
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

StateOS : A Memory-Efficient Hybrid Operating System for IoT Devices

© Authors, 2023

Published version

Tan, Xinyu; Hakala, Ismo

Tan, X., & Hakala, I. (2023). StateOS : A Memory-Efficient Hybrid Operating System for IoT
Devices. IEEE Internet of Things Journal, 10(11), 9523-9533.
https://doi.org/10.1109/jiot.2023.3234106

2023



1

StateOS: A Memory-Efficient Hybrid Operating
System for IoT Devices

Xinyu Tan , Ismo Hakala∗

Abstract—The increasing significance of operating systems (OSs)
in the development of the internet of things (IoT) has emerged
in the last decade. An event-driven OS is memory efficient and
suitable for resource-constrained IoT devices and wireless sensors,
although the program’s control flow, which is determined by
events, is not always obvious. A multithreaded OS with sequential
control flow is often considered clearer. However, this approach is
memory-consuming. A hybrid OS seeks to combine the strengths of
the event-driven approach with multithreaded approach. An event-
driven cooperative threaded OS represents a hybrid approach
that supports concurrency by explicitly yielding control to another
thread. Although this approach is memory efficient, as cooperative
threads are not preemptive, it may not provide sufficient real-time
performance.

This article proposes a memory-efficient hybrid OS, called
StateOS, for resource-constrained IoT devices. It is an event-driven
cooperative threaded OS with partial real-time performance.
StateOS implements a hybrid task scheduler that combines two
cooperative threaded subsystems as kernel processes on a priority-
based preemptive scheduler. This approach provides adequate
real-time performance for IoT devices at a low memory cost.

Index Terms—cooperative programming, internet of things, IoT
OS, hybrid operating system, wireless sensor network operating
system, WSN OS

I. INTRODUCTION

Internet of things (IoT) research has been very active over
the past decade. This technology is expected to change people’s
daily lives by becoming part of the surrounding ambient objects
[1]. In 2020, the number of IoT connections exceeded that of
non-IoT connections for the first time by 12 billion [2].

Most of the deployed IoT devices are based on wireless
sensors. These devices share similar restrictions as the nodes
of wireless sensor networks (WSN), such as restricted resources,
distant deployment, unreliable network connections, and dy-
namic network topology. Therefore, existing WSN operating
systems (OSs), such as TinyOS [3] and Contiki [4], are also
utilized in IoT devices.

The typical OS for resource-constrained IoT or WSN devices
supports either an event-driven or a thread-based programming
model. In an event-driven model, programs are collections
of event handlers, and the execution of an event handler is
triggered by events. This approach is well-suited for data-centric
IoT applications. Event-driven OSs are memory efficient and,

Xinyu Tan and Ismo Hakala are with the University of Jyväskylä, Kokkola
University Consortium Chydenius, Kokkola, Finland. (e-mail:xinyu.tan@jyu.fi;
ismo.hakala@jyu.fi).

∗ Corresponding author.
Copyright (c) 2023 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

thus, attractive for use in resource-constrained IoT platforms.
However, programming a complex system with an event-driven
model may be challenging because of the manual control of
the stack, the lack of blocking functions, and the events that
determine the flow of the program [5], [6], [7], [8].

A thread-based model allows for sequential control flows
of a thread. This model is attractive from a programmer’s
perspective, as the programming pattern is intuitive for the
human mind. A typical multithreaded OS manages concurrent
threads with preemptive task scheduling, in which the execution
of a thread can interleave. Preemptive task scheduling offers
certain advantages, such as automatic task switching and
automatic stack management. In a preemptive multithreaded OS,
each thread requires individual stack memory allocation. This
entails a memory consumption problem in resource-constrained
devices that may compromise their overall performance.

A hybrid model is a compromise solution for a memory-
efficient, multithreaded OS. Many previous proposals merged
event-driven systems and multithreaded systems in different
combinations to obtain a balance between memory consump-
tion and performance. Cooperative threaded programming,
exemplified by Protothreads [5], is a hybrid model that
supports cooperative threads in an event-driven system. These
threads are specifically programmed to voluntarily hand over
processor control to another thread at the yield point to enable
concurrency between the threads. However, an event-driven
cooperative threaded system can have problems with real-time
requirements [7] because a time-sensitive task cannot obtain
processor control until the current task reaches the yield point.

This study contributes to the literature by proposing a
memory-efficient hybrid OS, StateOS, that offers an ade-
quate real-time performance. StateOS implements macro-based
application interfaces for programming event-driven WSN
applications in a threaded fashion, a hybrid task scheduler
that supports cooperative and preemptive task management,
a hybrid memory management module that can alleviate
fragmentation problems, semi-automated stack management
interfaces for cooperative task management, and cross-layer
network architecture to reduce communication overheads. With
these features, this approach provides a memory-efficient OS for
resource-constrained wireless devices to support increasingly
complex IoT tasks.

StateOS is based on a cooperative threaded programming
approach and a hybrid task-scheduling solution. The OS
implements a hybrid task scheduler to support cooperative
and preemptive task scheduling. A priority-based preemptive
context switcher manages two kernel processes with different
priorities. This allows the process with higher priority to

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2476-1520
https://orcid.org/0000-0002-0048-3212


2

preempt the other. In both kernel processes, a cooperative task
scheduler is implemented to manage the threads cooperatively.
As a result, this hybrid approach can provide adequate real-time
performance.

StateOS is oriented toward resource-constrained IoT and
WSN devices. Therefore, it is designed to be a lightweight and
modularized system that utilizes a microkernel architecture. In
addition, the network protocol structure follows a cross-layer
design to reduce the memory cost of network communication.

The remainder of this paper is structured as follows. Related
research is reviewed in Section II. The system architecture and
the kernel are proposed in Sections III and IV, respectively.
A code example is shown in Section V, and the platform
implementations are presented in Section VI. An evaluation
of the proposed approach is given in Section VII. Finally,
discussion and conclusion are provided in Section VIII.

II. RELATED WORK

Existing OSs for resource-restricted systems, such as WSN
and IoT devices, support an event-driven programming model,
a multithreaded programming model, or a hybrid model that
combines event-driven and multithreaded models.

Event-driven OSs, exemplified by TinyOS [3], Contiki [4],
OpenWSN [9], and SOS [10], are preferred over data-centric
IoT/WSN applications for their event-based computational
mechanisms and resource efficiency.

TinyOS was one of the earliest OSs to address the unique
restrictions of WSN devices. It follows monolithic kernel
architecture that is efficient but challenging to understand and
maintain. Contiki applies a modularized design. The kernel
implements an event scheduler that dispatches the event to
the executing task. OpenWSN is an event-driven OS that
focuses on providing network stack services. It retains a simple
system design with a basic monolithic kernel architecture. SOS
implements a modularized system structure using weakly linked
components. The interactions between these components are
accomplished by event-driven messages.

