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Exploring Oscillatory Dysconnectivity Networks
in Major Depression during Resting State Using

Coupled Tensor Decomposition
Wenya. Liu, Xiulin. Wang, Student Member, IEEE, Timo. Hämäläinen, Senior Member, IEEE and Fengyu.

Cong, Senior Member, IEEE

Abstract— Dysconnectivity of large-scale brain networks
has been linked to major depression disorder (MDD) during
resting state. Recent researches show that the temporal
evolution of brain networks regulated by oscillations re-
veals novel mechanisms and neural markers of MDD. Our
study applied a novel coupled tensor decomposition model
to investigate the dysconnectivity networks characterized
by spatio-temporal-spectral modes of covariation in MDD
using resting electroencephalography. The phase lag in-
dex is used to calculate the functional connectivity within
each time window at each frequency bin. Then, two ad-
jacency tensors with the dimension of time × frequency
× connectivity × subject are constructed for the healthy
group and the major depression group. We assume that
the two groups share the same features for group similarity
and retain individual characteristics for group differences.
Considering that the constructed tensors are nonnegative
and the components in spectral and adjacency modes are
partially consistent among the two groups, we formulate a
double-coupled nonnegative tensor decomposition model.
To reduce computational complexity, we introduce the low-
rank approximation. Then, the fast hierarchical alternative
least squares algorithm is applied for model optimization.
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After clustering analysis, we summarize four oscillatory
networks characterizing the healthy group and four oscil-
latory networks characterizing the major depression group,
respectively. The proposed model may reveal novel mecha-
nisms of pathoconnectomics in MDD during rest, and it can
be easily extended to other psychiatric disorders.

Index Terms— Dynamic functional connectivity, coupled
tensor decomposition, major depression disorder, oscilla-
tory networks.

I. INTRODUCTION

MAJOR depression disorder (MDD) is a globally preva-
lent psychiatric disorder characterized by impairments

in affective and cognitive functions [1]. Neuroimaging studies
have demonstrated that MDD involves large-scale network
dysfunction during resting state, including higher-order in-
trinsic connectivity networks (ICNs), such as the default
mode network (DMN), the dorsal attention network(DAN), the
frontoparietal network (FN), and so on [2]. Previous findings
correspond to the current understanding of MDD as a network-
based disorder [3]. Investigating the neural markers of MDD
in pathological networks is valuable for clinical diagnosis and
treatment.

Resting state functional connectivity (rsFC) is commonly
used to investigate the connectivity structure of MDD [2], [3].
During the past decade, rsFC has been well demonstrated to be
dynamic over time relating to states of arousal and information
processing [4], [5]. Recently, some resting state functional
Magnetic Resonance Imaging (rsfMRI) studies of MDD have
reported the abnormal variability of functional connectivity
(FC) related to higher-order cognitive functions [6]–[9], but it
has not been well verified in electroencephalography (EEG)
studies. Besides the dynamic forming and dissolving of FC
over time, the spectral modulations also play an important
role in network dysfunction in MDD [10]. The electrophysio-
logical oscillation can coordinate brain regions with resonant
communications to form a functional network [11]. Different
oscillations will exhibit temporally independent FC dynamics
that can support frequency-specific information exchange [5],
[12]. An increasing amount of researches have investigated al-
tered FC in MDD within different ranges of oscillations using
resting EEG, which are most notable in theta, alpha and beta
bands [13], [14]. However, most previous studies investigate
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the FC during a large range of a predefined frequency band and
ignore the exhaustive spectral specificity [10]. The analysis
of EEG functional networks requires methods that consider
the whole frequency spectrum rather than single frequency
bands. Compared with fMRI, EEG has the advantage of high
temporal resolution resulting in rich spectral contents, which
make it valuable to study the temporal dynamics of frequency-
specific functional networks [15]. In this paper, we attended
to investigate the abnormal rsFC characterized by spatio-
temporal-spectral modes of covariation in MDD.

