa:norm1 (3.22)

(∫
B(Ωψ ,1)\Ωψ

|u ◦ R1(z)|qdz

) 1
q

≤ C

(∫
Ωψ

|u(z)|pdz

) 1
p
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and the inequality

equa:norm2equa:norm2 (3.23)

(∫
B(Ωψ ,1)\Ωψ

|D(u ◦ R1)(z)|qdz

) 1
q

≤ C

(∫
Ωψ

|Du(z)|pdz

) 1
p

.

It is easy to see that

B(Ωψ, 1) \ Ωψ = (B(Ωψ, 1) \∆) ∪ (∆ \ Ωψ)

and ∆ \ Ωψ = A ∪B ∪ C. Since

|∂∆| = |∂A| = |∂B| = |∂C| = 0,

we have ∫
B(Ωψ ,1)\Ωψ

|u ◦ R1(z)|qdz=

∫
B(Ωψ ,1)\∆

|u ◦ R1(z)|qdzequa:sum1 (3.24)

+

(∫
Å

+

∫
B̊

+

∫
C̊

)
|u ◦ R1(z)|qdz.

Since R1 is bi-Lipschitz on B(Ωψ, 1) \∆ and |Ωψ| <∞, by the Hölder inequality we
have

equa:sum2equa:sum2 (3.25)

∫
B(Ωψ ,1)\∆

|u ◦ R1(z)|qdz ≤ C

(∫
Ωψ

|u(z)|pdz

) q
p

.

By the Hölder inequality and a change of variable, we have

∫
Å

|u ◦ R1(z)|qdz≤
(∫

Å

|u ◦ R1(z)|p|JR1(z)|dz
) 1

p

·

∫
Å

1

|J
q
p−q
R1

(z)|
dz


p−q
p

≤

(∫
Ωψ

|u(z)|pdz

) q
p

·

∫
Å

1

|J
q
p−q
R1

(z)|
dz


p−q
p

.akobi (3.26)

By (3.8), we have ∫
Å

1

|JR1(z)|
q
p−q

dz ≤ C

∫ 1
2

0

(
ts

ψ(t)

) n
s−1 dt

t
<∞,

whenever 1+(n−1)s
n

≤ p <∞ and 1 ≤ q ≤ np
1+(n−1)s

. Hence, we have

equa:sum3equa:sum3 (3.27)

∫
Å

|u ◦ R1(z)|qdz ≤ C

(∫
Ωψ

|u(z)|pdz

) q
p

.
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Next, via (3.10) and (3.12), we obtain the estimates∫
B̊

1

|JR1(z)|
q
p−q

dz ≤ C

∫ 1
2

0

(
|x|s

ψ(|x|)

) n
s−1 d|x|
|x|

<∞

and ∫
C̊

1

|JR1(z)|
q
p−q

dz ≤ C

∫ 1
2

0

(
ts

ψ(t)

) n
s−1 dt

t
<∞,

whenever 1+(n−1)s
n

≤ p < ∞ and 1 ≤ q ≤ np
1+(n−1)s

. By repeating the argument

leading to (3.27), we obtain the following desired analogs of (3.27):

equa:sum4equa:sum4 (3.28)

∫
B̊

|u ◦ R1(z)|qdz ≤ C

(∫
Ωψ

|u(z)|pdz

) q
p

and

equa:sum5equa:sum5 (3.29)

∫
C̊

|u ◦ R1(z)|qdz ≤ C

(∫
Ωψ

|u(z)|pdz

) q
p

,

whenever 1+(n−1)s
n

≤ p <∞ and 1 ≤ q ≤ np
1+(n−1)s

. Hence (3.22) follows.

To prove inequality (3.23), by Lemma 2.3, it suffices to show that∫
B(Ωψ ,1)\Ωψ

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz <∞.

Clearly∫
B(Ωψ ,1)\Ωψ

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz =

∫
B(Ωψ ,1)\∆

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz +

∫
∆\Ωψ

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz.

First, by inequality (3.13), we have∫
B(Ωψ ,1)\∆

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz <∞.

Since ∆ \ Ωψ = A ∪B ∪ C and |∂A| = |∂B| = |∂C| = 0, we have∫
∆\Ωψ

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz=

(∫
Å

+

∫
B̊

+

∫
C̊

)
|DR1(z)|

pq
p−q

|JR1(z)|
q
p−q

dz.

