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Abstract 

A new program, which is an advanced stage in the numerical implementation of a specific 

family of nuclear structure models, is developed. In this approach a many-body Hamil­

tonian is diagonalized in the configuration space of general fully symmetry projected 

Hartree-Fock-Bogoliubov type quasiparticle determinants. The configurations are build 

on top of a mean-field solution of the Hartree-Fock-Bogoliubov problem with restora­

tion of broken symmetries by projection before the variation of the wavefunction using 

the most general symmetry unrestricted quasi-particle transformation. In the approach, 

named GENERAL COMPLEX MONSTER the configuration space of the symmetry 

projected Hartree-Fock-Bogoliubov determinant is supplemented by all the symmetry 

projected 2-quasiparticle states build on top of this determinant. With this method a 

wide range of doubly-even, doubly-odd and odd nuclei can be treated on the same foot­

ing in comparatively large model spaces and a huge amount of states can be obtained. 

The involved mathematical tools and the solutions found to construct the code are pre­

sented. The implemented method was tested for the even 28Si and the odd 27 Al nuclei 

from the middle of the ls0d-shell. The new results are discussed and compared with the 

results of complete shell model diagonalizations. 
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Introduction 

Being a complex composite system of many constituents, the atomic nucleus represents 

one of the most challenging many-body systems. The nucleus displays a multitude of 

various excitations, which can be classified by their constants of motion: energy, total 

angular momentum, parity, proton and neutron numbers and in light systems also the 

total isospin. In this work we consider regions of discrete levels lying below the emission 

threshold of hadronic particles and the nuclear continuum. The decay between these 

levels can happen by photon emission, electron conversion into the energetically lower 

state of the same or, for example, by ,B-decay of a neighboring nucleus. 

To explore these excitations and trying to explain the complex interplay of collective 

and single particle degrees of freedom causing the measurable properties of nuclei is the 

central aim of theoretical nuclear shell structure physics. 

The shell model configuration mixing model SCM is one of the most fundamental models 

of nuclear structure. In this model nucleons occupy chosen valence quantum orbitals in 

a mean-field one-body potential. This is analogous to the atomic shell model, but the 

nuclear case is complicated by a strong two-body residual interaction that moves nucleons 

among the orbitals and is a major determinant of nuclear properties. The original model 

was introduced over 50 years ago by Mayer [May49] and by Haxel, Jensen and Suess 

[Hax49). It yields in general a very good description of at least the low energy phenomena 

in nuclear structure physics [Whi77, Bru77, Mcg80, Tal93] like, energy levels, magnetic 

1 



2 INTRODUCTION 

and quadrupole moments, electromagnetic transition probabilities, ,8-decay rates and 

reaction cross-sections. The SCM is considered as a standard model for describing 

the Op- [Coh65], lsOd- [\iVil88, Bro88a] and lower lpOf- [Fre69, Cau95, Mar97] shell 

nuclei. Since the size of the configuration spaces grow combinatorially with both the 

number of orbitals and the number of nucleons occupying them the full major shell 

SCM calculations employing highly sophisticated algorithms are recently limited for 

lp0f-shell up to A ~ 57 [Cau99]. Thus, moderately sized nuclei such as zink require 

matrices of the order of 108
, for which direct diagonalization is not currently possible. 

One could argue, that as the rapid development of computer technology continues this 

milestone will be soon passed by. This is true, but sort of short-sighted. The fact is 

that the complete shell model diagonalization calculations will always be restricted to 

relatively small basis systems. For the description of many nuclear structure problems 

one needs much larger basis systems consisting not only one but several major shells. 

Examples are the investigation of giant resonances, medium-heavy and heavy nuclei, 

superdeformations and even comparatively simple tasks like the study of negative parity 

states in light even-even nuclei. Recently a wide range of new approximate methods 

has been proposed for solving the large scale shell model problems, like shell model 

diagonalization including stochastic approaches [Var94, Hor94], a generalized pair mean­

field method [Che92], various quantum Monte Carlo methods (QMC) [Koo97j, which still 

suffer from the minus-sign problem absent from quantum Monte Carlo diagonalization 

method (QMCD) [Hon96]. In all these cases one is trying to reduce the basis-dimension 

problem of the diagonalization of the shell model. 

An alternative way to approach this problem is to apply variational techniques. One 

should note that in the complete basis constructed from all Slater determinants this is 

equivalent to an exact SCM diagonalization. In the method described here the selection 
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of the relevant many nucleon configurations is left entirely to the dynamics of the system. 

In practice the truncation of the shell model expansion is done by extracting an optimal 

average mean-field, each of the nucleon feels due to its interaction with the others, 

directly from the many-nucleon Hamiltonian using a variational procedure. The resulting 

mean-field is represented by a so called "quasi-particle reference determinant" which 

accounts for many more correlations than some ad hoe chosen basis creating mean­

field customary to the SCM. In this way the residual interaction between the resulting 

A-nucleon configurations and the corresponding reference determinant (i.e. the quasi­

particle vacuum) is minimized without explicitly diagonalizing the Hamiltonian. In 

the most simple case the many body nuclear wave functions are expanded around a 

single generalized quasi-particle determinant represented by a manageable number of 

variational parameters. 

The famous models of this type are the well known Hartree-Fock [Har28, Foc30] and 

the more general Hartree-Fock-Bogoliubov (HFB) [Bog58, Bog59a, Bog59b, Rin80] ap­

proaches. Though the nuclear ground state is approximated here by one single general­

ized Slater determinant only, this configuration usually accounts for a large part of the 

SCM expansion of the nuclear ground state. The price we have to pay when trying to 

account for as many degrees of freedom as possible by as few quasi-particle configura­

tions as possible is that in general this state does not contain the symmetries required 

by the many-body Hamiltonian and hence cannot represent its physical eigenstate. The 

physical states are obtained from these intrinsic structures by restoring the broken sym­

metries, which can be done with the help of projection techniques. Moreover, in order 

to obtain really optimal solutions for each set of simultaneously conserved quantum 

numbers separately it is essential that the restoration of the broken symmetries is done 

before the mean-field variation. 



4 INTRODUCTION 

Along these lines several symmetry conserving mean-field methods were developed dur­

ing the last decade [Sch84a, Sch84b, Sch87a, Sch87b]. They have become known as the 

VAMPIR (Variation After Mean field Projection In Realistic model spaces) and the 

MONSTER (MOdel for handling many Number- and Spin-projected Two-quasiparticle 

Excitations with Realistic interactions and model spaces) approaches. 

In the VAMPIR [Sch84a, Sch84c, Sch87a, Sch87b, Sch89, Sch92] approach each of the 

yrast states of a given nucleus is approximated by a single symmetry-projected Hartree­

Fock-Bogoliubov (HFB) determinant, with the underlying mean-fields being determined 

by independent variational calculations. The excited states with the same quantum 

numbers can be obtained with the EXCITED VAMPIR [Sch86, Sch87b, Sch89] model 

by repeating this procedure with a new HFB test determinant which is constrained to 

be orthogonal to all the solutions already obtainerl. A straightforward extension of these 

approaches are the Few Determinant (FED) VAMPIR and the EXCITED FED VAM­

PIR models [Sch87b, Sch89, Pet91], which approximate each state not by a single, but 

by a linear combination of several non-orthogonal symmetry-projected HFB configura­

tions, which are now determined by independent, successive variations. Finally then, in 

these EXCITED VAMPIR and EXCITED FED VAMPIR models the residual interac­

tion between all the obtained solutions is diagonalized. By such chains of variational 

calculations the lowest few states of a given symmetry representation can be obtained, 

irrespective of their particular structure. Because the excited states come with increas­

ing energy and the numerical burden increases rapidly if the additional determinants 

are included it is unrealistic to continue such chains of variational calculations to high 

excited states. 

In case the complete excitation spectrum of the nucleus with respect to some partic­

ular (e.g. ele<.:LromagneLic) transition operator is to be described some other method 



5 

has to be used. If the transition operator is of one-body nature, it is desired to con­

sider only excited states which have similar structure like the ground (final) state, and 

thus are reached by applying with that operator. In this thesis the nuclear wave func­

tions are expanded around the VAMPIR reference state solution using the MONSTER 

approach [Sch84a, Sch84b, Sch87a, Ben95a, Ben95b, Ben96], which diagonalizes the cho­

sen Hamiltonian in the space of the symmetry-projected reference vacuum and all the 

symmetry-projected 2-quasiparticle excitations with respect to it. 

Within the last fifteen years all these methods have been applied rather successfully to 

many nuclear structure problems (see , e.g., the reviews [Sch87a, Sch92, Pet99c]). For 

example, they have been used rather extensively for the theoretical investigation of shape 

coexistence, shape transitions [PetO0, Pet99a, Pet97, Pan96, Pet96, Pet94, Pet92] and 

proton-neutron pairing correlations [Pet99b] in the A~ (70 - 80) mass-region nuclei. 

In the past many symmetry restrictions had to be imposed on the underlying HFB 

transformations in order to simplify the numerics. Consequently, the corresponding 

HFB vacua do not contain all principally possible correlations, but only a particular 

part of them, which becomes more and more restricted as more symmetry requirements 

are imposed. 

The history of VAMPIR-M O NSTER model family involves mainly three steps regarding 

the symmetry restrictions. In the first VAMPIR calculations only real, time-reversal 

invariant and axially symmetric HFB transformations, which neither mix proton and 

neutron states nor states of different parity, were admitted [Sch84a, Sch84c]. With this 

so called Real VAMPIR approach only even spin and positive parity states in doubly 

even nuclei could be described. If a MONSTER calculation is based on such a Real

VAMPIR transformation the missing couplings are avoided in a sense that also the other 

possible negative parity and odd spin states in the particular nucleus are introduced by 



6 INTRODUCTION 

the configuration mixing. For applications of such Real MONSTER e.g. a rather nice 

description of nuclear structure phenomena in the mass A ~ 130 region, see [Ham85, 

Ham86a]. 

The second step in releasing the symmetry restrictions was the introduction of Complex 

VAMPIR [Sch87b, Zhe89] approach, where essentially complex HFB transformations as 

well as parity- and proton-neutron-mixing were allowed. But still time-reversal and axial 

symmetry were kept. Now already many more correlations were considered and states 

of all possible spin-parity in even mass nuclei could be described. In fact the use of 

essentially complex HFB-transformation matrix with the requirement of time reversal 

invariance and axial symmetry is sufficient to incorporate all the lwu-µarlicle couplings 

into the HFB vacuum. The MONSTER calculation on top of Complex VAMPIR solution 

[Ben95a, Ben95b, Ben96] enables also the description of doubly odd nuclei on the basis 

on HFB transformations particularly derived for such systems, but for the description 

of odd systems one is forced to use mean-fields obtained for neighboring nuclei as in the 

Real MONSTER approach. 

It is important to notice, that first of all, although the MONSTER approach overcomes 

the problem of "missmg couplinp;s" of Real VAMPIR and Complex VAMPIR approaeheo 

it does not necessarily introduce all the appropriate correlations for a particular state. 

Secondly, if the structure of a particular state differs considerably from the structure 

of the VAMPIR reference state it cannot necessarily be deonibe<l well (if at all) with 

the MONSTER on VAMPIR approach. These two considerations hold even for the 

MONSTER on top of symmetry unrestricted VAMPIR presented in this thesis. 

All the above mentioned symmetry restrictions are released in the thir<l, an<l final stage 
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of the development of the VAMPIR-MONSTER model family, when the symmetry unre­

stricted GENERAL COMPLEX VAMPIR (GCV) [Sch84a] and the corresponding GEN­

ERAL COMPLEX MONSTER (GCM) [Sch84b, Sch87a] approaches are introduced. 

They employ the most general linear underlying transformations. Consequently, the 

configuration spaces are much larger than those of earlier approaches and thus more cor­

relations can be described and also a better description of many states is expected. The 

most sophisticated VAMPIR and MONSTER models utilize most general, symmetry 

unrestricted linear HFB transformations and realistic effective interactions. Although 

the mathematical formalism of such GCV and GCM approaches has been known for over 

15 years [Sch84a] the dream of accomplishing such calculations has become true only 

recently. The GCV was first applied to selected nuclei in the full ls0d-shell [Ham98] 

and after that in the full lp0f-shell [Hje00]. Until then all the VAMPIR calculations 

ever published have been established with at least time reversal invariant and axially 

symmetric mean-fields [Sch92]. 

In this thesis I will, after first providing a short theoretical background of the GCM 

approach, introduce the mathematical machinery and the numerical methods which I 

found essential in constructing the highly non-trivial numerical implementation of the 

GCM code. Furthermore, the applications of the approach in this thesis represent the 

first ever published GCM calculations. 

In the next chapter I will review the general features of the VAMPIR-MONSTER model 

family by first outlining the GCV method in section 1.3 and then proceeding with the 

description of the GCM method on the basis of the corresponding GCV solutions in 

section 1.4. Some essential, explicit formulations are derived in appendixes. Chapter 

2 represents the "heart" of this thesis, since the numerical implementation and the 

technical solutions found to construct the GCM code are discussed there. As a first 
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test this method is applied to two nuclei in chapter 3, namely the even mass 28Si and 

the odd mass 27 Al, in the lsOd-shell single particle basis. The resulting wide spectra is 

compared with complete shell model diagonalizations. Finally, in chapter 4 this thesis 

work is summarized and an outline for the future is given. 



Chapter 1 

The VAMPIR-MONSTER Model 

Family 

The VAMPIR-MONSTER model family offers a theoretical tool for solving a general 

nuclear many-body problem in principle as exactly as desired. The exactness of the 

solution depends on the problem itself and on the computational resources available. 

The power of the method lurks in its applicability to describe all kinds (and type) of 

nuclei in relatively large model spaces, where the resulting dimensions exceed the reach 

of the direct SCM diagonalizations. I begin this chapter by outlining the underlying 

quantum mechanical nuclear many-body problem, which serves then as a starting point 

for the VAMPIR and MONSTER models. After that I will concentrate on explaining 

the theoretical basics of a GENERAL COMPLEX VAMPIR model and extend the 

prescription to a GENERAL COMPLEX MONSTER model in the subsequent section. 

I will consider neither the numerical implementation of the GENERAL COMPLEX 

VAMPIR nor its extensions, mentioned in chapter 1.3.5. 

1.1 General Considerations 

The following fundamental assumptions outline the characteristics of the present VAM­

PIR-MONSTER model family as a microscopic nuclear (shell-)structure method 

9 
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l. Treat protons and neutrons as structureless, non-relativistic elementary consti­

tuents of the atomic nucleus

2. For the description of the desired (low lying) discrete states the use of a finite

subspace i.e. the one-body basis of the complete Hilbert space is sufficient

3. The effective Hamiltonian for this model space does exist and can be sufficiently

well approximated by only one- and two-body terms

These postulates define the attempt to facilitate the problem of extremely complicated, 

complete many-body Schrodinger equation of atomic nucleus, which cannot be solved 

with the present knowledge in full beauty. As a defect, nevertheless, something is "swept 

under the carpet" along these limitations. How drastically the original problem is then 

reduced and what are we left with? 

To give an answer I will first shortly consider those limitations. F irst of all, nucleons are 

not regarded as elementary particles in modern physics. It is commonly accepted that 

they consist of strongly interacting quarks, with gluons as force carriers. The quantum 

chromodynamics ( QCD) represents a branch of nuclear physics, where the nuclear forces 

and then nuclear structures are described relativistically starting from the quark and 

gluon degree!; uf freeuorn. However, due to the complexity of QCD, it is still not capable 

of solving basic equations in a form that is actually useful for nuclear structure. On the 

other hand, more than 50 years of nuclear physics has shown that at the low energies the 

nucleonic substructure can be successfully omitted. Nowadays it is commonly accepted 

that at the low energies the nucleon-nucleon interaction is a residual interaction of 

the underlying quark-gluon dynamics of QCD. Today we know several such successful 

prescriptions of nucleon-nucleon "effective" interaction in terms of a meson exchange 

potentials, which has been fit directly to the experirueuLal uucleon-nucleon scattering 
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data (and deuteron properties) in their parametrization [Nijmdb]. The most famous 

modern effective high-quality nucleon-nucleon potentials of this kind are the Nijmegen 

[Sto94], Argonne [Wir95] and CD-Bonn [Mac96] potentials. Another main issue in this 

context is how to obtain the force interacting between nucleons inside the nucleus. 