To evaluate the spatiotemporal dynamics of the resting-
state networks (RSNs), matrix decomposition methods, like
independent component analysis (ICA), are widely applied
to derive the temporal and spatial characteristics of the un-
derlying hidden components or networks in rsfMRI studies
[16]. However, matrix decomposition methods will fold some
dimensions (like temporal and subject modes) to “artificially
flatten” the multiway tensor into a matrix, which will remove
the specific information endorsed by higher-order and make
it difficult in results interpretation [17]–[20]. Considering the
multiway structure of the data, tensor component analysis
(TCA) methods have been successfully applied to EEG, MEG
and fMRI data under task conditions [20]–[29]. Particularly,
to reveal the interactions between different modes, the TCA
methods are applied based on the PARAFAC (CP) model
or the PARAFAC2 (CP2) model [22], [24]–[26], [28], [29].
However, most of the existing applications are applied under
the assumption of spatial consistency, temporal consistency,
and spectral consistency, which means that all the subjects will
share the same frequency-specific functional networks with
the same temporal dynamics. Recently, the coupled canoni-
cal polyadic tensor decomposition (coupled CPTD) model is
successfully introduced to disentangle different brain states
characterized by spatio-temporal-spectral modes of covariation
during music listening [30], [31]. For example, Liu et al.
applied a double-coupled nonnegative tensor decomposition
model to identify the hyper- and hypo-connectivity networks
in MDD under music perception. The study constructed two
fourth-order tensors with the dimension of time × frequency ×
connectivity × subject, and the incomplete spatial and spectral
consistency were assumed to reveal the shared and unshared
oscillatory brain network patterns [31]. In this study, we follow
our previously proposed framework in [31], and investigate the
altered oscillatory networks in MDD during resting state.

Applying the coupled CPTD model in our study has several
advantages. First, it can decompose the multi-block datasets
simultaneously and realize the group-level analysis. Second,
the resulting rank-1 tensors can reveal the interactions between
different modes. Therefore, we can investigate the abnormal
brain networks in MDD characterized by spatio-temporal-
spectral modes of covariation. Third, by imposing the coupled
constraints on the desired modes, it can extract the common
and individual features simultaneously, and we can obtain
the shared oscillatory networks between the healthy control
(HC) group and the MDD group and the unshared oscillatory
networks specified in each group. In this study, we proposed a
comprehensive framework based on the coupled CPTD model
to identify the altered oscillatory networks in MDD during

resting state, as shown in Figure 1. The proposed pipeline
can be easily extended to applications of other psychiatric
disorders.

II. MATERIALS AND METHODS

A. Data acquisition and preprocessing
The data used in this study are from the Multi-modal

Open Dataset for Mental-disorder Analysis (MODMA dataset)
which is an open-access dataset [32]. Please refer to [32] for
detailed information about the exclusion and inclusion criteria
of all participants. Twenty-four MDD subjects and twenty-nine
HC subjects participated in the experiment. All the participants
signed the informed consent prior to the experiment. The
study protocols were approved by the local Ethics Committee
for Biomedical Research at the Lanzhou University Second
Hospital. All the participants were evaluated by the Patient
Health Questionnaire (PHQ-9), Generalized Anxiety Disorder
(GAD-7), and Pittsburgh Sleep Quality Index (PSQI). Table I
showed the mean and standard deviations (SD) of age, edu-
cation, PHQ-9, GAD-7, PSQI and gender about two groups.
The statistical analysis of age, education, PHQ-9, GAD-7 and
PSQI was tested by the two-sample t-test, and the statistical
analysis of gender was tested by the chi-squared test.

The EEG signals were recorded by a 128-channel HydroCel
Geodesic Sensor Net. Five minutes eye-closed resting state
EEG signals were collected with a sampling frequency of
fs = 250 Hz and a reference of Cz. We preprocessed the
data using EEGLAB toolbox [33]. The EEG signals were
re-referenced with the average reference and then filtered to
1-40 Hz with the FIR band-pass filter. ICA was applied to
remove the artifacts caused by eye movements, and the bad
channels were interpolated by spherical interpolations. We
visually inspected the signals. To keep the continuousness
of the data, we rejected the bad time intervals with large
segments. Aftering the final visual inspection and the removal
of bad time intervals, the length of the remaining clean data
of two MDD patients and five HC subjects were shorter than
3 minutes. To keep the even and sufficient length of the EEG
data of all subjects, those seven participants were excluded.
After preprocessing, we obtained the three-minute EEG data
with twenty-two MDD subjects and twenty-four HC subjects
for further analysis.