By (3.8), (3.10) and (3.12), we obtain∫
Å

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz ≤ C

∫ 1
2

0

(
ts

ψ(t)

) n
s−1 dt

t
<∞,
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∫
B̊

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dz ≤ C

∫ 1
2

0

(
|x|s

ψ(|x|)

) n
s−1 d|x|
|x|

<∞,

and ∫
C̊

|DR1(z)|
pq
p−q

|JR1(z)|
q
p−q

dx ≤ C

∫ 1
2

0

(
ts

ψ(t)

) n
s−1 dt

t
<∞,

whenever 1+(n−1)s
n

≤ p < ∞ and 1 ≤ q ≤ np
1+(n−1)s

. In conclusion, we have proved

that w ∈ W 1,q(B(Ωψ, 1)) with the bound

‖w‖W 1,q(B(Ωψ ,1)) ≤ C‖u‖W 1,p(Ωψ)

whenever 1+(n−1)s
n

≤ p < ∞ and 1 ≤ q ≤ np
1+(n−1)s

. Since ER1(u) = w almost

everywhere, the above also holds with w replaced by ER1(u).
For an arbitrary u ∈ W 1,p(Ωψ), by the density of C∞o (Rn) ∩W 1,p(Ωψ), we can

find a sequence of functions {ui}∞i=1 ⊂ C∞o (Rn) ∩W 1,p(Ωψ) and a subset N ⊂ Ωψ

with |N | = 0 such that

equa:limit0equa:limit0 (3.30) lim
i→∞
‖ui − u‖W 1,p(Ωψ) = 0,

and for every z ∈ Ωψ \N ,

equa;limitequa;limit (3.31) lim
i→∞
|ui(z)− u(z)| = 0.

By the argument above, for every ui ∈ C∞o (Rn) ∩ W 1,p(Ωψ), we have ER1(ui) ∈
W 1,q(B(Ωψ, 1)) and

equa:normcequa:normc (3.32) ‖ER1(ui)‖W 1,q(B(Ωψ ,1)) ≤ C‖ui‖W 1,p(Ωψ)

with a constant C independent of ui. Since R1 is locally bi-Lipschitz on B(Ωψ, 1) \
Ωψ, we have R1(N) ⊂ B(Ωψ, 1)\Ωψ with |R1(N)| = 0. By the definition of ER1(ui)
in (2.1), the sequence {ER1(ui)}∞i=1 has a limit at every point z ∈ B(Ωψ, 1) \ (N ∪
R1(N)). Define

equa:definevequa:definev (3.33) v(z) :=

{
limi→∞ER1(ui)(z) if z ∈ B(Ωψ, 1) \ (N ∪R1(N)),
0, if z ∈ N ∪R1(N).

Since {ui}∞i=1 is a Cauchy sequence in W 1,p(Ωψ), the inequalities (3.30) and (3.32)
yields that {ER1(ui)}∞i=1 is also a Cauchy sequence in W 1,q(B(Ωψ, 1)). Hence v ∈
W 1,q(B(Ωψ, 1)) with

‖v‖W 1,q(B(Ωψ ,1)) ≤ C‖u‖W 1,p(Ωψ).

By definition, we conclude that ER1(u)(z) = v(z) for every z ∈ B(Ωψ, 1) \ (N ∪
R1(N)). Since |N ∪R1(N)| = 0, we have ER1(u) ∈ W 1,q(B(Ωψ, 1)) with

‖ER1(u)‖W 1,q(B(Ωψ ,1)) = ‖v‖W 1,q(B(Ωψ ,1)) ≤ C‖u‖W 1,p(Ωψ).
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thm6 Theorem 3.2. Fix 1 < s < ∞. Let ψ be a cuspidal function which satisfies in-
equality (1.2). Then the reflection R2 : R̂n → R̂n over ∂Ωψ induces a bounded linear

extension operator from W 1,p(Ωψ) to W 1,q(Rn), whenever 1+(n−1)s
2+(n−2)s

≤ p < ∞ and

1 ≤ q ≤ (1+(n−1)s)p
1+(n−1)s+(s−1)p

.