There the states already occupied by other nucleons must be excluded from the nucleon­

nucleon scattering process by the so called Pauli-operator. This brings up a fundamental 

problem. The Pauli-operator depends on the structure of the considered system, which 

we wish to know after having appropriate interaction. But now we need this operator 

to obtain that interaction. We must continue assuming some kind of average Pauli­

operator. The interaction is then given approximatively by a non-relativistic reaction 

"G-matrix", being the solution of a Bethe-Goldstone equation for some effective nucleon­

nucleon potential within the Briickner-Hartree-Fock approximation for a finite system, 

like the nucleus. Furthermore, in order to obtain an effective nuclear interaction in 

a finite model space the G-matrix, which still acts in a full Hilbert space had to be 

renormalized. Summarizing these approximation carried out here, first we assumed 

an effective bare nucleon-nucleon interaction, which is used as an input to the Bethe­

Goldstone equation were no relativistic effects are considered and the Pauli-principle is 

fulfilled only approximatively. We end up with an effective two-body type interaction 

inside the nucleus for a chosen model space. In the above discussion all the three- four­

and higher many-body interactions are treated as a minor "residual" part of the effective 

nuclear interaction, which can be ignored. This was justified mainly, by considering 

only low energy nuclear structure phenomena. Recent nuclear matter calculation has 

pointed out the importance of three nucleon forces in obtaining the appropriate nuclear 

saturation [Son98]. On the other hand, it has been shown by studying light A :S 8 nuclei 

[Wir97] that the inclusion of 3-body potential might be crucial in some cases, otherwise 
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a considerable underbinding is detected. 

However, in practice we shall restrict ourselves to some effective two-body interaction 

for any particular model space like, e.g. a G-matrix or even a more phenomenological 

interaction like the Chung-Wildenthal force [Wil84], which is used for the ls0d-shell 

example calculations in the present thesis. 

1.1.1 A Realistic Example 

Although the goal of the above discussion was to define only the "minimal" restrictions 

in a way to achieve a hopefully solvable nuclear many-body problem, we are actually 

left with a rather drastically reduced problem. Obviously the next step further would be 

the attempt to solve it. It is well known, that the conventional shell model configuration 

(SCM) method yields an exact solution in a complete model space of all possible nucleon 

configurations in this framework. So why to bother even consider other alternative 

approaches? 

To shed light on the existing problem let us consider an example. If our chosen spherical 

single particle basis consists of 0s-,0p-,ls0d-,lp0f-shells plus the 0g9;2- orbit the total 

number of possible o+ configurations for the 28Si nucleus is [Sch87b] 

n(28Si, T" = o+) = 136 124 437 576 139 270 616 � 1.36 x 1020
• 

The dimensions of this magnitude are clearly out of the reach of today's PCs or worksta­

tions still for a long time and represent an impossible task even for the next generations 

high performance supercomputers. Today's best supercomputers with parallel process­

ing can perform the order of TFlops. Assuming a 1 TFlops speed, a single floating point 

operation involving each of those configurations would take over 4 years to accomplish. 

Furthermore, to store 100 bit's of information for each configuration would require over 

1.5 x 1012 gigabytes of disc.:spac;e. Ou Lhe other hand, the corresponding "first order" 
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GCV variational calculation being composed with "only" 10 000 [see section 1.3] vari­

ables would be a piece of cake for such a supercomputer. In principle, the GCV results 

could be even improved by additional correlations, until the complete model space with 

exact solution in attained. 

This is just one example to illustrate the impossibility to obtain exact solutions by 

diagonalizations in large, but still realistic, model spaces due to monstrous dimensions. 

I mean "realistic" in a sense that if you desire to obtain say, negative parity states, 

or even a comprehensive multi-shell description of positive parity states for light lsOd­

shell nuclei one should include at least the neighboring Op- and lpOJ-shells in the single 

particle basis. For heavier nuclei the dimensions become generally even larger. In some 

cases the use of such large model spaces is inevitable, and the utilization of GCV, GCM or 

some other alternative approach, like recently developed various quantum Monte-Carlo 

methods [Koo97, Hon96], becomes compulsory. 

1.2 The Restricted Many-body Problem 

The starting point for the nuclear shell structure calculations is the restricted nuclear 

many-body problem, which can be solved exactly, at least in principle. The model space 

for the problem is defined as a finite Mb-dimensional set of orthonormal, spherical single 

nucleon states {Ii), lk), ... }
Mb' which span the chosen sub-space of the infinite Hilbert

space. Each of the states are characterized by quantum numbers n = radial excitation, 

l = orbital angular momentum, which coupled with the nucleon spin s = 1/2 gives (l 0 

s) = j = total angular momentum, m = 3-projection of the j, T = isospin-projection. 

I apply a shorthand notation i for the triplet { n;l;j;} containing implicitly the 2j; + 1 

degeneracy of the states with different magnetic mi quantum number. The T quantum 

number distinguishes a neutron T = 1/2 and proton T = -1/2. Adapting the second 
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quantization formalism, the corresponding nucleon creation and annihilation operators 

are denoted by {c!,cl,---}M
b 

and {c;,ck,···}M
b
, respectively. They fulfill the usual 

anticommutation relations for fermion operators. The particle (nucleon) vacuum IO) is 

defined by c; I O) = 0 I;/ i = 1, ... Mb. Furthermore the conjugate states are defined as 

The chosen effective Hamiltonian can be written in this nucleon basis as (see the argu­

ments of the previous section) 

fI = T + V = L t(ik)c!ck + ¼ L v(ikrs)c!clcsCr, 
ik ikrs 

(1.2) 

where t(ik) = (ilTlk) are the one-body matrix elements of the kinetic energy (or, if an 

inert core is used some single particle energies) while v(ikrs) = (ikl1flrs-sr) denote the 

anti-symmetrized two-body matrix elements of the effective interaction. The hermicity 

of the Hamiltonian guarantees the real eigenenergies. 

One can see immediately from equation (1.2) that fI conserves the total nucleon number 

A and it is required to conserve the total charge of the system. Consequently the energy 

eigenstates must have good A and good proton number Z. Therefore the 3-component 

of the total isospin Tz = ½A - Z must be conserved, too. In the coordinate space the fI 

is a sum of the kinetic and interaction generated potential energy, so it is a scalar and 

therefore commutes with the square J2 of the total angular momentum operator and 

its 3-component. This means good total angular momentum J and its 3-component, 

which is usually denoted as M quantum number in the laboratory frame of reference 

and it corresponds to a K quantum number with respect to the intrinsic quantization 

axis of the nucleus. If the phases of the single particle basis states are properly chosen 

the matrix elements of T and V are real [Boh69). Furthermore, this means that the 

one-body matrix elemeuti:; are sy111111eLric. If the weak interactions are neglected, as 
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will be done in this thesis, if conserves the total parity. Obviously the Coulomb force 

distinguishes between protons and neutrons and introduces isovector as well as isoscalar 

components into fI [Hey94]. Even if the Coulomb interaction was neglected the isospin 

is not, in general, conserved. It means that the Hamiltonian does not always commute 

with the square T'2 of the total isospin operator and is hence not a scalar in isospin 

space. For an excellent discussion of isospin, see Ref. [Law80]. 

The Galilei invariance i.e. equivalence of all inertial systems, requires that the total 

effective Hamiltonian, however complicated it may be, cannot depend on the center 

of mass coordinate of the system R = (1/A) I:;�
1 

r; and only on the trivial way on 

the total linear momentum P = I::1
=1 

Pi· We can always split the Hamiltonian into 

an internal part depending (besides on spin and isospin degrees of freedom) only on 

the relative coordinates and linear momenta of the nucleons and a trivial (1/ A)P2 /2m 

describing the motion of the system as a whole. In the last part the m is the nucleon 

mass. Obviously we are only interested in the internal part, which we shall call simply 

H in the following. The symmetries of this Hamiltonian (1.2) can be hence summarized 

as 

[H, A]= [if, Tz] = [if, J2] = [if, Jz] = [H, IT]= [if, P] = [H, R] = 0, (1.3) 

where fI is the parity operator. The calculations presented in chapter 3 are performed in 

full ls0d-shell using the mass-dependent version of Chung-Wildenthal [Wil84] effective 

interaction. The chosen interaction is determined by taking the three single particle 

energies and all possible 63 two-body interaction matrix elements as parameters. These 

parameters are fitted to experimental binding energies for 447 ground and excited states 

of ls0d-shell nuclei. For the particular interaction all the resulting states have good 

isospin T. Furthermore the Hamiltonian is confined to a single major shell and con­

sequently the center of mass will always be in its groundstate. Therefore, no spurious 
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center of mass admixtures exist. In the chosen single particle basis the one-body spec­

trum is diagonal 

(1.4) 

and the two-body term reads 

v(ikrs) = (ik[VJrs - sr) = 8(r; + Tk, Tr + 78 ) •

. 8((-)l;+lk(-)lr+l,)8(m; + mk, mr +ms ). (1.5) 

· 8(min{j; + jk,jr + j5 } 2:: max{lj; -jkJ, Ur -jsJ})v(ikrs).

In fact, any other Hamiltonian of type (1.2) could have been chosen, since our purpose is 

not to judge the interaction, but rather provide a first test for GENERAL COMPLEX 

MONSTER (GCM) and compare its quality to the exact SCM calculation. The freedom 

of choosing the interaction exhibits the diversity of the VAMPIR-MONSTER model 

family. 

1.3 The General Complex Vampir 

1.3.l The Location in the Family Tree 

The GENERAL COMPLEX VAMPIR (CCV) method represents a sub-group of a Gen­

eral Coordinate Method [Rin80], with a particular choice of complex generator coordi­

nates. 

The general variation equation 

(1.6) 
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is equivalent to the exact Schrodinger equation for the restricted nuclear many-body 

problem 

Hl<I>) = El<I>). (1.7) 

In the conventional SCM method the solution is found by a direct diagonalization of the 

Hamiltonian in the complete basis of orthonormal wave functions Ja; SK), which are 

linear superpositions of all Slater determinants l[SD];) i.e. 

{la;SK) = t([SD];Ja;SK)J[SD];);a = l, ... ,n(S) s n = (�b)}, (1.8) 

where the Mb is the basis dimension, A is the valence space nucleon number, K is the 

angular momentum 3-component, and the letter S = ATzI 1r denotes the symmetries 

(1.3) required by the many-body Hamiltonian. On the other hand, the GCV wave func­

tions, being solutions of a variation equation of the form (1.6), can also be written as 

linear combinations of states (1.8). How well this wave function fulfills the equation (1.7) 

depends on the variational parameters, i.e. the generating coordinates, which determine 

the generating wave function. In the GCV approach we choose a single symmetry pro­

jected Hartree-Fock-Bogoliubov (HFB) quasiparticle reference determinant as a product 

type generating wave function. Therefore the exactness of the GCV solution depends 

actually on the completeness of the particular quasiparticle basis, i.e. the underlying 

mean-field. In other words, if the number of variational parameters is large enough, the 

GCV approach can yield an exact solution to the many-body problem. Otherwise it 

gives always somewhat less bound state. In that case the extension to EXCITED GCV 

or EXCITED FED GCV method increases the number of variational parameters and 

obviously a better description for a particular state is expected. The GCM method rep­

resent an alternative extension of the GCV calculation, where all symmetry projected 

2-quasiparticle states build on top of the GCV reference determinant are included into
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the model space. 

1. THE VAMPIR-MONSTER MODEL FAMILY

At this point it should also be realized, that the methods of the VAMPIR-MONSTER 

model family are not restricted only to the nuclear problems but could also be applied to 

other many-body problems if the fundamental assumptions mentioned in the beginning 

of the section 1.1 (now not for the nucleons but for some particles in general) are valid. 

1.3.2 The Hartree-Fock-Bogoliubov Reference Determinant 

The HFB-transformation [Bog58, Bog59a, Bog59b] is the most general linear quasi­

particle transformation, defining a independent quasiparticle picture, with the corre­

sponding creation- and annihilation operators in combined 2Mb-dimensional row vector 

(a!(F)···aL,b(F)a1(F)···aMb(F)) = (ai(F)a1(F)···a0 (F)a13(F)···) = (at(F)a(F)) 

defined by 

The greek indices a, /3, ... denote the quasiparticle states. The quasiparticles are also 

fermions, so they must obey the fermion anti-commutation relations. This leads to 

unitary transformation matrix F, which gives us the mathematical definition of the 

mean-field. The motivation for the quasiparticle transformation is to find a new and 

optimal quasiparticle basis, where as few configurations as possible (with respect to 

the mean-field) would account for as many correlations, induced by the many-body 

Hamiltonian into the exact eigenfunctions, as possible. The transformation F is found 

at the solution of the GCV variational equations. Now any operator whose representation 

in the particle basis is known can be casted into the quasiparticle representation using the 

inverse transformation p-1 
= pt. The quasiparticle representation for the Hamiltonian 
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can be represented as 
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(1.10) 

The explicit expressions for these terms can be found in [Sch84a], with (unfortunately) 

several typos. For that reason the H(F) is given explicitly in appendix A.I. 

The corresponding quasiparticle vacuum is defined by 

aa(F) IF)= 0 Va= 1, ... , Mb. (1.1 1) 

Obviously one can choose a unique [Man75] representation via HFB quasiparticle deter­

minant 

IF) = (TI a,,(F)) IO) with a.(F)IO) / 0 Va= I, ... , M! ,'; M,

An n-quasiparticle state with respect to the vacuum is defined by 

IF{at}n)=(ga1(F))IF) for n=l, ... ,Mb. 

(1.12) 

(1.13) 

Since the matrix F is unitary, the quasiparticle basis, consisting of the states (1.12) 

and (1.13), is orthonormal and complete for all the possible model space nuclei with 

0 S A S Mb. Its dimension E�o (�b) = 2Mb equals the sum of the total SCM di­

mensions for all these nuclei. Therefore the diagonalization of the Hamiltonian in this 

complete basis would yield the exact solutions for all the model space nuclei simultane­

ously. Obviously this is numerically even more involved than a complete SCM calculation 

for a given particle number A. Any of the states (1.13) can be represented as a vacuum 

for quasiparticles, which are obtained by interchanging the n rows corresponding the 

operators ai(F) with those corresponding to the operators a0 in matrix F. Therefore 

any configuration (1.13) can be represented as a suitable chosen vacuum. In principle, 

for any incomplete set of quasiparticle determinants (1.1 1) and (1.13) one can obtain an 
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optimal transformation F which corresponds to an optimal mean-field. In the conven­

tional HFB-theory a single determinant in the form of a quasi particle vacuum is found by 

a variational principle for a total energy. However the quasiparticle determinant cannot 

be considered as a physical state because it does not have any of the symmetries (1.3) 

required by the many-body Hamiltonian. Since the transformation (1.9) sums over all 

the quantum numbers { nljmr} characterizing the single nucleon basis states, the IF) 

(or any of the states (1.13)) is neither an eigenstate of the square of the total angular 

momentum operator /2 nor of its 3-component 13 . Furthermore particle number and 

charge conservation are violated and, in general, it has no definite parity either. The 

only symmetry still conserved is the so-called "number-parity" [Man75], i.e. IF) con­

tains either only components with even or with odd total nucleon numbers A. For a 

deeper insight into the contents of the transformation, as well as to the contents of the 

corresponding vacuum we can decompose the F into three successive transformations 

using the Bloch-Messiah theorem [Blo62]: 

( c

0

r 
F=CUVD= 

o ) ( ur vr ) ( vr o )
et vt ut o vt

(1.14) 

The first one D, conserves the particle number and defines a Hartree-Fock type uni­

tary transformation among the particle operators, generating the so called canonical 

uasis. The corresponding part of the mean-field contains all the long range particle-hole 

type correlations of the Hamiltonian [Rin80]. In the canonical basis with creation- and 

annihilation operators (btb) defined as 

(1.15) 

the hermitian density matrix 

(1.16) 
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is diagonal, 
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(1.17) 

where the eigenvalues v; � 0 are the occupation probabilities for the quasiparticle states 

a. In other words, the transformation D is used to diagonalize p. In this representation

the skew-symmetric pairing tensor 

(1.18) 

gets a canonical form 

(1.19) 

Unless at least 2-fold degeneracy is found for a state a i.e. a conjugate partner state 

ci with equal occupation probability v; = v� exists the pairing tensor vanishes and 

the state a is unpaired, or "blocked". The blocked states /3 are either fully occupied 

( vi = 1) or empty ( vi = 0). It should be noted that the character of the conjugate 

states is not specified here. The states can have any symmetry leading to 2-fold or 

higher degeneracies. 

