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data together with their mutual co-occurrence. However, they are weak at discovering and making explicit hidden causalities 
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layers) influence the classification outcomes. Such causality estimates can be done for the mixed inputs where images are combined 
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opportunities for the explainability of the models’ outcomes. We consider as an additional advantage for CA-CNNs (if used as a 
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1. Introduction 

Processes within Industry 4.0 are dealing with extensive data collection, data analysis and automatic decision-
making on the basis of increasing amounts of data. Artificial Intelligence (AI) and particularly machine learning (ML) 
as advanced data analytics are essential for obtaining insights regarding production, better decision support, higher 
manufacturing quality and sustainability [1]. The complexity of ML models leads to unclear bases for the decisions 
they generate. Industry 4.0 experts are facing the increased requirements regarding fairness, accountability and 
transparency [2] of various decision-driven processes, especially in mission-critical scenarios and sensitive-use cases.  

Deep learning algorithms are capable of capturing essential features from data. However, they are making decisions 
mainly on the basis of co-occurrence, association and correlation among the discovered features, which do not provide 
an insight into the actual reasons behind the decisions, i.e., hidden causal relationships [3]. “Correlation does not imply 
causation” – this is the major message from the great book by Pearl & Mackenzie [4]. In simple words, two variables 
y and x could be correlated (statistically dependent) and, therefore, seeing x allows predicting the value of y, but if y is 
not caused by x then setting the value of x won't affect the distribution of y. As noticed in [5], making the hidden causal 
mechanisms explicit is critically important for smart manufacturing. Being a popular trend nowadays, Explainable AI 
(XAI) is capable (to some extent) of understanding and interpreting the ML models. However, it is still weak in 
capturing and making explicit the causalities behind the behavior of the observed artifacts [6]. An excellent review on 
the state-of-the-art research within causal discovery (i.e., a step beyond the traditional statistical dependency) for the 
manufacturing domain is provided in [1]. According to the review, causal discovery is concerned with the problem of 
identifying causal relationships [7] from data for making explicit the corresponding causal structure [8] on the basis 
of discovered statistical artifacts (features, probability distributions, etc.). Such discovery identifies some pairs of 
causally related variables, features or patterns from the data, and, therefore, enables causal inference with the objective 
of identifying and numerically assessing causal effects based on a known causal structure. 

As it is noticed in [9], efficient control over industrial processes requires real time monitoring and supervision using 
key performance indicators to enable awareness of the process flow. Causality learning in such cases is important for 
the prioritization of the influencing factors regarding the processes in order to provide smarter decision support. Hidden 
causalities within numerous human factors and human actions, which drive human behavior especially in stress or 
emergency [10], are also important to be made explicit for adequate simulations with the models of particular workers 
[11], which will result in optimized safety protocols and regulations handling industrial accidents. 

Use of Bayesian Networks [12] for causality learning, in spite of the fact that they are specifically designed for the 
purpose and even have deeper (Bayesian Metanetworks) options for the architecture [13], is not always feasible as it 
requires a priori expert knowledge for causal structure construction before being able to learn corresponding 
conditional probabilities. Therefore, searching for a suitable (preferably on the basis of artificial neural networks) ML 
paradigm for causal structure learning based on data and without a priori knowledge is still an important objective for 
improving XAI for smart manufacturing. So far, the interpretability (extraction of relevant information from the ML 
model concerning relationships learned by the model [14]) and explainability (the ability to communicate this 
information via human-understandable language [15]) have been the main driving pillars of XAI [16]. As it is argued 
in [17], XAI needs human-level explainability in addition to model-agnostic methods (i.e., enabling transparency of 
deep learning models), and, therefore, more advanced explainability must also provide “causability” as causally 
understandable explanations and ensure that these explanations are reliably action-guiding [18]. Some hybrid models 
like neural-backed decision trees [19], which combine the neural networks (due to their high accuracy) with the 
decision trees (due to their interpretability) contribute to a smarter XAI, but still lack causability. 

