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We consider particle filters with weakly informative observations (or ‘po-
tentials’) relative to the latent state dynamics. The particular focus of this
work is on particle filters to approximate time-discretisations of continuous-
time Feynman–Kac path integral models — a scenario that naturally arises
when addressing filtering and smoothing problems in continuous time — but
our findings are indicative about weakly informative settings beyond this con-
text too. We study the performance of different resampling schemes, such
as systematic resampling, SSP (Srinivasan sampling process) and stratified
resampling, as the time-discretisation becomes finer and also identify their
continuous-time limit, which is expressed as a suitably defined ‘infinitesimal
generator.’ By contrasting these generators, we find that (certain modifica-
tions of) systematic and SSP resampling ‘dominate’ stratified and indepen-
dent ‘killing’ resampling in terms of their limiting overall resampling rate.
The reduced intensity of resampling manifests itself in lower variance in our
numerical experiment. This efficiency result, through an ordering of the re-
sampling rate, is new to the literature. The second major contribution of this
work concerns the analysis of the limiting behaviour of the entire population
of particles of the particle filter as the time discretisation becomes finer. We
provide the first proof, under general conditions, that the particle approxima-
tion of the discretised continuous-time Feynman–Kac path integral models
converges to a (uniformly weighted) continuous-time particle system.

1. Introduction. Particle filters [18] have become a workhorse of non-linear stochastic
filtering and statistical state space modelling. The heart of the particle filters is the ‘inter-
action’ within the particles, which is caused by the resampling (or selection) step of the
algorithm. See e.g. [5] for a general introduction to particle filtering and its applications in
various scientific fields.

When the observations (or more generally the potential functions) are informative, that is,
the weights that go into the resampling have a high variability, empirical evidence suggests
that the choice of the resampling strategy can only make a small difference. In contrast,
when the observations (potential functions) are weakly informative and the weights tend to be
close to uniform, the performance differences between different resampling methods can be
substantial. In the weakly informative regime, it is therefore important to use an appropriate
resampling scheme.

Different resampling schemes have been suggested in the literature, and some resampling
schemes have been compared in terms of the conditional variance that they introduce to the
weights [13]. More recently, [16] considered ordering of resampling schemes with respect
to a so-called negative association, and introduced a new ‘SSP’ resampling scheme, which
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is preferable based on their theoretical findings. These analyses, as most other theoretical
analyses on resampling methods, focus on the asymptotic regime in the number of particles
N →∞.

We do not consider the asymptotic N → ∞, but keep N fixed instead. In contrast, we
consider the asymptotic behaviour of the resampling schemes as the potentials become less
and less informative. One domain of applications, where such a situation naturally arises, is
time-discretisations of continuous-time particle systems [11, 12] that approximate so-called
Feynman–Kac path integrals. We study the behaviour of discrete-time resampling schemes
when applied with discretisations of continuous-time Feynman–Kac path integral models.

The main contributions of this work are:

• We introduce a condition for (discrete-time) resampling, namely Assumption 2, which
ensures the existence of a limiting continuous-time particle system. In particular, when
this assumption is satisfied and under further general conditions, Theorem 19 establishes
the limiting continuous-time particle system that a particle implementation of the time-
discretised Feynman–Kac path integral model converges to (as the discretisation is re-
fined). Having established this asymptotic limit, Theorem 22 gives a result on its use for
unbiased estimation of certain expectations with respect to the continuous-time Feynman–
Kac path integral.

• In Section 4 we then proceed to analyse which resampling schemes satisfy Assumption 2
in a series of results, namely Propositions 4, 9, 10 and 13. When the condition holds, re-
sampling schemes can be ordered by comparing their limiting continuous-time resampling
intensities in Theorem 15 and Proposition 17. We find that certain variants of system-
atic resampling and SSP resampling have a common limiting overall resampling intensity,
which is guaranteed to be lower than that of the stratified or so-called killing resampling.
This suggests that our variants of systematic/SSP resampling can be preferable.

• Our empirical findings (Section 7) about the practical performance are in line with our the-
oretical results, and indicate that SSP resampling and systematic resampling, when applied
after a prior partial ordering of the weights about their mean, lead to the best performing
particle filters. This complements the positive findings for SSP [16], and suggests that a
partial ordering of weights should always be used with systematic resampling.

Overall our results fill important gaps in the literature on particle filters, in particular con-
cerning their continuous-time limiting behaviour. This is in contrast with e.g. [2, 10, 25],
who considered directly particular (theoretical) continuous-time algorithms (based on killing
resampling), and how they may be discretised.

We consider only resampling schemes that result in a uniformly weighted sample, so that
the particle system remains unweighted. Furthermore, all the studied resampling schemes
lead to ‘single-event’ continuous-time limits, meaning that at most one particle can disappear
at an individual time. These exclude the popular alternative strategy, adaptive resampling
[22], in which resampling is triggered at certain (random) times.

2. Hidden Markov models and particle filters. A hidden Markov model (HMM) con-
sists of two components: a latent (unobserved) Markov chain X1:T = (X1, . . . ,XT ) on state
a space X with an initial probability density f1(x1) and transition densities fk(xk | xk−1);
and conditionally independent observations Y1:T with conditional laws gk(yk | xk). The par-
ticle filter can be used to estimate integrals with respect to a conditional probability law, the
so-called smoothing distribution:

p(x1:T | y1:T )∝ p(x1:T , y1:T ) = f1(x1)g1(y1 | x1)
T∏

k=2

fk(xk | xk−1)gk(yk | xk).
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The Feynman–Kac model is an abstraction and generalisation which allows for defining a
family of unnormalised probability densities γ(x1:T ) which is equivalent to p(x1:T , y1:T ) in
the HMM context. It is based on ’proposal’ Markov chain laws M1(x1) and Mk(xk | xk−1)
[8] and non-negative ’potential functions’ Gk(x1:k), where x1:k ∈ Xk → Gk(x1:k) (which
can implicitly depend on y1:T too), so that p(x1:T | y1:T ) = πT (x1:T ), with πT defined as
follows:

(1) πk(x1:k) :=
γk(x1:k)

Zk
where γk(x1:k) :=M1(x1)G1(x1)

k∏
j=2

Mj(xj | xj−1)Gj(x1:j)

and Zk :=
∫
γk(x1:k)dx1:k. In the HMM context, we typically set G1(x1) = g1(y1 |

x1)f1(x1)/M1(x1) and

Gk(x1:k) = gk(yk | xk)fk(xk | xk−1)/Mk(xk | xk−1).

In the simplest case, when Mk ≡ fk, we get Gk(x1:k) = gk(yk | xk). Henceforth, the domain
of the potential Gk will be apparent from its argument. So when Gk : X→ [0,∞), an instance
of which is the just mentioned simplest case, we will write Gk(xk).

The focus of this paper is in situations where Gk are ’weakly informative,’ that is, when
Gk(xk) is nearly constant for typical values xk (with respect to πk). In the HMM setting,
this typically occurs when the observations Yk ∼ gk( · | xk) have substantial variability com-
pared to the variability of Xk ∼ fk( · | xk−1), and can also occur when Mk correspond to an
approximation of the smoothing distribution [cf. 27]. However, our main theoretical frame-
work is beyond the HMM context, where (M1:T ,G1:T ) correspond to time-discretisations of
a continuous-time path integral model (Section 3).

Hereafter, we will focus on the Feynman–Kac model in (1), assuming that πT is well-
defined, that is, the normalising constant ZT is finite and strictly positive. We use the no-
tation a:b = (a,a + 1, . . . , b) for integers a ≤ b, and use the same notation for indexing
and double indexing of sequences. Thus for sequences {xi}i, {yj}j and {zji }i,j we write
xa:b := (xa, . . . , xb), ya:b := (ya, . . . , yb) and zja:b

a:b := (zjaa , . . . , zjbb ). For N ∈ N, we denote
[N ] = {1,2, · · · ,N}. The sequence 1:N with k omitted and ℓ duplicated is denoted as
[k → ℓ]N :=

(
1:(k − 1), (k + 1):ℓ, ℓ:N

)
. The notation ‘dx’ implicitly stands for a σ-finite

dominating measure on X, integers are equipped with the counting measure, product spaces
are equipped with products of dominating measures and test functions are implicitly assumed
to be measurable.