The event-driven programming style can be challenging [7],
[11] due to associated programming difficulties, such as event-
determined control flows and manual stack management. On
the other hand, OSs that support a multithreaded program-
ming model provide the programmer with a more familiar
programming experience for sequential flow control, proactive
task management, and automatic stack management. Typical
examples of multithreaded OSs are MANTIS OS[12], RIOT
[13], FreeRTOS [14], Zephyr [15], and Mbed OS [16].

MANTIS OS is a multithreaded OS designed for WSN
microsensor platforms. It implements a layered architecture
based on a lightweight preemptive kernel. RIOT is a multi-
threaded OS that aims to provide a Linux-like programming
experience. It has a microkernel architecture with a preemptive
scheduler. FreeRTOS is a popular real-time OS for small
embedded systems and has been ported to IoT platforms. It
supports multithreaded programming using a preemptive task
scheduler. In contrast to the OSs above that support traditional
IoT platforms with 8-bit microcontroller units (MCUs), Zephyr
and Mbed OS, by default, are used on platforms with 32-bit

MCUs [15], [16]. Zephyr has two kernel implementations:
a microkernel for less-constrained devices and a nanoker-
nel for resource-limited devices. It supports multithreaded
programming through different strategies, including priority-
based, cooperative, earliest-deadline-first, preemptive, and non-
preemptive scheduling. Mbed OS is a preemptive multithreaded
OS that supports real-time software execution. It implements
a kernel based on CMSIS-RTOS RTX [17] which is designed
for Cortex-M processor-based platforms.

For certain resource-constrained devices, multithreaded OSs
are heavyweight. However, complex IoT applications still prefer
a multithreaded OS if the device supports it. Many programmers
find a multithreaded OS to be more familiar and clearer for
programming than an event-driven OS.

A hybrid OS is a compromise approach that combines event-
driven and multithreaded systems. It aims to provide a memory-
efficient OS with a thread-based programming style. Previous
studies have attempted to create a balance between resource
consumption and performance by assembling event-driven and
multithreaded systems in different approaches.

One hybrid approach, exemplified by Protothreads [5]
and TinyThreads [6], implements cooperative threaded APIs
in an event-driven system. Event-driven tasks are explicitly
programmed to perform yield operations as cooperative threads.
Protothreads provide macro-based abstractions and allow a
thread to yield when performing blocking operations. A
protothread is stackless, so it is memory efficient but requires
manual stack management. TinyThreads is a library extension
of TinyOS. It supports cooperative threads by implementing a
cooperative scheduler within a TinyOS kernel task. TinyThreads
allocates individual thread stacks, which makes them heavier
than Protothreads. This approach does not support real-time
performance because there is no preemption between the
threads.

The other hybrid approach, exemplified by TinyMOS [18],
TOSThreads [19], SenSpire OS [20], Event-Bus [21], and
OpenSwarm [22], combines event-driven and preemptive mul-
tithreaded systems to provide event-driven and multithreaded
programming models.

TinyMOS implements a TinyOS subsystem in the primary
thread of a MANTIS OS kernel. The subsystem manages event-
driven tasks that can spawn slave threads to perform long-term
operations. TOSThreads is the official designated multithreaded
solution for TinyOS. It has a preemptive thread scheduler that
maintains TinyOS as a subsystem in a high-priority thread.
Long-term tasks are processed by application threads. SenSpire
OS has a preemptive kernel that maintains two hierarchical
event-driven subsystem threads. Including the interrupt routine,
this forms a three-level event-driven system. Non-event-driven
threads are low-priority threads that process long-term appli-
cation tasks. Event-Bus has event-driven subsystems based
on a preemptive scheduler. A subsystem maintains multiple
cooperative subroutines to support a message-based, event-
driven model called the publish-subscribe model. OpenSwarm1

implements a hybrid kernel and natively supports preemptive

1OpenSwarm is a swarm robotic OS with computational restrictions that
are similar to those of IoT sensor OSs.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

and cooperative scheduling. The preemptive scheduler manages
the thread-based program, and short reactive tasks are handled
by the event handler functions.

This hybrid approach is flexible because the programmer
can choose a suitable programming model for different tasks.
However, this hybrid system structure inherits problems from
both system models, such as the event-driven task needing to
be run-to-complete and the preemptive threads being memory-
consuming.

HybridKernel [23] takes an alternative approach that com-
bines the event-driven cooperative threaded model and the
preemptive multithreaded model. HybridKernel allows the
creation of multiple event-driven Protothreads subsystems as
preemptive threads. This approach solves the lack of the real-
timeness of Protothreads by allowing preemption between the
subsystems. Similar to Protothreads, HybridKernel requires
manual stack management, which is a potential burden for
the programmer. HybridKernel demands a fixed-sized stack
memory allocation for each preemptive thread, which is similar
to other preemptive multithreaded solutions. The stack memory
allocation is a heuristic and involves stack overflow risk. As a
result, programmers are inclined to allocate redundant stack
memory, causing memory waste.

StateOS is related to the works above and addresses the
problems revealed by the HybridKernel approach. StateOS’s
hybrid approach combines cooperative threaded and preemptive
systems to provide partial real-time support to threads, which
is similar to that offered by HybridKernel. Memory efficiency
is achieved by introducing a memory-efficient hybrid task
scheduler that consumes only one additional stack memory. In
addition, cooperative stack management processes are semi-
automatized by the task APIs.

III. STATEOS: AN OVERVIEW

StateOS is intended to provide a cooperative threaded
OS with real-time capability for sensor-based IoT devices
and wireless sensors. This OS implements a microkernel
architecture, cross-layer network protocol design, and hybrid
task scheduler to address resource constraint-related issues.

StateOS supports cooperative threaded programming through
macro-based task APIs. These APIs are mainly designed for pro-
gramming system modules and high-performance applications.
This native programming model is not advocated as novice-
friendly because of the system-specific language and system
knowledge requirements. StateOS extensively supports a state
machine-based visual programming model, statecharts, as a
novice-friendly alternative approach. Statecharts are supported
by statechart middleware and action libraries, in addition
to StateOS. Readers are kindly referred to [11] for detailed
information.

The StateOS architecture is depicted in Figure 1. The kernel
implements a microkernel architecture with essential functions,
including task APIs, task management services, and resource
management functions.

