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Abstract: Five alkali-activated analcime (ANA) sorbents (ANA-MK 1, ANA 2, ANA 3, ANA-MK 4,
and ANA-MK 5) were developed for ammonium (NH4

+) ion removal. Acid treatment and calcination
were used as pre-treatments for analcime, and metakaolin (MK) was used as a blending agent in three
sorbents. Sorption experiments were performed to evaluate the effects of sorbent dosage (1–20 g L−1),
initial NH4

+ ion concentration (5–1000 g L−1), and contact time (1 min–24 h). ANA-MK 1, ANA 2, and
ANA-MK 4 were the most efficient sorbents for NH4

+ ion removal, with a maximum experimental
sorption uptake of 29.79, 26.00, and 22.24 mg g−1, respectively. ANA 3 and ANA-MK 5 demonstrated
lower sorption capacities at 7.18 and 12.65 mg g−1, respectively. The results for the sorption of
NH4

+ ions onto the alkali-activated analcime surfaces were modeled using several isotherms. The
Langmuir, Freundlich, Sips, and Bi-Langmuir isotherms were the best isotherm models to represent
the studied systems. The results of the kinetic studies showed the maximum NH4

+ ion removal
percentage of the sorbents was ~80%, except for ANA-MK 5, which had a ~70% removal. Moreover,
the pseudo-first-order, pseudo-second-order, and Elovich models were applied to the experimental
data. The results showed that the sorption process for ANA-MK 1, ANA 2, ANA 3, and ANA-MK 4
followed the Elovich model, whereas the pseudo-second-order model provided the best correlation
for ANA-MK 5.

Keywords: alkali-activated analcime; ammonium ion; isotherm models; kinetic models; sorption

1. Introduction

Ammonium (NH4
+) is an essential nutrient for plants, but its excessive amount in

water streams may result in eutrophication in water reservoirs, such as lakes, rivers, and
seas, causing undesirable effects on the environment, aquatic fauna, and humans. In pro-
tecting water resources, the effective removal of NH4

+ from industrial wastewater prior
to its discharge into natural water bodies is critical [1–3]. NH4

+ pollution comes from
agricultural, industrial, or municipal sources. Wastewater treatment plants also contribute
to NH4

+ pollution [4]. In response to this problem, many countries have established strict
regulations concerning acceptable ammonia concentrations in surface waters [5]. For ex-
ample, the EU urban wastewater directive has set the 15 mg/L (10,000–100,000 population
equivalent) total-N limit in urban wastewater [6].

Various methods have been employed to remove nitrogen compounds from aque-
ous solutions. These methods include adsorption [7–9], air stripping [10,11], biological
treatment (nitrification/denitrification process) [12,13], chemical co-precipitation [14,15],
electrolysis [16,17], catalytic wet-air oxidation [18,19], ion-exchange [9,20,21] and mem-
brane processes [22,23]. Many of these methods have several limitations, including high
cost, low removal rate, high sensitivity to pH and temperature, and introduction of new pol-
lutants. However, compared with other methods, ion exchange and adsorption techniques
offer several advantages: high removal efficiency, low energy consumption, simplicity
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of application and operation, and environmental friendliness. These advantages render
ion exchange and adsorption as competitive methods for large-scale NH4

+ removal in
commercial and water treatment plants [24].

Organic resins have been reported to be quite selective ion exchangers for NH4
+

ion removal [25,26]. However, these materials are expensive; thus, efficient and low-
cost side stream-derived sorbents must be developed. Numerous sorbents have been
developed for NH4

+ ion removal; these include carbon-based adsorbents [27–29], natural
zeolites [3,30,31], clays [2,30,32], polymeric ion exchangers [21,33], hydrogels [34–36], in-
dustrial and agricultural wastes [37–42] and nanoparticles [43]. Among these materials,
natural zeolites have been reported to be efficient sorbents for NH4

+ ion removal. Removal
of NH4

+ ions is based on cation exchange or on adsorption in pores of aluminosilicate
structures [26,31,33].

Natural zeolites are relatively cheap, easy to handle, and locally available [24]. These
materials exhibit a three-dimensional framework and a cage-like structure, and they consist
of SiO2 and Al2O4 (tetrahedral molecules) linked by shared oxygen atoms. Zeolites bear a
negative charge because of the isomorphous replacement of Si4+ by Al3+. The magnitude
of the charge depends on the number of Al atoms replaced by Si atoms and is balanced by
alkali and alkaline-earth metal cations, such as Na+, K+, and Ca2+ [3]. These cations are
exchangeable with certain cations in solutions, such as Zn2+, Ni2+, or NH4

+.
Zeolites can be found in salt lakes, sediment layers, and volcanic environments (under

hydrothermal conditions). The most common types of zeolites are clinoptilolite, analcime,
mordenite, phillipsite, heulandite, and dachiardite. Each zeolite type exhibits a specific
structural characteristic that affects the capacity of cation exchange to remove, for example,
NH4

+ ions from an aqueous solution. In addition, the nature of a cation (e.g., size and
load), contact time, zeolite loading, initial anion concentration, pH, and temperature affect
cation exchange. To improve the efficiency of NH4

+ ion removal, zeolites can be modified
with sole or combined treatments, such as heating and chemical treatments (acids, alkalis,
and salts of alkaline metals) [44,45]. It has been reported that acid washing and calcination
enhance NH4

+ ion removal. This phenomenon may be attributed to the ability of acid
washing to remove impurities and to the ability of high-temperature calcinations to remove
water molecules and organics from the cavities and pores of zeolite [44–46]. In addition,
acid washing progressively eliminates cations, such as Ca2+, Mg2+, and Na+, to change
a zeolite into its H-form (proton exchange) and finally dealuminate the structure of a
zeolite [45]. Zeolite can also be modified by using alkali (NaOH solution) or salts (e.g.,
sodium chloride, magnesium chloride, aluminum chloride, and ammonium chloride).
Alkali enhances, resulting in the dissolution of the zeolite silicon, which decreases the ratio
of silicon to aluminium (Si/Al) and forms mesoporous with relatively fine pore sizes. By
treating the zeolite with a salt solution, water/inorganic impurities can be removed from
the zeolite channel, and zeolite cations are exchanged with cations in the salt solution,
which can increase the pore size [44].