TABLE I: Means and standard deviations of age, gender,
education and clinical measures for HC group and MDD group

HC group MDD group
p-value

Mean SD Mean SD

Age 32.9 9.1 30.4 9.6 >0.05

Education 15.8 2.5 13.5 3.6 >0.05

PHQ-9 2.5 1.8 18.2 3.6 <0.01

GAD-7 1.9 2.1 13.4 5.2 <0.01

PSQI 4.1 2.3 12.4 4.4 <0.01

Gender 9females, 15 males 10 females, 12 males >0.05

Abbreviations: HC, healthy controls; MDD, major depression disorder;
SD, standard deviations; PHQ-9, Patient Health Questionnaire; GAD-7,
Generalized Anxiety Disorder; PSQI, Pittsburgh Sleep Quality Index.
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Fig. 1: Diagram of the analysis pipeline. (a) Adjacency matrix construction in each time window and at each frequency bin.
After source reconstruction, the cortical signals were segmented by overlapping time windows, and wavelet transform was
applied for each time course within each time window. The phase lag index was used to obtain the adjacency matrix for
each time window and each frequency bin. (b) Adjacency tensor construction and decomposition. A 4-D adjacency tensor was
constructed for each group with the dimension of time × frequency × connectivity × subject, and coupled tensor decomposition
was implemented with coupled constraints in spectral and adjacency modes. The 4-D core tensor is superdiagonal with values
of 1. (c) The identification of oscillatory networks specified for each group.
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Fig. 2: The correlation maps of (a) temporal components, (b) spectral components and (c) adjacency components between the
HC group and the MDD group. The components are extracted by unconstrained CP decomposition on each block tensor of
each group.

B. Source reconstruction

We performed source localization with the open-source
Brainstorm software [34]. The cortical source currents were
estimated from the EEG recordings by solving two distinct
modeling problems: forward modeling of head tissues and
sensor characteristics and source modeling of source estima-

tion. For forward modeling, the symmetric boundary element
method (BEM) from the open-source software OpenMEEG
was applied with the MNI-ICBM152 template to compute the
volume-conductor model, and the source space was restricted
to the cortical surface with a grid of 15000 vertices. For
source modeling, we applied the weighted minimum norm
estimate (wMNE) method. Because it was well demonstrated
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that wMNE could minimize spurious phase interactions by
addressing the volume conduction problem and provide better
performance in estimating large-scale functional connectivity
networks [35], [36]. The current source orientations were con-
strained normal to the cortical surface, and a depth weighting
algorithm was used to compensate for any bias of superficial
sources estimation. The regularization parameter was set as 0.1
to reduce the sensitivity to noise. Then, the cortex was parcel-
lated into 68 anatomical regions ( 34 in each hemisphere) with
the Desikan–Killiany atlas [37]. The first principal component
of the principal component analysis (PCA) decomposition
performed on each brain region was used as the representative
time series to calculate pair-wise functional connectivity.

C. Functional connectivity
We calculate the all-to-all whole-brain FC by the phase

lag index (PLI) method for the following advantages of PLI
[38]. First, phase relations act as a mechanistic role supporting
interactions between neuronal groups, and PLI can measure
the phase relations between two signals [39]. Second, phase
synchronization methods combining with source localization
by wMNE have better performance in the estimation of large-
scale FC [35]. Third, the PLI method can diminish bias from
common sources by discarding zero-lag phase differences
manifested by signal leakage.

We represent the reconstructed source signals as X ∈
Rnt×ns , where nt and ns represent the number of time points
and the number of cortical brain regions, respectively. We
segment the source data X in the temporal dimension by a
sliding window with the window length of 3 seconds and the
overlap of 2 seconds, causing T = 178 segmented data Xt ∈
R3fs×ns , t = 1, 2, ..., T . Then, continuous wavelet transform
with Morlet wavelets is applied on each segmented data Xt

with 0.5 Hz frequency bin, resulting in F = 59 frequency
points for each time series in Xt. For brain region i and
time window t, the complex time-frequency representations
are denoted as Pi,t ∈ R3fs×F . We can obtain the instantaneous
phases for brain region i, time window t and frequency f by

ϕi,t(f) = arctan
imag(Pi,t(f))

real(Pi,t(f))
, (1)

where imag() and real() represent the imaginary part and the
real part of a complex value, respectively.