A special case would be to discover hidden causalities between objects presented in each single image from some 
image dataset. Specifics of images is that their representation does not include any explicit indications regarding 
features, patterns or objects; it introduces just the pixels for visual representation of a particular scene. Image datasets 
do not provide labels describing the objects’ causal dispositions. Therefore, supervised ML as such cannot approach 
them. Also, unlike having the frame from a video, from a single image one may not see the dynamics of appearance 
and change of the objects in the scene. Therefore, a priori information as a hint for causality discovery is absent. 

Lopez-Paz et al. [20] suggest approaching the problem with the “causal disposition” concept, which is more 
primitive than interventional causation (do-calculus) and causal graphs from Pearl’s approach [4]. However, it could 
be the only way to proceed with the limited a priori information. It enables counting the number C(A,B) of images in 
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which the causal dispositions of artifacts A and B is such that B disappears if one removes A. One can assume then 
(aka rule of thumb) that the artifact A causes the presence of artifact B when C(A,B) is (sufficiently) greater than the 
converse C(B,A). In this way, any causal disposition induces a set of asymmetric causal relationships between the 
artifacts from an image (features, patterns, object categories, etc.) that represent (weak but better than nothing) 
causality signals regarding the real-world scene. The fundamental question, as pointed out in [20], would be to infer 
such an asymmetric causal relationship from the statistics observed in an image dataset. 

In this paper, we suggest one way to compute such an asymmetric measure for possible causal relationships within 
image datasets and we include such computations as a component into a Convolutional Neural Network (CNN) 
architecture (which is known to be one of the most accurate so far generic models for image classification problems) 
to enable such “causality-aware” CNN or CA-CNN to classify images taking into account hidden causalities within 
them. We argue that CA-CNNs can be used with mixed data (images with other data) and also can work as a component 
within Generative Adversarial Networks (GANs) to enable generation of images with respect to causalities.   

The rest of the paper is organized as follows: Section 2 discusses the intuition behind the approach; Section 3 
suggests analytics for asymmetric causality estimates; Section 4 describes the architecture for the CA-CNN on the 
basis of the analytics and corresponding “causality map”; Section 5 extends CA-CNN to address mixed data (images 
plus other data); in Section 6, the architecture for “causality-aware” GAN (CA-GAN) is presented as a capability to 
discover “causal fakes” and generate images with respect to causal relationships; and we conclude in Section 7. 

2. Causalities hidden in images (motivating scenario) 

Let us start with the example, which is suggested in [20] as a show-case for causal disposition concept (see Fig. 1). 
 

 

Fig. 1. Illustration of the “causal disposition” concept [20]: (a) original image of a car on a wooden bridge; (b) removal of the car from the scene 
keeps the image realistically looking; (c) removal of the bridge makes the scene inconsistent; (d) replacing the car with a bike is still a valid 
intervention; (e) replacing the car with the tank makes the consistency of the image questionable (i.e., too heavy vehicle for a wooden bridge). 

Lopez-Paz et al. [20] consider two counterfactual questions regarding the scene from Fig. 1(a): “What would the 
scene look like if we were to remove the car?” and “What would the scene look like if we were to remove the bridge?” 
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The first intervention (Fig. 1(b)) does not change the consistency of the scene (an observer may see similar scenes 
among other images) while the second one (Fig. 1(c)) looks inconsistent (i.e., never seen among other images). 
Therefore, we may assume that the presence of the bridge has some effect on the presence of the car. 

Let us add a couple of more complex interventions to answer the following questions regarding the scene from 
Fig. 1(a): “What would the scene look like if we were to replace the car with the bike?” and “What would the scene 
look like if we were to replace the car with the tank?” The first intervention (Fig. 1(d)) does not change the consistency 
of the scene (an observer may see similar scenes with similar “light” vehicles among other images) while the second 
one (Fig. 1(e)) looks inconsistent (i.e., never seen such “heavy” vehicles on such “light” bridges among other images). 
Therefore, we can make a more complex assumption here that the type of bridge has some effect on the type of vehicle 
located on it. 

As a summary regarding these examples, we may admit that it would be possible and reasonable to get some weak 
causality signals from the individual images of some dataset just on the basis of statistics provided by ML without 
adding primary expert knowledge.  