Let us then turn to the particle filter algorithm based on the Feynman–Kac model. The
particle filter involves one additional ingredient: the resampling mechanism, which is de-
termined by a probability distribution r( · | g1:N ) on [N ]N , given unnormalised weights
g1:N ∈ [0,∞)N . We only consider resampling schemes r, which satisfy the following condi-
tion (which may be traced back to (4) in [7]):

ASSUMPTION 1. Whenever
∑N

i=1 g
i > 0, the indices A1:N ∼ r( · | g1:N ) satisfy

(2) E
[
1

N

N∑
i=1

1
(
Ai = j

)]
=

gj∑N
i=1 g

i

for all j ∈ [N ].

A resampling method that satisfies this assumption is known as being unbiased [1] since
the expected number occurrences of outcome j in the population A1:N is Ngj/(

∑N
i=1 g

i).
Algorithm 1 presents the particle filter in pseudo-code.
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Algorithm 1 PARTICLEFILTER(M1:T ,G1:T−1, r,N)

1: Draw Xi
1 ∼M1( · ) and set Xi

1 =Xi
1 for i ∈ [N ].

2: for k = 1, . . . , T − 1 do
3: Draw A1:N

k ∼ r
(
· |Gk(X

1
k), . . . ,Gk(X

N
k )

)
4: Draw Xi

k+1 ∼Mk+1( · |X
Ai

k
k ) and set Xi

k+1 = (X
Ai

k
k ,Xi

k+1) for i ∈ [N ].
5: end for
6: output

(
(X1:N

1 , . . . ,X1:N
T ), (A1:N

1 , . . . ,A1:N
T−1))

)

With the shorthand xk = x1:Nk for the whole particle system, we may write the law of the
output (X1:T ,A1:T−1) of Algorithm 1 in the following form:

(3) ζ(N)(x1:T , a1:T−1) =

( N∏
i=1

M1(x
i
1)

)( T−1∏
k=1

r
(
ak |Gk(xk)

) N∏
i=1

Mk+1(x
i
k+1 | x

ai
k

k )

)
.

As in Algorithm 1, denote xi
1 = xi1 and xi

k+1 = (x
ai
k

k , xik+1). We have used the shorthand
Gk(xk) in the second argument of r(· | ·) to mean Gk(x

1
k), . . . ,Gk(x

N
k ).

Under Assumption 1, the output of Algorithm 1 satisfies the following unbiasedness con-
dition [8, Theorem 7.4.2], which is key for particle Markov chain Monte Carlo [1]:

(4) Eζ(N)

[( T∏
k=1

1

N

N∑
i=1

Gk(X
i
k)

) N∑
i=1

W i
T f(X

i
T )

]
= γT (f) :=

∫
f(x1:T )γT (x1:T )dx1:T ,

where W i
T :=GT (X

i
T )/

∑N
j=1GT (X

j
T ). In addition, under further conditions on M1:T , G1:T

and f , the following consistency result holds (see e.g. Chapter 11 of [5] and references
therein, e.g. [7]):

(5)
N∑
i=1

W i
T f(X

i
T )

N→∞−−−−→ πT (f) :=

∫
f(x1:T )πT (x1:T )dx1:T in probability.

3. Continuous-time path integral model. Continuous-time Feynman–Kac path inte-
gral models are the continuous-time analogue of hidden Markov models discussed above.
The smoothing distribution is defined in terms of expectations of real-valued test functions ϕ
on the path space (more precisely, the Skorohod space DX[0, τ ] of càdlàg paths of a separable
metric space X):

(6) Π(ϕ) :=
1

ZM
EM

[
ϕ
(
Z[0,τ ]

)
exp

(
−
∫ τ

0
Vu(Zu)du

)]
with ZM := EM

[
exp

(
−
∫ τ

0
Vu(Zu)du

)]
,

where (Vu)0≤u≤τ is a sufficiently regular family of non-negative potential functions on X,
and M is the law of a Markov process Z[0,τ ] := (Zu)0≤u≤τ on X.

We focus on an approximation of the law (6) based on a time-discretisation 0 = t1 < · · ·<
tT = τ of the form

(7) ΠT (ϕ) :=
1

ZT
EM

[
ϕ
(
Ẑ[0,τ ]

) T−1∏
k=1

Gk(Ztk ,Ztk+1
)

]
, ZT := EM

[ T−1∏
k=1

Gk(Ztk ,Ztk+1
)

]
,

where Ẑu :=
∑T−1

k=1 1 (u ∈ [tk, tk+1))Ztk +1 (u= tT )ZtT is a càdlàg extension of the skele-
ton (Zt1 , . . . ,ZtT ) and where the potential functions Gk(Ztk ,Ztk+1

)≥ 0 are approximations
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of exp
(
−
∫ tk+1

tk
Vu(Zu)du

)
that can depend only on the values of Zu at times tk and

tk+1. Our theoretical focus is on a simple Euler-type form Gk(Ztk ,Ztk+1
) := Gk(Ztk) :=

exp
(
− (tk+1 − tk)Vtk(Ztk)

)
, but our method is also applicable to other approximation

schemes. For the fixed time-discretisation 0 = t1 < · · · < tT = τ , we may define M1 as
the initial distribution of Zt1 ; Mk for 2 ≤ k ≤ T as (an approximation of) the conditional
distribution of Ztk | Ztk−1

; G1 ≡ 1; and for 1≤ k ≤ T − 1, Gk(Ztk) as just defined.
Having just declared the Markov kernels M1:T and the potential functions G1:T−1, we can

now employ Algorithm 1 to form a particle approximation of ΠT (·) in (7) using (5); and also
an unbiased approximation of its normalising constant ZT using (4). Write

X(T ) :=
(
(X

(T )
k )1:N

)
1≤k≤T

for the resulting particle system, where the superscript (T ) refers to the discretisation
(tk)1≤k≤T ⊂ [0, τ ]. Our main focus in Sections 5 and 6 is to study the particle approxi-
mations as the discretisation is refined, that is as T →∞, but for a fixed N . We now give a
flavour of the results.

The first question is whether the law of the discrete-time particle system converges in some
sense to a law of the form (6) corresponding to a continuous-time Feynman–Kac model. To
enable this convergence study, in Section 4 below, we introduce a stability condition (As-
sumption 2) that encompasses several known unbiased resampling schemes. In Sections 5 and
6, we then present the main convergence results (Theorems 19 and 22) for the particle approx-
imations in the context of Itô diffusions for M (see (9)). First, Theorem 19 studies the con-
vergence of the continuous-time extension of the population of particles ((X̂(T )

t )1:N )0≤t≤τ ,
with càdlàg paths in (Rd)N defined by

(X̂(T )
u )i :=

T−1∑
k=1

1 (u ∈ [tk, tk+1)) (X
(T )
k )i + 1 (u= tT ) (X

(T )
T )i, i ∈ [N ].

In particular, parts (i) and (ii) of Theorem 19 identify a continuous-time Markov process with
càdlàg paths in (Rd)N that ((X̂(T )

t )1:N )0≤t≤τ converges to with respect to finite-dimensional
distributions as T →∞.

Then in Theorem 22 (result (12)) we show that a certain unnormalised time-marginal of
this limiting continuous-time Markov process coincides with the unnormalised time-marginal
of ZM ×Π(·) in (6). Using part (iii) of Theorem 19 and result (12) of Theorem 22, we then
conclude that the particle approximation of the (unnormalised) time-marginal Feynman–Kac
path integral converges (for a fixed N ) as the discretisation is refined:

lim
T→∞

E

{(
1

N

N∑
i=1

f
(
(X̂(T )

τ )i
))

exp

[
−
∫ τ

0

(
1

N

N∑
i=1

Vu

(
(X̂(T )

u )i
))

du

]}
=Π(f)×ZM,

where f : Rd → R is bounded and continuous, and Π(f) and ZM are as in (6) with
f(Z[0,τ ]) := f(Zτ ). Note that the integrals in the exponential term of the left hand side are
easy to evaluate as the (X̂(T ))i are piecewise constant càdlàg paths.

4. Discretisation stable resampling schemes. Our main focus is on resampling
schemes which lead to a valid continuous-time limit under infinitesimally refined discreti-
sations. It turns out that the following condition naturally ensures a such continuous-time
limit of a particle filter, and can provide insight about different resampling schemes.
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ASSUMPTION 2. For all v1:N ∈ [0,∞)N and for all a1:N ∈ [N ]N \ {1:N}, the limit

(8) lim
∆→0+

1

∆
r
(
a1:N

∣∣∣ ( exp(−∆v1), . . . , exp(−∆vN )
))

=: ι(a1:N , v1:N ).

exists, and for any v∗ > 0 the term inside the left-hand side limit is uniformly bounded for
v1:N ∈ [0, v∗]N and ∆ ∈ (0,1).

