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Weighted Hardy Spaces of Quasiconformal Mappings

Sita Benedict, Pekka Koskela and Xining Li

Abstract

We study integral characterizations of weighted Hardy spaces of quasiconformal mappings

on the n-dimensional unit ball using the weight (1 − r)n−2+α. We extend known results for

univalent functions on the unit disk. Some of our results are new even in the unweighted setting

for quasiconformal mappings.

1 Introduction

Analogously to the definition in the setting of analytical functions on the unit disk, a quasiconformal

mapping f : Bn → Rn belongs to the Hardy space Hp, 0 < p <∞, if

sup
0<r<1

ˆ
Sn−1

|f(rω)|pdσ(ω) <∞.

The theory for Hardy spaces of quasiconformal mappings was initiated in [10] and expanded on in

[3]. Many of the characterizations of the classical Hardy spaces by way of various maximal functions

have already been shown to also hold in the quasiconformal setting. In particular, consider the

maximum modulus function M(r, f) = supω∈Sn−1 |f(rω)|, 0 < r < 1. It was shown in [3] that

membership in Hp is equivalent with

ˆ 1

0
Mp(r, f)(1− r)n−2dr <∞, (1.1)

for quasiconformal f , thus extending the well-known characterization of univalent functions of the

unit disk that belong to Hp.

In this paper, we consider integral characterizations of weighted Hardy spaces, using (1.1) as

the starting point and the weight (1− r)n−2+α for a suitable range of α. Thus our Hardy space Hp
α

consists of those f for which

ˆ 1

0
(1− r)n−2+αMp(r, f)dr <∞.

For univalent functions on the unit disk, the Hardy spaces Hp
α have been studied in [5] and [8].

Our main result is as follows:

Theorem 1.1. Let f : Bn → Rn be a quasiconformal mapping, 0 < p < ∞, and 1 − n < α < ∞.

Then the following are equivalent:

ˆ 1

0
(1− r)n−2+αMp(r, f)dr <∞, (1.2)
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ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f(x)|p−n|Df(x)|ndxdr <∞, (1.3)

ˆ 1

0
(1− r)n−2+α

(ˆ
B(0,r)

|Df(x)|ndx

)p/n
dr <∞. (1.4)

If α ≥ 0 or p ≥ n, the above conditions are further equivalent to
ˆ
Bn
apf (x)(1− |x|)p−1+αdx <∞. (1.5)

Here af (x) denotes an average derivative, which is equivalent to |f ′(x)| for conformal maps.

The precise definition is given in the next section.

Our proof of Theorem 1.1 relies on techniques from [3] and [10], but our weighted setting

requires some new ideas. For example, the equivalence of (1.3) and (1.4) with the membership in

quasiconformal Hp is new even in the unweighted setting. Definitions and background results are

given in Section 2, and the proof of Theorem 1.1 is given in Section 3.

2 Background and Preliminaries

To begin with, let us recall some basic notions.

2.1 Cones and Shadows

Given x ∈ Bn, the open unit ball in Rn, we define

Bx = B(x, (1− |x|)/2)

and for ω ∈ Sn−1, we let

Γ(ω) =
⋃

0<r<1

Brω.

This is a cone with a tip at ω. Finally, the shadow of Bx is

Sx =
{ z
|z|

: 0 6= z ∈ Bx
}
.

Remark 1. Let ω ∈ Sx with x 6= 0. Then d(x, 0w) < (1 − |x|)/2, where 0w is the line segment

between w and 0. This distance is realized by z ∈ 0w for which xz is perpendicular to 0w. It follows

that |z − x| < (1− |x|)/2 ≤ (1− |z|)/2. Hence x ∈ Bz and x ∈ Γ(w).

2.2 Quasiconformal Mappings

Let G ⊂ Rn be a domain and K ≥ 1. We say that f : G → Rn is a K-quasiconformal mapping

if f is continuous and one-to-one (hence a homeomorphism onto f(G)), f ∈ W 1,n
loc (G,Rn) and

|Df(x)|n ≤ KJf (x) for almost every x ∈ G. For convenience, we write f : Bn → Ω below to specify

that f is defined on Bn with f(Bn) = Ω.

We continue with properties of quasiconformal mappings. The following estimates can be

deduced from [3, Lemma 2.1], also see [9].
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Lemma 2.1. Let f : Bn → Ω be a K-quasiconformal mapping. There exists a constant C =

C(n,K) such that, for all x ∈ Bn, we have

diam(f(Bx))/C ≤ d(f(x), ∂Ω) ≤ Cdiam(f(Bx)) ≤ C2d(f(Bx), ∂Ω),

and d(f(x), ∂Ω))/C ≤ |f(y)− f(x)| ≤ Cd(f(x), ∂Ω)) for every y ∈ ∂Bx.

A quasiconformal mapping is only almost everywhere differentiable and hence we will employ

the concept of averaged derivative af , defined by setting

af (x) = exp[

ˆ
Bx

log Jf (y)dy/(n|Bx|)].

If f is a conformal mapping, then |Df |n = Jf and especially af (z) = |Df(z)| = |f ′(z)|, see [2] for

details and [1] for the origins of the definition.

The following lemma is from [2].

Lemma 2.2. Let f : Bn → Ω be a K-quasiconformal mapping. There exists a constant C(n,K)

so that

d(f(x), ∂Ω)/C ≤ af (x)(1− |x|) ≤ Cd(f(x), ∂Ω)

and
1

C

ˆ

Bx

|Df(y)|ndy ≤ Canf (x) ≤
ˆ

Bx

|Df(y)|ndy

for all x ∈ Bn.

The following result is [3, Lemma 2.5].

Lemma 2.3. Let f : Bn → Ω be a K-quasiconformal mapping, and suppose that u > 0 satisfies

u(y)/C ≤ u(x) ≤ Cu(y)

for each x ∈ Bn and every y ∈ Bx. Let 0 < q ≤ n and p ≥ q. Then

ˆ
Bn
apfu dx ≈

ˆ
Bn
ap−qf |Df(x)|qu dx.

with constants only depending on p, q, n, C,K.