The UV is a sort of BCS transformation in the canonical basis which incorporates 

the short range pairing correlations in the mean-field. It can be chosen to be real, 

because any complex phases can be shifted to the transformations C and D. The 

anti-commutation requirements lead again to the unitarity but as it mixes the creation 

and annihilation operators in the canonical basis the particle number is not anymore 

conserved. We obtain U013 = u08013 and V013 = v6A,f3- An appropriate choice of the phase 

leads to u6 = u0 and v6 = -v0 . Now one can write the pairing tensor (1.19) in the 

canonical form K-013 = Vo Ua0af3. 

Since the vacuum IF) is defined by (1.11) the last unitary transformation C leaves it 

unaffected. Therefore, the structure of the HFB-quasiparticles is uniquely determined 
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only after fixing this last Bloch-Messiah transformation but the transformations D and 

UV (or the matrices p and,-,,) on the other hand uniquely determine the vacuum. Suppose 

we have p completely paired states a with conjugate partner a while of the remaining 

lvh - 2p states f are fully occupied and the rest are empty. The normalized vacuum can 

be explicitly written as

(1.20) 

It is easy to see that the state (1.20) does not have a definite particle number, but 

since the paired part (which is a BCS-type vacuum) contains only components with 

even particle number the number parity is conserved. The high generality of the HFB­

vacuum (1.12) becomes more evident when expanding it in the complete basis of SCM 

states (1.8). We obtain 

n(S) 

IF)= LL(a;SKIF)la;SK), (1.21) 
SK o-=l 

where the first sum can cause symmetry mixing in the case of some non vanishing 

amplitudes (a; SKIF) for different symmetries S. Only the sum over a is wanted, 

because it gives an expansion in terms of the SCM configurations of type (1.8). Since 

the SCM configurations are itself a linear combinations of Slater determinants we end 

up with a reference state (1.21), which is a still more complicated combination of them. 

Our aim was to account for as many particle configurations (1.8) as possible via a single 

quasiparticle determinant (1.12). Consequently the symmetry breaking is the price we 

have to pay for this attempt. The physical variational wave functions can be constructed 

out of these intrinsic structures (1.21) by projecting to the eigenspace of the symmetry 

operators (1.3) . 
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1.3.3 The Generator Wave Function 
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It is essential to restore the broken symmetries before determining the mean-field via 

variation. Otherwise the symmetry dependencies of the mean-field cannot be accounted 

for properly. On the other hand, if the projection were done after mean-field variation 

the projected wave function would not satisfy the variational equation (1.6) and hence it 

cannot be the optimal solution for the simultaneously conserved quantum numbers. The 

states with good symmetries are obtained by using projection techniques. The projection 

techniques for the restoration of broken rotational symmetry [Pei57, Vil66] and number 

(A, Tz) conservation [Bay60] from the HFB-quasiparticle determinants have been known 

for a long time. The combined projection operator [Sch84a, Sch87b] is defined by 
n(S) 

etK = I: lo-; SM)(o-; SKI = P(I M; K)?(2Tz)P(A)?(1r), (1.22) 

where the first operator from the left projects on good angular momentum I with 3-

component M, the next two on good isospin z-component Tz, good mass number A 

and finally the last one on good parity 1r. The order of the projections in etK is 

irrelevant, since they commute with each other. From the definition (1.22) it is clear 

that [.H, GffK] = 0 and also

In practice it is more useful to work with the integral representation, 
2,r 2,r 

etK = (
2
t2!/

) 
ff f dD f d<p f dxDf.:�D)R(D.)?(1r)e2ix(T,-Tz)eicp(A-A)

0 0 

= f dftwf;K(f2).R(f2)[1 + 1rfi]. 

(1.23) 

(1.24) 

Here .R(D.) = exp[-i(o1z +,Biy +'Yiz)] is the usual rotation operator with the Euler angles 

n = (a,,B,'Y) and the Wigner function D�K(D.) = (IMI.R(D.)IIK) its representation in 
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angular momentum eigenstates [Edm57]. Good parity 1r is restored, if necessary, by the 

operator ?(1r) = ½(1 + 1rll). In the integration a and I go from O to 21r, /3 from 0 

to 1r. The rotations in the coordinate space and gauge space have been combined by 

defining the generalized rotation operator .R(D) = .R(O) exp[-i(2x'.T', + cp.A.)] with the 

generalized rotation angle D, = (Oxcp) and the corresponding weight function wf;K(D). 

The differential element dD = dO dx dcp = dad, sin /3d/3 dx dcp. An explicit derivation 

of the symmetry projectors can be found in [Sch84a]. 

Now projecting the expansion (1.21) yields configurations with good symmetry S. How­

ever, they still depend on the choice of the· intrinsic frame of reference via the K -quantum 

number! To get rid of this very unphysical dependence, we introduce new configuration 

mixing coefficients f, which are to be determined in the variational process. Further­

more, these additional variation parameters guarantee that the following ansatz for the 

wave function of the sysLem is orthonormalized 
I 

� A s s \F; SM)= � eMK IF)fK• 
K=-I 

(1.25) 

Notice, that this is not anymore a vacuum for the quasi particles of type (1.9), but rather 

a particular linear superposition of all possible even number quasiparticle states from 

the complete set {IF), \F{at}n); n = l, ... , Mb}- However, in the GCV calculations 

one gets c.:ontribuLium; frurn 011ly up to 6 quasiparticle configuration3 with rcGpcct to the 

HFB vacuum, because the Hamiltonian contains at most 4 quasiparticle annihilation 

operators. Consequently, the GCV description of the states with more complicated 

structure is inadequate and more sophisticated methods have to be applied, see section 

(1.3.5). For the same reason only up to 6 quasiparticle configurations with respect to 

the HFB vacuum yield contributions in the GCM method, see section 1.4.1. 

Consider an arbitrary intrinsic coordinate system, where the quasiparticle vacuum is 

defined as .R(00)\F), then 
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IF; SM)= L ef1KR(Do)IF)fi< 
K 

-%; la; SM) { � [f
5D'(f>o)]x, (a; SK'IF)}

�•s [S I ]= L.., eMKIF) f D (Do) K, 

K 
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(1.26) 

inducing an unitary transformation j5 D1t (Do) on the variation parameters fs without 

affecting the orthonormalization of the states (1.25). 

In principle the ansatz (1.25) is a special case of the General Coordinate Methods gen­

erator wave function [Rin80]. Using the form (1.24) of the projection operator we have 

(1.27) 

where the generating functions are identified as the rotated HFB-vacuums IF(S1)) =

.R(S1)1F) with the corresponding weight functions [ws*(S1)J5]M. In this case the gener­

ator coordinates are the HFB-transformation (1.9) and the configuration mixing coeffi­

cients ff<. 

1.3.4 The Variational Equations 

In the GENERAL COMPLEX VAMPIR the configuration space is restricted to the test 

wave function of type (1.25). Actually, the symmetry projected configuration written as 
n(S) ( I 

) 
IF; SM) = � la; SM)

K
-y;_/a; SKIF)fi< (1.28) 

looks formally identical to the complete SCM expansion in the basis (1.8). It depends 

on a particular problem how complete the HFB-vacuum is with respect to the SCM­

configurations. The arbitrary variations of the energy-functional 

8E[F JS]= 6(F;SMIHIF;SM) = O' - (F; SMIF; SM) ' (1.29) 
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with respect to the underlying HFB-transformation F as well as the configuration mix­

ing degrees of freedom Js yield the optimal representation of the energetically lowest, 

yrast, state of a given symmetry S in terms of a single symmetry projected HFB­

determinant. This optimal solution, minimizing the residual interaction, corresponds 

to the diagonalization of the Hamiltonian (1.6) in the subspace of linear independent 

SCM-configurations contained in (1.28). 

The variation leads to three sets of equations which have to be solved self-consistently. 

The first set results from the variation with respect to the configuration mixing degrees 

of freedom Js. It leads to the generalized eigenvalue problem ( diagonalization of the 

Hamiltonian) 

in the non-orthogonal basis of states 

with the orthonormalization constraint 

The Hamiltoni;:in ::incl t.he overlap matrices are given by 

{ iI} As
= (FI 

i 
eKK'IF) 

- (F;SMKI { 1 } IF;SMK').

(1.30) 

(1.31) 

(1.32) 

(1.33) 

The GCV solution corresponds to the lowest energy solution of at maximum 21 + 1 

linearly independent states IF; SM)i . Notice the unit matrix in (1.32), for the orthonor­

malization of all the resulting solutions. 
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The variation of the functional (1.29) with respect to the HFB transformation can be 

replaced by a variation with respect to an anti-symmetric (lvh x Mb) matrix d, which 

gives an unique parametrization of the transformation matrix in terms of Mb (Mb - 1)/2 

complex variables. According to the Thouless's Theorem [Tho60, Man75] any HFB­

vacuum jFd) can be written in terms of an arbitrary chosen vacuum jFa), non-orthogonal 

(1.34) 

with the corresponding HFB-transformation 

The non-orthogonality of the vacuums means that in the above equation we can find 

the inverse Ld -l, since the norm of the overlap turns out to be I (Fa I pd) 12 
= I det[ L;1 ] I,

see equations (C.18) and (C.10). To mention, as a special case, the reference vacuum 

!Fa) can be the particle vacuum, since we assumed only a non-vanishing normalization 

constant, i.e. condition (F0 jFd) =/:- 0. In that case F0 
= 1, so comparing (1.35) and (1.9) 

one finds that d(F) = (B(F)A-1 (F))*. The generality of the Thouless's theorem enables 

to apply it also when defining the rotated vacuums R(D) jF), useful when calculating the 

rotated matrix elements of type (1.33) and (1.37), later in the wider context of the GCM 

matrix elements for the Hamiltonian and the overlap, see section 1.4.1 and appendix C. 

Consequently the variation with respect to the matrix elements of F can be replaced by 

the variation with respect to the matrix elements of d. One obtains the second set of 

variational equations 

aEs 
= [(L-1)r - (L-1)] = o· /3 1 M 

ado/3 d g d o/3 ' a < = ' . . . ' b' (1.36) 
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where the matrix element of the local gradient to the direction o:/3 is defined by 

KK' 

Lff/(Fd;SMKIH - E5 1Fif3;SMK')Jf,, (1.37) 
KK' 

and has to vanish at the solution. Here I have introduced a notation 

(1.38) 

The equation (1.36) combined with the equation (1.37) represents a sort of generalized 

Brillouin theorem, which expresses the stability of the GCV solution IF; SM) against 

any arbitrary projected 2-quasiparticle states with the same symmetry S. Although the 

generalized Brillouin theorem holds for all GCV solutions it must be reconsidered in the 

case of GCM solution. In the GCM approach the configuration mixing coefficients are 

obtained from the new diagonalization and thus actually newly varied. For more about 

the Brillouin theorem in the context of the GCM approach, see section 1.4.1. 

Although these two sets of equations (1.30),(1.32) and (1.36) provide a complete GCV 

solution they do not determine the HFB-transformation unambiguously. In general, the 

HFB vacuum is invariant with respect to arbitrary unitary transformations among the 

quasipartide 0pPr11.t.nrs, SP.P. sP.r.t.ion l.0.2. This remaining degree of freedom can be used 

to diagonalize any Hermitian (Mb x Mb) matrix. It is convenient to choose here the 

quasiparticle energy matrix H11(F), defined by 

(1.39) 

where chemical potentials A and µ are determined in the usual way, requiring the right 

expectation value for the mass number and isospin projection in the HFB-quasiparticle 

vacuum. For more <leLailed discussion, see appendix 13. The H11(F) is diagonalized via 
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the unitary transformation U,

t ~ 11 _ 
u H u -clM

b
·
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(1.40) 

It is essential to use the operator fI - >-A - µTz instead of only fI. This ensures the 

right average particle number for the one-quasiparticle states. The last Bloch-Messiah

transformation C (1.14) is now fixed via this particular transformation U:

(1.41) 

It turns out that the resulting quasiparticle energies co: corresponding to the HFB trans­

formation F can be used later on as truncation criteria in the GCM approach. 

Similar variational equations (1.30),(1.32) and (1.36) have already been proposed decades 

ago [Zeh65, Zeh67]. Only recently, the advent of supercomputers have made it possible 

to solve them also for realistic problems without any restrictions or additional approx­

imations, see [Ham98, Hje00]. In the realistic cases studied so far, the GCV method 

reproduces nicely the SCM yrast spectrum, the relative deviation being typically only 

few tenths of a per cent, when no truncations are used. The GCV turns out to be an 

excellent truncation scheme, because in the problems studied so far it yields considerably 

more binding than the conventional SCM truncation schemes. 

1.3.5 Beyond the mean-field approximation 

The GCV solution does not always provide a sufficient description of the yrast state. 

Sometimes the complicated structure of the state due to, say high collectivity, leads to 

large underbinding. The most important missing correlations can be included via addi­

tional symmetry-projected quasiparticle determinants, which are achieved by chains of 

similar variational calculation as described above. This is a simple extension of the single 
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determinant GCV method to use of several determinants. Of course, the already ob­

tained determinants must be projected out of the variation space. Since in this procedure 

each of the additional determinant is found via a new successive variation, some particu­

lar additional determinant cannot give more correlations than the previously added one. 

Usually the calculation gets numerically extremely involved after few determinants have 

been included. This method, where a linear combination of few states of type (1.28) 

is used for a description of the yrast state is known as FED (Few Determinant) GCV 

[Sch89]. 

Up to so far only yrast states were considered. The extension for a description of excited 

states with the same symmetry is straight.forwarci in the framework of the GCV of FED 

GCV methods. These extensions are known as EXCITED GCV [Sch87b, Zhe89] if only 

one determinant is used for each state or EXCITED FED GCV [Sch89, Koi89] if several 

of them are admitted. The orthonormality of every new state with respect to already 

obtained states (also yrast state) is guaranteed by Gram-Schmidt orthogonalization. 

Simultaneously that particular state is projected out of the variation space. The varia­

tional character of the methods ensures that the excited states are obtained successively 

with increasing energy. Finally, the residual interaction between all these EXCITED 

GCV or EXCITED PED GCV states can be diagonalized. This mancuvcr takes us be­

yond the the usual mean-field type approach. The resulting final wavefunctions are then 

linear combinations of the states produced by successive orthonormality-constrained 

variations. However, if we do not perform this diagonalization in the EXCITED GCV 

approach it remains as mean-field type approximation. Each of the states is then simply 

based on a different mean-field. The principle difference between the EXCITED GCV 

and EXCITED FED GCV is that in the latter method the residual interaction between 

the resulting states is already smaller before Lhe diagonalization. The most correlating 
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determinants found in the EXCITED FED GCV can situate such high in energy that 

their description with the EXCITED GCV method is practically impossible. 