3. Analytics for the asymmetric causality estimates in images 

Digital images are made up of pixels, and the features of an image (needed for supervised ML) are not explicit 
within the image representation but can be captured by the convolutional layers of CNNs. One may assume that the 
last convolutional layer outputs and localizes to some extent the object-like features. 

 

 

Fig. 2. Basic architecture of a typical Convolutional Neural Network 

Fig. 2 illustrates a typical architecture of a CNN for image classification. It assumes that a deep neural network 
classifier (marked as fully-connected layers in the architecture) will get the features needed for classification not from 
the pixel representation of an input image directly but after several convolution + pooling layers, which capture these 
features from the image. Convolution layers summarize the presence of certain features in the image by systematically 
applying learned filters and producing a corresponding set of feature maps. These maps are sensitive to the location 
of the features in the image, therefore down-sampling (pooling) is applied aiming to get a summary (either average or 
maximal) of the presence of a particular feature within the batches (groups of adjacent pixels within the square shaped 
sub-regions) of the feature map. The pooling operation involves sliding a two-dimensional square filter (or kernel) 
over the feature map and summarizing the features lying within the batch covered by the filter. After the last pooling 
layer, we get 𝑘𝑘𝑘𝑘 features 𝐅𝐅𝐅𝐅𝟏𝟏𝟏𝟏,𝐅𝐅𝐅𝐅𝟐𝟐𝟐𝟐, … ,𝐅𝐅𝐅𝐅𝐤𝐤𝐤𝐤 represented by 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 matrixes (feature maps). The presence of ReLU operations 
in the architecture guarantees that the feature maps contain only non-negative numbers as measures of the presence 
of a particular feature within a particular batch (location in the image). If you normalize these numbers to the interval 
[0, 1] by dividing each of them to the maximal possible value of feature presence 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐅𝐅𝐅𝐅), we can interpret the feature 
maps’ values as  probabilities. For example, 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖 = 0.7, could be interpreted as the value of presence (the probability 
of being present) of feature 𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢 in the location (batch) with coordinates (𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) is estimated as 0.7 (70 %). 

While the objectives of Lopez-Paz et al. [20] were to use the causal disposition concept to effectively distinguish 
between the features (which cause the presence of the particular object in the image and features that are caused by 
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the presence of the object) to get the causal structure of the world represented by some image dataset, we are going to 
measure and use this causal asymmetry for better image classification and generation. 

Therefore, we are going to heuristically estimate the values for conditional probabilities regarding the pairs of 
features and use CNN to learn how these estimates influence image classification. As a generic schema, we will use 
the basic rule for conditional probability, which connects it with the joint probability: 

 

 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) = 𝑃𝑃𝑃𝑃�𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢,𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣�
𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣)

.          (1) 

 
There could be several ways to estimate the joint probability in formula (1) as each feature is represented by the 

matrix of normalized numbers (probabilities within particular locations). We suggest to do this as follows: 
 

𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) =
� max
𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛�����

𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖 �∙� max

𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛�����
𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟
𝑗𝑗𝑗𝑗 �

∑ 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟
𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛

𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟
.        (2) 

 
Formula (2) gives a number within [0, 1] interval and it is a good estimate for conditional probability. It considers 

joint probability to be the maximal presence of both features in the image (each one in their own location). Formula 
(2) could be used to estimate asymmetric [because, in general case, 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) ≠ 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣|𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢)] causal relationships between 
features 𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢  and 𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣 . It is interesting that 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢)  has also some sense other than simply 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢) = 1  with the 
traditional conditional probabilities, because it provides some information on the cause-effect of the appearance of the 
feature in one place of the image given the presence of the same feature within some other places of the image: 

 

𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢) =
� max
𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟,𝑛𝑛𝑛𝑛�����

𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖 �

2

∑ 𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟
𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛

𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟
.         (3) 

 
Here we also suggest another (more generic than formula (2)) option to interpret formula (1) by applying the 

generalized average function, particularly the Lehmer mean, which has useful properties (see, e.g., [21]) and could be 
controlled with a (trainable or adaptive) parameter as follows: 

 

𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣)𝛼𝛼𝛼𝛼 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼 (𝐅𝐅𝐅𝐅i×𝐅𝐅𝐅𝐅j)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼(𝐅𝐅𝐅𝐅j)

, where:        (4) 
   

• 𝐅𝐅𝐅𝐅i × 𝐅𝐅𝐅𝐅j = {𝐹𝐹𝐹𝐹11𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹11
𝑗𝑗𝑗𝑗  , 𝐹𝐹𝐹𝐹11𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹12

𝑗𝑗𝑗𝑗  , …  , 𝐹𝐹𝐹𝐹11𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗  ,  … ,  𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹11

𝑗𝑗𝑗𝑗  , 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹12
𝑗𝑗𝑗𝑗  , …  , 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗 } is a vector of 𝑛𝑛𝑛𝑛4 pairwise 
multiplications; 

• 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝛼𝛼𝛼𝛼 - Lehmer Mean with trainable parameter 𝛼𝛼𝛼𝛼 , i.e.: 

• 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝛼𝛼𝛼𝛼(𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) = 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝛼𝛼𝛼𝛼�𝐹𝐹𝐹𝐹11
𝑗𝑗𝑗𝑗 , 𝐹𝐹𝐹𝐹12

𝑗𝑗𝑗𝑗 , … , 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗 � =

�𝐹𝐹𝐹𝐹11
𝑗𝑗𝑗𝑗 �

𝛼𝛼𝛼𝛼𝛼𝛼
+�𝐹𝐹𝐹𝐹12

𝑗𝑗𝑗𝑗 �
𝛼𝛼𝛼𝛼𝛼𝛼

+⋯+�𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗 �

𝛼𝛼𝛼𝛼𝛼𝛼

�𝐹𝐹𝐹𝐹11
𝑗𝑗𝑗𝑗 �

𝛼𝛼𝛼𝛼
+�𝐹𝐹𝐹𝐹12

𝑗𝑗𝑗𝑗 �
𝛼𝛼𝛼𝛼
+⋯+�𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗 �
𝛼𝛼𝛼𝛼 =

∑ �𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑗𝑗𝑗𝑗 �

𝛼𝛼𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝,𝑞𝑞𝑞𝑞𝑞𝑞

∑ �𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟
𝑗𝑗𝑗𝑗 �

𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛
𝑙𝑙𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟

; 

• 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝛼𝛼𝛼𝛼(𝐅𝐅𝐅𝐅i × 𝐅𝐅𝐅𝐅j) = 𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝛼𝛼𝛼𝛼�𝐹𝐹𝐹𝐹11𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹11
𝑗𝑗𝑗𝑗 , 𝐹𝐹𝐹𝐹11𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹12

𝑗𝑗𝑗𝑗  , … , 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗 � =

∑ ∑ �𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖 ∙𝐹𝐹𝐹𝐹ℎ𝑔𝑔𝑔𝑔

𝑗𝑗𝑗𝑗 �
𝛼𝛼𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

ℎ,𝑔𝑔𝑔𝑔𝑔𝑔
𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝,𝑞𝑞𝑞𝑞𝑞𝑞

∑ ∑ �𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖 ∙𝐹𝐹𝐹𝐹ℎ𝑔𝑔𝑔𝑔

𝑗𝑗𝑗𝑗 �
𝛼𝛼𝛼𝛼𝑛𝑛𝑛𝑛

ℎ,𝑔𝑔𝑔𝑔𝑔𝑔
𝑛𝑛𝑛𝑛
𝑝𝑝𝑝𝑝,𝑞𝑞𝑞𝑞𝑞𝑞

. 