We continue with a useful estimate.

Lemma 2.4. Let f : Bn → Ω be a K-quasiconformal mapping. Let 0 < p <∞ and α ∈ R. Then

ˆ
Sn−1

sup
x∈Γ(ω)

d(f(x), ∂Ω)p(1−|x|)αdσ ≤ C1

ˆ
Sn−1

sup
x∈Γ(ω)

apf (x)(1−|x|)p+αdσ ≤ C2

ˆ
Bn
apf (x)(1−|x|)p+αdx

with constants C1, C2 that only depend on n,K, p, α.

Proof. By the first chain of inequalities in Lemma 2.1 we conclude that, for all x ∈ Bn and each

y ∈ Bx,

d(f(y), ∂Ω)/C ≤ d(f(x), ∂Ω) ≤ Cd(f(y), ∂Ω),
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where C = C(K,n). This together with the first chain of inequalities in Lemma 2.2 yields

af (y)/C ≤ af (x) ≤ Caf (y) (2.1)

with C = C(K,n). By Lemma 2.2 and (2.1) applied to x ∈ Γ(ω) we obtain the estimate

d(f(x), ∂Ω)(1− |x|)α/p ≤ C1af (x)(1− |x|)1+α/p ≤ C2(

ˆ
Bx

apf (y)dy)1/p(1− |x|)1−n/p+α/p

≤ C3(

ˆ
Γ(ω)

af (y)p(1− |y|)p−n+αdy)1/p (2.2)

with constants that only depend on n,K, p, α.

On the other hand, by the Fubini theoremˆ
Bn
|h(x)|dx ≈

ˆ
Sn−1

ˆ
Γ(ω)
|h(y)|(1− |y|)1−ndydσ

for any integrable function on Bn. Especially, this holds for h(x) = apf (x)(1− |x|)p−1+α and hence

the claim follows from (2.2).

A measure µ on Bn is called a Carleson measure if there is a constant Cµ such that

µ(Bn ∩B(ω, r)) ≤ Cµrn−1

for all ω ∈ Sn−1, r > 0. The following lemma, see [6] and [3, Lemma 5.6], gives us a family of

Carleson measures.

Lemma 2.5. If f is quasiconformal on Bn, 0 < p < n, and f(x) 6= 0 for all x ∈ Bn, then the

measure µ induced by dµ = |Df(x)|p|f(x)|−p(1− |x|)p−1dx is a Carleson measure on Bn.

2.3 Modulus

Given a collection of locally rectifiable curves Γ in Rn, the modulus Mod(Γ) of Γ is defined as:

Mod(Γ) = inf

ˆ
Rn
ρndx,

where the infimum is taken over all nonnegative Borel functions ρ such that
´
γ ρds ≥ 1 when γ ∈ Γ.

Given a K-quasiconformal mapping f : Ω → Rn, one has Mod(Γ)/C ≤ Mod(fΓ) ≤ CMod(Γ),

where C = C(K,n). See e.g. [9] for a proof.

We recall two useful estimates, see [9]. Given E ⊂ Sn−1, 0 < r < 1, and the family Γ of radial

segments joining rE := {rx : x ∈ E} and E, we have

Mod(Γ) = σ(E)(log(1/r))1−n,

where σ(E) is the surface area of E. Moreover, we always have the upper bound

Mod(Γ) ≤ ωn−1

log(R/r)n−1
,

if each γ ∈ Γ joins Sn−1(x, r) to Sn−1(x,R), 0 < r < R.

According to Beurling’s theorem, for a given quasiconformal mapping f , the radial limit

f(ω) := lim
r→1

f(rω)

exists for almost every ω ∈ Sn−1. One of our key tools is the following modulus estimate that can

be found in [3] and in [10].
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Lemma 2.6. [3, Lemma 4.2, Remark 4.3] There exists a constant C = C(n,K) such that if f is

K-quasiconformal on Bn, x ∈ Bn, M > 1, and α ≥ 0, then

σ({ω ∈ Sx : d(f(ω), f(x))(1− |x|)α > Md(f(x), ∂Ω)(1− |x|)α}) ≤ Cσ(Sx)

(logM)n−1
.

2.4 Nontangential and Radial Maximal Functions

Given p > 0, α ≥ 0, we define the weighted radial maximal and nontangential maximal functions

by setting

Mfp,α(ω) = sup0<r<1 |f(rω)|(1− r)α/p, ω ∈ Sn−1

and M∗fp,α(ω) = supx∈Γ(ω) |f(x)|(1− |x|)α/p, ω ∈ Sn−1

Even though the nontangential maximal function can be larger than the radial one, we have

the following estimate.

Lemma 2.7. Let f : Bn → Ω ⊂ Rn be a K-quasiconformal mapping and let 0 < p <∞ and α ≥ 0.

There exists a constant C = C(n,K, p, α) such that

ˆ
Sn−1

(M∗p,α(ω))pdσ(ω) ≤ C(n,K)

ˆ
Sn−1

(Mp,αf(ω))pdσ(ω). (2.3)

Proof. Given ω ∈ Sn−1 and x0 ∈ Γ(ω), there exists 0 < r0 < 1 such that x0 ∈ Br0ω. By the

definition of Br0ω, we have 1
2(1 − r0) ≤ 1 − |x0| ≤ 2(1 − r0) and |r0ω − x0| ≤ 1

2(1 − r0). Set

r1 = (1 + r0)/2. Then r1ω ∈ ∂Br0ω. Hence Lemma 2.1 yields that

|f(r0ω)− f(x0)| ≤ C(n,K)|f(r0ω)− f(r1ω)|. (2.4)

By the triangle inequality

|f(x0)| ≤ |f(r0ω)|+ |f(r0ω)− f(x0)| (2.5)

and

|f(r0ω)− f(r1ω)| ≤ |f(r0ω)|+ |f(r1ω)|. (2.6)

By combining (2.4),(2.5),(2.6) we obtain

|f(x0)| ≤ C(n,K) (|f(r0ω)|+ |f(r1ω)|) .