Proof. Let u ∈ C∞o (Rn)∩W 1,p(Ωψ) be arbitrary. We define a function ER2(u) as in
(2.1) and another function w by setting

defn:funcw’defn:funcw’ (3.34) w(z) :=

{
u ◦ R2(z), if z ∈ B(Ωψ, 1) \ Ωψ,
u(z), if z ∈ Ωψ.

We claim that w ∈ W 1,q(B(Ωψ, 1)) with

‖w‖W 1,q(B(Ωψ ,1)) ≤ C‖u‖W 1,p(Ωψ)

for a constant C > 1 independent of u. As in the proof of Theorem 3.1, it suffices to
estimate the norm over the union of Ωψ and B(Ωψ, 1)\Ωψ and we are again reduced
to estimating the norm over the second set in question. On this set, w = u ◦ R2

almost everywhere and hence it suffices to prove the inequality

equa:Norm1equa:Norm1 (3.35)

(∫
B(Ωψ ,1)\Ωψ

|u ◦ R2(z)|qdz

) 1
q

≤ C

(∫
Ωψ

|u(z)|pdz

) 1
p

and the inequality

equa:Norm2equa:Norm2 (3.36)

(∫
B(Ωψ ,1)\Ωψ

|D(u ◦ R2)(z)|qdz

) 1
q

≤ C

(∫
Ωψ

|Du(z)|pdz

) 1
p

.

Now

B(Ωψ, 1) \ Ωψ = (B(Ωψ, 1) \∆′) ∪ (∆′ \ Ωψ)

and ∆′ \ Ωψ = D ∪ E. Since

|∂∆′| = |∂D| = |∂E| = 0,

we have ∫
B(Ωψ ,1)\Ωψ

|u ◦ R2(z)|qdz=

∫
B(Ωψ ,1)\∆′

|u ◦ R2(z)|qdzequa:Sum1 (3.37)

+

(∫
D̊

+

∫
E̊

)
|u ◦ R2(z)|qdz.



20 P. Koskela and Z. Zhu

Since R2 is bi-Lipschitz on B(Ωψ, 1) \∆′ and |Ωψ| < ∞, by the Hölder inequality,
we have

equa:Sum2equa:Sum2 (3.38)

∫
B(Ωψ ,1)\∆′

|u ◦ R2(z)|qdz ≤ C

(∫
Ωψ

|u(z)|pdz

) q
p

.

Since |JR2(t, x)| ∼ 1 on E̊ ∪ D̊, by (3.17) and (3.19), we conclude by computing as
in (3.26) that

∫
E̊∪D̊
|u ◦ R2(z)|qdz ≤ C

(∫
Ωψ

|u(z)|pdz

) q
p

,equa:Sum3 (3.39)

whenever 1+(n−1)s
2+(n−2)s

≤ p <∞ and 1 ≤ q ≤ (1+(n−1)s)p
1+(n−1)s+(s−1)p

. By combining inequalities

(3.37)-(3.39), we obtain inequality (3.35).
To prove inequality (3.36), by Lemma 2.2, it suffices to show that∫

B(Ωψ ,1)\Ωψ

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz <∞.

Trivially,∫
B(Ωψ ,1)\Ωψ

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz =

∫
B(Ωψ ,1)\∆′

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz +

∫
∆′\Ωψ

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz.

Since R2 is bi-Lipschitz on B(Ωψ, 1) \∆′, we have∫
B(Ωψ ,1)\∆′

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz <∞.

Since ∆′ \ Ωψ = D ∪ E, |∂D| = |∂E| = 0, inequalities (3.17), (3.19) give∫
∆′\Ωψ

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz≤
∫
D̊

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dz +

∫
E̊

|DR2(z)|
pq
p−q

|JR2(z)|
q
p−q

dzSumma3’ (3.40)

≤C
∫ 1

2

0

∫ ψ( 1
2)

ψ(t)

|x|n−2((ψ−1)′(|x|))
pq
p−q d|x|dt+ C

≤C
∫ 1

2

0

∫ ψ( 1
2)

ψ(t)

|x|n−2− pq
p−q (ψ−1(|x|))

pq
p−q d|x|dt+ C

≤C
∫ 1

2

0

(
ts

ψ(t)

) n
s−1 dt

t
+ C <∞,
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whenever 1+(n−1)s
2+(n−2)s

≤ p < ∞ and 1 ≤ q ≤ (1+(n−1)s)p
1+(n−1)s+(s−1)p

. In conclusion, we have

proved that w ∈ W 1,q(B(Ωψ, 1)) with the bound

‖w‖W 1,q(B(Ωψ ,1)) ≤ C‖u‖W 1,p(Ωψ)

whenever 1+(n−1)s
2+(n−2)s

≤ p < ∞ and 1 ≤ q ≤ (1+(n−1)s)p
1+(n−1)s+(s−1)p

. Since ER2(u) = w

almost everywhere, the above also holds with w replaced by ER2(u). Hence, we may
complete the proof by following the argument of the proof of Theorem 3.1.