Then, we can compute the PLI index between brain regions
i and j in time window t at frequency f as follows:

PLIi,j(t, f) = |〈sign(ϕi,t(f)− ϕj,t(f))〉| , (2)

where |·| means the absolute value, and 〈·〉 means the sum
average value. After calculating all pairs of PLI values, we
can construct two adjacency tensors, XHC ∈ RT×F×N×SHC

for the HC group and XMDD ∈ RT×F×N×SMDD for the MDD
group. N = ns(ns − 1)/2 = 2278 represents the number of
connections according to the Desikan–Killiany atlas. SHC and
SMDD denote the number of subjects in the HC group and
the MDD group, respectively. Please note that the constructed
tensors are nonnegative, and the value of each element in two
tensors is constrained to [0, 1] due to the computation of PLI
index.

D. The coupled tensor decomposition

1) The nonnegative and double-coupled constraints: The
constructed tensors are concatenated by all pairs of FC
strengths (vary from 0 to 1) along temporal, spectral and sub-
ject dimensions, causing two nonnegative tensors. Therefore,
we impose nonnegative constraints on all the components for
each mode, and the derived nonnegative components represent
the time envelope, spectrum, connected strength and subject
contribution, respectively [30].

In our study, we impose double-coupled constraints on the
spectral mode and the adjacency mode. We assume that the
resting state oscillatory networks are partially altered in MDD.
The two groups can arouse the same functional networks
under the same condition and also retain individual func-
tional networks characterizing group differences. We applied
unconstrained CP decomposition on each tensor and calculated
the correlation maps of the temporal, spectral and adjacency
components between two groups, respectively, as shown in Fig
2. The temporal components have a lower correlation between
the two groups, and the temporal dynamics are not identical
under a task-free condition. According to Fig 2, we couple
the different numbers of components in spectral and adjacency
modes.

2) The double-coupled nonnegative tensor decomposition:
Given a forth-order tensor X ∈ RI1×I2×I3×I4 , it can be
decomposed into R rank-1 tensors with the general CP de-
composition by solving the following minimization problem:

J (u(n)) = ‖X −
R∑

r=1

u(1) ◦ u(2) ◦ u(3) ◦ u(4)‖2F , (3)

where
∑R

r=1 u
(1) ◦ u(2) ◦ u(3) ◦ u(4) =

JU (1),U (2),U (3),U (4)K, ‖ · ‖F denotes the Frobenius
norm, and ◦ denotes the vector outer product. u(n)

r denotes
the rth component of factor matrices U (n), n = 1, 2, 3, 4,
and R is the number of rank-1 tensors. In our study, for
the two forth-order tensors XHC ∈ RW×F×N×SHC and
XMDD ∈ RW×F×N×SMDD , to reduce the computational
load for further analysis, we firstly applied the low-rank
approximation with (3) using the alternating least squares
(ALS, [40]) algorithm. Then, we can get the low-rank
approximation as XHC ' X̃HC

= JŨ (1), Ũ (2), Ũ (3), Ũ (4)K
and XMDD'X̃MDD

= JṼ (1), Ṽ (2), Ṽ (3), Ṽ (4)K.
We want to impose the nonnegative constraints and the

double-coupled constraints on spectral (mode-2) and adjacency
(mode-3) modes, and this can be formulated as a double-
coupled nonnegative tensor decomposition (DC-NTD) model,
which can be solved by minimizing the following objective
function:

J (u(n)
r ,v(n)

r ) = ‖X̃HC −
RHC∑
r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r ‖2F

+ ‖X̃MDD −
RMDD∑
r=1

v(1)
r ◦ v(2)

r ◦ v(3)
r ◦ v(4)

r ‖2F

(4)

s.t.u(2)
r = v(2)

r (r ≤ Lf ), u
(3)
r = v(3)

r (r ≤ Lc),
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where RHC and RMDD are the ranks of tensors X̃HC
and X̃HC

.
u
(n)
r and v

(n)
r are the rth components of the mode-n actor

matrices U (n) and V (n), n = 1, 2, 3, 4, for the HC group and
the MDD group, respectively. Lf and Lc denote the number
of components coupled in spectral and adjacency modes, and
Lf,c ≤ min(RHC, RMDD).

