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ARTICLE

Effective medium theory for the low-temperature
heat capacity of a metasolid plate
Tuomas A. Puurtinen1✉ & Ilari J. Maasilta 1✉

Nanopatterning can be used to strongly control the thermal properties of solids, but theo-

retical understanding relies often on complex numerical simulations. Here, an analytical

theory is derived for the low temperature heat capacity of a nanopatterned phononic crystal

plate, focusing on the geometry of a square lattice of cylindrical holes in an isotropic matrix

material. Its quasistatic elastic properties were studied using an anisotropic effective medium

theory, that is, considering it as a homogenized metasolid. The effective elastic parameters

can then be used as an input for an anisotropic plate theory, yielding analytical expressions

for the dispersion relations of the three lowest phonon modes that are dominant in the low

temperature limit below 1K. Those results were then used to derive a simple analytical

formula for the heat capacity, which was compared numerically with the exact results for an

example material. The effects of material and geometric design parameters in the formula are

also discussed, giving simple guidelines how to tune the heat capacity up to an order of

magnitude or more.
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Recent decade has seen an expansion of the range of meta-
materials — with properties not found in nature—to the
mechanical realm, from acoustic wave control in fluids1

and mechanics of solid materials2,3 to elastic waves in solids4.
Typically these metamaterials are engineered from a micro-
structure, which strongly modifies the overall elastic response of
the material body, which can often be analyzed in terms of
effective materials parameters such as the effective elastic moduli
and mass density. In the area of wave motion, such homo-
genization is useful when the wavelengths in question are larger
than the length scales of the microstructure. Development of
effective medium theories (EMTs) has also been an important
topic in material physics and engineering in general, for the
understanding the elastic behavior of composites and layered
materials5. Research has progressed from specific cases of mate-
rials with random or periodic solid or void inclusions, to general
periodic three-dimensional (3D) structures of full anisotropic
elasticity6,7.

On the other hand, vibrations in materials are also excited
thermally, with phonons as the quanta of such vibrations. In the
full quantum mechanical picture, phonons consist of atomic level
vibrational degrees of freedom, consisting of acoustic and in most
cases also optical phonon modes. Continuum elasticity does not
describe the high-frequency optical modes or the high-wave-
vector dispersion of the acoustic modes, so that it cannot be
applied to study thermal phonons in general. However, at low
temperatures, only the low-frequency long-wavelength modes are
excited, meaning that continuum elasticity is valid description
even for thermal phonons. Therefore, at low temperatures it is
possible to have a strong, orders of magnitude control of thermal
conductance8–10 or heat capacity11 by modifying the acoustic
phonon dispersion relations through micro and nanostructuring
of the material. Such an approach has experimentally been shown
to be possible for thermal conductance using periodic two-
dimensional (2D) holey phononic crystals (PnCs) in the
nanoscale12–14, relying on strong interference effects due to Bragg
scattering, which start to operate for wavelengths of the order of
the periodicity of the structure. At higher temperatures, con-
trolling thermal conductance with PnCs rely more on diffusive
scattering from surfaces15. Another possibility is to use pillared
structures, which add effects of local resonances of the pillars into
the mix16.

In contrast, here we want to consider whether the thermal
properties of such nanostructures can be understood from the
perspective of an elastic metamaterial (Fig. 1). In other words, we
consider to what extent homogenized, effective material para-
meters (elastic stiffness tensor, density) can be derived and used
to predict thermal properties in the limit where the dominant
thermal wavelength is larger than the size scale of the nanos-
tructure. For the case study reported here, we concentrate on the
heat capacity of a plate with isotropic material parameters, per-
forated with cylindrical circular holes (Fig. 1). In addition, we will
try to answer the question to what extent such a thermal

metamaterial exhibits properties not observed in a naturally
occurring solid.

The driving motivation for developing such an effective med-
ium theory is simplicity and physical insight. Without such a
theory, the analysis of thermal properties of a PnC plate structure
requires extensive numerical computations of millions of data
points for the phonon dispersion data using for example the finite
element method8,11,12. Complexities arise because (i) for PnC
plates the displacement fields are more complicated than bulk
plane waves, and thus have to be solved by full 3D wave models;
and (ii) computation of thermal properties require a fine sam-
pling of the wave vector-space in all 2D directions in the plane of
the plate. Thus, simultaneous fine tuning and optimization of
geometric and physical design parameters by direct computation
is challenging.