Since 1− r1 = (1− r0)/2, we conclude that

(M∗p,αf(ω))p ≤ C(n,K, α)(Mp,αf(ω))p,

and (2.3) follows.
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3 Proof of Theorem 1.1

We begin with the following lemma. We will employ it in the proof of Lemma 3.3 to fix the problem

that M(r, f)(1− r)α/p for α > 0 need not be nondecreasing even though M(r, f) is.

Lemma 3.1. Let M : [0, 1) → [0,∞) be increasing and continuous with M(0) = 0. Let p > 0,

α ≥ 0 and define N(r) = sup0≤t≤rM(t)(1− t)α/p. Then
ˆ 1

0
(1− r)n−2+αMp(r)dr <∞ (3.1)

if and only if ˆ 1

0
(1− r)n−2Np(r)dr <∞. (3.2)

Proof. Since

Mp(r)(1− r)n−2+α = Mp(r)(1− r)α(1− r)n−2

≤
(

sup
0≤t≤r

Mp(t)(1− t)α
)

(1− r)n−2 = Np(r)(1− r)n−2,

we have that (3.2) implies (3.1) for any p.

Towards the other direction, we may assume that N(r) is unbounded. Moreover, if the desired

conclusion is true for the case p = 1 and all M as in our formulation, then by applying it to

M̂(r) := Mp(r) we obtain our claim for all p > 0. Thus it suffices prove that (3.1) implies (3.2) for

p = 1.

We define a sequence of points rk ∈ [0, 1) as follows. Let r0 = 0 and set rk = inf{r : N(r) = 2k−1}.
Then the continuity and monotonicity of N(r) gives that 2k−1 = N(rk) = M(rk)(1− rk)α. Hence

ˆ 1

0
N(r)(1− r)n−2dr ≤

∞∑
k=0

N(rk+1)

ˆ rk+1

rk

(1− r)n−2dr

=
∞∑
k=0

N(rk+1)

n− 1

[
(1− rk)n−1 − (1− rk+1)n−1

]
=

∞∑
k=0

M(rk+1)(1− rk+1)α

n− 1

[
(1− rk)n−1 − (1− rk+1)n−1

]
=

2

n− 1

∞∑
k=0

M(rk)(1− rk)α
[
(1− rk)n−1 − (1− rk+1)n−1

]
=

2

n− 1

∞∑
k=0

M(rk)
[
(1− rk)n−1+α − (1− rk)α(1− rk+1)n−1

]
≤ 2

n− 1

∞∑
k=0

M(rk)
[
(1− rk)n−1+α − (1− rk+1)n−1+α

]
We also have thatˆ 1

0
(1− r)n−2+αM(r)dr ≥

∞∑
k=0

M(rk)

ˆ rk+1

rk

(1− r)n−2+αdr

=
∞∑
k=0

M(rk)

n− 1 + α

[
(1− rk)n−1+α − (1− rk+1)n−1+α

]
.
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The desired implication follows.

We continue with a result on Carleson measures.

Lemma 3.2. Let f : Bn → Ω ⊂ Rn be a quasiconformal mapping, 0 < p < ∞, α ≥ 0, and let µ

be a Carleson measure on Bn. There is a constant C = C(n,K,Cµ) such thatˆ
Bn
|f(x)|p(1− |x|)αdµ ≤ C

ˆ
Sn−1

(Mfp,α)p(w)dσ(ω).

Proof. By Lemma 2.7 it suffices to show that there exists a constant C(n,K) such thatˆ
Bn
|f(x)|p(1− |x|)αdµ ≤ C

ˆ
Sn−1

(M∗fp,α)pdσ(ω).

For each λ > 0, set

Eλ = {x ∈ Bn : |f(x)|(1− |x|)α/p > λ}
and

Uλ =

{
ω ∈ Sn−1 : sup

x∈Γ(ω)
|f(x)|(1− |x|)α/p > λ

}
.

Then Uλ is an open subset of Sn−1. Recall the definion of the shadows Sx from Subsection 2.1.

They are spherical caps. We can decompose Uλ into a Whitney-type decomposition of spherical

caps. That is, we can write,

Uλ =

∞⋃
k=1

Sxk ,

where no ω ∈ Uλ belongs to more than N(n) spherical caps Sxk and

d(Sxk , ∂Uλ) ≈ diam(Sxk) ≈ (1− |xk|),

with universal constants. If x ∈ Eλ and x 6= 0, then M∗fp,α(ω) > λ whenever x ∈ Γ(ω). More-

over, x
|x| ∈ Sxk for some k. Thus, by the definition of Sk and the properties of the Whitney-

type decomposition, there exists a universal constant C such that 1 − |x| ≤ C(1 − |xk|). Hence

Eλ ⊂ ∪∞k=1B(xk/|xk|, C(1− |xk|)). Therefore

µ(Eλ) ≤
∞∑
k=1

µ(B(xk/|xk|, C(1− |xk|)) ∩ Bn)

≤ C(n,Cµ)

∞∑
k=1

(1− |xk|)n−1

≤ C(n,Cµ)

∞∑
k=1

σ(Sxk) ≤ C(n,Cµ)σ(Uλ).

This together with the Cavalieri formula givesˆ
Bn
|f(x)|p(1− |x|)αdµ =

ˆ ∞
0

pλp−1µ(Eλ)dλ

≤ C(n,Cµ)

ˆ ∞
0

pλp−1σ(Uλ)dλ

= C(n,Cµ)

ˆ
Sn−1

sup
x∈Γ(ω)

|f(x)|p(1− |x|)αdσ(ω)

= C

ˆ
Sn−1

(M∗fp,α(ω))pdσ(ω).
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We are now ready to establish a maximal characterization for Hp
α. By Lemma 2.7 we could also

replace the radial maximal function by the nontangential one below.