We applied the fast hierarchical alternative least squares
(FHALS) algorithm to optimize the DC-NTD problem in (4).
Besides the advantages of high accuracy and easy realization
in optimization, the FHALS algorithm can also reduce the
computational load for large-scale tensors, and it has been
effectively applied to a number of (coupled) tensor decom-
position problems regarding nonnegative matrices and tensors
[30], [31], [41], [42]. The minimization problem in (4) can be
converted into max(RHC, RMDD) rank-1 subproblems through
the FHALS algorithm. The rth subproblem can be denoted as
follows:

min Jr(u(n)
r ,v(n)

r ) = ‖ỸHC
r − u(1)

r ◦ u(2)
r ◦ u(3)

r ◦ u(4)
r ‖2F

+ ‖ỸMDD
r − v(1)

r ◦ v(2)
r ◦ v(3)

r ◦ v(4)
r ‖2F ,

(5)

where ỸHC
r

.
= X̃HC −

∑RHC
k 6=r u

(1)
k ◦ u(2)

k ◦ u(3)
k ◦ u(4)

k and

ỸMDD
r

.
= X̃MDD −

∑RMDD
k 6=r v

(1)
k ◦ v

(2)
k ◦ v

(3)
k ◦ v

(4)
k are the kth

rank-1 tensor in each group. This subproblem can be solved
sequentially and iteratively. For example, to get u(n)

r , we need
to calculate the gradient Jr(u(n)

r ,v
(n)
r ) with respect to u

(n)
r

as follows:

∂Jr(u(n)
r ,v

(n)
r )

∂u
(n)
r

= −2Ỹ HC
r,(n)

[
ur

]�−n
+ 2u(n)

r

[
ur

Tur

]~−n
,

(6)
where � and ~ denote the Khatri-Rao product and Hadamard
(element-wise) product. where Ỹ HC

r,(n) is the mode-n matriciza-

tion of ỸHC
r .
[
ur

]�−n
= u

(4)
r �· · ·�u

(n+1)
r �u

(n−1)
r �· · ·�

u
(1)
r and

[
ur

Tur

]~−n
=
(
[ur]

�−n
)T

[ur]
�−n . Specially, for

r ≤ Lf , n = 2 and r ≤ Lc, n = 3, the gradient should be
represented as:

∂Jr(u(n)
r ,v

(n)
r )

∂u
(n)
r

=− 2Ỹ HC
r,(n)

[
ur

]�−n
+ 2u(n)

r

[
ur

Tur

]~−n

− 2Ỹ MDD
r,(n)

[
vr

]�−v
+ 2v(n)

r

[
vr

Tvr

]~−n
.

(7)

Then, let the gradient in (6) and (7) be zero, we can get
the solution of u

(n)
r via hierarchical alternative least squares

(HALS) as:

u(n)
r = Ỹ HC

r,(n)

[
ur

]�−n
/
[
ur

Tur

]~−n (8)

or

u(n)
r =Ỹ HC

r,(n)

[
ur

]�−n
/
[
ur

Tur

]~−n
+

Ỹ MDD
r,(n)

[
vr

]�−n
/
[
vr

Tvr

]~−n
(9)

when r ≤ Lf , n = 2 and r ≤ Lc, n = 3.
For the solutions via FHALS, we set Ỹ HC

r,(n) =

Ũ (n)
[
Ũ�−n

]T
−U (n)[U�−n ]T +u

(n)
r [u

�−n
r ]T and Ỹ MDD

r,(n) =

Ṽ (n)
[
Ṽ �−n

]T
−V (n)[V �−n ]T+v

(n)
r [v

�−n
r ]T . Then. we can

rewrite (8) and (9) as:

u(n)
r = u(n)

r +
[
Ũ (n)Γ̃(n)

r −U (n)Γ(n)
r

]
/Γ

(n)
(r,r) (10)

and

u(n)
r = v(n)

r = u(n)
r +[

Ũ (n)Γ̃(n)
r −U (n)Γ(n)

r +Ṽ (n)Λ̃(n)
r −V (n)Λ(n)

r

]
/
[
Γ
(n)
(r,r)+Λ

(n)
(r,r)

]
(11)

when r ≤ Lf , n = 2 and r ≤ Lc, n = 3, where Γ̃(n) =
[ŨTU ]~−n , and Λ̃(n) = [Ṽ TV ]~−n . Analogously, except
r ≤ Lf , n = 2 and r ≤ Lc, n = 3, we can obtain the
learning rule of v(n)

r as follows:

v(n)
r = v(n)

r +
[
Ṽ (n)Λ̃(n)

r − V (n)Λ(n)
r

]
/Λ

(n)
(r,r). (12)

To keep the nonnegativity of the components, we applied
the “half-rectifying” nonlinear projection. In each subproblem,
u
(n)
r and v

(n)
r are updated successively via (10), (11) and (12).