Alkali activation is another possible modification method used to enhance sorption
efficiency. This modification method is suitable for aluminosilicates containing raw materi-
als, such as metakaolin, blast-furnace slag, fly ash, or zeolite. Alkali-activated materials can
be prepared at ambient or slightly elevated temperatures via the hydrothermal conversion
of a solid aluminosilicate material by using an alkali hydroxide and/or silicate solution.
When alkali-activated materials are amorphous or partly crystalline in organic polymers
consisting of three-dimensional, negatively charged framework structures, they can be
called geopolymers [47].

In this study, analcime (ANA) was utilized for NH4
+ ion removal.

Analcime [Na16(Al16Si32O96)·16H2O]. is a by-product of the production of lithium car-
bonate from spodumene (LiAlSi2O6) through the sodium pressure leaching process [48].
Preliminary experiments have shown that raw analcime, without any modification, exhibits
relatively low sorption capacity (<10 mg g−1) towards NH4

+ ions [49]. This phenomenon
has also been observed in other natural zeolites [24]. The target of this study was to render
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ANA a more efficient sorbent by subjecting it to different modification treatments. At first,
the preliminary experiments were performed by modification analcime with different treat-
ment methods. Based on these experiments, five alkali-activation methods were selected as
modification methods for ANA. Namely, ANA-MK 1, ANA 2, ANA 3, ANA-MK 4, and
ANA-MK 5 were prepared and compared in terms of their sorption efficiencies for NH4

+

ion removal. Sorption kinetics, sorption isotherms, effects of pH, sorbent dosage, and NH4
+

ion concentration were investigated. The prepared sorbents were characterized by X-ray
diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy,
and field emission scanning electron microscope (FESEM) to determine their mineralogical
and physicochemical characteristics. The specific surface areas (SSAs), pore sizes, and pore
volumes of the samples were also determined.

2. Materials and Methods
2.1. Materials

Analcime was obtained from a Finnish mining company. Metakaolin (MK) was
obtained from a Finnish supplier and was used as a blending agent in some of the prepared
sorbents. Technical grade sodium hydroxide (NaOH; VWR International, Radnor, PA, USA),
sodium silicate (7.5–8.5% Na2O; 25.5–28.5% SiO2; VWR International), potassium silicate
(K2SiO3; VWR International), and phosphoric acid (H3PO4, 85%, VWR International)) were
used to synthesized alkali- or acid-activated analcime sorbents. A synthetic NH4

+ ion
stock solution was prepared from analytical grade ammonium chloride salt (NH4Cl, Merck
KGaA, Darmstadt, Germany) and distilled water. The pH of the solution was adjusted by
adding HCl and/or NaOH (FF-Chemicals, Haukipudas, Finland). All chemicals used in
the experiments were of analytical grade.

2.2. Screening of Different Alkali- and Acid Activation Methods for Analcime

Analcime was pre-treated with acid washing, drying, and/or calcination prior to
alkali and acid activation. The pre-treated analcime was alkali-activated using 10 M NaOH
or with an alkaline solution containing 10 M NaOH and sodium silicate (7.5–8.5% Na2O;
25.5–28.5% SiO2) at a 1:1 weight ratio. Acid activation was performed using phosphoric
acid (85%). Moreover, the effect of metakaolin as a blending agent was investigated. Three
alkali-activation methods and one acid activation method were employed to prepare an
effective analcime sorbent for NH4

+ ion removal. The objective was to prepare a thoroughly
consolidated mixture that would sufficiently harden and could be crushed and sieved to
a certain particle size. The preparation methods are presented in Table 1. In addition, a
schematic diagram of the preparation methods is shown in Figure 1.

Table 1. Preparation conditions for the alkali- and acid activation of analcime. In one preparation
method (F), metakaolin was used as a blending agent.

Acid Washing Calcination Alkali- or Acid Activation Chemical Consolidation Method Sample Name

- - 10 M NaOH No 1 A
- 400 ◦C, 2 h 10 M NaOH No 1 B
- 400 ◦C, 2 h 10 M NaOH No 1 C

2 M HCl 700 ◦C, 2 h 10 M NaOH No 1 D
- - Alkaline solution No 1 E
- - Alkaline solution 1 Yes 1 F
- 400 ◦C, 2 h Alkaline solution No 1 G
- 400 ◦C, 2 h Alkaline solution No 1 H

2 M HCl - Alkaline solution Yes 1 I
2 M HCl 400 ◦C, 2 h Alkaline solution Yes 1 J
2 M HCl 700 ◦C, 2 h Alkaline solution Yes 1 K
2 M HCl 1100 ◦C, 2 h Alkaline solution No 1 L

- - Phosphoric acid No 2 M
- 400 ◦C, 2 h Phosphoric acid No 2 N

2 M HCl 400 ◦C, 2 h Phosphoric acid No 2 O
1 Metakaolin was added as a blending agent, ratio (analcime:metakaolin): 3:1.
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2.2.1. Pre-Treatment of Analcime

Analcime was subjected to different pre-treatments prior to alkali or acid activation.
These pre-treatments included acid washing with 2 M HCl at an L/S (liquid/solid) ratio
of 100 for 24 h, drying at 105 ◦C overnight, and/or calcinating for 2 h at 400 ◦C or 700 ◦C.
These pre-treatments are presented in Table 1 and Figure 1.

2.2.2. Alkali- and Acid Activation

Method 1: The pre-treated analcime was alkali-activated using 10 M NaOH or alkaline
solution containing 10 M NaOH and sodium silicate (7.5–8.5% Na2O; 25.5–28.5% SiO2)
at a 1:1 weight ratio. The alkaline solution was prepared a day before use. The analcime
(dried at 105 ◦C) was mixed with the alkaline solution at a 1:1 weight ratio. In one sample,
metakaolin was used as the blending agent. The mixture was mixed for 15 min, vibrated
for 2 min, and allowed to consolidate for 3 days at room temperature. The resulting solid
material was crushed to a particle size of 63–125 µm. The obtained materials were washed
with deionized water, dried at 105 ◦C, and stored in a desiccator. The alkali-activation
recipes are shown in Table 1 and Figure 1.

Method 2: The pre-treated analcime was mixed with phosphoric acid (85%) at a 1:1
weight ratio. A small amount of water was added as needed. The mixture was transferred
into a mold, which was placed and sealed in a small plastic bag; the mixture was then
allowed to consolidate at 60 ◦C for 24 h. The resulting solid material was crushed to a
particle size of 63–125 µm. The obtained materials were washed with deionized water,
dried at 105 ◦C, and stored in a desiccator. The acid activation recipes are shown in Table 1
and Figure 1.