Here, we develop an analytical effective medium theory for the
low temperature heat capacity of holey phononic crystal meta-
solid and show that it is accurate in the sub-wavelength limit
where the dominant thermal wavelength is larger than the PnC
period. We use a quasistatic homogenization procedure based on
the average eigenstrain approximation17, which is shown to be
valid in the low-temperature limit by comparing to the direct
numerical solution. This approach allows us to study the emer-
gent anisotropy of the effective elastic parameters of a square
lattice PnC plate as a function of the hole filling factor, in contrast
to previous effective medium theories for PnC plates, which
demonstrated results only for hexagonal lattices exhibiting in-
plane isotropy18–20. Analytical expressions valid in the long
wavelength limit for all three low frequency anisotropic plate
(Lamb wave) modes (flexural, dilatational and shear) are also
given as a function of both the magnitude and the azimuthal
angle of the wave vector.

Results and discussion
Effective medium theory for a phononic crystal in the low-
frequency limit. For the purpose of understanding how a pho-
nonic crystal plate geometry affects its heat capacity in the low
temperature limit, it suffices to consider only the three lowest-
frequency acoustic phonon modes. In the long wavelength limit,
these can be categorized based on the standard plate (Lamb wave)
theory21 into an in-plane horizontal shear mode (SH mode), a
flexural or antisymmetric mode (A mode), and a symmetric mode
(S mode), also known as longitudinal or dilatational mode. (The
symmetry and antisymmetry refers to the reflection symmetry of
the modes in the mid-plane of the plate.) We will use an analytic
formalism to express the low-frequency dispersive properties of
these modes which is simple enough so that a closed form
expression for the heat capacity of holey phononic crystal plates
can be obtained.

In the case of PnC plates with circular hole patterns in a 2D
square lattice (Fig. 1), the obvious complication to the analytical
treatment is the periodic pattern itself. The exact mathematical

Fig. 1 Schematic of the process of homogenization of a holey phononic crystal plate. The real holey material with an isotropic elastic matrix material
(parameters λ, μ, ρ) will be considered as a continuous homogenized but anisotropic metasolid with effective elastic parameters c�ij ,ρ*.
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description for the low-frequency phonon modes in such a
geometry depends on the elasticity tensor c and the mass density
ρ of the plate material, and is based on the solution of the elastic
wave equation (details in the Methods section), which only allows
numerical solutions using e.g., the finite element method.

However, with the use of an elastic EMT, the effect of the hole
pattern can be incorporated in the effective elasticity tensor of the
material. One of the simplest models available for periodic media
in the long wavelength limit is the average eigenstrain
approximation22, which describes the material in the macroscopic
scale, whereas the voids are assumed microscopic. In the average
eigenstrain approximation the problem domain including the
holes is replaced by a continuous domain without the holes
(Fig. 1), with a new effective elasticity tensor c* and effective mass
density ρ*. The new effective tensor c* (Eq. (11), Methods)
depends only on c, the lattice geometry, the shape of the holes
and their volume filling factor f, and the Poisson ratio of the
matrix material ν, whereas ρ*= (1− f)ρ. Often the effective
material represented by c* has a higher anisotropy than the
original material c, which is the case in our example as well.

Our homogenization approach is then the following: we first
consider a periodic isotropic 3D material containing infinitely
long cylindrical voids forming a 2D square lattice, for which the
calculation of the effective tensor c* is particularly simple and can
be done analytically (Methods). (For an anisotropic matrix
material, only numerical solutions exist6.) After obtaining the
effective tensor c* for such a 3D effective medium, we imagine
cutting a slice out of it in the direction perpendicular to the axes
of the voids, and use Lamb-wave theory for anisotropic
materials23 to write asymptotic approximations of the dispersion
relations for the lowest plate modes.

In Fig. 2, we plot the effective elastic moduli as a function of the
hole filling factor f, calculated based on the above effective
medium theory for the case of infinitely long cylindrical holey
PnC, with the cylinder axes aligned with the x3-coordinate
direction. The material of the matrix in all the examples in this
article is isotropic silicon nitride (Young’s modulus E= 250 GPa,
density ρ= 3100 kg/m3, Poisson ratio ν= 0.23). The infinite
sums of Eq. (14) were calculated up to order ∣ni∣ ≤ 2000. We see
how the material naturally becomes more compliant (c* elements
decrease) by a factor of 2-3 as the holes take up more volume.
Anisotropy is seen to emerge as some of the components that are

equal in the f→ 0 limit split. Later, we will show that for the high-
end range f > 0.5 the EMT theory used here becomes less accurate.