In theory, the FED GCV, EXCITED FED GCV [Sch89, Koi89] and EXCITED VAM­

PIR methods converge to the exact SCM solutions when taking into account enough 

correlating quasiparticle determinants. In practice this is not always possible, because 

the numerical burden grows rapidly as the number of determinants increases. A m­

determinant FED GCV calculation means at least ½m( m + 1) - 1 times the computation 

time of a single GCV calculation due to the extra overlap and Hamiltonian matrix 

elements between different determinants. Consequently, one is restricted to only few de­

terminants, and hence, to the few lowest states. Although the numerical implementation 

of the EXCITED GCV and the EXCITED FED GCV methods was done already years 

ago they have not been applied in any realistic nuclear structure calculation so far. 

These methods described above are well suited for description of the few lowest states 

of a given symmetry with arbitrary complexity i.e. no restrictions being made on their 

particular structure. It is impractical to apply them for high excited states or, if for 

example, the complete excitation spectrum with respect to some electromagnetic one­

body transition operator is required. For such task a more suitable approach must be 

considered. In general, the states reached by one-body operator cannot have too differ­

ent structures. Intuitively, the first choice would be to expand the nuclear wavefunctions 

with respect to some particular GCV solution by considering only the simplest quasipar­

ticle configurations, namely the vacuum and the all two quasiparticle excitations with 

respect to it, obviously combined with the symmetry restoration. Since now only one 

quasiparticle transformation is needed the variational calculation must be done only once 

for a given symmetry. This leads us to the GENERAL COMPLEX MONSTER method. 
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1.4 The General Complex Monster 

For problems which require a complete excitation spectrum with respect to some transi­

tion operator only such specific states are relevant, which are predominantly populated in 

the particular transition. The GENERAL COMPLEX MONSTER (GCM) (Model for 

handling many Number and Spin projected Two quasi-particle Excitations in Realistic 

model spaces) approach [Sch84b, Sch87a] provides a method for producing a large spec­

tra of states with similar structure by expanding the nuclear wave functions around a 

suitable GCV vacuum. The similarity ensures, that they are easily reached by simple 

transition operators, like one-body type. In quasiparticle picture such operator contains 

terms which conserve the quasiparticle number or alter it by two. 

The method is especially designed for calculation of expectation values of one-body 

electromagnetic transition operators. Some possible applications could be the calculation 

of electromagnetic multipole moments and transitions, form factors, /3- and double /3-

decay calculations. 

During the years rather comprehensive calculations have been made with the symmetry 

restricted methods of the MONSTER model family, like the Real MONSTER [Sch84b, 

Sch87a, Ham85, Ham86a, Ham86b] and more recently with the Complex MONSTER 

[Ben95a, Ben95b, Ben96]. Also a MONSTER typP. m01fol, although rP.strir.t.P.cl to use 

fixed intrinsic mean-fields (standard HFB theory) and only separable forces have been 

introduced by Hara and Sun [Har91]. 

In the next section the theoretical basis of the most general method of the MONSTER 

model family, namely the GCM method is outlined. After that I consider the possibilities 

to solve the GCM general eigenvalue problem and discuss the dimensions of the related 

matrices. In subsection 1.4.4 the formulas for the general tensor operators in the GCM 

basis are presenLed with an example. In the last subsection 1.4.5 an approximate method 
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for elimination of the center-of-momentum (COM) excitations is presented. It becomes 

relevant, when the single particle basis consists more than one major oscillator shell. The 

new GCM code (chapter 2) is implemented with an option to make the COM-treatment. 

1.4.1 The Monster on Vampir Approach 

The GENERAL COMPLEX MONSTER (GCM) configuration space 

{IQ; SMK)} = {IF; SMK), IFc,13 ; SMK); o: < /3; K =-I, ... , +I} 

consists out of the symmetry projected HFB-vacuum 

and all the possible symmetry-projected 2-quasiparticle states 

(1.42) 

(1.43) 

(1.44) 

with respect to it in the chosen model space. Note that the transformation F is not 

necessarily determined for the symmetry S, but is fixed during the calculations. 

Notice, that the GCM basis (1.42) is not orthonormal. Furthermore, because the Hamil­

tonian takes into account only 2-nucleon interactions, only particular superpositions of 

0, 2, 4 and 6 quasiparticle states have effective contributions. This was already pointed 

out in section 1.3.3. The consequences here are not so crucial, since we are interested 

only in states with structures similar to the particular yrast state. Usually the GCM con­

figuration space (1.42) is sufficient for this purpose. Furthermore, one has the freedom 

of choosing the underlying mean-field F corresponding any symmetry and thus obtain 

states with desired structures. Hypothetically, the GCM method could be improved 

by including the projected 4, 6, or even more quasiparticle states into the configura­

tion space, but very soon one encounters the same numerical difficulties as the SCM 
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method. The number of projected 2-quasiparticle states is already ½Mb(lvh -1) (21 + 1). 

Sometimes for large model spaces or high spins even this number has to be cut. 

The diagonalization of the total Hamiltonian in the non-orthogonal basis (1.42) 

yields the GCM wave functions 

l'!/J;(F); SM) =LIQ; SM K)ggK;i 
QK 

'v Q,K. 

= {L IF; SMK)ggK;i + L IFo/3; SMK)g;{3K;i},
K o</3,K 

which are orthonormalized via the constraint 

(1.45) 

(1.46) 

(1.47) 

The Hamiltonian and overlap matrix elements entering the above equations are given 

by 

j dfl wf �,(fl)(QI { : } Ji(fl)[l+ ,fIIIQ')

(Q;SMKI {:} IQ';SMK'). 

(1.48) 

(1.49) 

For details of determining the rotated matrix elements in (1.48), see appendix C. The 

configuration mixing coefficient gs are determined by the diagonalization (1.45). The 

underlying mean-field is found as a solution of the preceding GCV calculation, the 

transformation F being obtained from the variation of the yrast state energy functional 

(1.29) for some symmetry. The new GCM gs coefficients do not necessarily have the 

same K -dependence than the original GCV configuration mixing coefficients JS . That is, 

they can Jifier more than some K-independent constant and then the Brillouin theorem 
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(1.36) does not hold anymore for these g5
. However, the GCM calculation based on the 

GCV solution for I = 0 yrast state reproduces always the particular GCV yrast state of 

the same symmetry. In this case only a single normalization constant JJ exists and the 

vanishing local gradient (1.37) prevents the GCM I= 0 yrast state having any projected 

2-quasiparticle configurations. It is easily seen, that the equation (1.45) for the vacuum

configuration is then equivalent to the first GCV variational equation (1.30). In general 

all other GCM solutions for the yrast states being based on the GCV solution of any 

symmetry can get contributions from the projected 2-quasiparticle configurations. 

Even so, that the GCM yrast states obtained for different symmetries than that of the 

underlying HFB transformation can be more bound compared to the GCV solutions for 

these symmetries. However, the GCM yrast description for the symmetry (I > 0) of the 

underlying mean-field is rather likely to be still lower in energy because by construction 

the GCV description for the particular symmetry is already the optimal one-determinant 

solution guaranteed by the variational principle. On contrary to the GCV approach the 

I > 0 yrast states can be correlated by the projected 2-quasiparticle configurations 

(1.44). That is, the GCM yrast state can be more bound than the GCV yrast of the 

same symmetry and the generalized Brillouin theorem holds in general only for the 

GCV configuration mixing coefficients j5. In the GCM approach the coefficients f 5 are 

varied newly by the diagonalization (1.45) resulting in the configuration mixing via the 

coefficients g5
. 

Theoretically speaking, by varying the configuration mixing and mean-field degrees of 

freedom simultaneously one may obtain an even better solution than by the standard 

GCM approach using any of the GCV transformations. 

Next I show how the GCM diagonalization (1.45) can be formulated. 
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1.4.2 The GCM Generalized Eigenvalue Problem 

The GCM generalized eigenvalue problem (1.45) can be written in a shorter matrix form 

as 

(1.50) 

where the matrix elements are given in equation (1.49). The projected overlap is defined 

there as 

where the equation (1.22) and the notation 

(1.52) 

has been used. Obviously N is Hermitian by construction and furthermore, since for an 

arbitrary column vector z with proper dimension 

(1.53) 

also positive definite. This means that it can be diagonalized with orthonormalized 

. t f 5 lt· 1 d . . . 1 2 2 2 Th t . . e1genvec ors QK;i resu mg rea an pos1t1ve e1genva ues n1 , n2, ... , n;,.... a 1s, m

matrix notation 

(1.54) 

Some of the eigenvalues of the overlap matrix may be zero and have to be cut out in 

order to be able to multiply equation (1.50) appropriately to get 

n-1
1st (Hs _ Es Ns)fsn-Infst 

9
s = (n-11st Hs fsn-1 _ Esl)(nfst

9
s)

= (H8 - E8l)x8 
= 0, 

(1.55) 



1.4. THE GENERAL COMPLEX MONSTER 37 

which represents a standard diagonalization of the Hamiltonian H5 yielding the eigenval­

ues E5 with the corresponding expansion coefficient matrices xf, which are orthonormal 

since the constraint (1.47) must hold. 

(1.56) 

Finally, the original non-orthonormalized expansion matrices are produced via matrix 

multiplication 

(1.57) 

The orthonormalization yields 

(1.58) 

For more detailed discussion of standard methods used for solving the generalized eigen­

value problem, see [Wil65]. 

It is interesting to notice, that this procedure is actually equivalent to the diagonalization 

of the Hamiltonian in the subspace of all the SCM configurations for a given symmetry 

existing in the GCM configuration space. This can be seen if we apply (1.22) also for 

the Hamiltonian and rewrite (1.50) using (1.51) as 

(1.59) 

where 

(1.60) 

and the orthonormality of the eigenvectors x5 is guaranteed by equation (1.56). 

An alternative way to solve a generalized eigenvalue problem is the use of so called 

secular equation, which is not used in the GCV or GCM code but for completeness 
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outlined briefly in the following. Firstly, one deduces from the equation (1.50) that 

the inverse of (Hs - Es Ns) cannot exist, since otherwise the gs would be identically 

zero. This leads to the secular equation, det(Hs - Es Ns) = 0. The solutions are the 

eigenenergies, which are then substituted back to the equation (1.45) in order to get also 

the eigenvectors. 

The numerical solutions of the GCM code support the use of equation (1.54) followed by 

(1.55). For more about the numerical implementation of the diagonalization, see section 

2.5. 

1.4.3 The Dimensions of the GCM Matrices 

The projected GCM Hamiltonian and overlap (1.49) are both complex, Hermitian 

(1.61) 

matrices. Usually this dimension is not too large for the diagonalization. The first 

row of (1.49) consists of 21 + 1 projected vacuum energies (and overlaps), the other 

½Mb(Mb - 1)(21 + 1) elements have the projected vacuum on one side and projected 

2-quasiparticle state on the other. The rest of the GCM energy and overlap matrix

elements are those, which have the projected 2-quasiparticle state on both sides. Since 

both matrices are Hermitian, only upper- or lower triangle half-matrices have Lu Le 

considered. This means only those matrix elements, where { Q < Q'; t/ K, K'} and 

{Q = Q'; K � K'}. Whereas in the GCV method this amounts only two half-matrices 

with altogether (21 + 1)(21 + 2) projected matrix elements for each symmetry, now in 

the GCM method there are altogether N12 
+ �1 of them. 

Much larger dimensions are encountered when preparing the symmetry projection and 

cakulati11g all the rotated matrix elements. The particular rotated matrix elements in 
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equation (1.48) have to be calculated for every grid point ({U) = (a.f3"Y1PXA). So the 

resulting, total number of complex rotated Hamiltonian and overlap matrix elements 

needed before the symmetry projections is 

(1.62) 

where N1r is the number of existing parities and N0 (or N13,N'Y) represent the number of 

a. (or /3,"Y) angles used in the numerical calculation of the projection integral in (1.48).

Moreover, each of the matrix elements are in general complex numbers. Obviously these 

dimensions can easily reach the limit of available storage resources as the number of 

projection angles and the size of the single particle basis increases. Hence the symmetry 

projection must be done, at least in some extend, in parts. Notice, that although there 

are no dependence on the particle numbers in dimensions (1.61) the number of projection 

angles for an exact projection depends on the particle numbers, see subsection 2.3.l. The 

basic principles of the numerical solution of the GCM method will be discussed in more 

detail in section 2.1. 

1 .4.4 The General Tensor Operators 

Be Tf' a general tensor operator of rank L and parity 1r, changing the mass number 

and isospin 3-projection by 6-A and 6-Tz , respectively. The reduced matrix element in 

between two arbitrary GCM states (1.46), which may in general even belong to different 

HFB transformations F; and Fi is 
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L 

X L { gt*Ki;f g�i;K;;iL (JiKj-A, LAII1KJ )(Q1 IT
Y 

(.6.A, .6.Tz)0�
1
-A,K;IQi) }·

Q;QJ A==-L 

K;KJ 
(1.63) 

Here the index i is related to the initial state whereas the index f to the final state and 

(IiK1-A,LAII1K1) is the usual Clebsch-Gordan coefficient. The reduced tensor matrix 

element is defined via the Wigner-Eckart theorem, 

(1.64) 

The associated calculation can be outlined as follows. The GCM wavefunctions (1.46) 

with the explicit integral form of the general projection operators etK (1.24) are in­

serted into (1.64). Using the properties of the rotation operator R(D.) (see appendix C) 

and the symmetries of the corresponding Wigner D functions the expressions simplify, 

one finally arrives to the solution, where the reduced matrix element (1.63) is found. 

Obviously only states with A1 =Ai+ .6.A, Tzf = Tzi + .6.Tz and n:rrrni = +l ca11 only 

yield non-zero result. Once the explicit expression for the Tf' is known the same tech­

niques applied for evaluation of the projected overlap and Hamiltonian (appendix C) 

become available. 

As already mentioned in the preface of this section, the GCM method is especially de­

signed for the calculation of the expectation values of some one-body transition operator. 