2.3. Alkali-Activation

Alkali-activated analcime sorbents were prepared using five recipes (Table 2, Figure 2).
The analcime was pre-treated as in the screening tests (Section 2.2.1). ANA 2 and ANA 3
were acid-washed, and ANA 3 was further calcinated at 400 ◦C prior to alkali activation.
Metakaolin was used as a blending agent in the case of ANA-MK 1, ANA-MK 4, and
ANA-MK 5. The alkali-activated analcime sorbents were prepared using the method
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described in Section 2.2.2. Sodium silicate was used as an alkaline chemical, but in the case
of ANA-MK 4 and ANA-MK 5, potassium silicate was used.

Table 2. Production conditions for the alkali-activated analcime sorbents.

Sample Pre-Treatment for
Analcime

Calcination
[T ◦C] Materials Alkali-Activation Chemical

Ratio:
ANA/Activation
Chemical

ANA-MK 1 - - ANA:MK (3:1) 10 M NaOH + Na-silicate (1:1) 1.02

ANA 2 2 M HCl washing,
10 g/200 mL, 24 h - ANA Na-silicate 0.90

ANA 3 2 M HCl washing,
10 g/200 mL, 24 h 400 ◦C, 2 h ANA 10 M NaOH + Na-silicate (1:1) 0.91

ANA-MK 4 - - ANA:MK (3:1) 10 M NaOH + K-silicate (1:1) 1.04
ANA-MK 5 - - ANA:MK (5.7:1) 10 M NaOH + K-silicate (1:1) 1.15
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2.4. Characterization Methods

The SSA and pore volumes of the samples were determined from nitrogen gas
adsorption−desorption isotherms at the temperature of liquid nitrogen (−196 ◦C) using
a Micromeritics ASAP 2020 instrument. The SSA was calculated based on the Brunauer–
Emmett–Teller (BET) isotherm, and the pore size distributions were calculated from the
desorption data using the Barrett–Joyner–Halenda (BJH) method. The XRD patterns were
recorded by a PANalytical X’Pert Pro X-ray diffractometer (Malvern Panalytical, Almelo,
The Netherlands) using monochromatic CuKα1 radiation (λ = 1.5406 Å) at 45 kV and 40 mA.
Diffractograms were collected within the 2θ range of 10◦–90◦ at 0.017◦ intervals at a scan
step time of 100 s. The crystalline phases and structures of the adsorbents were analyzed us-
ing the HighScore Plus software (Version 4.0, PANalytical B. V., Almelo, The Netherlands).
The peaks were identified according to the International Centre for Diffraction Data (ICDD)
(PDF-4+ 2022 RDB). The phases were quantified through Rietveld analysis using HighScore.
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The XRF spectra were recorded by a PANalytical Axios mAX 4 kW wavelength dispersive
X-ray fluorescence spectrometer (Malvern Panalytical, Almelo, The Netherlands), wherein
samples were prepared as loose powders using a mylar film under a helium atmosphere at
4 kW. The FTIR spectra at the wavenumber range of 650–4000 cm−1 were collected using
a PerkinElmer Spectrum One FT-IR spectrometer (PerkinElmer, Walthman, MA, USA)
equipped with an attenuated total reflectance unit. The morphology and microstructure
shown in the FESEM images were obtained using a Zeiss Sigma field emission scanning
electron microscope (FESEM, Carl Zeiss Microscopy GmbH, Jena, Germany) at the Centre
for Material Analysis in the University of Oulu operated at 5 kV.

2.5. Batch Sorption Experiments

The sorption properties of the alkali-activated analcime sorbents were characterized
by batch experiments. Experiments that aimed to determine the effect of sorbent dose and
initial NH4

+ ion concentration were performed in 50 mL centrifuge tubes, which were
placed in a shaker for 24 h. At the end of the sorption experiment, the sorbents were
separated through centrifugation (3500 rpm, 2–5 min), and the supernatant was sampled
with a pipette. NH4

+-N concentration was analyzed using Hach HQ30d equipped with an
NH4

+ ion-selective electrode. Therefore, the concentration values presented are those of
NH4

+-N, although the phenomenon being studied (including trends and conclusions) is
the removal of NH4

+ ions. Given that NH4
+ ions exist as ammonia in alkaline conditions,

the pH was maintained below 9 during the batch experiments by adjusting the initial pH
(0.1/1M HCl) to 2.5 [50,51].

Kinetic studies were performed in a 1 L reactor vessel equipped with a magnetic stirrer
with an agitation speed of 800 rpm. Then, 30 mL of the sample was taken out from the
vessel at different time intervals from 0 h to 24 h of sorption and then centrifuged prior to
analysis. The detailed sorption conditions are presented in Table 3.

Table 3. Target parameters used in the batch sorption experiments. All experiments were performed at
room temperature (21 ◦C–23 ◦C). The initial pH of the synthetic NH4

+ ion solution was adjusted to 2.5.

Parameter C0(NH4
+)

[mg L−1]
C0(NH4

+-N)
[mg L−1]

Adsorbent Dosage
[g L−1]

Contact Time
[min, h]

Sorbent dose * 50 and 1000 38 and 777 1, 2, 5, 10, 20 24 h
Initial NH4

+/NH4
+-N

concentration 5–1000 3.9–777 5 24 h

Contact time 50 38 5 1 min–24 h

* pH was adjusted also after adding sorbent.

The removal efficiency (%) and sorption capacity for NH4
+ ion were calculated using

Equations (1) and (2), respectively:

R (%) =
C0 − Ce

C0
× 100 (1)

qe =
(C0 − Ce)V

m
. (2)

C0 and Ce (mg L−1) are the initial and equilibrium liquid phase NH4
+ ion concentra-

tions, respectively, V (L) is the volume of the solution, and m (g) is the mass of the sorbent.

2.6. Sorption Isotherms

Several non-linear isotherm models (Langmuir, Freundlich, Sips, Bi-Langmuir, Toth,
Temkin, and Dubin–Radushkevich) were applied to the experimental data. Four models
provided accurate results. These models were the traditional Langmuir and Freundlich
isotherms, the Sips model, which is suitable for heterogeneous sorption, and the Bi-
Langmuir model, which is suitable when sorption occurs in two types of sorption sites.
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The other models did not provide any additional information about the sorption of NH4
+.