Lemma 3.3. Let f : Bn → Ω ⊂ Rn be a quasiconformal mapping, 0 < p <∞ and α ≥ 0. Thenˆ
Sn−1

sup
0<r<1

|f(rω)|p(1− r)αdσ(ω) <∞ (3.3)

if and only if
ˆ 1

0
(1− r)n−2+αMp(r, f)dr <∞. (3.4)

Proof. Assume first that f(0) = 0 and suppose that (3.4) holds. Set

N(r, f) = sup
0≤t≤r

M(t, f)(1− t)
α
p .

Then, by Lemma 3.1, we have that
ˆ 1

0
Np(r, f)(1− r)n−2dr <∞.

Recall our notation Mfp,α(ω) = sup0<r<1 |f(rω)|(1− r)
α
p . Now

ˆ
Sn−1

sup
0<r<1

|f(rω)|p(1− r)αdσ(ω) =

ˆ
Sn−1

(Mfp,α(ω))pdσ(ω)

=

ˆ ∞
0

pλp−1σ({ω ∈ Sn−1 : Mfp,α(ω) > λ})dλ. (3.5)

Fix λ > 0 and let E = {ω ∈ Sn−1 : Mfp,α(ω) > λ}. Suppose that E is nonempty. Then there is

ω ∈ Sn−1 and r ∈ (0, 1) such that N(r, f) = λ
2 , since N(r, f) is continuous. Our function N(r, f) is

also nondecreasing and we let

rλ = max{r : N(r, f) = λ/2}. (3.6)

We may assume that λ is large enough so that 1/2 < rλ < 1. Let ΓE be the family of radial line

segments connecting B(0, rλ) and E ⊂ Sn−1. Then

Mod(ΓE) = σ(E)(log(1/rλ))1−n ≥ σ(E)21−n(1− rλ)1−n.

By the definitions of E and rλ, for any γ ∈ ΓE , the image curve f(γ) connectsB(0, (λ/2)(1−rλ)−α/p)

to Rn \B(0, λ(1− rλ)−α/p), and therefore the modulus of the image family fΓE satisfies

Mod(fΓE) ≤ ωn−1(log 2)1−n.

By combining the above two estimates and using the quasi-invariance of the modulus, we arrive

at the upper bound

σ(E) ≤ C(n,K)(1− rλ)n−1.

In order to prove (3.3) we may assume that Mfp,α is unbounded on Sn−1. Define a measure ν

on [0, 1] by setting dν = (1− r)n−2dr and recall the definition of rλ from (3.6). Now

ν({r : N(r, f) > λ/2}) =

ˆ 1

rλ

(1− r)n−2dr =
(1− rλ)n−1

n− 1
.
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Thus ˆ ∞
0

pλp−1σ({ω ∈ Sn−1 : Mfp,α(ω) > λ})dλ

≤ σ(Sn−1)2pNp(1/2, f) +

ˆ ∞
2N(1/2,f)

pλp−1σ({ω ∈ Sn−1 : Mfp,α(ω) > λ})dλ

≤ σ(Sn−1)2pNp(1/2, f) + C(n,K, p)

ˆ ∞
0

λp−1(1− rλ)n−1dλ

≤ σ(Sn−1)2pNp(1/2, f) + C(n,K, p)

ˆ ∞
0

λp−1

ˆ
{r:N(r,f)>λ/2}

(1− r)n−2drdλ

≤ σ(Sn−1)2pNp(1/2, f) + C(n,K, p)

ˆ 1

0
(1− r)n−2Np(r, f)dr <∞,

and hence (3.3) follows by (3.5).

In the case f(0) 6= 0, we consider the quasiconformal mapping g defined by setting g(x) =

f(x) − f(0). Then (3.4) also holds with f replaced by g, and by the first part of our proof (3.3)

follows with f replaced by g. We conclude with (3.3) via the triangle inequality.

Towards the other direction, suppose that (3.3) holds. Set rk := 1− 2−k and choose xk ∈ Bn so

that |xk| = rk and |f(xk)| = M(rk, f). Then

ˆ 1

0
(1− r)n−2+αMp(r, f)dr ≤ 2n

∞∑
k=1

(2−k)n−1+αMp(rk, f) = 2n
ˆ
Bn
|f(x)|p(1− |x|)αdµ,

where dµ =
∑∞

k=1(1− |x|)n−1δxk . Notice that µ is a Carleson measure. Hence Lemma 3.2 gives us

the estimateˆ 1

0
(1− r)n−2+αMp(r, f)dr ≤ C(n,K,Cµ)

ˆ
Sn−1

sup
0<r<1

|f(rω)|p(1− r)αdσ(ω).

We continue with the following estimate whose proof is based on a good-λ inequality.

Lemma 3.4. Let f : Bn → Ω ⊂ Rn be a K-quasiconformal mapping, 0 < p <∞, and α ≥ 0. Let

v(ω) = sup
x∈Γ(ω)

d(f(x), ∂Ω)(1− |x|)α/p ∈ Lp(Sn−1).

There exists C = C(n,K, p, α) such that
ˆ
Sn−1

(Mfp,α(ω))pdσ(ω) ≤ C
ˆ
Sn−1

vp(ω)dσ(ω).

Proof. Recall that

M∗fp,α(ω) = sup
x∈Γ(ω)

|f(x)|(1− |x|)α/p

and Mfp,α(ω) = sup
0<r<1

|f(rω)|(1− r)α/p.

Let L > 2. By the Cavalieri formula
ˆ
Sn−1

(Mfp,α(ω))pdσ(ω) = Lp
ˆ ∞

0
pλp−1σ({ω ∈ Sn−1 : Mfp,α(ω) > Lλ})dλ. (3.7)
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Set Σλ = σ({ω ∈ Sn−1 : Mfp,α(ω) > Lλ}). Then, for any γ > 0, we have

Σλ ≤ σ({ω ∈ Sn−1 : Mfp,α(ω) > Lλ, v(ω) ≤ γ}) + σ({ω ∈ Sn−1 : v(ω) > γ}).