The full boundary value problem (Methods) does not have
closed form expressions for the solutions. However, asymptotic
approximations can be given for all three modes in the low
frequency limit. These approximations have been available for a
while even for the most general anisotropic plates23. In ref. 23,
using Stroh’s formalism, a plane wave ansatz for phonon
displacement fields and normal tractions in the plate was
converted to a system of six linear differential equations, from
which approximations to the propagator of the coefficient matrix
(Stroh matrix) led to asymptotic presentations of the dispersion
relations. We apply the formulas from ref. 23 to our effective
medium and obtain for the quadratic antisymmetric Lamb
(flexural) mode

ωAðkÞ ¼
k2d

2
ffiffiffiffiffiffiffi
3ρ�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 1

2
A sin2 2ϕ

r
; ð1Þ

while for the two remaining non-dispersive symmetric Lamb and
the horizontal shear modes we get

ωSþ;SH�
ðkÞ ¼ kffiffiffiffiffi

2ρ�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ c�66 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB � c�66Þ2 � ½2AðB � c�66Þ �A2� sin2 2ϕ

qr
;

ð2Þ
where the plus sign corresponds to to the symmetric mode (S)
and the minus sign to the shear mode (SH).

In the above formulas we used the polar coordinates k= (k, ϕ)
for the 2D in-plane wave vector, and notations

A ¼ c�11 � c�12 � 2c�66
B ¼ c�11 � ðc�13Þ2=c�33:

ð3Þ

Constant A is called the coefficient of elastic anisotropy which is
zero for isotropic materials. From Eqs.(1) and (2) we clearly see
that if A ¼ 0, the ϕ-dependent terms drop out. The effective
density is geometrically calculated from the amount of missing
material, ρ*= (1− f)ρ.

To demonstrate the effect of the filling factor on the lowest
wave modes, we plot in Fig. 3 the slowness surfaces k/ω for the
A, S and SH modes from Eqs. (1), (2), for three different
f= 0, 0.25, 0.5 at ω= 1010 rad/s, which is a frequency dominantly
populated at 0.1 K12. (The slowness of the linear S and SH modes
naturally do not depend on frequency, but for the flexural
A-mode it does.) As the hole fraction increases from zero, the
wave speeds for all modes become slower and anisotropic. The
strongest effect happens for the SH mode, whose anisotropy
(ratio of max to min slowness) reaches ~ 2. It is also notable that
the A and S modes are predominantly slowed in the diagonal
directions unlike the SH mode, which slows down mostly along
the unit cell axes.

Moreover, we can compare the dispersion relations obtained
from the EMT, Eqs. (1), (2), to the exact numerically computed
dispersions (using the finite element method) for some subset of
chosen PnC geometries. Figure 4 shows an example of this
comparison for a PnC plate of thickness d= 10 nm and period
a= 10 nm, for three different f= 0.1, 0.3, 0.5 in the Γ−X direction.
We see that the EMT describes the lowest linear S and SH modes
accurately over most of the Brillouin zone (BZ), whereas the flexural
A-mode can be described by the EMT for a somewhat smaller range
of k-vectors, with deviations starting around ω ~ 2− 3 × 1011 rad/s.
This frequency starts to limit the accuracy of the EMT theory at
temperatures around 1 K in this case, as will become clearer later.
More dispersion relation comparisons can be found in Supplemen-
tary Figs., for the cases d= 10 nm, a= 10 nm (Supplementary
Fig. 1), d= 50 nm, a= 50 nm (Supplementary Fig. 2), d= 100 nm,

Fig. 2 Effective elastic stiffness tensor components of a SiN PnC
metasolid as a function of the hole filling factor f. We have used the
average eigenstrain approximation for a square lattice of infinitely long
cylindrical holes aligned in the x3-direction.
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a= 50 nm (Supplementary Fig. 3), and d= 300 nm, a= 50 nm
(Supplementary Fig. 4).

Low-temperature heat capacity of a metaplate. The phononic
heat capacity of a solid is given by the temperature derivative of

the internal energy of the solid

C ¼ ∂UðTÞ
∂T

¼ ∂

∂T
∑
k;j

_ωjðkÞ
expð_ωj=kBTÞ � 1

; ð4Þ

where the summation is over all phonon modes j over the first
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Fig. 3 Radial plot of the slowness surfaces (k/ω vs ϕ) of the three lowest modes of the holey SiN PnC metaplate. The lowest modes (A, S, and SH) are
shown for three filling factors f= 0, 0.25, 0.5. For the flexural A-mode, slowness is a function of frequency, here plotted for a thermally relevant frequency
ω= 1010 rad/s. We have used the average eigenstrain approximation for a square lattice of infinitely long cylindrical holes aligned in the x3-direction.