The cross-layer management entity manages system services
and sensor services as modules. These services are configurable
according to the application requirements. The database

d
ia

g
n
o
si

s 
to

o
lb

ox

hardware abstraction

p
ro

to
co

l
st

a
ck

se
rv

ic
e
 1

...

cross-layer
management
entitydatabase

kernel

sensor service

se
n
so

r 
1

...

se
n
so

r 
2

  se
n
so

r 
n

se
rv

ic
e
 2

se
rv

ic
e
 n

application
cooperative
programs

statechart middleware

statecharts

action library

Figure 1. StateOS architecture. The components represented using a dashed
line are the configurable modules.

maintains the system’s global information, such as the system’s
dynamic parameters and network details. It is openly accessible
to other components for performance optimization and system
diagnosis.

The protocol stack collects the network protocol programs
and provides network communication services. It provides
cross-layer interfaces for efficient network communication.

The diagnosis toolbox is an optional component that collects
diagnostic instruments, such as a debug message printer (via
cable or radio), diagnosis shell, radio signal evaluator, executive
time analyzer, and memory logger. These tools are intended to
aid in the debugging process.

Hardware heterogeneity is handled by hardware abstraction
interfaces. The implementation of these interfaces is platform-
dependent. Up to now, we have supported some MCUs of
the ARM M0 series and the Microchip XMEGA A series.
Moreover, hardware implementations include some useful
sensors and radios.

StateOS applies a cross-layer network communication design,
depicted in Figure 2, for resource efficiency and optimized
network performance. This cross-layer design was proposed
by [24], who distinguished inter-module communications as
asynchronous messages and synchronous function calling.

Asynchronous messages are used to carry primitive data
messages that cross vertically adjacent layers in a request-
response manner. Similar to the traditional open systems
interconnection module, network messages between application
layers traverse all protocol layers with the necessary overhead.
In contrast, system services, especially network services (e.g.,
clock synchronization and traffic control), can directly access
the lower layers to reduce the overhead problem.

The control and management communications between
parallel components are handled by horizontally synchronous
function calls. Network services can control protocol layers for
optimized network performance. Furthermore, applications and
protocol programs can also efficiently access system services
and databases.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

cross-layer
management
entity

physical layer

datalink layer

protocol
stack

applications

se
rv

ic
e
 1

...

database

asynchronous messages
synchronous function calling

 

se
rv

ic
e
 2

se
rv

ic
e
 n

Figure 2. StateOS cross-layer network architecture

interrupt monitor
memory
allocator

power manager

task scheduler

event
handler

delayed-
task handlermailbox mutex

system
timer

task APIs

pree-queue coop-queue

Figure 3. Kernel structure

IV. THE KERNEL

StateOS implements a lightweight kernel with reduced
functionality. The kernel implements essential system functions,
as shown in Figure 3, including task APIs, suspended task
handlers, a task scheduler, and resource management services.

There are various suspended task handlers, such as mailbox,
delayed task handler, mutex, and generic event handler. The
suspended task is assigned to the corresponding handler based
on the cause of the suspension.

Cooperative threads in the kernel are called tasks, which are
managed by a lifecycle state model, as depicted in Figure 4. The
state transition is driven by task APIs and the task scheduler.
A task can be created by task-creating functions. This newly
created task is in the state new. Depending on the function,
a new task can be issued to the task scheduler and is queued
for execution in the state ready. Alternatively, a new task
can be sent to a suspended task handler as an event-driven
task and labeled by the state suspended. An event-driven task
can be triggered by events, and its state changes to ready.
A task is in the state running during execution. A running
task can cooperatively release processor control by performing
yield or suspend operations, which change its state to ready or
suspended, respectively. Finally, a finished task is in the state
end before being destroyed.

new

ready running end

suspended

Figure 4. Task lifecycle state model. A task is created in the state new. The
state ready indicates that a task is scheduled in the task queue and is ready to
be executed. An executing task is in the state running. When the processing
is completed, the task is in the state end. A task in the state suspended is
suspended in the suspended task handlers and can be triggered to resume by
an event.

Table I
TYPICAL TASK APISab

Task prototype interfaces

TASK(type, name, arg type, arg label ...)
STARTUP TASK(name)
STARTUP DELAYED TASK(name, delay)
STARTUP REPEATED TASK(name, period)
MAILBOX MK(mailbox, mail list)

Task return interfacesc

TASK END(retVal)
TASK EXIT(retVal)

Task yield operations

TASK WAIT UNTIL(condition, locVal ...)
TASK WAIT WHILE(condition, locVal ...)
TAKS YIELD(locVal ...)

Task suspend operations

TASK WAIT DELAY(delay, locVal ...)
TASK WAIT EVT(evt, locVal ...)
TASK MUTEX LOCK(mutex, locVal ...)
TASK SUSPEND(locVal ...)

Synchronized task-calling operation

TASK CALL(task, args ...)(locVal ...)
TASK CALL RETVAL(type)

Task-creating functions

os add task(task, args ...)
os add pree task(task, args ...)
os delayed task(delay, task, args ...)
os repeated task(period, task, args ...)
os evt pending(evt, task, args ...)

TCB management functions

tcb make(task, args ...)
tcb add followup(master, followup)
tcb clone(original)

a This table collects the typical and generalized
task APIs.
b The italic font indicates variadic arguments,
i.e., it accepts any number of arguments of any
type.
c The return interfaces accepts at most one
argument retVal.

A. Task APIs

The kernel implements macro-based task APIs that support
the cooperative threaded programming model. Typical APIs are
categorized in Table I to illustrate their related functionalities.

The implementation of a task starts with the declaration of a
task prototype interface and ends with a particular task return
interface, TASK END. Altogether, they complete a switch-case
structure as the base of local continuation, whereas a yield point

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

is implemented by a case statement that is labeled with the
line number of the source code. The other task return interface,
TASK EXIT, is used to terminate a task in the middle of the
process.

Code 1 primarily expands an example task implementation.
The macro TASK is a basic prototype interface, as expanded
in lines 13–18, which implements a part of the switch-
case primitive structure. The variadic task argument a is
automatically initialized when the task begins, as in lines 15.
Between lines 22–27, it expands a basic yield operation YIELD
that contains a local continuation structure as a yield point
(lines 23–26). The macros VAR SAVE and VAR RESTORE
in the YIELD expansion function preserve the local variable b
across the yield point. In the end, the macro TASK END, as
expanded in lines 31–34, completes the primitive structure of
the task.
Code 1. Example of the simplified primary expansion of the task API. All
irrelevant details have been omitted.