If γ is a fixed multiple of λ, then the latter term is what we want, but we need to obtain a suitable

estimate for the first term.

Towards this end, set

ELλ,γ = {ω ∈ Sn−1 : Mfp,α(ω) > Lλ, v(ω) ≤ γ}

and define

Uλ = {ω ∈ Sn−1 : M∗fp,α(ω) > λ}.

Since Clearly ELλ,γ ⊂ Uλ. We utilize a generalized Whitney decomposition of the open set Uλ as

in the proof of Lemma 3.2:

Uλ =
⋃
k

Sxk .

where the caps Sxk have uniformly bounded overlaps and

d(Sxk , ∂U(λ)) ≈ diam(Sxk) ≈ (1− |xk|). (3.8)

Suppose ω ∈ Sxk is such that v(ω) ≤ γ and Mfp,α(ω) > Lλ. According to (3.8), we can choose

ω̄∈ ∂U(λ) with

d(ω, ω̄) ≤ Cdiam(S(xk)). (3.9)

Let x̄k ∈ Γ(ω̄) satisfy |x̄k| = |xk|. By (3.8), we conclude that d(xk, x̄k) ≤ C(1−|xk|). Hence Lemma

2.1 allows us to conclude that

d(f(xk), f(x̄k))(1− |xk|)α/p ≤ Cd(f(xk), ∂Ω)(1− |xk|)α/p ≤ Cv(ω) ≤ Cγ. (3.10)

Since ω̄ /∈ U(λ), we may deduce from (3.10) that

|f(xk)|(1− |xk|)α/p ≤ (|f(x̄k)|+ d(f(xk, f(x̄k)))(1− |xk|)α/p ≤ λ+ Cγ. (3.11)

Next, the assumption that Mfp,α(ω) > Lλ, allows us to choose choose rω ∈ (0, 1) such that

|f(rωω)|(1− rω)α/p ≥ 1

2
Mfp,α(ω) ≥ 1

2
Lλ. (3.12)

We proceed to show that

1− rω ≤ C0(1− |xk|) (3.13)

for an absolute constant C0. If (3.13) fails, then 1− |xk| ≤ 1
C0

(1− rω), which implies by (3.9) that

d(w, w̄) ≤ Cdiam(S(xk)) ≤ C(1− |xk|) ≤
C

C0
(1− rω).

This shows that rωω ∈ Γω̄ when C0 > 2C. Since L
2 > 1, we conclude that

M∗fp,α(ω̄) > λ,

which contradicts the assumption that ω̄ /∈ Uλ.
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We may assume that C0 ≥ 1. By (3.12) together with (3.13) we obtain

Lλ ≤ 2|f(rωω)|(1− rω)α/p ≤ 2C
α/p
0 |f(rωω)|(1− |xk|)α/p. (3.14)

Let us fix the value of L by choosing L = 4C
α/p
0 . Then (3.14) yields

2λ ≤ |f(rωω)|(1− |xj |)α/p. (3.15)

We proceed to estimate σ(Sxk ∩ ELλ,γ). Let ω ∈ Sxk ∩ ELλ,γ . Then there is rω ∈ (0, 1) so that

both (3.13) and (3.15) hold. Consider the collection of all the corresponding caps Srωω. By the

Besicovitch covering theorem we find a countable subcollection of these caps, say Sr1ω1 , Sr2ω2 , ...,

so that

Sxk ∩ ELλ,γ ⊂
⋃
j

Srjωj (3.16)

and
∑

j χSrjωj (w) ≤ Cn for all ω ∈ Sn−1. By (3.13) we further have∑
j

σ(Srjωj ) ≤ C1σ(Sxk) (3.17)

for an absolute constant C1.

Fix one of the caps Srjωj =: Sj and let A ≥ 1. Write

Ej1(A) = {w ∈ Sj ∩ Sxk ∩ ELλ,γ : |f(w)− f(rjωj)| ≥ Ad(f(rjωj), ∂Ω)}

and

Ej2(A) = {w ∈ Sj ∩ Sxk ∩ ELλ,γ : |f(w)− f(xk)| ≥ Ad(f(xk), ∂Ω)}.

We claim that we can find a constant C2 only depending on C0, p, α so that the choice λ = C2Aγ

guarantees that

Sj ∩ Sxk ∩ ELλ,γ = Ej1(A) ∪ Ej2(A). (3.18)

Let ω ∈ Sj ∩ Sxk ∩ ELλ,γ . Suppose first that

|f(ω)− f(rjωj)|(1− rj)α/p ≥ Aγ. (3.19)

Since ω ∈ ELλ,γ ∩ Sj , we have

γ ≥ d(f(rjωj), ∂Ω)(1− rj)α/p,

and we deduce from (3.19) that ω ∈ Ej1(A). We are left to consider the case

|f(ω)− f(rjωj)|(1− rj)α/p < Aγ. (3.20)

Under this condition, the triangle inequality together with (3.13), (3.14) and (3.11) give us

|f(ω)− f(xk)|(1− |xk|)α/p ≥ |f(ω)|(1− |xk|)α/p − |f(xk)|(1− |xk|)α/p

≥(|f(rjωj)| − |f(ω)− f(rjωj)|)
(1− rj)α/p

C
α/p
0

− |f(xk)|(1− xk)α/p

≥ Lλ

2C
α/p
0

− Aγ

C
α/p
0

− (λ+ Cγ) ≥ 2λ− (λ+ Cγ)− Aγ

C
α/p
0

.

(3.21)
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We now fix the relation between λ and γ by setting λ = (C + A

C
α/p
0

+ 1)γ. Then (3.21) reduces to

|f(ω)− f(xk)|(1− |xk|)α/p ≥ Aγ ≥ Ad(f(xk), ∂Ω)(1− |xk|)α/p

and we conclude that ω ∈ Ej2(A).