Fig. 4 Dispersion relations of the lowest modes. The EMT results for A (yellow dot-dash), S (green dash), and SH (purple dot) mode, calculated based on Eqs.
(1), (2), are compared with the exact numerically calculated dispersions (black solid), for three different filling factors f=0.1, 0.3, 0.5, in Γ-X direction. SiN
parameters E= 250 GPa, ρ= 3100 kg/m3, ν=0.23 and a plate thickness d= 10 nm were used, and in the exact calculation a period a= 10 nm.
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atomic Brillouin zone. The phonon dispersion relations ωj(k),
j= 1,…n are the only unknown quantities, and in the low-
frequency limit they depend only on the elastic properties of the
material and the geometry of the solid, as was discussed in the
previous section. For bulk samples, the k-summation can be
converted to an integral, which can be extended over the whole k-
space in the low temperature limit, as the Bose-Einstein occu-
pation factor goes to zero for high k-values anyways. Finally, in
the low temperature limit only the lowest three linear bulk modes
contribute, and by elementary integration we arrive at the well
known cubic Debye-law24 for the volume specific 3D heat
capacity

C3D;V ¼ 2π2

15
k4B
_3

2
c3T

þ 1
c3L

� �
T3; ð5Þ

where all of elasticity is hidden in the definitions of the bulk
transverse cT and longitudinal cL speeds of sound. Note that in
ref. 11 the numerical prefactor is in error for the 3D Debye
formula.

For the case of thin plates, the quasi-continuous wave vector
space exists only in the 2D plane of the plate, so that the k-space
integral is two-dimensional, and the conversion from a sum to an
integral gives a factor proportional to the area of the plate A instead
of a volume. Another feature is of course that the dispersion
relations ωj(k) are much more complex even for isotropic
plates21,25, with an infinite number of branches (in the continuous
limit). Performing the temperature differentiation in Eq. (4), we can
write for the area-specific heat capacity CA (units [J K−1 m−2])

C2D;A ¼ _2

16π2kBT
2 ∑

j

Z
2D
dk ω2

j ðkÞ sinh�2 _ωjðkÞ
2kBT

� �
: ð6Þ

In the low-temperature limit only the three lowest branches will
contribute, and by using the lowest order analytical approximations
for their dispersion relations, Eq. (6) can be integrated. For the case
of an isotropic plate it was done in ref. 25, yielding a temperature
dependence C ~ aT+ bT2, where the linear term is generated by the
flexural A mode and the quadratic term by the S and SH modes.

We now calculate similarly the low-temperature area-specific
heat capacity for our metasolid plate, using the asymptotic
analytical dispersions of Eqs. (1), (2). First, consider the shear and
symmetric modes of Eq. (2). Inserting the form of ω(k) into Eq. (6)
and carrying out the integration in polar coordinates, we get for
those two modes

CS;SH ¼ 3ζð3Þk3BT2ρ�

_2π2
� 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β

βðβþ γÞ

s
±
4
α
K

γ

α2

� �(

� 4ðα2 þ βÞ
αβ

Π � γ

β
;
γ

α2

� ��
;

ð7Þ

where

α ¼ B � c�66; β ¼ 4Bc�66; γ ¼ 2Aα�A2; ð8Þ
ζ(x) is the Riemann zeta function, K(m) is the complete elliptic
integral of the first kind (with m= k2, where k is the elliptic
modulus), Π(n,m) is the complete elliptic integral of the third kind,
and the upper (lower) signs correspond to the S (SH) mode. Here
we note that the dispersion relations in Eq. (2) are always real-
valued, as B and c�66 are non-negative and real due to general
physical constraints for the elasticity tensor that cause the matrix
ðc�IJ Þ and all its principal submatrices to be positive definite (and
thus have non-negative determinants). Interestingly, the S and the
SH mode contributions produce opposite signs for the elliptic
integral terms, causing them to cancel out in the summation for the
total heat capacity.