The limiting quantity ι(a1:N , v1:N ) can be interpreted as the resampling intensity corre-
sponding to the configuration a1:N ̸= 1:N , with instantaneous potential values v1:N . It can be
thought of as the ‘infinitesimal generator’ stemming from the resampling r in the continuous-
time limit. The sum of all resampling configurations

ι∗(v1:N ) :=
∑

a1:N ̸=1:N

ι(a1:N , v1:N )

is the overall resampling rate, that is, the intensity of any ‘event’ a1:N ̸= 1:N .
The basic and popular multinomial resampling scheme, which may be traced back to [18],

does not admit a continuous-time limit: the probability of survival, that is, getting any permu-
tation of 1:N , does not tend to unity as ∆→ 0. The same holds for the residual resampling
introduced by [20, 23].

Perhaps the simplest scheme which satisfies this condition is a discrete-time version of the
‘killing’ resampling [9]. In discrete-time killing, the particle at index i ‘survives’ with prob-
ability proportional to the unnormalised weight gi, and otherwise will be replaced with any
other particle j, with probabilities proportional to gj . We focus in particular on the following
version of discrete-time killing:

DEFINITION 3 (Killing resampling).

rkilling(a
1:N | g1:N ) :=

N∏
i=1

[
1
(
ai = i

) gi
g∗

+
(
1− gi

g∗

) N∑
j=1

1
(
ai = j

) gj∑N
ℓ=1 g

ℓ

]
,

where g∗ =maxi∈[N ] g
i.

In fact, any g∗ such that gi/g∗ ∈ [0,1] for all i ∈ [N ] yields a valid unbiased resampling.
The choice of g∗ above, which was also used in the algorithmic ‘rejection’ variant of [24],
ensures the highest survival probability, that is, a1:N = 1:N . The following result can be
verified by a direct calculation.

PROPOSITION 4. Killing resampling satisfies Assumptions 1 and 2 and has limiting in-
tensity

ιkilling(a
1:N , v1:N ) =

{
1
N (vi − vmin) if ai ̸= i, a¬i = ¬i,
0 otherwise,

where ¬i := (1, . . . , i− 1, i+ 1, . . . ,N) and where vmin := minj∈[N ] v
j . Consequently,

ι∗killing(v
1:N ) =

N − 1

N

N∑
i=1

(vi − vmin) = (N − 1)(v̄− vmin),

where v̄ :=N−1
∑N

i=1 v
i is the mean of the potential values v1:N .
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4.1. Stratified and systematic resampling. For the rest of Section 4, we assume fixed
unnormalised weights g1:N ∈ [0,∞)N \ {0}N and denote the corresponding normalised
weights by wi = gi/

∑N
j=1 g

j , and the cumulative distribution function by F (0) ≡ 0 and
F (i) =

∑i
j=1w

j for i ∈ [N ]. The generalised inverse F−1(u) is defined for u ∈ (0,1) as the
unique index i ∈ [N ] such that F (i− 1)< u≤ F (i).

DEFINITION 5 (Systematic resampling). Simulate a single ∼ U(0,1), set

Ǔ i :=
i− 1 +U

N

and define the resampling indices as Ai := F−1(Ǔ i) for i ∈ [N ].

DEFINITION 6 (Stratified resampling). Simulate U1:N ∼ U(0,1), set

Ǔ i :=
i− 1 +U i

N
,

and define the resampling indices as Ai := F−1(Ǔ i) for i ∈ [N ].

We consider slightly modified versions of these resampling schemes, which rely on an
auxiliary ordering of weights. This allows for simpler analysis, but our experiments also
suggest potential performance gains.

DEFINITION 7 (Mean partition). Suppose that u1:N ∈ RN . A permutation ϖ : [N ] →
[N ] is a mean partition (order) for u1:N , if the re-indexed vector uiϖ := uϖ(i) satisfies
u1ϖ, . . . , u

m
ϖ ≤ ū and um+1

ϖ , . . . , uNϖ > ū for some m ∈ [N ], where ū=N−1
∑N

i=1 u
i.

A mean partition ϖ can be found in O(N) time using Hoare’s scheme [21].

DEFINITION 8 (Systematic/stratified resampling with order ϖ). Let F−1
ϖ denote the gen-

eralised inverse distribution function corresponding to the re-indexed weights w1:N
ϖ . Set

Aϖ(i) :=ϖ
(
F−1
ϖ (Ǔ i)

)
,

where Ǔ1:N are defined as in systematic/stratified resampling.

In words, Definition 8 means that we process the particles in order ϖ within system-
atic/stratified resampling. We obtain the following convergence results, whose proofs are
given in Appendix A.

PROPOSITION 9. Let ϖ be a mean partition for −v1:N . Stratified resampling with order
ϖ (Definition 8) satisfies Assumption 2 with resampling intensity

ιstratified(a
1:N , v1:N ) =

{∑i
j=1

(
vϖ(j) − v̄

)
, aϖ(i) =ϖ(i+ 1), aϖ(¬i) =ϖ(¬i) for i ∈ [N − 1].

0, otherwise

The overall resampling rate is

ι∗stratified(v
1:N ) =

N∑
j=1

j(v̄− vϖ(j)).
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PROPOSITION 10. Let ϖ be a mean partition for −v1:N . Systematic resampling with
order ϖ (Definition 8) satisfies Assumption 2 with resampling intensity

ιsystematic(a
1:N , v1:N ) =

{(
min{skϖ, sℓ−1

ϖ } −max{sk−1
ϖ , sℓϖ}

)
+
, aϖ(1:N) =ϖ([k→ ℓ]N ),

0, otherwise,

where k, ℓ are such that vϖ(k) ≥ v̄ and vϖ(ℓ) < v̄ and s0ϖ := 0, siϖ :=
∑i

j=1(v
ϖ(j) − v̄). The

overall resampling rate is

ι∗systematic(v
1:N ) =

N∑
i=1

(v̄− vi)+.

REMARK 11. In a discrete time implementation, ϖ can be selected as mean partition of
unnormalised weights g1:N . In practice, when the mean partition ϖ for g1:N = exp(−∆v1:N )
is computed by Hoare’s scheme, the mean partition will converge to a mean partition for
−v1:N .

REMARK 12. We believe that ’plain’ stratified and systematic resampling (without mean
partition) also satisfy Assumption 2, but verification becomes more technical. In addition, our
empirical findings suggest that the mean partitioned versions can be preferable.

4.2. SSP resampling. We consider next a variant of SSP resampling [16] based on a
processing order (permutation) ϖ; see Algorithm 2. The function REPEATINDICES(r1:N ) in

Algorithm 2 SSPRESAMPLING(w1:N ,ϖ)

1: Let r1:N ←⌊Nw1:N ⌋, p1:N ←Nw1:N − r1:N . and (i, j)← (ϖ(1),ϖ(2)).
2: for k = 2, . . . ,N do
3: Set δi←min{pj ,1− pi} and δj ←min{pi,1− pj}
4: With probability 1

(
δi > 0

)
δi

δi+δj
, interchange (i, j)← (j, i).

5: if pi + pj < 1 then
6: Set pi← pi + δi and j←ϖ(min{k+ 1,N}).
7: else
8: Increment ri← ri + 1, set pj ← pj − δi and i←ϖ(min{k+ 1,N}).
9: end if

10: end for
11: Return A1:N ←REPEATINDICES(r1:N )

Algorithm 2 returns the non-decreasing index vector A1:N such that #{j ∈ [N ] :Aj = i}=
ri.

PROPOSITION 13. SSP resampling with mean partition order ϖ of −g1:N satisfies As-
sumption 2 with intensity

ιssp(a
1:N , v1:N ) =


(vk − v̄)+(v̄− vℓ)+

ι∗ssp(v
1:N )

a1:N = [k→ ℓ]N

0, otherwise,

with overall resampling intensity ι∗ssp(v
1:N ) = ι∗systematic(v

1:N ) =
∑N

i=1(v
i − v̄)+.

Proposition 13 follows directly from Proposition 29 and Lemma 27 in Appendix A.
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REMARK 14. The overall resampling intensity of the SSP resampling coincides with
systematic resampling with mean partition: ι∗ssp(v

1:N ) = ι∗systematic(v
1:N ). A closer inspec-

tion reveals that also the marginal intensities for elimination of a particle k, or duplication of
particle ℓ, coincide. However, the elimination and duplication indices K,L, respectively, are
independent in the case of SSP resampling, in contrast with systematic resampling, where
they have a (somewhat complicated) dependence.