 
The option to use formula (2) to numerically estimate asymmetric causal relationships requires less computation 

than formula (4). However, formula (4) gives a certain flexibility (the Lehmer mean, depending on the parameter, is 
capable of producing the values between MIN and MAX across a simple average among the operands) and, therefore, 
if included into a neural network, the optimal parameter for formula (4) can be learned by backpropagation. Here an 
interesting bridge is foreseen with the SHAP-driven XAI framework [22], which assigns to each input feature a value 
of importance for a particular prediction. By learning the parameter in formula (4), we can potentially discover the 
SHAP importance not only for the individual features but also for their pairwise causal relationships. 
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4. Introducing Causality-Aware CNNs 

The suggested causality estimates can be embedded into the basic CNN architecture, making it “causality-aware”, 
i.e., CA-CNN as shown in Fig. 3. One may see that basic CNN is updated with the additional “causality map” 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅|𝐅𝐅𝐅𝐅) 
of size 𝑘𝑘𝑘𝑘 × 𝑘𝑘𝑘𝑘 (𝑘𝑘𝑘𝑘 - number of features) just after the last pooling layer. The content of the causality map is computed 
either by formula (2) or (4). As it can be seen from the architecture, the features 𝐅𝐅𝐅𝐅𝟏𝟏𝟏𝟏,𝐅𝐅𝐅𝐅𝟐𝟐𝟐𝟐, … ,𝐅𝐅𝐅𝐅𝐤𝐤𝐤𝐤 represented by 𝑛𝑛𝑛𝑛 × 𝑛𝑛𝑛𝑛 
feature maps are not only used to compute each of 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) but also (as in traditional CNN) they go (after flattening) 
directly (as an input vector of size 𝑘𝑘𝑘𝑘 ∙ 𝑛𝑛𝑛𝑛2) to the fully connected layers, while the causality map after being computed 
provides additional 𝑘𝑘𝑘𝑘2  inputs to the flattening vector. These additional inputs, which will be used for image 
classification, are (in a way) providers for the causality awareness. During the backpropagation learning of the 
corresponding weights and other parameters, CA-CNN will automatically discover which of the 𝑘𝑘𝑘𝑘2 causalities are 
important as a (decisive) factor for the correct classification. This additional feature of CA-CNNs would be an 
especially important update for getting better classification accuracy for such image datasets, in which the logic behind 
the distribution of images among classes depends on the causal nature of the scenes represented in the images (likely 
case for various industrial image datasets, e.g., used for training classifiers for industrial diagnostics and predictive 
maintenance purposes). 
 

 

Fig. 3. The basic architecture of “causality-aware” CNN (CA-CNN). In addition to the feature maps after the last pooling layer, it also has the 
causality map containing estimates for pairwise causal relationship between the features. This causality map is computed by one of the two options 
as shown in the figure. Together with the feature maps themselves, the causality map produces additional inputs to the fully connected layers, which 
will be used for further image classification; and the weights for the corresponding additional connections (i.e., actual causality influences) will be 
learned by backpropagation the same way as other neural network parameters.   
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The intuition behind CA-CNNs is illustrated in Fig. 4 and Fig 5 on a simple example.  
 

 

Fig. 4. An intuitive hypothesis (as a driver for the causality relationships discovery within the images) is illustrated by simple example. 

 

Fig. 5. The logic of causality map computation is illustrated (one may see the reasons behind each multiplication in the formula). 
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Consider a simple image as a training sample as shown in Fig. 4. Let us assume that this image is being processed 
by CA-CNN. Assume that, after the last pooling layer, we have several 2 × 2 feature maps, which correspond to the 
discovered features and provide a numeric estimate on the extent to which each of the features is represented in each 
of the 2 × 2 sectors in the image. Assume that (among the discovered features) we have feature 𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢 (let us name it 
“Rain”) and feature 𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣 (let us name it “Umbrella”). The corresponding 2 × 2 feature maps are shown in Fig. 4. From 
these maps one may see that, for example, “Rain” is represented in the image sector with the coordinates (1,1) having 
the probability of presence equal to 0.9, while the presence of “Umbrella” in the same sector has the probability equal 
to 0.2. Due to certain prior knowledge, for us (humans) the likelihood of “Umbrella” appearance because of “Rain” is 
higher that the likelihood of “Rain” due to the “Umbrella”. However, due to the fact that (after computing both 
𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) and 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣|𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢) using either formula (2) or (4)), we get 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣) > 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣|𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢), from which the same (initially 
hidden from the neural network) assumption (“Rain” is likely the reason for “Umbrella” in the image) could be 
derived. An important point here is that, during learning, CA-CNN will get weights for each of such pairwise 
assumptions and will discover if they are valid to influence potential classification of the image. 