As an example I shall consider the tem,ur uµeraLor for spectroscopic amplitudes 
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(1.65) 

After transforming this operator into quasiparticle picture we are able to write the four 

different type of rotated matrix elements, which can be found when applying the equation 

(1.63). Those are the one inbetween the vacua 

(1.66) 

where 

(1.67) 

The rotated matrix elements inbetween the vacuum and 2-quasiparticle configurations 

(Flc;cka�(F(O))ab(F(O))IF,\(O)) = (FIF,\(O)){ii�i(F; O)g�13(F; 0) +

[B(F)X,\(F; O)]ii'.l [A(F)X,\(F; O)]ka - [B(F)X,\(F; O)];c, [A(F)X,\(F; O)]ki'.l } (1.68)

and 

(Flai'.l(F)aa(F)c;cklF,\(O)) = (FIF,\(O)){ii�i(F; O)g�i'.l(F; 0) +

[A*(F) + B(F)l(F; O)]ia [B*(F) + A(F)l(F; O)]k/3 -

[A*(F) + B(F)g,\(F; O)]ip[B*(F) + A(F)g,\(F; O)]ka } 

(1.69) 
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Finally we need the ones with 2-quasiparticle configuration on both sides, 

(Fla13(F)aa(F)c;cka�(F>.(D))a!(F>.(D))IF>.(D)) = (FIF>-(n)) X 

x {.oti(F; D) (g�13(F; D)g;0(F; n) + x;,(F; D)X30(F; D) - x;0(F; D)X3,(F; f2))

+ g�13(F; Q) ([B(F)X>-(F; D)]ia[A(F)X>-(F; D)]k, -
[B(F)X>-(F; D)]i,[A(F)X>-(F; D)]H)

+ g;0(F; D) ([A*(F) + B(F)l(F; D)];a[B*(F) + A(F)l(F; D)]k/3 -
[A*(F) + B(F)l(F; D)]i13[B*(F) + A(F)l(F; D)]ka)

+ x;,(F; D) ([A*(F) + B(F)l(F; D)];8[A(F)X>-(F; D)]ko -

[B(F)X>.(F; D)]ia[B*(F) + A(F)l(F; D)]k/3) (1.70) 

- x;0(F; f2) ([A*(F) + B(F)l(F; D)];13[A(F)X>-(F; D)]k, -
[B(F)X>-(F; D)];,[B*(F) + A(F)g>-(F; D)]k/3)

+ x30(F; D) ([A*(F) + B(F)l(F; S1)];a[A(F)x>-(F; D)]h -

[B(F)X>.(F; D)];,[B*(F) + A(F)l(F; D)]ka)
- X31(F; D) ([A*(F) + B(F)g>-(F; D)]ia[A(F)X>-(F; D)]H -

[B(F)X>.(F; D)]ia[B*(F) + A(F)l(F; D)]ka)}

What is still to be calculated is the numerical symmetry projection, which leads to the 

projected matrix elements (Q1lfY (.6.A, .6.Tz)E>f
rA,K, IQ;) and goes in analogy to the 

case of projected overlap and Hamiltonian. The rest of the calculation of the reduced 

matrix elements (1.63) is trivial. 
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1.4.5 An Approximate Treatment of Center-of-Momentum 

Excitations 

43 

The GCM code was equipped also with an approximate method for the elimination of

the spurious center-of-momentum (COM) excitations, which was originally proposed by

Giraud [Gir65]. I would like to point out, that first of all, the problem of the spurious

COM-excitations exists only if the single particle basis contains more than one major

oscillator shell. Otherwise the COM stays always in the ground state with a constant en­

ergy. Secondly, the method outlined in this section is not in general an exact restoration

of the Galilei invariance. In the spirit of the other symmetry restorations in the GCV and

GCM methods one should apply the projection techniques also for this problem. Not

even the shell model type approaches are free from the spurious COM-admixtures since

the complete basis of Slater- or generalized Slater determinants does not form a complete

set with respect to shift operator. Thus the full Galilei invariance is achieved only if

the projection to COM rest frame is done before determination of the wave function. A

continuous work in this field is in progress [Sch00] and the mathematical machinery for

the COM-projection is already available [Sch91, Sch95, Sch00]. Recent investigations

show the importance of a proper COM-treatment. However, the supplement of 65 with

the COM-projection operator

A 1 
/ 3 

[•a op] 
C(P= 0) = 

(21rn)3 
d aexp i-n- (1. 71)

projecting on the center-of-mass rest frame would mean an additional 3-fold integration

over the complete coordinate space. This would multiply the number of matrix elements

(1.62) by the number of particular discrete integration angles. It is estimated to increase

the computational effort roughly by a factor of 103
. The GCM method with the exact

COM-projection offers an exact elimination of the spurious COM-excitations, but is left

now as numerical challenge for the future.
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The spurious COM-excitations originate from the fact that in addition to the 3A - 3 

intrinsic coordinates which are sufficient to describe the A nucleon system we have 3 

redundant COM-coordinates. These are unphysical degrees of freedom related to the 

collective motion of the nucleus as a whole. An exact elimination of the spurious COM­

excitations is possible in the harmonic oscillator basis supposed that all oscillator many­

particle determinants up to a certain energy nliw are included in the configuration space. 

Let us consider an example. Suppose we have Ac nucleons forming a closed major shell 

core and Av = A - Ac nucleons in the next (open) major shell. Now the complete lliw 

configuration space consists out of all Slater determinants with Av - I nucleons in the 

first open and an additional nucleon in the next higher major shell as well as those with 

Av + I nucleons in the first open and an additional hole in the last occupied major 

shell of the closed core. Obviously the larger excitation quanta (2, ... , n) involve more 

complicated configurations. Then the many nucleon wave function factorizes as 

(1. 72) 

where the latter state i'!fint) is the intrinsic part of the true state and the COM part, 

l<t>cm) the eigenstate of COM-Hamiltonian given by 

(1. 73) 

with P = I:1=
1 

I\ and R = (I:1=
1 

i:;)/A. Here Pi are the momentum operators, r; 

spatial coordinates, w the harmonic oscillator constant and m the nucleon mass. In 

o.ctuo,l calculations the Hem is represented in second quantization, RP.P. appendix D. In 

this method the spurious states are explicitly constructed by diagonalizing the ficm . 

It is evident that the GCM basis states are not oscillator-type described above, but 

quasiparticle determinants. So, in general, the GCM configuration space is not complete 

with rei,pecL Lo Lhe ficm and consequently the pure factorizo.tion (1.72) is not necessarily 
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achieved. However, in practice the diagonalization of the COM-Hamiltonian in the basis 

(1.42) 

yielding 

with 

" { Hcm ;S Ecm;SNS } f 
S _ QL.., QK;Q'K' - QK;Q'K' Q'K' -

Q'K' 

l</Jfm (F); SM)= LIQ; SMK)JtK ;i, 
QK 

't:j Q, K. (1.74) 

(1. 75) 

(1.76) 

will produce energy eigenvalues Ecm;S, which are clustered around the exact COM­

excitation energies [Sch 82]. One can identify all the solutions l<Pim (F); SM} ( i = 

1, ... , n5) with excitation energies around lli.w, 21i.w, ... , nli.w as spurious. These so­

lutions can be removed by performing projection on non-spurious subspace with the 

help of operator 

ns 

Fs = 1 - L l</Jfm (F); SM)(</Jfm (F); SMI, (1. 77) 
i=l 

by solving the diagonalization problem (1.45) for the modified Hamiltonian 

(1. 78) 

The spurious states occur now at energies E5 � 0 and are immediately identified. With 

this method at least the predominant spurious components can be eliminated. 



Chapter 2 

The Numerical Implementation 

2 .1 Introduction 

The GCM program packet was implemented using FORTRAN 77 programming lan­

guage. The program packet consists of three main programs, namely the number- and 

parity projection (GCMNUPR), angular momentum projection (GCMAMPR) and fi­

nally the diagonalization (GCMSMEQ) part. The resulting total size of the fully com­

mented program packet is 334.8 kB including 5671 lines of code ( commentlines sub­

tracted) with 53 subroutines and 2 functions. Total number of program lines is 3746. 

All floating point numbers are of double precision (8 B) type. The structure of the code 

is illustrated in figure 2.1. First, all the input data must be gathered and read in. This is 

done in the first main program. The HFB transformation is the result of the preceding 

GCV calculation and the corresponding matrices A and B are taken, together with the 

Hamiltonian matrix elements in particle representation and the quasiparticle energies, 

as input data. Also the center-of-momentum Hamiltonian Hem must be prepared and 

read in, if the COM-treatment is required. I will not discuss any detailed numerical 

solutions of the GCV code unless they are closely connected to the implementation of 

the GCM code. The mainlines of the GCV code are shortly outlined in Ref. [Ham98]. 

47 
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GCV CALCULATION 

STORE 

GCMNUPR 

STORE 

GCMAMPR 

RESULT 

GCMSMEQ 

Number- and parity projected 

Angular momentum, 

number- and parity projected 

NJK,Q'K' and HJK,Q'K' 

Eigenenergies and 

wavefunctions 

E/ and I \Ii i (F)� SM) 

Figure 2.1: Main Structure of the GCM code 
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The structure of the code is designed also to make the best use of vectorization in vector 

platforms, i.e. all the loops perform the operations in arrays, whenever possible. Also a 

special attention has been paid on matrix multiplications, for example, the multiplication 

of three (N x N) matrices, A, B and C, is not done directly, but always forming first 

a matrix D = AB and then multiplying with C from left. This amounts ¾N times 

less floating point operations. Because, in the former method 2N4 multiplications and 

N4 summations have to be performed, while one needs only 2N3 multiplications and 

equal number of summations in the latter. Furthermore, in the loops involving multi­

dimensional arrays the consecutive index runs through the first index, whenever possible. 

Sometimes the symmetry properties of the involved matrices must be utilized to enable 

this. 

It is well known that the problems involving multi-fold integration are especially well 

suited for parallel computing. In fact the GCV code was parallelized recently, in 1995 

[Ham98), resulting almost optimal, linear speed-up. The GCM code is not yet paral­

lelized when writing this thesis. 

2.2 Order of Magnitude Estimates 

The multi-fold integrations multiply the dimensions of involved matrices as the accuracy 

of the numerical integration i.e. number of discrete integration angles increases and as 

the single particle basis becomes larger, see section 1.4.3. Although the memory usage 

is much faster way to store, access and read data compared to the use of hard discs 

it is not usually possible to handle all the matrices in memory. If only memory usage 

was allowed the code would lose its applicability in various platforms. Thus, one has 

to find a satisfactory compromise in the use of memory and disc storage. In preparing 

the symmetry projection the largest dimensions are encountered when calculating the 
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rotated matrix elements. 

For a concrete example let us consider a full lp0J-shell single particle basis, i.e. 40 

nucleon orbits. Now the number of 2-quasiparticle states plus the vacuum is rJ = 781. 

The corresponding half-matrices have rJ(rJ - 1)/2 + rJ elements. Since the imaginary 

part of the diagonal elements in Hermitian matrix vanishes we have actually the total of 

2(rJ(rJ - 1) + rJ) real matrix elements: NQQ' and HQQ' to be calculated. In general the 

eigenvalue problem Ax = x>- for the N-dimensional complex matrix A can be always 

formulated as 2N-dimensional real eigenvalue problem 

( ::: -::
A

) ( :: )- ( ::�:;) )' (2.1) 

where the eigenvalue-matrix is given as 

(2.2) 

Back to the example, taking into account both, the Hamiltonian and overlap, this yields 

9.3 MB of data. Now supposing we calculate these in every integration point D, it 

gives an additional factor of N = Nc,N13N-;NcpNx, since we have a definite parity. For 

the lp0J-shell a sufficient projection is usually achieved with N = 6 x 105
. So, the 

rotated Hamiltonian and overiap alone would require over 5 TB of storage. Besides these 

matrices one obviously needs also the other related matrices, i.e. (FIF(D)), g(F; D), 

g(F; D), X(F; D), h02(F; D), h20(F; D) and h11(F; D) for each projection angle, which 

amounts now over 50 TB and that number does not even contain the weights for the 

symmetry projection. It is obvious, that these matrices cannot be all calculated at the 

same time, even in this relatively small single particle basis. Therefore the numerical 

implementation of the GCM code turns out to be highly non-trivial. 
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2.3 The Number- and Parity Projection 
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The GCMNUPR is the first main program of the GCM code. This module consists of 

39 subroutines and 2770 program lines. The first part has all the necessary input rou­

tines, where the card-input and the results of the GCV calculation are read in. These 

are followed with the compatibility check with maximal dimensions etc. The card-input 

consists of logical values for center-of-momentum treatment, odd mass number and par­

ity projection. If the single particle basis contains states with both parities the parity 

projection becomes necessary, otherwise we have always definite parity and then the pro­

jection is unnecessary. Other card input is the number of projection angles Na/2, N13 , 

Nr/2, Ncp/2, Nx/2 and the truncation limit E��x for the quasiparticle energies in MeV.

Next the integration points and gaussian weights for the number- (2.3.1) and angular 

momentum (2.4.1) projections are calculated and the 2-quasiparticle configurations ( 

with quasiparticle labels a and /J ), for which lca l + le.al � E��x are constructed. This

part of the code is enclosed by writing a file with the following output for the later use in 

the next main program GCMAMPR: logical COM-treatment, logical parity projection, 

number of valence and core neutrons and protons, number of existing parities, the dis­

crete projection angles a and 'Y, gaussian angles for fJ and corresponding weights w(/3), 

and finally the information of the chosen 2-quasiparticle configurations. 

In the subsequent part the actual number- and possibly parity projections are performed 

with multiple loop structure. The outermost loop runs over the overlap, Hamiltonian 

and possibly COM-Hamiltonian. When starting the loop over Hamiltonian (and COM­

Hamiltonian) the needed parts in the quasiparticle representation are calculated, these 
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are 

H0(F), H':,1(F) (a::; (3), H;� (a< (3), 
(2.3) 

H;i-y0(F) (a::; {3, "I::; 8), H�1-y6(F) ('y < 8) and H!�-y6(F) (a< {3 < "/ < 8). 

The last three matrices are stored in separate scratch discs. Next comes the loops over 

angles {3, a, "I and X· In the beginning of the first three loops new (corresponding) {3-, a-, 

and ')'-files are opened. All a- and 1-files have the status of scratch discs. Inside this loop 

structure we construct the rotated _A>-(F; D) and f3>-(F; D) matrices (C.11 and C.12). 

For odd A system one has to calculate also the A�(F; D) for the even A partner. During 

this step one has to take into account both parities only if they exist and are projected. 

After that begins the possible parity projection loop over >.. First one determines the 

sign of the squareroot in overlap by diagonalization (C.20). For odd A nucleus this is 

done for even A counterpart to yield the correct sign in (Fe 1Fe>-(f2)). This overlap is 

then calculated via (C.18) and finally the phase of the overlap (F0 1F;(S1)) is modified 

according to (C.28). The overlap signs are calculated in this way for all points <p at 

particular (fJa1x>-)-point. 

This procedure is followed by the calculation of the overlaps (FIF>-(n)) according to the 

equation (C.18) for which the sign is already known. Then one calculates the matrices 

X�fl
(F; D) ('c/ a, (3), g�13

(F; D) (a< (3), g�13
(F; D) (a< {3) 

h>-(F;D) h��0(F;S1) (a< {3) h��2(F;D) (a< {3) h�11 (F;D) ('c/a,{3), 

which are also calculated for each angle <p in fixed (fJa1x>-)-point. 

(2.4) 

Now that all ingredients are ready we calculate the rotated matrix elements (C.30) and 

(C.31) in the case of overlap, and (C.32), (C.35) and (C.41) for the Hamiltonian (or 

COM-Hamiltonian). We have chosen to consider the upper triangle matrices. Finally 

the actual number (and parity) projection subroutines are performed and the projected 

matrix elements are uµdaled and stored in scratch disc after each (,\ and) x-loop until 
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the last (>- and) x point, when they are stored in particular ,y-disc. Notice, that the <.p 

loops are done inside these subroutines. 

After the '}'-loop all the number (and parity) projected matrix elements for each '}'-point 

are stored in the particular a-disc. The same procedure is done after the a-loop. Now 

all the projected matrix elements for (a, ',')-points are gathered in the particular ,B-disc. 

In this way the total number of real numbers (related to the number projected matrix 

elements) to be stored at the end is ( all the ,B-discs) 

(2.5) 

where a is the GCM configuration space dimension. With N13N0Ny = 6144 this amounts 

as much as 56 GB and 7.0 GB with all 2-quasiparticle configurations for the full lpOJ­

and lsOd-shells , respectively. 

The number ( and parity) projected Hamiltonian and overlap matrix elements are de­

noted as H$��1r (n) and N$�71r (D), see Figure 2.1. 

2.3.1 The Number Projection Operator 

To calculate the number projection integrals over the angles <.p and x they must be 

discretized. Since the states in the GCM configuration space (1.42) have always good 

number parity, N - .IV must be even for each component state. The abbreviation N 

refers to the mass number A or two times the isospin 3-component, 2Tz = N - Z.