When the antisymmetric mode given by Eq. (1) is plugged into
Eq. (6) and integrated, only a single complete elliptic integral of
the first kind remains. Combining the three mode contributions
together, we finally end up with an analytical formula for the
area-specific heat capacity of the phononic crystal metaplate in
the low-temperature limit:

CEMT;A ¼ k2B
3_d

ffiffiffiffiffiffiffi
3ρ�

B

r
K

A
2B

� �
T

þ 3ζð3Þk3B
_2π

ρ�

B þ ρ�

c�66

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A A� 2B þ 2c�66

ðA� 2BÞðAþ 2c�66Þ

s
T2:

ð9Þ
The first T-linear part of the formula corresponds to the
antisymmetric mode, while the quadratic part contains the
contributions of the shear and symmetric modes. In the quadratic
part we see two terms proportional to ρ�=B and ρ�=c�66 that
resemble and converge to the full plate isotropic (inverse) wave
speeds c�2

S and c�2
SH, respectively, in the zero filling factor limit. It is

then clear that in the f→ 0 limit the above formula reduces to the
previously reported analytical results for the full isotropic plates25.

As a first look of the analysis of Eq. (9), in Fig. 5 we plot an
example of the mode specific contributions for the heat capacity
as a function of T (below 1 K) for a 50 nm thick SiN, which is a
typical material from which suspended devices are made12.

For this case, the flexural A mode dominates up to around
0.5 K. For all modes, interestingly, increasing f leads to an
increase in the heat capacity, more strongly for the S and SH
modes than for the A mode. The S mode is always seen to give
about a factor of three smaller contribution than the SH mode.
However, as can be directly seen from Eq. (9), the EMT theory
predicts that the SH and S modes would contribute more with a
denser material. A thicker plate would reduce the contribution of
the A mode, but would also diminish the temperature range of
validity of the lowest mode approximation. We turn to address
the question of the range of accuracy of the EMT theory next.

Numerical analysis of the approximation error. The result of
Eq. (9) includes several approximation steps for which it is difficult to
give formal error estimates. It is clear, though, that in the f→ 0 limit
the average eigenstrain approximation reproduces the original

Fig. 5 Modal contributions (A, S, and SH) to the area-specific heat
capacity of the holey SiN PnC metaplate. Heat capacity is plotted vs. T,
using Eq. (9). Three different filling factors f= 0, 0.25, 0.5 are shown, and
isotropic SiN parameters E= 250 GPa, ρ= 3100 kg/m3, ν= 0.23 and a
plate thickness d= 50 nm were used.
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isotropic elasticity tensor. Numerical comparisons, as well as
experimental studies have been conducted in literature which indicate
fairly good approximation for the average eigenstrain model over a
wide range of the parameter f∈ [0, 0.5]22. Another possible source of
error is the number of elements chosen in the calculation of the
infinite series SI and SIJ in Eq. (14). Nemat-Nasser et al.22 reported a
typical difference of less than 1% between the truncation points
ni= ± 40 vs. ni= ± 50. To effectively remove this source of error we
have calculated all the results in this work using ∣ni∣≤ 2000.

Apart from the homogenization error, the exact heat capacity
of a plate at an arbitrary non-zero temperature includes
contributions from higher frequency phonon branches (with a
non-zero ω at k= 0), but in Eq. (9) we only considered the three
acoustic modes (with ω→ 0 for k→ 0) that survive in the T→ 0
limit. Eq. (9) is therefore exact only in the T→ 0 K, f→ 0 limit.

For the purpose of using Eq. (9) in practice, it is important to
find some guidelines for which parameter ranges the error is not
too high. The approximation error can be analyzed by comparing
the heat capacity obtained from the effective medium theory with
the exact numerically calculated heat capacity of the PnC. We use
the finite element method to calculate phonon dispersion
relations for several PnC plate designs. A second-order Gaussian
quadrature is used for the numerical integration of Eq. (6).
Depending on the lattice constant, either 1600 (a= 50 nm) or
7800 (a= 10 nm) quadrature points in the irreducible Brillouin
zone were chosen, with an increasing sampling density at the
k→ 0 limit. A typical size of the finite element mesh was ~ 7000
elements. We remark that these seemingly exaggerated choices
were actually important for the reduction of the error arising
from numerical integration over a temperature range of many
orders of magnitude.

Keeping isotropic silicon nitride as our reference material, in
Fig. 6 we compare the relative error of the effective medium
approximation to the exact numerically calculated heat capacity
of a selection of PnC designs. Significant modifications to the
phonon spectrum often appear near the first Brillouin zone (BZ)
boundary (Bragg conditions), so we have chosen to compare
designs with smallish lattice constants (a= 10 nm and
a= 50 nm) to move the corresponding frequency ranges of the
BZ edges higher. To ascertain that the excited thermal phonons
do not yet satisfy the Bragg conditions in the temperature range
considered, we also plot the dominant thermal phonon
wavelength for the plate (Lamb) modes corresponding to the
temperature in the upper x-axis scale. The plate thickness d was
also varied over the range 10–300 nm.