The isotherm parameters were obtained through non-linear regression using OriginPro
2018, and the equations used are as follows:

The non-linear form of Langmuir’s [52] equation is

qe =
bLqmCe

1 + bLCe
, (3)

where bL (L mg−1) represents the energy of sorption, qm (mg g−1) is the Langmuir constant,
which is related to sorption capacity, and Ce (mg L−1) is the NH4

+ ion concentration of the
solution in equilibrium. The Freundlich model [53] can be written as

qe = KFC1/nF
e . (4)

where Kf (L g−1) and nF are Freundlich constants, which are related to sorption capacity
and intensity, respectively. The Sips isotherm [54] combines the properties of both the
earlier mentioned models and is given as follows:

qe =
qm(bSCe)

ns

1 + (bSCe)
ns . (5)

Analogous to the Langmuir model, in this equation, bS (L mg−1) is a constant related
to sorption energy. The equation for the Bi-Langmuir model [55] is similar to that for the
Langmuir model, except that it includes one term for both sorption sites:

qe =
bL1 qm1 Ce

1 + bLCe
+

bL2 qm2 Ce

1 + bLCe
. (6)

To evaluate the fit of the isotherm equations to the experimental data, the residual root
mean square error (RMSE) was determined. The smaller the error function value, the better
the curve fitting. The calculated expression of the error function is as follows:

RMSE =

√
1

n − p

n

∑
i=1

(
qe(exp) − qe(calc)

)2
, (7)

where n is the number of experimental data points, p is the number of parameters in
the isotherm model, and qe(exp) (mg g−1) and qe(calc) (mg g−1) are the experimental and
calculated values of the sorption capacity in equilibrium, respectively.

2.7. Reaction Kinetics of the Sorption Process

The kinetic parameters of the sorption experiments were solved using the non-linear
forms of three models, namely, the traditionally used pseudo-first-order and pseudo-
second-order models and the Elovich model, which could describe well slow sorption
processes and which has gained more popularity in recent years.

The non-linear form of the pseudo-first-order equation [56] is

qt = qe

(
1 − e−k1·t

)
, (8)

where qe (mg g−1) and qt (mg g−1) are the amounts of NH4
+ ion sorbed at equilibrium and

at time t (min), respectively; in addition, k1 (min−1) is the pseudo-first-order rate constant.
The pseudo-second-order equation [57] can be written as

qt =
qe

2k2t
qek2t + 1

, (9)
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where k2 is the pseudo-second-order rate equilibrium constant (g mg−1 min−1). The
non-linear form of the Elovich equation [58] is

q =
1
β

ln
(

υ0β +
1
β

lnt
)

, (10)

where υ0 (mg g−1 min−1) is the initial sorption rate and β (g mg−1) is the desorption constant.

Intra-Particle Diffusion Model

To identify the diffusion mechanism, the intra-particle diffusion model based on the
theory proposed by Weber and Morris [59] was used. The Weber–Morris equation can be
written as follows:

qt = Kidt
1
2 + C (11)

where Kid (mg g−1 h−1/2) is the intra-particle diffusion rate constant, and C is the intercept.

3. Results and Discussion
3.1. Screening of the Preparation Methods

In this study, several sorption materials were prepared under different preparation con-
ditions. The preparation methods for the materials used in the batch sorption experiments
were developed based on the information obtained during the screening test. The results
showed (Table 1) that either NaOH or phosphoric acid did not successfully consolidate the
materials regardless of the pre-treatment employed. This can be because alkali and acid
concentrations were too high, damaging the zeolite surface and internal pore structure [44].
By contrast, the treatment with an alkaline solution (10 M NaOH + SiO2:Na2O) resulted
in consolidation when metakaolin was used as a blending agent, when analcime was acid
washed, or when analcime was acid washed and calcinated (400 ◦C or 700 ◦C) before
activation. Calcination without acid washing did not lead to consolidation. In other recipes
(Section 2.3), analcime was pre-treated with acid washing and calcination. Calcination
was performed only at 400 ◦C, as the objective was to prepare sorbents using the least
amount of energy and chemicals. In addition, the preliminary sorption experiments (data
not shown) indicated that sorption capacity was slightly lower during calcination at 700 ◦C
than at 400 ◦C. Alkali activation using an alkaline solution (sodium silicate and NaOH)
was performed to improve the sorption properties of analcime. Apart from sodium silicate,
potassium silicate was also tested as an alkaline chemical.

3.2. Characterization of the Sorbents

The SSA, average pore size and volumes of the alkali-activated analcime sorbents are
shown in Table 4. The results showed that ANA-MK 1 had the lowest SSA (4.182 m2/g)
and the highest average pore diameter (31.281 nm). By contrast, ANA-MK 5 showed
the highest SSA (46.712 m2/g) and the lowest average pore diameter (5.384 nm). The
results showed that ANA-MK 5 has considerably higher SSA (46.712 m2/g) compared with
ANA-MK 1 (4.182 m2/g) and ANA-MK 4 (7.784 m2/g). In all these sorbents, metakaolin
was used as a blending agent. The ratio of analcime and metakaolin was 3:1 in the case
of ANA-MK 1 and ANA-MK 4. For ANA-MK 5, the ratio was 5.4:1. Alkaline solution
(10 M NaOH + Na-silicate) was used in the case of ANA-MK 1, and alkaline solution
(10 M NaOH + K-silicate) in the case of ANA-MK 4 and ANA-MK 5. Based on the results,
sorbent prepared using an alkaline solution consisting of potassium silicate in the alkaline
solution and using a ratio of analcime and metakaolin 5.4:1 leads to the highest SSA value
(ANA-MK 5: 46.712 m2/g) in this study. A mesopore structure was clearly dominant in
each sorbent. Moreover, the surface areas of the alkali-activated analcime sorbents are
higher than those of the non-modified sorbents (SSA: 3.01 m2/g) [60].
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Table 4. SSAs, pore sizes, and volumes of the prepared sorbents.

Sample
Name

Specific Surface
Area (m2/g) 1

Average Pore
Diameter (nm)

Total Pore
Volume (cm3/g) 2

Cumulative
Pore Volume
(cm3/g) 3

<2 nm
(%) 3

2–50 nm
(%) 3

>50 nm
(%) 3

ANA-MK 1 4.182 31.281 0.033 0.257 2 67 31
ANA 2 10.981 22.494 0.062 0.329 2 84 14
ANA 3 10.544 29.296 0.077 0.292 0 72 28
ANA-MK 4 7.784 12.831 0.025 0.302 3 82 15
ANA-MK 5 46.712 5.384 0.063 0.018 8 82 10

Macropore: d0 > 50 nm, Mesopore: 2 nm ≤ d0 ≤ 50 nm, Micropore: d0 ≤ 2 nm. 1 Calculated from the BET-
isotherm. 2 Calculated from the experimental adsorption isotherm at p/p0 = 0.95. 3 PSD evaluated using the
Barret-Joyner-Halenda (BJH) formalism.