1 // The original macro-based task implementation
2 TASK(void, my_task, int, a)
3 {
4 int b = 0;
5
6 TASK_YIELD(b);
7 printf("%d\n", a + b);
8
9 TASK_END();

10 }
11
12 // The primarily expanded implementation
13 task_retval_t my_task(tcb_arg_t *_args)
14 {
15 int a = _tcb_argv(_args);
16 _TCB_PT_->resume = false;
17 switch (_TCB_PT_->line) {
18 case 0:
19 {
20 int b = 0
21
22 _VAR_SAVE(b);
23 _TCB_PT_->resume = true;
24 _TCB_PT_->line = __LINE__; case __LINE__:;
25 if (_TCB_PT_->resume)
26 return TASK_RETVAL_YIELD;
27 _VAR_RESTORE(b);
28
29 printf("%d\n", a + b);
30
31 _TASK_RETVAL();
32 }
33 }
34 return TASK_RETVAL_OK;
35 }

In addition to the macro TASK, task APIs provide interfaces
that extend the macro TASK for particular purposes. The macro
prefixed by STARTUP declares a startup task that is executed
when the system starts. A mail handling task is declared by
the macro MAILBOX MK, which can automatically respond
to system messages.

Task flow control APIs include task yield operations and
suspend operations. These operations are extensions based
on the YIELD operation (as introduced previously). The
yield operations send a running task back to the scheduler
and repeatedly estimate the condition until it is satisfied.
Alternatively, a task with a suspended operation is dispatched
to the associated suspended handler. For example, the oper-
ation TASK WAIT DELAY suspends a task in the delayed
task handler, and a mutex lock failure by the operation
TASK MUTEX LOCK suspends the task in the mutex handler.

Semi-automatic local variables are preserved by task flow
control APIs. Unlike other stackless approaches, it is safe to use

local variables across the local continuation structure in StateOS.
However, task flow control APIs cannot detect the presence
of local variables. Therefore, they must be introduced to the
corresponding yield/suspend operations as variadic arguments,
as shown in Code 1, line 6.

The APIs provide a synchronized task-calling mechanism
that allows a task to call a subroutine task and wait until it
is completed. This task-calling process is similar to calling a
C function. The macro TASK CALL creates and introduces a
new task to the kernel and then suspends the running task until
the called task is finished. Two pairs of parentheses follow the
macro TASK CALL. They are for the variadic task arguments
and local variables because C language does not allow multiple
variadic arguments in one set of parentheses. The subroutine
task issued by TASK CALL is capable of passing the return
value to the caller. The caller should fetch this return value
through the macro TASK CALL RETVAL.

A task is typically created and introduced to the kernel
by a task-creating function. The functions os add task and
os add pree task can send a task directly to the scheduler as
a regular or a preemptive task, respectively. The other task-
creating functions can dispatch a newly created task to the
relevant suspended handlers as an event-driven task.

Information about a task is maintained in a data structure,
namely, a Task Control Block (TCB). A TCB includes the
task implementation address, state, command, identity, name,
preemption, priority, task arguments, etc. Task APIs implement
TCB management functions for more flexible flow control.
For example, the function tcb add followup can link multiple
TCBs in a daisy chain. When the previous task in the chain
is completed, the following one is automatically invoked, and
the function tcb clone clones an existing TCB.

B. Suspended task handlers

Suspended tasks are event-driven because they are typically
resumed by a specific event or signal. These tasks are suspended
in the corresponding handlers until they are reactivated.

The mailbox system provides an interlayer communication
approach between the system services and applications. A
potential mail recipient can register a mail handler (with the
macro MAILBOX MK) in the mailbox system. Mail delivery
can trigger the handler as a high-priority task. A typical use
of the mailbox is to forward the radio messages received from
the protocol stack to applications.

Delayed tasks are suspended in delayed-task handlers. This
module is associated with a hardware timer that is used to
count down task delays. A delayed-task queue sorts these tasks
by their delay time. A timer event dispatches expired tasks to
the scheduler.

The mutex module implements a locking mechanism for
safe resource access. The failure of a mutex lock attempt
causes task suspension. These suspended tasks are sorted by
their priority in the associated mutex entries and wait for the
required resources. Once the mutex is unlocked, relevant tasks
are resumed.

The event handler manages generic event-suspended tasks.
These tasks are registered in the associated event entries.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

context switcher

p
re

e
-q

u
e
u
e

task routine

task 1
task 2

task n

...

co
o
p

-q
u
e
u
e

task routine

task 1
task 2

task n

...

Figure 5. Task scheduler

Depending on the propriety, an event can trigger all relevant
tasks at once, or it can exclusively trigger the first one.

C. Task scheduler

The kernel schedules ready tasks using a hybrid strategy.
The task scheduler, as depicted in Figure 5, comprises two
task queues: pree-queue and coop-queue. A context switcher
empowers the pree-queue to preempt the coop-queue. In each
task queue, a task routine is implemented as a scheduler to
manage the tasks in a priority-based cooperative manner. This
structure achieves hybrid task scheduling through preemptive
task management between the task queues and cooperative task
management between the tasks in the same queue.

Figure 6 demonstrates the task scheduling implementation
in response to the hardware interrupt. The system interrupt
INT0 interrupts task T0 and inserts a preemptive task T1 in the
pree-queue. When INT0 returns, the context switcher issues a
context switch to the pree-queue, and T1 is executed. In this
demonstration, it is presumed that T1 is the only task in the
pree-queue at the moment. Therefore, the completion of task
T1 empties the pree-queue and causes another context switch
that continues task T0.

Task T2 is the subsequent task that is executed when T0 ends.
Task T2 invokes preemptive task T3, causing an immediate
context switch. The interrupt INT1 interrupts the execution of
T3 and inserts another preemptive task, T4 into the pree-queue.
However, task T4 must wait until T3 is finished because it
follows cooperative task management in the same task queue.
Task T2 is resumed once T4 is completed.

Thus far, this proposed hybrid strategy is naı̈ve because a
blocked pree-queue task can prevent the coop-queue tasks, and
a blocked high-priority task can prevent a lower-priority task.
Therefore, a design principle is established that a preemptive
task shall not contain a blocking operation. However, blocking
a preemptive task is not prohibited. In such a case, a blocked
preemptive task waives this privilege by descending to the
coop-queue when it yields. In addition, inside a task queue,
any yield operation downgrades the task to the lowest priority,
and the task is rescheduled at the end of the task queue.

The pree-queue and the coop-queue are, de facto, two kernel
processes scheduled by the context switcher. Thus, both queues
require individual memory stacks. The preemptive tasks in the
pree-queue typically require small memory stacks, as they are
short-lived. Therefore, the stack memory assigned to the pree-
queue can be small (e.g., 128 or 256 bytes). As shown in

coop-queue pree-queue interrupt
routine

T0

INT0 invokes T1

T1

T2

T3

INT1 invokes T4

T4

continue T0

continue T2

continue T3

invokes T3

context switching interrupt

Figure 6. Task-scheduling demonstration, where the label T0 and T2 denote
regular tasks from the coop-queue; T1, T3, and T4 denote the preemptive tasks
from the pree-queue; and INT0 and INT1 denote the hardware interrupts.