We see in Fig. 6 that for d= 10 nm, the effective medium
theory (EMT) is very good over a wide range of temperatures: the
error is roughly within a few percentage points for f ≤ 0.5 below
T= 100 mK, and still only ~ 20% even at 1 K. (A typical low-
temperature experiment has a base temperature of 10–100mK).
Similarly, for the other designs considered, our EMT is very good
in the low temperature limit for the cases f ≤ 0.5, staying
below ~ 20% for T < 0.1 K. The case f= 0.6 seems to deviate
noticeably from the exact results even at the very low temperature
regime, indicating that the average eigenstrain model fails to
properly address the highest filling factor nanostructures. Based
on the comparisons in Fig. 6, we can conclude that Eq. (9) gives a
good estimate for the SiN PnC heat capacity for temperatures
below 100 mK up to medium filling factors f ~ 0.5. Increased
accuracy at higher temperatures would most likely require the
inclusion of higher order plate modes, for which analytical
formulas do not exist. Most importantly, though, being analytic,

squ
c

squ
c

squ
c squ

c

(a) (b)

(d)(c)

Fig. 6 Relative error of the effective medium theory. The plots show the ratio of the EMT heat capacity (CEMT) with the numerically calculated exact
specific heat capacity CPnC, for SiN phononic crystal plates (PnC) of varying lattice constants a and thicknesses d [a a= 10 nm, d= 10 nm; b a= 50 nm,
d= 50 nm; c a= 50 nm, d= 100 nm; d a= 50 nm, d= 300 nm]. The upper x-axis scales give the dominant thermal wavelengths of an uncut plate.
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Eq. (9) can easily be used to predict how various design
parameters affect the PnC plate heat capacity.

The effect of the geometric design and material parameters.
Coming back to Eq.(9), we now discuss its predictions of the
effect of several design parameters on the low-temperature heat
capacity of PnC plates. First, it is worth mentioning that the plate
thickness dependence only appears in the first, flexural wave
term, which is linear in temperature. This results from the fact
that the first order approximation is sufficient for the horizontal
shear and symmetric modes. (Second order approximations for
these modes would have small negative quadratic thickness
dependencies which would have an impact only at higher
temperatures23.) Thus, the plate thickness has the biggest effect at
the lowest temperatures where the linear term dominates (see
Fig. 5). This observation also agrees with our previous exact
calculations for SiN and Si11, where the thickness parameter was
seen to dominate at the lowest temperatures, while the lattice
constant had a larger effect at ~ 10mK and above. EMT theory
thus confirms that the area-specific heat capacity can also be
inversely proportional to the plate thickness for PnC plates,
similar to what happens for unperforated plates11,25.

The area-specific heat capacity also has simple linear (S and SH
modes) and square root (A mode) dependencies on the effective
density ρ*= (1− f)ρ. Because of this linearity, the density of the
material is a more sensitive design parameter for tuning the heat
capacity at higher temperatures where the S and SH modes
dominate.

The complete elliptic integral K(x) present in the T-linear term
is real valued in the range x 2 0; 1 withKð0Þ ¼ π=2

��
, and it has a

pole at x= 1. It seems therefore possible to strongly increase the
heat capacity if a pattern/material combination with x :¼
A=ð2BÞ � 1 could be found. However, this is not straightforward,
as we discuss in the following. The value of x can be analyzed as a
function of f and Poisson ratio ν; Young’s modulus of the plate
material does not affect this value. By increasing the hole filling
fraction f, the value of x also increases slowly. It also increases
when ν decreases. As a reference, for f= 0.5, ν=− 0.99 we have
x= 0.734 and K(x) ≈ 2.1286. Increase in the value of K is
therefore only ~ 36% higher compared to the isotropic unperfo-
rated plate case, so unfortunately the heat capacity increase by
this route seems quite limited at best.