3.4 Proof of Theorem 1.2

We begin with a useful observation.

lem:reftwo Lemma 3.1. Let ψ be an arbitrary cuspidal function. If there is a reflection R :
R̂n → R̂n over ∂Ωψ which induces a bounded linear extension operator from W 1,p(Rn\
Ωψ) to W 1,p(Rn) for 1 ≤ p <∞, then R ∈ W 1,p

loc (G ∩ Ωψ,Rn) and

|DR(z)|p ≤ C|JR(z)|

for almost every z ∈ G ∩ Ωψ, where G is a bounded open set containing ∂Ωψ.

Proof. Let R : R̂n → R̂n be a reflection over ∂Ωψ which induces a bounded linear
extension operator from W 1,p(Rn \ Ωψ) to W 1,p(Rn). Then there exists a bounded
open set U containing ∂Ωψ so that the function

equa:T_r(u)equa:T_r(u) (3.41) ER(u)(z) :=


u ◦ R(z), for z ∈ U ∩ Ωψ,
0, for z ∈ ∂Ωψ,
u(z), for z ∈ U \ Ωψ

belongs to W 1,p(U) whenever u ∈ W 1,p(Rn \ Ωψ) and satisfies

‖ER(u)‖W 1,p(U) ≤ C‖u‖W 1,p(U\Ωψ)

for a positive constant C independent of u. We employ an idea from [15] and pick
a Lipschitz domain G so that ∂Ωψ ⊂ G, G ⊂ U and ∂G ⊂ U . Since G is Lipschitz
and contains the boundary of Ωψ, the geometry of Ωψ easily yields that G \ Ωψ is
an (ε, δ)-domain for some positive ε, δ. Since u − uG\Ωψ ∈ W

1,p(G \ Ωψ) and (ε, δ)-

domains are (p, p)-extension domains, we find a function v ∈ W 1,p(Rn \ Ωψ) such
that v = u− uG\Ωψ on G \ Ωψ and

palautus0palautus0 (3.42) ‖v‖W 1,p(Rn\Ωψ) ≤ C‖u− uG\Ωψ‖W 1,p(G\Ωψ).
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Next, since G \ Ωψ is a bounded (ε, δ)-domain, we have

palautus2palautus2 (3.43)

∫
G\Ωψ

|u(z)− uG\Ωψ |
pdz ≤ C

∫
G\Ωψ

|Du(z)|pdz,

see [2, 26]. By our assumption, (3.42) and (3.43), we have

‖v ◦ R‖W 1,p(G∩Ωψ)≤C‖v‖W 1,p(U\Ωψ)

≤C‖u− uG\Ωψ‖W 1,p(G\Ωψ) ≤ C‖Du‖Lp(G\Ωψ).

Clearly v ◦ R = u ◦ R − uG\Ωψ on G ∩ Ωψ. Hence, we have proven that∫
G∩Ωψ

|DER(v)(z)|pdz ≤ C

∫
G\Ωψ

|Dv(z)|pdz.equa:Lpex (3.44)

Let now u be locally Lipschitz on G \ Ωψ with∫
G\Ωψ

|Du(z)|pdz <∞.

It follows from (3.43) applied to truncations of u that u ∈ W 1,p(G \ Ωψ), see [15].
Recalling that functions in W 1,p(G \ Ωψ) can be extended to W 1,p(Rn \ Ωψ), we
may apply (3.44) also to our locally Lipschitz function u. Lemma 2.2 now gives the
asserted inequality.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let ψ be an arbitrary cuspidal function. It is easy to check
that Rn \Ωψ is an (ε, δ)-domain, for some positive constants ε and δ. Hence, by [16],
Rn \ Ωψ is a (p, p)-extension domain, for every p ∈ [1,∞).