The max(RHC, RMDD) subproblems are optimized alternatively
one after another until convergence. We summarize the DC-
NTD-FHALS algorithm in Algorithm 1.

Algorithm 1: DC-NTD-FHALS algorithm

Input: XHC, XMDD, Lf , Lc, RHC, RMDD
1 Initialization: U (n), V (n), n = 1, 2, 3, 4

2 Calculate Ũ (n), Ṽ (n), n = 1, 2, 3, 4 via unconstrained
ALS

3 while unconvergence do
4 for n = 1, 2, · · · , 4 do
5 for r = 1, 2, · · ·max(RHC, RMDD) do
6 Update u

(n)
r , v(n)

r via (10), (11) and (12)
7 end
8 end
9 end

Output: U (n), V (n), n = 1, 2, 3, 4

3) Parameter settings: For the implementation of the DC-
NTD-FHALS algorithm, we need to select the number of
extracted components RHC and RMDD for two tensors XHC

and XMDD, and the number of coupled components Lf and Lc

in the spectral and adjacency modes. For RHC and RMDD, we
matricized the tensors XHC and XMDD along the spectral mode
separately. Then, we performed PCA and select the number
of components according to 95% explained variance. In our
study, we set RHC = RMDD = 31. Please note that we use
the same number of components in low-rank approximation.
There are no common methods to select the coupled modes
and the number of coupled components because of different
data characteristics regarding different applications. Following
our previous studies [30], [31], we performed CP decom-
position on each tensor and calculated the correlation maps
of temporal components, spectral components and adjacency
components between the HC group and the MDD group,
as shown in Figure 2. According to the correlation maps,
we impose the coupled constraints in spectral and adjacency
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Fig. 3: Four oscillatory networks specified in the HC group. (a) Adjacency matrix representation of the network. The 68 brain
regions are ordered from the left hemisphere to the right hemisphere. Within each hemisphere, the brain regions are arranged
in the order of frontal lobe, temporal lobe, parietal lobe, and occipital lobe, as indicated in red, yellow, green, and blue color,
respectively. Within each lobe, the brain regions are ordered according to their y-location from anterior regions to posterior
regions. (b) The spectral component of the network. (c) Cortical space representation of the network in lateral, medial and
dorsal view.

modes, and we set the number of coupled components in
the spectral mode Lf = 25 and the number of coupled
components in the adjacency mode Lc = 9.

For the initialization of the factors in each mode, we applied
the uniformly distributed pseudorandom numbers. We set two
termination criteria for the iterations. The change of the tensor
fitting is smaller than ε = 1e− 6, or the number of iterations
is up to 1000.

III. RESULTS

We implemented the low-rank DC-NTF-FHALS algorithm
50 times, and the average running time was 9949 seconds.
For the individual networks in the HC group from 50 times
implementations of the proposed algorithm, we performed
PCA to determine the number of clusters according to 95%
explained variance, and then the k-means clustering method
was applied to obtain the stable networks extracted by the
low-rank DC-NTF-FHALS algorithm. The same clustering
procedure was also performed for the MDD group.

We clustered four oscillatory networks from the individual
networks in the HC group, which also represent the hypocon-
nectivity networks in MDD, as shown in Figure 3. Those
hypoconnectivity networks mean that they are activated in
the HC group but not in the MDD group. Figure 3I-III were
alpha rhythm modulated networks. Figure 3I showed a right
visual network modulated by upper-alpha rhythms. Figure 3II
showed a left hemisphere dominated temporoparietal network
(TPN) with a 10 Hz oscillatory peak. This dysconnectivity
network converges in the temporoparietal junction (TPJ),
which plays a crucial role in controlling higher-order cognition
during the task-free state. Figure 3III showed a sensorimotor
network (SMN) which has a great clinical significance in
various neuropsychiatric disorders. A bilateral frontotemporal
network(FTN) was identified to be modulated by delta band,
which was related to various brain diseases, as shown in Figure
3IV.