How the Young’s modulus, Poisson ratio and filling factor affect
the heat capacity is a more complicated question and requires
numerical comparison of the results. Taking again the d= 50 nm
thick silicon nitride membrane as a reference, we see in Fig. 7 how
the elastic parameters of the PnC matrix material affect the heat
capacity, keeping ρ constant. Softer materials (E small) have a higher
heat capacity, and over the range E= 50−400 GPa, the heat capacity
can triple, and further improvement/reduction seems possible among
natural materials. Increasing the filling factor does not change the
heat capacity much between materials of different Young’s moduli: it
mainly affects the shear modulus of the effective material, which only
starts to play a role for the heat capacity when the SH mode becomes
dominant in the softest materials at the higher end of the
temperature range. Moreover, changing the Poisson ratio ν has only
a small effect on the heat capacity. Over the range of ν for natural
and artificial isotropic materials reported so far (including negative
values of ν), only a ±5% overall difference is seen compared to the
reference plate at the low temperature limit.

In Fig. 8 we compare how changing the filling factor affects the
EMT heat capacity in two different scenarios. On the left panel,
the heat capacities of SiN PnC metaplates with different filling
factors and various thicknesses are compared to full plates of the
same thickness (represented by the color) by plotting the
enhancement factor, i.e., the ratio CEMT,A/Cfull.

Material inside the holes would simply be removed in this case,
as is done in practice. With an increasing filling factor, the density
of the metaplate therefore decreases as more material is removed.
As reported before11, we see that removing material increases the
heat capacity in this case. The relative increase does not seem to
depend on the plate thickness at the lowest temperatures, as the
plotted curves for various thicknesses overlap there. With the
PnC patterning considered in this study, heat capacity can be
roughly doubled at the lowest temperatures by choosing f= 0.5.
Higher enhancements seem possible with increasing temperature,
but the EMT theory starts to lose accuracy there.

If instead of removing the material we “mold” the plate by
changing the plate thickness accordingly to maintain a constant
area density, then an increasing filling factor decreases the heat
capacity relative to a full plate with thickness dref, as seen in the
right panel in Fig. 8. Similarly to the case where material was
removed, the reference plate thickness dref does not seem to affect
the heat capacity enhancement factor at the low temperature limit.
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Thermal metamaterial. We also want to make comments on to
what extent the thermal metamaterial considered here exhibits
properties not found in naturally occurring materials. For low
temperatures, the natural material to compare to is the 3D Debye
solid. Considering its specific heat capacity/unit mass, it behaves
“normally” in the sense that it only depends on material para-
meters and constants, and by adding more mass, heat capacity
increases proportionally. It also has the property that the denser
the material, the larger the heat capacity increase/unit mass. Now,
the PnC metamaterial we have discussed has some “strange” and
in some sense negative properties. If we consider the limit where
the flexural mode dominates, then the total heat capacity (J/K) is
proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρð1� f Þ

p
A=d, from which we can derive that

the specific heat capacity/unit mass is proportional to
1=ðd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρð1� f Þ

p
Þ. It still depends on the extensive variables d and

f. By removing mass either by thinning the plate or by increasing
the hole sizes (filling factor), one can increase the specific heat,
and where one removes the atoms (plate surfaces or hole sur-
faces) affects the specific heat differently. Also, we see that the
lighter the matrix material, the more the specific heat increases,
entirely opposite to the natural case.

Conclusions
Focusing on phononic crystal geometries with periodic square lattice
hole patterns in isotropic plates, we derived an analytical effective
medium theory for the heat capacity of a phononic metaplate,
applicable at low temperatures. The purpose of the theory is to
greatly simplify the calculation of heat capacity of such structures,
and to aid in understanding which parameters should be tuned to
control it. We used a quasistatic elastic effective medium theory,
allowing us to include the emergent anisotropic elastic response of
the metasolid. We then proceeded to describe the characteristics of
the three dominant wave modes at low temperatures, and using
those results, derived a simple to use formula, which directly exposes
how the heat capacity depends on various material and geometrical
parameters. We analyzed the error by comparing the formula to the
exact numerically calculated heat capacity data, and found rough
guidelines for the hole pattern filling fraction and temperature where
the theory is most applicable for silicon nitride. Finally, we analyzed
how the design parameters affect the metaplate heat capacity, con-
cluding that either increase or decrease can be achieved by tuning
the parameters. The derived formula shows that the effects of

different parameters (such as the density of the matrix material, its
elastic modulus, the filling factor, the plate thickness) would add,
providing simple blueprints to tune the heat capacity by over an
order of magnitude. In the future, we can also consider the possi-
bility of an equivalent effective medium theory for low temperature
thermal conductance, but that theory is more complex because the
anisotropic group velocity has to be taken into account, as well.