We begin by showing that the reflection R1 induces a bounded linear extension
operator from W 1,p(Rn \ Ωψ) to W 1,p(Rn), whenever 1 ≤ p ≤ n − 1. Define the

domain ∆ as in (3.4) and the domain Ωψ
1 as in (3.5). By (3.6), the formula of the

reflection R1 on Ωψ
1 is

REFLECREFLEC (3.45) R1(t, x) =


(
−t, 6tx

ψ(t)

)
, if 0 ≤ |x| < 1

6
ψ(t),(

12t|x|
ψ(t)
− 3t, t x|x|

)
, if 1

6
ψ(t) ≤ |x| < 1

3
ψ(t),(

t, 3(ψ(t)−t)
2ψ(t)

x+
(

3t
2
− ψ(t)

2

)
x
|x|

)
, if 1

3
ψ(t) ≤ |x| < ψ(t).

For every (t, x) ∈ Ωψ
1 with 0 < |x| < 1

6
ψ(t), the resulting differential matrix of R1 is

DR1(t, x) =


−1 0 0 · · · 0

x1
6ψ(t)−6tψ′(t)

ψ2(t)
6t
ψ(t)

0 · · · 0

x2
6ψ(t)−6tψ′(t)

ψ2(t)
0 6t

ψ(t)
· · · 0

...
...

...
. . .

...

xn−1
6ψ(t)−6tψ′(t)

ψ2(t)
0 0 · · · 6t

ψ(t)

 .
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By (3.1), after a simple computation, for every (t, x) ∈ Ωψ
1 with 0 < |x| < 1

6
ψ(t), we

have

Distor1Distor1 (3.46) |DR1(t, x)| ≤ Ct

ψ(t)
and |JR1(t, x)| =

(
6t

ψ(t)

)n−1

.

For every (t, x) ∈ Ωψ
1 with 1

6
ψ(t) < |x| < 1

3
ψ(t), the resulting differential matrix

is

DR1(t, x) =


12|x|ψ(t)−tψ′(t)

ψ2(t)
− 3 12tx1

|x|ψ(t)
12tx2
|x|ψ(t)

· · · 12txn−1

|x|ψ(t)
x1
|x| A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
x2
|x| A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)
...

...
...

. . .
...

xn−1

|x| An−1
1 (t, x) An−1

2 (t, x) · · · An−1
n−1(t, x)

 ,

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

Aij(t, x) :=

{
t
|x| −

tx2i
|x|3 , if i = j,

−txixj
|x|3 , if i 6= j.

After a simple computation, for every (t, x) ∈ Ωψ
1 with 1

6
ψ(t) < |x| < 1

3
ψ(t), we have

Distor2Distor2 (3.47) |DR1(t, x)| ≤ Ct

ψ(t)
and |JR1(t, x)| ∼c

(
t

ψ(t)

)n−1

.

For every (t, x) ∈ Ωψ
1 with 1

3
ψ(t) < |x| < ψ(t), the resulting differential matrix is

DR1(t, x) =


1 0 0 · · · 0

A1
t (t, x) A1

1(t, x) A1
2(t, x) · · · A1

n−1(t, x)
A2
t (t, x) A2

1(t, x) A2
2(t, x) · · · A2

n−1(t, x)
...

...
...

. . .
...

An−1
t (t, x) An−1

1 (t, x) An−1
2 (t, x) · · · An−1

n−1(t, x)

 ,

where, for every i, j ∈ {1, 2, · · · , n− 1}, we have

Aij(t, x) :=


(

3
2
− 3t

2ψ(t)

)
+
(

3t
2
− ψ(t)

2

)(
1
|x| −

x2i
|x|3

)
, if i = j,

−
(

3t
2
− ψ(t)

2

)
xixj
|x|3 , if i 6= j.

and

Ait(t, x) :=
3xi
2

(
tψ′(t)− ψ(t)

ψ2(t)

)
+

(
3

2
− ψ′(t)

2

)
xi
|x|
.
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By (3.1), after a simple computation, for every (t, x) ∈ Ωψ
1 with 1

3
ψ(t) < |x| < ψ(t),

we have

Distor3Distor3 (3.48) |DR1(t, x)| ≤ Ct

ψ(t)
and |JR1(t, x)| ∼c

(
t

ψ(t)

)n−1

.