4.3. Comparison of resampling rates and a simplified limiting scheme. In killing, and
in stratified/systematic/SSP resampling based on a mean partition ϖ, exactly one particle is
eliminated and one is duplicated in the limit. Therefore, the overall resampling event rate
ι∗ determines the instantaneous expected number of ’deaths’ in all of these schemes. This
motivates comparing the overall resampling rates.

THEOREM 15. The overall resampling intensities of killing, stratified and system-
atic/SSP resampling with mean partition ϖ of −v1:N satisfy

ι∗killing(v
1:N )≥ ι∗systematic(v

1:N ), and ι∗stratified(v
1:N )≥ ι∗systematic(v

1:N ),

for all potential values v1:N . However, ι∗killing and ι∗stratified do not satisfy such order in gen-
eral.

Theorem 15, whose proof is given in Appendix A, shows that systematic and SSP resam-
pling have the smallest overall resampling rate among the studied algorithms, which suggests
that they may therefore be preferable over killing and stratified resampling.

Let us conclude this section with another scheme, which has the same limit as SSP resam-
pling, but with more a transparent behaviour. Note that this scheme can only be used with
fine enough discretisations.

DEFINITION 16 (Symmetrised systematic resampling). Assume that g1:N are such that
their corresponding normalised weights w1:N satisfy p :=

∑N
i=1(Nwi − 1)+ ≤ 1 (cf. As-

sumption 24 in Appendix A).
With probability 1− p, return A1:N = 1:N ; otherwise pick indices K and L on [N ] inde-

pendently with probabilities

P(K = k) =
(1−Nwk)+

p
and P(L= ℓ) =

(Nwℓ − 1)+
p

,

and return A1:N = [k→ ℓ]N .

The following proposition is straightforward to check given Lemma 27 in Appendix A.

PROPOSITION 17. Symmetrised systematic resampling (Definition 16) satisfies Assump-
tion 2 with intensity ιs.syst(a

1:N , v1:N ) = ιssp(a
1:N , v1:N ).

REMARK 18. Symmetrised systematic resampling algorithm (Definition 16) can be used
in place of another resampling scheme, such as SSP resampling, whenever the required con-
dition is met (i.e. p ≤ 1). Such a combination would yield slight computational benefits, as
the symmetric systematic resampling only requires two uniform random variables.
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5. Convergence to a continuous-time limit. Here we present a convergence result for
particle filters as in Algorithm 1, targeting a time-discretised path-integral model as discussed
in Section 3. The state space is X := Rd and the transitions Mk correspond to appropriately
scaled Euler-Maruyama type discretisations of the d-dimensional diffusion

(9) dzt = b(zt)dt+ σ(zt)dWt,

with z0 ∼ µ for some fixed µ ∈ P(Rd) and coefficient functions b : Rd → Rd and σ : Rd →
Rd ×Rd specified below.

To this end, let τ > 0 be a continuous-time horizon, V : Rd → [0,∞) be a bounded and
continuous potential function and (∆n)n∈N ⊂ (0, τ ∧ 1) be an arbitrary decreasing sequence
of discretisation step sizes converging to zero.

For n ∈N, write X̃∆n for the (Rd)N -valued Markov chain given by Algorithm 1 with T =
⌊τ/∆n⌋+1, resampling scheme r satisfying Assumption 2 and the transitions (Mk)k∈1:T and
functions (Gk)k∈1:(T−1) defined as follows:

• M1 = µ, and Mk(dy | x) = P
(
x + b(x)∆n + σ(x)B∆n

k ∈ dy
)

for k ∈ 2:T , where the
B∆n

k ’s are independently distributed as N (0,∆nIRd);
• Gk(xk) := ν∆n(xk) :=

(
e−∆nV (x1

k), · · · , e−∆nV (xN
k )
)

for all k ∈ 1:(T − 1).

Note that each Gk in the above definition depends only on the states of the particles at time
k, so that (X̃∆n

k )k∈1:T is indeed a Markov chain.
Write then

X∆n

k := X̃∆n

k+1 for k ∈ {0,1, · · · , ⌊τ/∆n⌋}.

This re-indexing is introduced since particles commence with ‘time’ index 1 in Algorithm
1. The next theorem proves convergence of the càdlàg extension of this skeleton which is
defined as X∆n

⌊t/∆n⌋ for t ∈ [0, τ ].
Recall that by Assumption 2,

lim
n→∞

1

∆n
r
(
a | ν∆n(x)

)
= ι
(
a, (V (x1), · · · , V (xN ))

)
=: ιa(x)

for all a ∈ [N ]N \ {1:N}, with bounded and pointwise convergence with respect to x :=
(x1, · · · , xN ) ∈ (Rd)N in the sense that the term inside the limit is uniformly bounded with
respect to n and x.

THEOREM 19. Let the (Rd)N -valued Markov chains X∆n , n ∈ N, be as above. As-
sume that the coefficient functions b and σ of the diffusion (9) are Lipschitz continuous and
bounded, that the diffusion is uniformly non-degenerate in the sense that

(10) inf
x∈Rd

inf
θ∈Rd, |θ|=1

|σ(x)θ|> 0,

and that the functions ιa : (Rd)N → [0,∞), a ∈ [N ]N \ {1:N}, are bounded and continuous.

(i) There exists a continuous-time process (Zt)t≥0 with càdlàg paths in (Rd)N such that

lim
n→∞

(X∆n

⌊t1/∆n⌋, · · · ,X
∆n

⌊tT /∆n⌋) = (Zt1 , · · · ,ZtT )

in distribution for all finite {t1, · · · , tT } ⊂ [0, τ ].
(ii) The limit process Z in part (i) has infinitesimal generator

Lf(x) :=
∑
j∈[N ]

L(j)f(x) +
∑

a∈[N ]N\{1:N}

ιa(x)
(
f(xa(1:N))− f(x)

)
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for infinitely differentiable and compactly supported f : RdN →R and x ∈RdN , where L
is the generator corresponding to the d-dimensional diffusion (9), L(j)f(x) stands for
L[y 7→ f(x1, · · · , xj−1, y, xj+1, . . . , xN )](xj) and xa(1:N) = (xa(1), · · · , xa(N)) ∈ RdN

for x := (x1, · · · , xN ) ∈RdN and a ∈ [N ]N .
(iii) Let V : [0,∞)×RdN → [0,∞) be a bounded and continuous function. Then

lim
n→∞

E
[
f(X∆n

⌊τ/∆n⌋)

⌊τ/∆n⌋−1∏
k=0

e−∆nV(k∆n,X
∆n
k )
]
= E

[
f(Zτ ) exp

(
−
∫ τ

0
V(u,Zu)du

)]
for all bounded and continuous f : RdN →R.

The proof of Theorem 19 is given in Appendix B and the Supplementary Material [6].

REMARK 20. Regarding Theorem 19:

(i) The assumption about the boundedness and continuity of the functions ιa above often
follows automatically from the corresponding properties of the potential function V (cf.
Proposition 4).

(ii) Theorem 5 in the Supplementary Material [6] is a more general variant of part (iii) of
Theorem 19.

(iii) The result is formulated for time-homogeneous coefficient and potential functions b,
σ and V for simpler exposition. In fact, by considering a time-augmented state space
(i.e. [0,∞)× RdN instead of RdN ), an analysis similar to the one in the Supplementary
Material [6] can be carried out for time-dependent coefficient and potential functions,
resulting in a variant of the Theorem with a time-inhomogeneous limit process Z . We
omit the details; see e.g. [14, Chapter 4, Section 7] for basic results corresponding to such
generalisations.

(iv) In the special case where killing resampling is used, we recover as the limit the
continuous-time particle system described in e.g. Section 1.5.2 of [8] or [10]. See also
e.g. [25, Example 3.1.3 and Proposition 3.4] for a continuos-time particle model with
overall resampling rate that interestingly coincides with that of the systematic and SSP
resampling schemes (see Propositions 10 and 13).

6. Unbiased estimation of Feynman–Kac measures. Continuing the theme of Section
5, we explain how the unbiasedness condition of the resampling r (Assumption 1) leads
to an unbiasedness property for the jumping intensities ι(a, ·) (Definition 21 below). This
property will be applied for time-marginal Feynman–Kac measures of the particle filter on
the continuous-time limit, namely Theorem 22 below, which is a continuous-time variant of
the well-known property (4).

DEFINITION 21. We say that a resampling scheme r satisfying Assumption 2 is asymp-
totically unbiased if

(11)
∑

a∈[N ]N\{1:N}

ι(a, v1:N )
(
#{j ∈ [N ] : aj = i} − 1

)
=

1

N

N∑
j=1

vj − vi

for all v1:N ∈ [0,∞)N and i ∈ [N ].