 

RAMEND

.heap

.stack

pree-queue stack

coop-queue stack

.data

Figure 7. Stack memory distribution

Figure 7, the pree-queue stack is allocated to the RAMEND
(the end of random-access memory). In this way, the wasted
memory used to initialize the system is reused as the pree-
queue stack. The coop-queue uses a native memory stack, and
the stack size is dynamic until it overlaps with the stack .heap.

D. Resource management

Resource management modules are essential for managing
hardware resources. The power manager controls the system’s
power-saving level based on the kernel status. Primitive
events/signals from hardware are managed/filtered by the
interrupt monitor. The system timer provides system timing
functions, such as the system tick service and the primitive
timer event.

StateOS applies dynamic memory management using a mem-
ory allocator. The memory allocator distinguishes the memory
allocating requests as long-term and short-lived requests and
applies different algorithms to each. This strategy effectively
alleviates internal and external fragmentation problems.

The traditional heap-based malloc algorithm (as implemented
in the standard C library) allocates memory in a dynamically
growing data segment. This algorithm is efficient in processing
long-term requests. However, frequent short-lived requests can
cause the external fragmentation problem [25]. In contrast,
buddy system [26] divides the memory pool into fix-sized

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

RAMEND

.heap

.stack

.global

.buddy

Figure 8. Memory sections

memory blocks to alleviate the external fragmentation problem
[27]. However, when long-term memory requests occupy the
memory pool, this can lead to an internal fragmentation
problem.

StateOS allocates separate memory sections to fulfill short-
lived and long-term requests. As shown in Figure 8, the
dynamically growing memory pool .heap satisfies long-term
requests using a heap-based malloc algorithm, and the static
memory pool .buddy implements a variant of the buddy
system for short-lived requests. This hybrid strategy improves
efficiency with regard to dynamic memory management by
alleviating fragmentation problems.

The buddy variant maintains a binary tree that monitors the
states of the memory blocks. The operations of the binary tree
have a time complexity O(logN), where N is the number of
memory blocks. The worst-case scenario is allocating/freeing
memory that is smaller than a memory block because the
operation has to traverse the tree to reach the bottom leaf.
It is inefficient to repeatedly issue small memory requests
to a buddy allocator because the algorithm processing time
diminishes the system’s performance. To alleviate this problem,
a memory recycling system is implemented to temporarily
hold the recently freed small memory chunks without restoring
them to the binary tree. These memory chunks can be quickly
reassigned to new requests. However, holding these memory
spaces in the long term may cause an unbalanced binary
tree and increase internal fragmentation. For this reason,
the recycled memory blocks are dumped periodically at the
system’s convenience.

V. A CODE EXAMPLE

An example code, shown as Code 2, is a code snippet that
initializes a radio transceiver. It contains the radio-initializing
task radio init task and the startup task start demo.

The task implementation begins with the task prototype inter-
face TASK, followed by the return type, task name, and variadic
arguments. The task prototype TASK(int, radio init task, int,
timeout), in line 1, contains the return value type int, the task
name radio init task, and an argument int, timeout. The reader
may notice that the argument’s type int and label timeout are
separated by a comma. This is because the type and label of an
argument are treated as a pair of parameters in the prototype.

The task STARTUP TASK(start demo), as in line 17, im-
plements a startup task. This task calls the subroutine task
radio init task in line 19 and is blocked until the called task
is completed.

The task radio init task contains the local variable ts across
the yield operation TASK WAIT WHILE, as in line 10. This
local variable must be introduced to the yield operation for
preservation; otherwise, the value of the variable is no longer
guaranteed when the task resumes.

The task invoked by the synchronized task-calling macro
TASK CALL can return the result as a return value. In the
example, the task radio init task has the return value of an
integer int. There are two return operations in the example, as
can be seen in lines 13 and 14. The return value is read by
the macro TASK CALL RETVAL.

Code 2. A radio initialization program example
1 TASK(int, radio_init_task, int, timeout)
2 {
3 time_t ts = os_get_time() + timeout;
4
5 radio_init();
6
7 TASK_WAIT_WHILE(
8 (radio_state() != RADIO_READY) &&
9 (ts < os_get_time()),

10 ts);
11
12 if (radio_state() != RADIO_READY)
13 TASK_EXIT(-1);
14 TASK_END(0);
15 }
16
17 STARTUP_TASK(start_demo)
18 {
19 TASK_CALL(radio_init_task, 100)();
20 int res = TASK_CALL_RETVAL(int);
21 if (res == 0) dbg_printf("radio OK\n");
22
23 TASK_END();
24 }

This example demonstrates that StateOS’s cooperative task
APIs provide a practical approach to cooperative threaded
programming. It is flexible, memory efficient, and easy to use.

VI. IMPLEMENTATION

StateOS has been implemented as an IoT solution on
different platforms. Figure 9a shows the baseboard and several
sensor modules, including a relay-based magnet sensor, a
pressure sensor, and a motion sensor. The baseboard includes
an XMEGA256A3Bu MCU and an AT86RF215M transceiver.
Using this modularized design, an IoT sensor device can
be assembled simply by attaching the sensor module to the
baseboard. These sensor modules are supported by the sensor
service modules of StateOS.

Network management is achieved using autonomous net-
work services, which include a network scheduler and clock
synchronization. The network scheduler synchronizes the radio
activities of all IoT devices on the network. This reduces
a device’s power consumption by minimizing the radio’s
active period. The clock synchronization service fine-tunes
the device’s local clock according to the central clock.

The database of the cross-layer management entity maintains
a network status list neighbor-table by recording broadcasts
from neighboring devices. The table collects information about
these devices, which includes their battery level, signal strength,
link quality, and traffic throughput. This information can be
used by network services, such as topology management and
traffic control services. Furthermore, the neighbor-table is
uploaded to the server for network diagnosis.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

(a)

(b) (c)

Figure 9. The StateOS platform examples include (a) a baseboard with sensor
modules, (b) a LoRa gateway board, and (c) a heavy-duty LoRa gateway
board.

The LoRa [28] gateway board, shown in Figure 9b, is an
extension of the baseboard that supports LoRa communication
using an RN2483 LoRa module. It is mainly used to upload
gateway data to the service. The LoRa protocol has limited
bandwidth, especially over a poor-quality network link. Thus,
StateOS further implements a data aggregation module and a
compression module to reduce LoRa network traffic.

Some applications demand increased bandwidth that can
exceed the LoRa capacity. Therefore, for larger network traffic
throughput, we implemented heavy-duty gateway boards, as
shown in Figure 9c. This platform is mounted with four LoRa-
E5 modules and an ESP8266 Wi-Fi module. This gateway
has its own MCU (which also runs StateOS), ARM M0+
ATSAML21G18B, for network management.