According to Lemma 2.6,

σ(Ej1(A)) ≤ C2σ(Sj)

(logA)n−1
, (3.22)

where C2 depends only on K,n. Thus (3.22) together with (3.17) gives∑
j

σ(Ej1(A)) ≤ C1C2σ(Sxk)

(logA)n−1
. (3.23)

We also deduce via Lemma 2.6 that

σ(∪jEj2(A)) ≤ σ({ω ∈ Sxk : |f(w)− f(xk)| ≥ Ad(f(x), ∂Ω)} ≤ C2σ(Sxk)

(logA)n−1
. (3.24)

Now (3.18) together with (3.23) and (3.24) gives

σ(Sxk ∩ ELλ,γ) ≤ C3σ(Sxk)

(logA)n−1
, (3.25)

where C3 depends only on K,n.

By the choice of the caps Sxk , the definition of ELλ,γ and (3.25) give via summing over k the

estimate

Σλ ≤σ(ELλ,γ) + σ({ω ∈ Sn−1 : v(ω > γ)})

≤ C3σ(Uλ)

(logA)n−1
+ σ({ω ∈ Sn−1 : v(ω > γ)}).

(3.26)

We insert (3.26) into (3.7) and conclude that

ˆ
Sn−1

(Mfp,α(ω))pdσ(ω) = Lp
ˆ ∞

0
pλp−1Σλdλ

≤ Lp
ˆ ∞

0
pλp−1 C3σ(Uλ)

(logA)n−1
dλ+ Lp

ˆ ∞
0

pλp−1σ({ω ∈ Sn−1 : v(ω > γ)})dλ

≤ C3L
p

(logA)n−1

ˆ
Sn−1

(M∗p,αf(ω))pdω + Lp
ˆ ∞

0
pλp−1σ({ω ∈ Sn−1 : v(ω > γ)})dλ.

(3.27)

Suppose that the integral on the left-hand side of (3.27) is finite. Then Lemma 2.7 allows us to

choose A only depending on K,n, p, α, L,C3 so that the integral of (M∗p,αf)p can be embedded

into the left-hand side. In this case our claim follows via the Cavalieri formula, recalling that

λ = (C + A

C
α/p
0

+ 1)γ. We are left with the case where the integral on the left-hand-side of (3.27)

is infinite. In this case, we replace f by the K-quasiconformal map f j defined by setting f j(x) =

f((1− 1/j)x). Since the corresponding integral is now finite, we obtain a uniform estimate for the

integral of Mf jp,α in terms of the integral of vj , defined analogously. The desired estimate follows

via the Fatou lemma by letting j tend to infinity since it easily follows that vj(ω) ≤ v(ω) for all ω

and that Mf jp,α(ω)→Mfp,α(ω) for a.e. ω.
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Lemma 3.5. Let f : Bn → Ω ⊂ Rn be a quasiconformal mapping, 0 < p < ∞ and α ≥ 0. Then

the following are equivalent:

1.
´
Sn−1 (Mfp,α)pdσ <∞

2.
´
Bn a

p
f (x)(1− |x|)p−1+αdx <∞

3.
´
Sn−1 supx∈Γ(ω) d(f(x), ∂Ω)p(1− |x|)αdσ <∞

Proof. (1 =⇒ 2) Suppose first that 0 < p ≤ 1. We may assume that f 6= 0 in Bn. Then the

measure given by dµ = |Df |p|f |−p(1 − |x|)p−1dx is a Carleson measure by Lemma 2.5 and hence

Lemma 2.3 and Lemma 3.2 giveˆ
Bn
apf (x)(1− |x|)p−1+αdx ≤ C

ˆ
Bn
|Df |p(1− |x|)p−1+αdx

≤ C
ˆ
B
|f(x)|p(1− |x|)αdµ(x) ≤ C

ˆ
Sn−1

(Mfp,α)p(ω)dσ.

We are left to deal with the case p > 1. Pick y ∈ ∂Ω. By Lemma 2.3 and Lemma 2.2, we haveˆ
Bn
apf (x)(1− |x|)p−1+αdx ≤ C

ˆ
Bn
|Df(x)|ap−1

f (x)(1− |x|)p−1+αdx

≤ C
ˆ
Bn
|Df(x)|d(f(x), ∂Ω)p−1(1− |x|)αdx ≤ C

ˆ
Bn
|Df(x)||f(x)− y|p−1(1− |x|)αdx.

Since f(x)−y 6= 0 in Bn, the measure induced by dµ = |Df(x)||f(x)−y|−1dx is a Carleson measure

by Lemma 2.5. Hence we can apply Lemma 3.2 to conclude that
´
Bn a

p
f (x)(1− |x|)p−1+αdx <∞.

(2 =⇒ 3) This follows from Lemma 2.4.

(3 =⇒ 1) By Lemma 2.2 we have that d(f(x), ∂Ω) ≤ Caf (x)(1− |x|). Hence (1) follows from

(3) by Lemma 3.4.

Lemma 3.6. Let f : Bn → Ω ⊂ Rn be a quasiconformal mapping with f(0) = 0. Let p ≥ n and let

α > 1− n. Then
ˆ 1

0
(1− r)n−2+αMp(r, f)dr ≤ C

ˆ
Bn
af (x)p(1− |x|)p−1+αdx.

Proof. Define v(ω) = supx∈Γ(ω) d(f(x), ∂Ω)(1− |x|)α/p. By Lemma 2.4 we only need to show that

ˆ 1

0
(1− r)n−2+αMp(r, f)dr ≤ C

ˆ
Sn−1

vpdσ. (3.28)

For each i ≥ 1, let ri = 1− 2−i and pick xi ∈ Sn−1(ri) with |f(xi)| = M(ri, f). Then

ˆ 1

0
(1− r)n−2+αMp(r, f)dr =

∞∑
i=1

ˆ ri

ri−1

(1− r)n−2+αMp(r, f)dr

≤ C
∞∑
i=1

|f(xi)|p(1− |xi|)n−1+α.