The chemical and mineral compositions of the alkali-activated analcime sorbents are
presented in Table 5. The alkali-activated sorbents mainly consisted of silica and alumina
with Si/Al mole ratios of 4.05, 2.31, 1.30, 1.36, and 1.44 for ANA-MK 1, ANA 2, ANA 3,
ANA-MK 4, and ANA-MK 5, respectively. The mole ratio of raw analcime has previously
been found to be 1.57 [49]. Raw analcime [47] and the alkali-activated analcime sorbents
(Table 5) also contained exchangeable cations, such as Fe3+, Na+, Ca2+, Mg2+, and Mn2+.
These cations play an important role in ion exchange with NH4

+ ions [3]. In addition, the
sorbents contained some impurities and volatile compounds (e.g., water).

Table 5. Main chemical constituents (normalized values) of the adsorbents as determined by XRF.

Composition ANA-MK 1
[w/w%]

ANA 2
[w/w%]

ANA 3
[w/w%]

ANA-MK 4
[w/w%]

ANA-MK 5
[w/w%]

SiO2 65.851 63.265 55.444 56.572 56.827
Al2O3 9.202 15.515 24.183 23.58 22.361
Fe2O3 9.04 6.068 3.385 3.301 4.00
Na2O 7.933 9.165 11.542 11.473 11.357
CaO 1.879 1.107 0.703 0.676 1.037
P2O5 1.369 1.048 1.095 1.056 1.122
MgO 1.406 0.811 0.684 0.409 0.477
MnO 0.668 0.450 0.334 0.320 0.434
K2O 0.648 0.84 1.117 1.119 0.882
Others 1 0.855 0.584 0.372 0.349 0.355

1 Including S, Ti, Cr, Co, Ni, Cu Zn, Sr, Zr, Nb, Ta, Cl, Bi, Nd.

The analcime used as raw material was characterized in our earlier studies. Previous
results showed that all the main spikes in the XRD diffractogram are associated with anal-
cime (Na8Al8Si16O48(H2O)8). In addition, analcime may contain silicon oxide (quartz, SiO2)
and lithium aluminum silicate (spodumene, LiAlSi2O6) [49,60]. The obtained XRD patterns
in the present study are shown in Figure 3. According to the software there are many candi-
dates, and many peaks are overlapping. All of the alkali-activated sorbents contained silicon
oxide (SiO2, ICDD 04-014-7568), iron oxide (Fe2O3, ICDD 04-010-3230), sodium aluminum
silicate (hydrate) (NaAlSi3O8, ICDD 01-083-1609 or NaAl(Si2O6)(H2O), ICDD 01-074-2219),
and lithium aluminum silicate (LiAlSi2O6, ICDD 04-020-3038). They may also contain
magnesium silicate (Mg(SiO3), ICDD 01-076-6770), calcium aluminum silicate (CaAl2Si2O8,
ICDD 00-041-1486), calcium magnesium iron oxide (CaMg2Fe16O27, ICDD 00-056-0629),
and potassium sodium calcium aluminum silicate (K0.05Na0.94Ca0.01Al1.01Si2.99O8, ICDD
04-023-4722). The results showed that ANA-MK 1 considerably differed from the other
alkali-activated analcime sorbents. Peak intensities were lower in ANA-MK 1; moreover,
a high-intensity peak at position 27, which is associated with sodium aluminum silicate
hydrate (NaAl(Si2O6)(H2O), ICDD 01-074-2219), was not observed in ANA-MK 1 compared
with the other preparations. In the case of ANA-MK 1, SiO2 was crystallized very well, and
the intensity peak at 2θ of 26.6◦ was very high.
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Figure 3. XRD patterns of the alkali-activated analcime sorbents. * Fe2O3 (04-010-3230), • SiO2

(04-014-7568), � CaAl2Si2O8 (00-041-1486), ∆ NaAlSi3O8 (01-083-1609), + CaMg2Fe16O27 (00-056-
0629), ♦ LiAlSi2O6 (04-020-3038), # NaAl(Si2O6)(H2O) (01-074-2219), # Mg(SiO3) (01-076-6770),
× K0.05Na0.94Ca0.01Al1.01Si2.99O8 (04-023-4722).

The FTIR spectra of the alkali-activated analcime sorbents are shown in Figure 4.
The peaks between ~1621 and 1628 cm−1 can be attributed to the hydroxyl group with
the stretching and bending vibrations of the adsorbed water [46,61]. The band between
~979 and 1031 cm−1 can be assigned to the internal stretching vibrations of Si–O(Si) and Si–
O (Al) [46,62]. The bands between 697 and 880 cm−1 belong to the T–O (T=Al, Si) symmetric
stretching vibrations [60,63–66]. These vibrations are typical for zeolite materials. The FTIR
spectra of alkali-activated analcime sorbents exhibit similar vibrations to raw analcime and
Ba-modified analcime [60].

Figure 5 shows the FESEM images of the raw materials analcime and metakaolin, as
well as prepared sorbents ANA-MK 1, ANA 2, ANA 3, ANA-MK 4, and ANA-MK 5. It
can be seen from Figure 5a–c that analcime consists of crystalline phases, which is typical
for zeolite materials [67,68]. Figure 5d–f presents a FESEM image of metakaolin showing
mainly flakes structure; on the flake surface, there are heterogeneous materials consisting of
irregularly shaped particles [69,70]. After alkali activation, samples seem to have different
morphological structures compared with raw materials analcime and metakaolin. This
can be affected by different pre-treatments for analcime and alkali-activation processes.
As can be seen from Figure 5, alkali-activated samples contain voids, unreacted particles,
and cracks. In addition, it is possible to see a gel network characteristic of alkali-activated
materials, which has also been reported in other studies [70–77].
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3.3. Effect of Sorbent Dosage

The sorbents used in this study are alkaline in nature, so they increase the pH during
sorption experiments. The pH was maintained below 9 during the experiment by adjusting
the initial pH to 2.5 after the addition of the sorbent to the solution. This was done because,
as has been reported, NH4

+ ions evaporate as ammonia at high pH values [2,50,51,78].
pH 2.5 was selected as the initial pH based on preliminary experiments (data not shown).
However, a pH that is too low is not good because, under this condition, H+ ions start to
compete with NH4

+ ions [78].
The results (Figure 6) showed that the removal efficiency of NH4

+ ions increased with
increasing sorbent dosage. The same trend has been reported in several sorption studies.
This observation can be explained by the fact that when sorbent content increases, the
surface area and the number of available sorption sites increase [2,50,78]. On the contrary,
the sorption capacities (qe) decreased when the sorbent dosage increased. This can be
explained by the increase in the sorbent-to-adsorbate ratio. Moreover, these results showed
that the removal percentage values were much higher when a lower NH4

+ ion concentration
was used. This same phenomenon has been observed in concentration optimization studies
(Section 3.3).