We also clustered four oscillatory networks specified in
the MDD group, which represented the hyperconnectivity net-
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Fig. 4: Four oscillatory networks specified in the MDD group. (a) Adjacency matrix representation of the network. The 68
brain regions are ordered from the left hemisphere to the right hemisphere. Within each hemisphere, the brain regions are
arranged in the order of frontal lobe, temporal lobe, parietal lobe, and occipital lobe, as indicated in red, yellow, green, and
blue color, respectively. Within each lobe, the brain regions are ordered according to their y-location from anterior regions
to posterior regions. (b) The spectral component of the network. (c) Cortical space representation of the network in lateral,
medial and dorsal view.

works in MDD, as shown in Figure 4. Those hyperconnectivity
networks mean that they are activated in the MDD group but
not in the HC group. Figure 4I and Figure 4II indicated delta
oscillatory networks. Figure 4I showed a left prefrontal and
right auditory network, and Figure 4II showed a right FTN.
The networks shown in Figure 4III and Figure 4IV were
modulated by late alpha oscillations. Figure 4III showed a
posterior network, which involved key areas of DMN, includ-
ing posterior cingulate cortex (PCC), precuneus and isthmus
cingulate cortex (ICC). Figure 4IV represented a DAN-related
network which also includes functionally connected visual
cortex.

IV. DISCUSSION

In this study, we proposed a comprehensive framework
based on coupled tensor decomposition to investigate the
hyperconnectivity and hypoconnectivity oscillatory networks
in MDD using resting EEG. The applied method has been
well demonstrated by synthetic data and real data in our

previous study [31]. Our approach is completely data-driven
without any assumptions on predefined frequency bands and
selections of regions of interest, which can allow us to explore
the whole-brain spatial couplings via synchronized oscillations
of the rhythmic brain on the exhaustive spectrum contents.
This study identified four hyperconnectivity networks and four
hypoconnectivity networks modulated by different oscillations.
To the best of our knowledge, this study is the first attempt
to investigate the frequency-specific dysconnectivity networks
in MDD based on the coupled tensor decomposition method
using resting EEG.

The oscillatory networks specified in the HC group also
represent the hypoconnectivity networks in the MDD group
which means that they are normally engaged in the HC group
but are underactive in the MDD group. The hyperconnectivity
networks specified in the MDD group denote that they are
overactive in MDD. Among those dysconnectivity networks,
three networks are related to sensory cortex systems, including
the visual network in Figure 3I, the SMN in Figure 3III and
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the auditory network in Figure 4I. The auditory and visual
networks are important ICNs during resting state, which may
serve as effective neural markers in MDD [2], [43]–[47].
The anomalous visual and auditory networks may indicate
the deficit in processing and integrating audio and visual
information in MDD. The abnormalities of visual and auditory
networks are widely reported in previous task-based studies.
However, few resting state studies investigate the dysfunctions
of visual and auditory networks, which should be considered
in terms of functional and neuropathological underpinnings
[43], [44], [47]. Dysfunction in SMN has been implicated in
various neuropsychiatric disorders underlying the sensorimotor
functions [48]–[50]. Researches have reported that MDD was
characterized by the abnormal spatiotemporal structure of
SMN during resting state, and our findings are well in accord
with previous studies [50], [51]. We also found some dyscon-
nectivity networks related to higher-order cognitive functions.
Figure 3II relates to the left TPN, including strong connections
between the inferior parietal cortex, supramarginal gyrus and
banks of the superior temporal sulcus. The key regions involve
the left temporoparietal junction (LTPJ) area, which is a key
node for the integration of internal and external information
relating to processing language and semantics [52]–[54]. The
LTPJ is also necessary for the representation of mental states
[55], [56]. The dysconnectivity of the LTPJ may indicate
the deficit in language-related functions and the inference of
others’ intention in MDD [52], [54], [55]. We identified the
dysconnectivity of the FTN, which is bilaterally activated in
the HC group (Figure 3IV) and unilaterally activated in the
MDD group (Figure 4II). The dysfunction of frontotemporal
regions is the main cause of frontotemporal dementia (FTD),
which affects emotion regulation, memory and language pro-
cessing, and MDD is commonly an early stage of FTD [57],
[58]. Our findings potentially indicate that MDD patients
may have a risk of developing FTD. Figure 4III showed
a posterior network that involves the key areas of DMN,
including PCC, ICC and precuneus. The posterior DMN has
been implicated in visual processing, motor planning, memory
retrieval and self-perception, and altered DMN connectivity
may change the way a person perceives events and their
social and moral reasoning [59]. The dysconnectivity of DMN
is widely reported in MDD during resting state [60], [61].
Increased DMN connectivity is associated with rumination
leading to negative and self-referential thoughts [31], [61]. Our
finding of hyperconnectivity of DMN is well supported by pre-
vious researches. We also identified a dysconnectivity network
related to DAN and the visual cortex. The DAN is a task-
positive network, which is engaged during externally directed
attentional tasks and comprises functionally connected brain
regions, including visual regions [62]. In MDD, the DAN is
identified as abnormal in between-network connectivity with
FN and DMN, which may reflect biases towards ruminative
thoughts at the cost of attending to the external world [2].