VII. EVALUATION

In this section, StateOS is evaluated based on its technical
properties, scalability, and performance. The technical proper-
ties of an IoT OS include the kernel architecture, scheduling
strategy, programming paradigm, programming language, and
real-time capability. The scalability of an OS is measured by
comparing the data memory consumption and program memory
engagement. The performance is determined by calculating the
processing time of the kernel operations.

Traditional resource-constrained IoT/WSN platforms are
powered by an 8-bit MCU, and the typical IoT/WSN-oriented
OSs were originally designed under the 8-bit computing
architecture. Therefore, in the scalability and performance
subsections, evaluations are performed by comparing operating
systems that support 8-bit processor families (e.g., AVR and
PIC processors) with comparable performance metrics. The
evaluation data for StateOS were obtained on the platform
specified in Table II. Evaluation data for other OSs were
obtained in literature research.

A. Technical properties
Table III lists the technical properties of different IoT

OSs. The kernel architecture choice significantly influences

Table II
SPECIFICATIONS OF THE EVALUATED STATEOS PLATFORM

Platform StateOS sensor baseboard
MCU Xmega256A3Bu
CPU clock 32MHz
pree-queue stack 128 bytes
memory pool 1024 bytes
minimum memory block 8 bytes
memory recycling pool 20 bytes (10 entries)

an OS’s overall architecture and modularity. StateOS applies
a microkernel architecture for a small kernel size and a
modularized structure. The system modules are loosely coupled,
which achieves a flexible and robust architecture.

StateOS implements a hybrid task-scheduling strategy to
support cooperative threaded programming at a small memory
cost while maintaining adequate real-time capability. The
cooperative threaded interfaces in StateOS are provided by
the system-specific language. It can be challenging for novice
programmers. Therefore, StateOS extensively supports state-
charts as a state machine-based visual programming model.

B. Scalability

The scalability of an OS is evaluated by memory usage for
handling concurrent tasks/threads. The evaluation is conducted
with a methodology similar to [23]. In the evaluation, we run
16 cooperative tasks on StateOS, which are contained by two
kernel threads (the pree-queue and the coop-queue).

A typical StateOS configuration takes 46 bytes of static data
memory, which is its kernel’s memory footprint that includes
the control blocks of two kernel threads (the pree-queue and the
coop-queue). The task scheduler typically allocates 128 bytes of
stack memory for pree-queue context saving. Additionally, the
buddy memory module requires extra management memory of
19 bytes and binary tree memory of M/B bytes, where M is the
memory pool size, and B is the memory block size. It is typical
to configure a dynamic memory pool of 1024 bytes with a block
size of 8 bytes. Thus, the buddy module takes 147 (19+1024/8)
bytes of heap memory as the management cost. Furthermore,
the memory recycling system can be optimized to take 20 bytes
to implement ten recycling entries. In summary, a functional
StateOS requires 341 (46+128+147+20) bytes of data memory
(the memory footprint of the hardware implementation is not
counted).

In StateOS, a TCB takes a minimum of 22 bytes of
memory. Therefore, a running StateOS with 16 concurrent
tasks consumes 693 (22 ∗ 16 + 341) bytes of memory, which
includes 352 bytes of dynamic memory from 16 TCBs and 341
bytes of system memory consumption. However, this estimation
is based on the minimum task profile, with no arguments nor
local variables, and the results are suggestive of estimating the
system’s memory usage.

StateOS takes a minimum of 13K bytes of flash memory,
which primarily involves kernel implementation. However, a
typical configuration of StateOS consumes more memory to
satisfy the application requirements. For example, the StateOS
implementation in Section VI consumes 59K bytes of flash

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

Table III
COMPARISON OF TECHNICAL PROPERTIES

Architecture Scheduling Programming paradigm Language Real-time Supported processor families

StateOS microkernel hybrid cooperative threaded,
statechartsa C, statecharts partial supported AVR, ARM Cortex-M

Contiki modular cooperative cooperative threadedb,
multithreadedc, event-driven C partial supported AVR, ARM Cortex-M,

MSP430, PIC, etc.

RIOT microkernel preemptive multithreaded C, C++ supported AVR, ARM Cortex-M/A9,
Tensilica Xtensa, RISC-V, etc.

FreeRTOS microkernel preemptive multithreaded C supported AVR, ARM Cortex-M,
Tensilica Xtensa, RISC-V, etc.

OpenWSN monolithic cooperative event-driven C not supported AVR, ARM Cortex-M
HybridKernel monolithic hybrid cooperative threadedd C partial supported PIC

TinyOS monolithic cooperative
cooperative threadede,

multithreadedf , event-driven nesC not supported AVR, ARM Cortex-M,
MSP430, px27ax, etc.

MANTIS OS layered preemptive multithreaded C supported AVR
SenSpire monolithic hybrid event-driven CSpireg partial supported AVR, MSP430

Zephry monolithic preemptive multithreaded C, C++ supported
ARM Cortex-M/R, ARC, MIPS

RISC-V, SPARC, ARC
Tensilica Xtensa, NIOS II, etc

Mbed OS monolithic preemptive multithreaded C, C++ supported ARM Cortex-M
a Statecharts are supported by the statechart framework [11]
b Contiki supports cooperative threaded programming using Protothreads [5] .
c Contiki supports multithreaded programming by a library on top of the event-based kernel [5].
d HybridKernel supports cooperative threaded programming using Protothreads [23] .
e TinyOS accepts cooperative threaded programming using the library extension TinyThreads [6] .
f There are many multithreaded solutions for TinyOS. The official one is TOSThreads.
g CSpire is an object-oriented programming language that extends C++ [20].

memory, which includes the kernel (13K bytes), hardware
implementation (15K bytes), network services (24K bytes),
sensor services (2K bytes), and miscellaneous components (5K
bytes).

In Table IV, we compare the multiple task overhead of
StateOS to a multithreaded solution (MANTIS OS) and
three hybrid solutions (Contiki with Protothreads, TinyOS
with TOSthreads, and HybridKernel). In this evaluation, the
hybrid solutions (including StateOS) are evaluated with 16
cooperative components and two preemptive components, and
the multithreaded solution executes 16 preemptive components.
To distinguish between processes and threads in this evalua-
tion, we define threads as being cooperative and consuming
memory from TCBs, whereas processes are preemptive and
consume memory from Process Control Blocks (PCB). The
results suggest that StateOS is a memory-efficient approach to
implementing multitask systems.

C. Performance

The performance of StateOS is evaluated based on the
processing time of the task APIs. Most task operations involve
dynamic memory management. The approximate processing
time for a short-lived and small-sized memory allocation is 40
µs and for memory free is 41 µs. This performance can be
promoted by the memory recycling system to obtain a memory
allocation of 16 µs and a memory free of 30 µs.