ANA-MK 1 was the most efficient among the prepared sorbents based on the removal
percentage values. When a low NH4

+ ion concentration was used, the removal efficiency
was approximately 30% at sorbent dosages 1 and 2 g L−1. The removal percentage in-
creased rapidly when the sorbent dosage was increased. The removal percentage was
approximately 75–85% within the sorbent dosage range of 5–20 g L−1. The decreasing order
of the removal percentages of the sorbents at a sorbent dosage of 5 g L−1 and at a low initial
NH4

+ ion concentration was as follows: ANA-MK 1 (75%) > ANA 3 (40%) > ANA 2 (35%) >
ANA-MK 5 (20%) > ANA-MK 4 (15%). Although slightly higher removal percentages
could be reached by using a higher sorbent dosage, 5 g L−1 was selected for the subsequent
experiments, given the risk that pH will increase during the sorption experiment, driving
the transformation of NH4

+ ions into ammonia.
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Figure 6. Effect of sorbent dosage on the ability of (a) ANA-MK 1, (b) ANA 2, (c) ANA 3, (d) ANA-
MK 4, and (e) ANA-MK 5 to remove NH4

+ ions under two different initial NH4
+ ion concentrations.

The removal percentage of NH4
+ ions is represented by a solid line, and the sorption capacities (qe)

are represented by a dashed line. Experimental conditions: sorbent dosage: 1–20 g L−1; initial pH of
the solution: 2.5 (pH was adjusted after the addition of sorbent to the solution); contact time: 24 h;
and temperature: 22 ◦C–23 ◦C. Analysis was based on the concentrations of NH4

+-N.
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Figure 7. Effect of initial concentration on NH4
+ ion removal onto (a) ANA-MK 1, (b) ANA 2,

(c) ANA 3, (d) ANA-MK 4, and (e) ANA-MK 5. The removal percentage for NH4
+ ions is represented

by a solid line, and the final pH values are represented by a dashed line. Experimental conditions: sor-
bent dosage: 5 g L−1; initial pH of the solution: 2.5; contact time: 24 h; and temperature: 22 ◦C–23 ◦C.
Analysis was based on the concentrations of NH4

+-N.
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3.4. Sorption Isotherms

The functionality of the Langmuir, Freundlich, Sips, Bi-Langmuir, Toth, Temkin, and
Dubin–Radushkevich models were tested for the sorption of NH4

+ ions onto the alkali-
activated analcime surfaces. However, only the results obtained using the first four models
are presented. The experimental results and the modeled isotherms are illustrated in
Figure 8. The isotherm parameters, correlation coefficients, and calculated errors given by
the models are shown in Table 6.
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Bi-Langmuir 

qm1 [mg g−1] 1.20 3.15 1.40 31.57 18.25 
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Figure 8. Isotherms for the sorption of NH4
+ ion onto (a) ANA-MK 1, (b) ANA 2, (c) ANA 3,

(d) ANA-MK 4, and (e) ANA-MK 5. Experimental conditions: sorbent dosage: 5 g L−1; initial pH
of the solution: 2.5; contact time: 24 h; and temperature: 22 ◦C–23 ◦C. Analysis was based on the
concentrations of NH4

+-N.

On the basis of correlation coefficients (R2), all models represented quite well the
studied systems. The Bi-Langmuir and Sips isotherm models showed the best fit for
the sorption of NH4

+ ions onto the sorbent surfaces. Nevertheless, the Langmuir and
Bi-Langmuir models gave more realistic q-values than the Sips model. The shape of the
curves produced by the Sips and Bi-Langmuir models were quite similar for all the studied
sorbents, as can also be seen in the R2 values with the same order of magnitude. These
findings support the conclusion that the surface of the adsorbent is heterogeneous; that is,
it possesses two types of occupied sorption sites and exhibits different sorption energetics.
Moreover, the RMSE values reinforced the conclusion that the RMSE values are smaller
when the R2 values are higher.

In the case of ANA-MK 1, the nS value approached unity, which means that the R2

value of the Sips model approached that of the Langmuir model, leading to nearly identical
R2 values for these models. Still, the Langmuir and Bi-Langmuir models showed a slightly
better correlation than the Sips model, indicating that the process apparently followed
the single monolayer sorption. In the case of ANA-MK 4 and ANA-MK 5, the Freundlich
model provided quite similar correlations compared with the Sips and Bi-Langmuir models,
whereas the Langmuir provided a weak correlation.
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Table 6. Parameters for the sorption isotherms.

Experimental/Model Constant/Unit ANA-MK 1 ANA 2 ANA 3 ANA-MK 4 ANA-MK 5

Experimental qe [mg g−1] 29.79 26.00 7.18 22.24 12.65

Langmuir

qm [mg g−1] 36.00 37.07 7.61 22.76 15.17
bL [L mg−1] 1.09·10−2 3.8·10−3 2.74·10−2 2.48·10−2 9.0·10−3

R2 0.989 0.973 0.980 0.942 0.964
RMSE 1.29 1.47 0.40 2.10 0.96

Freundlich

nF 2.28 1.67 2.74 2.63 2.25
KF [(mg g−1)/(mg −1)n] 2.16 0.63 0.87 2.38 0.83

R2 0.958 0.978 0.973 0.978 0.992
RMSE 2.56 1.23 0.45 1.29 0.46

Sips

qm [mg g−1] 37.81 122.95 10.17 95.98 126.32
bS [L mg−1] 9.57·10−3 2.72·10−4 7.29·10−3 1.76·10−4 2.03·10−5

nS 0.93 0.67 0.66 0.44 0.47
R2 0.985 0.982 0.991 0.979 0.992

RMSE 1.41 1.33 0.29 1.29 0.51

Bi-Langmuir

qm1 [mg g−1] 1.20 3.15 1.40 31.57 18.25
bL1 [L mg−1] 0.67 0.12 0.49 2.29·10−3 2.65·10−3

qm2 [mg g−1] 35.77 48.57 7.22 8.16 2.58
bL2 [L mg−1] 9.31·10−3 1.7·10−3 1.11·10−2 0.20 0.32