By combining (3.46), (3.47) and (3.48), we conclude that for 1 ≤ p ≤ n− 1,

equa:pdistequa:pdist (3.49) |DR1(z)|p ≤ C|JR1(z)|

for almost every z ∈ ∆∩Ωψ. By the same inequalities, sinceR1 is locally bi-Lipschitz
on B(Ωψ, 1) \∆, for every u ∈ C∞o (Rn) ∩W 1,p(Rn \ Ωψ), we have∫

R1(B(Ωψ ,1)\Ωψ)

|u ◦ R1(z)|pdz≤C
∫
R1(B(Ωψ ,1)\Ωψ)

|u ◦ R1(z)|p|JR1(z)|dzequa:LpF (3.50)

≤
∫
B(Ωψ ,1)\Ωψ

|u(z)|pdz.

Moreover, by Lemma 2.2 and (3.49), we have

equa:LpDequa:LpD (3.51)

∫
R1(B(Ωψ ,1)\Ωψ)

|D(u ◦ R1)(z)|pdz ≤
∫
Rn\Ωψ

|Du(z)|pdz.

Since Rn\Ωψ satisfies the segment condition, (3.50) and (3.51) allow us to repeat the
argument in the proof of Theorem 3.1 so as to conclude that R1 induces a bounded
linear extension operator from W 1,p(Rn \Ωψ) to W 1,p(Rn), whenever 1 ≤ p ≤ n− 1.

Next, we show that there is no reflection over ∂Ωψ which can induce a bounded
linear extension operator from W 1,p(Rn \ Ωψ) to W 1,p(Rn), for any n− 1 < p <∞.

Let n − 1 < p < ∞ be fixed. Suppose that there exists a reflection R : R̂n → R̂n

over ∂Ωψ, which induces a bounded linear extension operator from W 1,p(Rn \ Ωψ)
to W 1,p(Rn). By Lemma 3.1, there exists an open set G which contains ∂Ωψ such
that for almost every z ∈ G ∩ Ωψ, we have

|DR(z)|p ≤ C|JR(z)|.

Then, by Lemma 2.4, for almost every (t, x) ∈ R (G ∩ Ωψ), we have

ineq:inverineq:inver (3.52) |DR(z)|
p

p+1−n ≤ C|JR(z)|.

Let u ∈ C∞o (Rn) ∩ W 1,p(Ωψ) be arbitrary. By definition, ER(u) is bounded and

continuous on G. Pick a Lipschitz domain G̃ so that Ωψ ⊂ G̃ and ∂G̃ ⊂ G. By
Lemma 2.2, we have

equa:HNCequa:HNC (3.53) ‖DER(u)‖
L

p
p+1−n (G̃)

≤ C‖Du‖
L

p
p+1−n (Ωψ)

.
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We conclude that ER(u) ∈ W 1, p
p+1−n (G̃). Since G̃ is a Lipschitz domain, [15, Lemma

4.1] implies

equa:POINequa:POIN (3.54)

∫
G̃

|ER(u)(z)− uΩψ |
p

p+1−ndz ≤ C(G̃,Ωψ)

∫
G̃

|DER(u)(z)|
p

p+1−ndz.

Hence, we have

equa:HNC1equa:HNC1 (3.55) ‖ER(u)‖
L

p
p+1−n (G̃)

≤ C
(
‖DER(u)‖

L
p

p+1−n (G̃)
+ ‖u‖

L
p

p+1−n (Ωψ)

)
.

By combining inequalities (3.53) and (3.55), we obtain

(3.56) ‖ER(u)‖
W

1,
p

p+1−n (G̃)
≤ ‖u‖

W
1,

p
p+1−n (Ωψ)

.

Since C∞o (Rn) ∩W 1, p
p+1−n (Ωψ) is dense in W 1, p

p+1−n (Ωψ), for every function u ∈
W 1, p

p+1−n (Ωψ), there exists a sequence of functions ui ∈ C∞o (Rn) ∩ W 1, p
p+1−n (Ωψ)

such that

equa:approequa:appro (3.57) lim
i→∞
‖ui − u‖

W
1,

p
p+1−n (Ωψ)

= 0,

and for almost every z ∈ Ωψ,

lim
i→∞
|ui(z)− u(z)| = 0.