When the scheduler dispatches a task, it takes 12 µs to
establish the task. In addition, preparing an 8 or 16-bit task
argument takes less than 1 µs. However, preparing a 32-bit
argument consumes a higher amount of processing time of 3
µs. The task yield operations take an average of 4 µs to release
the processor control. The other task flow control operations,

such as TASK WAIT DELAY and TASK CALL, can have a
processing time of 40–60 µs. Furthermore, if local variables
are saved during the operation, the processing time increases
because of the dynamic memory operations.

The cooperative task-switching procedure includes a flow
control operation, a task establishment operation, and possible
stack management operations. In summary, the processing time
required for a cooperative task-switching operation can be a
minimum2 of 16 µs and a maximum of more than 100 µs.
Cooperative task-switching operations are usually issued by
tasks with low urgency levels. Therefore, its processing speed
is sufficient for such tasks.

Compared to cooperative task switching, preemptive context
switching between the coop-queue and the pree-queue is faster.
It takes about 4 µs to switch between the task queues, which
is quick enough for a time-sensitive task to be executed in
time.

The results for the comparison of the scheduling overhead of
task switch operations in cooperative and preemptive scheduling
are shown in Table V. The overhead values are platform-
dependent. Therefore, the comparison is feasible if the results
are unified with the CPU clock cycles.

Cooperative switch time is the scheduling overhead between
consecutive cooperative tasks. StateOS APIs provide semi-
automatic stack management and versatile task controls (e.g.,
task concatenation, task callback, and mutex) that are processed
between tasks. This user-friendly approach requires more
executive time than simple task switches. However, typical
cooperative tasks can tolerate longer latency in exchange for
flexibility.

2This includes a basic yield operation (4 µs) and a task establishment
operation (12 µs).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

Table IV
MULTITASK HANDLING MEMORY COMPARISONa

(in bytes) Static memory PCB PCB total Stack Stack total TCB TCB total Sum

StateOS 341 - - -b - 22 352 (16 * 22) 693
Contikic 262[29] + 128d[4] 8[4] 16 (2 * 8) 128 256 (2 * 128) 15[29] 240 (16 * 15) 902
TinyOSe 16[30] 43[31] 129 (3 * 43) 128 384 (3 * 128) 46[23] 736 (16 * 46) 1265
MANTIS OSf 144[32] 10[32] 160 (16 * 10) 128 2048 (16 * 128) - - 2352
HybridKernel 89[23] 28[23] 56 (2 * 28) 128 256 (2 * 128) 31[23] 496 (16 * 31) 897
a This comparison is conducted by executing 16 concurrent and two preemptive parts in the system. Some OSs may require an
additional thread or stack in the kernel.
b The StateOS’ pree-queue stack is counted as static memory.
c Contiki with Protothreads and a multithreaded library.
d Contiki kernel requires an extra stack.
e TinyOS with TOSThreads requires an extra kernel thread hosting the event system. Thus, it counts as three preemptive parts
in total.
f MANTIS OS executes 16 preemptive threads because it supports no cooperative tasks.

Table V
COMPARISON OF SCHEDULER OVERHEAD

Cooperative switch Preemptive switch
(in clock cycles) (in clock cycles)

StateOS 480 120
TinyOSa ≈10b 184[19]
Contikic 106[5] -
MANTIS OS - ≈400[32]
SenSpire 130[20] 400∼420[20]
HybridKernel 106d[5] 360[33]
a TinyOS is evaluated with TOSThreads.
b TinyOS has a first-in-first-out task queue with a run-to-the-end
strategy. We had trouble searching the literature results for the
task switch time between the consecutive tasks in the task queue.
However, a task switch operation has a few instructions about
memory copying and function calling, similar to event posting
and command calling operations (both of them take 10 clock
cycles). Therefore, we assume that the cooperative switch in
TinyOS is around 10 clock cycles.
c Contiki is evaluated with Protothreads.
d HybridKernel manages cooperative tasks using Protothreads.
The results are taken from Protothreads.

Real-time capability can be estimated by the performance of
preemptive task switch operations. This reflects the guaranteed
maximum time of the system’s responsiveness. Of the results
for the solutions shown in the table, StateOS takes the least
amount of preemptive task-switching time. This shows that
StateOS provides sufficient real-time performance for IoT/WSN
applications.

VIII. DISCUSSION AND CONCLUSION

This paper presents an embedded OS targeting IoT and
wireless sensor devices with distinctive features. The kernel
provides a set of macro-based cooperative task APIs that
allows for the modeling of event-driven systems in a threaded
paradigm. The hybrid task scheduler supports a mix of various
scheduling algorithms, such as cooperative, priority-based,
and preemptive scheduling. It allows the programmer to
balance resource usage and real-time performance based on
the application’s specifications. The dynamic memory allocator
in StateOS implements two separate strategies for long- and
short-lived allocation requests. This method can alleviate the
fragmentation problem and improve the robustness of the

system in the long term. Automatic stack management is
typically the privilege of multithreaded OSs. The users of
event-driven and cooperative OSs have to manually pass
the parameters between tasks and protect local variables.
StateOS’ APIs provide semi-automatic stack management that
automatizes the process of parameter passing and local variable
preservation.

A design principle of StateOS is memory efficiency. To
this end, several technologies are applied, including a cross-
layer communication structure, modularized services, and
microkernel architecture. Therefore, the memory occupation
of the system is configurable, depending on the application’s
requirements.

StateOS works perfectly with a statechart visual program-
ming framework [11] that supports modeling and programming
wireless sensor programs using graphic statechart diagrams.
This combination provides an alternative visual programming
approach that can aid developers in creating IoT applications
efficiently.

The hybrid approach to kernel design is, in fact, a com-
promised approach that combines event-driven and multi-
threaded systems. The system may consume more memory
and executive time than event-driven solutions. On the other
hand, multithreaded systems need no attention from users for
stack management. Compared to this, StateOS implements a
semi-automatic stack management solution, requiring users to
manually identify local variables. Furthermore, StateOS adopts
a dynamic memory management strategy. It has a trade-off of
the overhead of managing memory spaces.

StateOS was initially designed for WSN-based solutions,
where the gateway handles internet protocol (IP)-based network
traffics. Our following works include extending the network
stack to support low-power IP protocols such as 6LoWPAN
[34], allowing individual access to WSN nodes through an IP-
based IoT network directly. It will enable the use of IP-based
IoT application protocols, such as Thread [35] and Matter [36],
and emerge StateOS as a part of the modern IoT ecosystem.
Moreover, the hardware implementations are limited to a few
MCU models. We will extend the hardware implementations
to other popular IoT MCUs and platforms in the following
works.

In conclusion, we proposed a hybrid approach to program-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

ming IoT and wireless sensor applications in a threaded
paradigm with less memory consumption. We expect the
proposed solution to be a viable instrument that aids modern
IoT application development.