Fig. 5 provides more insights into the computation regarding the “Rain” vs. “Umbrella” example. One may see 
that our pair of features 𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢 and 𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣 with each pair of sectors (i.e., 2 × 2 × 2 × 2 = 16 combinations altogether) give 
one multiplication as a component for joint probability (joint feature appearance). For example, the joint probability 
that the feature “Rain” is presented in the sector (1,2) and the feature “Umbrella” is present in the sector (1,1) is equal 
to 0.8 ∙ 0.2 = 0.16 as shown in Fig.5. Further computations according to formula (4) with all the component joint 
probabilities are shown for two different parameter values (𝛼𝛼𝛼𝛼 = 1 and 𝛼𝛼𝛼𝛼 = 0) for the Lehmer mean function. In both 
cases we get 𝑃𝑃𝑃𝑃("Rain"|"Umbrella") > 𝑃𝑃𝑃𝑃("Umbrella"|"Rain").  Later, after AC-CNN is trained using all the image 
dataset, it will be clarified whether this estimated potential causal relationship between the “Rain” and “Umbrella” 
features (across all the training images) is important for image classification within this particular dataset.  

5. Mixed data processing with the CA-CNNs 

In diagnostics (both medical and industrial), it is often the case when each particular sample of data contains 
different numeric measurements with some categorical characteristics in addition to the images. It is known that the 
features discovered by a CNN, which is dealing with the image component of the data, can be merged with the outcome 
(features at certain level of abstraction) discovered by a multi-layer perceptron (deep fully-connected feedforward 
neural network) and then the merged features will go to the common fully-connected layers for the further 
classification.  We suggest updating such a merging schema so that both channels (the convolutional channel for image 
data and the perceptron for other data) will have a shared causality map (see Fig. 6) so that the causal relationships 
will be discovered not just among the features taken from the convolutional channel but among the whole set of 
features from both channels. Assume that, in addition to the 𝑘𝑘𝑘𝑘 features 𝐅𝐅𝐅𝐅𝟏𝟏𝟏𝟏,𝐅𝐅𝐅𝐅𝟐𝟐𝟐𝟐, … ,𝐅𝐅𝐅𝐅𝐤𝐤𝐤𝐤 from the convolutional channel 
(as was already described), we have also 𝑚𝑚𝑚𝑚 features 𝐟𝐟𝐟𝐟𝟏𝟏𝟏𝟏, 𝐟𝐟𝐟𝐟𝟐𝟐𝟐𝟐, … , 𝐟𝐟𝐟𝐟𝐦𝐦𝐦𝐦 represented by single values (not by the matrixes as 
in the case of feature maps). All the features are normalized to the [0, 1] interval. The heterogeneity of features requires 
slight modification of the computing schema for the mixed (𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑚𝑚) × (𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑚𝑚) causality matrix as follows: 

 𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣)𝛼𝛼𝛼𝛼 is computed as usual according to formula (4); 

𝑃𝑃𝑃𝑃(𝐅𝐅𝐅𝐅𝐢𝐢𝐢𝐢|𝐟𝐟𝐟𝐟𝐣𝐣𝐣𝐣)𝛼𝛼𝛼𝛼 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼 (𝐅𝐅𝐅𝐅i×𝐟𝐟𝐟𝐟j)
𝐟𝐟𝐟𝐟j

; 𝑃𝑃𝑃𝑃(𝐟𝐟𝐟𝐟𝐢𝐢𝐢𝐢|𝐅𝐅𝐅𝐅𝐣𝐣𝐣𝐣)𝛼𝛼𝛼𝛼 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼 (𝐟𝐟𝐟𝐟i×𝐅𝐅𝐅𝐅j)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼(𝐅𝐅𝐅𝐅j)

,      (5) 
   

where: 𝐅𝐅𝐅𝐅i × 𝐟𝐟𝐟𝐟j = �𝐹𝐹𝐹𝐹11𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗  ,𝐹𝐹𝐹𝐹12𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗  , …  ,𝐹𝐹𝐹𝐹1𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗  ,  … ,  𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙∙ 𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗  ,𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙∙ 𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗 , …  ,𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∙ 𝑓𝑓𝑓𝑓𝑗𝑗𝑗𝑗�     and     𝐅𝐅𝐅𝐅i × 𝐟𝐟𝐟𝐟j = 
= {𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹11