In order to state the main result of this section, let us introduce the following notation: for
functions f : Rd →R, write f : (Rd)N →R for the function x 7→ 1

N

∑N
i=1 f(x

i).
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THEOREM 22. Let

(i) r be an asymptotically unbiased resampling scheme;
(ii) Z := (Zt)t≥0 be the continuous-time particle filter in Theorem 19;
(iii) z := (zt)t≥0 be the solution to the d-dimensional stochastic differential equation (9)

with initial distribution µ (the solution is unique in law under the assumptions of Theorem
19);

(iv) V : Rd → [0,∞) be the bounded and continuous potential function in (the construction
preceding) Theorem 19.

Then

(12) E
[
f(Zt) exp

(
−
∫ t

0
V (Zu)du

)]
= E

[
f(zt) exp

(
−
∫ t

0
V (zu)du

)]
for all t > 0 and bounded and measurable f : Rd →R.

Regarding assumption (i) in Theorem 22, we note that it follows from our standard As-
sumptions 1 and 2:

PROPOSITION 23. Suppose that the resampling r satisfies Assumptions 1 and 2. Then it
is asymptotically unbiased.

In particular, the assumption holds for all resampling schemes examined in Section 4,
but it may also hold for a richer class of resampling schemes, including ones that are not
necessarily unbiased in the sense of Assumption 1.

The proofs of Theorem 22 and Proposition 23 are presented in Appendix C.

7. Experiments. We compare empirically the behaviour of a number of resampling al-
gorithms in two experiments. Our first experiment is on an Ornstein-Uhlenbeck latent process
and a ‘box-shape’ potential (‘OU’). The second experiment is about the inference of a Cox
process, that is, an inhomogeneous Poisson process with latent intensity, where we use the
particle filter within a PMMH (particle marginal Metropolis-Hastings) sampler.

7.1. Ornstein-Uhlenbeck process and box potential. In this experiment, M corresponds
to the law of a stationary Ornstein-Uhlenbeck process (Zt)t∈[0,τ ] with initial distribution
Z0 ∼N(0, σ2

∞) which solves the following stochastic differential equation

dZt =−θZtdt+ σdWt,

where (Wt)t≥0 is the standard Brownian motion. The parameters are θ = 0.1 and σ = 1 and
the stationary variance is σ∞ = σ/

√
2θ ≈ 2.236.

The potential function is a (relatively narrow) ‘box-shaped’ potential function of the fol-
lowing form:

V (x) := 6× 1 (|x− 0.5|> 0.1) .

We study the performance of the particle filter with different resampling schemes in grad-
ually finer discretisation log2∆ ∈ {−12,−10, . . . ,0}, with different number of particles
N ∈ {64,128,256,512}. We repeat the particle filter 10,000 times with each configuration
to obtain the root mean squared errors (RMSE) in the figures. We consider the resampling
schemes discussed in Section 4. The resampling schemes that include mean partition order,
are named with ‘Partition’.
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FIG 1. Normalising constant estimates with N = 512 in the OU example. While the left panel uses a log scale and
compares all the resampling schemes, the right panel uses a linear scale to compare more finely those resampling
schemes that do not diverge as ∆→ 0.

FIG 2. Normalising constant estimates with different N in the OU example. Each panel corresponds to a different
value of ∆.

For each ∆, we calculate the ‘ground truth’ of the normalising constant, defined as ZT in
(7), over all scenarios (all resampling schemes, all N ). Taking this normalising constant as
the truth, we construct unbiased estimators of the relative normalising constant (true value 1)
and the filtering (the last state Ẑτ in (7)) and smoothing expectations (the first state Ẑ0). For
the latter, we use the ‘filter smoother’, that is, use traced back paths in estimation.

Figure 1 shows the normalising constant estimate mean squared errors (MSEs) in the case
N = 512. When ∆= 20, the performance is almost identical across resampling schemes, as
we are not in the weakly informative setting, but this is no longer the case as ∆ → 0. As
expected, the performance of multinomial and residual resampling decay as ∆ → 0, while
other resampling schemes remain stable. The increase in relative RMSE for the multinomial
scheme supports related results in [4] that show the variance of the normalising constant
estimate increases exponentially with the number of resampling instances. Similar to multi-
nomial, residual resampling rate does not stabilise (see comment after Assumption 2) and
hence the observed variance increase as ∆ decreases. The zoomed figure on the right sug-
gests that the best performance is obtained with SystematicPartition and SSPPartition. SSP
resampling is also close, and seems indistinguishable in the ∆→ 0 limit.

Figure 2 shows a similar picture for varying N , with two choices of ∆. The values of the
y-axis are RMSEs multiplied by

√
N , which is expected to stabilise if a central limit theorem
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FIG 3. Filtering and smoothing estimates with N = 512 in the OU example.

FIG 4. Filtering and smoothing estimates with ∆= 2−12 and varying N in the OU example.

type result holds. The results suggest that Killing, SSP, SSPPartition and SystematicPartition
indeed stabilise, with the latter two being again the best.

Figure 3 shows filtering and smoothing estimate MSEs for stable resampling schemes
similar to Figure 1. The conclusions are similar, except for systematic resampling, which
seems to be competitive with the best schemes in smoothing, but not in filtering.

Figure 4 shows filtering and smoothing estimate MSEs scaled with
√
N similar to Figure 2.

Again, Killing, SSP, SSPPartition and SystematicPartition seem stable in the case of filtering,
but smoothing with Killing has not stabilised yet.

7.2. Comparison with adaptive resampling. Adaptive resampling [22] is a commonly
used method with particle filters, where resampling is performed only when so-called ef-
fective sample size of the weights falls below a predefined threshold (fraction of particles).
Adaptive resampling is out of the scope of our theoretical framework, but can be useful in
practice also in the weak potentials setting, so we compare empirically how adaptive resam-
pling performs in the OU example (Section 7.1).

Figure 5 shows the performance with adaptive resampling with N = 512 particles and
threshold tres = 0.5, in the filtering and smoothing, similar to Figure 3. Adaptive resampling
seems stable with all resamplings, the differences between resamplings are small, and the per-
formance is competitive with the best non-adaptive resamplings. The behaviour with smaller
number of particles is qualitatively similar to N = 512 (results not shown).
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FIG 5. Adaptive resampling with threshold 0.5 and N = 512 in the OU example.

FIG 6. Adaptive resampling with log2∆=−12 and varying threshold in the OU example. The horizontal lines
indicate the performance with non-adaptive resmplings (tres = 1.0).

The threshold value, which controls how often resampling is triggered, is a tuning pa-
rameter of the method. We repeated the experiment with a range of thresholds tres ∈ {k/8 :
k = 0, . . . ,8} ∪ {1− 2−k : k = 4, . . . ,9}. Figure 6 shows a comparison of the results with
finest discretisation ∆ = 2−12. The differences between resamplings are small with low
threshold values, but more noticeable with higher thresholds. For normalising constant es-
timation and filtering, adaptive Multinomial resampling does not reach the efficiency of the
best non-adaptive schemes. In contrast, adaptive resampling can improve on the smoothing
performance, and for instance with tres = 0.5 all adaptive resamplings outperform the best
non-adaptive resampling. Interestingly, the optimal threshold value appears to depend on the
resampling. For Multinomial, Residual and Killing, the optimal value is close to 0.5, but for
SSPPartition and SystematicPartition, the optimal threshold is closer to one.

7.3. Cox process with Particle marginal Metropolis-Hastings. In our second example,
we consider a Cox process model, that is, an inhomogeneous Poisson process with random
intensity. We infer the latent intensity based on event times 0 < τ1 < · · · < τm < τ , leading
to the following model:

(13) Π(ϕ) :=
1

ZM
EM

[
ϕ
(
Z[0,τ ]

)
exp

(
−
∫ τ

0
Vu(Zu)du

) m∏
i=1

Vτi(Zτi)

]
,
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FIG 7. Generated latent state (blue) and observed times y (red) in the Cox process experiment, as well as the
posterior smoothing 50% and 95% credible intervals with PMMH using SystematicPartition and 32 particles.

where M stands for the law of a reflected Brownian motion on [a, b], and the potential
Vu(z) = βe−αz .

We approximate the reflected Brownian motion with the discrete-time dynamics M1 =
N(0,1) and Mk(· |Xk−1) for k ≥ 1:

X̂k ∼N(Xk−1,∆kσ
2); Xk = reflect(X̂k;a, b),

where ∆k = tk − tk−1 is the time difference between Xk−1, and Xk and reflect implements
a folding back to [a, b].