(3.29)

Let C̃ be a constant, to be determined later, and let G(f) = {i ∈ N : |f(xi)| ≤ C̃d(f(xi), ∂Ω)} and

B(f) = N \G(f). For i ∈ G(f) and ω ∈ Sxi , we have

|f(xi)|p(1− |xi|)n−1+α ≤ C̃pd(f(xi), ∂Ω)p(1− |xi|)n−1+α ≤ C̃pvf (ω)p(1− |xi|)n−1. (3.30)
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Define δ = 1/C̃. Then, for i ∈ B(f), we have d(f(xi), ∂Ω) ≤ δ|f(xi)|. Set ωi = xi
|xi| , and let

yi−1 = ri−1ωi. Then we have xi ∈ Byi−1 . Hence Lemma 2.1 gives

|f(xi)− f(yi−1)| ≤ diamf(Byi−1) ≤ Cd(f(Byi−1), ∂Ω) ≤ C2d(f(xi), ∂Ω).

Therefore, by the choice of xi−1, we obtain

|f(xi)| ≤ |f(yi−1)|+ C2δ|f(xi)| ≤ |f(xi−1)|+ C2δ|f(xi)|.

If C̃ is sufficiently large, then C2δ < 1 and we have

|f(xi)| ≤ λ|f(xi−1)|, (3.31)

where λ = 1/(1−C2δ). After multiplying both sides of (3.31) by (1− |xi|)(n−1+α)/p and raising to

power p, we conclude that

|f(xi)|p(1− |xi|)n−1+α ≤ λp|f(xi−1)|p(1− |xi|)n−1+α

= λp|f(xi−1)|p2−(n−1+α)(1− |xi−1|)n−1+α.
(3.32)

Now, notice that n− 1 + α > 0 when α > 1− n. By recalling that δ = 1/C̃ and λ = 1/(1− C2δ),

we find C̃= C̃(p, C) such that λp2−(n−1+α) < 1 and C̃ ≥ C0. Then there exists c < 1, such that

|f(xi)|p(1− |xi|)n−1+α ≤ c|f(xi−1)|p(1− |xi−1|)n−1+α.

Since x0 = 0 and f(0) = 0, we have 0 ∈ G(f). If i− 1 ∈ B(f), we repeat the above argument with

i replaced by i− 1 and arrive at

|f(xi)|p(1− |xi|)n−1+α ≤ c2|f(xi−2)|p(1− |xi−2|)n−1+α.

We repeat inductively until i− k ∈ G(f). In conclusion, there exists k such that l ∈ B(f), for all

i− k < l ≤ i, i− k ∈ G(f) and

|f(xi)|p(1− |xi|)n−1+α ≤ ck|f(xi−k)|p(1− |xi−k|)n−1+α. (3.33)

Since c < 1, inequality (3.33) yields the estimate

∞∑
i=0

|f(xi)|p(1− |xi|)n−1+α ≤ C
∑
i∈G(f)

|f(xi)|p(1− |xi|)n−1+α

≤ CC̃
∑
i∈G(f)

d(f(xi), ∂Ω)p(1− |xi|)α(1− |xi|)n−1.

(3.34)

Set Si = Sxi for i ∈ G(f). Since |xi| = 1− 2−i, the definition of the shadows Si yields that∑
j>i

σ(Sj) ≤ σ(Si).

Thus, we also have

σ({ω ∈ Si :
∑
j>i

χSj (ω) ≥ 2}) ≤ 1

2
σ(Si).
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Hence there exist sets Ŝi ⊂ Si with σ(Ŝi) ≥ 1
2σ(Si) = Cn(1 − |xi|)n−1 and so that no point of Ŝi

belongs to more than one Sj . Then ∑
i∈G(f)

χŜi(ω) ≤ 2.

By combining (3.30) and (3.34), we arrive at

∞∑
i=0

|f(xi)|p(1− |xi|)n−1+α ≤ CC̃

Cn

∑
i∈G(f)

ˆ
Ŝi

vp(ω)dσ ≤ CC̃

Cn

ˆ
Sn−1

vp(ω)dσ.

This together with (3.29) gives (3.28) and hence our claim follows.

Proof of Theorem 1.1. We begin with the equivalence of (1.2), (1.3) and (1.4).

We assume first that f(0) = 0 and handle the cases 0 < p ≤ n and p > n separately.

Case 1 Suppose that 0 < p ≤ n. Then

ˆ
B(0,r)

|f |p−n|Df |ndx ≤ K
ˆ
B(0,r)

|f |p−nJf (x)dx = K

ˆ
f(B(0,r))

|y|p−ndy

(∗)
≤ K

ˆ
B(0, n
√
|f(B(0,r))|)

|y|p−ndy = KC(n)

ˆ
Sn−1

ˆ n
√

(|f(B(0,r))

0
tp−1dtdσ = C(K,n, p)|f(B(0, r))|p/n

= C

(ˆ
B(0,r)

Jf (x)dx

)p/n
≤ C

(ˆ
B(0,r)

|Df(x)|ndx

)p/n
,

where (∗) holds since the weight function |y|p−n is radially decreasing when 0 < p ≤ n. We have

proved that (1.4) yields (1.3).

Now let g = |f |(p−n)/nf. Since quasiconformal mappings are differentiable almost everywhere,

a calculation gives

Dg = |f |(p−n)/n

(
I +

p− n
n

fT f

|f |2

)
Df (for a.e. x ∈ Bn),

and so |Dg| . |f |(p−n)/n|Df |. Then the Fubini theorem and Lemma 2.3 yield

ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f |p−n|Df |n &
ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|Dg|ndxdr

≈
ˆ
Bn
|Dg|n(1− |x|)n−1+αdx ≈

ˆ
Bn
ang (x)(1− |x|)n−1+αdx.