𝑗𝑗𝑗𝑗  ,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹12
𝑗𝑗𝑗𝑗  , …  , 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹1𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗  ,  … ,  𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗  , 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗  , …  ,𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 ∙ 𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗 }  – are the vectors of 𝑛𝑛𝑛𝑛2  pairwise 

multiplications; 

𝑃𝑃𝑃𝑃(𝐟𝐟𝐟𝐟𝐢𝐢𝐢𝐢|𝐟𝐟𝐟𝐟𝐣𝐣𝐣𝐣)𝛼𝛼𝛼𝛼 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼 (𝐟𝐟𝐟𝐟i,𝐟𝐟𝐟𝐟j)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝛼𝛼𝛼𝛼 (𝐟𝐟𝐟𝐟j,1)

.         (6) 

 
Resulting causality map will be used as the set of additional (𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑚𝑚)2 inputs merged with the actual features and 

provided to the fully-connected layers of the network for further classification as it is shown in Fig. 6.  
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Fig. 6. An architecture, which illustrates the process of merging the features discovered from images by CA-CNN (i.e., from the feature maps 
and from the causality map) and from other than image sources of data. The causality map is constructed in a way to estimate pairwise causal 
relationships between features captured from both data channels: from the images and from other (numeric, categorical, etc.) data. The arrows 
here represent the ML process flow chains and visualize independent sub chains and the places where the processes are merged.  

6. Generation of images with respect to causalities 

Generative Adversarial Networks (GANs) [23] with many variations of their architectures [24] are known to be 
one of the most powerful ML tools for a wide range of applications, which involve image processing and generation 
[25]. The backbone idea behind GANs is synchronous adversarial training of two capabilities (competing neural 
networks): Discriminator, which separates generated (fake) images from the real ones; and Generator of realistically-
looking images. Both networks are trained simultaneously until reaching some balance stage (i.e., generated images 
are too good to be distinguishable from the real ones). One approach to improve the quality of generated images would 
be the one which we suggested in [26]: if you enhance solely the architecture of the Discriminator (by some useful 
component), then one may expect that the Generator (while training to reach the balance with the stronger 
Discriminator) will also improve its performance in generating high quality images. Taking into account that 
Discriminator is basically a CNN, then updating of it with causality-awareness (via CA-CNN) will cause the Generator 
to improve its own generation performance with respect to causalities. Appropriate GAN architecture, which we call 
a Causality-Aware GAN (CA-GAN), is shown in Fig. 7 and an example of its work is shown in Fig. 8. 
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Fig. 7. An architecture of “causality-aware” Generative Adversarial Network (CA-GAN). The major modification here (comparably to the 
traditional architecture) is a Causality-Aware Discriminator, which is based on CA-CNN architecture and includes a causality map component for 
learning causal feature relationships. This update makes the Discriminator to be capable of recognizing not only general fakes (not realistically 
looking inputs) but also “causal fakes”, i.e., images with realistically looking components but with inconsistent causal relationships among these 
components. Synchronously, the Generator learns to generate realistically-looking images with special respect to causalities within it. 

 

 
Fig. 8. An example of real-world simulations on a conveyor with a visual monitoring system. Collected observations have been used as an input to 
CA-GAN. During the training process, the Discriminator also acquired the capability to capture the causal fakes (examples are shown). After the 
training process, the Generator becomes capable of generating realistically-looking images (scenes) without causal inconsistencies. 

Being a CA-CNN, the Discriminator will process images, taking into account causal relationships between the 
image features. This means that, if some causalities from the input image do not match with the feature relationships 
of the learned distribution of the images from the reality corpora, the Discriminator may consider such an image as a 
fake (aka “causality fake”), even if all the objects and backgrounds in the image look like the real ones.  Previously, 
we provided examples of such fakes in Fig. 1(c) and Fig 1(e).  Discovered causality fakes are provided as feedback 
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(loss) to the Generator network, which then updates its own generation skills accordingly and (sooner or later) will be 
capable of generating not just realistically-looking images but also images with realistic causal relationships. 