We consider synthetic data τ = (τ1, . . . , τn) generated from the model, where Zt is the
càdlàg extension of the skeleton Ztk =Xk on [0, T ]. We use the constant step size ∆k =∆=
0.01 and the parameter values σ = 0.3, α= 1.0, β = 0.5 and T = 200 in the simulation.

We then use the particle marginal Metropolis-Hastings (PMMH) [1] to do poste-
rior inference with independent N(0,2.5) prior for all log-transformed parameters θ =
(logσ, logα, logβ). The discretisation mesh is a uniform grid as in the data generation, aug-
mented with the data points. The potentials are defined as follows:

logGk(x) =−∆k+1β exp(−αx) + 1(tk ∈ τ)(log(β)− αx)

That is, the latter part is only included in case of data point is observed at tk. The initial value
of the PMMH is set to θ0 = (0,0,0). We use the continuous covariance adaptation scheme of
[19] within PMMH [cf. 26] during the entire simulation of 500,000 iterations, with 50,000
taken as as burn-in. We repeat the experiment with N ∈ {16,32,64,128,256} particles and
the same range of resampling algorithms as in the previous experiment.

Figure 7 shows the data in the experiment, and illustrates the inference outcome for the
latent state. It is intuitive that there is substantial uncertainty in longer intervals with no
observations. In these intervals, the potentials are weak, and so the resampling strategy is
expected to have an impact in the efficiency.

Figure 8 (left) shows the PMMH acceptance rate in the different scenarios. The same group
of SSP, SSPPartition and SystematicPartition attains the highest rates, and with multinomial
and residual resampling, the acceptance remains notably lower. To attain a 10% acceptance
rate, residual resampling needs 128 particles in contrast with 32 particles for the best resam-
pling schemes.

Figure 8 (right) illustrates the mean inverse relative efficiencies (IREs) [17], that is, mean
asymptotic variances of the standardised log-transformed parameters, multiplied by number
of particles. The asymptotic variances are calculated by batch means [15], and standardisation
is based on mean and variance estimates calculated from all outputs. The results are in line
with earlier findings, but suggest that a low number of particles (even as low as 8) might
be optimal in some cases. However, this might well be anomaly due to underestimation of
asymptotic variance, which is supported by inspection of autocorrelation plots of the first
parameter (logα) shown in Figure 9. Note that the lags are chosen inversely proportional to
N to account for varying cost per iteration.
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FIG 8. Acceptance rate (left) and mean inverse relative efficiency (right) of PMMH in the Cox process experiment.

FIG 9. Autocorrelation functions of logα in the Cox process experiment.

8. Discussion. We investigated the effect of resampling methods in a particle fil-
ter targeting a HMM with uninformative observations, by considering discretisations of
continuous-time path integral models. We introduced a general condition for discrete-time
resampling schemes which guarantees convergence to a non-degenerate particle system the
continuous-time limit. We are unaware of earlier results establishing continuous-time limits
of particle filters with different resampling strategies.

Resampling methods which satisfy our condition are ‘safe’ to use with weakly informative
observations/potentials. We introduced modified versions of stratified/systematic/SSP resam-
pling, which are shown to satisfy the condition. The modified strategies add a simple (and
computationally cheap) algorithmic step to the resampling schemes, which orders the weights
about their mean value. The modified algorithms lend themselves to a theoretical analysis,
which reveals that systematic and SSP resampling schemes yield the smallest overall resam-
pling rate, and may therefore be preferable.

Our empirical results complement our theoretical findings: systematic and SSP resampling
with mean ordering had the best performance in all experiments. Because of the appealing
theoretical properties of SSP resampling [cf. 16], it can be recommended also in the weakly
informative regime. However, the systematic resampling may remain preferable in some set-
tings, because of its slightly lower computational cost. Interestingly, the mean partition order,
which was necessary for theoretical analysis, appears to improve the performance of system-
atic resampling as well. Based on our findings, we recommend that systematic resampling
is always used together with the mean partition ordering of the weights. SSP resampling
appears to perform well also without such pre-ordering.

Adaptive resampling [22] and further refinements, such as partial interaction schemes [28],
can also be useful in the weakly informative setting, but are out of the scope of our theoretical
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framework. Our empirical comparison suggests that adaptive resampling can further improve
performance of the studied resampling algorithms. However, optimal choice of threshold is
non-trivial, as it seems to depend on the resampling scheme.

APPENDIX A: PROOFS FOR SECTION 4

We first establish results for weights that are mean partitioned and nearly constant.

ASSUMPTION 24. Let w1:N be normalised weights and write wi = 1+ϵi

N where ϵi =

Nwi − 1. Suppose that
∑

i |ϵi| < 2 and that there exists m ∈ [N ] such that ϵ1, . . . , ϵm ≤ 0
and ϵm+1, . . . , ϵN > 0.

In what follows, under Assumption 24, we denote c0 = 0 and ci :=−
∑i

j=1 ϵ
j for i ∈ [N ].

Then we may write the distribution function corresponding to w1:N as follows:

F (i) =

i∑
j=1

wj =
1

N

(
i− ci

)
for i= 0, . . . ,N.

LEMMA 25. Under Assumption 24:

(i) c1 ≤ · · · ≤ cm, cm > · · ·> cN and ci ∈ [0,1) for i ∈ [m].
(ii) For u ∈ (0,1) and ǔi := (i− 1 + u)/N , the following hold:

F (i− 1)< ǔi ≤ F (i) ⇐⇒ u≤ 1− ci

F (i)< ǔi ≤ F (i+ 1) ⇐⇒ u > 1− ci.

PROOF. Because
∑

i |ϵi| =
∑

i(ϵ
i)+ +

∑
i(−ϵi)+ < 2, and

∑
i ϵ

i = 0 so
∑

i(ϵ
i)+ =∑

i(−ϵi)+ < 1, from which (i) follows, and (ii) is a direct consequence of ci ∈ [0,1).

LEMMA 26. Let A1:N be indices from stratified resampling (Definition 6). If Assumption
24 holds, then Ai ∈ {i, i+ 1} for all i ∈ [N ] and for any K ⊂ [N − 1] and S = [N ] \K ,

P(Ai = i, Aj = j + 1 for all i ∈ S and j ∈K) =

(∏
j∈S

(1− cj)

)(∏
i∈K

ci
)
.

PROOF. Because the Ǔi’s are independent, we may write the probability of interest as(∏
j∈S

P
(
F (j − 1)< Ǔ j ≤ F (j)

))(∏
i∈K

P
(
F (i)< Ǔ i ≤ F (i+ 1)

))
,

from which the result follows by Lemma 25.

LEMMA 27. Let v1:N ≥ 0. The normalised weights w1:N
∆ corresponding to unnormalised

weights gi∆ = exp(−∆vi) may be written as

wi
∆ =

1+ ϵi∆
N

, where ϵi∆ =∆(v̄− vi) + ri∆

where v̄ =N−1
∑N

i=1 v
i stands for the mean potential and the error terms ri∆ = o(∆) and

satisfy |ri∆| ≤ c∆ for all ∆ ∈ (0,1), where the constant c depends only on N and maxi v
i.

Consequently,

ci∆ :=−
i∑

j=1

ϵj∆ =∆

i∑
j=1

(vj − v̄) + r̃i∆, r̃i∆ = o(∆), |r̃i∆| ≤ c̃∆.
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PROOF. Direct calculation for ϵi∆ =Ngi∆/
∑N

j=1 g
j
∆ − 1 yields that

lim
∆→0

d

d∆
ϵi∆ =

1

N

N∑
j=1

vj − vi = v̄− vi,

and properties of the error term can be verified, for instance, by using a Taylor expansion for
the exponential function.

PROOF OF PROPOSITION 9. Suppose first that −v1:N are mean ordered, and that ∆ is
sufficiently small so that also w1:N

∆ ∝ exp(−∆v1:N ) satisfy Assumption 24. Lemma 27 to-
gether with Lemma 26 give

lim
∆→0+

1

∆
r
(
a1:N | exp(−∆v1:N )

)
=

{∑i
j=1(v

j − v̄), ai = i+ 1 and a¬i = ¬i.
0, otherwise.

The corresponding overall resampling rate is therefore
N∑
i=1

i∑
j=1

(vj − v̄) =

N∑
j=1

(N + 1− j)(vj − v̄) =

N∑
j=1

j(v̄− vj).

The claim follows from this result applied to re-indexed vϖ and aϖ .