Consequently the number projection integrals in (1.24) are replaced by integrals of type 

(2.6) 

which is easily proved by applying the identity exp[i(q, ± 1r)m] = exp[ief>m] (for even m) 

on the above expression, where the particular m is always even. Now the integration 
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range covers only the half unit circle. It is well known that the integrals of type (2.6) 

can be discretized by using the Gauss-Chebyshev quadrature [Dav72], 

1
1

rr/2 . 1 N,; • _ dQJeilf>(N-N) � -I:eilf>n(N-N),
7i -rr/2 Nq, n=l 

where the angles in the first quadrant are 

7i 

<Pn 
= 2Nq, (2n - 1) N1 n=l, ... ,

2
, 

(2.7) 

(2.8) 

and in the last quadrant simply -QJn - With these angles the number projection operator

takes the form 
2 No/2 

F(N) �NL cos[<Pn(N -N)]. 
!/> n=l 

(2.9) 

However, due to the special form of the generalized rotation operator R(D) we have to use 

(2.7) in the code. The quasiparticle determinants have a good number parity, i.e. they 

contain all even (odd) components in intervals A' E [O, Mb] and 2T: E [-Mf, Mt] for 

even (odd) nucleus before the number projection. Here M'!i' (Ml') is the size of the single 

particle basis for neutrons (protons). Notice, that the order of the projections F(A)

and F(2Tz) is not fixed. The freedom of choosing the integration order is useful when 

parallelizing the code. The operator (2.9) destroys all number impurity components 

N' ./- N for which 

but fails to eliminate those with 

(N N') mod 2N1 =I- 0 (2.10) 

(2.12) 
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The number projections are exact if only single values A' = A and T� = T2 exists, which

implies that an adequate number of projection angles in the first quadrants for an exact

projections are

Integer[� max(A, Mb - A)] + 1

Integer [ � max(2T� + Mf, M'f: - 2T2)] + 1

(2.13)

(2.14)

Obviously these numbers depend on the size of the single particle basis for protons and

neutrons, and also on proton and neutron numbers, i.e. on the nucleus in consideration.

The number of projection angles N
'P

/2 for an exact mass number projection in the full

ls0d-shell is between 4 and 6, while for the full lp0J-shell the corresponding number

is between 6 and 10. Typically, for the exact isospin 3-component projection we need

4 angels in the full ls0d- and 5 - 7 angles in the full lp0J-shell. For comparison, the

numbers for ls0d + lp0J-shell single particle basis are N
'P

/2 = 9 - 16 and N
x

/2 '.:::'. 10.

2.4 The Angular Momentum Projection 

The GCMAMPR is the second main program of the GCM code. This module is the

smallest consisting out of 4 subroutines and only 277 lines of code. For input we have

the results from the preceding GCMNUPR program (see section 2.3) and card-input,

where limits for the angular momenta to be considered are declared.

The angular momentum projection is performed to the considered angular momenta,

for overlap and Hamiltonian (and COM-Hamiltonian) by multiple loops over rotation

angles fJ, all GCM configurations Q S Q', all the necessary K-quantum numbers K, K'

as well as the angles a and ,.

Finally, the fully projected upper-half matrices H�K ;Q'
K' and NgK ;Q'

K
', where {Q < 
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Q'; 'v K, K'} and { Q = Q'; K � K'} are stored in output disc right after the considered

spin and information of all GCM configurations. If parity projection is done the output

is written in separate discs according to the parity.

At this stage the additional disc space need in words for the fully projected upper-half

matrices is

2N1r [a(2J + 1)]2
, (2.15)

where N1r is the number of projected parities, a is the GCM configuration space dimen­

sion. For example, for the full ls0d-shell with all 2-quasiparticle configurations this is

only 1.2 MB, 140 MB, and 0.5 GB for the total angular momentum J = 0, 5 and 10

states, respectively. For the full lp0J-shell the corresponding numbers are 9.3 MB, 1.1

GB and 4.0 GB.

2.4.1 The Angular Momentum Projection Operator 

The angular momentum (or spin) projection is numerically more complicated than the

number projection. The angular momentum projection operator produces matrix ele­

ments of the form

JI - 21 + l 
J
" ff drJDI • (fl)f(fl)KK'-� J. KK' 

21 + l 121r . 121r 

. I 

17r . 
= --

2
- dae-iaK d')' e-,,K d/3 sinf34:K'(/3)J(a(]')').

871' 0 0 0 

Particularly in the GCM code

H�K;Q'K'
Ns QK;Q'T<'

and

(2.16)

(2.17)
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The ,@-integration is done using the Gauss-Legendre type finite interval formula [Dav72] 

1IT 

No 

sin ,Bd,Bf(D.) � L w(,8)nf(af3n'Y), 
O n=l 

where the discrete angles are 

and the corresponding weights are 

(2.18) 

(2.19) 

(2.20) 

where Xn is the nth zero of the Legendre polynomial PN0
(x). Currently the gaussian 

weights are tabulated up to 32 in the code, which is then the upper limit for the number 

of gaussian integration points N13 . For the full ls0d- [Ham98] and lp0f- [Hje00] shell 

calculations the sufficient number of {3-points is usually 16- 20 and 20- 24, respectively. 

The "left side" J3-projection angles in the interval (0, 1r) are 

1r ( ) Na 
O!n = 2Na 

2n - 1 n = l, ... , 2,

and the rest are simply -an. The integral reads 

1 !ff . 1 � · 
- dae-io.K � -I: e-•anK_ 
271" -ff Na n=l

Similarly the "right side" J3-projection is performed with angles 

and the integral 

Ny 
n=l, ... ,2

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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In the integrals (2.22) and (2.25) the K-quantum numbers have all (21 + 1) values in 

the range (-I, ... , I), so the integration is performed always in full unit circle. 

2.5 The Diagonalization 

The diagonalization is the third and last main program of the GCM program package. 

It has 699 program lines, 10 subroutines and 2 non-standard functions. The spins to 

be considered are read from the input file, together with the truncation limit and cut 

off value € for the overlap eigenvalues, a logical value whether the results are written 

in a new file or appended to an existing one and some printing options. If the COM­

treatment is done the assumed or calculated COM ground state energy and an upper 

limit for the considered COM-excitation energy are read in. 

Next begins the loop structure. The first loop runs over the spin. In the beginning 

the projected overlap is read in and diagonalized according to (1.54). If the average 

eigenvalue n2 is less than a certain truncation limit, no solutions exist. Otherwise all 

the eigenvectors (JJ
K

;i; i = 1, . .. , a) for which n2 < € n2, are excluded. This procedure 

determines the new dimension a' ::; a for the linearly independent GCM configurations. 

The linear dependence arises when the number of different GCM states for a certain 

symmetry, which can be constructed from the GCM configuration space, is less than the 

actual dimension of the configuration space. Also the non-orthogonality of the projected 

determinants causes in general some linear dependencies between the GCM configura­

tions. Therefore, the GCM configuration space is not necessary overcomplete, although 

its dimension was larger than the number of shell model states. The GCM approach 

gives a poor description for the states whose complicated structure is dominated by the 
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determinants left outside the GCM configuration space. These states have a very differ­

ent configuration structure compared to the state for which the underlying mean-field is 

determined. 

Next one calculates the squareroot of the projected overlap matrix ,/NS = f5nJ5t and 

stores it for the later use. The Hamiltonian is transformed to H5 according to (1.55) 

using matrix (f JK;in-;1) . The same transformation is done for the COM-Hamiltonian, 

if necessary. And then, in addition, the COM-Hamiltonian is diagonalized (1.74), the 

number of spurious COM states ns is solved and furthermore, if ns > 0 the Hamiltonian 

is modified according to (1.78) by projecting on the non-spurious subspace. 

Finally, the transformed or transformed and modified Hamiltonian is diagonalized (1.55). 

If the COM-Hamiltonian is concerned the COM-expectation values are also calculated 

to check the COM-elimination. The non-orthonormal eigenvectors are contained in 

( a x a')-matrix g5, which is backtransformed using equation (1.57). The corresponding 

orthonormalized expansion coefficients (1.58) are obtained by constructing ,/NSg5
. 



Chapter 3 

Application to 27 Al and 28Si

The applications presented in this chapter represent the first GCM calculations ever 

made. The GCM approach is applied to two nuclei from the middle of the ls0d-shell, the 

odd nA114 and the doubly even i:Si14. The chosen nuclei have the maximal dimensions 

in the particular single particle basis, which consists of full ls0d-shell, with the basis 

dimension Mb = 24 and 1�08 nucleus as core. The valence nucleon numbers for the

considered nuclei are 11 and 12. This rather small basis was chosen in order to enable 

fast comparison with the complete SCM calculations and also to provide a realistic 

demonstration of the approach. The SCM calculations were performed with the shell 

model code OXBASH [Bro88b]. 

3.1 Force and Dimensions 

As effective two-body interaction the mass-dependent Chung-Wildenthal [Wil84] force 

has been used as already mentioned in section 1.2. The mass dependence is given by 

V(A) = V(18)(18/A)°'. Our choice was a= 1/3 instead of the original value a= 0.3. 

The single particle energies t(d5;2) = -4.15 MeV, t(s1;2) = -3.28 MeV, and t(d3;2) = 

+0.93 MeV for both neutrons and protons have been taken from experiment [Ajz86].

This interaction, with a slight modification in the mass dependence, is a traditional 

61 
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choice for the ls0d-shell VAMPIR-MONSTER calculations. 

The number of shell model (SCM) and GCM configurations per angular momentum and 

number of linear independent GCM states obtained for the considered nuclei together 

with the percentual fraction of linear dependence are tabulated in table 3.1. 

28Si 

I1' SCM GCM LI LD% 

o+ 3372 277 272 1.8 
1+ 9216 831 816 1.8 
2+ 13562 1385 1360 1.8
3+ 15385 1939 1905 1.8
4+ 15089 2493 2450 1.7
5+ 12876 3047 2981 2.2
5+ 9900 3601 3425 4.9 
7+ 6691 4155 3655 12 
3+ 4059 4709 1848 61 
9+ 2121 5263 2121 60 

10+ 967 5817 967 83 
11+ 439 6371 439 93 
12+ 105 6925 105 98 
13+ 17 7479 17 100 
14+ 1 8033 1 100 

T" SCM 

1;2+ 5638 
3/2+ 10176 
5/2+ 12877 
7/2+ 13450 
9/2+ 12240 

11;2+ 983,5 
13/2+ 7053 
15/2+ 4469 
17/2+ 2502 
19/2+ 1197 
21;2+ 485 
23/2+ 152 
25/2+ 35 
27/2+ 3 

21 Al 

GCM 

554 
1108 
1662 
2216 
2770 
3324 
3878 
4432 
4986 
5540 
6094 
6648 
7202 
7756 

LI LD% 

544 1.8 
1088 1.8 
1633 1.7 
2179 1.7 
2714 2.0 
3177 4.4 
3456 11 
2804 37 
2502 50 
1197 79 
485 92 
152 98 
35 100 
3 100 

Table 3.1: The number of SCM and GCM configurations and linear independent GCM 
states (LI) per angular momentum for 27 Al and 28Si in the full ls0d-shell basis. The 
LD% is the percentual linear dependence in the GCM approach 

The GCM configuration space dimensions with respect to spin are the same for all nuclei 

in the ls0d-shell basis. The shell model dimensions for both nuclei are roughly one order 

of magnitude larger for the smallest spins. Up to spin 4+ the linear dependence remains 

approximately constant (below 2%) and must be mainly due to the linear dependence 

inbetween the GCM configurations. For the states with I � 6 there are at least twice as 
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many SCM configurations as GCM configurations and the linear dependence is between 

(2 - 5)%. The dimensions become approximately same-size around spin 7+ _ From 

thereon the linear dependence begins to grow faster ·with respect to spin as the number 

of available GCM configurations slightly increases and, on the other hand as the number 

of SCM configurations decreases. At the highest spins the GCM dimensions exceed 

considerably the number of SCM states and the number of linear independent GCM 

states matches with the number of SCM states. Notice that the dimensions in table 3.1 

contain all states with all possible isospins. So, for example the number of T = 0 states 

for 28Si is: 839 T" = o+, 2135 T" = 1+, 3276 T" = 2+ , 371111r 
= 3+ , 3793 11r 

= 4+ , 3278 

/7r = 5+ , 2667 /7r = 5+ , 1848 11r 
= 1+, 1205 /7r = 8+ and 657 /7r = 9+ states. 

3.2 Results and Discussion 

Let us first discuss the even mass 28Si nucleus. This nucleus has 6 active protons and 

neutrons in the valence space. There exist altogether 93710 states for this nuclei in the 

full ls0d-shell basis. Although Tz = 0 for all states the total isospin is between 0 and 

6. The figure 3.1 displays the energy spectra of 28Si for spins 0 - 8 as obtained by the

GCM calculation as well as via the SCM diagonalizations. The energies are plotted up 

to the 17.5 MeV excitation energy with respect to the ground state. Altogether 328 

SCM states with the total isospin T = 0, l and 2 can be found from the figure 3.1. In 

comparison, there are 260 corresponding GCM states, which have now also good isospin, 

because the same isospin conserving Chung-Wildenthal force was used to obtain them. 

All the other GCM states with, in principle, all possible isospins, lie above the considered 

energy range. It is important to notice that all the GCM states are build on top of the 

GCV solution for the o+ ground state. Consequently those states whose structure is 
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Figure 3.1: The energy spectrum of the 28Si for the spins o+ to s+ obtained by full 
ls0d-shell calculations using the GENERAL COMPLEX MONSTER (GCM) and the 
Shell Configuration Mixing (SCM) approaches. The levels are plotted up to -120 Me V 
binding energy relative to the 160 core. 
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Figure 3.2: The energy spectrum of the 27Al for the spins 1/2+ to 15/2+ obtained by
full ls0d-shell calculations using the GENERAL COMPLEX MONSTER (GCM) and 
the Shell Configuration Mixing (SCM) approaches. The levels are plotted up to -109 
Me V binding energy relative to the 160 core. 
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similar to the particular o+ state are well produced while for some states the GCM 

description is insufficient due to their different (configuration) structure. Consequently 

these states cannot be described adequately in the framework of projected vacuum plus 

all projected 2-quasiparticle determinants. These states appear with too high energy or 

are completely missing. The same is true also for the odd mass 27 Al nucleus, which has 

5 valence protons and 6 valence neutrons in the same ls0d-shell basis, resulting 80112 

states. Now the Tz = 1/2 and the total isospin is between 1/2 and 11/2. In the figure 

3.2 the energy spectra of 27 Al for spins 1/2 - 15/2 as obtained by the GCM calculations 

on top of the GCV ground state 5/2+ solution, as well as via the SCM diagonalizations, 

are plotted up to the 12.0 MeV excitation energy with respect to the ground state. The 

number of SCM states with the total isospin T = 1/2, 3/2 and 5/2 is 264 while the 

number of GCM states is 211 in the considered energy range. 

The ground state o+ GCM and GCV energies are the same within the limits of the nu­

merical accuracy. In the corresponding wavefunction the vacuum configuration obviously 

has the largest contribution. Although the other configurations have in general small 

non-zero components (because of the non-orthogonality of the projected quasiparticle 

determinants) they do not correlate the yrast energy according to the generalized Bril­

louin theorem. The underbinding compared to the SCM solution is only 120 keV, which 

means less than a tenth of percent relative difference. It must be regarded as a merit 

for the GCV approach [Ham98], where the state is produced via the variation of 552 

linearly independent variables. All the other yrast states are also very well reproduced 

as can be seen from figure 3.3, where the yrast energies as obtained by the GCV, GCM 

and SCM approaches are displayed for the spins o+ to 5+ . The average deviation of the 

yrast states o+ to 5+ from the exact SCM energies is only 130 keV. For comparison, 

the corresponding average deviaLiou is as much as 1.7 MeV in the neaJ MONSTER, 1.1 
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MeV in the Complex MONSTER [Ben95b] and still 230 keV in the GCV. The GCM ap­

proach offers now considerably better description for these states compared to the earlier 

restricted MONSTER approaches and halves the deviation of even the GCV approach. 