R2 0.991 0.984 0.992 0.980 0.993
RMSE 1.55 1.39 0.30 1.52 0.52

In terms of sorption capacities, the decreasing order of the effectiveness of the prepared
sorbents was as follows: ANA-MK 1 (29.79 mg g−1) > ANA 2 (26.00 mg g−1) > ANA-MK 4
(22.24 mg g−1) > ANA-MK 5 (12.65 mg g−1) > ANA 3 (7.18 mg g−1). The only difference in
the preparation of ANA-MK 1 and ANA-MK 4 was the activation with an alkali chemical
(Table 2), demonstrating that Na-silicate with NaOH produced a slightly better adsorbent
than the NaOH + K-silicate combination. In the case of ANA-MK 1, the final pH was higher
than other sorbents (Figure 4). NH4

+ starts to evaporate as ammonia at high pH values,
and due to that, NH4

+ removal can be based partly on evaporation as ammonia in the
case of ANA-MK 1. Considering that the adsorption capacity of ANA-MK 4 was nearly
twice that of ANA-MK 5, we can conclude that a higher metakaolin content of the prepared
adsorbent leads to a more effective removal. In fact, metakaolin is apparently a requirement
for the consolidation of materials treated with Na-silicate (Table 1). However, an effective
adsorbent may be produced using only analcime as raw material (ANA 2) only if analcime
is acid-washed prior to alkali activation. In the preparation step, it seemed that calcination
also had a positive effect on consolidation; however, the sorption experiment showed that
the calcinated ANA 3 had the worst q-value. The difference between the q-values of ANA 2
and ANA 3 may be due to the different alkali-activation treatments employed. The use of
Na-silicate without NaOH also seems to produce effective adsorbents. Meanwhile, the SSA
and average pore diameter of ANA-MK 5 differed from those of the other sorbents. This
led to a slower sorption capacity (12.65 mg g−1) compared with that of the most effective
adsorbents, namely, ANA-MK 1 (29.79 mg g−1), ANA 2 (26.00 mg g−1), and ANA-MK 4
(22.24 mg g−1).

The NH4
+ removal mechanism of zeolites and alkali-activated is mostly based on ion

exchange, which involves a reversible replacement of ions of the same charge [9,44,45,79–82].
The aluminosilicate structure is negatively charged, and the exchangeable cations are lo-
cated in the voids [83,84]. High meso- and macro-pore volumes in alkali-activated sorbent
enhance active contact sites for NH4

+ sorption [84].
Several factors affect the ion-exchange behavior of zeolites and alkali-activated ma-

terials. These factors are the framework structure, ion size and shape, charge density of
the anionic framework, ionic charge, and concentration of the external electrolyte solu-
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tion [45,83]. For example, based on FESEM images (Figure 5), the porosity of the prepared
alkali-activated sorbents has been increased compared to analcime. This can be one ex-
planation for why these alkali-activated sorbents have higher q-values compared to raw
analcime (<10 mg/g) [49].

3.5. Effect of Contact Time

Kinetic studies were performed for all the prepared sorbents at room temperature
using the model solution with an NH4

+ ion concentration of 50 mg L−1 (c(NH4
+-N),

40 mg L−1). As can be seen in Figure 9, the removal percentage increased quite rapidly,
reaching the maximum removal percentage and equilibrium. The availability of a larger
number of sorption sites can explain this observation. The maximum NH4

+ ion removal
percentage of the sorbents was ~80%, except for ANA-MK 5, which had a ~70% removal.
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Figure 9. Effect of contact time on NH4
+ ion removal onto (a) ANA-MK 1, (b) ANA 2, (c) ANA 3,

(d) ANA-MK 4, and (e) ANA-MK 5. The removal percentage of NH4
+ ions is represented by a solid

line, and the final pH values are represented by a dashed line. Experimental conditions: sorbent
dosage: 5 g L−1; the volume of the solution: 0.975 L; C0 (NH4

+-N): ~40 mg L−1; initial pH of the
solution: 2.5; contact time: 24 h; and temperature: 22 ◦C–23 ◦C.

3.6. Kinetic Modeling

The pseudo-first-order, pseudo-second-order, and Elovich models were applied to the
experimental data. The kinetic parameters and correlation coefficients are presented in
Table 7, and the graphs are shown in Figure 10.

Comparison of the correlation coefficients and RMSE values revealed that sorption
of NH4

+ ions onto the ANA-MK 1, ANA 2, ANA 3, and ANA-MK 4 surfaces were best
represented by the Elovich model, indicating that sorption was relatively slow. However,
sorption onto ANA-MK 5 differed from that observed in the other sorbents, as it showed a
more angular curve. This pattern showed the best correlation obtained using the pseudo-
first-order model. Although the pseudo-first-order and pseudo-second-order models rarely
showed a poor correlation, the correlation between the experimental and calculated q-
values was reasonable. The differences in surface structures might be the reason behind
having a different optimum kinetic model for ANA-MK 5 (pseudo-first-order) and for the
other adsorbents (Elovich), an indication of differences in sorption behaviors.
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Table 7. Pseudo-first-order, pseudo-second-order, and Elovich model parameters for the alkali-
activated analcime sorbents used for NH4

+ ion removal.

Experimental/Model Constant [Unit] ANA-MK 1 ANA 2 ANA 3 ANA-MK 4 ANA-MK 5

Experimental qe(exp) [mg g−1] 6.95 6.68 7.57 6.54 5.19

Pseudo-1-order

qe(cal) [mg g−1] 5.81 5.85 6.14 5.32 5.73
k1 [min−1] 0.036 0.586 0.996 0.213 0.158

R2 0.831 0.797 0.793 0.830 0.977
RMSE 0.877 0.814 0.980 0.686 0.270

Pseudo-2-order

qe(cal) [mg g−1] 6.24 6.32 6.56 5.66 5.95
k2 [g mg−1min−1] 0.008 0.090 0.102 0.056 0.058

R2 0.870 0.901 0.873 0.923 0.938
RMSE 0.769 0.566 0.768 0.460 0.441

Elovich

β [g mg−1] 1.291 1.967 1.767 1.708 4.416
υ0 [mg g−1 min−1] 3.74 933.71 436.07 54.60 7.10·107

R2 0.944 0.970 0.990 0.990 0.851
RMSE 0.505 0.314 0.211 0.168 0.685
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+ ion removal

using (a) ANA-MK 1, (b) ANA 2, (c) ANA 3, (d) ANA-MK 4, and (e) ANA-MK 5. Experimental
conditions: sorbent dosage: 5 g L−1; the volume of solution: 0.975 L; C0 (NH4

+-N): ~40 mg L−1;
initial pH of solution: 2.5; contact time: 24 h; and room temperature: 22 ◦C–23 ◦C.