Hence, assuming that (1.3) in the statement of the theorem holds, we can apply Lemma 3.6 to the

quasiconformal mapping g so as to conclude that

ˆ 1

0
(1− r)n−2+αMp(r, f)dr ≈

ˆ 1

0
(1− r)n−2+αMn(r, g)dr

.
ˆ
Bn
ag(x)n(1− |x|)n−1+αdx .

ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f |p−n|Df |ndxdr.
(3.35)
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We have shown that (1.3) implies (1.2).

The implication that (1.2) =⇒ (1.4) is a straightforward application of Hölder’s inequality

and the definition of M(r, f). Indeed,

ˆ 1

0
(1− r)n−2+α

(ˆ
B(0,r)

|Df(x)|ndx

)p/n
dr

≤
ˆ 1

0
(1− r)n−2+α

(ˆ
B(0,r)

|Df(x)|n|f(x)|p−nMn−p(r, f)dx

)p/n
dr

=

ˆ 1

0
(1− r)(n−2+α)(n−p)/nM (n−p)p/n(r, f)

(
(1− r)n−2+α

ˆ
B(0,r)

|Df(x)|n|f(x)|p−ndx

)p/n
dr

≤
(ˆ 1

0
(1− r)n−2+αMp(r, f)pdr

)(n−p)/n(ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|Df |n|f |p−ndxdr

)p/n
.

(3.36)

Sinceˆ
B(0,r)

|Df |n|f |p−ndxdr ≤ K
ˆ
f(B(0,r))

|y|p−ndy ≤ K
ˆ
B(0,M(r,f))

|y|p−ndy ≤ C(n,K, p)Mp(r, f),

the desired result follows.

Case 2 We assume that p > n. Now
ˆ
B(0,r)

|Df |ndx ≤ K
ˆ
B(0,r)

Jf (x)dx ≤ K|f(B(0, r))| ≤ KMn(r, f)

Therefore, (1.2) implies (1.4).

Set g = |f |(p−n)/nf. Then |g|n = |f |p, and Mp(r, f) = Mn(r, g). Analogously to (3.35), Lemma

3.6 gives

ˆ 1

0
(1− r)n−2+αMp(r, f)dr ≤

ˆ 1

0
(1− r)n−2+αMn(r, g)dr

.
ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f |p−n|Df |ndxdr.
(3.37)

Hence (1.3) implies (1.2).

We need to show that (1.4) yields (1.3). First of all,

ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f |p−n|Df |ndxdr ≤
ˆ 1

0
(1− r)n−2+αMp−n(r, f)

ˆ
B(0,r)

|Df |ndxdr

≤(

ˆ 1

0

(
(1− r)n−2+αM(r, f))pdr

)(p−n)/p

ˆ 1

0
(1− r)n−2+α

(ˆ
B(0,r)

|Df |ndx

)p/n
dr

n/p

.

If the latter term on the right-hand side is finite, then we obtain via (3.37) that

ˆ 1

0
(1− r)n−2+α

ˆ
Bn
|f |p−n|Df |ndxdr ≤ C

ˆ 1

0
(1− r)n−2+α

(ˆ
Bn
|Df |ndx

)p/n
dr.
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Since the constant in this inequality only depends on n,K, p, α the general case easily follows by

applying this estimate with f replaced by fj , defined by setting fj(x) = f((1 − 1/j)x), and by

passing to the limit.

We have shown the equivalence of (1.2),(1.3) and (1.4) under the additional assumption that

f(0) = 0. The general case follows since each of them holds for a quasiconformal mapping f if and

only if it holds for g, defined by setting g(x) = f(x)− f(0).

We are left with the equivalence of (1.2) and (1.5), when α ≥ 0 and when 1− n < α < 0 with

p ≥ n.

For α ≥ 0, by Lemma 3.3 and Lemma 3.5, we know that (1.2) is equivalent to (1.5).

Suppose that 1− n < α < 0 and p ≥ n. By Lemma 3.6 we already know that (1.5) implies

(1.2). Hence we only need to show that (1.3) implies (1.5). Fix y ∈ ∂f(Bn). Then, Lemma 2.2

and 2.3 ensure thatˆ
Bn
af (x)p(1− |x|)p−1+αdx ≈

ˆ
Bn
af (x)p−n(1− |x|)p−n|Df(x)|n(1− |x|)n−1+αdx

≤ C
ˆ
Bn
d(f(x), ∂Ω)p−n|Df(x)|n(1− |x|)n−1+αdx

≤ C
ˆ
Bn
|f(x)− y|p−n|Df(x)|n(1− |x|)n−1+αdx

≈
ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f(x)− y|p−n|Df(x)|ndxdr.

(3.38)

Notice that |f(x)− y| ≤ |f(x)|+ |y| and |f(x)− y|p−n ≤ C(p, n)(|f(x)|p−n + |y|p−n). By (3.38), we

only need to show that

ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

(|f(x)|p−n + |y|p−n)|Df(x)|ndxdr =

=

ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|f(x)|p−n|Df(x)|ndxdr + |y|p−n
ˆ 1

0
(1− r)n−2+α

ˆ
B(0,r)

|Df(x)|ndxdr

=(I) + (II) <∞.

By the equivalance of (1.2) and (1.3), we know that (I) <∞. On the other hand, we have

´ 1
0 (1− r)n−2+α

´
B(0,r) |Df(x)|ndxdr

≤
(´ 1

0 (1− r)n−2+α
(´

B(0,r) |Df(x)|n
)p/n

dxdr

)n/p (´ 1
0 (1− r)n−2+αdr

)(p−n)/p
.

The equivalence of (1.2) and (1.4) ensures that the first term is finite and the second term is

also finite since
´ 1

0 (1 − r)n−2+αdr < ∞ when −1 < α < 0. We have shown that (II) < ∞. This

completes the proof of Theorem 1.1.
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