LEMMA 28. Let A1:N be indices from systematic resampling (Definition 5). If Assump-
tion 24 holds, then for any k ∈ [m] and ℓ ∈ [N ] \ [m],

P
(
Ai = i for i < k and i≥ ℓ, Aj = j + 1 for k ≤ j < ℓ

)
=
(
min{ck, cℓ−1} −max{ck−1, cℓ}

)
+
,

and these events are the only possible in addition to the ‘no resampling’ event, for which

P(A1:N = 1:N) = 1− cm.

PROOF. By Lemma 25, the event is equivalent to

P
(
U ≤ 1− ci for i < k and i≥ ℓ, U > 1− cj for k ≤ j < ℓ

)
= P

(
U ∈ (1− ck,1− ck−1],U ∈ (1− cℓ−1,1− cℓ]

)
,

thanks to the monotonicity properties of c1:m and cm+1:N . The latter follows similarly be-
cause cm =maxi∈[N ] c

i.

PROOF OF PROPOSITION 10. Suppose first that −v1:N are mean ordered. Lemma 27
with Lemma 28 yield

lim
∆→0+

1

∆
r
(
a1:N | exp(−∆v1:N )

)
=

{(
min{sk, sℓ−1} −max{sk−1, sℓ}

)
+

a1:N = [k→ ℓ]N ,

0, otherwise,

where s0 = 0 and si =
∑i

j=1(v
j − v̄). The overall resampling rate is

m∑
k=1

N∑
ℓ=m+1

(
min{sk, sℓ−1} −max{sk−1, sℓ}

)
+
=

m∑
k=1

(sk − sk−1) = sm,

because s0:m is increasing and sm:N is decreasing. The result follows by re-indexing wrt. ϖ.
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PROPOSITION 29. Suppose that the normalised weights w1:N satisfy Assumption 24 and∑N
i=1 |ϵi|< 1. Then, for the SSP resampling with identity order ϖ, the only events with non-

zero probability in addition to 1:N are of the form A1:N = [k→ ℓ]N , with probabilities:

P(A1:N = [k→ ℓ]N ) =
(−ϵk)+(ϵ

ℓ)+∑N
i=1(ϵ

i)+
, for k, ℓ ∈ [N ].

PROOF. Thanks to Assumption 24, the initial values of p1:N satisfy pi = 1 + ϵi for i =
1, . . . ,m and pi = ϵj for j =m+ 1, . . . ,N , and now ci =−

∑i
j=1 ϵ

j ∈ [0,1/2).
Note that the state of Algorithm 2 after lines 3–4 is independent of the order of the indices

(i, j) before, so without loss of generality, we may assume that i < j = k always before line
3. We may deduce inductively that after line 3 with k ∈ {2:m}:

• pi = 1− ck−1 and pj = 1+ ϵk, and
• pi > 1/2 and pj > 1/2 and therefore δi = 1− pi = ck−1 and δj = 1− pj =−ϵk.

With probability δj/(δi + δj) = −ϵk/ck, the indices at next iteration will be i = k and j =
k + 1, and r1:k−1 have all been incremented by one. The probability to end up with indices
i = k and j = m + 1 after iteration m is (−ϵk/ck)

∏m
i=k+1(c

i−1/ci) = −ϵk/cm, in which
case all r1:m have been incremented by one, except for rk.

Given the above scenario happens, then in the steps k ∈ {(m + 1):(N − 1)} of the al-
gorithm, it is again easy to see inductively that pi + pj = 1− ck < 1 so δi,j = pj,i and that
pi = 1− cj−1. The probability to end up with i= ℓ and j =N after iteration N − 1 is there-
fore ϵℓ/(1− cℓ)

∏N−1
j=ℓ+1(1− cj−1)/(1− cj) = ϵℓ/(1− cN−1), in which case in the beginning

of the last step, pi + pj = 1− cN = 1. Now, rℓ will be incremented by one with probability
(1− cN−1). We conclude the overall probability of outcome [k → ℓ]N , which is equivalent
to incrementing rℓ and r1:m by one except for rk.

PROOF OF THEOREM 15. Note that for any i such that (v̄− vi)+ > 0, that is, vi < v̄, we
have

(v̄− vi)+ = v̄− vi ≤ v̄− vmin,

and there are of course at most N − 1 such i, so

ι∗systematic(v
1:N )≤#{i : vi < v̄}(v̄− vmin)≤ (N − 1)(v̄− vmin) = ι∗killing(v

1:N ).

Assuming mean ordered −v1:N we may write

ι∗stratified(v
1:N )− ι∗systematic(v

1:N ) =

m∑
j=1

j(v̄− vj) +

N∑
j=m+1

(j − 1)(v̄− vj)

≥m

m∑
j=1

(v̄− vj) +m

N∑
j=m+1

(v̄− vj) = 0.

To see that there cannot be such an order between ι∗killing and ι∗stratified, consider N = 3

and strictly decreasing v1:3. Now, vmin = v3 and

ι∗killing(v
1:N )− ι∗stratified(v

1:N ) = 2(v̄− v3)− (v̄− v1)− 2(v̄− v2)− 3(v̄− v3) = v2 − v̄

=
2

3

(
v2 − v1 + v3

2

)
,

which can be positive or negative depending on v2 ∈ (v3, v1). A similar example can be
constructed for any N > 3 (we omit the details).
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APPENDIX B: PROOF OF THEOREM 19

This section is dedicated to an outline of the proof of Theorem 19. The details of the proof
are given in the Supplementary Material [6].

B.1. A new construction of X∆
k in Theorem 19 . For notational convenience, we

present a new (equivalent) construction for the (Rd)N -valued Markov chains {X∆
k }k∈N0

for
∆ ∈ {∆n : n ∈N}. This new construction is self-contained in the sense that it does not make
reference to Algorithm 1 (which we did when introducing this chain in Section 5).

Denote by µ := M1 ∈ P(Rd) the initial distribution for the particles, and by W :=
(W 1, · · · ,WN ) a fixed dN -dimensional Brownian motion (so that the W j’s are indepen-
dent d-dimensional Brownian motions) with respect to a filtration (Ft)t≥0. We then redefine
the Markov chain X∆ := (X∆

k )k∈N0
by (X∆

0 )j ∼ µ independently for j ∈ [N ] and

(X∆
k+1)

j = (X∆
k )Ak(j) + b

(
(X∆

k )Ak(j)
)
∆+ σ

(
(X∆

k )Ak(j)
)(
W j

(k+1)∆ −W j
k∆

)
for k ∈ N0 and j ∈ [N ]. Here Ak ∈ [N ]N stands for the multi-index resulting from the re-
sampling at time k, i.e. Ak ∼ r(· | ν∆(X∆

k )), and Ak(j) ∈ [N ] stands for the j’th index of
Ak.

More precisely, we may write

(14) Ak =

NN∑
ℓ=1

1
( ℓ−1∑

i=1

r(ai | ν∆(X∆
k ))<U∆

k ≤
ℓ∑

i=1

r(ai | ν∆(X∆
k ))
)
aℓ,

where {a1, · · · , aNN} is some fixed enumeration of [N ]N , and the U∆
k ’s are uniform random

variables on (0,1) independent of each other and the W j’s. We can take each U∆
k to be Fk∆-

measurable. The Markov chain X∆ is then (Fk∆)k∈N0
-adapted for all ∆ ∈ {∆n : n ∈N}.

Now define the continuous-time scaling Z∆ of this Markov chain by

(15) Z∆
t :=X∆

⌊t/∆⌋, t ∈ [0,∞),

so that Z∆ is for all ∆ an (Ft)t≥0-adapted process with paths in DRdN [0,∞), the Skorohod
space of càdlàg paths in RdN .

B.2. Outline of the proof of Theorem 19 . The main steps in the proof of parts (i) and
(ii) of the theorem are summarised below, where we add a prefix ’S’ to the references to the
Supplementary Material [6], so for instance Theorem S5 means Theorem 5 of [6]:

• In order to use a convergence result from [14], our first goal is to show that the fam-
ily of processes (Z∆n)n∈N is relatively compact with respect to convergence in distribu-
tion, i.e. that {P(Z∆n ∈ ·) : n ∈ N} is a relatively compact set in the weak topology of
P(DRdN [0,∞)). This is done in Proposition S1.

• The second step is to declare the continuous-time process (Zt)t≥0 that the càdlàg exten-
sions (Z∆n

t )t≥0 will converge to. The process (Zt)t≥0 is the canonical càdlàg process
(Xt)t≥0 introduced immediately before Proposition S2, equipped with a law possessing
the generator L. Proposition S2 proves (by establishing the well-posedness of the corre-
sponding martingale problem) that this law is uniquely determined and Markovian.