It has been well demonstrated that MDD is related to the
dysregulation of neural oscillatory synchrony, and our findings
can provide references for the comprehensive information. In
our study, the altered oscillations of the networks are notable
in delta and alpha bands. It has been established that alpha

synchronization plays a key global role in top-down network
control [63]. The modulation of alpha oscillations has been
demonstrated to be linked to the ability to shift and focus
attention, and meet working memory and executive demands
[64], [65]. In our study, the impaired networks of alpha
dysregulation are related to the visual network (Figure 3I),
TPN (Figure 3II), the SMN (Figure 3III), DMN (Figure 4III)
and DAN (Figure 4IV), and those networks are well associated
with attention regulation and working memory. Therefore, our
results are consistent with previous findings. The dysregulation
of delta oscillations has been related to various psychiatric
disorders, including MDD [66]. Our results showed that the
dysconnectivity networks regulated by delta oscillations are all
related to the frontal network, including the prefrontal network
(Figure 4I) and FTN (Figure 4II) and (Figure 3IV). From a
review paper, Harmony concluded that the delta oscillations
that originate in the frontal cortex might modulate the activity
of neuronal networks that are distant from the frontal lobes,
which can well support our findings [67].

Previous studies have shown that specific cell types and net-
work structures are associated with the generation of different
oscillations [68]. Our study well investigated the oscillatory
networks, and the findings might reveal potential mechanisms
in oscillatory synchrony between intrinsic cortical structures.
Additionally, previous researches have provided much evi-
dence that specific neurotransmitters can cause diverse effects
on oscillatory synchrony across different brain areas, thus
regulating various cognitive functions [68]–[71]. The results
about altered synchronization via different oscillations could
provide potential references in the neuropharmacology of
MDD. The increasingly hot topic for MDD treatment using
transcranial magnetic stimulation (TMS) has shifted the focus
from individual brain regions to brain networks, because the
effects of the stimulated brain region can be propagated to the
connected network regions [72]–[74]. However, it is still un-
clear about the promising TMS targets and the corresponding
distributed brain networks. Therefore, in the connectomics era
of brain stimulation, identifying the connectivity-based TMS
targets is crucial to improve clinical diagnosis. Our findings
may be referred to reveal promising network targets.

We acknowledge some limitations and future directions
of the current study. First, we only focus on the group
differences in this study, and we assume the temporal, spectral
and spatial consistency between each participant from the
same group. However, the subject differences are important
for clinical applications, and future work should take the
subject differences into consideration. Second, we use the
same anatomical image for each participant in the forward
modeling due to lacking MRI data of the published data. For
accurate source reconstruction, future work on data collection
should include the anatomical MRI data. Third, the expla-
nation for the oscillatory networks is limited because few
studies link the functional networks with specific frequencies
except predefined frequency bands. Modulation of the detailed
frequencies for ICNs should be further studied. Fourth, the
sliding window technique is used to measure the dynamic
FC, which will limit the timescale of the FC fluctuations. The
FC is dynamic in different timescales, and the corresponding
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computational model should be designed in future work.

V. CONCLUSION

In this study, we proposed a novel framework based on cou-
pled tensor decomposition to identify the oscillatory dyscon-
nectivity networks in MDD using resting EEG. Highlighted
from previous approaches, our method fully considered the
high-dimensional structure of the data and the common and
individual features of the oscillatory networks between the
HC and MDD groups. We examined the dynamic networks
modulated by specific frequencies and the hyper- and hypo-
connectivity signatures in MDD. Our results are well explained
by previous researches, thus providing valuable references for
clinical diagnosis and treatment of MDD. The analysis pipeline
is also applicable to other psychiatric disorders.
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