The deviation from the exact SCM yrast energy does not considerably depend on the 

the ratio SCM per GCM dimensions, although the 3+ state has the largest deviation in 

this case. The yrasts for the 27 Al are equally well reproduced, see figure 3.4 (notice a 

different scaling compared to the figure 3.3). Now the average deviation for the yrasts 

1/2+ - 9/2+ is 100 keV in the GCM, 330 keV in the GCV, 1.4 MeV in the Complex 

MONSTER, 1.7 MeV in the Real MONSTER [Ben96]. We can conclude that the GCM 

configuration space does contain the most important shell model configurations for the 

particular yrast states. The success in the description of the yrast states is mostly due to 

the relatively large GCM dimensions, which are at most an order of magnitude smaller 

than the complete SCM dimensions. In principle, the agreement of the VAMPIR type 

approaches can be still improved by the correlating additional projected quasiparticle 

determinants in the spirit of the FED GCV method described in the subsection 1.3.5. 

Now the GCM approach provides an easy way to obtain large number of correlating 

projected quasiparticle determinants for the reference GCV determinant. 

I would like to emphasize once more that all the GCM states for the 28Si are build on top 

the GCV o+ solution and those for the 27 Al on top of the GCV 5/2+ solution. The choice 

to use the mean-field of the ground-state GCV solutions is just a matter of convenience, 

any other solution i.e. the transformation F could have been chosen as well. Then 

obviously the spectra would have also changed in general. Although the yrast states 

(besides the o+) are better produced via GCM approach the use of GCV solution for 

the groundstate does not necessary yield the best agreement for all angular momenta 

compared to the SCM. Most probably the GCM description of some yrast state being 
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Figure 3.3: The yrast spectrum of the 28Si for the spins o+ to 5+ obtained by full 
ls0d-shell calculations using the GENERAL COMPLEX VAMPIR (GCV), GENERAL 
COMPLEX MONSTER (GCM) and the Shell Configuration Mixing (SCM) approaches. 
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based on the GCV solution for the particular spin is the most bound solution. This is 

because being the solution of the variational calculation the GCV description for some 

yrast state is already the optimal projected one-determinant solution for the particular 

state and hence should be the primary choice for the mean-field in that sense. 

As for the excited states, they usually display various and more complicated structures 

than the yrast states and the agreement of the GCM with the exact solution depends 

strongly on the structure of the underlying mean-field. The agreement is not necessarily 

the best for the GCV yrast mean-field solution for the particular spin. In this case 

the best agreement is rather likely obtained using the mean-field with the most similar 

structure to the considered excited state. Although, it might be hard or sometimes 

even impossibly to identify the corresponding GCM and SCM states, those with similar 

structure are most probably very well reproduced. The above discussion holds also for 

the problems with larger configuration spaces, where the GCM dimension can be many 

orders of magnitude smaller than the SCM dimensions. This is true also here for the 

nuclei 27Al and 28Si. In figures 3.1 and 3.2 one can easily identify the lowest few excited 

states, since the state density is so low near the yrast states. As going up in energy 

the state density increases and it makes the identification much harder. However, the 

situation is somewhat different for the very high spins, like the largest spins 10+ - 14+ 

for the 28Si and the 21/2+ - 23/2+ for the 27 Al, where the GCM configuration space 

exhausts the complete SCM spaces and the results are practically exact and depend only 

loosely on the symmetry of the mean-field. In fact, alrea<ly the s+ states for the 28Si 

and the 15/2+ states for the 27 Al are almost exactly reproduced. 

In the GCM calculations 20 gaussian integration points were used in the angular mo­

mentum projection for both nuclei and all states, which turned out to be sufficient. 
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However, for the highest spins (> 8) this could lead to improper projection. Further­

more, 16 integration points were used for the both a and 'Y integration. The number 

projections were performed exactly with 8 integration points for the both mass number 

and isospin 3-component. 

3.3 The Performance 

The GCM calculations were performed on SGI Onyx2 computer at the Department of 

Physics at Jyvaskyla. The disc space and memory statistics together with the percentual 

shares of the time consumption in each part of the program package in the ls0d-shell 

example calculations can be found in table 3.2. 

GCMNUPR GCMAMPR GCMSMEQ 

D/MB S/MB T% D/MB S/MB T% D/MB S/MB T% 

6030 12 88 340 5.2 1 260 1018 11 

Table 3.2: The statistics of the GCM calculations in the full ls0d-shell model space 
for the states I = 1;2+ - 15/2+ in the nucleus 27 Al and the states I = o+ - 8+ in 
the nucleus 28Si on the SGI Onyx2 computer. The D is the maximal disc space (in
megabytes) needed for the output in the particular program, the S is the maximal 
size of the programs for the considered states (in megabytes) and the T is the average 
percentual time consumption of the programs. 

The GCMNUPR program requires as much as 5.9 GB disc space. Although it has to 

be performed only once for both considered nuclei, it takes most of the computing time 

(88%). The number projections were done exactly. The sufficient number of integration 

points were 8 for the both mass number and isospin 3-component projections. The 

number of a and 'Y points were 16 and the number /3 points was 20. For the even mass 
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nucleus 28Si the code performed about 1 % faster than for the odd mass 27 Al due to the 

slightly different method for determining the rotated overlaps (see appendix C). 

The 20 gaussian integration points used in the angular momentum projection for both 

nuclei resulted in a maximum of 340 MB of output data in the GCMAMPR program for 

the 28Si s+ state. In the GCMSMEQ program the diagonalization of the ( 4709 x 4709) 

projected overlap matrix for the same s+ state yields the maximum size of 1 GB. For 

the lower spins where the dimensions are smaller both the GCMAMPR and GCMSMEQ 

codes performed considerably faster. The time shares should not alter essentially if the 

calculations were redone on some other platform. 



Chapter 4 

Summary 

In this thesis the numerical implementation, coding and the involved mathematical 

formalism of the GENERAL COMPLEX MONSTER nuclear structure approach was 

introduced along with an overview of the VAMPIR-MONSTER variational based model 

family. This approach represents an advanced stage in the continuously evolving, almost 

20 years old, model family. 

In the GENERAL COMPLEX MONSTER approach the nuclear wave functions are 

expanded around the GENERAL COMPLEX VAMPIR yrast solution. The spectrum 

of excited states is obtained by diagonalizing the chosen Hamiltonian in the space of 

the GENERAL COMPLEX VAMPIR type symmetry projected vacuum and all sym­

metry projected 2-quasiparticle configurations with respect to it. The approach is well 

suited for the problems where a complete set of excitations with respect to a particular 

transition operator is needed. 

The first applications of the approach was presented for the 27 Al and 28Si in the full 

ls0d-shell basis. The spectra show excellent agreement with the exact shell model re­

sults. Rather than discuss the productivity or the agreement of the calculated energies 

one should look for the other observables too, like the transition strengths up to high 
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excitation energies and analyze the wave functions. At this stage such calculations seem 

evident continuation for this work. 

However, the full ls0d-shell basis is rather tiny for a GENERAL COMPLEX lVIONSTER 

calculation. It is expected that the GENERAL COlVIPLEX MONSTER approach will 

reveal its power in the applications for problems involving larger model spaces, where the 

exact shell model diagonalizations are impossible. However, if the model space consists 

of more than one major oscillator shell the exact restoration of the Galilei invariance 

is desired. It can be obtained by the exact center-of-momentum projection before the 

mean-field variation. The application of the GENERAL COMPLEX MONSTER ap­

proach in larger model spaces with the exact center-of-momentum projection is planned 

for the future. In order to maintain the feasibility also then the parallelization of the 

code is inevitable. 

The results published in this thesis are the first in the series of calculations to be pub­

lished in the forthcoming papers applying the GENERAL COMPLEX MONSTER and 

GENERAL COMPLEX VAMPIR approaches along the lines discussed above. 



Appendix A 

Operators in Quasiparticle Picture 

A.1 The Quasiparticle Representation of the

Hamiltonian 

The Hamiltonian of type (1.2) can be represented in the quasiparticle formalism using 

the inverse transformation of F (1.9), namely pt. We obtain 

H(F) =H0(F) + H11(F) + fl20(F) + H22(F) + H31 (F) + H40(F) 

=H0(F) + L H,;1(F)ai(F)ab(F) + L [ H,;i(F)ai(F)ab(F) + h.c.] 
Q� Q� 

a�,o 
(A.1) 

+ L [H�1,0(F)a!(F)a�(F)ab(F)aa(F) + h.c.]
a�,o 

+ L [ H!i,0(F)ai(F)ab(F)a�(F)a!(F) + h.c.] .
a�,o 

With the following definitions for the r- and pairing field 

rs 

t:.ik(F) = � L v(ikrs)"'sr(F) = -t:.ki(F),
(A.2) 

rs 
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where p is the density matrix (1.16) and K is the pairing tensor (1.18), we get for the 

HFB-vacuum energy 

H0(F) = I: { [t(ik) + 1rik(F) J Pk;(F) + 1�ik(F)Kk;(F)} 
ik (A.3) 

=Tr[(t+ 1r(F))p*(F)-1�(F)1o,*(F)] 

and also 

H11(F) =At(F)h(F)A(F) - Bt(F)hT(F)B(F)
+Bt(F)Ll*(F)A(F) - At(F)Ll(F)B(F)

H20(F) =1 [A\F)h(F)B*(F) - Bt(F)hT(F)A*(F)
+ Bt(F)Ll*(F)B*(F) - At(F)Ll(F)A*(F)],

where the matrix h(F) = t + f(F) is hermitian. Furthermore,

H;1-ro(F) =

(A.4) 

i L v(ikrs) [A;,,(F)Ak13(F)Ar-r(F)Aso(F) + B;,,(F)Bk13(F)Br-r(F)Bso(F) 
ikrs (A.5) 

- ( A;,,(F)Bk0(F)Ar1(F)B;13(F) + B;,,(F)AH(F)Br-r(F)A;13(F))
+ (r � s)]

H!110(F) =
� L v(ikrs) [ ( A;,,(F)Bk13(F)A;0(F)A;1(F) + B;,,(F)Ak13(F)B;0(F)B;-y(F)) 

ikrs (A.6) 
- (11 � 'Y)
+ (i0 +--+ -y; ,-y +--'t J)]
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H!110(F) =

-
2

1

4 
L v(ikrs) [ ( A:C,(F)A;1(F)B;0(F)B;13(F) + s;ex(F)BZ1(F)A;0(F)A;13(F)) 
ikrs 

(A.7) 
The symmetries of the components follow from the hermicity of the Hamiltonian and 

the anticommutation relations for the quasiparticle operators at (F) and a(F). We have 

H0(F) E JR, H;,1(F) = HJ; *(F) 1-)- H;,;(F) E lR 

H�i(F) = -HJ�(F) (A.8)

H��18(F) = -HJ;10(F) = -H��01(F) = H��,y6(F) = H;i:13 (F). 

The H�1
'Y6(F) is antisymmetric with respect to the interchange of the indices /3, 'Y and 

c5: 

while H!i
'Y0(F) is antisymmetric for all indices a, /3, 'Y and c5. 

A.2 The Quasi particle Representation of the N um­

ber Operators 

Next we derive the quasiparticle representation of the number operators of the form { A 1 , _ 
� 

t _ N for T = 2.,.N = L...., c5.,.;.,.ci Ci - , 
i Z for T = -½

(A.10) 

The mass number and isospin 3-com ponent operators are found using these as A = N + Z 

and 2'I'z = N - Z, respectively. We get 

.,.f.r = .,.N°(F) + L.,.N�J(F)aia/3 + L [.,.N;S(F)aia1 + h.c.], (A.11) 

c,/3 c,/3 
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rN°(F) = L)r;rPii(F) = Tr[(r(B*(F)BT(F))]
rN11(F) = At(F){rA(F) - Bt(F){rB(F)
rN20(F) = � [At(F)(rB*(F) - Bt(F)(rA*(F)].

(A.12) 

The number operator (A.10) is obviously Hermitian, and hence quite similar symmetries 

as in equation (A.8) follow 

rN°(F) E JR, rN;1(F) = rNJt(F) H rN;;(F) E JR
(A.13) 

Finally, one can write the mass number and isospiu 3-component operator matrix com­

ponents, 

and 

A11(F) = 1N11(F) + _1N11(F) = At(F)JA(F) - Bt(F)JB(F)
2 2 

T;1(F) = � [½ N11(F) - - ½N11(F)] (A.14) 

= -

2

1 [At(F)((1 - C1)A(F) - Bt(F)({1 - C1)B(F)]
2 2 2 2 

A20(F) = ½N2°(F) + - ½ N2°(F) = � [At(F)JB*(F) - Bt(F)JA*(F)]
T;0(F) = � [½N2°(F) - -½N2°(F)] (A.15) 

= -4
1 [At(F)(6 - C1)B*(F) - Bt(F)(6 - C1)A*(F)].

2 2 2 2 

Of course, the same symmetries as in the above equation (A.13) apply also for A(F)



Appendix B 

The HFB-quasiparticle energies 

In order to obtain the quasiparticle energies with respect to the Fermi level we must 

diagonalize the H11 (F) part of the Hermitian matrix 

(B.l) 

using a unitary matrix U (1.40), which updates the last Bloch-Messiah transformation 

C (1.41). The Lagrange multiplers .\andµ are determined via the subsidiary conditions 

(B.2) 

This method is well known from the standard HFB calculations with various constraints 

as well as from the conventional BCS-theory. Analogously to the subsection 1.3.4 the 

variation, 

oE [Fl = o (FIHIF)
= 

o 
o - (F[F) 

(B.3) 

can be performed by varying the anti-symmetric d matrix in the expression 

(B.4) 

yielding 

�:o I = (F0 1(.H - .\A. -µ'.fz)a�(F0)a1(F0)[F0
) = 0 a::; /3 = 1, ... , Mb, (B.5) 

u 0;/3 d=O 
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which express the stability of the vacuum versus intrinsic 2-quasiparticle admixtures, 

analogously to the (1.36). The condition (B.5) is equivalent to 

(B.6) 

The matrices H20 (F), A20(F) and T;0 (F) are given in equations (A.4) and (A.15). Using 

(B.6) we can construct relations 

yielding 

I:x;�(F)A;�(F) = Tr [x20T(F)A20(F)] = X20(F) · A20 (F) = O 
c,{3 

(T;o. T;o)(Hzo. A20) _ (A20 . T;o)(H20. 7Jo) >. = (A20 . A20)(T;o. T]O) _ (A20. T; 0 )2 

(A20. A2o)(H20. T;o) _ (Azo. T;o)(H20. A20) 
µ = (A20 . A2 0 ) (T]O . T;O) _ (A20 . T;0)2 

.

(B.7) 

(B.8) 

Finally we can diagonalize the H11 (F) via the transformation U (1.40), the eigenvalues 

being the quasiparticle energies cc, • Obviously the U transformation does not affect the 

HFB vacuum and thus also the GCV wavefunctions IF; SM) as well as the corresponding 

eigenenergies remain unchanged. For even A nuclei the cc, are usually non-negative, while 

at least some of them are negative for odd A nuclei. This can be understood by simple 

reasoning. From the definition of the H11(F) (1.39), it is transparent that the cc, is the 

energy of the one-quasi particle state with respect to the HFB vacuum. 

In the case of HFB vacuum for even nucleus the one-quasiparticle state has odd number 

parity (1.20) and is a linear superposition of states with odd nucleon number describing 

an odd nucleus. In general, the odd nuclei are less bound than the ncighboring even A 
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nuclei, which means that co: > 0. On the other hand, same reasoning leads to the negative 

quasiparticle energies for the odd A nuclei. Moreover, we find that the quasiparticle 

energy spectrum is always fully two-fold degenerate for even nucleus, because all the 

states have their conjugate partners, which is not the case for odd nuclei. The levels 

with the smallest absolute energy are those at the vicinity of the Fermi surface. 