In order to prove the concept of CA-CNNs by empirical evaluations for advanced image classification and CA-
GANs for advanced image generation with the data from cyber-physical environments, we use the capacities of a 
logistics system and particularly of an interroll cassette conveyor (Fig. 8). Some preliminary experiments have been 
made there within the project IMMUNE: “Cyber-Defence for Intelligent Systems”, which is a NATO SPS project 
(http://recode.bg/natog5511). The conveyor is used to simulate various scenes (cassette loads) and take images of 
them for further processing. 2198 such images have been taken by the cameras installed at the critical distribution 
points of the conveyer. Then CA-GAN is being trained to generate artificial images of the scenes. One may see the 
generated images at certain point of the training process in Fig.8. The monitoring of the training process shows that, 
at some point, the Discriminator starts to complain about “causality fakes” disclosing an important feedback to the 
Generator. This empirical study has discovered that about 10-12% of generated images classified as “fake” are actually 
causality fakes. In this way, the CA-GAN architecture enabled us to improve the quality of generated images 
comparably to our previous experiments [27] where images were generated as a “vaccine” for training digital 
immunity of the logistic system against adversarial attacks. 

These were just preliminary experiments with relatively small numbers of training data and with more simulated 
rather than real scenarios. We believe, however, that the full hidden potential of CA-CNNs and CA-GANs is much 
higher and it is yet to be discovered with the more solid experiments involving huge volumes of training data. 

7. Conclusions 

In this paper, we suggested an additional component (causality matrix as a group of special neurons) to update the 
traditional CNN architecture towards causality-awareness within the image classification process. The resulting CA-
CNN architecture is expected to distinguish between the classes of images, taking into account the causal relationships 
between the features from the images. The features itself are taken after the last pooling layer of the traditional CNN 
architecture and they are considered as the objects representing the scene shown in the image. The assumption is made 
that, in addition to the mutual appearance of each pair of such objects in the image, there might be a hidden causal 
relationship within each couple. Causality matrix computing is done to set-up (initialize) the hypothesis on potential 
causalities hidden within the input image, and the CA-CNN training process is a way to actually prove some of the 
hypothesis. We suggested two computation schemas for the causality matrix, with either more light or more heavy 
computations. The choice of the analytics to compute the initial values for the causality matrix is based on heuristics 
so that the estimates for conditional probabilities between the pairs of features could be used as a measure for potential 
causal relationship between the features. The preliminary experiments show that such estimates together with the 
corresponding weights and parameters trained by backpropagation actually make such a heuristics a reasonable one. 

We show that the causality matrix as a shared component can be used to handle mixed data inputs, i.e., to combine 
image processing, which goes through CA-CNNs, with other data (numerical and categorical), which goes through, 
e.g., multi-layer perceptron. In this case, the causality matrix may contain causality relationship hypotheses regarding 
the pairs of features of different natures. We have updated corresponding analytics to handle such cases also. 

 We considered CA-CNN as a possible architecture of a Discriminator within a typical GAN architecture. Such a 
causality-aware Discriminator (being more powerful due to additional skills) forces its counterpart – the Generator – 
to respect causalities when generating images. Corresponding causality-aware GANs or CA-GANs could be useful 
for both purposes: for the discovery of “causality fakes” (realistically-looking images but with inconsistent causal 
relationships between their components); and for generating realistically-looking images with respect to causalities. 

Preliminary experiments and simulations with relatively small numbers of data samples provide certain optimism 
on the potential of the suggested causality-aware architectures. More experiments with big data from industrial 
processes are foreseen to discover the full potential of the proposed architectures. Among future objectives we keep 
in mind also the XAI domain because our updated architectures have clear potential to improve the explainability of 
ML models. This study is a certain step towards explainability of CNNs, which is important for Industry 4.0 context. 
To get full benefit of our approach to Industry 4.0 needs, we will combine it in our future study with the self-attention 
mechanism in CNNs [28], which has proven its benefits for smart manufacturing applications. 
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