• We then show in Proposition S3 that the appropriately-scaled discrete-time derivative of
the transition kernel of (X∆n

k )k∈N0
, the skeleton of (Z∆n

t )t≥0, converges in a suitable sense
to the generator L as n→∞.

• Proposition S4 and Theorem S5 then complete the proof of parts (i) and (ii).
• The proof of part (iii) is presented in the final part of the Supplementary Material [6].
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APPENDIX C: PROOF OF THEOREM 22

We start with the following auxiliary result, which states the intuitively simple fact that
although the sample paths of the particle filter Z are discontinuous with probability 1, the
probability of discontinuities (i.e. resampling-induced jumps) at any given time is negligible.

PROPOSITION 30. Let Z be the càdlàg process in Theorem 19. Then

P
(
Zt = Zt−

)
= 1

for all t > 0.

PROOF. We only give a brief outline of a proof. It suffices to show that

(16) E
[
|f(Zt)− f(Zt−)|

]
= 0

for any bounded and Lipschitz continuous f : RdN →R. The càdlàg property implies that

f(zt)− f(zt−) = lim
δ→0+

1

δ

(∫ t+δ

t
f(zu)du−

∫ t

t−δ
f(zu)du

)
for all z ∈DRdN [0,∞) and t > 0 with bounded and pointwise convergence, and the expres-
sion inside the limit is for each δ > 0 a continuous function of z ∈ DRdN [0,∞). We can
then proceed as in the proof of Theorem 5 of the Supplementary Material [6], noting that
resampling-induced jumps of the processes Z∆n happen with arbitrarily small probability on
arbitrarily small time intervals.

PROOF OF THEOREM 22. It suffices to establish (12) for f ∈ C∞
c (Rd), the space of in-

finitely differentiable and compactly supported functions on RdN , since any bounded and
measurable function on Rd can be approximated pointwise by an uniformly bounded se-
quence of functions in C∞

c (Rd).
Write

Qt(F ) := E
[
F (Zt) exp

(
−
∫ t

0
V (Zu)du

)]
for F ∈C∞

c (RdN ) and

Qt(f) := E
[
f(zt) exp

(
−
∫ t

0
V (zu)du

)]
for f ∈C∞

c (Rd).
For fixed F , the measure flow Qt(F ) is differentiable with respect to t > 0. In order to

show this and compute d
dtQt(F ), write Et := exp(−

∫ t
0 V (Zu)du) for t > 0. Then for δ > 0

with δ≪ 1,

F (Zt+δ)Et+δ − F (Zt)Et =Et

(
F (Zt+δ)− F (Zt)

)
+ F (Zt+δ)

(
Et+δ −Et

)
.

By the martingale problem (see the Supplementary Material [6]), F (Zt+δ)− F (Zt) can be
written as Mt+δ −Mt +

∫ t+δ
t LF (Zu)du for some martingale M (with respect to the filtra-

tion FZ generated by Z). Using this in combination with the tower property of conditional
expectations (with respect to FZ

t ), we can calculate

Qt+δ(F )−Qt(F ) = E
[
Et

∫ t+δ

t
LF (Zu)du

]
+E

[
F (Zt+δ)

(
Et+δ −Et

)]
.
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The càdlàg property in conjunction with the dominated convergence theorem then implies

lim
δ→0+

Qt+δ(F )−Qt(F )

δ
= E[LF (Zt)Et]−E[F (Zt)V (Zt)Et] =Qt

(
(L− V )F

)
.

For negative δ, we may compute Qt+δ(F )−Qt(F ) in a similar manner by using the tower
property with respect to the filtration FZ

t+δ instead of FZ
t . Then Proposition 30 above together

with the dominated convergence theorem imply

(17) lim
δ→0−

Qt+δ(F )−Qt(F )

δ
=Qt

(
(L− V )F

)
.

In a similar (in fact easier since the sample paths of z are automatically continuous) way we
may calculate

(18)
d

dt
Qt(f) =Qt

(
(L− V )f

)
for any f ∈ C∞

c (Rd), where L is the infinitesimal generator corresponding to the diffusion
(9).

Now the left-hand side of the statement of the Theorem is Qt(f) =: Q̂t(f) and the right-
hand side is Qt(f). We will show that the evolution equation for Q̂ is of the same form as
(18). To this end, recall that L= Lmut +Ljump as in (11) of the Supplementary Material [6].
For f ∈C∞

c (Rd), we simply get Lmut(f) = Lf , and further

Ljump(f)(x) =
∑

a̸=1:N

ιa(x)
( 1

N

N∑
i=1

f(xa(i))− 1

N

N∑
i=1

f(xi)
)

=
1

N

N∑
i=1

( ∑
a̸=1:N

ιa(x)(#a,i − 1)
)
f(xi),

where #a,i := #{j : a(j) = i}. Thus, comparing the right-hand sides of (17) and (18) (with
f in place of F ), we see that

d

dt
Q̂t(f) = Q̂t

(
(L− V )f

)
is equivalent to

(19) Qt

( 1

N

N∑
i=1

( ∑
a̸=1:N

ιa(x)(#a,i − 1)
)
f(xi)

)
=Qt(V · f − V f).

Writing out the expression inside the right-hand side parentheses and comparing the coeffi-
cients of the f(xi)’s, one sees that (19) will follow from the identity

(20)
∑

a̸=1:N

ιa(x)(#a,i − 1) = V (x)− V (xi)

for all i and x, which is simply assumption (i) of the Theorem.
Thus the measure flows Q and Q̂ satisfy the same evolution equation, and by the assump-

tions we have Q0 = Q̂0. Our next task is to verify that this evolution equation is well-posed
in a suitable sense.

In order to work in a space of probability measures, let us denote by Ṙd the standard
one-point compactification of Rd with infinity point o. Define the probability measures Qo

t ∈
P(Ṙd) and Q̂o

t ∈ P(Ṙd), t≥ 0, by

Qo
t (f) :=Qt(f|Rd) +

(
1−Qt(1|Rd)

)
f(o) =Qt

(
(f − f(o))|Rd

)
+ f(o)
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for (bounded and) continuous f : Ṙd →R and similarly for Q̂ in place of Q. Define M as the
collection of continuous functions f on Ṙd such that(

f − f(o)
)
|Rd ∈C∞

c (Rd),

and define the linear operator A on M by

Af(x) = L
(
f − f(o)

)
|Rd(x) + V (x)

(
f(o)− f(x)

)
, x ∈ Ṙd,

with the understanding that Af(o) = 0.
Now the flows Qo and Q̂o both satisfy the forward equation

(21) µt(f) = µ0(f) +

∫ t

0
µu(Af)du, t > 0,

for (the natural extensions of) f ∈ C∞
c (Rd), and it is easy to see that this extends to f ∈M .

We are thus in a place to apply a uniqueness result from [14]: it is routinely verified that A
satisfies the positive maximum principle, M is an algebra of functions that is dense in the
space of continuous functions on Ṙd (with respect to the sup-norm), and the DṘd [0,∞)-
martingale problem for (A,M) is well-posed (see the Supplementary Material [6]). Thus
[14, Chapter 4, Proposition 9.19] yields well-posedness for the forward equation (21).

In particular, Qo
t (f) = Q̂o

t (f) for all t > 0 and (extensions of) f ∈ C∞
c (Rd), which trans-

lates to Qt(f) = Q̂t(f).

Finally, let us prove Proposition 23:

PROOF OF PROPOSITION 23. Let i ∈ [N ], v1:N ∈ [0,∞)N and ∆> 0. By Assumption 1,

Ne−∆vi∑N
j=1 e

−∆vj
=

N∑
j=1

r
(
a(j) = i | exp(−∆v1:N )

)
=

N∑
j=1

∑
a∈[N ]N

r
(
a | exp(−∆v1:N )

)
1 (a(j) = i)

=
∑

a∈[N ]N

r
(
a | exp(−∆v1:N )

)
#{j : a(j) = i},

and subtracting
∑

a∈[N ]N r(a | exp(−∆v1:N ))≡ 1 from this yields

∑
a̸=1:N

r
(
a | exp(−∆v1:N )

)(
#{j : a(j) = i} − 1

)
=

Ne−∆vi −
∑N

j=1 e
−∆vj∑N

j=1 e
−∆vj

.

Dividing this by ∆ and taking ∆→ 0+ leads to (11), as in the proof of Lemma 27.
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SUPPLEMENTARY MATERIAL

Supplement to: “On resampling schemes for particle filters with weakly informative
observations”
Detailed proof of Theorem 19.

Source codes
Julia [3] source codes of the experiments in Section 7.
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