Appendix C 

The Rotated and Parity Operated 

GCM Matrix Elements 

In this appendix I will give an explicit expressions for the overlap and energy matrix 

elements needed in solving the GCV variational equations (1.30) and (1.36) as well 

as the GCM eigenvalue problem (1.45). Only those matrix elements which have the 

projected vacuum or projected 2-quasiparticle states have to be considered. Of course 

the extension of GCM to include higher-order projected n-quasiparticle states into the 

GCM basis (1.42) could be handled using the techniques presented here. In Ref. [Sch84a] 

similar but less general equations (without parity projection) were provided (with couple 

of typing errors). Since the following is an essential part of the GCM method, they will 

be reviewed in some extend here. I shall consider the most general case, where also the 

parity projection is explicitly performed. 

Using the expression (1.24) we can distinguish three kind of overlap and Hamiltonian 

matrix elements (1.49), 

83 



84 C. THE ROTATED AND PARITY OPERATED GCM MATRIX ELEMENTS

{ H:K;OK' } = / dDwi�,(D)(FJ { � } R(D) [1 + 1rfI) JF)NoK;OK' 1 
= j diiw);�,(fl)(FI { : } [IF'(fl)) +<IF'(fl))]

{ H:K;o./3K' } = / dDwf�,(D)(FJ { � } R(D)[l +1rfI)ai(F)a1(F)JF)NOK;o./3K1 1 
= j diiw);�,(fl)(FI { : } al(F'(fl))ab(F'(fl))[F'(ii))
+ • j diiw);�,(ii)(FI { : } al(F'(ii))ab(F'(ii))[F'(ii))

= { H�K;OK' } t 
No./3K;OK' 

and 

(C.l) 

(C.2) 

{ H�K;1oK' } = / dDwf �,(D)(FJa13(F)a0(F) { � } R[l + 1rfI) (D)a\(F)a!(F)JF)N o.f3K ;10K1 1 
= j diiw);�,(ii)(Fla,(F)a.(F) { : } a;(F'(ii))al(F'(ii))IF'(ii))
+ • j diiw);�,(ii)(Fla,(F)a.(F) { : } a;(F'(fl))al(F'(ii))IF'(ii)),

(C.3) 



In the last two equations a < /3 and "/ < J. I use the abbreviations

for,\= 1

for,\= 2

and

for,\= 1

for,\= 2
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(C.4)

(C.5)

Whenever the first overlaps (C.l) are non-zero, the rotated HFB vacuums IF-'(0)) can be

written in terms of the unrotated one IF) using the Thouless's theorem [Tho60, Man75]

(see chapter 1.3.4)

IP'(O)) = (FIF>-(n)) exp { �at (F)g>-(F; 0) at (F)} IF)- (C.6)

The antisymmetric g>-(F; 0) matrix is given by 

(C.7)

where the rotated transformation matrix elements are determined via the transformation

fr>-(0) between the rotated and unrotated quasiparticle operators. It is obvious that the

state (C.6), with,\= 1 is vacuum for the operators

because firstly, the vacuum can always be written as a quasiparticle determinant (1.12)

and secondly, the generalized rotation operator R(O) is unitary and
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is its representation in the chosen spherical single particle basis. Furthermore, by ap­

plying the inverse transformation pt we get 

where 

p fl = p (
RT(fl) 0 

) pt= (
A_T(fl) f3T(fl) 

) . () - - - - - - , 

o Rt(n) Bt(n) At(n) 

A(fl) = At(P)R(O)A(P) + Bt(P).R*(O)B(P) 

13(0) = B7(P)R(O)A(P) + AT(P).R*(O)B(P) 

(C.10) 

(C.11) 

Similarly for >. = 2 we obtain 

where 

A.2(0) = At(P)R(O)ITA(P) + Bt(P).R*(O)ITB(P) 

132(0) = BT(P)R(O)ITA(P) + AT(P)R*(O)ITB(P), (C.12) 

(C.13) 

The normalization constant (PIP\O)) is the so called rotated overlap. It can be calcu­

lated following the Ref. [Oni66]. Be 

where 

((PIF(O)) = l(OIF)l2(0I exp { � kc dt (P)c + et d(P(O))ct] 1 IO), (C.14) 
Z L J 

d(P) = (B(P)A-1(P))* 

d(P(O)) = (B(P(O))A-1(P(O)))* = R(O)d(P)RT(fl). 

Notice, that the expression (C.14) has now the factor (OIF), which goes to zero if IF) 

has odd number parity. So that equation cannot be used directly for problems with odd 

A. From the expression

� (((PIF(O))
) = deQ(() 

= Q(() dQ
d( l(OIF)l2 - d( e d( 

(C.15) 
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Q is solved by integration. The overlap (OIF) is calculated in the same way. Instead 

of ((FIF(S1)) now ((FIF) should be considered. Consequently l(OIF)l2 
= I detA(F)I­

With the help of the matrix identity 

exp [Tr ln(l + M)] = det(l + M), (C.16) 

where M is an arbitrary square matrix, the rotated overlap reads (( = 1): 

(FIF(S1)) (<letAT(F) det [1+dt(F)d(F(S1))] detA*(F))
112 

✓ <let .A.t(Q) e-½(x(Mf;-Mb)+'PMb+21rn) where n E Z. (C.17)

For both A we obtain 

(C.18) 

In this equation Mt (M'f:) is the total number of proton (neutron) single particle basis 

states, so Mb = Mt + M'f:. Here a special caution should be exercised. The undefined 

sign of the rotated overlap (C.18) originates from the multivaluedness of the logarithm 

in (C.16). In principle the right sign is assured by requiring continuity with respect to 

the rotation angle S1 in combination with the known value (FIF) = +l. In practice 

a finite number of integration angles is used. The mesh of chosen angles {O, X, cp} is 

not necessarily dense enough to yield the correct sign. Instead of calculating the square 

root in (C.18) one may solve the roots ([(S1) of the characteristic polynomial of the 

matrix dt(F)d(F>-(Q)) in (C.17) and use the fact that they are pairwise degenerate. 

This method was first proposed by Neergard and Wiist for real transformation matrices 

[Nee83]. We obtain 

Mb Mb/2 z 
det(l + dt(F)d(FA(Q))) = IT (1 + (; (S1)) = ( IT (1 + e(n))) 

i=l i=l 

(C.19) 
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The resulting overlap with the correct sign is 
Mb/2 

(FIF>.(f2)) = JdetA(F)I IT (1 +([(D)). (C.20) 
l=l 

The case of odd number parity is actually only a continuation of the above procedure. 

We can write the vacuum and the rotated vacuum with odd number parity as 

IFo) = al(Fe)IFe) 

JF;(D)) = a�(Fe
>.(f2))JF;(D)), 

(C.21) 

(C.22) 

where !Fe ) and 1Fe
>. (f2)) have even number parity. And consequently, the problem reverts 

to the calculation of 

(C.23) 

where IFe (D)) is given by equations (C.6), (C.18) and (C.20). This type of matrix 

elements between two different vacua are easily calculated using the Generalized Wick's 

theorem [Sch84a]. Now four non-vanishing elementary contractions exists. These are, 

all needed later on, 

ac,(F)ab(F) = (FIF>.(f2))- 1 (Fla<>(F)ab(F)IF >.(f2)) = 6c,fJ 

,---, 

afJ(F)ac,(F) = (FIF>.(f2))- 1 (FlafJ(F)ac,(F)IF>. (f2)) = g�fJ(F; D) 

ac,(F)ab(F >. (f2)) = (FIF>. (f2))-1 (Fla<>(F)ab(F >.(f2)) IF>. (f2)) 

(C.24) 

(C.25) 

= [ 1F (ri) - 9>- (F; f2).B>- (f2) L(J = [ 1P t (O) [; = x�(J(F; o) (C.26) 

a�(F>.(f2))ab(F >.(f2)) = (FIF>.(O))-1 (Fla�(F >.(O))ab(F>.(O) )IF >.(O)) 

= [ _BAT (O)X>. (F; D) L(J = g�(J(F; 0), (C.27) 

where the last ones are obtained using the first two, which themselves follow directly from 

the anticommutator, { a(J(F), al(F)} = 6c,f3• Notice that the first contraction (C.24) is 
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consistent with the ordinary \iVick's theorem, as it should be. The resulting overlap for 

the vacuums with odd number parity is read directly from the contraction (C.26), 

(C.28) 

Thus, the calculation of the overlaps for odd A nucleus is always slightly more involved 

than the one for even A counterpart. 

In principle, the equation (C.20) is sufficient to determine the overlap unambiguously. 

However, practical calculations have shown that the equation (C.18) is numerically more 

accurate especially in cases with almost vanishing pairing correlations. Therefore, to en­

sure functionality everywhere the overlap is calculated always using both aforementioned 

equations. However, the (C.20) is used only to determine the correct sign for the overlap 

of even number parity vacuums (FelF/(0)). The overlaps in (C.2) can be read directly 

from equations (C.25) and (C.27). 

(FJa13(F)a,,(F)IF>-(O)) = (FJF>-(O))g�13(F; 0)

(Flal(F>-(O))ab(F>-(O))JF>-(0)) = (FJF>-(O))g�13(F; 0).

(C.29) 

(C.30) 

The last missing rotated overlap (C.3) in the GCM scheme is the one between 2-quasi­

particle states, 

(FJa13(F)a,,(F)at(F>-(o) )a!(F>-(0)) JF>-(0)) = 

(FJF,\(O)) (g�13(F; O)g;8(F; 0) + x;.y(F; O)X38(F; 0) - x;8(F; O)X3,(F; 0)) 
(C.31) 

In order to evaluate the rotated Hamiltonian matrix elements appearing in equations 

(C.1)-(C.3) one must find explicit expressions of them and that can be done by using 

the elementary contractions (C.24)-(C.27) and the quasiparticle representation of the 
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Hamiltonian A.l. For the rotated vacuum energy function one obtains

(FIHIF"(D)) = h"(F; 0.) = (FIF"(0.)) ( H0(F) + fl"20* (F; 0.) + 3.H"40* (F; 0.)) ,
(C.32)

where

fI"20*(F;0.) _ Tr [H20(F)g"(F;0.)]
.H"40*(F;0.) = Tr [fI"40t(F;0.)g"(F;n)]

(C.33)

(C.34)

Whether one uses the upper- or lower triangle GCM matrices for overlap and Hamilto­
nian one needs either

(Flfla1(F"(0.))ab(F"(0.))IF"(0.)) = h�i2(F; 0.)(FIF"(Q)) + h"(F; D)g�p(F; n)
(C.35)

with

or

with
h"20(F;D) =

2H20(F) + 2fI"22(F; D) + g"(F; D) [2H20*(F) + 12fI"40*(F; n)] g"(F; n)
+ [ H11 (F) - 3fI"31 • (F; 0.)] g"(F; 0.) + g"(F; D) [ H11• (F) - 3fI"31 \F; D)] ,

(C.38)



where

iI>..22(F- D)c,{3 , 

iI>..3l*(F- D)c,{3 , 

= 

= 

L 
22 .x -Ha/3"(o(F)g'Y6(F; D) 

"fO 

L H�1�0(F)g;0(F; D).
"fO 
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(C.39)

(C.40)

Last, for the matrix elements (C.3) one needs the rotated Hamiltonian matrix elements

in between 2-quasiparticle states on both sides,

(Fla13(F)aa(F)H at(F>- (n) )a!(F>..(D)) [F>..(D)) =

h>-(F; D) [g�13(F; D)g;0(F; D) + x;1(F; D)X36 (F; D) - x;0(F; D)X3'Y(F; D)]

+(F[F>-(ft)) ( h��0(F; D)g;0(F; D) + h;�2 (F; D)g�13(F; D)

+h�;1(F; Q)X30(F; D) + hW(F; D)X;'Y(F; D)

-h�}1 (F; Q)X3-y(F; D) - h3�1(F; n)x;o(F; D)

(C.41)

where

h.Xll(F; D) ={ Hll(F) - 3iI>..31*(F; D)

+ g)..(F; D) [2H20*(F) + 12iI>-40*(F; n)] }x>- (F; D),
(C.42)

and

v�/3"!0(F;D) = L { 4H;,�pa(F) - 24 L H!�;a(F)g�,,(F; D)gJv(F; D)
pa µ,v 

'""' ( .>- - 31 * .X - 31 * ) } ,>.. - >.. -+ 6 L.., 9{3v (F; D)Hc,vpa(F) - 9c,v (F; D)H{3vpa(F) Xp-y (F; D)Xao(F; D).

(C.43)

Similar expression for rotated matrix elements of general tensor operators can be ob­

tained easily, see subsection 1.4.4.
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In order to reduce the number of matrix elements to be calculated, one can make use 

of various symmetries displayed by the building blocks of the equations (C.29)-(C.32), 

(C.35),(C.37) and (C.41). For example the following skew-symmetries 

g>-T 
(F; 0,) = -l(F; D-),

h>-02T (F; D,) = 

-h>-02(F; D,)

g>-T 
(F; 0) = -[/(F; 0)

hmT (F; D-) = -h>-
20(F; D-),

(C.44)

which follow directly from the equations (C.35) and (C.37). From the equation (C.41) 

one can deduce, that the v�
,a
,6 must be antisymmetric with respect to the interchange 

of indices a and f3 or , and o. Furthermore, X\ h>-
11 and v>- can have in general

non-zero diagonal elements and the first two must be calculated as full matrices. Since 

the GCM Hamiltonian and the projected overlap are Hermitian only upper- or lower 

triangle matrices have to be considered i.e. one needs only either (C.35) or (C.37) with 

the corresponding rotated overlap (C.30) or (C.29) and the corresponding parts of (C.31) 

and (C.41) in the numerical calculations. For more about numerical implementation of 

the rotated matrix elements see section 2.3. 



Appendix D 

The Center-of-Mass Hamiltonian in 

Second Quantization 

In order to diagonalize the COM-Hamiltonian (1.73) we have to write it in second 

quantization. Using the expressions 

(D.l) 

and tensor identity x; · Xj = I::=-l ( -)µxtx-1-µ the COM-Hamiltonian can be written in

second quantization with antisymmetrized two-body part as 

where N; = 2n; + l; and the following dimensionless operators are used 

where b = ;,;;_ 
V;;;; 

(D.3) 
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Applying the Wigner-Eckart theorem we obtain 

(ii { �µ } lr) = (-)j;-m; ( ]i l ]r) (ill { !µ } llr). 
�µ -mi µ mr �µ 

For the reduced matrix elements we have 

(ill{--�µ } II ) -6 6 ( )jr+l/2 (Jr ]i
0

1
) X 

�µ 

7' - r;rr l;lr±l -

½ -½ 

x J(2j, + 1)(2j, + l)(n;l,I { t } ln.l,). 

(D.4) 

(D.5) 

A straightforward calculation of the radial matrix elements yields an analytical expres-

sions 

with symmetry 

(nl + llelnl) = ✓(n + l + 3/2) 

(n - ll + llelnl) = -vn

(nl - lje\nl) = J(n + l + 1/2) 

(n + ll - llelnl) = -✓(n + l)

(nlleln'l') = (n'l'lelnl). 

A slightly more complicated calculation gives 

Finally, we can write 
A 

ficm = � {�(Ni+ 3/2)c;ci

(D.6) 

(D.7) 

(D.8) 

+ � L L [ ( (1 + (Nr - Ni)(Nk - Ns))eµ(ik)eµ(sk)) - (r +-----+ s)] c;ckcsCr},
ikrs µ

(D.9) 

where a notation [)µ(ik) = (i\e
µ
lk) is used. The quasiparticle representation for the ftcm 

is obtained in analogy for the iI in appendix A.l. 
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