REFERENCES

[1] Y. Wu, P. Wang, and C. Xu, “Improving visible light backscatter
communication with delayed superimposition modulation,” in The 25th
Annual International Conference on Mobile Computing and Networking,
2019, pp. 1–3.

[2] L. Knud, Lasse, “State of the iot 2020: 12 billion iot connections,
surpassing non-iot for the first time,” IoT analytics, 2020. [Online].
Available: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-c
onnections-surpassing-non-iot-for-the-first-time/

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer et al., “Tinyos: An operating
system for sensor networks,” in Ambient intelligence. Springer, 2005,
pp. 115–148.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
2004, pp. 455–462.

[5] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying
event-driven programming of memory-constrained embedded systems,” in
Proceedings of the 4th international conference on Embedded networked
sensor systems. Acm, 2006, pp. 29–42.

[6] W. P. McCartney and N. Sridhar, “Abstractions for safe concurrent
programming in networked embedded systems,” in Proceedings of the
4th international conference on Embedded networked sensor systems,
2006, pp. 167–180.

[7] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack management.” in
USENIX Annual Technical Conference, General Track, 2002, pp. 289–
302.

[8] O. Kasten and K. Römer, “Beyond event handlers: Programming wireless
sensors with attributed state machines,” in Proceedings of the 4th
international symposium on Information processing in sensor networks.
IEEE Press, 2005, p. 7.

[9] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “Openwsn: a standards-based low-power wireless
development environment,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[10] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A
dynamic operating system for sensor nodes,” in Proceedings of the 3rd
international conference on Mobile systems, applications, and services,
2005, pp. 163–176.

[11] I. Hakala and X. Tan, “A statecharts-based approach for wsn application
development,” Journal of Sensor and Actuator Networks, vol. 9, no. 4,
p. 45, 2020.

[12] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,
J. Deng, and R. Han, “Mantis: System support for multimodal networks of
in-situ sensors,” in Proceedings of the 2nd ACM international conference
on Wireless sensor networks and applications. ACM, 2003, pp. 50–59.

[13] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “Riot: An
open source operating system for low-end embedded devices in the iot,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4428–4440, 2018.

[14] “Freertos,” https://www.freertos.org/, accessed: 2021-12-01.
[15] “Zephyr,” https://zephyrproject.org/, accessed: 2021-12-01.
[16] “Mbed os,” https://os.mbed.com/mbed-os/, accessed: 2021-12-01.
[17] “Keil rtx5,” https://www2.keil.com/mdk5/cmsis/rtx/, accessed: 2021-12-

01.
[18] E. Trumpler and R. Han, “A systematic framework for evolving tinyos,”

in IEEE Workshop on Embedded Networked Sensors. Citeseer, 2006,
pp. 61–65.

[19] K. Klues, C.-J. M. Liang, J. Paek, R. Musaloiu-Elefteri, P. Levis, A. Terzis,
and R. Govindan, “Tosthreads: thread-safe and non-invasive preemption
in tinyos.” in SenSys, vol. 9, 2009, pp. 127–140.

[20] W. Dong, C. Chen, X. Liu, Y. Liu, J. Bu, and K. Zheng, “Senspire
os: A predictable, flexible, and efficient operating system for wireless
sensor networks,” IEEE transactions on computers, vol. 60, no. 12, pp.
1788–1801, 2011.

[21] Y. Guan, J. Guo, and Q. Li, “Formal verification of a hybrid iot operating
system model,” IEEE Access, vol. 9, pp. 59 171–59 183, 2021.

[22] S. M. Trenkwalder, Y. K. Lopes, A. Kolling, A. L. Christensen, R. Prodan,
and R. Groß, “Openswarm: An event-driven embedded operating system
for miniature robots,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 4483–4490.

[23] T. Laukkarinen, V. A. Kaseva, J. Suhonen, T. D. Hamalainen, and
M. Hannikainen, “Hybridkernel: Preemptive kernel with event-driven
extension for resource constrained wireless sensor networks,” in 2009
IEEE Workshop on Signal Processing Systems. IEEE, 2009, pp. 161–166.

[24] I. Hakala and M. Tikkakoski, “From vertical to horizontal architecture:
a cross-layer implementation in a sensor network node,” in Proceedings
of the first international conference on Integrated internet ad hoc and
sensor networks. ACM, 2006, p. 6.

[25] A. Bohra and E. Gabber, “Are mallocs free of fragmentation?” in USENIX
Annual Technical Conference, FREENIX Track, 2001, pp. 105–117.

[26] K. C. Knowlton, “A fast storage allocator,” Commun. ACM,
vol. 8, no. 10, pp. 623–624, Oct. 1965. [Online]. Available:
http://doi.acm.org/10.1145/365628.365655

[27] J. L. Peterson and T. A. Norman, “Buddy systems,” Communications of
the ACM, vol. 20, no. 6, pp. 421–431, 1977.

[28] “Lora,” https://www.lora-alliance.org, accessed: 2021-12-01.
[29] “Contiki source code,” https://github.com/contiki-os/contiki, accessed:

2021-12-01.
[30] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

“System architecture directions for networked sensors,” ACM Sigplan
notices, vol. 35, no. 11, pp. 93–104, 2000.

[31] “Tinyos source code,” https://github.com/tinyos/tinyos-main, accessed:
2021-12-01.

[32] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “Mantis os: An embedded
multithreaded operating system for wireless micro sensor platforms,”
Mobile Networks and Applications, vol. 10, no. 4, pp. 563–579, 2005.

[33] T. Laukkarinen, “Abstracting application development for resource
constrained wireless sensor networks,” Ph.D. dissertation, Tampere
University of Technology, 2015.

[34] G. Mulligan, “The 6lowpan architecture,” in Proceedings of the 4th
workshop on Embedded networked sensors, 2007, pp. 78–82.

[35] “Thread,” https://www.threadgroup.org/, accessed: 2022-11-17.
[36] “Matter,” https://github.com/project-chip/connectedhomeip/, accessed:

2022-11-17.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3234106

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing -non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing -non-iot-for-the-first-time/
https://www.freertos.org/
https://zephyrproject.org/
https://os.mbed.com/mbed-os/
https://www2.keil.com/mdk5/cmsis/rtx/
http://doi.acm.org/10.1145/365628.365655
https://www.lora-alliance.org
https://github.com/contiki-os/contiki
https://github.com/tinyos/tinyos-main
https://www.threadgroup.org/
https://github.com/project-chip/connectedhomeip/

	Introduction
	Related work
	StateOS: An Overview
	The Kernel
	Task APIs
	Suspended task handlers
	Task scheduler
	Resource management

	A code example
	Implementation
	Evaluation
	Technical properties
	Scalability
	Performance

	Discussion and conclusion
	References