Finally, we comment on the possible applications. Such tuning
of heat capacity can be relevant for low-temperature radiation
detectors, as the heat capacity of the absorber element in a
bolometric sensor dictates the temperature rise when electro-
magnetic quanta are absorbed in the element, thus affecting the
sensitivity of the device. The most sensitive detectors operate at
the temperature range of our study, at or below 0.1 K.

Methods
Exact mathematical description for the holey PnC plates. The exact mathe-
matical description for the low-frequency phonon modes in the geometry of a plate
of thickness d with a circular hole pattern in a 2D square lattice can be written as

∇ � c : ε ¼ �ρω2u inDnΩ
εij ¼

1
2

∂iuj þ ∂jui
� �

ujB±
i
¼ expðiðk � xÞÞ ujB�

i
; i ¼ 1; 2

n̂ � σðuÞ ¼ 0 onð∂DnΩÞnB±
i ;

ð10Þ

where ε is the infinitesimal strain tensor related to the displacement field u,
the elastic properties of the matrix material are given by the mass density
ρ and the elasticity tensor c= cijkl, which is assumed to be isotropic. Volume
D ¼ ½� a

2 ;
a
2� ´ ½� a

2 ;
a
2� ´ ½0; d� � R3 is the simple tetragonal unit cell of the

periodic PnC plate that has side lengths a (in the x1–x2 plane) and height d, and
where B±

i are the periodic boundaries with the Bloch-Floquet boundary con-
ditions. The hole is centered within the cell D and is a cylinder Ω standing in
the x3-direction, with a radius r < a/2 and a height d. The stress-free boundary
condition (the last equation in Eq. (10)) is applied on the remaining boundaries.
In the above, the double dot symbol is the tensorial double contraction
operator. As usual, we express the elasticity tensor as a 6 × 6 matrix following
the Voigt convention, so that the contraction operation reduces to weighted
matrix multiplication (see e.g.,17,21).

Detailed methodology for the calculation of the effective elasticity tensor. The
effective elasticity tensor in the average eigenstrain approximation is given by17

c� ¼ c : 1ð4sÞ � f ð1ð4sÞ � SPÞ�1
n o

; ð11Þ

where 1ð4sÞijkl ¼ 1
2 ðδikδjl þ δilδjkÞ is the fourth order symmetric identity tensor and f is

the volume filling factor of the void Ω. The tensor SP= SP(f, ν) only depends on the
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Fig. 8 Heat capacity enhancement factor. The enhancement factor CEMT,A/Cfull is plotted vs. T for a changing filling factor f of SiN PnC metaplate with
constant thickness (a), and constant area mass density [kg/m2] (b).
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hole shape, the lattice geometry, and the Poisson ratio of the original matrix
material.

For infinitely long cylindrical holes in a square lattice surrounded by an isotopic
matrix material, the tensor SP is given by17

SPijkl ¼
1
2

δilSIðj;kÞ þ δikSIðj;lÞ þ δjlSIði;kÞ þ δjkSIði;lÞ
� �

� 1
1� ν

SIði;jÞIðk;lÞ þ
ν

1� ν
δklSIði;jÞ

ð12Þ

where SI and SIJ, I, J= 1,…, 6 are infinite sums that have to be numerically
evaluated, and where indices I(i, j) are given by the elements of the matrix

I ¼
1 6 5

6 2 4

5 4 3

0
B@

1
CA: ð13Þ

The only non-zero terms SI and SIJ in this geometry are

S1 ¼ S2 ¼ f � ∑
±1

ni¼0

0
2J1 ðxÞ
x

� �2
ð�ξ1Þ

2

S11 ¼ S22 ¼ f � ∑
±1

ni¼0

0
2J1ðxÞ
x

� �2
ð�ξ1Þ

4

S66 ¼ S12 ¼ S21 ¼ f � ∑
±1

ni¼0

0
2J1ðxÞ
x

� �2
ð�ξ1�ξ2Þ

2
;

ð14Þ

where x ¼ ffiffiffiffiffiffiffiffi
4πf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

p
, �ξi ¼ ni4πf =x, ni 2 Z for i= 1, 2, and J1(x) is the first

order Bessel function of the first kind. The primed sum symbol here means that the
case n1= n2= 0 is excluded from the summation. Elements c�ijkl can also be given
closed form expressions in terms of the filling factor, however, they remain
complicated and still contain numerically approximated parts related to the above
infinite sums26, and we therefore prefer to compute the sums directly up to a high
truncation order.
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