By (3.53) and (3.57), {ER(ui)}∞i=1 is a Cauchy sequence in W 1, p
p+1−n (G̃). By the

completeness of W 1, p
p+1−n (G̃), there exits a function ω ∈ W 1, p

p+1−n (G̃) with

lim
i→∞
‖w − ER(ui)‖

W
1,

p
p+1−n (G̃)

= 0

and ω(z) = u(z) for almost every z ∈ Ωψ. We define ER(u)(z) := ω(z) on G̃. By
(3.53) and (3.57) again, we have

‖ER(u)‖
W

1,
p

p+1−n (G̃)
≤ C‖u‖

W
1,

p
p+1−n (Ωψ)

.

Hence, Ωψ is a Sobolev
(

p
p+1−n ,

p
p+1−n

)
-extension domain. This contradicts the

classical result that Ωψ is not a (q, q)-extension domain, for any 1 ≤ q <∞, see [19]
and references therein.
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3.5 Proof of Theorem 1.3

Proof of Theorem 1.3. Let ψ be an arbitrary cuspidal function. It is easy to see
both Ωψ and Rn \ Ωψ are uniformly locally quasiconvex. By [10], they are (∞,∞)-
extension domains.

To begin, we show that the reflectionR1 induces a bounded linear extension oper-
ator fromW 1,∞(Ωψ) toW 1,∞(Rn). Since Ωψ is uniformly quasiconvex, every function
in W 1,∞(Ωψ) has a Lipschitz representative. Without loss of generality, we assume
every function in W 1,∞(Ωψ) is Lipschitz. Let u ∈ W 1,∞(Ωψ) be arbitrary. Define the
extension ER1(u) on B(Ωψ, 1) as in (2.1). Since u ∈ W 1,∞(Ωψ) is Lipschitz and R1

is locally Lipschitz on B(Ωψ, 1)\ (Ωψ∪{0}), we have ER1(u) ∈ W 1,1
loc (B(Ωψ, 1)\Ωψ).

By (3.8), (3.10), (3.12) and the fact that R1 is bi-Lipschitz on B(Ωψ, 1) \ ∆, for
almost every z ∈ B(Ωψ, 1) \ Ωψ, we have

|DER1(u)(z)| ≤ C|Du(R1(z))|.
This implies that

‖ER1(u)‖W 1,∞(B(Ωψ ,1)) ≤ C‖u‖W 1,∞(Ωψ)

as desired.
Next, we show that there does not exist a reflection over ∂Ωψ which can induce

a bounded linear extension operator from W 1,∞(Rn \ Ωψ) to W 1,∞(Rn). Define a
function u ∈ W 1,∞(Rn \ Ωψ) by setting

REFLECREFLEC (3.58) u(t, x) =


1, if (t, x) ∈ Rn \ Ωψ and t ≥ 1,
t, if (t, x) ∈ Rn \ Ωψ and 0 < t < 1,
0, if (t, x) ∈ Rn \ Ωψ and t ≤ 0.

For every t ∈ (0, 1) fixed, we define a 2-dimensional disk Dt ⊂ Ωψ by setting

Dt := {(t, x) ∈ Rn; |x| < ψ(t)}
and define

St := {(t, x) ∈ Rn; |x| = 2ψ(t)}.

Suppose for the contrary that there exists a reflection R : R̂n → R̂n over ∂Ωψ which
induces a bounded linear extension operator from W 1,∞(Rn \ Ωψ) to W 1,∞(Rn).
Define the function ER(u) on B(Ωψ, 1) as in (2.1). By the geometry of Ωψ and
the fact that R is continuous and R(z) = z whenever z ∈ ∂Ωψ, there exists a
small enough to ∈ (0, 1) such that for every t ∈ (0, to), there exists (t, xt) ∈ Dt

with ER(u)((t, xt)) = 0 and there exists (t, x′t) ∈ St with ER(u)((t, x′t)) = t and
d((t, xt), (t, x

′
t)) ≤ 2ψ(t). Hence for every 0 < t < to, we have

|ER(u)((t, xt))− ER(u)((t, x′t))| ≥ t ≥ Cψ−1(d((t, xt), (t, x
′
t))).

This contradicts the assumption that ER(u) ∈ W 1,∞(B(Ωψ, 1)) : since B(Ωψ, 1) is
uniformly locally quasiconvex, a function in W 1,∞(B(Ωψ, 1)) must have a Lipschitz
representative.
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