3.7. Weber and Morris Intraparticle Diffusion Model

The plot qt versus t0.5 for the sorption of NH4
+ ions onto the prepared sorbents is

shown in Figure 11. The results showed that sorption proceeds in three or four stages. The
first stage proceeds quite fast, wherein NH4

+ ions diffuse through the solution to reach
the external surface of the sorbent. This stage is called the external surface sorption or
the macro-pore diffusion. Internal surface sorption or micro-pore diffusion occurs in the
second and third steps. In the final step, small slopes indicate slow intraparticle diffusion
onto the internal surface due to the extremely low solute concentrations in the bulk phase
and boundary layer [3].
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and (e) ANA-MK 5. Experimental conditions: concentration of the model NH4

+ ion solution, C0

(NH4
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3.8. Comparison with the Other Adsorbents

The sorption capacities of the aluminosilicate-based materials during NH4
+ ion re-

moval are presented in Table 8. The materials exhibiting a high sorption capacity are
obtained from virgin sources. The material developed in this study demonstrated a higher
sorption capacity compared with other side stream-based materials, such as a zeolite syn-
thesized from fly ash. Therefore, the sorption capacity obtained in this study indicated a
very good functionality towards NH4

+ ion of the sorbent produced using industrial side
stream as raw material. However, comparing q values, it is good to consider operational
conditions that are not exactly the same in all studies. For example, the initial pH is quite
high (7–8) in some studies so ammonium can be partly evaporated during the adsorption
experiment. In addition, the used adsorption temperature varies between 20–35 ◦C. Worth
noting that 15 degrees may have a major impact on adsorption capacity. Initial concentra-
tion values and sorbent dosages vary between different studies even though values are
mostly in the same scale compared to the values used in this study.

The adsorbents studied in this study have an advantage from the local circular econ-
omy point of view. Analcime is formed as a side stream in lithium production, and the
needed amount of lithium will increase in the future due to the green transition through
electric vehicles. Therefore, the solutions to utilize local side streams need to be developed,
and the adsorbents developed in this study are one answer.
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Table 8. Comparison of the sorption capacity qm (mg g−1) of various sorbents for the removal of
NH4

+ ions from an aqueous phase.

Sorbent Capacity
q [mg g−1]

Initial
pH

C0
[mg L−1]

Sorbent Dosage
[g L−1]

Time
[h/min]

T
[◦C] Ref.

Vermiculite 50.06 2 7 1000 12 30 min R.T [2]
Algerian natural bentonite 50 1 7 10–10,000 4 1 h 30 [85]
Montmorillonite 40.40 2 7 1000 12 30 min R.T. [2]
ANA-MK 1 29.79 2 2.5 50 5 24 h R.T. This study
Chinese Natural Zeolite 26.94 1 - 1000 50 3 h 35 [86]
ANA-2 26.00 2 2.5 50 5 24 h R.T. This study
Zeolite synthetized from fly ash 24.30 2 8.0 10–300 4 75 min 25 [36]
ANA-MK 4 22.24 2 2.5 50 5 24 h R.T. This study
Zeolite synthetized from fly ash 21.45 2 8.0 10–300 4 75 min 35 [36]
Metakaolin-based geopolymer 19.7 2 6.0 140 5 24 h 22 [80]
ANA-MK 5 12.65 2 2.5 50 5 24 h R.T. This study
ANA-3 7.18 2 2.5 50 5 24 h R.T. This study
Modified bentonite 5.85 1 7.5 0–350 - 1 h 25 [87]
Iron oxide/zeolite 3.47 1 6.4 5–100 - 1 h 30 [88]
Turkish (Dogantepe) zeolite 1.08 2 4 88 10 40 min 20 [89]

1 Langmuir maximum sorption capacity, qm.calc. 2 Experimental maximum sorption capacity, qm.exp.

4. Conclusions

A total of five alkali-activated analcime sorbents, namely, ANA-MK 1, ANA 2, ANA 3,
ANA-MK 4, and ANA-MK 5, were prepared and studied for NH4

+ ion removal. Analcime
was pre-treated with acid washing and/or calcination at a high temperature. ANA 2 and
ANA 3 were acid-washed, and ANA 3 was further calcinated at 400 ◦C prior to alkali
activation. In the case of ANA-MK 1, ANA-MK 4, and ANA-MK 5, metakaolin was used as
a blending agent. ANA-MK 1, ANA 2, and ANA 3 were alkali-activated using sodium sili-
cate. In the case of ANA-MK 4 and ANA-MK 5, potassium silicate was used as the alkaline
chemical for activation. The effects of sorbent dosage (1–20 g L−1), initial NH4

+ ion concen-
tration (5–1000 g L−1), and contact time (1 min–24 h) were studied. The results showed
that ANA-MK 1, ANA 2, and ANA-MK 4 were the most efficient sorbents for NH4

+ ion
removal, with a maximum experimental sorption uptake of 29.79, 26.00, and 22.24 mg g−1,
respectively. ANA 3 and ANA-MK 5 demonstrated lower sorption capacities at 7.18 and
12.65 mg g−1, respectively. The results of the kinetic studies showed the maximum NH4

+

ion removal percentage of the sorbents was ~80%. The exception was ANA-MK 5, which
had a ~70% removal. Different isotherm and kinetic models were applied to generate the
experimental results for the prepared alkali-activated analcime sorbents. The equilibrium
data were best represented by the Langmuir, Freundlich, Sips, and Bi-Langmuir isotherms.
In the case of ANA-MK 1, ANA 2, ANA 3, and ANA-MK 4, the Elovich model provided
the best correlation. ANA-MK 5 followed the pseudo-second-order model.

The results suggested that the alkali-activated analcime sorbents are feasible for NH4
+

ion removal for wastewater treatment (e.g., municipal wastewater treatment). Pre-treatment
involving acid washing prior to alkali activation or pre-treatment involving calcination
enhanced the NH4

+ ion removal efficiency. Moreover, the addition of metakaolin as a
blending agent increased the NH4

+ ion removal efficiency. The sorption capacities of the
sorbents previously developed for NH4

+ ion removal are similar to the results obtained in
this study.
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